xref: /openbmc/linux/drivers/md/dm.c (revision 76a4f7cc)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/keyslot-manager.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
82 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 {
84 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
85 	if (!tio->inside_dm_io)
86 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
87 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 }
89 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90 
91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 {
93 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
94 	if (io->magic == DM_IO_MAGIC)
95 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
96 	BUG_ON(io->magic != DM_TIO_MAGIC);
97 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 }
99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100 
101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 {
103 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 }
105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 #define DM_NUMA_NODE NUMA_NO_NODE
110 static int dm_numa_node = DM_NUMA_NODE;
111 
112 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
113 static int swap_bios = DEFAULT_SWAP_BIOS;
114 static int get_swap_bios(void)
115 {
116 	int latch = READ_ONCE(swap_bios);
117 	if (unlikely(latch <= 0))
118 		latch = DEFAULT_SWAP_BIOS;
119 	return latch;
120 }
121 
122 /*
123  * For mempools pre-allocation at the table loading time.
124  */
125 struct dm_md_mempools {
126 	struct bio_set bs;
127 	struct bio_set io_bs;
128 };
129 
130 struct table_device {
131 	struct list_head list;
132 	refcount_t count;
133 	struct dm_dev dm_dev;
134 };
135 
136 /*
137  * Bio-based DM's mempools' reserved IOs set by the user.
138  */
139 #define RESERVED_BIO_BASED_IOS		16
140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141 
142 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 {
144 	int param = READ_ONCE(*module_param);
145 	int modified_param = 0;
146 	bool modified = true;
147 
148 	if (param < min)
149 		modified_param = min;
150 	else if (param > max)
151 		modified_param = max;
152 	else
153 		modified = false;
154 
155 	if (modified) {
156 		(void)cmpxchg(module_param, param, modified_param);
157 		param = modified_param;
158 	}
159 
160 	return param;
161 }
162 
163 unsigned __dm_get_module_param(unsigned *module_param,
164 			       unsigned def, unsigned max)
165 {
166 	unsigned param = READ_ONCE(*module_param);
167 	unsigned modified_param = 0;
168 
169 	if (!param)
170 		modified_param = def;
171 	else if (param > max)
172 		modified_param = max;
173 
174 	if (modified_param) {
175 		(void)cmpxchg(module_param, param, modified_param);
176 		param = modified_param;
177 	}
178 
179 	return param;
180 }
181 
182 unsigned dm_get_reserved_bio_based_ios(void)
183 {
184 	return __dm_get_module_param(&reserved_bio_based_ios,
185 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 }
187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188 
189 static unsigned dm_get_numa_node(void)
190 {
191 	return __dm_get_module_param_int(&dm_numa_node,
192 					 DM_NUMA_NODE, num_online_nodes() - 1);
193 }
194 
195 static int __init local_init(void)
196 {
197 	int r;
198 
199 	r = dm_uevent_init();
200 	if (r)
201 		return r;
202 
203 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
204 	if (!deferred_remove_workqueue) {
205 		r = -ENOMEM;
206 		goto out_uevent_exit;
207 	}
208 
209 	_major = major;
210 	r = register_blkdev(_major, _name);
211 	if (r < 0)
212 		goto out_free_workqueue;
213 
214 	if (!_major)
215 		_major = r;
216 
217 	return 0;
218 
219 out_free_workqueue:
220 	destroy_workqueue(deferred_remove_workqueue);
221 out_uevent_exit:
222 	dm_uevent_exit();
223 
224 	return r;
225 }
226 
227 static void local_exit(void)
228 {
229 	flush_scheduled_work();
230 	destroy_workqueue(deferred_remove_workqueue);
231 
232 	unregister_blkdev(_major, _name);
233 	dm_uevent_exit();
234 
235 	_major = 0;
236 
237 	DMINFO("cleaned up");
238 }
239 
240 static int (*_inits[])(void) __initdata = {
241 	local_init,
242 	dm_target_init,
243 	dm_linear_init,
244 	dm_stripe_init,
245 	dm_io_init,
246 	dm_kcopyd_init,
247 	dm_interface_init,
248 	dm_statistics_init,
249 };
250 
251 static void (*_exits[])(void) = {
252 	local_exit,
253 	dm_target_exit,
254 	dm_linear_exit,
255 	dm_stripe_exit,
256 	dm_io_exit,
257 	dm_kcopyd_exit,
258 	dm_interface_exit,
259 	dm_statistics_exit,
260 };
261 
262 static int __init dm_init(void)
263 {
264 	const int count = ARRAY_SIZE(_inits);
265 	int r, i;
266 
267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
268 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
269 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
270 #endif
271 
272 	for (i = 0; i < count; i++) {
273 		r = _inits[i]();
274 		if (r)
275 			goto bad;
276 	}
277 
278 	return 0;
279 bad:
280 	while (i--)
281 		_exits[i]();
282 
283 	return r;
284 }
285 
286 static void __exit dm_exit(void)
287 {
288 	int i = ARRAY_SIZE(_exits);
289 
290 	while (i--)
291 		_exits[i]();
292 
293 	/*
294 	 * Should be empty by this point.
295 	 */
296 	idr_destroy(&_minor_idr);
297 }
298 
299 /*
300  * Block device functions
301  */
302 int dm_deleting_md(struct mapped_device *md)
303 {
304 	return test_bit(DMF_DELETING, &md->flags);
305 }
306 
307 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
308 {
309 	struct mapped_device *md;
310 
311 	spin_lock(&_minor_lock);
312 
313 	md = bdev->bd_disk->private_data;
314 	if (!md)
315 		goto out;
316 
317 	if (test_bit(DMF_FREEING, &md->flags) ||
318 	    dm_deleting_md(md)) {
319 		md = NULL;
320 		goto out;
321 	}
322 
323 	dm_get(md);
324 	atomic_inc(&md->open_count);
325 out:
326 	spin_unlock(&_minor_lock);
327 
328 	return md ? 0 : -ENXIO;
329 }
330 
331 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
332 {
333 	struct mapped_device *md;
334 
335 	spin_lock(&_minor_lock);
336 
337 	md = disk->private_data;
338 	if (WARN_ON(!md))
339 		goto out;
340 
341 	if (atomic_dec_and_test(&md->open_count) &&
342 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
343 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
344 
345 	dm_put(md);
346 out:
347 	spin_unlock(&_minor_lock);
348 }
349 
350 int dm_open_count(struct mapped_device *md)
351 {
352 	return atomic_read(&md->open_count);
353 }
354 
355 /*
356  * Guarantees nothing is using the device before it's deleted.
357  */
358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
359 {
360 	int r = 0;
361 
362 	spin_lock(&_minor_lock);
363 
364 	if (dm_open_count(md)) {
365 		r = -EBUSY;
366 		if (mark_deferred)
367 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
368 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
369 		r = -EEXIST;
370 	else
371 		set_bit(DMF_DELETING, &md->flags);
372 
373 	spin_unlock(&_minor_lock);
374 
375 	return r;
376 }
377 
378 int dm_cancel_deferred_remove(struct mapped_device *md)
379 {
380 	int r = 0;
381 
382 	spin_lock(&_minor_lock);
383 
384 	if (test_bit(DMF_DELETING, &md->flags))
385 		r = -EBUSY;
386 	else
387 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
388 
389 	spin_unlock(&_minor_lock);
390 
391 	return r;
392 }
393 
394 static void do_deferred_remove(struct work_struct *w)
395 {
396 	dm_deferred_remove();
397 }
398 
399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
400 {
401 	struct mapped_device *md = bdev->bd_disk->private_data;
402 
403 	return dm_get_geometry(md, geo);
404 }
405 
406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
407 			    struct block_device **bdev)
408 {
409 	struct dm_target *tgt;
410 	struct dm_table *map;
411 	int r;
412 
413 retry:
414 	r = -ENOTTY;
415 	map = dm_get_live_table(md, srcu_idx);
416 	if (!map || !dm_table_get_size(map))
417 		return r;
418 
419 	/* We only support devices that have a single target */
420 	if (dm_table_get_num_targets(map) != 1)
421 		return r;
422 
423 	tgt = dm_table_get_target(map, 0);
424 	if (!tgt->type->prepare_ioctl)
425 		return r;
426 
427 	if (dm_suspended_md(md))
428 		return -EAGAIN;
429 
430 	r = tgt->type->prepare_ioctl(tgt, bdev);
431 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
432 		dm_put_live_table(md, *srcu_idx);
433 		msleep(10);
434 		goto retry;
435 	}
436 
437 	return r;
438 }
439 
440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
441 {
442 	dm_put_live_table(md, srcu_idx);
443 }
444 
445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
446 			unsigned int cmd, unsigned long arg)
447 {
448 	struct mapped_device *md = bdev->bd_disk->private_data;
449 	int r, srcu_idx;
450 
451 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
452 	if (r < 0)
453 		goto out;
454 
455 	if (r > 0) {
456 		/*
457 		 * Target determined this ioctl is being issued against a
458 		 * subset of the parent bdev; require extra privileges.
