xref: /openbmc/linux/drivers/md/dm.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 	struct dm_stats_aux *stats_aux = &io->stats_aux;
498 	unsigned long start_time = io->start_time;
499 	struct mapped_device *md = io->md;
500 	struct bio *bio = io->orig_bio;
501 	unsigned int sectors;
502 
503 	/*
504 	 * If REQ_PREFLUSH set, don't account payload, it will be
505 	 * submitted (and accounted) after this flush completes.
506 	 */
507 	if (bio_is_flush_with_data(bio))
508 		sectors = 0;
509 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 		sectors = bio_sectors(bio);
511 	else
512 		sectors = io->sectors;
513 
514 	if (!end)
515 		bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors,
518 				 start_time);
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&md->stats))) {
522 		sector_t sector;
523 
524 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio->bi_iter.bi_sector;
526 		else
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    sector, sectors,
531 				    end, start_time, stats_aux);
532 	}
533 }
534 
535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 	tio = clone_to_tio(clone);
579 	tio->flags = 0;
580 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 	tio->io = NULL;
582 
583 	io = container_of(tio, struct dm_io, tio);
584 	io->magic = DM_IO_MAGIC;
585 	io->status = BLK_STS_OK;
586 
587 	/* one ref is for submission, the other is for completion */
588 	atomic_set(&io->io_count, 2);
589 	this_cpu_inc(*md->pending_io);
590 	io->orig_bio = bio;
591 	io->md = md;
592 	spin_lock_init(&io->lock);
593 	io->start_time = jiffies;
594 	io->flags = 0;
595 
596 	if (static_branch_unlikely(&stats_enabled))
597 		dm_stats_record_start(&md->stats, &io->stats_aux);
598 
599 	return io;
600 }
601 
602 static void free_io(struct dm_io *io)
603 {
604 	bio_put(&io->tio.clone);
605 }
606 
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 	struct mapped_device *md = ci->io->md;
611 	struct dm_target_io *tio;
612 	struct bio *clone;
613 
614 	if (!ci->io->tio.io) {
615 		/* the dm_target_io embedded in ci->io is available */
616 		tio = &ci->io->tio;
617 		/* alloc_io() already initialized embedded clone */
618 		clone = &tio->clone;
619 	} else {
620 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 					&md->mempools->bs);
622 		if (!clone)
623 			return NULL;
624 
625 		/* REQ_DM_POLL_LIST shouldn't be inherited */
626 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 
628 		tio = clone_to_tio(clone);
629 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 	}
631 
632 	tio->magic = DM_TIO_MAGIC;
633 	tio->io = ci->io;
634 	tio->ti = ti;
635 	tio->target_bio_nr = target_bio_nr;
636 	tio->len_ptr = len;
637 	tio->old_sector = 0;
638 
639 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
640 	clone->bi_bdev = md->disk->part0;
641 	if (unlikely(ti->needs_bio_set_dev))
642 		bio_set_dev(clone, md->disk->part0);
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 					int *srcu_idx, blk_opf_t bio_opf)
715 {
716 	if (bio_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 blk_opf_t bio_opf)
724 {
725 	if (bio_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static struct table_device *open_table_device(struct mapped_device *md,
737 		dev_t dev, blk_mode_t mode)
738 {
739 	struct table_device *td;
740 	struct block_device *bdev;
741 	u64 part_off;
742 	int r;
743 
744 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 	if (!td)
746 		return ERR_PTR(-ENOMEM);
747 	refcount_set(&td->count, 1);
748 
749 	bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL);
750 	if (IS_ERR(bdev)) {
751 		r = PTR_ERR(bdev);
752 		goto out_free_td;
753 	}
754 
755 	/*
756 	 * We can be called before the dm disk is added.  In that case we can't
757 	 * register the holder relation here.  It will be done once add_disk was
758 	 * called.
759 	 */
760 	if (md->disk->slave_dir) {
761 		r = bd_link_disk_holder(bdev, md->disk);
762 		if (r)
763 			goto out_blkdev_put;
764 	}
765 
766 	td->dm_dev.mode = mode;
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 	format_dev_t(td->dm_dev.name, dev);
770 	list_add(&td->list, &md->table_devices);
771 	return td;
772 
773 out_blkdev_put:
774 	blkdev_put(bdev, _dm_claim_ptr);
775 out_free_td:
776 	kfree(td);
777 	return ERR_PTR(r);
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (md->disk->slave_dir)
786 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 	blkdev_put(td->dm_dev.bdev, _dm_claim_ptr);
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      blk_mode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 /*
1076  * The queue_limits are only valid as long as you have a reference
1077  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078  */
1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080 {
1081 	return &md->queue->limits;
1082 }
1083 
1084 void disable_discard(struct mapped_device *md)
1085 {
1086 	struct queue_limits *limits = dm_get_queue_limits(md);
1087 
1088 	/* device doesn't really support DISCARD, disable it */
1089 	limits->max_discard_sectors = 0;
1090 }
1091 
1092 void disable_write_zeroes(struct mapped_device *md)
1093 {
1094 	struct queue_limits *limits = dm_get_queue_limits(md);
1095 
1096 	/* device doesn't really support WRITE ZEROES, disable it */
1097 	limits->max_write_zeroes_sectors = 0;
1098 }
1099 
1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101 {
1102 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103 }
1104 
1105 static void clone_endio(struct bio *bio)
1106 {
1107 	blk_status_t error = bio->bi_status;
1108 	struct dm_target_io *tio = clone_to_tio(bio);
1109 	struct dm_target *ti = tio->ti;
1110 	dm_endio_fn endio = ti->type->end_io;
1111 	struct dm_io *io = tio->io;
1112 	struct mapped_device *md = io->md;
1113 
1114 	if (unlikely(error == BLK_STS_TARGET)) {
1115 		if (bio_op(bio) == REQ_OP_DISCARD &&
1116 		    !bdev_max_discard_sectors(bio->bi_bdev))
1117 			disable_discard(md);
1118 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120 			disable_write_zeroes(md);
1121 	}
1122 
1123 	if (static_branch_unlikely(&zoned_enabled) &&
1124 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125 		dm_zone_endio(io, bio);
1126 
1127 	if (endio) {
1128 		int r = endio(ti, bio, &error);
1129 
1130 		switch (r) {
1131 		case DM_ENDIO_REQUEUE:
1132 			if (static_branch_unlikely(&zoned_enabled)) {
1133 				/*
1134 				 * Requeuing writes to a sequential zone of a zoned
1135 				 * target will break the sequential write pattern:
1136 				 * fail such IO.
1137 				 */
1138 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139 					error = BLK_STS_IOERR;
1140 				else
1141 					error = BLK_STS_DM_REQUEUE;
1142 			} else
1143 				error = BLK_STS_DM_REQUEUE;
1144 			fallthrough;
1145 		case DM_ENDIO_DONE:
1146 			break;
1147 		case DM_ENDIO_INCOMPLETE:
1148 			/* The target will handle the io */
1149 			return;
1150 		default:
1151 			DMCRIT("unimplemented target endio return value: %d", r);
1152 			BUG();
1153 		}
1154 	}
1155 
1156 	if (static_branch_unlikely(&swap_bios_enabled) &&
1157 	    unlikely(swap_bios_limit(ti, bio)))
1158 		up(&md->swap_bios_semaphore);
1159 
1160 	free_tio(bio);
1161 	dm_io_dec_pending(io, error);
1162 }
1163 
1164 /*
1165  * Return maximum size of I/O possible at the supplied sector up to the current
1166  * target boundary.
1167  */
1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169 						  sector_t target_offset)
1170 {
1171 	return ti->len - target_offset;
1172 }
1173 
1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175 			     unsigned int max_granularity,
1176 			     unsigned int max_sectors)
1177 {
1178 	sector_t target_offset = dm_target_offset(ti, sector);
1179 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180 
1181 	/*
1182 	 * Does the target need to split IO even further?
1183 	 * - varied (per target) IO splitting is a tenet of DM; this
1184 	 *   explains why stacked chunk_sectors based splitting via
1185 	 *   bio_split_to_limits() isn't possible here.
1186 	 */
1187 	if (!max_granularity)
1188 		return len;
1189 	return min_t(sector_t, len,
1190 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1192 }
1193 
1194 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195 {
1196 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197 }
1198 
1199 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200 {
1201 	if (len > UINT_MAX) {
1202 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203 		      (unsigned long long)len, UINT_MAX);
1204 		ti->error = "Maximum size of target IO is too large";
1205 		return -EINVAL;
1206 	}
1207 
1208 	ti->max_io_len = (uint32_t) len;
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213 
1214 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215 						sector_t sector, int *srcu_idx)
1216 	__acquires(md->io_barrier)
1217 {
1218 	struct dm_table *map;
1219 	struct dm_target *ti;
1220 
1221 	map = dm_get_live_table(md, srcu_idx);
1222 	if (!map)
1223 		return NULL;
1224 
1225 	ti = dm_table_find_target(map, sector);
1226 	if (!ti)
1227 		return NULL;
1228 
1229 	return ti;
1230 }
1231 
1232 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234 		pfn_t *pfn)
1235 {
1236 	struct mapped_device *md = dax_get_private(dax_dev);
1237 	sector_t sector = pgoff * PAGE_SECTORS;
1238 	struct dm_target *ti;
1239 	long len, ret = -EIO;
1240 	int srcu_idx;
1241 
1242 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243 
1244 	if (!ti)
1245 		goto out;
1246 	if (!ti->type->direct_access)
1247 		goto out;
1248 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249 	if (len < 1)
1250 		goto out;
1251 	nr_pages = min(len, nr_pages);
1252 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253 
1254  out:
1255 	dm_put_live_table(md, srcu_idx);
1256 
1257 	return ret;
1258 }
1259 
1260 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261 				  size_t nr_pages)
1262 {
1263 	struct mapped_device *md = dax_get_private(dax_dev);
1264 	sector_t sector = pgoff * PAGE_SECTORS;
1265 	struct dm_target *ti;
1266 	int ret = -EIO;
1267 	int srcu_idx;
1268 
1269 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270 
1271 	if (!ti)
1272 		goto out;
1273 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274 		/*
1275 		 * ->zero_page_range() is mandatory dax operation. If we are
1276 		 *  here, something is wrong.
