1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 28 #define DM_MSG_PREFIX "core" 29 30 /* 31 * Cookies are numeric values sent with CHANGE and REMOVE 32 * uevents while resuming, removing or renaming the device. 33 */ 34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 35 #define DM_COOKIE_LENGTH 24 36 37 static const char *_name = DM_NAME; 38 39 static unsigned int major = 0; 40 static unsigned int _major = 0; 41 42 static DEFINE_IDR(_minor_idr); 43 44 static DEFINE_SPINLOCK(_minor_lock); 45 46 static void do_deferred_remove(struct work_struct *w); 47 48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 49 50 static struct workqueue_struct *deferred_remove_workqueue; 51 52 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 54 55 void dm_issue_global_event(void) 56 { 57 atomic_inc(&dm_global_event_nr); 58 wake_up(&dm_global_eventq); 59 } 60 61 /* 62 * One of these is allocated per bio. 63 */ 64 struct dm_io { 65 struct mapped_device *md; 66 blk_status_t status; 67 atomic_t io_count; 68 struct bio *bio; 69 unsigned long start_time; 70 spinlock_t endio_lock; 71 struct dm_stats_aux stats_aux; 72 }; 73 74 #define MINOR_ALLOCED ((void *)-1) 75 76 /* 77 * Bits for the md->flags field. 78 */ 79 #define DMF_BLOCK_IO_FOR_SUSPEND 0 80 #define DMF_SUSPENDED 1 81 #define DMF_FROZEN 2 82 #define DMF_FREEING 3 83 #define DMF_DELETING 4 84 #define DMF_NOFLUSH_SUSPENDING 5 85 #define DMF_DEFERRED_REMOVE 6 86 #define DMF_SUSPENDED_INTERNALLY 7 87 88 #define DM_NUMA_NODE NUMA_NO_NODE 89 static int dm_numa_node = DM_NUMA_NODE; 90 91 /* 92 * For mempools pre-allocation at the table loading time. 93 */ 94 struct dm_md_mempools { 95 mempool_t *io_pool; 96 struct bio_set *bs; 97 }; 98 99 struct table_device { 100 struct list_head list; 101 atomic_t count; 102 struct dm_dev dm_dev; 103 }; 104 105 static struct kmem_cache *_io_cache; 106 static struct kmem_cache *_rq_tio_cache; 107 static struct kmem_cache *_rq_cache; 108 109 /* 110 * Bio-based DM's mempools' reserved IOs set by the user. 111 */ 112 #define RESERVED_BIO_BASED_IOS 16 113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 114 115 static int __dm_get_module_param_int(int *module_param, int min, int max) 116 { 117 int param = ACCESS_ONCE(*module_param); 118 int modified_param = 0; 119 bool modified = true; 120 121 if (param < min) 122 modified_param = min; 123 else if (param > max) 124 modified_param = max; 125 else 126 modified = false; 127 128 if (modified) { 129 (void)cmpxchg(module_param, param, modified_param); 130 param = modified_param; 131 } 132 133 return param; 134 } 135 136 unsigned __dm_get_module_param(unsigned *module_param, 137 unsigned def, unsigned max) 138 { 139 unsigned param = ACCESS_ONCE(*module_param); 140 unsigned modified_param = 0; 141 142 if (!param) 143 modified_param = def; 144 else if (param > max) 145 modified_param = max; 146 147 if (modified_param) { 148 (void)cmpxchg(module_param, param, modified_param); 149 param = modified_param; 150 } 151 152 return param; 153 } 154 155 unsigned dm_get_reserved_bio_based_ios(void) 156 { 157 return __dm_get_module_param(&reserved_bio_based_ios, 158 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 159 } 160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 161 162 static unsigned dm_get_numa_node(void) 163 { 164 return __dm_get_module_param_int(&dm_numa_node, 165 DM_NUMA_NODE, num_online_nodes() - 1); 166 } 167 168 static int __init local_init(void) 169 { 170 int r = -ENOMEM; 171 172 /* allocate a slab for the dm_ios */ 173 _io_cache = KMEM_CACHE(dm_io, 0); 174 if (!_io_cache) 175 return r; 176 177 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 178 if (!_rq_tio_cache) 179 goto out_free_io_cache; 180 181 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 182 __alignof__(struct request), 0, NULL); 183 if (!_rq_cache) 184 goto out_free_rq_tio_cache; 185 186 r = dm_uevent_init(); 187 if (r) 188 goto out_free_rq_cache; 189 190 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 191 if (!deferred_remove_workqueue) { 192 r = -ENOMEM; 193 goto out_uevent_exit; 194 } 195 196 _major = major; 197 r = register_blkdev(_major, _name); 198 if (r < 0) 199 goto out_free_workqueue; 200 201 if (!_major) 202 _major = r; 203 204 return 0; 205 206 out_free_workqueue: 207 destroy_workqueue(deferred_remove_workqueue); 208 out_uevent_exit: 209 dm_uevent_exit(); 210 out_free_rq_cache: 211 kmem_cache_destroy(_rq_cache); 212 out_free_rq_tio_cache: 213 kmem_cache_destroy(_rq_tio_cache); 214 out_free_io_cache: 215 kmem_cache_destroy(_io_cache); 216 217 return r; 218 } 219 220 static void local_exit(void) 221 { 222 flush_scheduled_work(); 223 destroy_workqueue(deferred_remove_workqueue); 224 225 kmem_cache_destroy(_rq_cache); 226 kmem_cache_destroy(_rq_tio_cache); 227 kmem_cache_destroy(_io_cache); 228 unregister_blkdev(_major, _name); 229 dm_uevent_exit(); 230 231 _major = 0; 232 233 DMINFO("cleaned up"); 234 } 235 236 static int (*_inits[])(void) __initdata = { 237 local_init, 238 dm_target_init, 239 dm_linear_init, 240 dm_stripe_init, 241 dm_io_init, 242 dm_kcopyd_init, 243 dm_interface_init, 244 dm_statistics_init, 245 }; 246 247 static void (*_exits[])(void) = { 248 local_exit, 249 dm_target_exit, 250 dm_linear_exit, 251 dm_stripe_exit, 252 dm_io_exit, 253 dm_kcopyd_exit, 254 dm_interface_exit, 255 dm_statistics_exit, 256 }; 257 258 static int __init dm_init(void) 259 { 260 const int count = ARRAY_SIZE(_inits); 261 262 int r, i; 263 264 for (i = 0; i < count; i++) { 265 r = _inits[i](); 266 if (r) 267 goto bad; 268 } 269 270 return 0; 271 272 bad: 273 while (i--) 274 _exits[i](); 275 276 return r; 277 } 278 279 static void __exit dm_exit(void) 280 { 281 int i = ARRAY_SIZE(_exits); 282 283 while (i--) 284 _exits[i](); 285 286 /* 287 * Should be empty by this point. 288 */ 289 idr_destroy(&_minor_idr); 290 } 291 292 /* 293 * Block device functions 294 */ 295 int dm_deleting_md(struct mapped_device *md) 296 { 297 return test_bit(DMF_DELETING, &md->flags); 298 } 299 300 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 301 { 302 struct mapped_device *md; 303 304 spin_lock(&_minor_lock); 305 306 md = bdev->bd_disk->private_data; 307 if (!md) 308 goto out; 309 310 if (test_bit(DMF_FREEING, &md->flags) || 311 dm_deleting_md(md)) { 312 md = NULL; 313 goto out; 314 } 315 316 dm_get(md); 317 atomic_inc(&md->open_count); 318 out: 319 spin_unlock(&_minor_lock); 320 321 return md ? 0 : -ENXIO; 322 } 323 324 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 325 { 326 struct mapped_device *md; 327 328 spin_lock(&_minor_lock); 329 330 md = disk->private_data; 331 if (WARN_ON(!md)) 332 goto out; 333 334 if (atomic_dec_and_test(&md->open_count) && 335 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 336 queue_work(deferred_remove_workqueue, &deferred_remove_work); 337 338 dm_put(md); 339 out: 340 spin_unlock(&_minor_lock); 341 } 342 343 int dm_open_count(struct mapped_device *md) 344 { 345 return atomic_read(&md->open_count); 346 } 347 348 /* 349 * Guarantees nothing is using the device before it's deleted. 350 */ 351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 352 { 353 int r = 0; 354 355 spin_lock(&_minor_lock); 356 357 if (dm_open_count(md)) { 358 r = -EBUSY; 359 if (mark_deferred) 360 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 361 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 362 r = -EEXIST; 363 else 364 set_bit(DMF_DELETING, &md->flags); 365 366 spin_unlock(&_minor_lock); 367 368 return r; 369 } 370 371 int dm_cancel_deferred_remove(struct mapped_device *md) 372 { 373 int r = 0; 374 375 spin_lock(&_minor_lock); 376 377 if (test_bit(DMF_DELETING, &md->flags)) 378 r = -EBUSY; 379 else 380 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 static void do_deferred_remove(struct work_struct *w) 388 { 389 dm_deferred_remove(); 390 } 391 392 sector_t dm_get_size(struct mapped_device *md) 393 { 394 return get_capacity(md->disk); 395 } 396 397 struct request_queue *dm_get_md_queue(struct mapped_device *md) 398 { 399 return md->queue; 400 } 401 402 struct dm_stats *dm_get_stats(struct mapped_device *md) 403 { 404 return &md->stats; 405 } 406 407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 408 { 409 struct mapped_device *md = bdev->bd_disk->private_data; 410 411 return dm_get_geometry(md, geo); 412 } 413 414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 415 struct block_device **bdev, 416 fmode_t *mode) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int srcu_idx, r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, &srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 goto out; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 goto out; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 goto out; 435 436 if (dm_suspended_md(md)) { 437 r = -EAGAIN; 438 goto out; 439 } 440 441 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 442 if (r < 0) 443 goto out; 444 445 bdgrab(*bdev); 446 dm_put_live_table(md, srcu_idx); 447 return r; 448 449 out: 450 dm_put_live_table(md, srcu_idx); 451 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 452 msleep(10); 453 goto retry; 454 } 455 return r; 456 } 457 458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 459 unsigned int cmd, unsigned long arg) 460 { 461 struct mapped_device *md = bdev->bd_disk->private_data; 462 int r; 463 464 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 465 if (r < 0) 466 return r; 467 468 if (r > 0) { 469 /* 470 * Target determined this ioctl is being issued against a 471 * subset of the parent bdev; require extra privileges. 