459 		 */
460 		if (!capable(CAP_SYS_RAWIO)) {
461 			DMDEBUG_LIMIT(
462 	"%s: sending ioctl %x to DM device without required privilege.",
463 				current->comm, cmd);
464 			r = -ENOIOCTLCMD;
465 			goto out;
466 		}
467 	}
468 
469 	if (!bdev->bd_disk->fops->ioctl)
470 		r = -ENOTTY;
471 	else
472 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
473 out:
474 	dm_unprepare_ioctl(md, srcu_idx);
475 	return r;
476 }
477 
478 u64 dm_start_time_ns_from_clone(struct bio *bio)
479 {
480 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
481 	struct dm_io *io = tio->io;
482 
483 	return jiffies_to_nsecs(io->start_time);
484 }
485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
486 
487 static void start_io_acct(struct dm_io *io)
488 {
489 	struct mapped_device *md = io->md;
490 	struct bio *bio = io->orig_bio;
491 
492 	io->start_time = bio_start_io_acct(bio);
493 	if (unlikely(dm_stats_used(&md->stats)))
494 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
495 				    bio->bi_iter.bi_sector, bio_sectors(bio),
496 				    false, 0, &io->stats_aux);
497 }
498 
499 static void end_io_acct(struct dm_io *io)
500 {
501 	struct mapped_device *md = io->md;
502 	struct bio *bio = io->orig_bio;
503 	unsigned long duration = jiffies - io->start_time;
504 
505 	bio_end_io_acct(bio, io->start_time);
506 
507 	if (unlikely(dm_stats_used(&md->stats)))
508 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
509 				    bio->bi_iter.bi_sector, bio_sectors(bio),
510 				    true, duration, &io->stats_aux);
511 
512 	/* nudge anyone waiting on suspend queue */
513 	if (unlikely(wq_has_sleeper(&md->wait)))
514 		wake_up(&md->wait);
515 }
516 
517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
518 {
519 	struct dm_io *io;
520 	struct dm_target_io *tio;
521 	struct bio *clone;
522 
523 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
524 	if (!clone)
525 		return NULL;
526 
527 	tio = container_of(clone, struct dm_target_io, clone);
528 	tio->inside_dm_io = true;
529 	tio->io = NULL;
530 
531 	io = container_of(tio, struct dm_io, tio);
532 	io->magic = DM_IO_MAGIC;
533 	io->status = 0;
534 	atomic_set(&io->io_count, 1);
535 	io->orig_bio = bio;
536 	io->md = md;
537 	spin_lock_init(&io->endio_lock);
538 
539 	start_io_acct(io);
540 
541 	return io;
542 }
543 
544 static void free_io(struct mapped_device *md, struct dm_io *io)
545 {
546 	bio_put(&io->tio.clone);
547 }
548 
549 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
550 				      unsigned target_bio_nr, gfp_t gfp_mask)
551 {
552 	struct dm_target_io *tio;
553 
554 	if (!ci->io->tio.io) {
555 		/* the dm_target_io embedded in ci->io is available */
556 		tio = &ci->io->tio;
557 	} else {
558 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
559 		if (!clone)
560 			return NULL;
561 
562 		tio = container_of(clone, struct dm_target_io, clone);
563 		tio->inside_dm_io = false;
564 	}
565 
566 	tio->magic = DM_TIO_MAGIC;
567 	tio->io = ci->io;
568 	tio->ti = ti;
569 	tio->target_bio_nr = target_bio_nr;
570 
571 	return tio;
572 }
573 
574 static void free_tio(struct dm_target_io *tio)
575 {
576 	if (tio->inside_dm_io)
577 		return;
578 	bio_put(&tio->clone);
579 }
580 
581 /*
582  * Add the bio to the list of deferred io.
583  */
584 static void queue_io(struct mapped_device *md, struct bio *bio)
585 {
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&md->deferred_lock, flags);
589 	bio_list_add(&md->deferred, bio);
590 	spin_unlock_irqrestore(&md->deferred_lock, flags);
591 	queue_work(md->wq, &md->work);
592 }
593 
594 /*
595  * Everyone (including functions in this file), should use this
596  * function to access the md->map field, and make sure they call
597  * dm_put_live_table() when finished.
598  */
599 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
600 {
601 	*srcu_idx = srcu_read_lock(&md->io_barrier);
602 
603 	return srcu_dereference(md->map, &md->io_barrier);
604 }
605 
606 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
607 {
608 	srcu_read_unlock(&md->io_barrier, srcu_idx);
609 }
610 
611 void dm_sync_table(struct mapped_device *md)
612 {
613 	synchronize_srcu(&md->io_barrier);
614 	synchronize_rcu_expedited();
615 }
616 
617 /*
618  * A fast alternative to dm_get_live_table/dm_put_live_table.
619  * The caller must not block between these two functions.
620  */
621 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
622 {
623 	rcu_read_lock();
624 	return rcu_dereference(md->map);
625 }
626 
627 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
628 {
629 	rcu_read_unlock();
630 }
631 
632 static char *_dm_claim_ptr = "I belong to device-mapper";
633 
634 /*
635  * Open a table device so we can use it as a map destination.
636  */
637 static int open_table_device(struct table_device *td, dev_t dev,
638 			     struct mapped_device *md)
639 {
640 	struct block_device *bdev;
641 
642 	int r;
643 
644 	BUG_ON(td->dm_dev.bdev);
645 
646 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
647 	if (IS_ERR(bdev))
648 		return PTR_ERR(bdev);
649 
650 	r = bd_link_disk_holder(bdev, dm_disk(md));
651 	if (r) {
652 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
653 		return r;
654 	}
655 
656 	td->dm_dev.bdev = bdev;
657 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev);
658 	return 0;
659 }
660 
661 /*
662  * Close a table device that we've been using.
663  */
664 static void close_table_device(struct table_device *td, struct mapped_device *md)
665 {
666 	if (!td->dm_dev.bdev)
667 		return;
668 
669 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
670 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
671 	put_dax(td->dm_dev.dax_dev);
672 	td->dm_dev.bdev = NULL;
673 	td->dm_dev.dax_dev = NULL;
674 }
675 
676 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
677 					      fmode_t mode)
678 {
679 	struct table_device *td;
680 
681 	list_for_each_entry(td, l, list)
682 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
683 			return td;
684 
685 	return NULL;
686 }
687 
688 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
689 			struct dm_dev **result)
690 {
691 	int r;
692 	struct table_device *td;
693 
694 	mutex_lock(&md->table_devices_lock);
695 	td = find_table_device(&md->table_devices, dev, mode);
696 	if (!td) {
697 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
698 		if (!td) {
699 			mutex_unlock(&md->table_devices_lock);
700 			return -ENOMEM;
701 		}
702 
703 		td->dm_dev.mode = mode;
704 		td->dm_dev.bdev = NULL;
705 
706 		if ((r = open_table_device(td, dev, md))) {
707 			mutex_unlock(&md->table_devices_lock);
708 			kfree(td);
709 			return r;
710 		}
711 
712 		format_dev_t(td->dm_dev.name, dev);
713 
714 		refcount_set(&td->count, 1);
715 		list_add(&td->list, &md->table_devices);
716 	} else {
717 		refcount_inc(&td->count);
718 	}
719 	mutex_unlock(&md->table_devices_lock);
720 
721 	*result = &td->dm_dev;
722 	return 0;
723 }
724 
725 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
726 {
727 	struct table_device *td = container_of(d, struct table_device, dm_dev);
728 
729 	mutex_lock(&md->table_devices_lock);
730 	if (refcount_dec_and_test(&td->count)) {
731 		close_table_device(td, md);
732 		list_del(&td->list);
733 		kfree(td);
734 	}
735 	mutex_unlock(&md->table_devices_lock);
736 }
737 
738 static void free_table_devices(struct list_head *devices)
739 {
740 	struct list_head *tmp, *next;
741 
742 	list_for_each_safe(tmp, next, devices) {
743 		struct table_device *td = list_entry(tmp, struct table_device, list);
744 
745 		DMWARN("dm_destroy: %s still exists with %d references",
746 		       td->dm_dev.name, refcount_read(&td->count));
747 		kfree(td);
748 	}
749 }
750 
751 /*
752  * Get the geometry associated with a dm device
753  */
754 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
755 {
756 	*geo = md->geometry;
757 
758 	return 0;
759 }
760 
761 /*
762  * Set the geometry of a device.
763  */
764 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
765 {
766 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
767 
768 	if (geo->start > sz) {
769 		DMWARN("Start sector is beyond the geometry limits.");
770 		return -EINVAL;
771 	}
772 
773 	md->geometry = *geo;
774 
775 	return 0;
776 }
777 
778 static int __noflush_suspending(struct mapped_device *md)
779 {
780 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
781 }
782 
783 /*
784  * Decrements the number of outstanding ios that a bio has been
785  * cloned into, completing the original io if necc.
786  */
787 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
788 {
789 	unsigned long flags;
790 	blk_status_t io_error;
791 	struct bio *bio;
792 	struct mapped_device *md = io->md;
793 
794 	/* Push-back supersedes any I/O errors */
795 	if (unlikely(error)) {
796 		spin_lock_irqsave(&io->endio_lock, flags);
797 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
798 			io->status = error;
799 		spin_unlock_irqrestore(&io->endio_lock, flags);
800 	}
801 
802 	if (atomic_dec_and_test(&io->io_count)) {
803 		bio = io->orig_bio;
804 		if (io->status == BLK_STS_DM_REQUEUE) {
805 			/*
806 			 * Target requested pushing back the I/O.
807 			 */
808 			spin_lock_irqsave(&md->deferred_lock, flags);
809 			if (__noflush_suspending(md) &&
810 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
811 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
812 				bio_list_add_head(&md->deferred, bio);
813 			} else {
814 				/*
815 				 * noflush suspend was interrupted or this is
816 				 * a write to a zoned target.
817 				 */
818 				io->status = BLK_STS_IOERR;
819 			}
820 			spin_unlock_irqrestore(&md->deferred_lock, flags);
821 		}
822 
823 		io_error = io->status;
824 		end_io_acct(io);
825 		free_io(md, io);
826 
827 		if (io_error == BLK_STS_DM_REQUEUE)
828 			return;
829 
830 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
831 			/*
832 			 * Preflush done for flush with data, reissue
833 			 * without REQ_PREFLUSH.
834 			 */
835 			bio->bi_opf &= ~REQ_PREFLUSH;
836 			queue_io(md, bio);
837 		} else {
838 			/* done with normal IO or empty flush */
839 			if (io_error)
840 				bio->bi_status = io_error;
841 			bio_endio(bio);
842 		}
843 	}
844 }
845 
846 void disable_discard(struct mapped_device *md)
847 {
848 	struct queue_limits *limits = dm_get_queue_limits(md);
849 
850 	/* device doesn't really support DISCARD, disable it */
851 	limits->max_discard_sectors = 0;
852 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
853 }
854 
855 void disable_write_same(struct mapped_device *md)
856 {
857 	struct queue_limits *limits = dm_get_queue_limits(md);
858 
859 	/* device doesn't really support WRITE SAME, disable it */
860 	limits->max_write_same_sectors = 0;
861 }
862 
863 void disable_write_zeroes(struct mapped_device *md)
864 {
865 	struct queue_limits *limits = dm_get_queue_limits(md);
866 
867 	/* device doesn't really support WRITE ZEROES, disable it */
868 	limits->max_write_zeroes_sectors = 0;
869 }
870 
871 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
872 {
873 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
874 }
875 
876 static void clone_endio(struct bio *bio)
877 {
878 	blk_status_t error = bio->bi_status;
879 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
880 	struct dm_io *io = tio->io;
881 	struct mapped_device *md = tio->io->md;
882 	dm_endio_fn endio = tio->ti->type->end_io;
883 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
884 
885 	if (unlikely(error == BLK_STS_TARGET)) {
886 		if (bio_op(bio) == REQ_OP_DISCARD &&
887 		    !q->limits.max_discard_sectors)
888 			disable_discard(md);
889 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
890 			 !q->limits.max_write_same_sectors)
891 			disable_write_same(md);
892 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
893 			 !q->limits.max_write_zeroes_sectors)
894 			disable_write_zeroes(md);
895 	}
896 
897 	if (blk_queue_is_zoned(q))
898 		dm_zone_endio(io, bio);
899 
900 	if (endio) {
901 		int r = endio(tio->ti, bio, &error);
902 		switch (r) {
903 		case DM_ENDIO_REQUEUE:
904 			/*
905 			 * Requeuing writes to a sequential zone of a zoned
906 			 * target will break the sequential write pattern:
907 			 * fail such IO.