1277 		 */
1278 		goto out;
1279 	}
1280 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281  out:
1282 	dm_put_live_table(md, srcu_idx);
1283 
1284 	return ret;
1285 }
1286 
1287 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288 		void *addr, size_t bytes, struct iov_iter *i)
1289 {
1290 	struct mapped_device *md = dax_get_private(dax_dev);
1291 	sector_t sector = pgoff * PAGE_SECTORS;
1292 	struct dm_target *ti;
1293 	int srcu_idx;
1294 	long ret = 0;
1295 
1296 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297 	if (!ti || !ti->type->dax_recovery_write)
1298 		goto out;
1299 
1300 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301 out:
1302 	dm_put_live_table(md, srcu_idx);
1303 	return ret;
1304 }
1305 
1306 /*
1307  * A target may call dm_accept_partial_bio only from the map routine.  It is
1308  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310  * __send_duplicate_bios().
1311  *
1312  * dm_accept_partial_bio informs the dm that the target only wants to process
1313  * additional n_sectors sectors of the bio and the rest of the data should be
1314  * sent in a next bio.
1315  *
1316  * A diagram that explains the arithmetics:
1317  * +--------------------+---------------+-------+
1318  * |         1          |       2       |   3   |
1319  * +--------------------+---------------+-------+
1320  *
1321  * <-------------- *tio->len_ptr --------------->
1322  *                      <----- bio_sectors ----->
1323  *                      <-- n_sectors -->
1324  *
1325  * Region 1 was already iterated over with bio_advance or similar function.
1326  *	(it may be empty if the target doesn't use bio_advance)
1327  * Region 2 is the remaining bio size that the target wants to process.
1328  *	(it may be empty if region 1 is non-empty, although there is no reason
1329  *	 to make it empty)
1330  * The target requires that region 3 is to be sent in the next bio.
1331  *
1332  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333  * the partially processed part (the sum of regions 1+2) must be the same for all
1334  * copies of the bio.
1335  */
1336 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337 {
1338 	struct dm_target_io *tio = clone_to_tio(bio);
1339 	struct dm_io *io = tio->io;
1340 	unsigned int bio_sectors = bio_sectors(bio);
1341 
1342 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345 	BUG_ON(bio_sectors > *tio->len_ptr);
1346 	BUG_ON(n_sectors > bio_sectors);
1347 
1348 	*tio->len_ptr -= bio_sectors - n_sectors;
1349 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350 
1351 	/*
1352 	 * __split_and_process_bio() may have already saved mapped part
1353 	 * for accounting but it is being reduced so update accordingly.
1354 	 */
1355 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356 	io->sectors = n_sectors;
1357 	io->sector_offset = bio_sectors(io->orig_bio);
1358 }
1359 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360 
1361 /*
1362  * @clone: clone bio that DM core passed to target's .map function
1363  * @tgt_clone: clone of @clone bio that target needs submitted
1364  *
1365  * Targets should use this interface to submit bios they take
1366  * ownership of when returning DM_MAPIO_SUBMITTED.
1367  *
1368  * Target should also enable ti->accounts_remapped_io
1369  */
1370 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371 {
1372 	struct dm_target_io *tio = clone_to_tio(clone);
1373 	struct dm_io *io = tio->io;
1374 
1375 	/* establish bio that will get submitted */
1376 	if (!tgt_clone)
1377 		tgt_clone = clone;
1378 
1379 	/*
1380 	 * Account io->origin_bio to DM dev on behalf of target
1381 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382 	 */
1383 	dm_start_io_acct(io, clone);
1384 
1385 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386 			      tio->old_sector);
1387 	submit_bio_noacct(tgt_clone);
1388 }
1389 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390 
1391 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392 {
1393 	mutex_lock(&md->swap_bios_lock);
1394 	while (latch < md->swap_bios) {
1395 		cond_resched();
1396 		down(&md->swap_bios_semaphore);
1397 		md->swap_bios--;
1398 	}
1399 	while (latch > md->swap_bios) {
1400 		cond_resched();
1401 		up(&md->swap_bios_semaphore);
1402 		md->swap_bios++;
1403 	}
1404 	mutex_unlock(&md->swap_bios_lock);
1405 }
1406 
1407 static void __map_bio(struct bio *clone)
1408 {
1409 	struct dm_target_io *tio = clone_to_tio(clone);
1410 	struct dm_target *ti = tio->ti;
1411 	struct dm_io *io = tio->io;
1412 	struct mapped_device *md = io->md;
1413 	int r;
1414 
1415 	clone->bi_end_io = clone_endio;
1416 
1417 	/*
1418 	 * Map the clone.
1419 	 */
1420 	tio->old_sector = clone->bi_iter.bi_sector;
1421 
1422 	if (static_branch_unlikely(&swap_bios_enabled) &&
1423 	    unlikely(swap_bios_limit(ti, clone))) {
1424 		int latch = get_swap_bios();
1425 
1426 		if (unlikely(latch != md->swap_bios))
1427 			__set_swap_bios_limit(md, latch);
1428 		down(&md->swap_bios_semaphore);
1429 	}
1430 
1431 	if (static_branch_unlikely(&zoned_enabled)) {
1432 		/*
1433 		 * Check if the IO needs a special mapping due to zone append
1434 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1435 		 * calls the target map operation.
1436 		 */
1437 		if (unlikely(dm_emulate_zone_append(md)))
1438 			r = dm_zone_map_bio(tio);
1439 		else
1440 			r = ti->type->map(ti, clone);
1441 	} else
1442 		r = ti->type->map(ti, clone);
1443 
1444 	switch (r) {
1445 	case DM_MAPIO_SUBMITTED:
1446 		/* target has assumed ownership of this io */
1447 		if (!ti->accounts_remapped_io)
1448 			dm_start_io_acct(io, clone);
1449 		break;
1450 	case DM_MAPIO_REMAPPED:
1451 		dm_submit_bio_remap(clone, NULL);
1452 		break;
1453 	case DM_MAPIO_KILL:
1454 	case DM_MAPIO_REQUEUE:
1455 		if (static_branch_unlikely(&swap_bios_enabled) &&
1456 		    unlikely(swap_bios_limit(ti, clone)))
1457 			up(&md->swap_bios_semaphore);
1458 		free_tio(clone);
1459 		if (r == DM_MAPIO_KILL)
1460 			dm_io_dec_pending(io, BLK_STS_IOERR);
1461 		else
1462 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1463 		break;
1464 	default:
1465 		DMCRIT("unimplemented target map return value: %d", r);
1466 		BUG();
1467 	}
1468 }
1469 
1470 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1471 {
1472 	struct dm_io *io = ci->io;
1473 
1474 	if (ci->sector_count > len) {
1475 		/*
1476 		 * Split needed, save the mapped part for accounting.
1477 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1478 		 */
1479 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1480 		io->sectors = len;
1481 		io->sector_offset = bio_sectors(ci->bio);
1482 	}
1483 }
1484 
1485 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1486 				struct dm_target *ti, unsigned int num_bios,
1487 				unsigned *len)
1488 {
1489 	struct bio *bio;
1490 	int try;
1491 
1492 	for (try = 0; try < 2; try++) {
1493 		int bio_nr;
1494 
1495 		if (try)
1496 			mutex_lock(&ci->io->md->table_devices_lock);
1497 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1498 			bio = alloc_tio(ci, ti, bio_nr, len,
1499 					try ? GFP_NOIO : GFP_NOWAIT);
1500 			if (!bio)
1501 				break;
1502 
1503 			bio_list_add(blist, bio);
1504 		}
1505 		if (try)
1506 			mutex_unlock(&ci->io->md->table_devices_lock);
1507 		if (bio_nr == num_bios)
1508 			return;
1509 
1510 		while ((bio = bio_list_pop(blist)))
1511 			free_tio(bio);
1512 	}
1513 }
1514 
1515 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1516 				 unsigned int num_bios, unsigned int *len)
1517 {
1518 	struct bio_list blist = BIO_EMPTY_LIST;
1519 	struct bio *clone;
1520 	unsigned int ret = 0;
1521 
1522 	switch (num_bios) {
1523 	case 0:
1524 		break;
1525 	case 1:
1526 		if (len)
1527 			setup_split_accounting(ci, *len);
1528 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1529 		__map_bio(clone);
1530 		ret = 1;
1531 		break;
1532 	default:
1533 		if (len)
1534 			setup_split_accounting(ci, *len);
1535 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1536 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1537 		while ((clone = bio_list_pop(&blist))) {
1538 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1539 			__map_bio(clone);
1540 			ret += 1;
1541 		}
1542 		break;
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static void __send_empty_flush(struct clone_info *ci)
1549 {
1550 	struct dm_table *t = ci->map;
1551 	struct bio flush_bio;
1552 
1553 	/*
1554 	 * Use an on-stack bio for this, it's safe since we don't
1555 	 * need to reference it after submit. It's just used as
1556 	 * the basis for the clone(s).