472 */ 473 if (!capable(CAP_SYS_RAWIO)) { 474 DMWARN_LIMIT( 475 "%s: sending ioctl %x to DM device without required privilege.", 476 current->comm, cmd); 477 r = -ENOIOCTLCMD; 478 goto out; 479 } 480 } 481 482 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 483 out: 484 bdput(bdev); 485 return r; 486 } 487 488 static struct dm_io *alloc_io(struct mapped_device *md) 489 { 490 return mempool_alloc(md->io_pool, GFP_NOIO); 491 } 492 493 static void free_io(struct mapped_device *md, struct dm_io *io) 494 { 495 mempool_free(io, md->io_pool); 496 } 497 498 static void free_tio(struct dm_target_io *tio) 499 { 500 bio_put(&tio->clone); 501 } 502 503 int md_in_flight(struct mapped_device *md) 504 { 505 return atomic_read(&md->pending[READ]) + 506 atomic_read(&md->pending[WRITE]); 507 } 508 509 static void start_io_acct(struct dm_io *io) 510 { 511 struct mapped_device *md = io->md; 512 struct bio *bio = io->bio; 513 int cpu; 514 int rw = bio_data_dir(bio); 515 516 io->start_time = jiffies; 517 518 cpu = part_stat_lock(); 519 part_round_stats(md->queue, cpu, &dm_disk(md)->part0); 520 part_stat_unlock(); 521 atomic_set(&dm_disk(md)->part0.in_flight[rw], 522 atomic_inc_return(&md->pending[rw])); 523 524 if (unlikely(dm_stats_used(&md->stats))) 525 dm_stats_account_io(&md->stats, bio_data_dir(bio), 526 bio->bi_iter.bi_sector, bio_sectors(bio), 527 false, 0, &io->stats_aux); 528 } 529 530 static void end_io_acct(struct dm_io *io) 531 { 532 struct mapped_device *md = io->md; 533 struct bio *bio = io->bio; 534 unsigned long duration = jiffies - io->start_time; 535 int pending; 536 int rw = bio_data_dir(bio); 537 538 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 539 540 if (unlikely(dm_stats_used(&md->stats))) 541 dm_stats_account_io(&md->stats, bio_data_dir(bio), 542 bio->bi_iter.bi_sector, bio_sectors(bio), 543 true, duration, &io->stats_aux); 544 545 /* 546 * After this is decremented the bio must not be touched if it is 547 * a flush. 548 */ 549 pending = atomic_dec_return(&md->pending[rw]); 550 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 551 pending += atomic_read(&md->pending[rw^0x1]); 552 553 /* nudge anyone waiting on suspend queue */ 554 if (!pending) 555 wake_up(&md->wait); 556 } 557 558 /* 559 * Add the bio to the list of deferred io. 560 */ 561 static void queue_io(struct mapped_device *md, struct bio *bio) 562 { 563 unsigned long flags; 564 565 spin_lock_irqsave(&md->deferred_lock, flags); 566 bio_list_add(&md->deferred, bio); 567 spin_unlock_irqrestore(&md->deferred_lock, flags); 568 queue_work(md->wq, &md->work); 569 } 570 571 /* 572 * Everyone (including functions in this file), should use this 573 * function to access the md->map field, and make sure they call 574 * dm_put_live_table() when finished. 575 */ 576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 577 { 578 *srcu_idx = srcu_read_lock(&md->io_barrier); 579 580 return srcu_dereference(md->map, &md->io_barrier); 581 } 582 583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 584 { 585 srcu_read_unlock(&md->io_barrier, srcu_idx); 586 } 587 588 void dm_sync_table(struct mapped_device *md) 589 { 590 synchronize_srcu(&md->io_barrier); 591 synchronize_rcu_expedited(); 592 } 593 594 /* 595 * A fast alternative to dm_get_live_table/dm_put_live_table. 596 * The caller must not block between these two functions. 597 */ 598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 599 { 600 rcu_read_lock(); 601 return rcu_dereference(md->map); 602 } 603 604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 605 { 606 rcu_read_unlock(); 607 } 608 609 /* 610 * Open a table device so we can use it as a map destination. 611 */ 612 static int open_table_device(struct table_device *td, dev_t dev, 613 struct mapped_device *md) 614 { 615 static char *_claim_ptr = "I belong to device-mapper"; 616 struct block_device *bdev; 617 618 int r; 619 620 BUG_ON(td->dm_dev.bdev); 621 622 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 623 if (IS_ERR(bdev)) 624 return PTR_ERR(bdev); 625 626 r = bd_link_disk_holder(bdev, dm_disk(md)); 627 if (r) { 628 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 629 return r; 630 } 631 632 td->dm_dev.bdev = bdev; 633 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 634 return 0; 635 } 636 637 /* 638 * Close a table device that we've been using. 639 */ 640 static void close_table_device(struct table_device *td, struct mapped_device *md) 641 { 642 if (!td->dm_dev.bdev) 643 return; 644 645 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 646 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 647 put_dax(td->dm_dev.dax_dev); 648 td->dm_dev.bdev = NULL; 649 td->dm_dev.dax_dev = NULL; 650 } 651 652 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 653 fmode_t mode) { 654 struct table_device *td; 655 656 list_for_each_entry(td, l, list) 657 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 658 return td; 659 660 return NULL; 661 } 662 663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 664 struct dm_dev **result) { 665 int r; 666 struct table_device *td; 667 668 mutex_lock(&md->table_devices_lock); 669 td = find_table_device(&md->table_devices, dev, mode); 670 if (!td) { 671 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 672 if (!td) { 673 mutex_unlock(&md->table_devices_lock); 674 return -ENOMEM; 675 } 676 677 td->dm_dev.mode = mode; 678 td->dm_dev.bdev = NULL; 679 680 if ((r = open_table_device(td, dev, md))) { 681 mutex_unlock(&md->table_devices_lock); 682 kfree(td); 683 return r; 684 } 685 686 format_dev_t(td->dm_dev.name, dev); 687 688 atomic_set(&td->count, 0); 689 list_add(&td->list, &md->table_devices); 690 } 691 atomic_inc(&td->count); 692 mutex_unlock(&md->table_devices_lock); 693 694 *result = &td->dm_dev; 695 return 0; 696 } 697 EXPORT_SYMBOL_GPL(dm_get_table_device); 698 699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 700 { 701 struct table_device *td = container_of(d, struct table_device, dm_dev); 702 703 mutex_lock(&md->table_devices_lock); 704 if (atomic_dec_and_test(&td->count)) { 705 close_table_device(td, md); 706 list_del(&td->list); 707 kfree(td); 708 } 709 mutex_unlock(&md->table_devices_lock); 710 } 711 EXPORT_SYMBOL(dm_put_table_device); 712 713 static void free_table_devices(struct list_head *devices) 714 { 715 struct list_head *tmp, *next; 716 717 list_for_each_safe(tmp, next, devices) { 718 struct table_device *td = list_entry(tmp, struct table_device, list); 719 720 DMWARN("dm_destroy: %s still exists with %d references", 721 td->dm_dev.name, atomic_read(&td->count)); 722 kfree(td); 723 } 724 } 725 726 /* 727 * Get the geometry associated with a dm device 728 */ 729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 730 { 731 *geo = md->geometry; 732 733 return 0; 734 } 735 736 /* 737 * Set the geometry of a device. 738 */ 739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 740 { 741 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 742 743 if (geo->start > sz) { 744 DMWARN("Start sector is beyond the geometry limits."); 745 return -EINVAL; 746 } 747 748 md->geometry = *geo; 749 750 return 0; 751 } 752 753 /*----------------------------------------------------------------- 754 * CRUD START: 755 * A more elegant soln is in the works that uses the queue 756 * merge fn, unfortunately there are a couple of changes to 757 * the block layer that I want to make for this. So in the 758 * interests of getting something for people to use I give 759 * you this clearly demarcated crap. 760 *---------------------------------------------------------------*/ 761 762 static int __noflush_suspending(struct mapped_device *md) 763 { 764 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 765 } 766 767 /* 768 * Decrements the number of outstanding ios that a bio has been 769 * cloned into, completing the original io if necc. 770 */ 771 static void dec_pending(struct dm_io *io, blk_status_t error) 772 { 773 unsigned long flags; 774 blk_status_t io_error; 775 struct bio *bio; 776 struct mapped_device *md = io->md; 777 778 /* Push-back supersedes any I/O errors */ 779 if (unlikely(error)) { 780 spin_lock_irqsave(&io->endio_lock, flags); 781 if (!(io->status == BLK_STS_DM_REQUEUE && 782 __noflush_suspending(md))) 783 io->status = error; 784 spin_unlock_irqrestore(&io->endio_lock, flags); 785 } 786 787 if (atomic_dec_and_test(&io->io_count)) { 788 if (io->status == BLK_STS_DM_REQUEUE) { 789 /* 790 * Target requested pushing back the I/O. 791 */ 792 spin_lock_irqsave(&md->deferred_lock, flags); 793 if (__noflush_suspending(md)) 794 bio_list_add_head(&md->deferred, io->bio); 795 else 796 /* noflush suspend was interrupted. */ 797 io->status = BLK_STS_IOERR; 798 spin_unlock_irqrestore(&md->deferred_lock, flags); 799 } 800 801 io_error = io->status; 802 bio = io->bio; 803 end_io_acct(io); 804 free_io(md, io); 805 806 if (io_error == BLK_STS_DM_REQUEUE) 807 return; 808 809 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 810 /* 811 * Preflush done for flush with data, reissue 812 * without REQ_PREFLUSH. 