908 			 */
909 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
910 				error = BLK_STS_IOERR;
911 			else
912 				error = BLK_STS_DM_REQUEUE;
913 			fallthrough;
914 		case DM_ENDIO_DONE:
915 			break;
916 		case DM_ENDIO_INCOMPLETE:
917 			/* The target will handle the io */
918 			return;
919 		default:
920 			DMWARN("unimplemented target endio return value: %d", r);
921 			BUG();
922 		}
923 	}
924 
925 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
926 		struct mapped_device *md = io->md;
927 		up(&md->swap_bios_semaphore);
928 	}
929 
930 	free_tio(tio);
931 	dm_io_dec_pending(io, error);
932 }
933 
934 /*
935  * Return maximum size of I/O possible at the supplied sector up to the current
936  * target boundary.
937  */
938 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
939 						  sector_t target_offset)
940 {
941 	return ti->len - target_offset;
942 }
943 
944 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
945 {
946 	sector_t target_offset = dm_target_offset(ti, sector);
947 	sector_t len = max_io_len_target_boundary(ti, target_offset);
948 	sector_t max_len;
949 
950 	/*
951 	 * Does the target need to split IO even further?
952 	 * - varied (per target) IO splitting is a tenet of DM; this
953 	 *   explains why stacked chunk_sectors based splitting via
954 	 *   blk_max_size_offset() isn't possible here. So pass in
955 	 *   ti->max_io_len to override stacked chunk_sectors.
956 	 */
957 	if (ti->max_io_len) {
958 		max_len = blk_max_size_offset(ti->table->md->queue,
959 					      target_offset, ti->max_io_len);
960 		if (len > max_len)
961 			len = max_len;
962 	}
963 
964 	return len;
965 }
966 
967 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
968 {
969 	if (len > UINT_MAX) {
970 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
971 		      (unsigned long long)len, UINT_MAX);
972 		ti->error = "Maximum size of target IO is too large";
973 		return -EINVAL;
974 	}
975 
976 	ti->max_io_len = (uint32_t) len;
977 
978 	return 0;
979 }
980 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
981 
982 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
983 						sector_t sector, int *srcu_idx)
984 	__acquires(md->io_barrier)
985 {
986 	struct dm_table *map;
987 	struct dm_target *ti;
988 
989 	map = dm_get_live_table(md, srcu_idx);
990 	if (!map)
991 		return NULL;
992 
993 	ti = dm_table_find_target(map, sector);
994 	if (!ti)
995 		return NULL;
996 
997 	return ti;
998 }
999 
1000 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1001 				 long nr_pages, void **kaddr, pfn_t *pfn)
1002 {
1003 	struct mapped_device *md = dax_get_private(dax_dev);
1004 	sector_t sector = pgoff * PAGE_SECTORS;
1005 	struct dm_target *ti;
1006 	long len, ret = -EIO;
1007 	int srcu_idx;
1008 
1009 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1010 
1011 	if (!ti)
1012 		goto out;
1013 	if (!ti->type->direct_access)
1014 		goto out;
1015 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1016 	if (len < 1)
1017 		goto out;
1018 	nr_pages = min(len, nr_pages);
1019 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1020 
1021  out:
1022 	dm_put_live_table(md, srcu_idx);
1023 
1024 	return ret;
1025 }
1026 
1027 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1028 		int blocksize, sector_t start, sector_t len)
1029 {
1030 	struct mapped_device *md = dax_get_private(dax_dev);
1031 	struct dm_table *map;
1032 	bool ret = false;
1033 	int srcu_idx;
1034 
1035 	map = dm_get_live_table(md, &srcu_idx);
1036 	if (!map)
1037 		goto out;
1038 
1039 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1040 
1041 out:
1042 	dm_put_live_table(md, srcu_idx);
1043 
1044 	return ret;
1045 }
1046 
1047 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1048 				    void *addr, size_t bytes, struct iov_iter *i)
1049 {
1050 	struct mapped_device *md = dax_get_private(dax_dev);
1051 	sector_t sector = pgoff * PAGE_SECTORS;
1052 	struct dm_target *ti;
1053 	long ret = 0;
1054 	int srcu_idx;
1055 
1056 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1057 
1058 	if (!ti)
1059 		goto out;
1060 	if (!ti->type->dax_copy_from_iter) {
1061 		ret = copy_from_iter(addr, bytes, i);
1062 		goto out;
1063 	}
1064 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1065  out:
1066 	dm_put_live_table(md, srcu_idx);
1067 
1068 	return ret;
1069 }
1070 
1071 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1072 		void *addr, size_t bytes, struct iov_iter *i)
1073 {
1074 	struct mapped_device *md = dax_get_private(dax_dev);
1075 	sector_t sector = pgoff * PAGE_SECTORS;
1076 	struct dm_target *ti;
1077 	long ret = 0;
1078 	int srcu_idx;
1079 
1080 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1081 
1082 	if (!ti)
1083 		goto out;
1084 	if (!ti->type->dax_copy_to_iter) {
1085 		ret = copy_to_iter(addr, bytes, i);
1086 		goto out;
1087 	}
1088 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1089  out:
1090 	dm_put_live_table(md, srcu_idx);
1091 
1092 	return ret;
1093 }
1094 
1095 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1096 				  size_t nr_pages)
1097 {
1098 	struct mapped_device *md = dax_get_private(dax_dev);
1099 	sector_t sector = pgoff * PAGE_SECTORS;
1100 	struct dm_target *ti;
1101 	int ret = -EIO;
1102 	int srcu_idx;
1103 
1104 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1105 
1106 	if (!ti)
1107 		goto out;
1108 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1109 		/*
1110 		 * ->zero_page_range() is mandatory dax operation. If we are
1111 		 *  here, something is wrong.
1112 		 */
1113 		goto out;
1114 	}
1115 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1116  out:
1117 	dm_put_live_table(md, srcu_idx);
1118 
1119 	return ret;
1120 }
1121 
1122 /*
1123  * A target may call dm_accept_partial_bio only from the map routine.  It is
1124  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1125  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1126  *
1127  * dm_accept_partial_bio informs the dm that the target only wants to process
1128  * additional n_sectors sectors of the bio and the rest of the data should be
1129  * sent in a next bio.
1130  *
1131  * A diagram that explains the arithmetics:
1132  * +--------------------+---------------+-------+
1133  * |         1          |       2       |   3   |
1134  * +--------------------+---------------+-------+
1135  *
1136  * <-------------- *tio->len_ptr --------------->
1137  *                      <------- bi_size ------->
1138  *                      <-- n_sectors -->
1139  *
1140  * Region 1 was already iterated over with bio_advance or similar function.
1141  *	(it may be empty if the target doesn't use bio_advance)
1142  * Region 2 is the remaining bio size that the target wants to process.
1143  *	(it may be empty if region 1 is non-empty, although there is no reason
1144  *	 to make it empty)
1145  * The target requires that region 3 is to be sent in the next bio.
1146  *
1147  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1148  * the partially processed part (the sum of regions 1+2) must be the same for all
1149  * copies of the bio.
1150  */
1151 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1152 {
1153 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1154 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1155 
1156 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1157 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1158 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1159 	BUG_ON(bi_size > *tio->len_ptr);
1160 	BUG_ON(n_sectors > bi_size);
1161 
1162 	*tio->len_ptr -= bi_size - n_sectors;
1163 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1164 }
1165 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1166 
1167 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1168 {
1169 	mutex_lock(&md->swap_bios_lock);
1170 	while (latch < md->swap_bios) {
1171 		cond_resched();
1172 		down(&md->swap_bios_semaphore);
1173 		md->swap_bios--;
1174 	}
1175 	while (latch > md->swap_bios) {
1176 		cond_resched();
1177 		up(&md->swap_bios_semaphore);
1178 		md->swap_bios++;
1179 	}
1180 	mutex_unlock(&md->swap_bios_lock);
1181 }
1182 
1183 static blk_qc_t __map_bio(struct dm_target_io *tio)
1184 {
1185 	int r;
1186 	sector_t sector;
1187 	struct bio *clone = &tio->clone;
1188 	struct dm_io *io = tio->io;
1189 	struct dm_target *ti = tio->ti;
1190 	blk_qc_t ret = BLK_QC_T_NONE;
1191 
1192 	clone->bi_end_io = clone_endio;
1193 
1194 	/*
1195 	 * Map the clone.  If r == 0 we don't need to do
1196 	 * anything, the target has assumed ownership of
1197 	 * this io.
1198 	 */
1199 	dm_io_inc_pending(io);
1200 	sector = clone->bi_iter.bi_sector;
1201 
1202 	if (unlikely(swap_bios_limit(ti, clone))) {
1203 		struct mapped_device *md = io->md;
1204 		int latch = get_swap_bios();
1205 		if (unlikely(latch != md->swap_bios))
1206 			__set_swap_bios_limit(md, latch);
1207 		down(&md->swap_bios_semaphore);
1208 	}
1209 
1210 	/*
1211 	 * Check if the IO needs a special mapping due to zone append emulation
1212 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1213 	 * map operation.
1214 	 */
1215 	if (dm_emulate_zone_append(io->md))
1216 		r = dm_zone_map_bio(tio);
1217 	else
1218 		r = ti->type->map(ti, clone);
1219 
1220 	switch (r) {
1221 	case DM_MAPIO_SUBMITTED:
1222 		break;
1223 	case DM_MAPIO_REMAPPED:
1224 		/* the bio has been remapped so dispatch it */
1225 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1226 		ret = submit_bio_noacct(clone);
1227 		break;
1228 	case DM_MAPIO_KILL:
1229 		if (unlikely(swap_bios_limit(ti, clone))) {
1230 			struct mapped_device *md = io->md;
1231 			up(&md->swap_bios_semaphore);
1232 		}
1233 		free_tio(tio);
1234 		dm_io_dec_pending(io, BLK_STS_IOERR);
1235 		break;
1236 	case DM_MAPIO_REQUEUE:
1237 		if (unlikely(swap_bios_limit(ti, clone))) {
1238 			struct mapped_device *md = io->md;
1239 			up(&md->swap_bios_semaphore);
1240 		}
1241 		free_tio(tio);
1242 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1243 		break;
1244 	default:
1245 		DMWARN("unimplemented target map return value: %d", r);
1246 		BUG();
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1253 {
1254 	bio->bi_iter.bi_sector = sector;
1255 	bio->bi_iter.bi_size = to_bytes(len);
1256 }
1257 
1258 /*
1259  * Creates a bio that consists of range of complete bvecs.