1557 	 */
1558 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1559 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1560 
1561 	ci->bio = &flush_bio;
1562 	ci->sector_count = 0;
1563 	ci->io->tio.clone.bi_iter.bi_size = 0;
1564 
1565 	for (unsigned int i = 0; i < t->num_targets; i++) {
1566 		unsigned int bios;
1567 		struct dm_target *ti = dm_table_get_target(t, i);
1568 
1569 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1570 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1571 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1572 	}
1573 
1574 	/*
1575 	 * alloc_io() takes one extra reference for submission, so the
1576 	 * reference won't reach 0 without the following subtraction
1577 	 */
1578 	atomic_sub(1, &ci->io->io_count);
1579 
1580 	bio_uninit(ci->bio);
1581 }
1582 
1583 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1584 					unsigned int num_bios,
1585 					unsigned int max_granularity,
1586 					unsigned int max_sectors)
1587 {
1588 	unsigned int len, bios;
1589 
1590 	len = min_t(sector_t, ci->sector_count,
1591 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1592 
1593 	atomic_add(num_bios, &ci->io->io_count);
1594 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1595 	/*
1596 	 * alloc_io() takes one extra reference for submission, so the
1597 	 * reference won't reach 0 without the following (+1) subtraction
1598 	 */
1599 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1600 
1601 	ci->sector += len;
1602 	ci->sector_count -= len;
1603 }
1604 
1605 static bool is_abnormal_io(struct bio *bio)
1606 {
1607 	enum req_op op = bio_op(bio);
1608 
1609 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1610 		switch (op) {
1611 		case REQ_OP_DISCARD:
1612 		case REQ_OP_SECURE_ERASE:
1613 		case REQ_OP_WRITE_ZEROES:
1614 			return true;
1615 		default:
1616 			break;
1617 		}
1618 	}
1619 
1620 	return false;
1621 }
1622 
1623 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1624 					  struct dm_target *ti)
1625 {
1626 	unsigned int num_bios = 0;
1627 	unsigned int max_granularity = 0;
1628 	unsigned int max_sectors = 0;
1629 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1630 
1631 	switch (bio_op(ci->bio)) {
1632 	case REQ_OP_DISCARD:
1633 		num_bios = ti->num_discard_bios;
1634 		max_sectors = limits->max_discard_sectors;
1635 		if (ti->max_discard_granularity)
1636 			max_granularity = max_sectors;
1637 		break;
1638 	case REQ_OP_SECURE_ERASE:
1639 		num_bios = ti->num_secure_erase_bios;
1640 		max_sectors = limits->max_secure_erase_sectors;
1641 		if (ti->max_secure_erase_granularity)
1642 			max_granularity = max_sectors;
1643 		break;
1644 	case REQ_OP_WRITE_ZEROES:
1645 		num_bios = ti->num_write_zeroes_bios;
1646 		max_sectors = limits->max_write_zeroes_sectors;
1647 		if (ti->max_write_zeroes_granularity)
1648 			max_granularity = max_sectors;
1649 		break;
1650 	default:
1651 		break;
1652 	}
1653 
1654 	/*
1655 	 * Even though the device advertised support for this type of
1656 	 * request, that does not mean every target supports it, and
1657 	 * reconfiguration might also have changed that since the
1658 	 * check was performed.
1659 	 */
1660 	if (unlikely(!num_bios))
1661 		return BLK_STS_NOTSUPP;
1662 
1663 	__send_changing_extent_only(ci, ti, num_bios,
1664 				    max_granularity, max_sectors);
1665 	return BLK_STS_OK;
1666 }
1667 
1668 /*
1669  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1670  * associated with this bio, and this bio's bi_private needs to be
1671  * stored in dm_io->data before the reuse.
1672  *
1673  * bio->bi_private is owned by fs or upper layer, so block layer won't
1674  * touch it after splitting. Meantime it won't be changed by anyone after
1675  * bio is submitted. So this reuse is safe.
1676  */
1677 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1678 {
1679 	return (struct dm_io **)&bio->bi_private;
1680 }
1681 
1682 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1683 {
1684 	struct dm_io **head = dm_poll_list_head(bio);
1685 
1686 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1687 		bio->bi_opf |= REQ_DM_POLL_LIST;
1688 		/*
1689 		 * Save .bi_private into dm_io, so that we can reuse
1690 		 * .bi_private as dm_io list head for storing dm_io list
1691 		 */
1692 		io->data = bio->bi_private;
1693 
1694 		/* tell block layer to poll for completion */
1695 		bio->bi_cookie = ~BLK_QC_T_NONE;
1696 
1697 		io->next = NULL;
1698 	} else {
1699 		/*
1700 		 * bio recursed due to split, reuse original poll list,
1701 		 * and save bio->bi_private too.
1702 		 */
1703 		io->data = (*head)->data;
1704 		io->next = *head;
1705 	}
1706 
1707 	*head = io;
1708 }
1709 
1710 /*
1711  * Select the correct strategy for processing a non-flush bio.
1712  */
1713 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1714 {
1715 	struct bio *clone;
1716 	struct dm_target *ti;
1717 	unsigned int len;
1718 
1719 	ti = dm_table_find_target(ci->map, ci->sector);
1720 	if (unlikely(!ti))
1721 		return BLK_STS_IOERR;
1722 
1723 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1724 	    unlikely(!dm_target_supports_nowait(ti->type)))
1725 		return BLK_STS_NOTSUPP;
1726 
1727 	if (unlikely(ci->is_abnormal_io))
1728 		return __process_abnormal_io(ci, ti);
1729 
1730 	/*
1731 	 * Only support bio polling for normal IO, and the target io is
1732 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1733 	 */
1734 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1735 
1736 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1737 	setup_split_accounting(ci, len);
1738 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1739 	__map_bio(clone);
1740 
1741 	ci->sector += len;
1742 	ci->sector_count -= len;
1743 
1744 	return BLK_STS_OK;
1745 }
1746 
1747 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1748 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1749 {
1750 	ci->map = map;
1751 	ci->io = alloc_io(md, bio);
1752 	ci->bio = bio;
1753 	ci->is_abnormal_io = is_abnormal;
1754 	ci->submit_as_polled = false;
1755 	ci->sector = bio->bi_iter.bi_sector;
1756 	ci->sector_count = bio_sectors(bio);
1757 
1758 	/* Shouldn't happen but sector_count was being set to 0 so... */
1759 	if (static_branch_unlikely(&zoned_enabled) &&
1760 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1761 		ci->sector_count = 0;
1762 }
1763 
1764 /*
1765  * Entry point to split a bio into clones and submit them to the targets.
1766  */
1767 static void dm_split_and_process_bio(struct mapped_device *md,
1768 				     struct dm_table *map, struct bio *bio)
1769 {
1770 	struct clone_info ci;
1771 	struct dm_io *io;
1772 	blk_status_t error = BLK_STS_OK;
1773 	bool is_abnormal;
1774 
1775 	is_abnormal = is_abnormal_io(bio);
1776 	if (unlikely(is_abnormal)) {
1777 		/*
1778 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1779 		 * otherwise associated queue_limits won't be imposed.
1780 		 */
1781 		bio = bio_split_to_limits(bio);
1782 		if (!bio)
1783 			return;
1784 	}
1785 
1786 	init_clone_info(&ci, md, map, bio, is_abnormal);
1787 	io = ci.io;
1788 
1789 	if (bio->bi_opf & REQ_PREFLUSH) {
1790 		__send_empty_flush(&ci);
1791 		/* dm_io_complete submits any data associated with flush */
1792 		goto out;
1793 	}
1794 
1795 	error = __split_and_process_bio(&ci);
1796 	if (error || !ci.sector_count)
1797 		goto out;
1798 	/*
1799 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1800 	 * *after* bios already submitted have been completely processed.
