xref: /openbmc/linux/drivers/md/dm.c (revision 711aab1d)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 
28 #define DM_MSG_PREFIX "core"
29 
30 /*
31  * Cookies are numeric values sent with CHANGE and REMOVE
32  * uevents while resuming, removing or renaming the device.
33  */
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
36 
37 static const char *_name = DM_NAME;
38 
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
41 
42 static DEFINE_IDR(_minor_idr);
43 
44 static DEFINE_SPINLOCK(_minor_lock);
45 
46 static void do_deferred_remove(struct work_struct *w);
47 
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
49 
50 static struct workqueue_struct *deferred_remove_workqueue;
51 
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
54 
55 /*
56  * One of these is allocated per bio.
57  */
58 struct dm_io {
59 	struct mapped_device *md;
60 	blk_status_t status;
61 	atomic_t io_count;
62 	struct bio *bio;
63 	unsigned long start_time;
64 	spinlock_t endio_lock;
65 	struct dm_stats_aux stats_aux;
66 };
67 
68 #define MINOR_ALLOCED ((void *)-1)
69 
70 /*
71  * Bits for the md->flags field.
72  */
73 #define DMF_BLOCK_IO_FOR_SUSPEND 0
74 #define DMF_SUSPENDED 1
75 #define DMF_FROZEN 2
76 #define DMF_FREEING 3
77 #define DMF_DELETING 4
78 #define DMF_NOFLUSH_SUSPENDING 5
79 #define DMF_DEFERRED_REMOVE 6
80 #define DMF_SUSPENDED_INTERNALLY 7
81 
82 #define DM_NUMA_NODE NUMA_NO_NODE
83 static int dm_numa_node = DM_NUMA_NODE;
84 
85 /*
86  * For mempools pre-allocation at the table loading time.
87  */
88 struct dm_md_mempools {
89 	mempool_t *io_pool;
90 	struct bio_set *bs;
91 };
92 
93 struct table_device {
94 	struct list_head list;
95 	atomic_t count;
96 	struct dm_dev dm_dev;
97 };
98 
99 static struct kmem_cache *_io_cache;
100 static struct kmem_cache *_rq_tio_cache;
101 static struct kmem_cache *_rq_cache;
102 
103 /*
104  * Bio-based DM's mempools' reserved IOs set by the user.
105  */
106 #define RESERVED_BIO_BASED_IOS		16
107 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
108 
109 static int __dm_get_module_param_int(int *module_param, int min, int max)
110 {
111 	int param = ACCESS_ONCE(*module_param);
112 	int modified_param = 0;
113 	bool modified = true;
114 
115 	if (param < min)
116 		modified_param = min;
117 	else if (param > max)
118 		modified_param = max;
119 	else
120 		modified = false;
121 
122 	if (modified) {
123 		(void)cmpxchg(module_param, param, modified_param);
124 		param = modified_param;
125 	}
126 
127 	return param;
128 }
129 
130 unsigned __dm_get_module_param(unsigned *module_param,
131 			       unsigned def, unsigned max)
132 {
133 	unsigned param = ACCESS_ONCE(*module_param);
134 	unsigned modified_param = 0;
135 
136 	if (!param)
137 		modified_param = def;
138 	else if (param > max)
139 		modified_param = max;
140 
141 	if (modified_param) {
142 		(void)cmpxchg(module_param, param, modified_param);
143 		param = modified_param;
144 	}
145 
146 	return param;
147 }
148 
149 unsigned dm_get_reserved_bio_based_ios(void)
150 {
151 	return __dm_get_module_param(&reserved_bio_based_ios,
152 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
153 }
154 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
155 
156 static unsigned dm_get_numa_node(void)
157 {
158 	return __dm_get_module_param_int(&dm_numa_node,
159 					 DM_NUMA_NODE, num_online_nodes() - 1);
160 }
161 
162 static int __init local_init(void)
163 {
164 	int r = -ENOMEM;
165 
166 	/* allocate a slab for the dm_ios */
167 	_io_cache = KMEM_CACHE(dm_io, 0);
168 	if (!_io_cache)
169 		return r;
170 
171 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
172 	if (!_rq_tio_cache)
173 		goto out_free_io_cache;
174 
175 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
176 				      __alignof__(struct request), 0, NULL);
177 	if (!_rq_cache)
178 		goto out_free_rq_tio_cache;
179 
180 	r = dm_uevent_init();
181 	if (r)
182 		goto out_free_rq_cache;
183 
184 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
185 	if (!deferred_remove_workqueue) {
186 		r = -ENOMEM;
187 		goto out_uevent_exit;
188 	}
189 
190 	_major = major;
191 	r = register_blkdev(_major, _name);
192 	if (r < 0)
193 		goto out_free_workqueue;
194 
195 	if (!_major)
196 		_major = r;
197 
198 	return 0;
199 
200 out_free_workqueue:
201 	destroy_workqueue(deferred_remove_workqueue);
202 out_uevent_exit:
203 	dm_uevent_exit();
204 out_free_rq_cache:
205 	kmem_cache_destroy(_rq_cache);
206 out_free_rq_tio_cache:
207 	kmem_cache_destroy(_rq_tio_cache);
208 out_free_io_cache:
209 	kmem_cache_destroy(_io_cache);
210 
211 	return r;
212 }
213 
214 static void local_exit(void)
215 {
216 	flush_scheduled_work();
217 	destroy_workqueue(deferred_remove_workqueue);
218 
219 	kmem_cache_destroy(_rq_cache);
220 	kmem_cache_destroy(_rq_tio_cache);
221 	kmem_cache_destroy(_io_cache);
222 	unregister_blkdev(_major, _name);
223 	dm_uevent_exit();
224 
225 	_major = 0;
226 
227 	DMINFO("cleaned up");
228 }
229 
230 static int (*_inits[])(void) __initdata = {
231 	local_init,
232 	dm_target_init,
233 	dm_linear_init,
234 	dm_stripe_init,
235 	dm_io_init,
236 	dm_kcopyd_init,
237 	dm_interface_init,
238 	dm_statistics_init,
239 };
240 
241 static void (*_exits[])(void) = {
242 	local_exit,
243 	dm_target_exit,
244 	dm_linear_exit,
245 	dm_stripe_exit,
246 	dm_io_exit,
247 	dm_kcopyd_exit,
248 	dm_interface_exit,
249 	dm_statistics_exit,
250 };
251 
252 static int __init dm_init(void)
253 {
254 	const int count = ARRAY_SIZE(_inits);
255 
256 	int r, i;
257 
258 	for (i = 0; i < count; i++) {
259 		r = _inits[i]();
260 		if (r)
261 			goto bad;
262 	}
263 
264 	return 0;
265 
266       bad:
267 	while (i--)
268 		_exits[i]();
269 
270 	return r;
271 }
272 
273 static void __exit dm_exit(void)
274 {
275 	int i = ARRAY_SIZE(_exits);
276 
277 	while (i--)
278 		_exits[i]();
279 
280 	/*
281 	 * Should be empty by this point.
282 	 */
283 	idr_destroy(&_minor_idr);
284 }
285 
286 /*
287  * Block device functions
288  */
289 int dm_deleting_md(struct mapped_device *md)
290 {
291 	return test_bit(DMF_DELETING, &md->flags);
292 }
293 
294 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
295 {
296 	struct mapped_device *md;
297 
298 	spin_lock(&_minor_lock);
299 
300 	md = bdev->bd_disk->private_data;
301 	if (!md)
302 		goto out;
303 
304 	if (test_bit(DMF_FREEING, &md->flags) ||
305 	    dm_deleting_md(md)) {
306 		md = NULL;
307 		goto out;
308 	}
309 
310 	dm_get(md);
311 	atomic_inc(&md->open_count);
312 out:
313 	spin_unlock(&_minor_lock);
314 
315 	return md ? 0 : -ENXIO;
316 }
317 
318 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
319 {
320 	struct mapped_device *md;
321 
322 	spin_lock(&_minor_lock);
323 
324 	md = disk->private_data;
325 	if (WARN_ON(!md))
326 		goto out;
327 
328 	if (atomic_dec_and_test(&md->open_count) &&
329 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
330 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
331 
332 	dm_put(md);
333 out:
334 	spin_unlock(&_minor_lock);
335 }
336 
337 int dm_open_count(struct mapped_device *md)
338 {
339 	return atomic_read(&md->open_count);
340 }
341 
342 /*
343  * Guarantees nothing is using the device before it's deleted.
344  */
345 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
346 {
347 	int r = 0;
348 
349 	spin_lock(&_minor_lock);
350 
351 	if (dm_open_count(md)) {
352 		r = -EBUSY;
353 		if (mark_deferred)
354 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
355 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
356 		r = -EEXIST;
357 	else
358 		set_bit(DMF_DELETING, &md->flags);
359 
360 	spin_unlock(&_minor_lock);
361 
362 	return r;
363 }
364 
365 int dm_cancel_deferred_remove(struct mapped_device *md)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (test_bit(DMF_DELETING, &md->flags))
372 		r = -EBUSY;
373 	else
374 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 
376 	spin_unlock(&_minor_lock);
377 
378 	return r;
379 }
380 
381 static void do_deferred_remove(struct work_struct *w)
382 {
383 	dm_deferred_remove();
384 }
385 
386 sector_t dm_get_size(struct mapped_device *md)
387 {
388 	return get_capacity(md->disk);
389 }
390 
391 struct request_queue *dm_get_md_queue(struct mapped_device *md)
392 {
393 	return md->queue;
394 }
395 
396 struct dm_stats *dm_get_stats(struct mapped_device *md)
397 {
398 	return &md->stats;
399 }
400 
401 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
402 {
403 	struct mapped_device *md = bdev->bd_disk->private_data;
404 
405 	return dm_get_geometry(md, geo);
406 }
407 
408 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
409 				  struct block_device **bdev,
410 				  fmode_t *mode)
411 {
412 	struct dm_target *tgt;
413 	struct dm_table *map;
414 	int srcu_idx, r;
415 
416 retry:
417 	r = -ENOTTY;
418 	map = dm_get_live_table(md, &srcu_idx);
419 	if (!map || !dm_table_get_size(map))
420 		goto out;
421 
422 	/* We only support devices that have a single target */
423 	if (dm_table_get_num_targets(map) != 1)
424 		goto out;
425 
426 	tgt = dm_table_get_target(map, 0);
427 	if (!tgt->type->prepare_ioctl)
428 		goto out;
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
436 	if (r < 0)
437 		goto out;
438 
439 	bdgrab(*bdev);
440 	dm_put_live_table(md, srcu_idx);
441 	return r;
442 
443 out:
444 	dm_put_live_table(md, srcu_idx);
445 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
446 		msleep(10);
447 		goto retry;
448 	}
449 	return r;
450 }
451 
452 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
453 			unsigned int cmd, unsigned long arg)
454 {
455 	struct mapped_device *md = bdev->bd_disk->private_data;
456 	int r;
457 
458 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
459 	if (r < 0)
460 		return r;
461 
462 	if (r > 0) {
463 		/*
464 		 * Target determined this ioctl is being issued against a
465 		 * subset of the parent bdev; require extra privileges.
