xref: /openbmc/linux/drivers/md/dm.c (revision 6846d656)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO.
542 	 */
543 	if (!clone ||
544 	    likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) {
545 		if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
546 			return;
547 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
548 	} else {
549 		unsigned long flags;
550 		if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 			return;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->lock, flags);
554 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 		spin_unlock_irqrestore(&io->lock, flags);
556 	}
557 
558 	__dm_start_io_acct(io, bio);
559 }
560 
561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
562 {
563 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
564 }
565 
566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
567 {
568 	struct dm_io *io;
569 	struct dm_target_io *tio;
570 	struct bio *clone;
571 
572 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
573 
574 	tio = clone_to_tio(clone);
575 	tio->flags = 0;
576 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	this_cpu_inc(*md->pending_io);
584 	io->orig_bio = NULL;
585 	io->md = md;
586 	io->map_task = current;
587 	spin_lock_init(&io->lock);
588 	io->start_time = jiffies;
589 	io->flags = 0;
590 
591 	dm_stats_record_start(&md->stats, &io->stats_aux);
592 
593 	return io;
594 }
595 
596 static void free_io(struct dm_io *io)
597 {
598 	bio_put(&io->tio.clone);
599 }
600 
601 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
602 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
603 {
604 	struct dm_target_io *tio;
605 	struct bio *clone;
606 
607 	if (!ci->io->tio.io) {
608 		/* the dm_target_io embedded in ci->io is available */
609 		tio = &ci->io->tio;
610 		/* alloc_io() already initialized embedded clone */
611 		clone = &tio->clone;
612 	} else {
613 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
614 					gfp_mask, &ci->io->md->bs);
615 		if (!clone)
616 			return NULL;
617 
618 		/* REQ_DM_POLL_LIST shouldn't be inherited */
619 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
620 
621 		tio = clone_to_tio(clone);
622 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
623 	}
624 
625 	tio->magic = DM_TIO_MAGIC;
626 	tio->io = ci->io;
627 	tio->ti = ti;
628 	tio->target_bio_nr = target_bio_nr;
629 	tio->len_ptr = len;
630 	tio->old_sector = 0;
631 
632 	if (len) {
633 		clone->bi_iter.bi_size = to_bytes(*len);
634 		if (bio_integrity(clone))
635 			bio_integrity_trim(clone);
636 	}
637 
638 	return clone;
639 }
640 
641 static void free_tio(struct bio *clone)
642 {
643 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
644 		return;
645 	bio_put(clone);
646 }
647 
648 /*
649  * Add the bio to the list of deferred io.
650  */
651 static void queue_io(struct mapped_device *md, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&md->deferred_lock, flags);
656 	bio_list_add(&md->deferred, bio);
657 	spin_unlock_irqrestore(&md->deferred_lock, flags);
658 	queue_work(md->wq, &md->work);
659 }
660 
661 /*
662  * Everyone (including functions in this file), should use this
663  * function to access the md->map field, and make sure they call
664  * dm_put_live_table() when finished.
665  */
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
667 {
668 	*srcu_idx = srcu_read_lock(&md->io_barrier);
669 
670 	return srcu_dereference(md->map, &md->io_barrier);
671 }
672 
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
674 {
675 	srcu_read_unlock(&md->io_barrier, srcu_idx);
676 }
677 
678 void dm_sync_table(struct mapped_device *md)
679 {
680 	synchronize_srcu(&md->io_barrier);
681 	synchronize_rcu_expedited();
682 }
683 
684 /*
685  * A fast alternative to dm_get_live_table/dm_put_live_table.
686  * The caller must not block between these two functions.
687  */
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
689 {
690 	rcu_read_lock();
691 	return rcu_dereference(md->map);
692 }
693 
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
695 {
696 	rcu_read_unlock();
697 }
698 
699 static char *_dm_claim_ptr = "I belong to device-mapper";
700 
701 /*
702  * Open a table device so we can use it as a map destination.
703  */
704 static int open_table_device(struct table_device *td, dev_t dev,
705 			     struct mapped_device *md)
706 {
707 	struct block_device *bdev;
708 	u64 part_off;
709 	int r;
710 
711 	BUG_ON(td->dm_dev.bdev);
712 
713 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
714 	if (IS_ERR(bdev))
715 		return PTR_ERR(bdev);
716 
717 	r = bd_link_disk_holder(bdev, dm_disk(md));
718 	if (r) {
719 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
720 		return r;
721 	}
722 
723 	td->dm_dev.bdev = bdev;
724 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
725 	return 0;
726 }
727 
728 /*
729  * Close a table device that we've been using.