813 */ 814 bio->bi_opf &= ~REQ_PREFLUSH; 815 queue_io(md, bio); 816 } else { 817 /* done with normal IO or empty flush */ 818 bio->bi_status = io_error; 819 bio_endio(bio); 820 } 821 } 822 } 823 824 void disable_write_same(struct mapped_device *md) 825 { 826 struct queue_limits *limits = dm_get_queue_limits(md); 827 828 /* device doesn't really support WRITE SAME, disable it */ 829 limits->max_write_same_sectors = 0; 830 } 831 832 void disable_write_zeroes(struct mapped_device *md) 833 { 834 struct queue_limits *limits = dm_get_queue_limits(md); 835 836 /* device doesn't really support WRITE ZEROES, disable it */ 837 limits->max_write_zeroes_sectors = 0; 838 } 839 840 static void clone_endio(struct bio *bio) 841 { 842 blk_status_t error = bio->bi_status; 843 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 844 struct dm_io *io = tio->io; 845 struct mapped_device *md = tio->io->md; 846 dm_endio_fn endio = tio->ti->type->end_io; 847 848 if (unlikely(error == BLK_STS_TARGET)) { 849 if (bio_op(bio) == REQ_OP_WRITE_SAME && 850 !bio->bi_disk->queue->limits.max_write_same_sectors) 851 disable_write_same(md); 852 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 853 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 854 disable_write_zeroes(md); 855 } 856 857 if (endio) { 858 int r = endio(tio->ti, bio, &error); 859 switch (r) { 860 case DM_ENDIO_REQUEUE: 861 error = BLK_STS_DM_REQUEUE; 862 /*FALLTHRU*/ 863 case DM_ENDIO_DONE: 864 break; 865 case DM_ENDIO_INCOMPLETE: 866 /* The target will handle the io */ 867 return; 868 default: 869 DMWARN("unimplemented target endio return value: %d", r); 870 BUG(); 871 } 872 } 873 874 free_tio(tio); 875 dec_pending(io, error); 876 } 877 878 /* 879 * Return maximum size of I/O possible at the supplied sector up to the current 880 * target boundary. 881 */ 882 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 883 { 884 sector_t target_offset = dm_target_offset(ti, sector); 885 886 return ti->len - target_offset; 887 } 888 889 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 890 { 891 sector_t len = max_io_len_target_boundary(sector, ti); 892 sector_t offset, max_len; 893 894 /* 895 * Does the target need to split even further? 896 */ 897 if (ti->max_io_len) { 898 offset = dm_target_offset(ti, sector); 899 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 900 max_len = sector_div(offset, ti->max_io_len); 901 else 902 max_len = offset & (ti->max_io_len - 1); 903 max_len = ti->max_io_len - max_len; 904 905 if (len > max_len) 906 len = max_len; 907 } 908 909 return len; 910 } 911 912 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 913 { 914 if (len > UINT_MAX) { 915 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 916 (unsigned long long)len, UINT_MAX); 917 ti->error = "Maximum size of target IO is too large"; 918 return -EINVAL; 919 } 920 921 ti->max_io_len = (uint32_t) len; 922 923 return 0; 924 } 925 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 926 927 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 928 sector_t sector, int *srcu_idx) 929 { 930 struct dm_table *map; 931 struct dm_target *ti; 932 933 map = dm_get_live_table(md, srcu_idx); 934 if (!map) 935 return NULL; 936 937 ti = dm_table_find_target(map, sector); 938 if (!dm_target_is_valid(ti)) 939 return NULL; 940 941 return ti; 942 } 943 944 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 945 long nr_pages, void **kaddr, pfn_t *pfn) 946 { 947 struct mapped_device *md = dax_get_private(dax_dev); 948 sector_t sector = pgoff * PAGE_SECTORS; 949 struct dm_target *ti; 950 long len, ret = -EIO; 951 int srcu_idx; 952 953 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 954 955 if (!ti) 956 goto out; 957 if (!ti->type->direct_access) 958 goto out; 959 len = max_io_len(sector, ti) / PAGE_SECTORS; 960 if (len < 1) 961 goto out; 962 nr_pages = min(len, nr_pages); 963 if (ti->type->direct_access) 964 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 965 966 out: 967 dm_put_live_table(md, srcu_idx); 968 969 return ret; 970 } 971 972 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 973 void *addr, size_t bytes, struct iov_iter *i) 974 { 975 struct mapped_device *md = dax_get_private(dax_dev); 976 sector_t sector = pgoff * PAGE_SECTORS; 977 struct dm_target *ti; 978 long ret = 0; 979 int srcu_idx; 980 981 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 982 983 if (!ti) 984 goto out; 985 if (!ti->type->dax_copy_from_iter) { 986 ret = copy_from_iter(addr, bytes, i); 987 goto out; 988 } 989 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 990 out: 991 dm_put_live_table(md, srcu_idx); 992 993 return ret; 994 } 995 996 /* 997 * A target may call dm_accept_partial_bio only from the map routine. It is 998 * allowed for all bio types except REQ_PREFLUSH. 999 * 1000 * dm_accept_partial_bio informs the dm that the target only wants to process 1001 * additional n_sectors sectors of the bio and the rest of the data should be 1002 * sent in a next bio. 1003 * 1004 * A diagram that explains the arithmetics: 1005 * +--------------------+---------------+-------+ 1006 * | 1 | 2 | 3 | 1007 * +--------------------+---------------+-------+ 1008 * 1009 * <-------------- *tio->len_ptr ---------------> 1010 * <------- bi_size -------> 1011 * <-- n_sectors --> 1012 * 1013 * Region 1 was already iterated over with bio_advance or similar function. 1014 * (it may be empty if the target doesn't use bio_advance) 1015 * Region 2 is the remaining bio size that the target wants to process. 1016 * (it may be empty if region 1 is non-empty, although there is no reason 1017 * to make it empty) 1018 * The target requires that region 3 is to be sent in the next bio. 1019 * 1020 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1021 * the partially processed part (the sum of regions 1+2) must be the same for all 1022 * copies of the bio. 1023 */ 1024 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1025 { 1026 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1027 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1028 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1029 BUG_ON(bi_size > *tio->len_ptr); 1030 BUG_ON(n_sectors > bi_size); 1031 *tio->len_ptr -= bi_size - n_sectors; 1032 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1033 } 1034 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1035 1036 /* 1037 * The zone descriptors obtained with a zone report indicate 1038 * zone positions within the target device. The zone descriptors 1039 * must be remapped to match their position within the dm device. 1040 * A target may call dm_remap_zone_report after completion of a 1041 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1042 * from the target device mapping to the dm device. 1043 */ 1044 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1045 { 1046 #ifdef CONFIG_BLK_DEV_ZONED 1047 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1048 struct bio *report_bio = tio->io->bio; 1049 struct blk_zone_report_hdr *hdr = NULL; 1050 struct blk_zone *zone; 1051 unsigned int nr_rep = 0; 1052 unsigned int ofst; 1053 struct bio_vec bvec; 1054 struct bvec_iter iter; 1055 void *addr; 1056 1057 if (bio->bi_status) 1058 return; 1059 1060 /* 1061 * Remap the start sector of the reported zones. For sequential zones, 1062 * also remap the write pointer position. 1063 */ 1064 bio_for_each_segment(bvec, report_bio, iter) { 1065 addr = kmap_atomic(bvec.bv_page); 1066 1067 /* Remember the report header in the first page */ 1068 if (!hdr) { 1069 hdr = addr; 1070 ofst = sizeof(struct blk_zone_report_hdr); 1071 } else 1072 ofst = 0; 1073 1074 /* Set zones start sector */ 1075 while (hdr->nr_zones && ofst < bvec.bv_len) { 1076 zone = addr + ofst; 1077 if (zone->start >= start + ti->len) { 1078 hdr->nr_zones = 0; 1079 break; 1080 } 1081 zone->start = zone->start + ti->begin - start; 1082 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1083 if (zone->cond == BLK_ZONE_COND_FULL) 1084 zone->wp = zone->start + zone->len; 1085 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1086 zone->wp = zone->start; 1087 else 1088 zone->wp = zone->wp + ti->begin - start; 1089 } 1090 ofst += sizeof(struct blk_zone); 1091 hdr->nr_zones--; 1092 nr_rep++; 1093 } 1094 1095 if (addr != hdr) 1096 kunmap_atomic(addr); 1097 1098 if (!hdr->nr_zones) 1099 break; 1100 } 1101 1102 if (hdr) { 1103 hdr->nr_zones = nr_rep; 1104 kunmap_atomic(hdr); 1105 } 1106 1107 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1108 1109 #else /* !CONFIG_BLK_DEV_ZONED */ 1110 bio->bi_status = BLK_STS_NOTSUPP; 1111 #endif 1112 } 1113 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1114 1115 /* 1116 * Flush current->bio_list when the target map method blocks. 1117 * This fixes deadlocks in snapshot and possibly in other targets. 1118 */ 1119 struct dm_offload { 1120 struct blk_plug plug; 1121 struct blk_plug_cb cb; 1122 }; 1123 1124 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 1125 { 1126 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 1127 struct bio_list list; 1128 struct bio *bio; 1129 int i; 1130 1131 INIT_LIST_HEAD(&o->cb.list); 1132 1133 if (unlikely(!current->bio_list)) 1134 return; 1135 1136 for (i = 0; i < 2; i++) { 1137 list = current->bio_list[i]; 1138 bio_list_init(¤t->bio_list[i]); 1139 1140 while ((bio = bio_list_pop(&list))) { 1141 struct bio_set *bs = bio->bi_pool; 1142 if (unlikely(!bs) || bs == fs_bio_set || 1143 !bs->rescue_workqueue) { 1144 bio_list_add(¤t->bio_list[i], bio); 1145 continue; 1146 } 1147 1148 spin_lock(&bs->rescue_lock); 1149 bio_list_add(&bs->rescue_list, bio); 1150 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1151 spin_unlock(&bs->rescue_lock); 1152 } 1153 } 1154 } 1155 1156 static void dm_offload_start(struct dm_offload *o) 1157 { 1158 blk_start_plug(&o->plug); 1159 o->cb.callback = flush_current_bio_list; 1160 list_add(&o->cb.list, ¤t->plug->cb_list); 1161 } 1162 1163 static void dm_offload_end(struct dm_offload *o) 1164 { 1165 list_del(&o->cb.list); 1166 blk_finish_plug(&o->plug); 1167 } 1168 1169 static void __map_bio(struct dm_target_io *tio) 1170 { 1171 int r; 1172 sector_t sector; 1173 struct dm_offload o; 1174 struct bio *clone = &tio->clone; 1175 struct dm_target *ti = tio->ti; 1176 1177 clone->bi_end_io = clone_endio; 1178 1179 /* 1180 * Map the clone. If r == 0 we don't need to do 1181 * anything, the target has assumed ownership of 1182 * this io. 1183 */ 1184 atomic_inc(&tio->io->io_count); 1185 sector = clone->bi_iter.bi_sector; 1186 1187 dm_offload_start(&o); 1188 r = ti->type->map(ti, clone); 1189 dm_offload_end(&o); 1190 1191 switch (r) { 1192 case DM_MAPIO_SUBMITTED: 1193 break; 1194 case DM_MAPIO_REMAPPED: 1195 /* the bio has been remapped so dispatch it */ 1196 trace_block_bio_remap(clone->bi_disk->queue, clone, 1197 bio_dev(tio->io->bio), sector); 1198 generic_make_request(clone); 1199 break; 1200 case DM_MAPIO_KILL: 1201 dec_pending(tio->io, BLK_STS_IOERR); 1202 free_tio(tio); 1203 break; 1204 case DM_MAPIO_REQUEUE: 1205 dec_pending(tio->io, BLK_STS_DM_REQUEUE); 1206 free_tio(tio); 1207 break; 1208 default: 1209 DMWARN("unimplemented target map return value: %d", r); 1210 BUG(); 1211 } 1212 } 1213 1214 struct clone_info { 1215 struct mapped_device *md; 1216 struct dm_table *map; 1217 struct bio *bio; 1218 struct dm_io *io; 1219 sector_t sector; 1220 unsigned sector_count; 1221 }; 1222 1223 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1224 { 1225 bio->bi_iter.bi_sector = sector; 1226 bio->bi_iter.bi_size = to_bytes(len); 1227 } 1228 1229 /* 1230 * Creates a bio that consists of range of complete bvecs. 