466 		 */
467 		if (!capable(CAP_SYS_RAWIO)) {
468 			DMWARN_LIMIT(
469 	"%s: sending ioctl %x to DM device without required privilege.",
470 				current->comm, cmd);
471 			r = -ENOIOCTLCMD;
472 			goto out;
473 		}
474 	}
475 
476 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
477 out:
478 	bdput(bdev);
479 	return r;
480 }
481 
482 static struct dm_io *alloc_io(struct mapped_device *md)
483 {
484 	return mempool_alloc(md->io_pool, GFP_NOIO);
485 }
486 
487 static void free_io(struct mapped_device *md, struct dm_io *io)
488 {
489 	mempool_free(io, md->io_pool);
490 }
491 
492 static void free_tio(struct dm_target_io *tio)
493 {
494 	bio_put(&tio->clone);
495 }
496 
497 int md_in_flight(struct mapped_device *md)
498 {
499 	return atomic_read(&md->pending[READ]) +
500 	       atomic_read(&md->pending[WRITE]);
501 }
502 
503 static void start_io_acct(struct dm_io *io)
504 {
505 	struct mapped_device *md = io->md;
506 	struct bio *bio = io->bio;
507 	int cpu;
508 	int rw = bio_data_dir(bio);
509 
510 	io->start_time = jiffies;
511 
512 	cpu = part_stat_lock();
513 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
514 	part_stat_unlock();
515 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
516 		atomic_inc_return(&md->pending[rw]));
517 
518 	if (unlikely(dm_stats_used(&md->stats)))
519 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
520 				    bio->bi_iter.bi_sector, bio_sectors(bio),
521 				    false, 0, &io->stats_aux);
522 }
523 
524 static void end_io_acct(struct dm_io *io)
525 {
526 	struct mapped_device *md = io->md;
527 	struct bio *bio = io->bio;
528 	unsigned long duration = jiffies - io->start_time;
529 	int pending;
530 	int rw = bio_data_dir(bio);
531 
532 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
533 
534 	if (unlikely(dm_stats_used(&md->stats)))
535 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
536 				    bio->bi_iter.bi_sector, bio_sectors(bio),
537 				    true, duration, &io->stats_aux);
538 
539 	/*
540 	 * After this is decremented the bio must not be touched if it is
541 	 * a flush.
542 	 */
543 	pending = atomic_dec_return(&md->pending[rw]);
544 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
545 	pending += atomic_read(&md->pending[rw^0x1]);
546 
547 	/* nudge anyone waiting on suspend queue */
548 	if (!pending)
549 		wake_up(&md->wait);
550 }
551 
552 /*
553  * Add the bio to the list of deferred io.
554  */
555 static void queue_io(struct mapped_device *md, struct bio *bio)
556 {
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&md->deferred_lock, flags);
560 	bio_list_add(&md->deferred, bio);
561 	spin_unlock_irqrestore(&md->deferred_lock, flags);
562 	queue_work(md->wq, &md->work);
563 }
564 
565 /*
566  * Everyone (including functions in this file), should use this
567  * function to access the md->map field, and make sure they call
568  * dm_put_live_table() when finished.
569  */
570 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
571 {
572 	*srcu_idx = srcu_read_lock(&md->io_barrier);
573 
574 	return srcu_dereference(md->map, &md->io_barrier);
575 }
576 
577 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
578 {
579 	srcu_read_unlock(&md->io_barrier, srcu_idx);
580 }
581 
582 void dm_sync_table(struct mapped_device *md)
583 {
584 	synchronize_srcu(&md->io_barrier);
585 	synchronize_rcu_expedited();
586 }
587 
588 /*
589  * A fast alternative to dm_get_live_table/dm_put_live_table.
590  * The caller must not block between these two functions.
591  */
592 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
593 {
594 	rcu_read_lock();
595 	return rcu_dereference(md->map);
596 }
597 
598 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
599 {
600 	rcu_read_unlock();
601 }
602 
603 /*
604  * Open a table device so we can use it as a map destination.
605  */
606 static int open_table_device(struct table_device *td, dev_t dev,
607 			     struct mapped_device *md)
608 {
609 	static char *_claim_ptr = "I belong to device-mapper";
610 	struct block_device *bdev;
611 
612 	int r;
613 
614 	BUG_ON(td->dm_dev.bdev);
615 
616 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
617 	if (IS_ERR(bdev))
618 		return PTR_ERR(bdev);
619 
620 	r = bd_link_disk_holder(bdev, dm_disk(md));
621 	if (r) {
622 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
623 		return r;
624 	}
625 
626 	td->dm_dev.bdev = bdev;
627 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
628 	return 0;
629 }
630 
631 /*
632  * Close a table device that we've been using.
633  */
634 static void close_table_device(struct table_device *td, struct mapped_device *md)
635 {
636 	if (!td->dm_dev.bdev)
637 		return;
638 
639 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
640 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
641 	put_dax(td->dm_dev.dax_dev);
642 	td->dm_dev.bdev = NULL;
643 	td->dm_dev.dax_dev = NULL;
644 }
645 
646 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
647 					      fmode_t mode) {
648 	struct table_device *td;
649 
650 	list_for_each_entry(td, l, list)
651 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
652 			return td;
653 
654 	return NULL;
655 }
656 
657 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
658 			struct dm_dev **result) {
659 	int r;
660 	struct table_device *td;
661 
662 	mutex_lock(&md->table_devices_lock);
663 	td = find_table_device(&md->table_devices, dev, mode);
664 	if (!td) {
665 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
666 		if (!td) {
667 			mutex_unlock(&md->table_devices_lock);
668 			return -ENOMEM;
669 		}
670 
671 		td->dm_dev.mode = mode;
672 		td->dm_dev.bdev = NULL;
673 
674 		if ((r = open_table_device(td, dev, md))) {
675 			mutex_unlock(&md->table_devices_lock);
676 			kfree(td);
677 			return r;
678 		}
679 
680 		format_dev_t(td->dm_dev.name, dev);
681 
682 		atomic_set(&td->count, 0);
683 		list_add(&td->list, &md->table_devices);
684 	}
685 	atomic_inc(&td->count);
686 	mutex_unlock(&md->table_devices_lock);
687 
688 	*result = &td->dm_dev;
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(dm_get_table_device);
692 
693 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
694 {
695 	struct table_device *td = container_of(d, struct table_device, dm_dev);
696 
697 	mutex_lock(&md->table_devices_lock);
698 	if (atomic_dec_and_test(&td->count)) {
699 		close_table_device(td, md);
700 		list_del(&td->list);
701 		kfree(td);
702 	}
703 	mutex_unlock(&md->table_devices_lock);
704 }
705 EXPORT_SYMBOL(dm_put_table_device);
706 
707 static void free_table_devices(struct list_head *devices)
708 {
709 	struct list_head *tmp, *next;
710 
711 	list_for_each_safe(tmp, next, devices) {
712 		struct table_device *td = list_entry(tmp, struct table_device, list);
713 
714 		DMWARN("dm_destroy: %s still exists with %d references",
715 		       td->dm_dev.name, atomic_read(&td->count));
716 		kfree(td);
717 	}
718 }
719 
720 /*
721  * Get the geometry associated with a dm device
722  */
723 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
724 {
725 	*geo = md->geometry;
726 
727 	return 0;
728 }
729 
730 /*
731  * Set the geometry of a device.
732  */
733 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
734 {
735 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
736 
737 	if (geo->start > sz) {
738 		DMWARN("Start sector is beyond the geometry limits.");
739 		return -EINVAL;
740 	}
741 
742 	md->geometry = *geo;
743 
744 	return 0;
745 }
746 
747 /*-----------------------------------------------------------------
748  * CRUD START:
749  *   A more elegant soln is in the works that uses the queue
750  *   merge fn, unfortunately there are a couple of changes to
751  *   the block layer that I want to make for this.  So in the
752  *   interests of getting something for people to use I give
753  *   you this clearly demarcated crap.
754  *---------------------------------------------------------------*/
755 
756 static int __noflush_suspending(struct mapped_device *md)
757 {
758 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
759 }
760 
761 /*
762  * Decrements the number of outstanding ios that a bio has been
763  * cloned into, completing the original io if necc.
764  */
765 static void dec_pending(struct dm_io *io, blk_status_t error)
766 {
767 	unsigned long flags;
768 	blk_status_t io_error;
769 	struct bio *bio;
770 	struct mapped_device *md = io->md;
771 
772 	/* Push-back supersedes any I/O errors */
773 	if (unlikely(error)) {
774 		spin_lock_irqsave(&io->endio_lock, flags);
775 		if (!(io->status == BLK_STS_DM_REQUEUE &&
776 				__noflush_suspending(md)))
777 			io->status = error;
778 		spin_unlock_irqrestore(&io->endio_lock, flags);
779 	}
780 
781 	if (atomic_dec_and_test(&io->io_count)) {
782 		if (io->status == BLK_STS_DM_REQUEUE) {
783 			/*
784 			 * Target requested pushing back the I/O.
785 			 */
786 			spin_lock_irqsave(&md->deferred_lock, flags);
787 			if (__noflush_suspending(md))
788 				bio_list_add_head(&md->deferred, io->bio);
789 			else
790 				/* noflush suspend was interrupted. */
791 				io->status = BLK_STS_IOERR;
792 			spin_unlock_irqrestore(&md->deferred_lock, flags);
793 		}
794 
795 		io_error = io->status;
796 		bio = io->bio;
797 		end_io_acct(io);
798 		free_io(md, io);
799 
800 		if (io_error == BLK_STS_DM_REQUEUE)
801 			return;
802 
803 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
804 			/*
805 			 * Preflush done for flush with data, reissue
806 			 * without REQ_PREFLUSH.