1260  */
1261 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1262 		     sector_t sector, unsigned len)
1263 {
1264 	struct bio *clone = &tio->clone;
1265 	int r;
1266 
1267 	__bio_clone_fast(clone, bio);
1268 
1269 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1270 	if (r < 0)
1271 		return r;
1272 
1273 	if (bio_integrity(bio)) {
1274 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1275 			     !dm_target_passes_integrity(tio->ti->type))) {
1276 			DMWARN("%s: the target %s doesn't support integrity data.",
1277 				dm_device_name(tio->io->md),
1278 				tio->ti->type->name);
1279 			return -EIO;
1280 		}
1281 
1282 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1283 		if (r < 0)
1284 			return r;
1285 	}
1286 
1287 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1288 	clone->bi_iter.bi_size = to_bytes(len);
1289 
1290 	if (bio_integrity(bio))
1291 		bio_integrity_trim(clone);
1292 
1293 	return 0;
1294 }
1295 
1296 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1297 				struct dm_target *ti, unsigned num_bios)
1298 {
1299 	struct dm_target_io *tio;
1300 	int try;
1301 
1302 	if (!num_bios)
1303 		return;
1304 
1305 	if (num_bios == 1) {
1306 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1307 		bio_list_add(blist, &tio->clone);
1308 		return;
1309 	}
1310 
1311 	for (try = 0; try < 2; try++) {
1312 		int bio_nr;
1313 		struct bio *bio;
1314 
1315 		if (try)
1316 			mutex_lock(&ci->io->md->table_devices_lock);
1317 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1318 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1319 			if (!tio)
1320 				break;
1321 
1322 			bio_list_add(blist, &tio->clone);
1323 		}
1324 		if (try)
1325 			mutex_unlock(&ci->io->md->table_devices_lock);
1326 		if (bio_nr == num_bios)
1327 			return;
1328 
1329 		while ((bio = bio_list_pop(blist))) {
1330 			tio = container_of(bio, struct dm_target_io, clone);
1331 			free_tio(tio);
1332 		}
1333 	}
1334 }
1335 
1336 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1337 					   struct dm_target_io *tio, unsigned *len)
1338 {
1339 	struct bio *clone = &tio->clone;
1340 
1341 	tio->len_ptr = len;
1342 
1343 	__bio_clone_fast(clone, ci->bio);
1344 	if (len)
1345 		bio_setup_sector(clone, ci->sector, *len);
1346 
1347 	return __map_bio(tio);
1348 }
1349 
1350 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1351 				  unsigned num_bios, unsigned *len)
1352 {
1353 	struct bio_list blist = BIO_EMPTY_LIST;
1354 	struct bio *bio;
1355 	struct dm_target_io *tio;
1356 
1357 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1358 
1359 	while ((bio = bio_list_pop(&blist))) {
1360 		tio = container_of(bio, struct dm_target_io, clone);
1361 		(void) __clone_and_map_simple_bio(ci, tio, len);
1362 	}
1363 }
1364 
1365 static int __send_empty_flush(struct clone_info *ci)
1366 {
1367 	unsigned target_nr = 0;
1368 	struct dm_target *ti;
1369 	struct bio flush_bio;
1370 
1371 	/*
1372 	 * Use an on-stack bio for this, it's safe since we don't
1373 	 * need to reference it after submit. It's just used as
1374 	 * the basis for the clone(s).
1375 	 */
1376 	bio_init(&flush_bio, NULL, 0);
1377 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1378 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1379 
1380 	ci->bio = &flush_bio;
1381 	ci->sector_count = 0;
1382 
1383 	BUG_ON(bio_has_data(ci->bio));
1384 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1385 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1386 
1387 	bio_uninit(ci->bio);
1388 	return 0;
1389 }
1390 
1391 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1392 				    sector_t sector, unsigned *len)
1393 {
1394 	struct bio *bio = ci->bio;
1395 	struct dm_target_io *tio;
1396 	int r;
1397 
1398 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1399 	tio->len_ptr = len;
1400 	r = clone_bio(tio, bio, sector, *len);
1401 	if (r < 0) {
1402 		free_tio(tio);
1403 		return r;
1404 	}
1405 	(void) __map_bio(tio);
1406 
1407 	return 0;
1408 }
1409 
1410 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1411 				       unsigned num_bios)
1412 {
1413 	unsigned len;
1414 
1415 	/*
1416 	 * Even though the device advertised support for this type of
1417 	 * request, that does not mean every target supports it, and
1418 	 * reconfiguration might also have changed that since the
1419 	 * check was performed.
1420 	 */
1421 	if (!num_bios)
1422 		return -EOPNOTSUPP;
1423 
1424 	len = min_t(sector_t, ci->sector_count,
1425 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1426 
1427 	__send_duplicate_bios(ci, ti, num_bios, &len);
1428 
1429 	ci->sector += len;
1430 	ci->sector_count -= len;
1431 
1432 	return 0;
1433 }
1434 
1435 static bool is_abnormal_io(struct bio *bio)
1436 {
1437 	bool r = false;
1438 
1439 	switch (bio_op(bio)) {
1440 	case REQ_OP_DISCARD:
1441 	case REQ_OP_SECURE_ERASE:
1442 	case REQ_OP_WRITE_SAME:
1443 	case REQ_OP_WRITE_ZEROES:
1444 		r = true;
1445 		break;
1446 	}
1447 
1448 	return r;
1449 }
1450 
1451 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1452 				  int *result)
1453 {
1454 	struct bio *bio = ci->bio;
1455 	unsigned num_bios = 0;
1456 
1457 	switch (bio_op(bio)) {
1458 	case REQ_OP_DISCARD:
1459 		num_bios = ti->num_discard_bios;
1460 		break;
1461 	case REQ_OP_SECURE_ERASE:
1462 		num_bios = ti->num_secure_erase_bios;
1463 		break;
1464 	case REQ_OP_WRITE_SAME:
1465 		num_bios = ti->num_write_same_bios;
1466 		break;
1467 	case REQ_OP_WRITE_ZEROES:
1468 		num_bios = ti->num_write_zeroes_bios;
1469 		break;
1470 	default:
1471 		return false;
1472 	}
1473 
1474 	*result = __send_changing_extent_only(ci, ti, num_bios);
1475 	return true;
1476 }
1477 
1478 /*
1479  * Select the correct strategy for processing a non-flush bio.
1480  */
1481 static int __split_and_process_non_flush(struct clone_info *ci)
1482 {
1483 	struct dm_target *ti;
1484 	unsigned len;
1485 	int r;
1486 
1487 	ti = dm_table_find_target(ci->map, ci->sector);
1488 	if (!ti)
1489 		return -EIO;
1490 
1491 	if (__process_abnormal_io(ci, ti, &r))
1492 		return r;
1493 
1494 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1495 
1496 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1497 	if (r < 0)
1498 		return r;
1499 
1500 	ci->sector += len;
1501 	ci->sector_count -= len;
1502 
1503 	return 0;
1504 }
1505 
1506 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1507 			    struct dm_table *map, struct bio *bio)
1508 {
1509 	ci->map = map;
1510 	ci->io = alloc_io(md, bio);
1511 	ci->sector = bio->bi_iter.bi_sector;
1512 }
1513 
1514 #define __dm_part_stat_sub(part, field, subnd)	\
1515 	(part_stat_get(part, field) -= (subnd))
1516 
1517 /*
1518  * Entry point to split a bio into clones and submit them to the targets.
1519  */
1520 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1521 					struct dm_table *map, struct bio *bio)
1522 {
1523 	struct clone_info ci;
1524 	blk_qc_t ret = BLK_QC_T_NONE;
1525 	int error = 0;
1526 
1527 	init_clone_info(&ci, md, map, bio);
1528 
1529 	if (bio->bi_opf & REQ_PREFLUSH) {
1530 		error = __send_empty_flush(&ci);
1531 		/* dm_io_dec_pending submits any data associated with flush */
1532 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1533 		ci.bio = bio;
1534 		ci.sector_count = 0;
1535 		error = __split_and_process_non_flush(&ci);
1536 	} else {
1537 		ci.bio = bio;
1538 		ci.sector_count = bio_sectors(bio);
1539 		error = __split_and_process_non_flush(&ci);
1540 		if (ci.sector_count && !error) {
1541 			/*
1542 			 * Remainder must be passed to submit_bio_noacct()
1543 			 * so that it gets handled *after* bios already submitted
1544 			 * have been completely processed.
1545 			 * We take a clone of the original to store in
1546 			 * ci.io->orig_bio to be used by end_io_acct() and
1547 			 * for dec_pending to use for completion handling.
1548 			 */
1549 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1550 						  GFP_NOIO, &md->queue->bio_split);
1551 			ci.io->orig_bio = b;
1552 
1553 			/*
1554 			 * Adjust IO stats for each split, otherwise upon queue
1555 			 * reentry there will be redundant IO accounting.
1556 			 * NOTE: this is a stop-gap fix, a proper fix involves
1557 			 * significant refactoring of DM core's bio splitting
1558 			 * (by eliminating DM's splitting and just using bio_split)
1559 			 */
1560 			part_stat_lock();
1561 			__dm_part_stat_sub(dm_disk(md)->part0,
1562 					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1563 			part_stat_unlock();
1564 
1565 			bio_chain(b, bio);
1566 			trace_block_split(b, bio->bi_iter.bi_sector);
1567 			ret = submit_bio_noacct(bio);
1568 		}
1569 	}
1570 
1571 	/* drop the extra reference count */
1572 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1573 	return ret;
1574 }
1575 
1576 static blk_qc_t dm_submit_bio(struct bio *bio)
1577 {
1578 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1579 	blk_qc_t ret = BLK_QC_T_NONE;
1580 	int srcu_idx;
1581 	struct dm_table *map;
1582 
1583 	map = dm_get_live_table(md, &srcu_idx);
1584 	if (unlikely(!map)) {
1585 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1586 			    dm_device_name(md));
1587 		bio_io_error(bio);
1588 		goto out;
1589 	}
1590 
1591 	/* If suspended, queue this IO for later */
1592 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1593 		if (bio->bi_opf & REQ_NOWAIT)
1594 			bio_wouldblock_error(bio);
1595 		else if (bio->bi_opf & REQ_RAHEAD)
1596 			bio_io_error(bio);
1597 		else
1598 			queue_io(md, bio);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1604 	 * otherwise associated queue_limits won't be imposed.
1605 	 */
1606 	if (is_abnormal_io(bio))
1607 		blk_queue_split(&bio);
1608 
1609 	ret = __split_and_process_bio(md, map, bio);
1610 out:
1611 	dm_put_live_table(md, srcu_idx);
1612 	return ret;
1613 }
1614 
1615 /*-----------------------------------------------------------------
1616  * An IDR is used to keep track of allocated minor numbers.