1231 */ 1232 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1233 sector_t sector, unsigned len) 1234 { 1235 struct bio *clone = &tio->clone; 1236 1237 __bio_clone_fast(clone, bio); 1238 1239 if (unlikely(bio_integrity(bio) != NULL)) { 1240 int r; 1241 1242 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1243 !dm_target_passes_integrity(tio->ti->type))) { 1244 DMWARN("%s: the target %s doesn't support integrity data.", 1245 dm_device_name(tio->io->md), 1246 tio->ti->type->name); 1247 return -EIO; 1248 } 1249 1250 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1251 if (r < 0) 1252 return r; 1253 } 1254 1255 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1256 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1257 clone->bi_iter.bi_size = to_bytes(len); 1258 1259 if (unlikely(bio_integrity(bio) != NULL)) 1260 bio_integrity_trim(clone); 1261 1262 return 0; 1263 } 1264 1265 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1266 struct dm_target *ti, 1267 unsigned target_bio_nr) 1268 { 1269 struct dm_target_io *tio; 1270 struct bio *clone; 1271 1272 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1273 tio = container_of(clone, struct dm_target_io, clone); 1274 1275 tio->io = ci->io; 1276 tio->ti = ti; 1277 tio->target_bio_nr = target_bio_nr; 1278 1279 return tio; 1280 } 1281 1282 static void __clone_and_map_simple_bio(struct clone_info *ci, 1283 struct dm_target *ti, 1284 unsigned target_bio_nr, unsigned *len) 1285 { 1286 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1287 struct bio *clone = &tio->clone; 1288 1289 tio->len_ptr = len; 1290 1291 __bio_clone_fast(clone, ci->bio); 1292 if (len) 1293 bio_setup_sector(clone, ci->sector, *len); 1294 1295 __map_bio(tio); 1296 } 1297 1298 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1299 unsigned num_bios, unsigned *len) 1300 { 1301 unsigned target_bio_nr; 1302 1303 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1304 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1305 } 1306 1307 static int __send_empty_flush(struct clone_info *ci) 1308 { 1309 unsigned target_nr = 0; 1310 struct dm_target *ti; 1311 1312 BUG_ON(bio_has_data(ci->bio)); 1313 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1314 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1315 1316 return 0; 1317 } 1318 1319 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1320 sector_t sector, unsigned *len) 1321 { 1322 struct bio *bio = ci->bio; 1323 struct dm_target_io *tio; 1324 unsigned target_bio_nr; 1325 unsigned num_target_bios = 1; 1326 int r = 0; 1327 1328 /* 1329 * Does the target want to receive duplicate copies of the bio? 1330 */ 1331 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1332 num_target_bios = ti->num_write_bios(ti, bio); 1333 1334 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1335 tio = alloc_tio(ci, ti, target_bio_nr); 1336 tio->len_ptr = len; 1337 r = clone_bio(tio, bio, sector, *len); 1338 if (r < 0) { 1339 free_tio(tio); 1340 break; 1341 } 1342 __map_bio(tio); 1343 } 1344 1345 return r; 1346 } 1347 1348 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1349 1350 static unsigned get_num_discard_bios(struct dm_target *ti) 1351 { 1352 return ti->num_discard_bios; 1353 } 1354 1355 static unsigned get_num_write_same_bios(struct dm_target *ti) 1356 { 1357 return ti->num_write_same_bios; 1358 } 1359 1360 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1361 { 1362 return ti->num_write_zeroes_bios; 1363 } 1364 1365 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1366 1367 static bool is_split_required_for_discard(struct dm_target *ti) 1368 { 1369 return ti->split_discard_bios; 1370 } 1371 1372 static int __send_changing_extent_only(struct clone_info *ci, 1373 get_num_bios_fn get_num_bios, 1374 is_split_required_fn is_split_required) 1375 { 1376 struct dm_target *ti; 1377 unsigned len; 1378 unsigned num_bios; 1379 1380 do { 1381 ti = dm_table_find_target(ci->map, ci->sector); 1382 if (!dm_target_is_valid(ti)) 1383 return -EIO; 1384 1385 /* 1386 * Even though the device advertised support for this type of 1387 * request, that does not mean every target supports it, and 1388 * reconfiguration might also have changed that since the 1389 * check was performed. 1390 */ 1391 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1392 if (!num_bios) 1393 return -EOPNOTSUPP; 1394 1395 if (is_split_required && !is_split_required(ti)) 1396 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1397 else 1398 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1399 1400 __send_duplicate_bios(ci, ti, num_bios, &len); 1401 1402 ci->sector += len; 1403 } while (ci->sector_count -= len); 1404 1405 return 0; 1406 } 1407 1408 static int __send_discard(struct clone_info *ci) 1409 { 1410 return __send_changing_extent_only(ci, get_num_discard_bios, 1411 is_split_required_for_discard); 1412 } 1413 1414 static int __send_write_same(struct clone_info *ci) 1415 { 1416 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1417 } 1418 1419 static int __send_write_zeroes(struct clone_info *ci) 1420 { 1421 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL); 1422 } 1423 1424 /* 1425 * Select the correct strategy for processing a non-flush bio. 1426 */ 1427 static int __split_and_process_non_flush(struct clone_info *ci) 1428 { 1429 struct bio *bio = ci->bio; 1430 struct dm_target *ti; 1431 unsigned len; 1432 int r; 1433 1434 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1435 return __send_discard(ci); 1436 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1437 return __send_write_same(ci); 1438 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1439 return __send_write_zeroes(ci); 1440 1441 ti = dm_table_find_target(ci->map, ci->sector); 1442 if (!dm_target_is_valid(ti)) 1443 return -EIO; 1444 1445 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1446 len = ci->sector_count; 1447 else 1448 len = min_t(sector_t, max_io_len(ci->sector, ti), 1449 ci->sector_count); 1450 1451 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1452 if (r < 0) 1453 return r; 1454 1455 ci->sector += len; 1456 ci->sector_count -= len; 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Entry point to split a bio into clones and submit them to the targets. 1463 */ 1464 static void __split_and_process_bio(struct mapped_device *md, 1465 struct dm_table *map, struct bio *bio) 1466 { 1467 struct clone_info ci; 1468 int error = 0; 1469 1470 if (unlikely(!map)) { 1471 bio_io_error(bio); 1472 return; 1473 } 1474 1475 ci.map = map; 1476 ci.md = md; 1477 ci.io = alloc_io(md); 1478 ci.io->status = 0; 1479 atomic_set(&ci.io->io_count, 1); 1480 ci.io->bio = bio; 1481 ci.io->md = md; 1482 spin_lock_init(&ci.io->endio_lock); 1483 ci.sector = bio->bi_iter.bi_sector; 1484 1485 start_io_acct(ci.io); 1486 1487 if (bio->bi_opf & REQ_PREFLUSH) { 1488 ci.bio = &ci.md->flush_bio; 1489 ci.sector_count = 0; 1490 error = __send_empty_flush(&ci); 1491 /* dec_pending submits any data associated with flush */ 1492 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1493 ci.bio = bio; 1494 ci.sector_count = 0; 1495 error = __split_and_process_non_flush(&ci); 1496 } else { 1497 ci.bio = bio; 1498 ci.sector_count = bio_sectors(bio); 1499 while (ci.sector_count && !error) 1500 error = __split_and_process_non_flush(&ci); 1501 } 1502 1503 /* drop the extra reference count */ 1504 dec_pending(ci.io, errno_to_blk_status(error)); 1505 } 1506 /*----------------------------------------------------------------- 1507 * CRUD END 1508 *---------------------------------------------------------------*/ 1509 1510 /* 1511 * The request function that just remaps the bio built up by 1512 * dm_merge_bvec. 1513 */ 1514 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1515 { 1516 int rw = bio_data_dir(bio); 1517 struct mapped_device *md = q->queuedata; 1518 int srcu_idx; 1519 struct dm_table *map; 1520 1521 map = dm_get_live_table(md, &srcu_idx); 1522 1523 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0); 1524 1525 /* if we're suspended, we have to queue this io for later */ 1526 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1527 dm_put_live_table(md, srcu_idx); 1528 1529 if (!