807 			 */
808 			bio->bi_opf &= ~REQ_PREFLUSH;
809 			queue_io(md, bio);
810 		} else {
811 			/* done with normal IO or empty flush */
812 			bio->bi_status = io_error;
813 			bio_endio(bio);
814 		}
815 	}
816 }
817 
818 void disable_write_same(struct mapped_device *md)
819 {
820 	struct queue_limits *limits = dm_get_queue_limits(md);
821 
822 	/* device doesn't really support WRITE SAME, disable it */
823 	limits->max_write_same_sectors = 0;
824 }
825 
826 void disable_write_zeroes(struct mapped_device *md)
827 {
828 	struct queue_limits *limits = dm_get_queue_limits(md);
829 
830 	/* device doesn't really support WRITE ZEROES, disable it */
831 	limits->max_write_zeroes_sectors = 0;
832 }
833 
834 static void clone_endio(struct bio *bio)
835 {
836 	blk_status_t error = bio->bi_status;
837 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
838 	struct dm_io *io = tio->io;
839 	struct mapped_device *md = tio->io->md;
840 	dm_endio_fn endio = tio->ti->type->end_io;
841 
842 	if (unlikely(error == BLK_STS_TARGET)) {
843 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
844 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
845 			disable_write_same(md);
846 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
847 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
848 			disable_write_zeroes(md);
849 	}
850 
851 	if (endio) {
852 		int r = endio(tio->ti, bio, &error);
853 		switch (r) {
854 		case DM_ENDIO_REQUEUE:
855 			error = BLK_STS_DM_REQUEUE;
856 			/*FALLTHRU*/
857 		case DM_ENDIO_DONE:
858 			break;
859 		case DM_ENDIO_INCOMPLETE:
860 			/* The target will handle the io */
861 			return;
862 		default:
863 			DMWARN("unimplemented target endio return value: %d", r);
864 			BUG();
865 		}
866 	}
867 
868 	free_tio(tio);
869 	dec_pending(io, error);
870 }
871 
872 /*
873  * Return maximum size of I/O possible at the supplied sector up to the current
874  * target boundary.
875  */
876 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
877 {
878 	sector_t target_offset = dm_target_offset(ti, sector);
879 
880 	return ti->len - target_offset;
881 }
882 
883 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
884 {
885 	sector_t len = max_io_len_target_boundary(sector, ti);
886 	sector_t offset, max_len;
887 
888 	/*
889 	 * Does the target need to split even further?
890 	 */
891 	if (ti->max_io_len) {
892 		offset = dm_target_offset(ti, sector);
893 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
894 			max_len = sector_div(offset, ti->max_io_len);
895 		else
896 			max_len = offset & (ti->max_io_len - 1);
897 		max_len = ti->max_io_len - max_len;
898 
899 		if (len > max_len)
900 			len = max_len;
901 	}
902 
903 	return len;
904 }
905 
906 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
907 {
908 	if (len > UINT_MAX) {
909 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
910 		      (unsigned long long)len, UINT_MAX);
911 		ti->error = "Maximum size of target IO is too large";
912 		return -EINVAL;
913 	}
914 
915 	ti->max_io_len = (uint32_t) len;
916 
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
920 
921 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
922 		sector_t sector, int *srcu_idx)
923 {
924 	struct dm_table *map;
925 	struct dm_target *ti;
926 
927 	map = dm_get_live_table(md, srcu_idx);
928 	if (!map)
929 		return NULL;
930 
931 	ti = dm_table_find_target(map, sector);
932 	if (!dm_target_is_valid(ti))
933 		return NULL;
934 
935 	return ti;
936 }
937 
938 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
939 		long nr_pages, void **kaddr, pfn_t *pfn)
940 {
941 	struct mapped_device *md = dax_get_private(dax_dev);
942 	sector_t sector = pgoff * PAGE_SECTORS;
943 	struct dm_target *ti;
944 	long len, ret = -EIO;
945 	int srcu_idx;
946 
947 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
948 
949 	if (!ti)
950 		goto out;
951 	if (!ti->type->direct_access)
952 		goto out;
953 	len = max_io_len(sector, ti) / PAGE_SECTORS;
954 	if (len < 1)
955 		goto out;
956 	nr_pages = min(len, nr_pages);
957 	if (ti->type->direct_access)
958 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
959 
960  out:
961 	dm_put_live_table(md, srcu_idx);
962 
963 	return ret;
964 }
965 
966 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
967 		void *addr, size_t bytes, struct iov_iter *i)
968 {
969 	struct mapped_device *md = dax_get_private(dax_dev);
970 	sector_t sector = pgoff * PAGE_SECTORS;
971 	struct dm_target *ti;
972 	long ret = 0;
973 	int srcu_idx;
974 
975 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
976 
977 	if (!ti)
978 		goto out;
979 	if (!ti->type->dax_copy_from_iter) {
980 		ret = copy_from_iter(addr, bytes, i);
981 		goto out;
982 	}
983 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
984  out:
985 	dm_put_live_table(md, srcu_idx);
986 
987 	return ret;
988 }
989 
990 /*
991  * A target may call dm_accept_partial_bio only from the map routine.  It is
992  * allowed for all bio types except REQ_PREFLUSH.
993  *
994  * dm_accept_partial_bio informs the dm that the target only wants to process
995  * additional n_sectors sectors of the bio and the rest of the data should be
996  * sent in a next bio.
997  *
998  * A diagram that explains the arithmetics:
999  * +--------------------+---------------+-------+
1000  * |         1          |       2       |   3   |
1001  * +--------------------+---------------+-------+
1002  *
1003  * <-------------- *tio->len_ptr --------------->
1004  *                      <------- bi_size ------->
1005  *                      <-- n_sectors -->
1006  *
1007  * Region 1 was already iterated over with bio_advance or similar function.
1008  *	(it may be empty if the target doesn't use bio_advance)
1009  * Region 2 is the remaining bio size that the target wants to process.
1010  *	(it may be empty if region 1 is non-empty, although there is no reason
1011  *	 to make it empty)
1012  * The target requires that region 3 is to be sent in the next bio.
1013  *
1014  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1015  * the partially processed part (the sum of regions 1+2) must be the same for all
1016  * copies of the bio.
1017  */
1018 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1019 {
1020 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1021 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1022 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1023 	BUG_ON(bi_size > *tio->len_ptr);
1024 	BUG_ON(n_sectors > bi_size);
1025 	*tio->len_ptr -= bi_size - n_sectors;
1026 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1027 }
1028 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1029 
1030 /*
1031  * The zone descriptors obtained with a zone report indicate
1032  * zone positions within the target device. The zone descriptors
1033  * must be remapped to match their position within the dm device.
1034  * A target may call dm_remap_zone_report after completion of a
1035  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1036  * from the target device mapping to the dm device.
1037  */
1038 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1039 {
1040 #ifdef CONFIG_BLK_DEV_ZONED
1041 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1042 	struct bio *report_bio = tio->io->bio;
1043 	struct blk_zone_report_hdr *hdr = NULL;
1044 	struct blk_zone *zone;
1045 	unsigned int nr_rep = 0;
1046 	unsigned int ofst;
1047 	struct bio_vec bvec;
1048 	struct bvec_iter iter;
1049 	void *addr;
1050 
1051 	if (bio->bi_status)
1052 		return;
1053 
1054 	/*
1055 	 * Remap the start sector of the reported zones. For sequential zones,
1056 	 * also remap the write pointer position.
1057 	 */
1058 	bio_for_each_segment(bvec, report_bio, iter) {
1059 		addr = kmap_atomic(bvec.bv_page);
1060 
1061 		/* Remember the report header in the first page */
1062 		if (!hdr) {
1063 			hdr = addr;
1064 			ofst = sizeof(struct blk_zone_report_hdr);
1065 		} else
1066 			ofst = 0;
1067 
1068 		/* Set zones start sector */
1069 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1070 			zone = addr + ofst;
1071 			if (zone->start >= start + ti->len) {
1072 				hdr->nr_zones = 0;
1073 				break;
1074 			}
1075 			zone->start = zone->start + ti->begin - start;
1076 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1077 				if (zone->cond == BLK_ZONE_COND_FULL)
1078 					zone->wp = zone->start + zone->len;
1079 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1080 					zone->wp = zone->start;
1081 				else
1082 					zone->wp = zone->wp + ti->begin - start;
1083 			}
1084 			ofst += sizeof(struct blk_zone);
1085 			hdr->nr_zones--;
1086 			nr_rep++;
1087 		}
1088 
1089 		if (addr != hdr)
1090 			kunmap_atomic(addr);
1091 
1092 		if (!hdr->nr_zones)
1093 			break;
1094 	}
1095 
1096 	if (hdr) {
1097 		hdr->nr_zones = nr_rep;
1098 		kunmap_atomic(hdr);
1099 	}
1100 
1101 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1102 
1103 #else /* !CONFIG_BLK_DEV_ZONED */
1104 	bio->bi_status = BLK_STS_NOTSUPP;
1105 #endif
1106 }
1107 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1108 
1109 /*
1110  * Flush current->bio_list when the target map method blocks.
1111  * This fixes deadlocks in snapshot and possibly in other targets.
1112  */
1113 struct dm_offload {
1114 	struct blk_plug plug;
1115 	struct blk_plug_cb cb;
1116 };
1117 
1118 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1119 {
1120 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1121 	struct bio_list list;
1122 	struct bio *bio;
1123 	int i;
1124 
1125 	INIT_LIST_HEAD(&o->cb.list);
1126 
1127 	if (unlikely(!current->bio_list))
1128 		return;
1129 
1130 	for (i = 0; i < 2; i++) {
1131 		list = current->bio_list[i];
1132 		bio_list_init(&current->bio_list[i]);
1133 
1134 		while ((bio = bio_list_pop(&list))) {
1135 			struct bio_set *bs = bio->bi_pool;
1136 			if (unlikely(!bs) || bs == fs_bio_set ||
1137 			    !bs->rescue_workqueue) {
1138 				bio_list_add(&current->bio_list[i], bio);
1139 				continue;
1140 			}
1141 
1142 			spin_lock(&bs->rescue_lock);
1143 			bio_list_add(&bs->rescue_list, bio);
1144 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1145 			spin_unlock(&bs->rescue_lock);
1146 		}
1147 	}
1148 }
1149 
1150 static void dm_offload_start(struct dm_offload *o)
1151 {
1152 	blk_start_plug(&o->plug);
1153 	o->cb.callback = flush_current_bio_list;
1154 	list_add(&o->cb.list, &current->plug->cb_list);
1155 }
1156 
1157 static void dm_offload_end(struct dm_offload *o)
1158 {
1159 	list_del(&o->cb.list);
1160 	blk_finish_plug(&o->plug);
1161 }
1162 
1163 static void __map_bio(struct dm_target_io *tio)
1164 {
1165 	int r;
1166 	sector_t sector;
1167 	struct dm_offload o;
1168 	struct bio *clone = &tio->clone;
1169 	struct dm_target *ti = tio->ti;
1170 
1171 	clone->bi_end_io = clone_endio;
1172 
1173 	/*
1174 	 * Map the clone.  If r == 0 we don't need to do
1175 	 * anything, the target has assumed ownership of
1176 	 * this io.