1617  *---------------------------------------------------------------*/
1618 static void free_minor(int minor)
1619 {
1620 	spin_lock(&_minor_lock);
1621 	idr_remove(&_minor_idr, minor);
1622 	spin_unlock(&_minor_lock);
1623 }
1624 
1625 /*
1626  * See if the device with a specific minor # is free.
1627  */
1628 static int specific_minor(int minor)
1629 {
1630 	int r;
1631 
1632 	if (minor >= (1 << MINORBITS))
1633 		return -EINVAL;
1634 
1635 	idr_preload(GFP_KERNEL);
1636 	spin_lock(&_minor_lock);
1637 
1638 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1639 
1640 	spin_unlock(&_minor_lock);
1641 	idr_preload_end();
1642 	if (r < 0)
1643 		return r == -ENOSPC ? -EBUSY : r;
1644 	return 0;
1645 }
1646 
1647 static int next_free_minor(int *minor)
1648 {
1649 	int r;
1650 
1651 	idr_preload(GFP_KERNEL);
1652 	spin_lock(&_minor_lock);
1653 
1654 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1655 
1656 	spin_unlock(&_minor_lock);
1657 	idr_preload_end();
1658 	if (r < 0)
1659 		return r;
1660 	*minor = r;
1661 	return 0;
1662 }
1663 
1664 static const struct block_device_operations dm_blk_dops;
1665 static const struct block_device_operations dm_rq_blk_dops;
1666 static const struct dax_operations dm_dax_ops;
1667 
1668 static void dm_wq_work(struct work_struct *work);
1669 
1670 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1671 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1672 {
1673 	dm_destroy_keyslot_manager(q->ksm);
1674 }
1675 
1676 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1677 
1678 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1679 {
1680 }
1681 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1682 
1683 static void cleanup_mapped_device(struct mapped_device *md)
1684 {
1685 	if (md->wq)
1686 		destroy_workqueue(md->wq);
1687 	bioset_exit(&md->bs);
1688 	bioset_exit(&md->io_bs);
1689 
1690 	if (md->dax_dev) {
1691 		kill_dax(md->dax_dev);
1692 		put_dax(md->dax_dev);
1693 		md->dax_dev = NULL;
1694 	}
1695 
1696 	if (md->disk) {
1697 		spin_lock(&_minor_lock);
1698 		md->disk->private_data = NULL;
1699 		spin_unlock(&_minor_lock);
1700 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1701 			dm_sysfs_exit(md);
1702 			del_gendisk(md->disk);
1703 		}
1704 		dm_queue_destroy_keyslot_manager(md->queue);
1705 		blk_cleanup_disk(md->disk);
1706 	}
1707 
1708 	cleanup_srcu_struct(&md->io_barrier);
1709 
1710 	mutex_destroy(&md->suspend_lock);
1711 	mutex_destroy(&md->type_lock);
1712 	mutex_destroy(&md->table_devices_lock);
1713 	mutex_destroy(&md->swap_bios_lock);
1714 
1715 	dm_mq_cleanup_mapped_device(md);
1716 	dm_cleanup_zoned_dev(md);
1717 }
1718 
1719 /*
1720  * Allocate and initialise a blank device with a given minor.
1721  */
1722 static struct mapped_device *alloc_dev(int minor)
1723 {
1724 	int r, numa_node_id = dm_get_numa_node();
1725 	struct mapped_device *md;
1726 	void *old_md;
1727 
1728 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729 	if (!md) {
1730 		DMWARN("unable to allocate device, out of memory.");
1731 		return NULL;
1732 	}
1733 
1734 	if (!try_module_get(THIS_MODULE))
1735 		goto bad_module_get;
1736 
1737 	/* get a minor number for the dev */
1738 	if (minor == DM_ANY_MINOR)
1739 		r = next_free_minor(&minor);
1740 	else
1741 		r = specific_minor(minor);
1742 	if (r < 0)
1743 		goto bad_minor;
1744 
1745 	r = init_srcu_struct(&md->io_barrier);
1746 	if (r < 0)
1747 		goto bad_io_barrier;
1748 
1749 	md->numa_node_id = numa_node_id;
1750 	md->init_tio_pdu = false;
1751 	md->type = DM_TYPE_NONE;
1752 	mutex_init(&md->suspend_lock);
1753 	mutex_init(&md->type_lock);
1754 	mutex_init(&md->table_devices_lock);
1755 	spin_lock_init(&md->deferred_lock);
1756 	atomic_set(&md->holders, 1);
1757 	atomic_set(&md->open_count, 0);
1758 	atomic_set(&md->event_nr, 0);
1759 	atomic_set(&md->uevent_seq, 0);
1760 	INIT_LIST_HEAD(&md->uevent_list);
1761 	INIT_LIST_HEAD(&md->table_devices);
1762 	spin_lock_init(&md->uevent_lock);
1763 
1764 	/*
1765 	 * default to bio-based until DM table is loaded and md->type
1766 	 * established. If request-based table is loaded: blk-mq will
1767 	 * override accordingly.
1768 	 */
1769 	md->disk = blk_alloc_disk(md->numa_node_id);
1770 	if (!md->disk)
1771 		goto bad;
1772 	md->queue = md->disk->queue;
1773 
1774 	init_waitqueue_head(&md->wait);
1775 	INIT_WORK(&md->work, dm_wq_work);
1776 	init_waitqueue_head(&md->eventq);
1777 	init_completion(&md->kobj_holder.completion);
1778 
1779 	md->swap_bios = get_swap_bios();
1780 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781 	mutex_init(&md->swap_bios_lock);
1782 
1783 	md->disk->major = _major;
1784 	md->disk->first_minor = minor;
1785 	md->disk->minors = 1;
1786 	md->disk->fops = &dm_blk_dops;
1787 	md->disk->queue = md->queue;
1788 	md->disk->private_data = md;
1789 	sprintf(md->disk->disk_name, "dm-%d", minor);
1790 
1791 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793 					&dm_dax_ops, 0);
1794 		if (IS_ERR(md->dax_dev))
1795 			goto bad;
1796 	}
1797 
1798 	format_dev_t(md->name, MKDEV(_major, minor));
1799 
1800 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1801 	if (!md->wq)
1802 		goto bad;
1803 
1804 	dm_stats_init(&md->stats);
1805 
1806 	/* Populate the mapping, nobody knows we exist yet */
1807 	spin_lock(&_minor_lock);
1808 	old_md = idr_replace(&_minor_idr, md, minor);
1809 	spin_unlock(&_minor_lock);
1810 
1811 	BUG_ON(old_md != MINOR_ALLOCED);
1812 
1813 	return md;
1814 
1815 bad:
1816 	cleanup_mapped_device(md);
1817 bad_io_barrier:
1818 	free_minor(minor);
1819 bad_minor:
1820 	module_put(THIS_MODULE);
1821 bad_module_get:
1822 	kvfree(md);
1823 	return NULL;
1824 }
1825 
1826 static void unlock_fs(struct mapped_device *md);
1827 
1828 static void free_dev(struct mapped_device *md)
1829 {
1830 	int minor = MINOR(disk_devt(md->disk));
1831 
1832 	unlock_fs(md);
1833 
1834 	cleanup_mapped_device(md);
1835 
1836 	free_table_devices(&md->table_devices);
1837 	dm_stats_cleanup(&md->stats);
1838 	free_minor(minor);
1839 
1840 	module_put(THIS_MODULE);
1841 	kvfree(md);
1842 }
1843 
1844 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1845 {
1846 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1847 	int ret = 0;
1848 
1849 	if (dm_table_bio_based(t)) {
1850 		/*
1851 		 * The md may already have mempools that need changing.
1852 		 * If so, reload bioset because front_pad may have changed
1853 		 * because a different table was loaded.
1854 		 */
1855 		bioset_exit(&md->bs);
1856 		bioset_exit(&md->io_bs);
1857 
1858 	} else if (bioset_initialized(&md->bs)) {
1859 		/*
1860 		 * There's no need to reload with request-based dm
1861 		 * because the size of front_pad doesn't change.
1862 		 * Note for future: If you are to reload bioset,
1863 		 * prep-ed requests in the queue may refer
1864 		 * to bio from the old bioset, so you must walk
1865 		 * through the queue to unprep.
1866 		 */
1867 		goto out;
1868 	}
1869 
1870 	BUG_ON(!p ||
1871 	       bioset_initialized(&md->bs) ||
1872 	       bioset_initialized(&md->io_bs));
1873 
1874 	ret = bioset_init_from_src(&md->bs, &p->bs);
1875 	if (ret)
1876 		goto out;
1877 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1878 	if (ret)
1879 		bioset_exit(&md->bs);
1880 out:
1881 	/* mempool bind completed, no longer need any mempools in the table */
1882 	dm_table_free_md_mempools(t);
1883 	return ret;
1884 }
1885 
1886 /*
1887  * Bind a table to the device.
1888  */
1889 static void event_callback(void *context)
1890 {
1891 	unsigned long flags;
1892 	LIST_HEAD(uevents);
1893 	struct mapped_device *md = (struct mapped_device *) context;
1894 
1895 	spin_lock_irqsave(&md->uevent_lock, flags);
1896 	list_splice_init(&md->uevent_list, &uevents);
1897 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1898 
1899 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1900 
1901 	atomic_inc(&md->event_nr);
1902 	wake_up(&md->eventq);
1903 	dm_issue_global_event();
1904 }
1905 
1906 /*
1907  * Returns old map, which caller must destroy.
1908  */
1909 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1910 			       struct queue_limits *limits)
1911 {
1912 	struct dm_table *old_map;
1913 	struct request_queue *q = md->queue;
1914 	bool request_based = dm_table_request_based(t);
1915 	sector_t size;
1916 	int ret;
1917 
1918 	lockdep_assert_held(&md->suspend_lock);
1919 
1920 	size = dm_table_get_size(t);
1921 
1922 	/*
1923 	 * Wipe any geometry if the size of the table changed.
1924 	 */
1925 	if (size != dm_get_size(md))
1926 		memset(&md->geometry, 0, sizeof(md->geometry));
1927 
1928 	if (!get_capacity(md->disk))
1929 		set_capacity(md->disk, size);
1930 	else
1931 		set_capacity_and_notify(md->disk, size);
1932 
1933 	dm_table_event_callback(t, event_callback, md);
1934 
1935 	/*
1936 	 * The queue hasn't been stopped yet, if the old table type wasn't
1937 	 * for request-based during suspension.  So stop it to prevent
1938 	 * I/O mapping before resume.
1939 	 * This must be done before setting the queue restrictions,
1940 	 * because request-based dm may be run just after the setting.