(bio->bi_opf & REQ_RAHEAD)) 1530 queue_io(md, bio); 1531 else 1532 bio_io_error(bio); 1533 return BLK_QC_T_NONE; 1534 } 1535 1536 __split_and_process_bio(md, map, bio); 1537 dm_put_live_table(md, srcu_idx); 1538 return BLK_QC_T_NONE; 1539 } 1540 1541 static int dm_any_congested(void *congested_data, int bdi_bits) 1542 { 1543 int r = bdi_bits; 1544 struct mapped_device *md = congested_data; 1545 struct dm_table *map; 1546 1547 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1548 if (dm_request_based(md)) { 1549 /* 1550 * With request-based DM we only need to check the 1551 * top-level queue for congestion. 1552 */ 1553 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1554 } else { 1555 map = dm_get_live_table_fast(md); 1556 if (map) 1557 r = dm_table_any_congested(map, bdi_bits); 1558 dm_put_live_table_fast(md); 1559 } 1560 } 1561 1562 return r; 1563 } 1564 1565 /*----------------------------------------------------------------- 1566 * An IDR is used to keep track of allocated minor numbers. 1567 *---------------------------------------------------------------*/ 1568 static void free_minor(int minor) 1569 { 1570 spin_lock(&_minor_lock); 1571 idr_remove(&_minor_idr, minor); 1572 spin_unlock(&_minor_lock); 1573 } 1574 1575 /* 1576 * See if the device with a specific minor # is free. 1577 */ 1578 static int specific_minor(int minor) 1579 { 1580 int r; 1581 1582 if (minor >= (1 << MINORBITS)) 1583 return -EINVAL; 1584 1585 idr_preload(GFP_KERNEL); 1586 spin_lock(&_minor_lock); 1587 1588 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1589 1590 spin_unlock(&_minor_lock); 1591 idr_preload_end(); 1592 if (r < 0) 1593 return r == -ENOSPC ? -EBUSY : r; 1594 return 0; 1595 } 1596 1597 static int next_free_minor(int *minor) 1598 { 1599 int r; 1600 1601 idr_preload(GFP_KERNEL); 1602 spin_lock(&_minor_lock); 1603 1604 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1605 1606 spin_unlock(&_minor_lock); 1607 idr_preload_end(); 1608 if (r < 0) 1609 return r; 1610 *minor = r; 1611 return 0; 1612 } 1613 1614 static const struct block_device_operations dm_blk_dops; 1615 static const struct dax_operations dm_dax_ops; 1616 1617 static void dm_wq_work(struct work_struct *work); 1618 1619 void dm_init_md_queue(struct mapped_device *md) 1620 { 1621 /* 1622 * Request-based dm devices cannot be stacked on top of bio-based dm 1623 * devices. The type of this dm device may not have been decided yet. 1624 * The type is decided at the first table loading time. 1625 * To prevent problematic device stacking, clear the queue flag 1626 * for request stacking support until then. 1627 * 1628 * This queue is new, so no concurrency on the queue_flags. 1629 */ 1630 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1631 1632 /* 1633 * Initialize data that will only be used by a non-blk-mq DM queue 1634 * - must do so here (in alloc_dev callchain) before queue is used 1635 */ 1636 md->queue->queuedata = md; 1637 md->queue->backing_dev_info->congested_data = md; 1638 } 1639 1640 void dm_init_normal_md_queue(struct mapped_device *md) 1641 { 1642 md->use_blk_mq = false; 1643 dm_init_md_queue(md); 1644 1645 /* 1646 * Initialize aspects of queue that aren't relevant for blk-mq 1647 */ 1648 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1649 } 1650 1651 static void cleanup_mapped_device(struct mapped_device *md) 1652 { 1653 if (md->wq) 1654 destroy_workqueue(md->wq); 1655 if (md->kworker_task) 1656 kthread_stop(md->kworker_task); 1657 mempool_destroy(md->io_pool); 1658 if (md->bs) 1659 bioset_free(md->bs); 1660 1661 if (md->dax_dev) { 1662 kill_dax(md->dax_dev); 1663 put_dax(md->dax_dev); 1664 md->dax_dev = NULL; 1665 } 1666 1667 if (md->disk) { 1668 spin_lock(&_minor_lock); 1669 md->disk->private_data = NULL; 1670 spin_unlock(&_minor_lock); 1671 del_gendisk(md->disk); 1672 put_disk(md->disk); 1673 } 1674 1675 if (md->queue) 1676 blk_cleanup_queue(md->queue); 1677 1678 cleanup_srcu_struct(&md->io_barrier); 1679 1680 if (md->bdev) { 1681 bdput(md->bdev); 1682 md->bdev = NULL; 1683 } 1684 1685 dm_mq_cleanup_mapped_device(md); 1686 } 1687 1688 /* 1689 * Allocate and initialise a blank device with a given minor. 1690 */ 1691 static struct mapped_device *alloc_dev(int minor) 1692 { 1693 int r, numa_node_id = dm_get_numa_node(); 1694 struct dax_device *dax_dev; 1695 struct mapped_device *md; 1696 void *old_md; 1697 1698 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1699 if (!md) { 1700 DMWARN("unable to allocate device, out of memory."); 1701 return NULL; 1702 } 1703 1704 if (!try_module_get(THIS_MODULE)) 1705 goto bad_module_get; 1706 1707 /* get a minor number for the dev */ 1708 if (minor == DM_ANY_MINOR) 1709 r = next_free_minor(&minor); 1710 else 1711 r = specific_minor(minor); 1712 if (r < 0) 1713 goto bad_minor; 1714 1715 r = init_srcu_struct(&md->io_barrier); 1716 if (r < 0) 1717 goto bad_io_barrier; 1718 1719 md->numa_node_id = numa_node_id; 1720 md->use_blk_mq = dm_use_blk_mq_default(); 1721 md->init_tio_pdu = false; 1722 md->type = DM_TYPE_NONE; 1723 mutex_init(&md->suspend_lock); 1724 mutex_init(&md->type_lock); 1725 mutex_init(&md->table_devices_lock); 1726 spin_lock_init(&md->deferred_lock); 1727 atomic_set(&md->holders, 1); 1728 atomic_set(&md->open_count, 0); 1729 atomic_set(&md->event_nr, 0); 1730 atomic_set(&md->uevent_seq, 0); 1731 INIT_LIST_HEAD(&md->uevent_list); 1732 INIT_LIST_HEAD(&md->table_devices); 1733 spin_lock_init(&md->uevent_lock); 1734 1735 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1736 if (!md->queue) 1737 goto bad; 1738 1739 dm_init_md_queue(md); 1740 1741 md->disk = alloc_disk_node(1, numa_node_id); 1742 if (!md->disk) 1743 goto bad; 1744 1745 atomic_set(&md->pending[0], 0); 1746 atomic_set(&md->pending[1], 0); 1747 init_waitqueue_head(&md->wait); 1748 INIT_WORK(&md->work, dm_wq_work); 1749 init_waitqueue_head(&md->eventq); 1750 init_completion(&md->kobj_holder.completion); 1751 md->kworker_task = NULL; 1752 1753 md->disk->major = _major; 1754 md->disk->first_minor = minor; 1755 md->disk->fops = &dm_blk_dops; 1756 md->disk->queue = md->queue; 1757 md->disk->private_data = md; 1758 sprintf(md->disk->disk_name, "dm-%d", minor); 1759 1760 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1761 if (!dax_dev) 1762 goto bad; 1763 md->dax_dev = dax_dev; 1764 1765 add_disk(md->disk); 1766 format_dev_t(md->name, MKDEV(_major, minor)); 1767 1768 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1769 if (!md->wq) 1770 goto bad; 1771 1772 md->bdev = bdget_disk(md->disk, 0); 1773 if (!md->bdev) 1774 goto bad; 1775 1776 bio_init(&md->flush_bio, NULL, 0); 1777 bio_set_dev(&md->flush_bio, md->bdev); 1778 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1779 1780 dm_stats_init(&md->stats); 1781 1782 /* Populate the mapping, nobody knows we exist yet */ 1783 spin_lock(&_minor_lock); 1784 old_md = idr_replace(&_minor_idr, md, minor); 1785 spin_unlock(&_minor_lock); 1786 1787 BUG_ON(old_md != MINOR_ALLOCED); 1788 1789 return md; 1790 1791 bad: 1792 cleanup_mapped_device(md); 1793 bad_io_barrier: 1794 free_minor(minor); 1795 bad_minor: 1796 module_put(THIS_MODULE); 1797 bad_module_get: 1798 kfree(md); 1799 return NULL; 1800 } 1801 1802 static void unlock_fs(struct mapped_device *md); 1803 1804 static void free_dev(struct mapped_device *md) 1805 { 1806 int minor = MINOR(disk_devt(md->disk)); 1807 1808 unlock_fs(md); 1809 1810 cleanup_mapped_device(md); 1811 1812 free_table_devices(&md->table_devices); 1813 dm_stats_cleanup(&md->stats); 1814 free_minor(minor); 1815 1816 module_put(THIS_MODULE); 1817 kfree(md); 1818 } 1819 1820 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1821 { 1822 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1823 1824 if (md->bs) { 1825 /* The md already has necessary mempools. */ 1826 if (dm_table_bio_based(t)) { 1827 /* 1828 * Reload bioset because front_pad may have changed 1829 * because a different table was loaded. 1830 */ 1831 bioset_free(md->bs); 1832 md->bs = p->bs; 1833 p->bs = NULL; 1834 } 1835 /* 1836 * There's no need to reload with request-based dm 1837 * because the size of front_pad doesn't change. 1838 * Note for future: If you are to reload bioset, 1839 * prep-ed requests in the queue may refer 1840 * to bio from the old bioset, so you must walk 1841 * through the queue to unprep. 1842 */ 1843 goto out; 1844 } 1845 1846 BUG_ON(!p || md->io_pool || md->bs); 1847 1848 md->io_pool = p->io_pool; 1849 p->io_pool = NULL; 1850 md->bs = p->bs; 1851 p->bs = NULL; 1852 1853 out: 1854 /* mempool bind completed, no longer need any mempools in the table */ 1855 dm_table_free_md_mempools(t); 1856 } 1857 1858 /* 1859 * Bind a table to the device. 1860 */ 1861 static void event_callback(void *context) 1862 { 1863 unsigned long flags; 1864 LIST_HEAD(uevents); 1865 struct mapped_device *md = (struct mapped_device *) context; 1866 1867 spin_lock_irqsave(&md->uevent_lock, flags); 1868 list_splice_init(&md->uevent_list, &uevents); 1869 spin_unlock_irqrestore(&md->uevent_lock, flags); 1870 1871 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1872 1873 atomic_inc(&md->event_nr); 1874 wake_up(&md->eventq); 1875 dm_issue_global_event(); 1876 } 1877 1878 /* 1879 * Protected by md->suspend_lock obtained by dm_swap_table(). 1880 */ 1881 static void __set_size(struct mapped_device *md, sector_t size) 1882 { 1883 lockdep_assert_held(&md->suspend_lock); 1884 1885 set_capacity(md->disk, size); 1886 1887 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1888 } 1889 1890 /* 1891 * Returns old map, which caller must destroy. 1892 */ 1893 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1894 struct queue_limits *limits) 1895 { 1896 struct dm_table *old_map; 1897 struct request_queue *q = md->queue; 1898 sector_t size; 1899 1900 lockdep_assert_held(&md->suspend_lock); 1901 1902 size = dm_table_get_size(t); 1903 1904 /* 1905 * Wipe any geometry if the size of the table changed. 