1177 	 */
1178 	atomic_inc(&tio->io->io_count);
1179 	sector = clone->bi_iter.bi_sector;
1180 
1181 	dm_offload_start(&o);
1182 	r = ti->type->map(ti, clone);
1183 	dm_offload_end(&o);
1184 
1185 	switch (r) {
1186 	case DM_MAPIO_SUBMITTED:
1187 		break;
1188 	case DM_MAPIO_REMAPPED:
1189 		/* the bio has been remapped so dispatch it */
1190 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1191 				      bio_dev(tio->io->bio), sector);
1192 		generic_make_request(clone);
1193 		break;
1194 	case DM_MAPIO_KILL:
1195 		dec_pending(tio->io, BLK_STS_IOERR);
1196 		free_tio(tio);
1197 		break;
1198 	case DM_MAPIO_REQUEUE:
1199 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1200 		free_tio(tio);
1201 		break;
1202 	default:
1203 		DMWARN("unimplemented target map return value: %d", r);
1204 		BUG();
1205 	}
1206 }
1207 
1208 struct clone_info {
1209 	struct mapped_device *md;
1210 	struct dm_table *map;
1211 	struct bio *bio;
1212 	struct dm_io *io;
1213 	sector_t sector;
1214 	unsigned sector_count;
1215 };
1216 
1217 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1218 {
1219 	bio->bi_iter.bi_sector = sector;
1220 	bio->bi_iter.bi_size = to_bytes(len);
1221 }
1222 
1223 /*
1224  * Creates a bio that consists of range of complete bvecs.
1225  */
1226 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1227 		     sector_t sector, unsigned len)
1228 {
1229 	struct bio *clone = &tio->clone;
1230 
1231 	__bio_clone_fast(clone, bio);
1232 
1233 	if (unlikely(bio_integrity(bio) != NULL)) {
1234 		int r;
1235 
1236 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1237 			     !dm_target_passes_integrity(tio->ti->type))) {
1238 			DMWARN("%s: the target %s doesn't support integrity data.",
1239 				dm_device_name(tio->io->md),
1240 				tio->ti->type->name);
1241 			return -EIO;
1242 		}
1243 
1244 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1245 		if (r < 0)
1246 			return r;
1247 	}
1248 
1249 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1250 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1251 	clone->bi_iter.bi_size = to_bytes(len);
1252 
1253 	if (unlikely(bio_integrity(bio) != NULL))
1254 		bio_integrity_trim(clone);
1255 
1256 	return 0;
1257 }
1258 
1259 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1260 				      struct dm_target *ti,
1261 				      unsigned target_bio_nr)
1262 {
1263 	struct dm_target_io *tio;
1264 	struct bio *clone;
1265 
1266 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1267 	tio = container_of(clone, struct dm_target_io, clone);
1268 
1269 	tio->io = ci->io;
1270 	tio->ti = ti;
1271 	tio->target_bio_nr = target_bio_nr;
1272 
1273 	return tio;
1274 }
1275 
1276 static void __clone_and_map_simple_bio(struct clone_info *ci,
1277 				       struct dm_target *ti,
1278 				       unsigned target_bio_nr, unsigned *len)
1279 {
1280 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1281 	struct bio *clone = &tio->clone;
1282 
1283 	tio->len_ptr = len;
1284 
1285 	__bio_clone_fast(clone, ci->bio);
1286 	if (len)
1287 		bio_setup_sector(clone, ci->sector, *len);
1288 
1289 	__map_bio(tio);
1290 }
1291 
1292 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1293 				  unsigned num_bios, unsigned *len)
1294 {
1295 	unsigned target_bio_nr;
1296 
1297 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1298 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1299 }
1300 
1301 static int __send_empty_flush(struct clone_info *ci)
1302 {
1303 	unsigned target_nr = 0;
1304 	struct dm_target *ti;
1305 
1306 	BUG_ON(bio_has_data(ci->bio));
1307 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1308 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1309 
1310 	return 0;
1311 }
1312 
1313 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1314 				     sector_t sector, unsigned *len)
1315 {
1316 	struct bio *bio = ci->bio;
1317 	struct dm_target_io *tio;
1318 	unsigned target_bio_nr;
1319 	unsigned num_target_bios = 1;
1320 	int r = 0;
1321 
1322 	/*
1323 	 * Does the target want to receive duplicate copies of the bio?
1324 	 */
1325 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1326 		num_target_bios = ti->num_write_bios(ti, bio);
1327 
1328 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1329 		tio = alloc_tio(ci, ti, target_bio_nr);
1330 		tio->len_ptr = len;
1331 		r = clone_bio(tio, bio, sector, *len);
1332 		if (r < 0) {
1333 			free_tio(tio);
1334 			break;
1335 		}
1336 		__map_bio(tio);
1337 	}
1338 
1339 	return r;
1340 }
1341 
1342 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1343 
1344 static unsigned get_num_discard_bios(struct dm_target *ti)
1345 {
1346 	return ti->num_discard_bios;
1347 }
1348 
1349 static unsigned get_num_write_same_bios(struct dm_target *ti)
1350 {
1351 	return ti->num_write_same_bios;
1352 }
1353 
1354 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1355 {
1356 	return ti->num_write_zeroes_bios;
1357 }
1358 
1359 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1360 
1361 static bool is_split_required_for_discard(struct dm_target *ti)
1362 {
1363 	return ti->split_discard_bios;
1364 }
1365 
1366 static int __send_changing_extent_only(struct clone_info *ci,
1367 				       get_num_bios_fn get_num_bios,
1368 				       is_split_required_fn is_split_required)
1369 {
1370 	struct dm_target *ti;
1371 	unsigned len;
1372 	unsigned num_bios;
1373 
1374 	do {
1375 		ti = dm_table_find_target(ci->map, ci->sector);
1376 		if (!dm_target_is_valid(ti))
1377 			return -EIO;
1378 
1379 		/*
1380 		 * Even though the device advertised support for this type of
1381 		 * request, that does not mean every target supports it, and
1382 		 * reconfiguration might also have changed that since the
1383 		 * check was performed.
1384 		 */
1385 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1386 		if (!num_bios)
1387 			return -EOPNOTSUPP;
1388 
1389 		if (is_split_required && !is_split_required(ti))
1390 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1391 		else
1392 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1393 
1394 		__send_duplicate_bios(ci, ti, num_bios, &len);
1395 
1396 		ci->sector += len;
1397 	} while (ci->sector_count -= len);
1398 
1399 	return 0;
1400 }
1401 
1402 static int __send_discard(struct clone_info *ci)
1403 {
1404 	return __send_changing_extent_only(ci, get_num_discard_bios,
1405 					   is_split_required_for_discard);
1406 }
1407 
1408 static int __send_write_same(struct clone_info *ci)
1409 {
1410 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1411 }
1412 
1413 static int __send_write_zeroes(struct clone_info *ci)
1414 {
1415 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1416 }
1417 
1418 /*
1419  * Select the correct strategy for processing a non-flush bio.
1420  */
1421 static int __split_and_process_non_flush(struct clone_info *ci)
1422 {
1423 	struct bio *bio = ci->bio;
1424 	struct dm_target *ti;
1425 	unsigned len;
1426 	int r;
1427 
1428 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1429 		return __send_discard(ci);
1430 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1431 		return __send_write_same(ci);
1432 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1433 		return __send_write_zeroes(ci);
1434 
1435 	ti = dm_table_find_target(ci->map, ci->sector);
1436 	if (!dm_target_is_valid(ti))
1437 		return -EIO;
1438 
1439 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1440 		len = ci->sector_count;
1441 	else
1442 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1443 			    ci->sector_count);
1444 
1445 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1446 	if (r < 0)
1447 		return r;
1448 
1449 	ci->sector += len;
1450 	ci->sector_count -= len;
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Entry point to split a bio into clones and submit them to the targets.
1457  */
1458 static void __split_and_process_bio(struct mapped_device *md,
1459 				    struct dm_table *map, struct bio *bio)
1460 {
1461 	struct clone_info ci;
1462 	int error = 0;
1463 
1464 	if (unlikely(!map)) {
1465 		bio_io_error(bio);
1466 		return;
1467 	}
1468 
1469 	ci.map = map;
1470 	ci.md = md;
1471 	ci.io = alloc_io(md);
1472 	ci.io->status = 0;
1473 	atomic_set(&ci.io->io_count, 1);
1474 	ci.io->bio = bio;
1475 	ci.io->md = md;
1476 	spin_lock_init(&ci.io->endio_lock);
1477 	ci.sector = bio->bi_iter.bi_sector;
1478 
1479 	start_io_acct(ci.io);
1480 
1481 	if (bio->bi_opf & REQ_PREFLUSH) {
1482 		ci.bio = &ci.md->flush_bio;
1483 		ci.sector_count = 0;
1484 		error = __send_empty_flush(&ci);
1485 		/* dec_pending submits any data associated with flush */
1486 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1487 		ci.bio = bio;
1488 		ci.sector_count = 0;
1489 		error = __split_and_process_non_flush(&ci);
1490 	} else {
1491 		ci.bio = bio;
1492 		ci.sector_count = bio_sectors(bio);
1493 		while (ci.sector_count && !error)
1494 			error = __split_and_process_non_flush(&ci);
1495 	}
1496 
1497 	/* drop the extra reference count */
1498 	dec_pending(ci.io, errno_to_blk_status(error));
1499 }
1500 /*-----------------------------------------------------------------
1501  * CRUD END
1502  *---------------------------------------------------------------*/
1503 
1504 /*
1505  * The request function that just remaps the bio built up by
1506  * dm_merge_bvec.
1507  */
1508 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1509 {
1510 	int rw = bio_data_dir(bio);
1511 	struct mapped_device *md = q->queuedata;
1512 	int srcu_idx;
1513 	struct dm_table *map;
1514 
1515 	map = dm_get_live_table(md, &srcu_idx);
1516 
1517 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1518 
1519 	/* if we're suspended, we have to queue this io for later */
1520 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1521 		dm_put_live_table(md, srcu_idx);
1522 
1523 		if (!(bio->bi_opf & REQ_RAHEAD))
1524 			queue_io(md, bio);
1525 		else
1526 			bio_io_error(bio);
1527 		return BLK_QC_T_NONE;
1528 	}
1529 
1530 	__split_and_process_bio(md, map, bio);
1531 	dm_put_live_table(md, srcu_idx);
1532 	return BLK_QC_T_NONE;
1533 }
1534 
1535 static int dm_any_congested(void *congested_data, int bdi_bits)
1536 {
1537 	int r = bdi_bits;
1538 	struct mapped_device *md = congested_data;
1539 	struct dm_table *map;
1540 
1541 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1542 		if (dm_request_based(md)) {
1543 			/*
1544 			 * With request-based DM we only need to check the
1545 			 * top-level queue for congestion.