1801 	 */
1802 	bio_trim(bio, io->sectors, ci.sector_count);
1803 	trace_block_split(bio, bio->bi_iter.bi_sector);
1804 	bio_inc_remaining(bio);
1805 	submit_bio_noacct(bio);
1806 out:
1807 	/*
1808 	 * Drop the extra reference count for non-POLLED bio, and hold one
1809 	 * reference for POLLED bio, which will be released in dm_poll_bio
1810 	 *
1811 	 * Add every dm_io instance into the dm_io list head which is stored
1812 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1813 	 */
1814 	if (error || !ci.submit_as_polled) {
1815 		/*
1816 		 * In case of submission failure, the extra reference for
1817 		 * submitting io isn't consumed yet
1818 		 */
1819 		if (error)
1820 			atomic_dec(&io->io_count);
1821 		dm_io_dec_pending(io, error);
1822 	} else
1823 		dm_queue_poll_io(bio, io);
1824 }
1825 
1826 static void dm_submit_bio(struct bio *bio)
1827 {
1828 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1829 	int srcu_idx;
1830 	struct dm_table *map;
1831 	blk_opf_t bio_opf = bio->bi_opf;
1832 
1833 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1834 
1835 	/* If suspended, or map not yet available, queue this IO for later */
1836 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1837 	    unlikely(!map)) {
1838 		if (bio->bi_opf & REQ_NOWAIT)
1839 			bio_wouldblock_error(bio);
1840 		else if (bio->bi_opf & REQ_RAHEAD)
1841 			bio_io_error(bio);
1842 		else
1843 			queue_io(md, bio);
1844 		goto out;
1845 	}
1846 
1847 	dm_split_and_process_bio(md, map, bio);
1848 out:
1849 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1850 }
1851 
1852 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1853 			  unsigned int flags)
1854 {
1855 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1856 
1857 	/* don't poll if the mapped io is done */
1858 	if (atomic_read(&io->io_count) > 1)
1859 		bio_poll(&io->tio.clone, iob, flags);
1860 
1861 	/* bio_poll holds the last reference */
1862 	return atomic_read(&io->io_count) == 1;
1863 }
1864 
1865 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1866 		       unsigned int flags)
1867 {
1868 	struct dm_io **head = dm_poll_list_head(bio);
1869 	struct dm_io *list = *head;
1870 	struct dm_io *tmp = NULL;
1871 	struct dm_io *curr, *next;
1872 
1873 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1874 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1875 		return 0;
1876 
1877 	WARN_ON_ONCE(!list);
1878 
1879 	/*
1880 	 * Restore .bi_private before possibly completing dm_io.
1881 	 *
1882 	 * bio_poll() is only possible once @bio has been completely
1883 	 * submitted via submit_bio_noacct()'s depth-first submission.
1884 	 * So there is no dm_queue_poll_io() race associated with
1885 	 * clearing REQ_DM_POLL_LIST here.
1886 	 */
1887 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1888 	bio->bi_private = list->data;
1889 
1890 	for (curr = list, next = curr->next; curr; curr = next, next =
1891 			curr ? curr->next : NULL) {
1892 		if (dm_poll_dm_io(curr, iob, flags)) {
1893 			/*
1894 			 * clone_endio() has already occurred, so no
1895 			 * error handling is needed here.
1896 			 */
1897 			__dm_io_dec_pending(curr);
1898 		} else {
1899 			curr->next = tmp;
1900 			tmp = curr;
1901 		}
1902 	}
1903 
1904 	/* Not done? */
1905 	if (tmp) {
1906 		bio->bi_opf |= REQ_DM_POLL_LIST;
1907 		/* Reset bio->bi_private to dm_io list head */
1908 		*head = tmp;
1909 		return 0;
1910 	}
1911 	return 1;
1912 }
1913 
1914 /*
1915  *---------------------------------------------------------------
1916  * An IDR is used to keep track of allocated minor numbers.
1917  *---------------------------------------------------------------
1918  */
1919 static void free_minor(int minor)
1920 {
1921 	spin_lock(&_minor_lock);
1922 	idr_remove(&_minor_idr, minor);
1923 	spin_unlock(&_minor_lock);
1924 }
1925 
1926 /*
1927  * See if the device with a specific minor # is free.
1928  */
1929 static int specific_minor(int minor)
1930 {
1931 	int r;
1932 
1933 	if (minor >= (1 << MINORBITS))
1934 		return -EINVAL;
1935 
1936 	idr_preload(GFP_KERNEL);
1937 	spin_lock(&_minor_lock);
1938 
1939 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1940 
1941 	spin_unlock(&_minor_lock);
1942 	idr_preload_end();
1943 	if (r < 0)
1944 		return r == -ENOSPC ? -EBUSY : r;
1945 	return 0;
1946 }
1947 
1948 static int next_free_minor(int *minor)
1949 {
1950 	int r;
1951 
1952 	idr_preload(GFP_KERNEL);
1953 	spin_lock(&_minor_lock);
1954 
1955 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1956 
1957 	spin_unlock(&_minor_lock);
1958 	idr_preload_end();
1959 	if (r < 0)
1960 		return r;
1961 	*minor = r;
1962 	return 0;
1963 }
1964 
1965 static const struct block_device_operations dm_blk_dops;
1966 static const struct block_device_operations dm_rq_blk_dops;
1967 static const struct dax_operations dm_dax_ops;
1968 
1969 static void dm_wq_work(struct work_struct *work);
1970 
1971 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1972 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1973 {
1974 	dm_destroy_crypto_profile(q->crypto_profile);
1975 }
1976 
1977 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1978 
1979 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1980 {
1981 }
1982 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1983 
1984 static void cleanup_mapped_device(struct mapped_device *md)
1985 {
1986 	if (md->wq)
1987 		destroy_workqueue(md->wq);
1988 	dm_free_md_mempools(md->mempools);
1989 
1990 	if (md->dax_dev) {
1991 		dax_remove_host(md->disk);
1992 		kill_dax(md->dax_dev);
1993 		put_dax(md->dax_dev);
1994 		md->dax_dev = NULL;
1995 	}
1996 
1997 	dm_cleanup_zoned_dev(md);
1998 	if (md->disk) {
1999 		spin_lock(&_minor_lock);
2000 		md->disk->private_data = NULL;
2001 		spin_unlock(&_minor_lock);
2002 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2003 			struct table_device *td;
2004 
2005 			dm_sysfs_exit(md);
2006 			list_for_each_entry(td, &md->table_devices, list) {
2007 				bd_unlink_disk_holder(td->dm_dev.bdev,
2008 						      md->disk);
2009 			}
2010 
2011 			/*
2012 			 * Hold lock to make sure del_gendisk() won't concurrent
2013 			 * with open/close_table_device().
2014 			 */
2015 			mutex_lock(&md->table_devices_lock);
2016 			del_gendisk(md->disk);
2017 			mutex_unlock(&md->table_devices_lock);
2018 		}
2019 		dm_queue_destroy_crypto_profile(md->queue);
2020 		put_disk(md->disk);
2021 	}
2022 
2023 	if (md->pending_io) {
2024 		free_percpu(md->pending_io);
2025 		md->pending_io = NULL;
2026 	}
2027 
2028 	cleanup_srcu_struct(&md->io_barrier);
2029 
2030 	mutex_destroy(&md->suspend_lock);
2031 	mutex_destroy(&md->type_lock);
2032 	mutex_destroy(&md->table_devices_lock);
2033 	mutex_destroy(&md->swap_bios_lock);
2034 
2035 	dm_mq_cleanup_mapped_device(md);
2036 }
2037 
2038 /*
2039  * Allocate and initialise a blank device with a given minor.
2040  */
2041 static struct mapped_device *alloc_dev(int minor)
2042 {
2043 	int r, numa_node_id = dm_get_numa_node();
2044 	struct mapped_device *md;
2045 	void *old_md;
2046 
2047 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2048 	if (!md) {
2049 		DMERR("unable to allocate device, out of memory.");
2050 		return NULL;
2051 	}
2052 
2053 	if (!try_module_get(THIS_MODULE))
2054 		goto bad_module_get;
2055 
2056 	/* get a minor number for the dev */
2057 	if (minor == DM_ANY_MINOR)
2058 		r = next_free_minor(&minor);
2059 	else
2060 		r = specific_minor(minor);
2061 	if (r < 0)
2062 		goto bad_minor;
2063 
2064 	r = init_srcu_struct(&md->io_barrier);
2065 	if (r < 0)
2066 		goto bad_io_barrier;
2067 
2068 	md->numa_node_id = numa_node_id;
2069 	md->init_tio_pdu = false;
2070 	md->type = DM_TYPE_NONE;
2071 	mutex_init(&md->suspend_lock);
2072 	mutex_init(&md->type_lock);
2073 	mutex_init(&md->table_devices_lock);
2074 	spin_lock_init(&md->deferred_lock);
2075 	atomic_set(&md->holders, 1);
2076 	atomic_set(&md->open_count, 0);
2077 	atomic_set(&md->event_nr, 0);
2078 	atomic_set(&md->uevent_seq, 0);
2079 	INIT_LIST_HEAD(&md->uevent_list);
2080 	INIT_LIST_HEAD(&md->table_devices);
2081 	spin_lock_init(&md->uevent_lock);
2082 
2083 	/*
2084 	 * default to bio-based until DM table is loaded and md->type
2085 	 * established. If request-based table is loaded: blk-mq will
2086 	 * override accordingly.