1906 */ 1907 if (size != dm_get_size(md)) 1908 memset(&md->geometry, 0, sizeof(md->geometry)); 1909 1910 __set_size(md, size); 1911 1912 dm_table_event_callback(t, event_callback, md); 1913 1914 /* 1915 * The queue hasn't been stopped yet, if the old table type wasn't 1916 * for request-based during suspension. So stop it to prevent 1917 * I/O mapping before resume. 1918 * This must be done before setting the queue restrictions, 1919 * because request-based dm may be run just after the setting. 1920 */ 1921 if (dm_table_request_based(t)) { 1922 dm_stop_queue(q); 1923 /* 1924 * Leverage the fact that request-based DM targets are 1925 * immutable singletons and establish md->immutable_target 1926 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1927 */ 1928 md->immutable_target = dm_table_get_immutable_target(t); 1929 } 1930 1931 __bind_mempools(md, t); 1932 1933 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1934 rcu_assign_pointer(md->map, (void *)t); 1935 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1936 1937 dm_table_set_restrictions(t, q, limits); 1938 if (old_map) 1939 dm_sync_table(md); 1940 1941 return old_map; 1942 } 1943 1944 /* 1945 * Returns unbound table for the caller to free. 1946 */ 1947 static struct dm_table *__unbind(struct mapped_device *md) 1948 { 1949 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1950 1951 if (!map) 1952 return NULL; 1953 1954 dm_table_event_callback(map, NULL, NULL); 1955 RCU_INIT_POINTER(md->map, NULL); 1956 dm_sync_table(md); 1957 1958 return map; 1959 } 1960 1961 /* 1962 * Constructor for a new device. 1963 */ 1964 int dm_create(int minor, struct mapped_device **result) 1965 { 1966 struct mapped_device *md; 1967 1968 md = alloc_dev(minor); 1969 if (!md) 1970 return -ENXIO; 1971 1972 dm_sysfs_init(md); 1973 1974 *result = md; 1975 return 0; 1976 } 1977 1978 /* 1979 * Functions to manage md->type. 1980 * All are required to hold md->type_lock. 1981 */ 1982 void dm_lock_md_type(struct mapped_device *md) 1983 { 1984 mutex_lock(&md->type_lock); 1985 } 1986 1987 void dm_unlock_md_type(struct mapped_device *md) 1988 { 1989 mutex_unlock(&md->type_lock); 1990 } 1991 1992 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1993 { 1994 BUG_ON(!mutex_is_locked(&md->type_lock)); 1995 md->type = type; 1996 } 1997 1998 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1999 { 2000 return md->type; 2001 } 2002 2003 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2004 { 2005 return md->immutable_target_type; 2006 } 2007 2008 /* 2009 * The queue_limits are only valid as long as you have a reference 2010 * count on 'md'. 2011 */ 2012 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2013 { 2014 BUG_ON(!atomic_read(&md->holders)); 2015 return &md->queue->limits; 2016 } 2017 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2018 2019 /* 2020 * Setup the DM device's queue based on md's type 2021 */ 2022 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2023 { 2024 int r; 2025 enum dm_queue_mode type = dm_get_md_type(md); 2026 2027 switch (type) { 2028 case DM_TYPE_REQUEST_BASED: 2029 r = dm_old_init_request_queue(md, t); 2030 if (r) { 2031 DMERR("Cannot initialize queue for request-based mapped device"); 2032 return r; 2033 } 2034 break; 2035 case DM_TYPE_MQ_REQUEST_BASED: 2036 r = dm_mq_init_request_queue(md, t); 2037 if (r) { 2038 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2039 return r; 2040 } 2041 break; 2042 case DM_TYPE_BIO_BASED: 2043 case DM_TYPE_DAX_BIO_BASED: 2044 dm_init_normal_md_queue(md); 2045 blk_queue_make_request(md->queue, dm_make_request); 2046 /* 2047 * DM handles splitting bios as needed. Free the bio_split bioset 2048 * since it won't be used (saves 1 process per bio-based DM device). 2049 */ 2050 bioset_free(md->queue->bio_split); 2051 md->queue->bio_split = NULL; 2052 2053 if (type == DM_TYPE_DAX_BIO_BASED) 2054 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 2055 break; 2056 case DM_TYPE_NONE: 2057 WARN_ON_ONCE(true); 2058 break; 2059 } 2060 2061 return 0; 2062 } 2063 2064 struct mapped_device *dm_get_md(dev_t dev) 2065 { 2066 struct mapped_device *md; 2067 unsigned minor = MINOR(dev); 2068 2069 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2070 return NULL; 2071 2072 spin_lock(&_minor_lock); 2073 2074 md = idr_find(&_minor_idr, minor); 2075 if (md) { 2076 if ((md == MINOR_ALLOCED || 2077 (MINOR(disk_devt(dm_disk(md))) != minor) || 2078 dm_deleting_md(md) || 2079 test_bit(DMF_FREEING, &md->flags))) { 2080 md = NULL; 2081 goto out; 2082 } 2083 dm_get(md); 2084 } 2085 2086 out: 2087 spin_unlock(&_minor_lock); 2088 2089 return md; 2090 } 2091 EXPORT_SYMBOL_GPL(dm_get_md); 2092 2093 void *dm_get_mdptr(struct mapped_device *md) 2094 { 2095 return md->interface_ptr; 2096 } 2097 2098 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2099 { 2100 md->interface_ptr = ptr; 2101 } 2102 2103 void dm_get(struct mapped_device *md) 2104 { 2105 atomic_inc(&md->holders); 2106 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2107 } 2108 2109 int dm_hold(struct mapped_device *md) 2110 { 2111 spin_lock(&_minor_lock); 2112 if (test_bit(DMF_FREEING, &md->flags)) { 2113 spin_unlock(&_minor_lock); 2114 return -EBUSY; 2115 } 2116 dm_get(md); 2117 spin_unlock(&_minor_lock); 2118 return 0; 2119 } 2120 EXPORT_SYMBOL_GPL(dm_hold); 2121 2122 const char *dm_device_name(struct mapped_device *md) 2123 { 2124 return md->name; 2125 } 2126 EXPORT_SYMBOL_GPL(dm_device_name); 2127 2128 static void __dm_destroy(struct mapped_device *md, bool wait) 2129 { 2130 struct request_queue *q = dm_get_md_queue(md); 2131 struct dm_table *map; 2132 int srcu_idx; 2133 2134 might_sleep(); 2135 2136 spin_lock(&_minor_lock); 2137 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2138 set_bit(DMF_FREEING, &md->flags); 2139 spin_unlock(&_minor_lock); 2140 2141 blk_set_queue_dying(q); 2142 2143 if (dm_request_based(md) && md->kworker_task) 2144 kthread_flush_worker(&md->kworker); 2145 2146 /* 2147 * Take suspend_lock so that presuspend and postsuspend methods 2148 * do not race with internal suspend. 2149 */ 2150 mutex_lock(&md->suspend_lock); 2151 map = dm_get_live_table(md, &srcu_idx); 2152 if (!dm_suspended_md(md)) { 2153 dm_table_presuspend_targets(map); 2154 dm_table_postsuspend_targets(map); 2155 } 2156 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2157 dm_put_live_table(md, srcu_idx); 2158 mutex_unlock(&md->suspend_lock); 2159 2160 /* 2161 * Rare, but there may be I/O requests still going to complete, 2162 * for example. Wait for all references to disappear. 2163 * No one should increment the reference count of the mapped_device, 2164 * after the mapped_device state becomes DMF_FREEING. 2165 */ 2166 if (wait) 2167 while (atomic_read(&md->holders)) 2168 msleep(1); 2169 else if (atomic_read(&md->holders)) 2170 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2171 dm_device_name(md), atomic_read(&md->holders)); 2172 2173 dm_sysfs_exit(md); 2174 dm_table_destroy(__unbind(md)); 2175 free_dev(md); 2176 } 2177 2178 void dm_destroy(struct mapped_device *md) 2179 { 2180 __dm_destroy(md, true); 2181 } 2182 2183 void dm_destroy_immediate(struct mapped_device *md) 2184 { 2185 __dm_destroy(md, false); 2186 } 2187 2188 void dm_put(struct mapped_device *md) 2189 { 2190 atomic_dec(&md->holders); 2191 } 2192 EXPORT_SYMBOL_GPL(dm_put); 2193 2194 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2195 { 2196 int r = 0; 2197 DEFINE_WAIT(wait); 2198 2199 while (1) { 2200 prepare_to_wait(&md->wait, &wait, task_state); 2201 2202 if (!md_in_flight(md)) 2203 break; 2204 2205 if (signal_pending_state(task_state, current)) { 2206 r = -EINTR; 2207 break; 2208 } 2209 2210 io_schedule(); 2211 } 2212 finish_wait(&md->wait, &wait); 2213 2214 return r; 2215 } 2216 2217 /* 2218 * Process the deferred bios 2219 */ 2220 static void dm_wq_work(struct work_struct *work) 2221 { 2222 struct mapped_device *md = container_of(work, struct mapped_device, 2223 work); 2224 struct bio *c; 2225 int srcu_idx; 2226 struct dm_table *map; 2227 2228 map = dm_get_live_table(md, &srcu_idx); 2229 2230 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2231 spin_lock_irq(&md->deferred_lock); 2232 c = bio_list_pop(&md->deferred); 2233 spin_unlock_irq(&md->deferred_lock); 2234 2235 if (!c) 2236 break; 2237 2238 if (dm_request_based(md)) 2239 generic_make_request(c); 2240 else 2241 __split_and_process_bio(md, map, c); 2242 } 2243 2244 dm_put_live_table(md, srcu_idx); 2245 } 2246 2247 static void dm_queue_flush(struct mapped_device *md) 2248 { 2249 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2250 smp_mb__after_atomic(); 2251 queue_work(md->wq, &md->work); 2252 } 2253 2254 /* 2255 * Swap in a new table, returning the old one for the caller to destroy. 2256 */ 2257 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2258 { 2259 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2260 struct queue_limits limits; 2261 int r; 2262 2263 mutex_lock(&md->suspend_lock); 2264 2265 /* device must be suspended */ 2266 if (!dm_suspended_md(md)) 2267 goto out; 2268 2269 /* 2270 * If the new table has no data devices, retain the existing limits. 2271 * This helps multipath with queue_if_no_path if all paths disappear, 2272 * then new I/O is queued based on these limits, and then some paths 2273 * reappear. 