1546 			 */
1547 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1548 		} else {
1549 			map = dm_get_live_table_fast(md);
1550 			if (map)
1551 				r = dm_table_any_congested(map, bdi_bits);
1552 			dm_put_live_table_fast(md);
1553 		}
1554 	}
1555 
1556 	return r;
1557 }
1558 
1559 /*-----------------------------------------------------------------
1560  * An IDR is used to keep track of allocated minor numbers.
1561  *---------------------------------------------------------------*/
1562 static void free_minor(int minor)
1563 {
1564 	spin_lock(&_minor_lock);
1565 	idr_remove(&_minor_idr, minor);
1566 	spin_unlock(&_minor_lock);
1567 }
1568 
1569 /*
1570  * See if the device with a specific minor # is free.
1571  */
1572 static int specific_minor(int minor)
1573 {
1574 	int r;
1575 
1576 	if (minor >= (1 << MINORBITS))
1577 		return -EINVAL;
1578 
1579 	idr_preload(GFP_KERNEL);
1580 	spin_lock(&_minor_lock);
1581 
1582 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1583 
1584 	spin_unlock(&_minor_lock);
1585 	idr_preload_end();
1586 	if (r < 0)
1587 		return r == -ENOSPC ? -EBUSY : r;
1588 	return 0;
1589 }
1590 
1591 static int next_free_minor(int *minor)
1592 {
1593 	int r;
1594 
1595 	idr_preload(GFP_KERNEL);
1596 	spin_lock(&_minor_lock);
1597 
1598 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1599 
1600 	spin_unlock(&_minor_lock);
1601 	idr_preload_end();
1602 	if (r < 0)
1603 		return r;
1604 	*minor = r;
1605 	return 0;
1606 }
1607 
1608 static const struct block_device_operations dm_blk_dops;
1609 static const struct dax_operations dm_dax_ops;
1610 
1611 static void dm_wq_work(struct work_struct *work);
1612 
1613 void dm_init_md_queue(struct mapped_device *md)
1614 {
1615 	/*
1616 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1617 	 * devices.  The type of this dm device may not have been decided yet.
1618 	 * The type is decided at the first table loading time.
1619 	 * To prevent problematic device stacking, clear the queue flag
1620 	 * for request stacking support until then.
1621 	 *
1622 	 * This queue is new, so no concurrency on the queue_flags.
1623 	 */
1624 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1625 
1626 	/*
1627 	 * Initialize data that will only be used by a non-blk-mq DM queue
1628 	 * - must do so here (in alloc_dev callchain) before queue is used
1629 	 */
1630 	md->queue->queuedata = md;
1631 	md->queue->backing_dev_info->congested_data = md;
1632 }
1633 
1634 void dm_init_normal_md_queue(struct mapped_device *md)
1635 {
1636 	md->use_blk_mq = false;
1637 	dm_init_md_queue(md);
1638 
1639 	/*
1640 	 * Initialize aspects of queue that aren't relevant for blk-mq
1641 	 */
1642 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1643 }
1644 
1645 static void cleanup_mapped_device(struct mapped_device *md)
1646 {
1647 	if (md->wq)
1648 		destroy_workqueue(md->wq);
1649 	if (md->kworker_task)
1650 		kthread_stop(md->kworker_task);
1651 	mempool_destroy(md->io_pool);
1652 	if (md->bs)
1653 		bioset_free(md->bs);
1654 
1655 	if (md->dax_dev) {
1656 		kill_dax(md->dax_dev);
1657 		put_dax(md->dax_dev);
1658 		md->dax_dev = NULL;
1659 	}
1660 
1661 	if (md->disk) {
1662 		spin_lock(&_minor_lock);
1663 		md->disk->private_data = NULL;
1664 		spin_unlock(&_minor_lock);
1665 		del_gendisk(md->disk);
1666 		put_disk(md->disk);
1667 	}
1668 
1669 	if (md->queue)
1670 		blk_cleanup_queue(md->queue);
1671 
1672 	cleanup_srcu_struct(&md->io_barrier);
1673 
1674 	if (md->bdev) {
1675 		bdput(md->bdev);
1676 		md->bdev = NULL;
1677 	}
1678 
1679 	dm_mq_cleanup_mapped_device(md);
1680 }
1681 
1682 /*
1683  * Allocate and initialise a blank device with a given minor.
1684  */
1685 static struct mapped_device *alloc_dev(int minor)
1686 {
1687 	int r, numa_node_id = dm_get_numa_node();
1688 	struct dax_device *dax_dev;
1689 	struct mapped_device *md;
1690 	void *old_md;
1691 
1692 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1693 	if (!md) {
1694 		DMWARN("unable to allocate device, out of memory.");
1695 		return NULL;
1696 	}
1697 
1698 	if (!try_module_get(THIS_MODULE))
1699 		goto bad_module_get;
1700 
1701 	/* get a minor number for the dev */
1702 	if (minor == DM_ANY_MINOR)
1703 		r = next_free_minor(&minor);
1704 	else
1705 		r = specific_minor(minor);
1706 	if (r < 0)
1707 		goto bad_minor;
1708 
1709 	r = init_srcu_struct(&md->io_barrier);
1710 	if (r < 0)
1711 		goto bad_io_barrier;
1712 
1713 	md->numa_node_id = numa_node_id;
1714 	md->use_blk_mq = dm_use_blk_mq_default();
1715 	md->init_tio_pdu = false;
1716 	md->type = DM_TYPE_NONE;
1717 	mutex_init(&md->suspend_lock);
1718 	mutex_init(&md->type_lock);
1719 	mutex_init(&md->table_devices_lock);
1720 	spin_lock_init(&md->deferred_lock);
1721 	atomic_set(&md->holders, 1);
1722 	atomic_set(&md->open_count, 0);
1723 	atomic_set(&md->event_nr, 0);
1724 	atomic_set(&md->uevent_seq, 0);
1725 	INIT_LIST_HEAD(&md->uevent_list);
1726 	INIT_LIST_HEAD(&md->table_devices);
1727 	spin_lock_init(&md->uevent_lock);
1728 
1729 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1730 	if (!md->queue)
1731 		goto bad;
1732 
1733 	dm_init_md_queue(md);
1734 
1735 	md->disk = alloc_disk_node(1, numa_node_id);
1736 	if (!md->disk)
1737 		goto bad;
1738 
1739 	atomic_set(&md->pending[0], 0);
1740 	atomic_set(&md->pending[1], 0);
1741 	init_waitqueue_head(&md->wait);
1742 	INIT_WORK(&md->work, dm_wq_work);
1743 	init_waitqueue_head(&md->eventq);
1744 	init_completion(&md->kobj_holder.completion);
1745 	md->kworker_task = NULL;
1746 
1747 	md->disk->major = _major;
1748 	md->disk->first_minor = minor;
1749 	md->disk->fops = &dm_blk_dops;
1750 	md->disk->queue = md->queue;
1751 	md->disk->private_data = md;
1752 	sprintf(md->disk->disk_name, "dm-%d", minor);
1753 
1754 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1755 	if (!dax_dev)
1756 		goto bad;
1757 	md->dax_dev = dax_dev;
1758 
1759 	add_disk(md->disk);
1760 	format_dev_t(md->name, MKDEV(_major, minor));
1761 
1762 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1763 	if (!md->wq)
1764 		goto bad;
1765 
1766 	md->bdev = bdget_disk(md->disk, 0);
1767 	if (!md->bdev)
1768 		goto bad;
1769 
1770 	bio_init(&md->flush_bio, NULL, 0);
1771 	bio_set_dev(&md->flush_bio, md->bdev);
1772 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1773 
1774 	dm_stats_init(&md->stats);
1775 
1776 	/* Populate the mapping, nobody knows we exist yet */
1777 	spin_lock(&_minor_lock);
1778 	old_md = idr_replace(&_minor_idr, md, minor);
1779 	spin_unlock(&_minor_lock);
1780 
1781 	BUG_ON(old_md != MINOR_ALLOCED);
1782 
1783 	return md;
1784 
1785 bad:
1786 	cleanup_mapped_device(md);
1787 bad_io_barrier:
1788 	free_minor(minor);
1789 bad_minor:
1790 	module_put(THIS_MODULE);
1791 bad_module_get:
1792 	kfree(md);
1793 	return NULL;
1794 }
1795 
1796 static void unlock_fs(struct mapped_device *md);
1797 
1798 static void free_dev(struct mapped_device *md)
1799 {
1800 	int minor = MINOR(disk_devt(md->disk));
1801 
1802 	unlock_fs(md);
1803 
1804 	cleanup_mapped_device(md);
1805 
1806 	free_table_devices(&md->table_devices);
1807 	dm_stats_cleanup(&md->stats);
1808 	free_minor(minor);
1809 
1810 	module_put(THIS_MODULE);
1811 	kfree(md);
1812 }
1813 
1814 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1815 {
1816 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1817 
1818 	if (md->bs) {
1819 		/* The md already has necessary mempools. */
1820 		if (dm_table_bio_based(t)) {
1821 			/*
1822 			 * Reload bioset because front_pad may have changed
1823 			 * because a different table was loaded.
1824 			 */
1825 			bioset_free(md->bs);
1826 			md->bs = p->bs;
1827 			p->bs = NULL;
1828 		}
1829 		/*
1830 		 * There's no need to reload with request-based dm
1831 		 * because the size of front_pad doesn't change.
1832 		 * Note for future: If you are to reload bioset,
1833 		 * prep-ed requests in the queue may refer
1834 		 * to bio from the old bioset, so you must walk
1835 		 * through the queue to unprep.
1836 		 */
1837 		goto out;
1838 	}
1839 
1840 	BUG_ON(!p || md->io_pool || md->bs);
1841 
1842 	md->io_pool = p->io_pool;
1843 	p->io_pool = NULL;
1844 	md->bs = p->bs;
1845 	p->bs = NULL;
1846 
1847 out:
1848 	/* mempool bind completed, no longer need any mempools in the table */
1849 	dm_table_free_md_mempools(t);
1850 }
1851 
1852 /*
1853  * Bind a table to the device.
1854  */
1855 static void event_callback(void *context)
1856 {
1857 	unsigned long flags;
1858 	LIST_HEAD(uevents);
1859 	struct mapped_device *md = (struct mapped_device *) context;
1860 
1861 	spin_lock_irqsave(&md->uevent_lock, flags);
1862 	list_splice_init(&md->uevent_list, &uevents);
1863 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1864 
1865 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1866 
1867 	atomic_inc(&md->event_nr);
1868 	atomic_inc(&dm_global_event_nr);
1869 	wake_up(&md->eventq);
1870 	wake_up(&dm_global_eventq);
1871 }
1872 
1873 /*
1874  * Protected by md->suspend_lock obtained by dm_swap_table().