730  */
731 static void close_table_device(struct table_device *td, struct mapped_device *md)
732 {
733 	if (!td->dm_dev.bdev)
734 		return;
735 
736 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
737 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
738 	put_dax(td->dm_dev.dax_dev);
739 	td->dm_dev.bdev = NULL;
740 	td->dm_dev.dax_dev = NULL;
741 }
742 
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
744 					      fmode_t mode)
745 {
746 	struct table_device *td;
747 
748 	list_for_each_entry(td, l, list)
749 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
750 			return td;
751 
752 	return NULL;
753 }
754 
755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
756 			struct dm_dev **result)
757 {
758 	int r;
759 	struct table_device *td;
760 
761 	mutex_lock(&md->table_devices_lock);
762 	td = find_table_device(&md->table_devices, dev, mode);
763 	if (!td) {
764 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
765 		if (!td) {
766 			mutex_unlock(&md->table_devices_lock);
767 			return -ENOMEM;
768 		}
769 
770 		td->dm_dev.mode = mode;
771 		td->dm_dev.bdev = NULL;
772 
773 		if ((r = open_table_device(td, dev, md))) {
774 			mutex_unlock(&md->table_devices_lock);
775 			kfree(td);
776 			return r;
777 		}
778 
779 		format_dev_t(td->dm_dev.name, dev);
780 
781 		refcount_set(&td->count, 1);
782 		list_add(&td->list, &md->table_devices);
783 	} else {
784 		refcount_inc(&td->count);
785 	}
786 	mutex_unlock(&md->table_devices_lock);
787 
788 	*result = &td->dm_dev;
789 	return 0;
790 }
791 
792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
793 {
794 	struct table_device *td = container_of(d, struct table_device, dm_dev);
795 
796 	mutex_lock(&md->table_devices_lock);
797 	if (refcount_dec_and_test(&td->count)) {
798 		close_table_device(td, md);
799 		list_del(&td->list);
800 		kfree(td);
801 	}
802 	mutex_unlock(&md->table_devices_lock);
803 }
804 
805 static void free_table_devices(struct list_head *devices)
806 {
807 	struct list_head *tmp, *next;
808 
809 	list_for_each_safe(tmp, next, devices) {
810 		struct table_device *td = list_entry(tmp, struct table_device, list);
811 
812 		DMWARN("dm_destroy: %s still exists with %d references",
813 		       td->dm_dev.name, refcount_read(&td->count));
814 		kfree(td);
815 	}
816 }
817 
818 /*
819  * Get the geometry associated with a dm device
820  */
821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
822 {
823 	*geo = md->geometry;
824 
825 	return 0;
826 }
827 
828 /*
829  * Set the geometry of a device.
830  */
831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
834 
835 	if (geo->start > sz) {
836 		DMWARN("Start sector is beyond the geometry limits.");
837 		return -EINVAL;
838 	}
839 
840 	md->geometry = *geo;
841 
842 	return 0;
843 }
844 
845 static int __noflush_suspending(struct mapped_device *md)
846 {
847 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
848 }
849 
850 static void dm_io_complete(struct dm_io *io)
851 {
852 	blk_status_t io_error;
853 	struct mapped_device *md = io->md;
854 	struct bio *bio = io->orig_bio;
855 
856 	if (io->status == BLK_STS_DM_REQUEUE) {
857 		unsigned long flags;
858 		/*
859 		 * Target requested pushing back the I/O.
860 		 */
861 		spin_lock_irqsave(&md->deferred_lock, flags);
862 		if (__noflush_suspending(md) &&
863 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
864 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
865 			bio_list_add_head(&md->deferred, bio);
866 		} else {
867 			/*
868 			 * noflush suspend was interrupted or this is
869 			 * a write to a zoned target.
870 			 */
871 			io->status = BLK_STS_IOERR;
872 		}
873 		spin_unlock_irqrestore(&md->deferred_lock, flags);
874 	}
875 
876 	io_error = io->status;
877 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
878 		dm_end_io_acct(io, bio);
879 	else if (!io_error) {
880 		/*
881 		 * Must handle target that DM_MAPIO_SUBMITTED only to
882 		 * then bio_endio() rather than dm_submit_bio_remap()
883 		 */
884 		__dm_start_io_acct(io, bio);
885 		dm_end_io_acct(io, bio);
886 	}
887 	free_io(io);
888 	smp_wmb();
889 	this_cpu_dec(*md->pending_io);
890 
891 	/* nudge anyone waiting on suspend queue */
892 	if (unlikely(wq_has_sleeper(&md->wait)))
893 		wake_up(&md->wait);
894 
895 	if (io_error == BLK_STS_DM_REQUEUE) {
896 		/*
897 		 * Upper layer won't help us poll split bio, io->orig_bio
898 		 * may only reflect a subset of the pre-split original,
899 		 * so clear REQ_POLLED in case of requeue
900 		 */
901 		bio->bi_opf &= ~REQ_POLLED;
902 		return;
903 	}
904 
905 	if (bio_is_flush_with_data(bio)) {
906 		/*
907 		 * Preflush done for flush with data, reissue
908 		 * without REQ_PREFLUSH.