2274 */ 2275 if (dm_table_has_no_data_devices(table)) { 2276 live_map = dm_get_live_table_fast(md); 2277 if (live_map) 2278 limits = md->queue->limits; 2279 dm_put_live_table_fast(md); 2280 } 2281 2282 if (!live_map) { 2283 r = dm_calculate_queue_limits(table, &limits); 2284 if (r) { 2285 map = ERR_PTR(r); 2286 goto out; 2287 } 2288 } 2289 2290 map = __bind(md, table, &limits); 2291 dm_issue_global_event(); 2292 2293 out: 2294 mutex_unlock(&md->suspend_lock); 2295 return map; 2296 } 2297 2298 /* 2299 * Functions to lock and unlock any filesystem running on the 2300 * device. 2301 */ 2302 static int lock_fs(struct mapped_device *md) 2303 { 2304 int r; 2305 2306 WARN_ON(md->frozen_sb); 2307 2308 md->frozen_sb = freeze_bdev(md->bdev); 2309 if (IS_ERR(md->frozen_sb)) { 2310 r = PTR_ERR(md->frozen_sb); 2311 md->frozen_sb = NULL; 2312 return r; 2313 } 2314 2315 set_bit(DMF_FROZEN, &md->flags); 2316 2317 return 0; 2318 } 2319 2320 static void unlock_fs(struct mapped_device *md) 2321 { 2322 if (!test_bit(DMF_FROZEN, &md->flags)) 2323 return; 2324 2325 thaw_bdev(md->bdev, md->frozen_sb); 2326 md->frozen_sb = NULL; 2327 clear_bit(DMF_FROZEN, &md->flags); 2328 } 2329 2330 /* 2331 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2332 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2333 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2334 * 2335 * If __dm_suspend returns 0, the device is completely quiescent 2336 * now. There is no request-processing activity. All new requests 2337 * are being added to md->deferred list. 2338 */ 2339 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2340 unsigned suspend_flags, long task_state, 2341 int dmf_suspended_flag) 2342 { 2343 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2344 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2345 int r; 2346 2347 lockdep_assert_held(&md->suspend_lock); 2348 2349 /* 2350 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2351 * This flag is cleared before dm_suspend returns. 2352 */ 2353 if (noflush) 2354 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2355 else 2356 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2357 2358 /* 2359 * This gets reverted if there's an error later and the targets 2360 * provide the .presuspend_undo hook. 2361 */ 2362 dm_table_presuspend_targets(map); 2363 2364 /* 2365 * Flush I/O to the device. 2366 * Any I/O submitted after lock_fs() may not be flushed. 2367 * noflush takes precedence over do_lockfs. 2368 * (lock_fs() flushes I/Os and waits for them to complete.) 2369 */ 2370 if (!noflush && do_lockfs) { 2371 r = lock_fs(md); 2372 if (r) { 2373 dm_table_presuspend_undo_targets(map); 2374 return r; 2375 } 2376 } 2377 2378 /* 2379 * Here we must make sure that no processes are submitting requests 2380 * to target drivers i.e. no one may be executing 2381 * __split_and_process_bio. This is called from dm_request and 2382 * dm_wq_work. 2383 * 2384 * To get all processes out of __split_and_process_bio in dm_request, 2385 * we take the write lock. To prevent any process from reentering 2386 * __split_and_process_bio from dm_request and quiesce the thread 2387 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2388 * flush_workqueue(md->wq). 2389 */ 2390 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2391 if (map) 2392 synchronize_srcu(&md->io_barrier); 2393 2394 /* 2395 * Stop md->queue before flushing md->wq in case request-based 2396 * dm defers requests to md->wq from md->queue. 2397 */ 2398 if (dm_request_based(md)) { 2399 dm_stop_queue(md->queue); 2400 if (md->kworker_task) 2401 kthread_flush_worker(&md->kworker); 2402 } 2403 2404 flush_workqueue(md->wq); 2405 2406 /* 2407 * At this point no more requests are entering target request routines. 2408 * We call dm_wait_for_completion to wait for all existing requests 2409 * to finish. 2410 */ 2411 r = dm_wait_for_completion(md, task_state); 2412 if (!r) 2413 set_bit(dmf_suspended_flag, &md->flags); 2414 2415 if (noflush) 2416 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2417 if (map) 2418 synchronize_srcu(&md->io_barrier); 2419 2420 /* were we interrupted ? */ 2421 if (r < 0) { 2422 dm_queue_flush(md); 2423 2424 if (dm_request_based(md)) 2425 dm_start_queue(md->queue); 2426 2427 unlock_fs(md); 2428 dm_table_presuspend_undo_targets(map); 2429 /* pushback list is already flushed, so skip flush */ 2430 } 2431 2432 return r; 2433 } 2434 2435 /* 2436 * We need to be able to change a mapping table under a mounted 2437 * filesystem. For example we might want to move some data in 2438 * the background. Before the table can be swapped with 2439 * dm_bind_table, dm_suspend must be called to flush any in 2440 * flight bios and ensure that any further io gets deferred. 2441 */ 2442 /* 2443 * Suspend mechanism in request-based dm. 2444 * 2445 * 1. Flush all I/Os by lock_fs() if needed. 2446 * 2. Stop dispatching any I/O by stopping the request_queue. 2447 * 3. Wait for all in-flight I/Os to be completed or requeued. 2448 * 2449 * To abort suspend, start the request_queue. 2450 */ 2451 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2452 { 2453 struct dm_table *map = NULL; 2454 int r = 0; 2455 2456 retry: 2457 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2458 2459 if (dm_suspended_md(md)) { 2460 r = -EINVAL; 2461 goto out_unlock; 2462 } 2463 2464 if (dm_suspended_internally_md(md)) { 2465 /* already internally suspended, wait for internal resume */ 2466 mutex_unlock(&md->suspend_lock); 2467 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2468 if (r) 2469 return r; 2470 goto retry; 2471 } 2472 2473 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2474 2475 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2476 if (r) 2477 goto out_unlock; 2478 2479 dm_table_postsuspend_targets(map); 2480 2481 out_unlock: 2482 mutex_unlock(&md->suspend_lock); 2483 return r; 2484 } 2485 2486 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2487 { 2488 if (map) { 2489 int r = dm_table_resume_targets(map); 2490 if (r) 2491 return r; 2492 } 2493 2494 dm_queue_flush(md); 2495 2496 /* 2497 * Flushing deferred I/Os must be done after targets are resumed 2498 * so that mapping of targets can work correctly. 2499 * Request-based dm is queueing the deferred I/Os in its request_queue. 2500 */ 2501 if (dm_request_based(md)) 2502 dm_start_queue(md->queue); 2503 2504 unlock_fs(md); 2505 2506 return 0; 2507 } 2508 2509 int dm_resume(struct mapped_device *md) 2510 { 2511 int r; 2512 struct dm_table *map = NULL; 2513 2514 retry: 2515 r = -EINVAL; 2516 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2517 2518 if (!dm_suspended_md(md)) 2519 goto out; 2520 2521 if (dm_suspended_internally_md(md)) { 2522 /* already internally suspended, wait for internal resume */ 2523 mutex_unlock(&md->suspend_lock); 2524 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2525 if (r) 2526 return r; 2527 goto retry; 2528 } 2529 2530 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2531 if (!map || !dm_table_get_size(map)) 2532 goto out; 2533 2534 r = __dm_resume(md, map); 2535 if (r) 2536 goto out; 2537 2538 clear_bit(DMF_SUSPENDED, &md->flags); 2539 out: 2540 mutex_unlock(&md->suspend_lock); 2541 2542 return r; 2543 } 2544 2545 /* 2546 * Internal suspend/resume works like userspace-driven suspend. It waits 2547 * until all bios finish and prevents issuing new bios to the target drivers. 2548 * It may be used only from the kernel. 2549 */ 2550 2551 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2552 { 2553 struct dm_table *map = NULL; 2554 2555 lockdep_assert_held(&md->suspend_lock); 2556 2557 if (md->internal_suspend_count++) 2558 return; /* nested internal suspend */ 2559 2560 if (dm_suspended_md(md)) { 2561 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2562 return; /* nest suspend */ 2563 } 2564 2565 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2566 2567 /* 2568 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2569 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2570 * would require changing .presuspend to return an error -- avoid this 2571 * until there is a need for more elaborate variants of internal suspend. 2572 */ 2573 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2574 DMF_SUSPENDED_INTERNALLY); 2575 2576 dm_table_postsuspend_targets(map); 2577 } 2578 2579 static void __dm_internal_resume(struct mapped_device *md) 2580 { 2581 BUG_ON(!md->internal_suspend_count); 2582 2583 if (--md->internal_suspend_count) 2584 return; /* resume from nested internal suspend */ 2585 2586 if (dm_suspended_md(md)) 2587 goto done; /* resume from nested suspend */ 2588 2589 /* 2590 * NOTE: existing callers don't need to call dm_table_resume_targets 2591 * (which may fail -- so best to avoid it for now by passing NULL map) 2592 */ 2593 (void) __dm_resume(md, NULL); 2594 2595 done: 2596 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2597 smp_mb__after_atomic(); 2598 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2599 } 2600 2601 void dm_internal_suspend_noflush(struct mapped_device *md) 2602 { 2603 mutex_lock(&md->suspend_lock); 2604 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2605 mutex_unlock(&md->suspend_lock); 2606 } 2607 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2608 2609 void dm_internal_resume(struct mapped_device *md) 2610 { 2611 mutex_lock(&md->suspend_lock); 2612 __dm_internal_resume(md); 2613 mutex_unlock(&md->suspend_lock); 2614 } 2615 EXPORT_SYMBOL_GPL(dm_internal_resume); 2616 2617 /* 2618 * Fast variants of internal suspend/resume hold md->suspend_lock, 2619 * which prevents interaction with userspace-driven suspend. 