1875  */
1876 static void __set_size(struct mapped_device *md, sector_t size)
1877 {
1878 	lockdep_assert_held(&md->suspend_lock);
1879 
1880 	set_capacity(md->disk, size);
1881 
1882 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1883 }
1884 
1885 /*
1886  * Returns old map, which caller must destroy.
1887  */
1888 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1889 			       struct queue_limits *limits)
1890 {
1891 	struct dm_table *old_map;
1892 	struct request_queue *q = md->queue;
1893 	sector_t size;
1894 
1895 	lockdep_assert_held(&md->suspend_lock);
1896 
1897 	size = dm_table_get_size(t);
1898 
1899 	/*
1900 	 * Wipe any geometry if the size of the table changed.
1901 	 */
1902 	if (size != dm_get_size(md))
1903 		memset(&md->geometry, 0, sizeof(md->geometry));
1904 
1905 	__set_size(md, size);
1906 
1907 	dm_table_event_callback(t, event_callback, md);
1908 
1909 	/*
1910 	 * The queue hasn't been stopped yet, if the old table type wasn't
1911 	 * for request-based during suspension.  So stop it to prevent
1912 	 * I/O mapping before resume.
1913 	 * This must be done before setting the queue restrictions,
1914 	 * because request-based dm may be run just after the setting.
1915 	 */
1916 	if (dm_table_request_based(t)) {
1917 		dm_stop_queue(q);
1918 		/*
1919 		 * Leverage the fact that request-based DM targets are
1920 		 * immutable singletons and establish md->immutable_target
1921 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1922 		 */
1923 		md->immutable_target = dm_table_get_immutable_target(t);
1924 	}
1925 
1926 	__bind_mempools(md, t);
1927 
1928 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1929 	rcu_assign_pointer(md->map, (void *)t);
1930 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1931 
1932 	dm_table_set_restrictions(t, q, limits);
1933 	if (old_map)
1934 		dm_sync_table(md);
1935 
1936 	return old_map;
1937 }
1938 
1939 /*
1940  * Returns unbound table for the caller to free.
1941  */
1942 static struct dm_table *__unbind(struct mapped_device *md)
1943 {
1944 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1945 
1946 	if (!map)
1947 		return NULL;
1948 
1949 	dm_table_event_callback(map, NULL, NULL);
1950 	RCU_INIT_POINTER(md->map, NULL);
1951 	dm_sync_table(md);
1952 
1953 	return map;
1954 }
1955 
1956 /*
1957  * Constructor for a new device.
1958  */
1959 int dm_create(int minor, struct mapped_device **result)
1960 {
1961 	struct mapped_device *md;
1962 
1963 	md = alloc_dev(minor);
1964 	if (!md)
1965 		return -ENXIO;
1966 
1967 	dm_sysfs_init(md);
1968 
1969 	*result = md;
1970 	return 0;
1971 }
1972 
1973 /*
1974  * Functions to manage md->type.
1975  * All are required to hold md->type_lock.
1976  */
1977 void dm_lock_md_type(struct mapped_device *md)
1978 {
1979 	mutex_lock(&md->type_lock);
1980 }
1981 
1982 void dm_unlock_md_type(struct mapped_device *md)
1983 {
1984 	mutex_unlock(&md->type_lock);
1985 }
1986 
1987 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1988 {
1989 	BUG_ON(!mutex_is_locked(&md->type_lock));
1990 	md->type = type;
1991 }
1992 
1993 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1994 {
1995 	return md->type;
1996 }
1997 
1998 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1999 {
2000 	return md->immutable_target_type;
2001 }
2002 
2003 /*
2004  * The queue_limits are only valid as long as you have a reference
2005  * count on 'md'.
2006  */
2007 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2008 {
2009 	BUG_ON(!atomic_read(&md->holders));
2010 	return &md->queue->limits;
2011 }
2012 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2013 
2014 /*
2015  * Setup the DM device's queue based on md's type
2016  */
2017 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2018 {
2019 	int r;
2020 	enum dm_queue_mode type = dm_get_md_type(md);
2021 
2022 	switch (type) {
2023 	case DM_TYPE_REQUEST_BASED:
2024 		r = dm_old_init_request_queue(md, t);
2025 		if (r) {
2026 			DMERR("Cannot initialize queue for request-based mapped device");
2027 			return r;
2028 		}
2029 		break;
2030 	case DM_TYPE_MQ_REQUEST_BASED:
2031 		r = dm_mq_init_request_queue(md, t);
2032 		if (r) {
2033 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2034 			return r;
2035 		}
2036 		break;
2037 	case DM_TYPE_BIO_BASED:
2038 	case DM_TYPE_DAX_BIO_BASED:
2039 		dm_init_normal_md_queue(md);
2040 		blk_queue_make_request(md->queue, dm_make_request);
2041 		/*
2042 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2043 		 * since it won't be used (saves 1 process per bio-based DM device).
2044 		 */
2045 		bioset_free(md->queue->bio_split);
2046 		md->queue->bio_split = NULL;
2047 
2048 		if (type == DM_TYPE_DAX_BIO_BASED)
2049 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2050 		break;
2051 	case DM_TYPE_NONE:
2052 		WARN_ON_ONCE(true);
2053 		break;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 struct mapped_device *dm_get_md(dev_t dev)
2060 {
2061 	struct mapped_device *md;
2062 	unsigned minor = MINOR(dev);
2063 
2064 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2065 		return NULL;
2066 
2067 	spin_lock(&_minor_lock);
2068 
2069 	md = idr_find(&_minor_idr, minor);
2070 	if (md) {
2071 		if ((md == MINOR_ALLOCED ||
2072 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2073 		     dm_deleting_md(md) ||
2074 		     test_bit(DMF_FREEING, &md->flags))) {
2075 			md = NULL;
2076 			goto out;
2077 		}
2078 		dm_get(md);
2079 	}
2080 
2081 out:
2082 	spin_unlock(&_minor_lock);
2083 
2084 	return md;
2085 }
2086 EXPORT_SYMBOL_GPL(dm_get_md);
2087 
2088 void *dm_get_mdptr(struct mapped_device *md)
2089 {
2090 	return md->interface_ptr;
2091 }
2092 
2093 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2094 {
2095 	md->interface_ptr = ptr;
2096 }
2097 
2098 void dm_get(struct mapped_device *md)
2099 {
2100 	atomic_inc(&md->holders);
2101 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2102 }
2103 
2104 int dm_hold(struct mapped_device *md)
2105 {
2106 	spin_lock(&_minor_lock);
2107 	if (test_bit(DMF_FREEING, &md->flags)) {
2108 		spin_unlock(&_minor_lock);
2109 		return -EBUSY;
2110 	}
2111 	dm_get(md);
2112 	spin_unlock(&_minor_lock);
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL_GPL(dm_hold);
2116 
2117 const char *dm_device_name(struct mapped_device *md)
2118 {
2119 	return md->name;
2120 }
2121 EXPORT_SYMBOL_GPL(dm_device_name);
2122 
2123 static void __dm_destroy(struct mapped_device *md, bool wait)
2124 {
2125 	struct request_queue *q = dm_get_md_queue(md);
2126 	struct dm_table *map;
2127 	int srcu_idx;
2128 
2129 	might_sleep();
2130 
2131 	spin_lock(&_minor_lock);
2132 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2133 	set_bit(DMF_FREEING, &md->flags);
2134 	spin_unlock(&_minor_lock);
2135 
2136 	blk_set_queue_dying(q);
2137 
2138 	if (dm_request_based(md) && md->kworker_task)
2139 		kthread_flush_worker(&md->kworker);
2140 
2141 	/*
2142 	 * Take suspend_lock so that presuspend and postsuspend methods
2143 	 * do not race with internal suspend.
2144 	 */
2145 	mutex_lock(&md->suspend_lock);
2146 	map = dm_get_live_table(md, &srcu_idx);
2147 	if (!dm_suspended_md(md)) {
2148 		dm_table_presuspend_targets(map);
2149 		dm_table_postsuspend_targets(map);
2150 	}
2151 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2152 	dm_put_live_table(md, srcu_idx);
2153 	mutex_unlock(&md->suspend_lock);
2154 
2155 	/*
2156 	 * Rare, but there may be I/O requests still going to complete,
2157 	 * for example.  Wait for all references to disappear.
2158 	 * No one should increment the reference count of the mapped_device,
2159 	 * after the mapped_device state becomes DMF_FREEING.
2160 	 */
2161 	if (wait)
2162 		while (atomic_read(&md->holders))
2163 			msleep(1);
2164 	else if (atomic_read(&md->holders))
2165 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2166 		       dm_device_name(md), atomic_read(&md->holders));
2167 
2168 	dm_sysfs_exit(md);
2169 	dm_table_destroy(__unbind(md));
2170 	free_dev(md);
2171 }
2172 
2173 void dm_destroy(struct mapped_device *md)
2174 {
2175 	__dm_destroy(md, true);
2176 }
2177 
2178 void dm_destroy_immediate(struct mapped_device *md)
2179 {
2180 	__dm_destroy(md, false);
2181 }
2182 
2183 void dm_put(struct mapped_device *md)
2184 {
2185 	atomic_dec(&md->holders);
2186 }
2187 EXPORT_SYMBOL_GPL(dm_put);
2188 
2189 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2190 {
2191 	int r = 0;
2192 	DEFINE_WAIT(wait);
2193 
2194 	while (1) {
2195 		prepare_to_wait(&md->wait, &wait, task_state);
2196 
2197 		if (!md_in_flight(md))
2198 			break;
2199 
2200 		if (signal_pending_state(task_state, current)) {
2201 			r = -EINTR;
2202 			break;
2203 		}
2204 
2205 		io_schedule();
2206 	}
2207 	finish_wait(&md->wait, &wait);
2208 
2209 	return r;
2210 }
2211 
2212 /*
2213  * Process the deferred bios
2214  */
2215 static void dm_wq_work(struct work_struct *work)
2216 {
2217 	struct mapped_device *md = container_of(work, struct mapped_device,
2218 						work);
2219 	struct bio *c;
2220 	int srcu_idx;
2221 	struct dm_table *map;
2222 
2223 	map = dm_get_live_table(md, &srcu_idx);
2224 
2225 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2226 		spin_lock_irq(&md->deferred_lock);
2227 		c = bio_list_pop(&md->deferred);
2228 		spin_unlock_irq(&md->deferred_lock);
2229 
2230 		if (!c)
2231 			break;
2232 
2233 		if (dm_request_based(md))
2234 			generic_make_request(c);
2235 		else
2236 			__split_and_process_bio(md, map, c);
2237 	}
2238 
2239 	dm_put_live_table(md, srcu_idx);
2240 }
2241 
2242 static void dm_queue_flush(struct mapped_device *md)
2243 {
2244 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2245 	smp_mb__after_atomic();
2246 	queue_work(md->wq, &md->work);
2247 }
2248 
2249 /*
2250  * Swap in a new table, returning the old one for the caller to destroy.