1941 	 */
1942 	if (request_based)
1943 		dm_stop_queue(q);
1944 
1945 	if (request_based) {
1946 		/*
1947 		 * Leverage the fact that request-based DM targets are
1948 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1949 		 */
1950 		md->immutable_target = dm_table_get_immutable_target(t);
1951 	}
1952 
1953 	ret = __bind_mempools(md, t);
1954 	if (ret) {
1955 		old_map = ERR_PTR(ret);
1956 		goto out;
1957 	}
1958 
1959 	ret = dm_table_set_restrictions(t, q, limits);
1960 	if (ret) {
1961 		old_map = ERR_PTR(ret);
1962 		goto out;
1963 	}
1964 
1965 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1966 	rcu_assign_pointer(md->map, (void *)t);
1967 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1968 
1969 	if (old_map)
1970 		dm_sync_table(md);
1971 
1972 out:
1973 	return old_map;
1974 }
1975 
1976 /*
1977  * Returns unbound table for the caller to free.
1978  */
1979 static struct dm_table *__unbind(struct mapped_device *md)
1980 {
1981 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1982 
1983 	if (!map)
1984 		return NULL;
1985 
1986 	dm_table_event_callback(map, NULL, NULL);
1987 	RCU_INIT_POINTER(md->map, NULL);
1988 	dm_sync_table(md);
1989 
1990 	return map;
1991 }
1992 
1993 /*
1994  * Constructor for a new device.
1995  */
1996 int dm_create(int minor, struct mapped_device **result)
1997 {
1998 	struct mapped_device *md;
1999 
2000 	md = alloc_dev(minor);
2001 	if (!md)
2002 		return -ENXIO;
2003 
2004 	dm_ima_reset_data(md);
2005 
2006 	*result = md;
2007 	return 0;
2008 }
2009 
2010 /*
2011  * Functions to manage md->type.
2012  * All are required to hold md->type_lock.
2013  */
2014 void dm_lock_md_type(struct mapped_device *md)
2015 {
2016 	mutex_lock(&md->type_lock);
2017 }
2018 
2019 void dm_unlock_md_type(struct mapped_device *md)
2020 {
2021 	mutex_unlock(&md->type_lock);
2022 }
2023 
2024 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2025 {
2026 	BUG_ON(!mutex_is_locked(&md->type_lock));
2027 	md->type = type;
2028 }
2029 
2030 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2031 {
2032 	return md->type;
2033 }
2034 
2035 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2036 {
2037 	return md->immutable_target_type;
2038 }
2039 
2040 /*
2041  * The queue_limits are only valid as long as you have a reference
2042  * count on 'md'.
2043  */
2044 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2045 {
2046 	BUG_ON(!atomic_read(&md->holders));
2047 	return &md->queue->limits;
2048 }
2049 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2050 
2051 /*
2052  * Setup the DM device's queue based on md's type
2053  */
2054 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2055 {
2056 	enum dm_queue_mode type = dm_table_get_type(t);
2057 	struct queue_limits limits;
2058 	int r;
2059 
2060 	switch (type) {
2061 	case DM_TYPE_REQUEST_BASED:
2062 		md->disk->fops = &dm_rq_blk_dops;
2063 		r = dm_mq_init_request_queue(md, t);
2064 		if (r) {
2065 			DMERR("Cannot initialize queue for request-based dm mapped device");
2066 			return r;
2067 		}
2068 		break;
2069 	case DM_TYPE_BIO_BASED:
2070 	case DM_TYPE_DAX_BIO_BASED:
2071 		break;
2072 	case DM_TYPE_NONE:
2073 		WARN_ON_ONCE(true);
2074 		break;
2075 	}
2076 
2077 	r = dm_calculate_queue_limits(t, &limits);
2078 	if (r) {
2079 		DMERR("Cannot calculate initial queue limits");
2080 		return r;
2081 	}
2082 	r = dm_table_set_restrictions(t, md->queue, &limits);
2083 	if (r)
2084 		return r;
2085 
2086 	add_disk(md->disk);
2087 
2088 	r = dm_sysfs_init(md);
2089 	if (r) {
2090 		del_gendisk(md->disk);
2091 		return r;
2092 	}
2093 	md->type = type;
2094 	return 0;
2095 }
2096 
2097 struct mapped_device *dm_get_md(dev_t dev)
2098 {
2099 	struct mapped_device *md;
2100 	unsigned minor = MINOR(dev);
2101 
2102 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103 		return NULL;
2104 
2105 	spin_lock(&_minor_lock);
2106 
2107 	md = idr_find(&_minor_idr, minor);
2108 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2110 		md = NULL;
2111 		goto out;
2112 	}
2113 	dm_get(md);
2114 out:
2115 	spin_unlock(&_minor_lock);
2116 
2117 	return md;
2118 }
2119 EXPORT_SYMBOL_GPL(dm_get_md);
2120 
2121 void *dm_get_mdptr(struct mapped_device *md)
2122 {
2123 	return md->interface_ptr;
2124 }
2125 
2126 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127 {
2128 	md->interface_ptr = ptr;
2129 }
2130 
2131 void dm_get(struct mapped_device *md)
2132 {
2133 	atomic_inc(&md->holders);
2134 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135 }
2136 
2137 int dm_hold(struct mapped_device *md)
2138 {
2139 	spin_lock(&_minor_lock);
2140 	if (test_bit(DMF_FREEING, &md->flags)) {
2141 		spin_unlock(&_minor_lock);
2142 		return -EBUSY;
2143 	}
2144 	dm_get(md);
2145 	spin_unlock(&_minor_lock);
2146 	return 0;
2147 }
2148 EXPORT_SYMBOL_GPL(dm_hold);
2149 
2150 const char *dm_device_name(struct mapped_device *md)
2151 {
2152 	return md->name;
2153 }
2154 EXPORT_SYMBOL_GPL(dm_device_name);
2155 
2156 static void __dm_destroy(struct mapped_device *md, bool wait)
2157 {
2158 	struct dm_table *map;
2159 	int srcu_idx;
2160 
2161 	might_sleep();
2162 
2163 	spin_lock(&_minor_lock);
2164 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165 	set_bit(DMF_FREEING, &md->flags);
2166 	spin_unlock(&_minor_lock);
2167 
2168 	blk_set_queue_dying(md->queue);
2169 
2170 	/*
2171 	 * Take suspend_lock so that presuspend and postsuspend methods
2172 	 * do not race with internal suspend.
2173 	 */
2174 	mutex_lock(&md->suspend_lock);
2175 	map = dm_get_live_table(md, &srcu_idx);
2176 	if (!dm_suspended_md(md)) {
2177 		dm_table_presuspend_targets(map);
2178 		set_bit(DMF_SUSPENDED, &md->flags);
2179 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2180 		dm_table_postsuspend_targets(map);
2181 	}
2182 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183 	dm_put_live_table(md, srcu_idx);
2184 	mutex_unlock(&md->suspend_lock);
2185 
2186 	/*
2187 	 * Rare, but there may be I/O requests still going to complete,
2188 	 * for example.  Wait for all references to disappear.
2189 	 * No one should increment the reference count of the mapped_device,
2190 	 * after the mapped_device state becomes DMF_FREEING.
2191 	 */
2192 	if (wait)
2193 		while (atomic_read(&md->holders))
2194 			msleep(1);
2195 	else if (atomic_read(&md->holders))
2196 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197 		       dm_device_name(md), atomic_read(&md->holders));
2198 
2199 	dm_table_destroy(__unbind(md));
2200 	free_dev(md);
2201 }
2202 
2203 void dm_destroy(struct mapped_device *md)
2204 {
2205 	__dm_destroy(md, true);
2206 }
2207 
2208 void dm_destroy_immediate(struct mapped_device *md)
2209 {
2210 	__dm_destroy(md, false);
2211 }
2212 
2213 void dm_put(struct mapped_device *md)
2214 {
2215 	atomic_dec(&md->holders);
2216 }
2217 EXPORT_SYMBOL_GPL(dm_put);
2218 
2219 static bool md_in_flight_bios(struct mapped_device *md)
2220 {
2221 	int cpu;
2222 	struct block_device *part = dm_disk(md)->part0;
2223 	long sum = 0;
2224 
2225 	for_each_possible_cpu(cpu) {
2226 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2227 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2228 	}
2229 
2230 	return sum != 0;
2231 }
2232 
2233 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2234 {
2235 	int r = 0;
2236 	DEFINE_WAIT(wait);
2237 
2238 	while (true) {
2239 		prepare_to_wait(&md->wait, &wait, task_state);
2240 
2241 		if (!md_in_flight_bios(md))
2242 			break;
2243 
2244 		if (signal_pending_state(task_state, current)) {
2245 			r = -EINTR;
2246 			break;
2247 		}
2248 
2249 		io_schedule();
2250 	}
2251 	finish_wait(&md->wait, &wait);
2252 
2253 	return r;
2254 }
2255 
2256 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2257 {
2258 	int r = 0;
2259 
2260 	if (!queue_is_mq(md->queue))
2261 		return dm_wait_for_bios_completion(md, task_state);
2262 
2263 	while (true) {
2264 		if (!blk_mq_queue_inflight(md->queue))
2265 			break;
2266 
2267 		if (signal_pending_state(task_state, current)) {
2268 			r = -EINTR;
2269 			break;
2270 		}
2271 
2272 		msleep(5);
2273 	}
2274 
2275 	return r;
2276 }
2277 
2278 /*
2279  * Process the deferred bios
2280  */
2281 static void dm_wq_work(struct work_struct *work)
2282 {
2283 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2284 	struct bio *bio;
2285 
2286 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2287 		spin_lock_irq(&md->deferred_lock);
2288 		bio = bio_list_pop(&md->deferred);
2289 		spin_unlock_irq(&md->deferred_lock);
2290 
2291 		if (!bio)
2292 			break;
2293 
2294 		submit_bio_noacct(bio);
2295 	}
2296 }
2297 
2298 static void dm_queue_flush(struct mapped_device *md)
2299 {
2300 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2301 	smp_mb__after_atomic();
2302 	queue_work(md->wq, &md->work);
2303 }
2304 
2305 /*
2306  * Swap in a new table, returning the old one for the caller to destroy.
2307  */
2308 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2309 {
2310 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2311 	struct queue_limits limits;
2312 	int r;
2313 
2314 	mutex_lock(&md->suspend_lock);
2315 
2316 	/* device must be suspended */
2317 	if (!dm_suspended_md(md))
2318 		goto out;
2319 
2320 	/*
2321 	 * If the new table has no data devices, retain the existing limits.
2322 	 * This helps multipath with queue_if_no_path if all paths disappear,
2323 	 * then new I/O is queued based on these limits, and then some paths
2324 	 * reappear.