2087 	 */
2088 	md->disk = blk_alloc_disk(md->numa_node_id);
2089 	if (!md->disk)
2090 		goto bad;
2091 	md->queue = md->disk->queue;
2092 
2093 	init_waitqueue_head(&md->wait);
2094 	INIT_WORK(&md->work, dm_wq_work);
2095 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2096 	init_waitqueue_head(&md->eventq);
2097 	init_completion(&md->kobj_holder.completion);
2098 
2099 	md->requeue_list = NULL;
2100 	md->swap_bios = get_swap_bios();
2101 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2102 	mutex_init(&md->swap_bios_lock);
2103 
2104 	md->disk->major = _major;
2105 	md->disk->first_minor = minor;
2106 	md->disk->minors = 1;
2107 	md->disk->flags |= GENHD_FL_NO_PART;
2108 	md->disk->fops = &dm_blk_dops;
2109 	md->disk->private_data = md;
2110 	sprintf(md->disk->disk_name, "dm-%d", minor);
2111 
2112 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2113 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2114 		if (IS_ERR(md->dax_dev)) {
2115 			md->dax_dev = NULL;
2116 			goto bad;
2117 		}
2118 		set_dax_nocache(md->dax_dev);
2119 		set_dax_nomc(md->dax_dev);
2120 		if (dax_add_host(md->dax_dev, md->disk))
2121 			goto bad;
2122 	}
2123 
2124 	format_dev_t(md->name, MKDEV(_major, minor));
2125 
2126 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2127 	if (!md->wq)
2128 		goto bad;
2129 
2130 	md->pending_io = alloc_percpu(unsigned long);
2131 	if (!md->pending_io)
2132 		goto bad;
2133 
2134 	r = dm_stats_init(&md->stats);
2135 	if (r < 0)
2136 		goto bad;
2137 
2138 	/* Populate the mapping, nobody knows we exist yet */
2139 	spin_lock(&_minor_lock);
2140 	old_md = idr_replace(&_minor_idr, md, minor);
2141 	spin_unlock(&_minor_lock);
2142 
2143 	BUG_ON(old_md != MINOR_ALLOCED);
2144 
2145 	return md;
2146 
2147 bad:
2148 	cleanup_mapped_device(md);
2149 bad_io_barrier:
2150 	free_minor(minor);
2151 bad_minor:
2152 	module_put(THIS_MODULE);
2153 bad_module_get:
2154 	kvfree(md);
2155 	return NULL;
2156 }
2157 
2158 static void unlock_fs(struct mapped_device *md);
2159 
2160 static void free_dev(struct mapped_device *md)
2161 {
2162 	int minor = MINOR(disk_devt(md->disk));
2163 
2164 	unlock_fs(md);
2165 
2166 	cleanup_mapped_device(md);
2167 
2168 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2169 	dm_stats_cleanup(&md->stats);
2170 	free_minor(minor);
2171 
2172 	module_put(THIS_MODULE);
2173 	kvfree(md);
2174 }
2175 
2176 /*
2177  * Bind a table to the device.
2178  */
2179 static void event_callback(void *context)
2180 {
2181 	unsigned long flags;
2182 	LIST_HEAD(uevents);
2183 	struct mapped_device *md = context;
2184 
2185 	spin_lock_irqsave(&md->uevent_lock, flags);
2186 	list_splice_init(&md->uevent_list, &uevents);
2187 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2188 
2189 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2190 
2191 	atomic_inc(&md->event_nr);
2192 	wake_up(&md->eventq);
2193 	dm_issue_global_event();
2194 }
2195 
2196 /*
2197  * Returns old map, which caller must destroy.
2198  */
2199 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2200 			       struct queue_limits *limits)
2201 {
2202 	struct dm_table *old_map;
2203 	sector_t size;
2204 	int ret;
2205 
2206 	lockdep_assert_held(&md->suspend_lock);
2207 
2208 	size = dm_table_get_size(t);
2209 
2210 	/*
2211 	 * Wipe any geometry if the size of the table changed.
2212 	 */
2213 	if (size != dm_get_size(md))
2214 		memset(&md->geometry, 0, sizeof(md->geometry));
2215 
2216 	set_capacity(md->disk, size);
2217 
2218 	dm_table_event_callback(t, event_callback, md);
2219 
2220 	if (dm_table_request_based(t)) {
2221 		/*
2222 		 * Leverage the fact that request-based DM targets are
2223 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2224 		 */
2225 		md->immutable_target = dm_table_get_immutable_target(t);
2226 
2227 		/*
2228 		 * There is no need to reload with request-based dm because the
2229 		 * size of front_pad doesn't change.
2230 		 *
2231 		 * Note for future: If you are to reload bioset, prep-ed
2232 		 * requests in the queue may refer to bio from the old bioset,
2233 		 * so you must walk through the queue to unprep.
2234 		 */
2235 		if (!md->mempools) {
2236 			md->mempools = t->mempools;
2237 			t->mempools = NULL;
2238 		}
2239 	} else {
2240 		/*
2241 		 * The md may already have mempools that need changing.
2242 		 * If so, reload bioset because front_pad may have changed
2243 		 * because a different table was loaded.
2244 		 */
2245 		dm_free_md_mempools(md->mempools);
2246 		md->mempools = t->mempools;
2247 		t->mempools = NULL;
2248 	}
2249 
2250 	ret = dm_table_set_restrictions(t, md->queue, limits);
2251 	if (ret) {
2252 		old_map = ERR_PTR(ret);
2253 		goto out;
2254 	}
2255 
2256 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2257 	rcu_assign_pointer(md->map, (void *)t);
2258 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2259 
2260 	if (old_map)
2261 		dm_sync_table(md);
2262 out:
2263 	return old_map;
2264 }
2265 
2266 /*
2267  * Returns unbound table for the caller to free.
2268  */
2269 static struct dm_table *__unbind(struct mapped_device *md)
2270 {
2271 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2272 
2273 	if (!map)
2274 		return NULL;
2275 
2276 	dm_table_event_callback(map, NULL, NULL);
2277 	RCU_INIT_POINTER(md->map, NULL);
2278 	dm_sync_table(md);
2279 
2280 	return map;
2281 }
2282 
2283 /*
2284  * Constructor for a new device.
2285  */
2286 int dm_create(int minor, struct mapped_device **result)
2287 {
2288 	struct mapped_device *md;
2289 
2290 	md = alloc_dev(minor);
2291 	if (!md)
2292 		return -ENXIO;
2293 
2294 	dm_ima_reset_data(md);
2295 
2296 	*result = md;
2297 	return 0;
2298 }
2299 
2300 /*
2301  * Functions to manage md->type.
2302  * All are required to hold md->type_lock.
2303  */
2304 void dm_lock_md_type(struct mapped_device *md)
2305 {
2306 	mutex_lock(&md->type_lock);
2307 }
2308 
2309 void dm_unlock_md_type(struct mapped_device *md)
2310 {
2311 	mutex_unlock(&md->type_lock);
2312 }
2313 
2314 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2315 {
2316 	BUG_ON(!mutex_is_locked(&md->type_lock));
2317 	md->type = type;
2318 }
2319 
2320 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2321 {
2322 	return md->type;
2323 }
2324 
2325 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2326 {
2327 	return md->immutable_target_type;
2328 }
2329 
2330 /*
2331  * Setup the DM device's queue based on md's type
2332  */
2333 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2334 {
2335 	enum dm_queue_mode type = dm_table_get_type(t);
2336 	struct queue_limits limits;
2337 	struct table_device *td;
2338 	int r;
2339 
2340 	switch (type) {
2341 	case DM_TYPE_REQUEST_BASED:
2342 		md->disk->fops = &dm_rq_blk_dops;
2343 		r = dm_mq_init_request_queue(md, t);
2344 		if (r) {
2345 			DMERR("Cannot initialize queue for request-based dm mapped device");
2346 			return r;
2347 		}
2348 		break;
2349 	case DM_TYPE_BIO_BASED:
2350 	case DM_TYPE_DAX_BIO_BASED:
2351 		break;
2352 	case DM_TYPE_NONE:
2353 		WARN_ON_ONCE(true);
2354 		break;
2355 	}
2356 
2357 	r = dm_calculate_queue_limits(t, &limits);
2358 	if (r) {
2359 		DMERR("Cannot calculate initial queue limits");
2360 		return r;
2361 	}
2362 	r = dm_table_set_restrictions(t, md->queue, &limits);
2363 	if (r)
2364 		return r;
2365 
2366 	/*
2367 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2368 	 * with open_table_device() and close_table_device().
2369 	 */
2370 	mutex_lock(&md->table_devices_lock);
2371 	r = add_disk(md->disk);
2372 	mutex_unlock(&md->table_devices_lock);
2373 	if (r)
2374 		return r;
2375 
2376 	/*
2377 	 * Register the holder relationship for devices added before the disk
2378 	 * was live.
2379 	 */
2380 	list_for_each_entry(td, &md->table_devices, list) {
2381 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2382 		if (r)
2383 			goto out_undo_holders;
2384 	}
2385 
2386 	r = dm_sysfs_init(md);
2387 	if (r)
2388 		goto out_undo_holders;
2389 
2390 	md->type = type;
2391 	return 0;
2392 
2393 out_undo_holders:
2394 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2395 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2396 	mutex_lock(&md->table_devices_lock);
2397 	del_gendisk(md->disk);
2398 	mutex_unlock(&md->table_devices_lock);
2399 	return r;
2400 }
2401 
2402 struct mapped_device *dm_get_md(dev_t dev)
2403 {
2404 	struct mapped_device *md;
2405 	unsigned int minor = MINOR(dev);
2406 
2407 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2408 		return NULL;
2409 
2410 	spin_lock(&_minor_lock);
2411 
2412 	md = idr_find(&_minor_idr, minor);
2413 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2414 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2415 		md = NULL;
2416 		goto out;
2417 	}
2418 	dm_get(md);
2419 out:
2420 	spin_unlock(&_minor_lock);
2421 
2422 	return md;
2423 }
2424 EXPORT_SYMBOL_GPL(dm_get_md);
2425 
2426 void *dm_get_mdptr(struct mapped_device *md)
2427 {
2428 	return md->interface_ptr;
2429 }
2430 
2431 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2432 {
2433 	md->interface_ptr = ptr;
2434 }
2435 
2436 void dm_get(struct mapped_device *md)
2437 {
2438 	atomic_inc(&md->holders);
2439 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2440 }
2441 
2442 int dm_hold(struct mapped_device *md)
2443 {
2444 	spin_lock(&_minor_lock);
2445 	if (test_bit(DMF_FREEING, &md->flags)) {
2446 		spin_unlock(&_minor_lock);
2447 		return -EBUSY;
2448 	}
2449 	dm_get(md);
2450 	spin_unlock(&_minor_lock);
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL_GPL(dm_hold);
2454 
2455 const char *dm_device_name(struct mapped_device *md)
2456 {
2457 	return md->name;
2458 }
2459 EXPORT_SYMBOL_GPL(dm_device_name);
2460 
2461 static void __dm_destroy(struct mapped_device *md, bool wait)
2462 {
2463 	struct dm_table *map;
2464 	int srcu_idx;
2465 
2466 	might_sleep();
2467 
2468 	spin_lock(&_minor_lock);
2469 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2470 	set_bit(DMF_FREEING, &md->flags);
2471 	spin_unlock(&_minor_lock);
2472 
2473 	blk_mark_disk_dead(md->disk);
2474 
2475 	/*
2476 	 * Take suspend_lock so that presuspend and postsuspend methods
2477 	 * do not race with internal suspend.