909 		 */
910 		bio->bi_opf &= ~REQ_PREFLUSH;
911 		queue_io(md, bio);
912 	} else {
913 		/* done with normal IO or empty flush */
914 		if (io_error)
915 			bio->bi_status = io_error;
916 		bio_endio(bio);
917 	}
918 }
919 
920 static inline bool dm_tio_is_normal(struct dm_target_io *tio)
921 {
922 	return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
923 		!dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
924 }
925 
926 /*
927  * Decrements the number of outstanding ios that a bio has been
928  * cloned into, completing the original io if necc.
929  */
930 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
931 {
932 	/* Push-back supersedes any I/O errors */
933 	if (unlikely(error)) {
934 		unsigned long flags;
935 		spin_lock_irqsave(&io->lock, flags);
936 		if (!(io->status == BLK_STS_DM_REQUEUE &&
937 		      __noflush_suspending(io->md)))
938 			io->status = error;
939 		spin_unlock_irqrestore(&io->lock, flags);
940 	}
941 
942 	if (atomic_dec_and_test(&io->io_count))
943 		dm_io_complete(io);
944 }
945 
946 void disable_discard(struct mapped_device *md)
947 {
948 	struct queue_limits *limits = dm_get_queue_limits(md);
949 
950 	/* device doesn't really support DISCARD, disable it */
951 	limits->max_discard_sectors = 0;
952 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
953 }
954 
955 void disable_write_zeroes(struct mapped_device *md)
956 {
957 	struct queue_limits *limits = dm_get_queue_limits(md);
958 
959 	/* device doesn't really support WRITE ZEROES, disable it */
960 	limits->max_write_zeroes_sectors = 0;
961 }
962 
963 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
964 {
965 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
966 }
967 
968 static void clone_endio(struct bio *bio)
969 {
970 	blk_status_t error = bio->bi_status;
971 	struct dm_target_io *tio = clone_to_tio(bio);
972 	struct dm_io *io = tio->io;
973 	struct mapped_device *md = tio->io->md;
974 	dm_endio_fn endio = tio->ti->type->end_io;
975 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
976 
977 	if (unlikely(error == BLK_STS_TARGET)) {
978 		if (bio_op(bio) == REQ_OP_DISCARD &&
979 		    !q->limits.max_discard_sectors)
980 			disable_discard(md);
981 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
982 			 !q->limits.max_write_zeroes_sectors)
983 			disable_write_zeroes(md);
984 	}
985 
986 	if (blk_queue_is_zoned(q))
987 		dm_zone_endio(io, bio);
988 
989 	if (endio) {
990 		int r = endio(tio->ti, bio, &error);
991 		switch (r) {
992 		case DM_ENDIO_REQUEUE:
993 			/*
994 			 * Requeuing writes to a sequential zone of a zoned
995 			 * target will break the sequential write pattern:
996 			 * fail such IO.
997 			 */
998 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
999 				error = BLK_STS_IOERR;
1000 			else
1001 				error = BLK_STS_DM_REQUEUE;
1002 			fallthrough;
1003 		case DM_ENDIO_DONE:
1004 			break;
1005 		case DM_ENDIO_INCOMPLETE:
1006 			/* The target will handle the io */
1007 			return;
1008 		default:
1009 			DMWARN("unimplemented target endio return value: %d", r);
1010 			BUG();
1011 		}
1012 	}
1013 
1014 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1015 		struct mapped_device *md = io->md;
1016 		up(&md->swap_bios_semaphore);
1017 	}
1018 
1019 	free_tio(bio);
1020 	dm_io_dec_pending(io, error);
1021 }
1022 
1023 /*
1024  * Return maximum size of I/O possible at the supplied sector up to the current
1025  * target boundary.
1026  */
1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 						  sector_t target_offset)
1029 {
1030 	return ti->len - target_offset;
1031 }
1032 
1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034 {
1035 	sector_t target_offset = dm_target_offset(ti, sector);
1036 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1037 	sector_t max_len;
1038 
1039 	/*
1040 	 * Does the target need to split IO even further?
1041 	 * - varied (per target) IO splitting is a tenet of DM; this
1042 	 *   explains why stacked chunk_sectors based splitting via
1043 	 *   blk_max_size_offset() isn't possible here. So pass in
1044 	 *   ti->max_io_len to override stacked chunk_sectors.