2251  */
2252 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2253 {
2254 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2255 	struct queue_limits limits;
2256 	int r;
2257 
2258 	mutex_lock(&md->suspend_lock);
2259 
2260 	/* device must be suspended */
2261 	if (!dm_suspended_md(md))
2262 		goto out;
2263 
2264 	/*
2265 	 * If the new table has no data devices, retain the existing limits.
2266 	 * This helps multipath with queue_if_no_path if all paths disappear,
2267 	 * then new I/O is queued based on these limits, and then some paths
2268 	 * reappear.
2269 	 */
2270 	if (dm_table_has_no_data_devices(table)) {
2271 		live_map = dm_get_live_table_fast(md);
2272 		if (live_map)
2273 			limits = md->queue->limits;
2274 		dm_put_live_table_fast(md);
2275 	}
2276 
2277 	if (!live_map) {
2278 		r = dm_calculate_queue_limits(table, &limits);
2279 		if (r) {
2280 			map = ERR_PTR(r);
2281 			goto out;
2282 		}
2283 	}
2284 
2285 	map = __bind(md, table, &limits);
2286 
2287 out:
2288 	mutex_unlock(&md->suspend_lock);
2289 	return map;
2290 }
2291 
2292 /*
2293  * Functions to lock and unlock any filesystem running on the
2294  * device.
2295  */
2296 static int lock_fs(struct mapped_device *md)
2297 {
2298 	int r;
2299 
2300 	WARN_ON(md->frozen_sb);
2301 
2302 	md->frozen_sb = freeze_bdev(md->bdev);
2303 	if (IS_ERR(md->frozen_sb)) {
2304 		r = PTR_ERR(md->frozen_sb);
2305 		md->frozen_sb = NULL;
2306 		return r;
2307 	}
2308 
2309 	set_bit(DMF_FROZEN, &md->flags);
2310 
2311 	return 0;
2312 }
2313 
2314 static void unlock_fs(struct mapped_device *md)
2315 {
2316 	if (!test_bit(DMF_FROZEN, &md->flags))
2317 		return;
2318 
2319 	thaw_bdev(md->bdev, md->frozen_sb);
2320 	md->frozen_sb = NULL;
2321 	clear_bit(DMF_FROZEN, &md->flags);
2322 }
2323 
2324 /*
2325  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2326  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2327  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2328  *
2329  * If __dm_suspend returns 0, the device is completely quiescent
2330  * now. There is no request-processing activity. All new requests
2331  * are being added to md->deferred list.
2332  */
2333 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2334 			unsigned suspend_flags, long task_state,
2335 			int dmf_suspended_flag)
2336 {
2337 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2338 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2339 	int r;
2340 
2341 	lockdep_assert_held(&md->suspend_lock);
2342 
2343 	/*
2344 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2345 	 * This flag is cleared before dm_suspend returns.
2346 	 */
2347 	if (noflush)
2348 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2349 	else
2350 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2351 
2352 	/*
2353 	 * This gets reverted if there's an error later and the targets
2354 	 * provide the .presuspend_undo hook.
2355 	 */
2356 	dm_table_presuspend_targets(map);
2357 
2358 	/*
2359 	 * Flush I/O to the device.
2360 	 * Any I/O submitted after lock_fs() may not be flushed.
2361 	 * noflush takes precedence over do_lockfs.
2362 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2363 	 */
2364 	if (!noflush && do_lockfs) {
2365 		r = lock_fs(md);
2366 		if (r) {
2367 			dm_table_presuspend_undo_targets(map);
2368 			return r;
2369 		}
2370 	}
2371 
2372 	/*
2373 	 * Here we must make sure that no processes are submitting requests
2374 	 * to target drivers i.e. no one may be executing
2375 	 * __split_and_process_bio. This is called from dm_request and
2376 	 * dm_wq_work.
2377 	 *
2378 	 * To get all processes out of __split_and_process_bio in dm_request,
2379 	 * we take the write lock. To prevent any process from reentering
2380 	 * __split_and_process_bio from dm_request and quiesce the thread
2381 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2382 	 * flush_workqueue(md->wq).
2383 	 */
2384 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2385 	if (map)
2386 		synchronize_srcu(&md->io_barrier);
2387 
2388 	/*
2389 	 * Stop md->queue before flushing md->wq in case request-based
2390 	 * dm defers requests to md->wq from md->queue.
2391 	 */
2392 	if (dm_request_based(md)) {
2393 		dm_stop_queue(md->queue);
2394 		if (md->kworker_task)
2395 			kthread_flush_worker(&md->kworker);
2396 	}
2397 
2398 	flush_workqueue(md->wq);
2399 
2400 	/*
2401 	 * At this point no more requests are entering target request routines.
2402 	 * We call dm_wait_for_completion to wait for all existing requests
2403 	 * to finish.
2404 	 */
2405 	r = dm_wait_for_completion(md, task_state);
2406 	if (!r)
2407 		set_bit(dmf_suspended_flag, &md->flags);
2408 
2409 	if (noflush)
2410 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2411 	if (map)
2412 		synchronize_srcu(&md->io_barrier);
2413 
2414 	/* were we interrupted ? */
2415 	if (r < 0) {
2416 		dm_queue_flush(md);
2417 
2418 		if (dm_request_based(md))
2419 			dm_start_queue(md->queue);
2420 
2421 		unlock_fs(md);
2422 		dm_table_presuspend_undo_targets(map);
2423 		/* pushback list is already flushed, so skip flush */
2424 	}
2425 
2426 	return r;
2427 }
2428 
2429 /*
2430  * We need to be able to change a mapping table under a mounted
2431  * filesystem.  For example we might want to move some data in
2432  * the background.  Before the table can be swapped with
2433  * dm_bind_table, dm_suspend must be called to flush any in
2434  * flight bios and ensure that any further io gets deferred.
2435  */
2436 /*
2437  * Suspend mechanism in request-based dm.
2438  *
2439  * 1. Flush all I/Os by lock_fs() if needed.
2440  * 2. Stop dispatching any I/O by stopping the request_queue.
2441  * 3. Wait for all in-flight I/Os to be completed or requeued.
2442  *
2443  * To abort suspend, start the request_queue.
2444  */
2445 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2446 {
2447 	struct dm_table *map = NULL;
2448 	int r = 0;
2449 
2450 retry:
2451 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2452 
2453 	if (dm_suspended_md(md)) {
2454 		r = -EINVAL;
2455 		goto out_unlock;
2456 	}
2457 
2458 	if (dm_suspended_internally_md(md)) {
2459 		/* already internally suspended, wait for internal resume */
2460 		mutex_unlock(&md->suspend_lock);
2461 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2462 		if (r)
2463 			return r;
2464 		goto retry;
2465 	}
2466 
2467 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2468 
2469 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2470 	if (r)
2471 		goto out_unlock;
2472 
2473 	dm_table_postsuspend_targets(map);
2474 
2475 out_unlock:
2476 	mutex_unlock(&md->suspend_lock);
2477 	return r;
2478 }
2479 
2480 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2481 {
2482 	if (map) {
2483 		int r = dm_table_resume_targets(map);
2484 		if (r)
2485 			return r;
2486 	}
2487 
2488 	dm_queue_flush(md);
2489 
2490 	/*
2491 	 * Flushing deferred I/Os must be done after targets are resumed
2492 	 * so that mapping of targets can work correctly.
2493 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2494 	 */
2495 	if (dm_request_based(md))
2496 		dm_start_queue(md->queue);
2497 
2498 	unlock_fs(md);
2499 
2500 	return 0;
2501 }
2502 
2503 int dm_resume(struct mapped_device *md)
2504 {
2505 	int r;
2506 	struct dm_table *map = NULL;
2507 
2508 retry:
2509 	r = -EINVAL;
2510 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2511 
2512 	if (!dm_suspended_md(md))
2513 		goto out;
2514 
2515 	if (dm_suspended_internally_md(md)) {
2516 		/* already internally suspended, wait for internal resume */
2517 		mutex_unlock(&md->suspend_lock);
2518 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2519 		if (r)
2520 			return r;
2521 		goto retry;
2522 	}
2523 
2524 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2525 	if (!map || !dm_table_get_size(map))
2526 		goto out;
2527 
2528 	r = __dm_resume(md, map);
2529 	if (r)
2530 		goto out;
2531 
2532 	clear_bit(DMF_SUSPENDED, &md->flags);
2533 out:
2534 	mutex_unlock(&md->suspend_lock);
2535 
2536 	return r;
2537 }
2538 
2539 /*
2540  * Internal suspend/resume works like userspace-driven suspend. It waits
2541  * until all bios finish and prevents issuing new bios to the target drivers.
2542  * It may be used only from the kernel.
2543  */
2544 
2545 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2546 {
2547 	struct dm_table *map = NULL;
2548 
2549 	lockdep_assert_held(&md->suspend_lock);
2550 
2551 	if (md->internal_suspend_count++)
2552 		return; /* nested internal suspend */
2553 
2554 	if (dm_suspended_md(md)) {
2555 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2556 		return; /* nest suspend */
2557 	}
2558 
2559 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2560 
2561 	/*
2562 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2563 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2564 	 * would require changing .presuspend to return an error -- avoid this
2565 	 * until there is a need for more elaborate variants of internal suspend.
2566 	 */
2567 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2568 			    DMF_SUSPENDED_INTERNALLY);
2569 
2570 	dm_table_postsuspend_targets(map);
2571 }
2572 
2573 static void __dm_internal_resume(struct mapped_device *md)
2574 {
2575 	BUG_ON(!md->internal_suspend_count);
2576 
2577 	if (--md->internal_suspend_count)
2578 		return; /* resume from nested internal suspend */
2579 
2580 	if (dm_suspended_md(md))
2581 		goto done; /* resume from nested suspend */
2582 
2583 	/*
2584 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2585 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2586 	 */
2587 	(void) __dm_resume(md, NULL);
2588 
2589 done:
2590 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2591 	smp_mb__after_atomic();
2592 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2593 }
2594 
2595 void dm_internal_suspend_noflush(struct mapped_device *md)
2596 {
2597 	mutex_lock(&md->suspend_lock);
2598 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2599 	mutex_unlock(&md->suspend_lock);
2600 }
2601 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2602 
2603 void dm_internal_resume(struct mapped_device *md)
2604 {
2605 	mutex_lock(&md->suspend_lock);
2606 	__dm_internal_resume(md);
2607 	mutex_unlock(&md->suspend_lock);
2608 }
2609 EXPORT_SYMBOL_GPL(dm_internal_resume);
2610 
2611 /*
2612  * Fast variants of internal suspend/resume hold md->suspend_lock,
2613  * which prevents interaction with userspace-driven suspend.