2325 	 */
2326 	if (dm_table_has_no_data_devices(table)) {
2327 		live_map = dm_get_live_table_fast(md);
2328 		if (live_map)
2329 			limits = md->queue->limits;
2330 		dm_put_live_table_fast(md);
2331 	}
2332 
2333 	if (!live_map) {
2334 		r = dm_calculate_queue_limits(table, &limits);
2335 		if (r) {
2336 			map = ERR_PTR(r);
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	map = __bind(md, table, &limits);
2342 	dm_issue_global_event();
2343 
2344 out:
2345 	mutex_unlock(&md->suspend_lock);
2346 	return map;
2347 }
2348 
2349 /*
2350  * Functions to lock and unlock any filesystem running on the
2351  * device.
2352  */
2353 static int lock_fs(struct mapped_device *md)
2354 {
2355 	int r;
2356 
2357 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2358 
2359 	r = freeze_bdev(md->disk->part0);
2360 	if (!r)
2361 		set_bit(DMF_FROZEN, &md->flags);
2362 	return r;
2363 }
2364 
2365 static void unlock_fs(struct mapped_device *md)
2366 {
2367 	if (!test_bit(DMF_FROZEN, &md->flags))
2368 		return;
2369 	thaw_bdev(md->disk->part0);
2370 	clear_bit(DMF_FROZEN, &md->flags);
2371 }
2372 
2373 /*
2374  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2375  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2376  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2377  *
2378  * If __dm_suspend returns 0, the device is completely quiescent
2379  * now. There is no request-processing activity. All new requests
2380  * are being added to md->deferred list.
2381  */
2382 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2383 			unsigned suspend_flags, unsigned int task_state,
2384 			int dmf_suspended_flag)
2385 {
2386 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2387 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2388 	int r;
2389 
2390 	lockdep_assert_held(&md->suspend_lock);
2391 
2392 	/*
2393 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2394 	 * This flag is cleared before dm_suspend returns.
2395 	 */
2396 	if (noflush)
2397 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2398 	else
2399 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2400 
2401 	/*
2402 	 * This gets reverted if there's an error later and the targets
2403 	 * provide the .presuspend_undo hook.
2404 	 */
2405 	dm_table_presuspend_targets(map);
2406 
2407 	/*
2408 	 * Flush I/O to the device.
2409 	 * Any I/O submitted after lock_fs() may not be flushed.
2410 	 * noflush takes precedence over do_lockfs.
2411 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2412 	 */
2413 	if (!noflush && do_lockfs) {
2414 		r = lock_fs(md);
2415 		if (r) {
2416 			dm_table_presuspend_undo_targets(map);
2417 			return r;
2418 		}
2419 	}
2420 
2421 	/*
2422 	 * Here we must make sure that no processes are submitting requests
2423 	 * to target drivers i.e. no one may be executing
2424 	 * __split_and_process_bio from dm_submit_bio.
2425 	 *
2426 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2427 	 * we take the write lock. To prevent any process from reentering
2428 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2429 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2430 	 * flush_workqueue(md->wq).
2431 	 */
2432 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2433 	if (map)
2434 		synchronize_srcu(&md->io_barrier);
2435 
2436 	/*
2437 	 * Stop md->queue before flushing md->wq in case request-based
2438 	 * dm defers requests to md->wq from md->queue.
2439 	 */
2440 	if (dm_request_based(md))
2441 		dm_stop_queue(md->queue);
2442 
2443 	flush_workqueue(md->wq);
2444 
2445 	/*
2446 	 * At this point no more requests are entering target request routines.
2447 	 * We call dm_wait_for_completion to wait for all existing requests
2448 	 * to finish.
2449 	 */
2450 	r = dm_wait_for_completion(md, task_state);
2451 	if (!r)
2452 		set_bit(dmf_suspended_flag, &md->flags);
2453 
2454 	if (noflush)
2455 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2456 	if (map)
2457 		synchronize_srcu(&md->io_barrier);
2458 
2459 	/* were we interrupted ? */
2460 	if (r < 0) {
2461 		dm_queue_flush(md);
2462 
2463 		if (dm_request_based(md))
2464 			dm_start_queue(md->queue);
2465 
2466 		unlock_fs(md);
2467 		dm_table_presuspend_undo_targets(map);
2468 		/* pushback list is already flushed, so skip flush */
2469 	}
2470 
2471 	return r;
2472 }
2473 
2474 /*
2475  * We need to be able to change a mapping table under a mounted
2476  * filesystem.  For example we might want to move some data in
2477  * the background.  Before the table can be swapped with
2478  * dm_bind_table, dm_suspend must be called to flush any in
2479  * flight bios and ensure that any further io gets deferred.
2480  */
2481 /*
2482  * Suspend mechanism in request-based dm.
2483  *
2484  * 1. Flush all I/Os by lock_fs() if needed.
2485  * 2. Stop dispatching any I/O by stopping the request_queue.
2486  * 3. Wait for all in-flight I/Os to be completed or requeued.
2487  *
2488  * To abort suspend, start the request_queue.
2489  */
2490 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2491 {
2492 	struct dm_table *map = NULL;
2493 	int r = 0;
2494 
2495 retry:
2496 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2497 
2498 	if (dm_suspended_md(md)) {
2499 		r = -EINVAL;
2500 		goto out_unlock;
2501 	}
2502 
2503 	if (dm_suspended_internally_md(md)) {
2504 		/* already internally suspended, wait for internal resume */
2505 		mutex_unlock(&md->suspend_lock);
2506 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2507 		if (r)
2508 			return r;
2509 		goto retry;
2510 	}
2511 
2512 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2513 
2514 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2515 	if (r)
2516 		goto out_unlock;
2517 
2518 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2519 	dm_table_postsuspend_targets(map);
2520 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2521 
2522 out_unlock:
2523 	mutex_unlock(&md->suspend_lock);
2524 	return r;
2525 }
2526 
2527 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2528 {
2529 	if (map) {
2530 		int r = dm_table_resume_targets(map);
2531 		if (r)
2532 			return r;
2533 	}
2534 
2535 	dm_queue_flush(md);
2536 
2537 	/*
2538 	 * Flushing deferred I/Os must be done after targets are resumed
2539 	 * so that mapping of targets can work correctly.
2540 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2541 	 */
2542 	if (dm_request_based(md))
2543 		dm_start_queue(md->queue);
2544 
2545 	unlock_fs(md);
2546 
2547 	return 0;
2548 }
2549 
2550 int dm_resume(struct mapped_device *md)
2551 {
2552 	int r;
2553 	struct dm_table *map = NULL;
2554 
2555 retry:
2556 	r = -EINVAL;
2557 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2558 
2559 	if (!dm_suspended_md(md))
2560 		goto out;
2561 
2562 	if (dm_suspended_internally_md(md)) {
2563 		/* already internally suspended, wait for internal resume */
2564 		mutex_unlock(&md->suspend_lock);
2565 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2566 		if (r)
2567 			return r;
2568 		goto retry;
2569 	}
2570 
2571 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2572 	if (!map || !dm_table_get_size(map))
2573 		goto out;
2574 
2575 	r = __dm_resume(md, map);
2576 	if (r)
2577 		goto out;
2578 
2579 	clear_bit(DMF_SUSPENDED, &md->flags);
2580 out:
2581 	mutex_unlock(&md->suspend_lock);
2582 
2583 	return r;
2584 }
2585 
2586 /*
2587  * Internal suspend/resume works like userspace-driven suspend. It waits
2588  * until all bios finish and prevents issuing new bios to the target drivers.
2589  * It may be used only from the kernel.
2590  */
2591 
2592 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2593 {
2594 	struct dm_table *map = NULL;
2595 
2596 	lockdep_assert_held(&md->suspend_lock);
2597 
2598 	if (md->internal_suspend_count++)
2599 		return; /* nested internal suspend */
2600 
2601 	if (dm_suspended_md(md)) {
2602 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2603 		return; /* nest suspend */
2604 	}
2605 
2606 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2607 
2608 	/*
2609 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2610 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2611 	 * would require changing .presuspend to return an error -- avoid this
2612 	 * until there is a need for more elaborate variants of internal suspend.
2613 	 */
2614 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2615 			    DMF_SUSPENDED_INTERNALLY);
2616 
2617 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2618 	dm_table_postsuspend_targets(map);
2619 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2620 }
2621 
2622 static void __dm_internal_resume(struct mapped_device *md)
2623 {
2624 	BUG_ON(!md->internal_suspend_count);
2625 
2626 	if (--md->internal_suspend_count)
2627 		return; /* resume from nested internal suspend */
2628 
2629 	if (dm_suspended_md(md))
2630 		goto done; /* resume from nested suspend */
2631 
2632 	/*
2633 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2634 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2635 	 */
2636 	(void) __dm_resume(md, NULL);
2637 
2638 done:
2639 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2640 	smp_mb__after_atomic();
2641 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2642 }
2643 
2644 void dm_internal_suspend_noflush(struct mapped_device *md)
2645 {
2646 	mutex_lock(&md->suspend_lock);
2647 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2648 	mutex_unlock(&md->suspend_lock);
2649 }
2650 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2651 
2652 void dm_internal_resume(struct mapped_device *md)
2653 {
2654 	mutex_lock(&md->suspend_lock);
2655 	__dm_internal_resume(md);
2656 	mutex_unlock(&md->suspend_lock);
2657 }
2658 EXPORT_SYMBOL_GPL(dm_internal_resume);
2659 
2660 /*
2661  * Fast variants of internal suspend/resume hold md->suspend_lock,
2662  * which prevents interaction with userspace-driven suspend.
2663  */
2664 
2665 void dm_internal_suspend_fast(struct mapped_device *md)
2666 {
2667 	mutex_lock(&md->suspend_lock);
2668 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2669 		return;
2670 
2671 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2672 	synchronize_srcu(&md->io_barrier);
2673 	flush_workqueue(md->wq);
2674 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2675 }
2676 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2677 
2678 void dm_internal_resume_fast(struct mapped_device *md)
2679 {
2680 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2681 		goto done;
2682 
2683 	dm_queue_flush(md);
2684 
2685 done:
2686 	mutex_unlock(&md->suspend_lock);
2687 }
2688 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2689 
2690 /*-----------------------------------------------------------------
2691  * Event notification.