1045 	 */
1046 	if (ti->max_io_len) {
1047 		max_len = blk_max_size_offset(ti->table->md->queue,
1048 					      target_offset, ti->max_io_len);
1049 		if (len > max_len)
1050 			len = max_len;
1051 	}
1052 
1053 	return len;
1054 }
1055 
1056 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1057 {
1058 	if (len > UINT_MAX) {
1059 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1060 		      (unsigned long long)len, UINT_MAX);
1061 		ti->error = "Maximum size of target IO is too large";
1062 		return -EINVAL;
1063 	}
1064 
1065 	ti->max_io_len = (uint32_t) len;
1066 
1067 	return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1070 
1071 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1072 						sector_t sector, int *srcu_idx)
1073 	__acquires(md->io_barrier)
1074 {
1075 	struct dm_table *map;
1076 	struct dm_target *ti;
1077 
1078 	map = dm_get_live_table(md, srcu_idx);
1079 	if (!map)
1080 		return NULL;
1081 
1082 	ti = dm_table_find_target(map, sector);
1083 	if (!ti)
1084 		return NULL;
1085 
1086 	return ti;
1087 }
1088 
1089 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1090 				 long nr_pages, void **kaddr, pfn_t *pfn)
1091 {
1092 	struct mapped_device *md = dax_get_private(dax_dev);
1093 	sector_t sector = pgoff * PAGE_SECTORS;
1094 	struct dm_target *ti;
1095 	long len, ret = -EIO;
1096 	int srcu_idx;
1097 
1098 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1099 
1100 	if (!ti)
1101 		goto out;
1102 	if (!ti->type->direct_access)
1103 		goto out;
1104 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1105 	if (len < 1)
1106 		goto out;
1107 	nr_pages = min(len, nr_pages);
1108 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1109 
1110  out:
1111 	dm_put_live_table(md, srcu_idx);
1112 
1113 	return ret;
1114 }
1115 
1116 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1117 				  size_t nr_pages)
1118 {
1119 	struct mapped_device *md = dax_get_private(dax_dev);
1120 	sector_t sector = pgoff * PAGE_SECTORS;
1121 	struct dm_target *ti;
1122 	int ret = -EIO;
1123 	int srcu_idx;
1124 
1125 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1126 
1127 	if (!ti)
1128 		goto out;
1129 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1130 		/*
1131 		 * ->zero_page_range() is mandatory dax operation. If we are
1132 		 *  here, something is wrong.
1133 		 */
1134 		goto out;
1135 	}
1136 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1137  out:
1138 	dm_put_live_table(md, srcu_idx);
1139 
1140 	return ret;
1141 }
1142 
1143 /*
1144  * A target may call dm_accept_partial_bio only from the map routine.  It is
1145  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1146  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1147  * __send_duplicate_bios().
1148  *
1149  * dm_accept_partial_bio informs the dm that the target only wants to process
1150  * additional n_sectors sectors of the bio and the rest of the data should be
1151  * sent in a next bio.
1152  *
1153  * A diagram that explains the arithmetics:
1154  * +--------------------+---------------+-------+
1155  * |         1          |       2       |   3   |
1156  * +--------------------+---------------+-------+
1157  *
1158  * <-------------- *tio->len_ptr --------------->
1159  *                      <------- bi_size ------->
1160  *                      <-- n_sectors -->
1161  *
1162  * Region 1 was already iterated over with bio_advance or similar function.
1163  *	(it may be empty if the target doesn't use bio_advance)
1164  * Region 2 is the remaining bio size that the target wants to process.
1165  *	(it may be empty if region 1 is non-empty, although there is no reason
1166  *	 to make it empty)
1167  * The target requires that region 3 is to be sent in the next bio.
1168  *
1169  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1170  * the partially processed part (the sum of regions 1+2) must be the same for all
1171  * copies of the bio.
1172  */
1173 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1174 {
1175 	struct dm_target_io *tio = clone_to_tio(bio);
1176 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1177 
1178 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1179 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1180 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1181 	BUG_ON(bi_size > *tio->len_ptr);
1182 	BUG_ON(n_sectors > bi_size);
1183 
1184 	*tio->len_ptr -= bi_size - n_sectors;
1185 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1186 }
1187 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1188 
1189 static inline void __dm_submit_bio_remap(struct bio *clone,
1190 					 dev_t dev, sector_t old_sector)
1191 {
1192 	trace_block_bio_remap(clone, dev, old_sector);
1193 	submit_bio_noacct(clone);
1194 }
1195 
1196 /*
1197  * @clone: clone bio that DM core passed to target's .map function
1198  * @tgt_clone: clone of @clone bio that target needs submitted
1199  *
1200  * Targets should use this interface to submit bios they take
1201  * ownership of when returning DM_MAPIO_SUBMITTED.