2478 	 */
2479 	mutex_lock(&md->suspend_lock);
2480 	map = dm_get_live_table(md, &srcu_idx);
2481 	if (!dm_suspended_md(md)) {
2482 		dm_table_presuspend_targets(map);
2483 		set_bit(DMF_SUSPENDED, &md->flags);
2484 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2485 		dm_table_postsuspend_targets(map);
2486 	}
2487 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2488 	dm_put_live_table(md, srcu_idx);
2489 	mutex_unlock(&md->suspend_lock);
2490 
2491 	/*
2492 	 * Rare, but there may be I/O requests still going to complete,
2493 	 * for example.  Wait for all references to disappear.
2494 	 * No one should increment the reference count of the mapped_device,
2495 	 * after the mapped_device state becomes DMF_FREEING.
2496 	 */
2497 	if (wait)
2498 		while (atomic_read(&md->holders))
2499 			fsleep(1000);
2500 	else if (atomic_read(&md->holders))
2501 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2502 		       dm_device_name(md), atomic_read(&md->holders));
2503 
2504 	dm_table_destroy(__unbind(md));
2505 	free_dev(md);
2506 }
2507 
2508 void dm_destroy(struct mapped_device *md)
2509 {
2510 	__dm_destroy(md, true);
2511 }
2512 
2513 void dm_destroy_immediate(struct mapped_device *md)
2514 {
2515 	__dm_destroy(md, false);
2516 }
2517 
2518 void dm_put(struct mapped_device *md)
2519 {
2520 	atomic_dec(&md->holders);
2521 }
2522 EXPORT_SYMBOL_GPL(dm_put);
2523 
2524 static bool dm_in_flight_bios(struct mapped_device *md)
2525 {
2526 	int cpu;
2527 	unsigned long sum = 0;
2528 
2529 	for_each_possible_cpu(cpu)
2530 		sum += *per_cpu_ptr(md->pending_io, cpu);
2531 
2532 	return sum != 0;
2533 }
2534 
2535 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2536 {
2537 	int r = 0;
2538 	DEFINE_WAIT(wait);
2539 
2540 	while (true) {
2541 		prepare_to_wait(&md->wait, &wait, task_state);
2542 
2543 		if (!dm_in_flight_bios(md))
2544 			break;
2545 
2546 		if (signal_pending_state(task_state, current)) {
2547 			r = -EINTR;
2548 			break;
2549 		}
2550 
2551 		io_schedule();
2552 	}
2553 	finish_wait(&md->wait, &wait);
2554 
2555 	smp_rmb();
2556 
2557 	return r;
2558 }
2559 
2560 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2561 {
2562 	int r = 0;
2563 
2564 	if (!queue_is_mq(md->queue))
2565 		return dm_wait_for_bios_completion(md, task_state);
2566 
2567 	while (true) {
2568 		if (!blk_mq_queue_inflight(md->queue))
2569 			break;
2570 
2571 		if (signal_pending_state(task_state, current)) {
2572 			r = -EINTR;
2573 			break;
2574 		}
2575 
2576 		fsleep(5000);
2577 	}
2578 
2579 	return r;
2580 }
2581 
2582 /*
2583  * Process the deferred bios
2584  */
2585 static void dm_wq_work(struct work_struct *work)
2586 {
2587 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2588 	struct bio *bio;
2589 
2590 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2591 		spin_lock_irq(&md->deferred_lock);
2592 		bio = bio_list_pop(&md->deferred);
2593 		spin_unlock_irq(&md->deferred_lock);
2594 
2595 		if (!bio)
2596 			break;
2597 
2598 		submit_bio_noacct(bio);
2599 		cond_resched();
2600 	}
2601 }
2602 
2603 static void dm_queue_flush(struct mapped_device *md)
2604 {
2605 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2606 	smp_mb__after_atomic();
2607 	queue_work(md->wq, &md->work);
2608 }
2609 
2610 /*
2611  * Swap in a new table, returning the old one for the caller to destroy.
2612  */
2613 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2614 {
2615 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2616 	struct queue_limits limits;
2617 	int r;
2618 
2619 	mutex_lock(&md->suspend_lock);
2620 
2621 	/* device must be suspended */
2622 	if (!dm_suspended_md(md))
2623 		goto out;
2624 
2625 	/*
2626 	 * If the new table has no data devices, retain the existing limits.
2627 	 * This helps multipath with queue_if_no_path if all paths disappear,
2628 	 * then new I/O is queued based on these limits, and then some paths
2629 	 * reappear.
2630 	 */
2631 	if (dm_table_has_no_data_devices(table)) {
2632 		live_map = dm_get_live_table_fast(md);
2633 		if (live_map)
2634 			limits = md->queue->limits;
2635 		dm_put_live_table_fast(md);
2636 	}
2637 
2638 	if (!live_map) {
2639 		r = dm_calculate_queue_limits(table, &limits);
2640 		if (r) {
2641 			map = ERR_PTR(r);
2642 			goto out;
2643 		}
2644 	}
2645 
2646 	map = __bind(md, table, &limits);
2647 	dm_issue_global_event();
2648 
2649 out:
2650 	mutex_unlock(&md->suspend_lock);
2651 	return map;
2652 }
2653 
2654 /*
2655  * Functions to lock and unlock any filesystem running on the
2656  * device.
2657  */
2658 static int lock_fs(struct mapped_device *md)
2659 {
2660 	int r;
2661 
2662 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2663 
2664 	r = freeze_bdev(md->disk->part0);
2665 	if (!r)
2666 		set_bit(DMF_FROZEN, &md->flags);
2667 	return r;
2668 }
2669 
2670 static void unlock_fs(struct mapped_device *md)
2671 {
2672 	if (!test_bit(DMF_FROZEN, &md->flags))
2673 		return;
2674 	thaw_bdev(md->disk->part0);
2675 	clear_bit(DMF_FROZEN, &md->flags);
2676 }
2677 
2678 /*
2679  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2680  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2681  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2682  *
2683  * If __dm_suspend returns 0, the device is completely quiescent
2684  * now. There is no request-processing activity. All new requests
2685  * are being added to md->deferred list.
2686  */
2687 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2688 			unsigned int suspend_flags, unsigned int task_state,
2689 			int dmf_suspended_flag)
2690 {
2691 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2692 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2693 	int r;
2694 
2695 	lockdep_assert_held(&md->suspend_lock);
2696 
2697 	/*
2698 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2699 	 * This flag is cleared before dm_suspend returns.
2700 	 */
2701 	if (noflush)
2702 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2703 	else
2704 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2705 
2706 	/*
2707 	 * This gets reverted if there's an error later and the targets
2708 	 * provide the .presuspend_undo hook.
2709 	 */
2710 	dm_table_presuspend_targets(map);
2711 
2712 	/*
2713 	 * Flush I/O to the device.
2714 	 * Any I/O submitted after lock_fs() may not be flushed.
2715 	 * noflush takes precedence over do_lockfs.
2716 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2717 	 */
2718 	if (!noflush && do_lockfs) {
2719 		r = lock_fs(md);
2720 		if (r) {
2721 			dm_table_presuspend_undo_targets(map);
2722 			return r;
2723 		}
2724 	}
2725 
2726 	/*
2727 	 * Here we must make sure that no processes are submitting requests
2728 	 * to target drivers i.e. no one may be executing
2729 	 * dm_split_and_process_bio from dm_submit_bio.
2730 	 *
2731 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2732 	 * we take the write lock. To prevent any process from reentering
2733 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2734 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2735 	 * flush_workqueue(md->wq).
2736 	 */
2737 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2738 	if (map)
2739 		synchronize_srcu(&md->io_barrier);
2740 
2741 	/*
2742 	 * Stop md->queue before flushing md->wq in case request-based
2743 	 * dm defers requests to md->wq from md->queue.
2744 	 */
2745 	if (dm_request_based(md))
2746 		dm_stop_queue(md->queue);
2747 
2748 	flush_workqueue(md->wq);
2749 
2750 	/*
2751 	 * At this point no more requests are entering target request routines.
2752 	 * We call dm_wait_for_completion to wait for all existing requests
2753 	 * to finish.