2692  *---------------------------------------------------------------*/
2693 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2694 		       unsigned cookie)
2695 {
2696 	int r;
2697 	unsigned noio_flag;
2698 	char udev_cookie[DM_COOKIE_LENGTH];
2699 	char *envp[] = { udev_cookie, NULL };
2700 
2701 	noio_flag = memalloc_noio_save();
2702 
2703 	if (!cookie)
2704 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2705 	else {
2706 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2707 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2708 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2709 				       action, envp);
2710 	}
2711 
2712 	memalloc_noio_restore(noio_flag);
2713 
2714 	return r;
2715 }
2716 
2717 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2718 {
2719 	return atomic_add_return(1, &md->uevent_seq);
2720 }
2721 
2722 uint32_t dm_get_event_nr(struct mapped_device *md)
2723 {
2724 	return atomic_read(&md->event_nr);
2725 }
2726 
2727 int dm_wait_event(struct mapped_device *md, int event_nr)
2728 {
2729 	return wait_event_interruptible(md->eventq,
2730 			(event_nr != atomic_read(&md->event_nr)));
2731 }
2732 
2733 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2734 {
2735 	unsigned long flags;
2736 
2737 	spin_lock_irqsave(&md->uevent_lock, flags);
2738 	list_add(elist, &md->uevent_list);
2739 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2740 }
2741 
2742 /*
2743  * The gendisk is only valid as long as you have a reference
2744  * count on 'md'.
2745  */
2746 struct gendisk *dm_disk(struct mapped_device *md)
2747 {
2748 	return md->disk;
2749 }
2750 EXPORT_SYMBOL_GPL(dm_disk);
2751 
2752 struct kobject *dm_kobject(struct mapped_device *md)
2753 {
2754 	return &md->kobj_holder.kobj;
2755 }
2756 
2757 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2758 {
2759 	struct mapped_device *md;
2760 
2761 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2762 
2763 	spin_lock(&_minor_lock);
2764 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2765 		md = NULL;
2766 		goto out;
2767 	}
2768 	dm_get(md);
2769 out:
2770 	spin_unlock(&_minor_lock);
2771 
2772 	return md;
2773 }
2774 
2775 int dm_suspended_md(struct mapped_device *md)
2776 {
2777 	return test_bit(DMF_SUSPENDED, &md->flags);
2778 }
2779 
2780 static int dm_post_suspending_md(struct mapped_device *md)
2781 {
2782 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2783 }
2784 
2785 int dm_suspended_internally_md(struct mapped_device *md)
2786 {
2787 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2788 }
2789 
2790 int dm_test_deferred_remove_flag(struct mapped_device *md)
2791 {
2792 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2793 }
2794 
2795 int dm_suspended(struct dm_target *ti)
2796 {
2797 	return dm_suspended_md(ti->table->md);
2798 }
2799 EXPORT_SYMBOL_GPL(dm_suspended);
2800 
2801 int dm_post_suspending(struct dm_target *ti)
2802 {
2803 	return dm_post_suspending_md(ti->table->md);
2804 }
2805 EXPORT_SYMBOL_GPL(dm_post_suspending);
2806 
2807 int dm_noflush_suspending(struct dm_target *ti)
2808 {
2809 	return __noflush_suspending(ti->table->md);
2810 }
2811 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2812 
2813 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2814 					    unsigned integrity, unsigned per_io_data_size,
2815 					    unsigned min_pool_size)
2816 {
2817 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2818 	unsigned int pool_size = 0;
2819 	unsigned int front_pad, io_front_pad;
2820 	int ret;
2821 
2822 	if (!pools)
2823 		return NULL;
2824 
2825 	switch (type) {
2826 	case DM_TYPE_BIO_BASED:
2827 	case DM_TYPE_DAX_BIO_BASED:
2828 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2829 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2830 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2831 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2832 		if (ret)
2833 			goto out;
2834 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2835 			goto out;
2836 		break;
2837 	case DM_TYPE_REQUEST_BASED:
2838 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2839 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2840 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2841 		break;
2842 	default:
2843 		BUG();
2844 	}
2845 
2846 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2847 	if (ret)
2848 		goto out;
2849 
2850 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2851 		goto out;
2852 
2853 	return pools;
2854 
2855 out:
2856 	dm_free_md_mempools(pools);
2857 
2858 	return NULL;
2859 }
2860 
2861 void dm_free_md_mempools(struct dm_md_mempools *pools)
2862 {
2863 	if (!pools)
2864 		return;
2865 
2866 	bioset_exit(&pools->bs);
2867 	bioset_exit(&pools->io_bs);
2868 
2869 	kfree(pools);
2870 }
2871 
2872 struct dm_pr {
2873 	u64	old_key;
2874 	u64	new_key;
2875 	u32	flags;
2876 	bool	fail_early;
2877 };
2878 
2879 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2880 		      void *data)
2881 {
2882 	struct mapped_device *md = bdev->bd_disk->private_data;
2883 	struct dm_table *table;
2884 	struct dm_target *ti;
2885 	int ret = -ENOTTY, srcu_idx;
2886 
2887 	table = dm_get_live_table(md, &srcu_idx);
2888 	if (!table || !dm_table_get_size(table))
2889 		goto out;
2890 
2891 	/* We only support devices that have a single target */
2892 	if (dm_table_get_num_targets(table) != 1)
2893 		goto out;
2894 	ti = dm_table_get_target(table, 0);
2895 
2896 	ret = -EINVAL;
2897 	if (!ti->type->iterate_devices)
2898 		goto out;
2899 
2900 	ret = ti->type->iterate_devices(ti, fn, data);
2901 out:
2902 	dm_put_live_table(md, srcu_idx);
2903 	return ret;
2904 }
2905 
2906 /*
2907  * For register / unregister we need to manually call out to every path.
2908  */
2909 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2910 			    sector_t start, sector_t len, void *data)
2911 {
2912 	struct dm_pr *pr = data;
2913 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2914 
2915 	if (!ops || !ops->pr_register)
2916 		return -EOPNOTSUPP;
2917 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2918 }
2919 
2920 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2921 			  u32 flags)
2922 {
2923 	struct dm_pr pr = {
2924 		.old_key	= old_key,
2925 		.new_key	= new_key,
2926 		.flags		= flags,
2927 		.fail_early	= true,
2928 	};
2929 	int ret;
2930 
2931 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2932 	if (ret && new_key) {
2933 		/* unregister all paths if we failed to register any path */
2934 		pr.old_key = new_key;
2935 		pr.new_key = 0;
2936 		pr.flags = 0;
2937 		pr.fail_early = false;
2938 		dm_call_pr(bdev, __dm_pr_register, &pr);
2939 	}
2940 
2941 	return ret;
2942 }
2943 
2944 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2945 			 u32 flags)
2946 {
2947 	struct mapped_device *md = bdev->bd_disk->private_data;
2948 	const struct pr_ops *ops;
2949 	int r, srcu_idx;
2950 
2951 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2952 	if (r < 0)
2953 		goto out;
2954 
2955 	ops = bdev->bd_disk->fops->pr_ops;
2956 	if (ops && ops->pr_reserve)
2957 		r = ops->pr_reserve(bdev, key, type, flags);
2958 	else
2959 		r = -EOPNOTSUPP;
2960 out:
2961 	dm_unprepare_ioctl(md, srcu_idx);
2962 	return r;
2963 }
2964 
2965 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2966 {
2967 	struct mapped_device *md = bdev->bd_disk->private_data;
2968 	const struct pr_ops *ops;
2969 	int r, srcu_idx;
2970 
2971 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2972 	if (r < 0)
2973 		goto out;
2974 
2975 	ops = bdev->bd_disk->fops->pr_ops;
2976 	if (ops && ops->pr_release)
2977 		r = ops->pr_release(bdev, key, type);
2978 	else
2979 		r = -EOPNOTSUPP;
2980 out:
2981 	dm_unprepare_ioctl(md, srcu_idx);
2982 	return r;
2983 }
2984 
2985 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2986 			 enum pr_type type, bool abort)
2987 {
2988 	struct mapped_device *md = bdev->bd_disk->private_data;
2989 	const struct pr_ops *ops;
2990 	int r, srcu_idx;
2991 
2992 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2993 	if (r < 0)
2994 		goto out;
2995 
2996 	ops = bdev->bd_disk->fops->pr_ops;
2997 	if (ops && ops->pr_preempt)
2998 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2999 	else
3000 		r = -EOPNOTSUPP;
3001 out:
3002 	dm_unprepare_ioctl(md, srcu_idx);
3003 	return r;
3004 }
3005 
3006 static int dm_pr_clear(struct block_device *bdev, u64 key)
3007 {
3008 	struct mapped_device *md = bdev->bd_disk->private_data;
3009 	const struct pr_ops *ops;
3010 	int r, srcu_idx;
3011 
3012 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3013 	if (r < 0)
3014 		goto out;
3015 
3016 	ops = bdev->bd_disk->fops->pr_ops;
3017 	if (ops && ops->pr_clear)
3018 		r = ops->pr_clear(bdev, key);
3019 	else
3020 		r = -EOPNOTSUPP;
3021 out:
3022 	dm_unprepare_ioctl(md, srcu_idx);
3023 	return r;
3024 }
3025 
3026 static const struct pr_ops dm_pr_ops = {
3027 	.pr_register	= dm_pr_register,
3028 	.pr_reserve	= dm_pr_reserve,
3029 	.pr_release	= dm_pr_release,
3030 	.pr_preempt	= dm_pr_preempt,
3031 	.pr_clear	= dm_pr_clear,
3032 };
3033 
3034 static const struct block_device_operations dm_blk_dops = {
3035 	.submit_bio = dm_submit_bio,
3036 	.open = dm_blk_open,
3037 	.release = dm_blk_close,
3038 	.ioctl = dm_blk_ioctl,
3039 	.getgeo = dm_blk_getgeo,
3040 	.report_zones = dm_blk_report_zones,
3041 	.pr_ops = &dm_pr_ops,
3042 	.owner = THIS_MODULE
3043 };
3044 
3045 static const struct block_device_operations dm_rq_blk_dops = {
3046 	.open = dm_blk_open,
3047 	.release = dm_blk_close,
3048 	.ioctl = dm_blk_ioctl,
3049 	.getgeo = dm_blk_getgeo,
3050 	.pr_ops = &dm_pr_ops,
3051 	.owner = THIS_MODULE
3052 };
3053 
3054 static const struct dax_operations dm_dax_ops = {
3055 	.direct_access = dm_dax_direct_access,
3056 	.dax_supported = dm_dax_supported,
3057 	.copy_from_iter = dm_dax_copy_from_iter,
3058 	.copy_to_iter = dm_dax_copy_to_iter,
3059 	.zero_page_range = dm_dax_zero_page_range,
3060 };
3061 
3062 /*
3063  * module hooks
3064  */
3065 module_init(dm_init);
3066 module_exit(dm_exit);
3067 
3068 module_param(major, uint, 0);
3069 MODULE_PARM_DESC(major, "The major number of the device mapper");
3070 
3071 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3072 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3073 
3074 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3075 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3076 
3077 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3078 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3079 
3080 MODULE_DESCRIPTION(DM_NAME " driver");
3081 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3082 MODULE_LICENSE("GPL");
3083