1202  *
1203  * Target should also enable ti->accounts_remapped_io
1204  */
1205 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1206 {
1207 	struct dm_target_io *tio = clone_to_tio(clone);
1208 	struct dm_io *io = tio->io;
1209 
1210 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1211 
1212 	/* establish bio that will get submitted */
1213 	if (!tgt_clone)
1214 		tgt_clone = clone;
1215 
1216 	/*
1217 	 * Account io->origin_bio to DM dev on behalf of target
1218 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1219 	 */
1220 	if (io->map_task == current) {
1221 		/* Still in target's map function */
1222 		dm_io_set_flag(io, DM_IO_START_ACCT);
1223 	} else {
1224 		/*
1225 		 * Called by another thread, managed by DM target,
1226 		 * wait for dm_split_and_process_bio() to store
1227 		 * io->orig_bio
1228 		 */
1229 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1230 			msleep(1);
1231 		dm_start_io_acct(io, clone);
1232 	}
1233 
1234 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1235 			      tio->old_sector);
1236 }
1237 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1238 
1239 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1240 {
1241 	mutex_lock(&md->swap_bios_lock);
1242 	while (latch < md->swap_bios) {
1243 		cond_resched();
1244 		down(&md->swap_bios_semaphore);
1245 		md->swap_bios--;
1246 	}
1247 	while (latch > md->swap_bios) {
1248 		cond_resched();
1249 		up(&md->swap_bios_semaphore);
1250 		md->swap_bios++;
1251 	}
1252 	mutex_unlock(&md->swap_bios_lock);
1253 }
1254 
1255 static void __map_bio(struct bio *clone)
1256 {
1257 	struct dm_target_io *tio = clone_to_tio(clone);
1258 	int r;
1259 	struct dm_io *io = tio->io;
1260 	struct dm_target *ti = tio->ti;
1261 
1262 	clone->bi_end_io = clone_endio;
1263 
1264 	/*
1265 	 * Map the clone.
1266 	 */
1267 	dm_io_inc_pending(io);
1268 	tio->old_sector = clone->bi_iter.bi_sector;
1269 
1270 	if (unlikely(swap_bios_limit(ti, clone))) {
1271 		struct mapped_device *md = io->md;
1272 		int latch = get_swap_bios();
1273 		if (unlikely(latch != md->swap_bios))
1274 			__set_swap_bios_limit(md, latch);
1275 		down(&md->swap_bios_semaphore);
1276 	}
1277 
1278 	/*
1279 	 * Check if the IO needs a special mapping due to zone append emulation
1280 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1281 	 * map operation.
1282 	 */
1283 	if (dm_emulate_zone_append(io->md))
1284 		r = dm_zone_map_bio(tio);
1285 	else
1286 		r = ti->type->map(ti, clone);
1287 
1288 	switch (r) {
1289 	case DM_MAPIO_SUBMITTED:
1290 		/* target has assumed ownership of this io */
1291 		if (!ti->accounts_remapped_io)
1292 			dm_io_set_flag(io, DM_IO_START_ACCT);
1293 		break;
1294 	case DM_MAPIO_REMAPPED:
1295 		/*
1296 		 * the bio has been remapped so dispatch it, but defer
1297 		 * dm_start_io_acct() until after possible bio_split().
1298 		 */
1299 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1300 				      tio->old_sector);
1301 		dm_io_set_flag(io, DM_IO_START_ACCT);
1302 		break;
1303 	case DM_MAPIO_KILL:
1304 	case DM_MAPIO_REQUEUE:
1305 		if (unlikely(swap_bios_limit(ti, clone)))
1306 			up(&io->md->swap_bios_semaphore);
1307 		free_tio(clone);
1308 		if (r == DM_MAPIO_KILL)
1309 			dm_io_dec_pending(io, BLK_STS_IOERR);
1310 		else
1311 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1312 		break;
1313 	default:
1314 		DMWARN("unimplemented target map return value: %d", r);
1315 		BUG();
1316 	}
1317 }
1318 
1319 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1320 				struct dm_target *ti, unsigned num_bios,
1321 				unsigned *len)
1322 {
1323 	struct bio *bio;
1324 	int try;
1325 
1326 	for (try = 0; try < 2; try++) {
1327 		int bio_nr;
1328 
1329 		if (try)
1330 			mutex_lock(&ci->io->md->table_devices_lock);
1331 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1332 			bio = alloc_tio(ci, ti, bio_nr, len,
1333 					try ? GFP_NOIO : GFP_NOWAIT);
1334 			if (!bio)
1335 				break;
1336 
1337 			bio_list_add(blist, bio);
1338 		}
1339 		if (try)
1340 			mutex_unlock(&ci->io->md->table_devices_lock);
1341 		if (bio_nr == num_bios)
1342 			return;
1343 
1344 		while ((bio = bio_list_pop(blist)))
1345 			free_tio(bio);
1346 	}
1347 }
1348 
1349 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350 				  unsigned num_bios, unsigned *len)
1351 {
1352 	struct bio_list blist = BIO_EMPTY_LIST;
1353 	struct bio *clone;
1354 
1355 	switch (num_bios) {
1356 	case 0:
1357 		break;
1358 	case 1:
1359 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1360 		dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1361 		__map_bio(clone);
1362 		break;
1363 	default:
1364 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1365 		while ((clone = bio_list_pop(&blist))) {
1366 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1367 			__map_bio(clone);
1368 		}
1369 		break;
1370 	}
1371 }
1372 
1373 static void __send_empty_flush(struct clone_info *ci)
1374 {
1375 	unsigned target_nr = 0;
1376 	struct dm_target *ti;
1377 	struct bio flush_bio;
1378 
1379 	/*
1380 	 * Use an on-stack bio for this, it's safe since we don't
1381 	 * need to reference it after submit. It's just used as
1382 	 * the basis for the clone(s).