2620 */ 2621 2622 void dm_internal_suspend_fast(struct mapped_device *md) 2623 { 2624 mutex_lock(&md->suspend_lock); 2625 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2626 return; 2627 2628 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2629 synchronize_srcu(&md->io_barrier); 2630 flush_workqueue(md->wq); 2631 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2632 } 2633 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2634 2635 void dm_internal_resume_fast(struct mapped_device *md) 2636 { 2637 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2638 goto done; 2639 2640 dm_queue_flush(md); 2641 2642 done: 2643 mutex_unlock(&md->suspend_lock); 2644 } 2645 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2646 2647 /*----------------------------------------------------------------- 2648 * Event notification. 2649 *---------------------------------------------------------------*/ 2650 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2651 unsigned cookie) 2652 { 2653 char udev_cookie[DM_COOKIE_LENGTH]; 2654 char *envp[] = { udev_cookie, NULL }; 2655 2656 if (!cookie) 2657 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2658 else { 2659 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2660 DM_COOKIE_ENV_VAR_NAME, cookie); 2661 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2662 action, envp); 2663 } 2664 } 2665 2666 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2667 { 2668 return atomic_add_return(1, &md->uevent_seq); 2669 } 2670 2671 uint32_t dm_get_event_nr(struct mapped_device *md) 2672 { 2673 return atomic_read(&md->event_nr); 2674 } 2675 2676 int dm_wait_event(struct mapped_device *md, int event_nr) 2677 { 2678 return wait_event_interruptible(md->eventq, 2679 (event_nr != atomic_read(&md->event_nr))); 2680 } 2681 2682 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2683 { 2684 unsigned long flags; 2685 2686 spin_lock_irqsave(&md->uevent_lock, flags); 2687 list_add(elist, &md->uevent_list); 2688 spin_unlock_irqrestore(&md->uevent_lock, flags); 2689 } 2690 2691 /* 2692 * The gendisk is only valid as long as you have a reference 2693 * count on 'md'. 2694 */ 2695 struct gendisk *dm_disk(struct mapped_device *md) 2696 { 2697 return md->disk; 2698 } 2699 EXPORT_SYMBOL_GPL(dm_disk); 2700 2701 struct kobject *dm_kobject(struct mapped_device *md) 2702 { 2703 return &md->kobj_holder.kobj; 2704 } 2705 2706 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2707 { 2708 struct mapped_device *md; 2709 2710 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2711 2712 if (test_bit(DMF_FREEING, &md->flags) || 2713 dm_deleting_md(md)) 2714 return NULL; 2715 2716 dm_get(md); 2717 return md; 2718 } 2719 2720 int dm_suspended_md(struct mapped_device *md) 2721 { 2722 return test_bit(DMF_SUSPENDED, &md->flags); 2723 } 2724 2725 int dm_suspended_internally_md(struct mapped_device *md) 2726 { 2727 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2728 } 2729 2730 int dm_test_deferred_remove_flag(struct mapped_device *md) 2731 { 2732 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2733 } 2734 2735 int dm_suspended(struct dm_target *ti) 2736 { 2737 return dm_suspended_md(dm_table_get_md(ti->table)); 2738 } 2739 EXPORT_SYMBOL_GPL(dm_suspended); 2740 2741 int dm_noflush_suspending(struct dm_target *ti) 2742 { 2743 return __noflush_suspending(dm_table_get_md(ti->table)); 2744 } 2745 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2746 2747 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2748 unsigned integrity, unsigned per_io_data_size) 2749 { 2750 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2751 unsigned int pool_size = 0; 2752 unsigned int front_pad; 2753 2754 if (!pools) 2755 return NULL; 2756 2757 switch (type) { 2758 case DM_TYPE_BIO_BASED: 2759 case DM_TYPE_DAX_BIO_BASED: 2760 pool_size = dm_get_reserved_bio_based_ios(); 2761 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2762 2763 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2764 if (!pools->io_pool) 2765 goto out; 2766 break; 2767 case DM_TYPE_REQUEST_BASED: 2768 case DM_TYPE_MQ_REQUEST_BASED: 2769 pool_size = dm_get_reserved_rq_based_ios(); 2770 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2771 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2772 break; 2773 default: 2774 BUG(); 2775 } 2776 2777 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER); 2778 if (!pools->bs) 2779 goto out; 2780 2781 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2782 goto out; 2783 2784 return pools; 2785 2786 out: 2787 dm_free_md_mempools(pools); 2788 2789 return NULL; 2790 } 2791 2792 void dm_free_md_mempools(struct dm_md_mempools *pools) 2793 { 2794 if (!pools) 2795 return; 2796 2797 mempool_destroy(pools->io_pool); 2798 2799 if (pools->bs) 2800 bioset_free(pools->bs); 2801 2802 kfree(pools); 2803 } 2804 2805 struct dm_pr { 2806 u64 old_key; 2807 u64 new_key; 2808 u32 flags; 2809 bool fail_early; 2810 }; 2811 2812 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2813 void *data) 2814 { 2815 struct mapped_device *md = bdev->bd_disk->private_data; 2816 struct dm_table *table; 2817 struct dm_target *ti; 2818 int ret = -ENOTTY, srcu_idx; 2819 2820 table = dm_get_live_table(md, &srcu_idx); 2821 if (!table || !dm_table_get_size(table)) 2822 goto out; 2823 2824 /* We only support devices that have a single target */ 2825 if (dm_table_get_num_targets(table) != 1) 2826 goto out; 2827 ti = dm_table_get_target(table, 0); 2828 2829 ret = -EINVAL; 2830 if (!ti->type->iterate_devices) 2831 goto out; 2832 2833 ret = ti->type->iterate_devices(ti, fn, data); 2834 out: 2835 dm_put_live_table(md, srcu_idx); 2836 return ret; 2837 } 2838 2839 /* 2840 * For register / unregister we need to manually call out to every path. 2841 */ 2842 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2843 sector_t start, sector_t len, void *data) 2844 { 2845 struct dm_pr *pr = data; 2846 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2847 2848 if (!ops || !ops->pr_register) 2849 return -EOPNOTSUPP; 2850 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2851 } 2852 2853 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2854 u32 flags) 2855 { 2856 struct dm_pr pr = { 2857 .old_key = old_key, 2858 .new_key = new_key, 2859 .flags = flags, 2860 .fail_early = true, 2861 }; 2862 int ret; 2863 2864 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2865 if (ret && new_key) { 2866 /* unregister all paths if we failed to register any path */ 2867 pr.old_key = new_key; 2868 pr.new_key = 0; 2869 pr.flags = 0; 2870 pr.fail_early = false; 2871 dm_call_pr(bdev, __dm_pr_register, &pr); 2872 } 2873 2874 return ret; 2875 } 2876 2877 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2878 u32 flags) 2879 { 2880 struct mapped_device *md = bdev->bd_disk->private_data; 2881 const struct pr_ops *ops; 2882 fmode_t mode; 2883 int r; 2884 2885 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2886 if (r < 0) 2887 return r; 2888 2889 ops = bdev->bd_disk->fops->pr_ops; 2890 if (ops && ops->pr_reserve) 2891 r = ops->pr_reserve(bdev, key, type, flags); 2892 else 2893 r = -EOPNOTSUPP; 2894 2895 bdput(bdev); 2896 return r; 2897 } 2898 2899 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2900 { 2901 struct mapped_device *md = bdev->bd_disk->private_data; 2902 const struct pr_ops *ops; 2903 fmode_t mode; 2904 int r; 2905 2906 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2907 if (r < 0) 2908 return r; 2909 2910 ops = bdev->bd_disk->fops->pr_ops; 2911 if (ops && ops->pr_release) 2912 r = ops->pr_release(bdev, key, type); 2913 else 2914 r = -EOPNOTSUPP; 2915 2916 bdput(bdev); 2917 return r; 2918 } 2919 2920 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2921 enum pr_type type, bool abort) 2922 { 2923 struct mapped_device *md = bdev->bd_disk->private_data; 2924 const struct pr_ops *ops; 2925 fmode_t mode; 2926 int r; 2927 2928 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2929 if (r < 0) 2930 return r; 2931 2932 ops = bdev->bd_disk->fops->pr_ops; 2933 if (ops && ops->pr_preempt) 2934 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2935 else 2936 r = -EOPNOTSUPP; 2937 2938 bdput(bdev); 2939 return r; 2940 } 2941 2942 static int dm_pr_clear(struct block_device *bdev, u64 key) 2943 { 2944 struct mapped_device *md = bdev->bd_disk->private_data; 2945 const struct pr_ops *ops; 2946 fmode_t mode; 2947 int r; 2948 2949 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2950 if (r < 0) 2951 return r; 2952 2953 ops = bdev->bd_disk->fops->pr_ops; 2954 if (ops && ops->pr_clear) 2955 r = ops->pr_clear(bdev, key); 2956 else 2957 r = -EOPNOTSUPP; 2958 2959 bdput(bdev); 2960 return r; 2961 } 2962 2963 static const struct pr_ops dm_pr_ops = { 2964 .pr_register = dm_pr_register, 2965 .pr_reserve = dm_pr_reserve, 2966 .pr_release = dm_pr_release, 2967 .pr_preempt = dm_pr_preempt, 2968 .pr_clear = dm_pr_clear, 2969 }; 2970 2971 static const struct block_device_operations dm_blk_dops = { 2972 .open = dm_blk_open, 2973 .release = dm_blk_close, 2974 .ioctl = dm_blk_ioctl, 2975 .getgeo = dm_blk_getgeo, 2976 .pr_ops = &dm_pr_ops, 2977 .owner = THIS_MODULE 2978 }; 2979 2980 static const struct dax_operations dm_dax_ops = { 2981 .direct_access = dm_dax_direct_access, 2982 .copy_from_iter = dm_dax_copy_from_iter, 2983 }; 2984 2985 /* 2986 * module hooks 2987 */ 2988 module_init(dm_init); 2989 module_exit(dm_exit); 2990 2991 module_param(major, uint, 0); 2992 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2993 2994 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2995 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2996 2997 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2998 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2999 3000 MODULE_DESCRIPTION(DM_NAME " driver"); 3001 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3002 MODULE_LICENSE("GPL"); 3003