2614  */
2615 
2616 void dm_internal_suspend_fast(struct mapped_device *md)
2617 {
2618 	mutex_lock(&md->suspend_lock);
2619 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2620 		return;
2621 
2622 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2623 	synchronize_srcu(&md->io_barrier);
2624 	flush_workqueue(md->wq);
2625 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2626 }
2627 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2628 
2629 void dm_internal_resume_fast(struct mapped_device *md)
2630 {
2631 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2632 		goto done;
2633 
2634 	dm_queue_flush(md);
2635 
2636 done:
2637 	mutex_unlock(&md->suspend_lock);
2638 }
2639 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2640 
2641 /*-----------------------------------------------------------------
2642  * Event notification.
2643  *---------------------------------------------------------------*/
2644 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2645 		       unsigned cookie)
2646 {
2647 	char udev_cookie[DM_COOKIE_LENGTH];
2648 	char *envp[] = { udev_cookie, NULL };
2649 
2650 	if (!cookie)
2651 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2652 	else {
2653 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2654 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2655 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2656 					  action, envp);
2657 	}
2658 }
2659 
2660 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2661 {
2662 	return atomic_add_return(1, &md->uevent_seq);
2663 }
2664 
2665 uint32_t dm_get_event_nr(struct mapped_device *md)
2666 {
2667 	return atomic_read(&md->event_nr);
2668 }
2669 
2670 int dm_wait_event(struct mapped_device *md, int event_nr)
2671 {
2672 	return wait_event_interruptible(md->eventq,
2673 			(event_nr != atomic_read(&md->event_nr)));
2674 }
2675 
2676 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2677 {
2678 	unsigned long flags;
2679 
2680 	spin_lock_irqsave(&md->uevent_lock, flags);
2681 	list_add(elist, &md->uevent_list);
2682 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2683 }
2684 
2685 /*
2686  * The gendisk is only valid as long as you have a reference
2687  * count on 'md'.
2688  */
2689 struct gendisk *dm_disk(struct mapped_device *md)
2690 {
2691 	return md->disk;
2692 }
2693 EXPORT_SYMBOL_GPL(dm_disk);
2694 
2695 struct kobject *dm_kobject(struct mapped_device *md)
2696 {
2697 	return &md->kobj_holder.kobj;
2698 }
2699 
2700 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2701 {
2702 	struct mapped_device *md;
2703 
2704 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2705 
2706 	if (test_bit(DMF_FREEING, &md->flags) ||
2707 	    dm_deleting_md(md))
2708 		return NULL;
2709 
2710 	dm_get(md);
2711 	return md;
2712 }
2713 
2714 int dm_suspended_md(struct mapped_device *md)
2715 {
2716 	return test_bit(DMF_SUSPENDED, &md->flags);
2717 }
2718 
2719 int dm_suspended_internally_md(struct mapped_device *md)
2720 {
2721 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2722 }
2723 
2724 int dm_test_deferred_remove_flag(struct mapped_device *md)
2725 {
2726 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2727 }
2728 
2729 int dm_suspended(struct dm_target *ti)
2730 {
2731 	return dm_suspended_md(dm_table_get_md(ti->table));
2732 }
2733 EXPORT_SYMBOL_GPL(dm_suspended);
2734 
2735 int dm_noflush_suspending(struct dm_target *ti)
2736 {
2737 	return __noflush_suspending(dm_table_get_md(ti->table));
2738 }
2739 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2740 
2741 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2742 					    unsigned integrity, unsigned per_io_data_size)
2743 {
2744 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2745 	unsigned int pool_size = 0;
2746 	unsigned int front_pad;
2747 
2748 	if (!pools)
2749 		return NULL;
2750 
2751 	switch (type) {
2752 	case DM_TYPE_BIO_BASED:
2753 	case DM_TYPE_DAX_BIO_BASED:
2754 		pool_size = dm_get_reserved_bio_based_ios();
2755 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2756 
2757 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2758 		if (!pools->io_pool)
2759 			goto out;
2760 		break;
2761 	case DM_TYPE_REQUEST_BASED:
2762 	case DM_TYPE_MQ_REQUEST_BASED:
2763 		pool_size = dm_get_reserved_rq_based_ios();
2764 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2765 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2766 		break;
2767 	default:
2768 		BUG();
2769 	}
2770 
2771 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2772 	if (!pools->bs)
2773 		goto out;
2774 
2775 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2776 		goto out;
2777 
2778 	return pools;
2779 
2780 out:
2781 	dm_free_md_mempools(pools);
2782 
2783 	return NULL;
2784 }
2785 
2786 void dm_free_md_mempools(struct dm_md_mempools *pools)
2787 {
2788 	if (!pools)
2789 		return;
2790 
2791 	mempool_destroy(pools->io_pool);
2792 
2793 	if (pools->bs)
2794 		bioset_free(pools->bs);
2795 
2796 	kfree(pools);
2797 }
2798 
2799 struct dm_pr {
2800 	u64	old_key;
2801 	u64	new_key;
2802 	u32	flags;
2803 	bool	fail_early;
2804 };
2805 
2806 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2807 		      void *data)
2808 {
2809 	struct mapped_device *md = bdev->bd_disk->private_data;
2810 	struct dm_table *table;
2811 	struct dm_target *ti;
2812 	int ret = -ENOTTY, srcu_idx;
2813 
2814 	table = dm_get_live_table(md, &srcu_idx);
2815 	if (!table || !dm_table_get_size(table))
2816 		goto out;
2817 
2818 	/* We only support devices that have a single target */
2819 	if (dm_table_get_num_targets(table) != 1)
2820 		goto out;
2821 	ti = dm_table_get_target(table, 0);
2822 
2823 	ret = -EINVAL;
2824 	if (!ti->type->iterate_devices)
2825 		goto out;
2826 
2827 	ret = ti->type->iterate_devices(ti, fn, data);
2828 out:
2829 	dm_put_live_table(md, srcu_idx);
2830 	return ret;
2831 }
2832 
2833 /*
2834  * For register / unregister we need to manually call out to every path.
2835  */
2836 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2837 			    sector_t start, sector_t len, void *data)
2838 {
2839 	struct dm_pr *pr = data;
2840 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2841 
2842 	if (!ops || !ops->pr_register)
2843 		return -EOPNOTSUPP;
2844 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2845 }
2846 
2847 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2848 			  u32 flags)
2849 {
2850 	struct dm_pr pr = {
2851 		.old_key	= old_key,
2852 		.new_key	= new_key,
2853 		.flags		= flags,
2854 		.fail_early	= true,
2855 	};
2856 	int ret;
2857 
2858 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2859 	if (ret && new_key) {
2860 		/* unregister all paths if we failed to register any path */
2861 		pr.old_key = new_key;
2862 		pr.new_key = 0;
2863 		pr.flags = 0;
2864 		pr.fail_early = false;
2865 		dm_call_pr(bdev, __dm_pr_register, &pr);
2866 	}
2867 
2868 	return ret;
2869 }
2870 
2871 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2872 			 u32 flags)
2873 {
2874 	struct mapped_device *md = bdev->bd_disk->private_data;
2875 	const struct pr_ops *ops;
2876 	fmode_t mode;
2877 	int r;
2878 
2879 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2880 	if (r < 0)
2881 		return r;
2882 
2883 	ops = bdev->bd_disk->fops->pr_ops;
2884 	if (ops && ops->pr_reserve)
2885 		r = ops->pr_reserve(bdev, key, type, flags);
2886 	else
2887 		r = -EOPNOTSUPP;
2888 
2889 	bdput(bdev);
2890 	return r;
2891 }
2892 
2893 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2894 {
2895 	struct mapped_device *md = bdev->bd_disk->private_data;
2896 	const struct pr_ops *ops;
2897 	fmode_t mode;
2898 	int r;
2899 
2900 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2901 	if (r < 0)
2902 		return r;
2903 
2904 	ops = bdev->bd_disk->fops->pr_ops;
2905 	if (ops && ops->pr_release)
2906 		r = ops->pr_release(bdev, key, type);
2907 	else
2908 		r = -EOPNOTSUPP;
2909 
2910 	bdput(bdev);
2911 	return r;
2912 }
2913 
2914 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2915 			 enum pr_type type, bool abort)
2916 {
2917 	struct mapped_device *md = bdev->bd_disk->private_data;
2918 	const struct pr_ops *ops;
2919 	fmode_t mode;
2920 	int r;
2921 
2922 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2923 	if (r < 0)
2924 		return r;
2925 
2926 	ops = bdev->bd_disk->fops->pr_ops;
2927 	if (ops && ops->pr_preempt)
2928 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2929 	else
2930 		r = -EOPNOTSUPP;
2931 
2932 	bdput(bdev);
2933 	return r;
2934 }
2935 
2936 static int dm_pr_clear(struct block_device *bdev, u64 key)
2937 {
2938 	struct mapped_device *md = bdev->bd_disk->private_data;
2939 	const struct pr_ops *ops;
2940 	fmode_t mode;
2941 	int r;
2942 
2943 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2944 	if (r < 0)
2945 		return r;
2946 
2947 	ops = bdev->bd_disk->fops->pr_ops;
2948 	if (ops && ops->pr_clear)
2949 		r = ops->pr_clear(bdev, key);
2950 	else
2951 		r = -EOPNOTSUPP;
2952 
2953 	bdput(bdev);
2954 	return r;
2955 }
2956 
2957 static const struct pr_ops dm_pr_ops = {
2958 	.pr_register	= dm_pr_register,
2959 	.pr_reserve	= dm_pr_reserve,
2960 	.pr_release	= dm_pr_release,
2961 	.pr_preempt	= dm_pr_preempt,
2962 	.pr_clear	= dm_pr_clear,
2963 };
2964 
2965 static const struct block_device_operations dm_blk_dops = {
2966 	.open = dm_blk_open,
2967 	.release = dm_blk_close,
2968 	.ioctl = dm_blk_ioctl,
2969 	.getgeo = dm_blk_getgeo,
2970 	.pr_ops = &dm_pr_ops,
2971 	.owner = THIS_MODULE
2972 };
2973 
2974 static const struct dax_operations dm_dax_ops = {
2975 	.direct_access = dm_dax_direct_access,
2976 	.copy_from_iter = dm_dax_copy_from_iter,
2977 };
2978 
2979 /*
2980  * module hooks
2981  */
2982 module_init(dm_init);
2983 module_exit(dm_exit);
2984 
2985 module_param(major, uint, 0);
2986 MODULE_PARM_DESC(major, "The major number of the device mapper");
2987 
2988 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2989 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2990 
2991 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2992 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2993 
2994 MODULE_DESCRIPTION(DM_NAME " driver");
2995 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2996 MODULE_LICENSE("GPL");
2997