1383 	 */
1384 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1385 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1386 
1387 	ci->bio = &flush_bio;
1388 	ci->sector_count = 0;
1389 
1390 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1391 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1392 
1393 	bio_uninit(ci->bio);
1394 }
1395 
1396 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1397 					unsigned num_bios)
1398 {
1399 	unsigned len;
1400 
1401 	len = min_t(sector_t, ci->sector_count,
1402 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1403 
1404 	/*
1405 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1406 	 * so update clone_info cursor before __send_duplicate_bios().
1407 	 */
1408 	ci->sector += len;
1409 	ci->sector_count -= len;
1410 
1411 	__send_duplicate_bios(ci, ti, num_bios, &len);
1412 }
1413 
1414 static bool is_abnormal_io(struct bio *bio)
1415 {
1416 	bool r = false;
1417 
1418 	switch (bio_op(bio)) {
1419 	case REQ_OP_DISCARD:
1420 	case REQ_OP_SECURE_ERASE:
1421 	case REQ_OP_WRITE_ZEROES:
1422 		r = true;
1423 		break;
1424 	}
1425 
1426 	return r;
1427 }
1428 
1429 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1430 				  int *result)
1431 {
1432 	unsigned num_bios = 0;
1433 
1434 	switch (bio_op(ci->bio)) {
1435 	case REQ_OP_DISCARD:
1436 		num_bios = ti->num_discard_bios;
1437 		break;
1438 	case REQ_OP_SECURE_ERASE:
1439 		num_bios = ti->num_secure_erase_bios;
1440 		break;
1441 	case REQ_OP_WRITE_ZEROES:
1442 		num_bios = ti->num_write_zeroes_bios;
1443 		break;
1444 	default:
1445 		return false;
1446 	}
1447 
1448 	/*
1449 	 * Even though the device advertised support for this type of
1450 	 * request, that does not mean every target supports it, and
1451 	 * reconfiguration might also have changed that since the
1452 	 * check was performed.
1453 	 */
1454 	if (!num_bios)
1455 		*result = -EOPNOTSUPP;
1456 	else {
1457 		__send_changing_extent_only(ci, ti, num_bios);
1458 		*result = 0;
1459 	}
1460 	return true;
1461 }
1462 
1463 /*
1464  * Reuse ->bi_private as hlist head for storing all dm_io instances
1465  * associated with this bio, and this bio's bi_private needs to be
1466  * stored in dm_io->data before the reuse.
1467  *
1468  * bio->bi_private is owned by fs or upper layer, so block layer won't
1469  * touch it after splitting. Meantime it won't be changed by anyone after
1470  * bio is submitted. So this reuse is safe.
1471  */
1472 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1473 {
1474 	return (struct hlist_head *)&bio->bi_private;
1475 }
1476 
1477 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1478 {
1479 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1480 
1481 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1482 		bio->bi_opf |= REQ_DM_POLL_LIST;
1483 		/*
1484 		 * Save .bi_private into dm_io, so that we can reuse
1485 		 * .bi_private as hlist head for storing dm_io list
1486 		 */
1487 		io->data = bio->bi_private;
1488 
1489 		INIT_HLIST_HEAD(head);
1490 
1491 		/* tell block layer to poll for completion */
1492 		bio->bi_cookie = ~BLK_QC_T_NONE;
1493 	} else {
1494 		/*
1495 		 * bio recursed due to split, reuse original poll list,
1496 		 * and save bio->bi_private too.
1497 		 */
1498 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1499 	}
1500 
1501 	hlist_add_head(&io->node, head);
1502 }
1503 
1504 /*
1505  * Select the correct strategy for processing a non-flush bio.