2754 	 */
2755 	r = dm_wait_for_completion(md, task_state);
2756 	if (!r)
2757 		set_bit(dmf_suspended_flag, &md->flags);
2758 
2759 	if (noflush)
2760 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2761 	if (map)
2762 		synchronize_srcu(&md->io_barrier);
2763 
2764 	/* were we interrupted ? */
2765 	if (r < 0) {
2766 		dm_queue_flush(md);
2767 
2768 		if (dm_request_based(md))
2769 			dm_start_queue(md->queue);
2770 
2771 		unlock_fs(md);
2772 		dm_table_presuspend_undo_targets(map);
2773 		/* pushback list is already flushed, so skip flush */
2774 	}
2775 
2776 	return r;
2777 }
2778 
2779 /*
2780  * We need to be able to change a mapping table under a mounted
2781  * filesystem.  For example we might want to move some data in
2782  * the background.  Before the table can be swapped with
2783  * dm_bind_table, dm_suspend must be called to flush any in
2784  * flight bios and ensure that any further io gets deferred.
2785  */
2786 /*
2787  * Suspend mechanism in request-based dm.
2788  *
2789  * 1. Flush all I/Os by lock_fs() if needed.
2790  * 2. Stop dispatching any I/O by stopping the request_queue.
2791  * 3. Wait for all in-flight I/Os to be completed or requeued.
2792  *
2793  * To abort suspend, start the request_queue.
2794  */
2795 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2796 {
2797 	struct dm_table *map = NULL;
2798 	int r = 0;
2799 
2800 retry:
2801 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2802 
2803 	if (dm_suspended_md(md)) {
2804 		r = -EINVAL;
2805 		goto out_unlock;
2806 	}
2807 
2808 	if (dm_suspended_internally_md(md)) {
2809 		/* already internally suspended, wait for internal resume */
2810 		mutex_unlock(&md->suspend_lock);
2811 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2812 		if (r)
2813 			return r;
2814 		goto retry;
2815 	}
2816 
2817 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2818 	if (!map) {
2819 		/* avoid deadlock with fs/namespace.c:do_mount() */
2820 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2821 	}
2822 
2823 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2824 	if (r)
2825 		goto out_unlock;
2826 
2827 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2828 	dm_table_postsuspend_targets(map);
2829 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2830 
2831 out_unlock:
2832 	mutex_unlock(&md->suspend_lock);
2833 	return r;
2834 }
2835 
2836 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2837 {
2838 	if (map) {
2839 		int r = dm_table_resume_targets(map);
2840 
2841 		if (r)
2842 			return r;
2843 	}
2844 
2845 	dm_queue_flush(md);
2846 
2847 	/*
2848 	 * Flushing deferred I/Os must be done after targets are resumed
2849 	 * so that mapping of targets can work correctly.
2850 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2851 	 */
2852 	if (dm_request_based(md))
2853 		dm_start_queue(md->queue);
2854 
2855 	unlock_fs(md);
2856 
2857 	return 0;
2858 }
2859 
2860 int dm_resume(struct mapped_device *md)
2861 {
2862 	int r;
2863 	struct dm_table *map = NULL;
2864 
2865 retry:
2866 	r = -EINVAL;
2867 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2868 
2869 	if (!dm_suspended_md(md))
2870 		goto out;
2871 
2872 	if (dm_suspended_internally_md(md)) {
2873 		/* already internally suspended, wait for internal resume */
2874 		mutex_unlock(&md->suspend_lock);
2875 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2876 		if (r)
2877 			return r;
2878 		goto retry;
2879 	}
2880 
2881 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2882 	if (!map || !dm_table_get_size(map))
2883 		goto out;
2884 
2885 	r = __dm_resume(md, map);
2886 	if (r)
2887 		goto out;
2888 
2889 	clear_bit(DMF_SUSPENDED, &md->flags);
2890 out:
2891 	mutex_unlock(&md->suspend_lock);
2892 
2893 	return r;
2894 }
2895 
2896 /*
2897  * Internal suspend/resume works like userspace-driven suspend. It waits
2898  * until all bios finish and prevents issuing new bios to the target drivers.
2899  * It may be used only from the kernel.
2900  */
2901 
2902 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2903 {
2904 	struct dm_table *map = NULL;
2905 
2906 	lockdep_assert_held(&md->suspend_lock);
2907 
2908 	if (md->internal_suspend_count++)
2909 		return; /* nested internal suspend */
2910 
2911 	if (dm_suspended_md(md)) {
2912 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2913 		return; /* nest suspend */
2914 	}
2915 
2916 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2917 
2918 	/*
2919 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2920 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2921 	 * would require changing .presuspend to return an error -- avoid this
2922 	 * until there is a need for more elaborate variants of internal suspend.
2923 	 */
2924 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2925 			    DMF_SUSPENDED_INTERNALLY);
2926 
2927 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2928 	dm_table_postsuspend_targets(map);
2929 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2930 }
2931 
2932 static void __dm_internal_resume(struct mapped_device *md)
2933 {
2934 	BUG_ON(!md->internal_suspend_count);
2935 
2936 	if (--md->internal_suspend_count)
2937 		return; /* resume from nested internal suspend */
2938 
2939 	if (dm_suspended_md(md))
2940 		goto done; /* resume from nested suspend */
2941 
2942 	/*
2943 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2944 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2945 	 */
2946 	(void) __dm_resume(md, NULL);
2947 
2948 done:
2949 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2950 	smp_mb__after_atomic();
2951 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2952 }
2953 
2954 void dm_internal_suspend_noflush(struct mapped_device *md)
2955 {
2956 	mutex_lock(&md->suspend_lock);
2957 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2958 	mutex_unlock(&md->suspend_lock);
2959 }
2960 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2961 
2962 void dm_internal_resume(struct mapped_device *md)
2963 {
2964 	mutex_lock(&md->suspend_lock);
2965 	__dm_internal_resume(md);
2966 	mutex_unlock(&md->suspend_lock);
2967 }
2968 EXPORT_SYMBOL_GPL(dm_internal_resume);
2969 
2970 /*
2971  * Fast variants of internal suspend/resume hold md->suspend_lock,
2972  * which prevents interaction with userspace-driven suspend.
2973  */
2974 
2975 void dm_internal_suspend_fast(struct mapped_device *md)
2976 {
2977 	mutex_lock(&md->suspend_lock);
2978 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2979 		return;
2980 
2981 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2982 	synchronize_srcu(&md->io_barrier);
2983 	flush_workqueue(md->wq);
2984 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2985 }
2986 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2987 
2988 void dm_internal_resume_fast(struct mapped_device *md)
2989 {
2990 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2991 		goto done;
2992 
2993 	dm_queue_flush(md);
2994 
2995 done:
2996 	mutex_unlock(&md->suspend_lock);
2997 }
2998 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2999 
3000 /*
3001  *---------------------------------------------------------------
3002  * Event notification.
3003  *---------------------------------------------------------------
3004  */
3005 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3006 		      unsigned int cookie, bool need_resize_uevent)
3007 {
3008 	int r;
3009 	unsigned int noio_flag;
3010 	char udev_cookie[DM_COOKIE_LENGTH];
3011 	char *envp[3] = { NULL, NULL, NULL };
3012 	char **envpp = envp;
3013 	if (cookie) {
3014 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3015 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3016 		*envpp++ = udev_cookie;
3017 	}
3018 	if (need_resize_uevent) {
3019 		*envpp++ = "RESIZE=1";
3020 	}
3021 
3022 	noio_flag = memalloc_noio_save();
3023 
3024 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3025 
3026 	memalloc_noio_restore(noio_flag);
3027 
3028 	return r;
3029 }
3030 
3031 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3032 {
3033 	return atomic_add_return(1, &md->uevent_seq);
3034 }
3035 
3036 uint32_t dm_get_event_nr(struct mapped_device *md)
3037 {
3038 	return atomic_read(&md->event_nr);
3039 }
3040 
3041 int dm_wait_event(struct mapped_device *md, int event_nr)
3042 {
3043 	return wait_event_interruptible(md->eventq,
3044 			(event_nr != atomic_read(&md->event_nr)));
3045 }
3046 
3047 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3048 {
3049 	unsigned long flags;
3050 
3051 	spin_lock_irqsave(&md->uevent_lock, flags);
3052 	list_add(elist, &md->uevent_list);
3053 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3054 }
3055 
3056 /*
3057  * The gendisk is only valid as long as you have a reference
3058  * count on 'md'.