1506  */
1507 static int __split_and_process_bio(struct clone_info *ci)
1508 {
1509 	struct bio *clone;
1510 	struct dm_target *ti;
1511 	unsigned len;
1512 	int r;
1513 
1514 	ti = dm_table_find_target(ci->map, ci->sector);
1515 	if (!ti)
1516 		return -EIO;
1517 
1518 	if (__process_abnormal_io(ci, ti, &r))
1519 		return r;
1520 
1521 	/*
1522 	 * Only support bio polling for normal IO, and the target io is
1523 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1524 	 */
1525 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1526 
1527 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1528 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1529 	__map_bio(clone);
1530 
1531 	ci->sector += len;
1532 	ci->sector_count -= len;
1533 
1534 	return 0;
1535 }
1536 
1537 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1538 			    struct dm_table *map, struct bio *bio)
1539 {
1540 	ci->map = map;
1541 	ci->io = alloc_io(md, bio);
1542 	ci->bio = bio;
1543 	ci->submit_as_polled = false;
1544 	ci->sector = bio->bi_iter.bi_sector;
1545 	ci->sector_count = bio_sectors(bio);
1546 
1547 	/* Shouldn't happen but sector_count was being set to 0 so... */
1548 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1549 		ci->sector_count = 0;
1550 }
1551 
1552 /*
1553  * Entry point to split a bio into clones and submit them to the targets.
1554  */
1555 static void dm_split_and_process_bio(struct mapped_device *md,
1556 				     struct dm_table *map, struct bio *bio)
1557 {
1558 	struct clone_info ci;
1559 	struct bio *orig_bio = NULL;
1560 	int error = 0;
1561 
1562 	init_clone_info(&ci, md, map, bio);
1563 
1564 	if (bio->bi_opf & REQ_PREFLUSH) {
1565 		__send_empty_flush(&ci);
1566 		/* dm_io_complete submits any data associated with flush */
1567 		goto out;
1568 	}
1569 
1570 	error = __split_and_process_bio(&ci);
1571 	ci.io->map_task = NULL;
1572 	if (error || !ci.sector_count)
1573 		goto out;
1574 
1575 	/*
1576 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1577 	 * *after* bios already submitted have been completely processed.
1578 	 * We take a clone of the original to store in ci.io->orig_bio to be
1579 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1580 	 * completion handling.
1581 	 */
1582 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1583 			     GFP_NOIO, &md->queue->bio_split);
1584 	bio_chain(orig_bio, bio);
1585 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1586 	submit_bio_noacct(bio);
1587 out:
1588 	if (!orig_bio)
1589 		orig_bio = bio;
1590 	smp_store_release(&ci.io->orig_bio, orig_bio);
1591 	if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1592 		dm_start_io_acct(ci.io, NULL);
1593 
1594 	/*
1595 	 * Drop the extra reference count for non-POLLED bio, and hold one
1596 	 * reference for POLLED bio, which will be released in dm_poll_bio
1597 	 *
1598 	 * Add every dm_io instance into the hlist_head which is stored in
1599 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1600 	 */
1601 	if (error || !ci.submit_as_polled)
1602 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1603 	else
1604 		dm_queue_poll_io(bio, ci.io);
1605 }
1606 
1607 static void dm_submit_bio(struct bio *bio)
1608 {
1609 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1610 	int srcu_idx;
1611 	struct dm_table *map;
1612 
1613 	map = dm_get_live_table(md, &srcu_idx);
1614 
1615 	/* If suspended, or map not yet available, queue this IO for later */
1616 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1617 	    unlikely(!map)) {
1618 		if (bio->bi_opf & REQ_NOWAIT)
1619 			bio_wouldblock_error(bio);
1620 		else if (bio->bi_opf & REQ_RAHEAD)
1621 			bio_io_error(bio);
1622 		else
1623 			queue_io(md, bio);
1624 		goto out;
1625 	}
1626 
1627 	/*
1628 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1629 	 * otherwise associated queue_limits won't be imposed.
1630 	 */
1631 	if (is_abnormal_io(bio))
1632 		blk_queue_split(&bio);
1633 
1634 	dm_split_and_process_bio(md, map, bio);
1635 out:
1636 	dm_put_live_table(md, srcu_idx);
1637 }
1638 
1639 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1640 			  unsigned int flags)
1641 {
1642 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1643 
1644 	/* don't poll if the mapped io is done */
1645 	if (atomic_read(&io->io_count) > 1)
1646 		bio_poll(&io->tio.clone, iob, flags);
1647 
1648 	/* bio_poll holds the last reference */
1649 	return atomic_read(&io->io_count) == 1;
1650 }
1651 
1652 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1653 		       unsigned int flags)
1654 {
1655 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1656 	struct hlist_head tmp = HLIST_HEAD_INIT;
1657 	struct hlist_node *next;
1658 	struct dm_io *io;
1659 
1660 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1661 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1662 		return 0;
1663 
1664 	WARN_ON_ONCE(hlist_empty(head));
1665 
1666 	hlist_move_list(head, &tmp);
1667 
1668 	/*
1669 	 * Restore .bi_private before possibly completing dm_io.
1670 	 *
1671 	 * bio_poll() is only possible once @bio has been completely
1672 	 * submitted via submit_bio_noacct()'s depth-first submission.
1673 	 * So there is no dm_queue_poll_io() race associated with
1674 	 * clearing REQ_DM_POLL_LIST here.