3059  */
3060 struct gendisk *dm_disk(struct mapped_device *md)
3061 {
3062 	return md->disk;
3063 }
3064 EXPORT_SYMBOL_GPL(dm_disk);
3065 
3066 struct kobject *dm_kobject(struct mapped_device *md)
3067 {
3068 	return &md->kobj_holder.kobj;
3069 }
3070 
3071 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3072 {
3073 	struct mapped_device *md;
3074 
3075 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3076 
3077 	spin_lock(&_minor_lock);
3078 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3079 		md = NULL;
3080 		goto out;
3081 	}
3082 	dm_get(md);
3083 out:
3084 	spin_unlock(&_minor_lock);
3085 
3086 	return md;
3087 }
3088 
3089 int dm_suspended_md(struct mapped_device *md)
3090 {
3091 	return test_bit(DMF_SUSPENDED, &md->flags);
3092 }
3093 
3094 static int dm_post_suspending_md(struct mapped_device *md)
3095 {
3096 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3097 }
3098 
3099 int dm_suspended_internally_md(struct mapped_device *md)
3100 {
3101 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3102 }
3103 
3104 int dm_test_deferred_remove_flag(struct mapped_device *md)
3105 {
3106 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3107 }
3108 
3109 int dm_suspended(struct dm_target *ti)
3110 {
3111 	return dm_suspended_md(ti->table->md);
3112 }
3113 EXPORT_SYMBOL_GPL(dm_suspended);
3114 
3115 int dm_post_suspending(struct dm_target *ti)
3116 {
3117 	return dm_post_suspending_md(ti->table->md);
3118 }
3119 EXPORT_SYMBOL_GPL(dm_post_suspending);
3120 
3121 int dm_noflush_suspending(struct dm_target *ti)
3122 {
3123 	return __noflush_suspending(ti->table->md);
3124 }
3125 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3126 
3127 void dm_free_md_mempools(struct dm_md_mempools *pools)
3128 {
3129 	if (!pools)
3130 		return;
3131 
3132 	bioset_exit(&pools->bs);
3133 	bioset_exit(&pools->io_bs);
3134 
3135 	kfree(pools);
3136 }
3137 
3138 struct dm_pr {
3139 	u64	old_key;
3140 	u64	new_key;
3141 	u32	flags;
3142 	bool	abort;
3143 	bool	fail_early;
3144 	int	ret;
3145 	enum pr_type type;
3146 };
3147 
3148 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3149 		      struct dm_pr *pr)
3150 {
3151 	struct mapped_device *md = bdev->bd_disk->private_data;
3152 	struct dm_table *table;
3153 	struct dm_target *ti;
3154 	int ret = -ENOTTY, srcu_idx;
3155 
3156 	table = dm_get_live_table(md, &srcu_idx);
3157 	if (!table || !dm_table_get_size(table))
3158 		goto out;
3159 
3160 	/* We only support devices that have a single target */
3161 	if (table->num_targets != 1)
3162 		goto out;
3163 	ti = dm_table_get_target(table, 0);
3164 
3165 	if (dm_suspended_md(md)) {
3166 		ret = -EAGAIN;
3167 		goto out;
3168 	}
3169 
3170 	ret = -EINVAL;
3171 	if (!ti->type->iterate_devices)
3172 		goto out;
3173 
3174 	ti->type->iterate_devices(ti, fn, pr);
3175 	ret = 0;
3176 out:
3177 	dm_put_live_table(md, srcu_idx);
3178 	return ret;
3179 }
3180 
3181 /*
3182  * For register / unregister we need to manually call out to every path.
3183  */
3184 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3185 			    sector_t start, sector_t len, void *data)
3186 {
3187 	struct dm_pr *pr = data;
3188 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3189 	int ret;
3190 
3191 	if (!ops || !ops->pr_register) {
3192 		pr->ret = -EOPNOTSUPP;
3193 		return -1;
3194 	}
3195 
3196 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3197 	if (!ret)
3198 		return 0;
3199 
3200 	if (!pr->ret)
3201 		pr->ret = ret;
3202 
3203 	if (pr->fail_early)
3204 		return -1;
3205 
3206 	return 0;
3207 }
3208 
3209 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3210 			  u32 flags)
3211 {
3212 	struct dm_pr pr = {
3213 		.old_key	= old_key,
3214 		.new_key	= new_key,
3215 		.flags		= flags,
3216 		.fail_early	= true,
3217 		.ret		= 0,
3218 	};
3219 	int ret;
3220 
3221 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3222 	if (ret) {
3223 		/* Didn't even get to register a path */
3224 		return ret;
3225 	}
3226 
3227 	if (!pr.ret)
3228 		return 0;
3229 	ret = pr.ret;
3230 
3231 	if (!new_key)
3232 		return ret;
3233 
3234 	/* unregister all paths if we failed to register any path */
3235 	pr.old_key = new_key;
3236 	pr.new_key = 0;
3237 	pr.flags = 0;
3238 	pr.fail_early = false;
3239 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3240 	return ret;
3241 }
3242 
3243 
3244 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3245 			   sector_t start, sector_t len, void *data)
3246 {
3247 	struct dm_pr *pr = data;
3248 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3249 
3250 	if (!ops || !ops->pr_reserve) {
3251 		pr->ret = -EOPNOTSUPP;
3252 		return -1;
3253 	}
3254 
3255 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3256 	if (!pr->ret)
3257 		return -1;
3258 
3259 	return 0;
3260 }
3261 
3262 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3263 			 u32 flags)
3264 {
3265 	struct dm_pr pr = {
3266 		.old_key	= key,
3267 		.flags		= flags,
3268 		.type		= type,
3269 		.fail_early	= false,
3270 		.ret		= 0,
3271 	};
3272 	int ret;
3273 
3274 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3275 	if (ret)
3276 		return ret;
3277 
3278 	return pr.ret;
3279 }
3280 
3281 /*
3282  * If there is a non-All Registrants type of reservation, the release must be
3283  * sent down the holding path. For the cases where there is no reservation or
3284  * the path is not the holder the device will also return success, so we must
3285  * try each path to make sure we got the correct path.
3286  */
3287 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3288 			   sector_t start, sector_t len, void *data)
3289 {
3290 	struct dm_pr *pr = data;
3291 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3292 
3293 	if (!ops || !ops->pr_release) {
3294 		pr->ret = -EOPNOTSUPP;
3295 		return -1;
3296 	}
3297 
3298 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3299 	if (pr->ret)
3300 		return -1;
3301 
3302 	return 0;
3303 }
3304 
3305 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3306 {
3307 	struct dm_pr pr = {
3308 		.old_key	= key,
3309 		.type		= type,
3310 		.fail_early	= false,
3311 	};
3312 	int ret;
3313 
3314 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3315 	if (ret)
3316 		return ret;
3317 
3318 	return pr.ret;
3319 }
3320 
3321 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3322 			   sector_t start, sector_t len, void *data)
3323 {
3324 	struct dm_pr *pr = data;
3325 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3326 
3327 	if (!ops || !ops->pr_preempt) {
3328 		pr->ret = -EOPNOTSUPP;
3329 		return -1;
3330 	}
3331 
3332 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3333 				  pr->abort);
3334 	if (!pr->ret)
3335 		return -1;
3336 
3337 	return 0;
3338 }
3339 
3340 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3341 			 enum pr_type type, bool abort)
3342 {
3343 	struct dm_pr pr = {
3344 		.new_key	= new_key,
3345 		.old_key	= old_key,
3346 		.type		= type,
3347 		.fail_early	= false,
3348 	};
3349 	int ret;
3350 
3351 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3352 	if (ret)
3353 		return ret;
3354 
3355 	return pr.ret;
3356 }
3357 
3358 static int dm_pr_clear(struct block_device *bdev, u64 key)
3359 {
3360 	struct mapped_device *md = bdev->bd_disk->private_data;
3361 	const struct pr_ops *ops;
3362 	int r, srcu_idx;
3363 
3364 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3365 	if (r < 0)
3366 		goto out;
3367 
3368 	ops = bdev->bd_disk->fops->pr_ops;
3369 	if (ops && ops->pr_clear)
3370 		r = ops->pr_clear(bdev, key);
3371 	else
3372 		r = -EOPNOTSUPP;
3373 out:
3374 	dm_unprepare_ioctl(md, srcu_idx);
3375 	return r;
3376 }
3377 
3378 static const struct pr_ops dm_pr_ops = {
3379 	.pr_register	= dm_pr_register,
3380 	.pr_reserve	= dm_pr_reserve,
3381 	.pr_release	= dm_pr_release,
3382 	.pr_preempt	= dm_pr_preempt,
3383 	.pr_clear	= dm_pr_clear,
3384 };
3385 
3386 static const struct block_device_operations dm_blk_dops = {
3387 	.submit_bio = dm_submit_bio,
3388 	.poll_bio = dm_poll_bio,
3389 	.open = dm_blk_open,
3390 	.release = dm_blk_close,
3391 	.ioctl = dm_blk_ioctl,
3392 	.getgeo = dm_blk_getgeo,
3393 	.report_zones = dm_blk_report_zones,
3394 	.pr_ops = &dm_pr_ops,
3395 	.owner = THIS_MODULE
3396 };
3397 
3398 static const struct block_device_operations dm_rq_blk_dops = {
3399 	.open = dm_blk_open,
3400 	.release = dm_blk_close,
3401 	.ioctl = dm_blk_ioctl,
3402 	.getgeo = dm_blk_getgeo,
3403 	.pr_ops = &dm_pr_ops,
3404 	.owner = THIS_MODULE
3405 };
3406 
3407 static const struct dax_operations dm_dax_ops = {
3408 	.direct_access = dm_dax_direct_access,
3409 	.zero_page_range = dm_dax_zero_page_range,
3410 	.recovery_write = dm_dax_recovery_write,
3411 };
3412 
3413 /*
3414  * module hooks
3415  */
3416 module_init(dm_init);
3417 module_exit(dm_exit);
3418 
3419 module_param(major, uint, 0);
3420 MODULE_PARM_DESC(major, "The major number of the device mapper");
3421 
3422 module_param(reserved_bio_based_ios, uint, 0644);
3423 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3424 
3425 module_param(dm_numa_node, int, 0644);
3426 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3427 
3428 module_param(swap_bios, int, 0644);
3429 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3430 
3431 MODULE_DESCRIPTION(DM_NAME " driver");
3432 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3433 MODULE_LICENSE("GPL");
3434