1675 	 */
1676 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1677 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1678 
1679 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1680 		if (dm_poll_dm_io(io, iob, flags)) {
1681 			hlist_del_init(&io->node);
1682 			/*
1683 			 * clone_endio() has already occurred, so passing
1684 			 * error as 0 here doesn't override io->status
1685 			 */
1686 			dm_io_dec_pending(io, 0);
1687 		}
1688 	}
1689 
1690 	/* Not done? */
1691 	if (!hlist_empty(&tmp)) {
1692 		bio->bi_opf |= REQ_DM_POLL_LIST;
1693 		/* Reset bio->bi_private to dm_io list head */
1694 		hlist_move_list(&tmp, head);
1695 		return 0;
1696 	}
1697 	return 1;
1698 }
1699 
1700 /*-----------------------------------------------------------------
1701  * An IDR is used to keep track of allocated minor numbers.
1702  *---------------------------------------------------------------*/
1703 static void free_minor(int minor)
1704 {
1705 	spin_lock(&_minor_lock);
1706 	idr_remove(&_minor_idr, minor);
1707 	spin_unlock(&_minor_lock);
1708 }
1709 
1710 /*
1711  * See if the device with a specific minor # is free.
1712  */
1713 static int specific_minor(int minor)
1714 {
1715 	int r;
1716 
1717 	if (minor >= (1 << MINORBITS))
1718 		return -EINVAL;
1719 
1720 	idr_preload(GFP_KERNEL);
1721 	spin_lock(&_minor_lock);
1722 
1723 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1724 
1725 	spin_unlock(&_minor_lock);
1726 	idr_preload_end();
1727 	if (r < 0)
1728 		return r == -ENOSPC ? -EBUSY : r;
1729 	return 0;
1730 }
1731 
1732 static int next_free_minor(int *minor)
1733 {
1734 	int r;
1735 
1736 	idr_preload(GFP_KERNEL);
1737 	spin_lock(&_minor_lock);
1738 
1739 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1740 
1741 	spin_unlock(&_minor_lock);
1742 	idr_preload_end();
1743 	if (r < 0)
1744 		return r;
1745 	*minor = r;
1746 	return 0;
1747 }
1748 
1749 static const struct block_device_operations dm_blk_dops;
1750 static const struct block_device_operations dm_rq_blk_dops;
1751 static const struct dax_operations dm_dax_ops;
1752 
1753 static void dm_wq_work(struct work_struct *work);
1754 
1755 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1756 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1757 {
1758 	dm_destroy_crypto_profile(q->crypto_profile);
1759 }
1760 
1761 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1762 
1763 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1764 {
1765 }
1766 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1767 
1768 static void cleanup_mapped_device(struct mapped_device *md)
1769 {
1770 	if (md->wq)
1771 		destroy_workqueue(md->wq);
1772 	bioset_exit(&md->bs);
1773 	bioset_exit(&md->io_bs);
1774 
1775 	if (md->dax_dev) {
1776 		dax_remove_host(md->disk);
1777 		kill_dax(md->dax_dev);
1778 		put_dax(md->dax_dev);
1779 		md->dax_dev = NULL;
1780 	}
1781 
1782 	dm_cleanup_zoned_dev(md);
1783 	if (md->disk) {
1784 		spin_lock(&_minor_lock);
1785 		md->disk->private_data = NULL;
1786 		spin_unlock(&_minor_lock);
1787 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1788 			dm_sysfs_exit(md);
1789 			del_gendisk(md->disk);
1790 		}
1791 		dm_queue_destroy_crypto_profile(md->queue);
1792 		blk_cleanup_disk(md->disk);
1793 	}
1794 
1795 	if (md->pending_io) {
1796 		free_percpu(md->pending_io);
1797 		md->pending_io = NULL;
1798 	}
1799 
1800 	cleanup_srcu_struct(&md->io_barrier);
1801 
1802 	mutex_destroy(&md->suspend_lock);
1803 	mutex_destroy(&md->type_lock);
1804 	mutex_destroy(&md->table_devices_lock);
1805 	mutex_destroy(&md->swap_bios_lock);
1806 
1807 	dm_mq_cleanup_mapped_device(md);
1808 }
1809 
1810 /*
1811  * Allocate and initialise a blank device with a given minor.
1812  */
1813 static struct mapped_device *alloc_dev(int minor)
1814 {
1815 	int r, numa_node_id = dm_get_numa_node();
1816 	struct mapped_device *md;
1817 	void *old_md;
1818 
1819 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1820 	if (!md) {
1821 		DMWARN("unable to allocate device, out of memory.");
1822 		return NULL;
1823 	}
1824 
1825 	if (!try_module_get(THIS_MODULE))
1826 		goto bad_module_get;
1827 
1828 	/* get a minor number for the dev */
1829 	if (minor == DM_ANY_MINOR)
1830 		r = next_free_minor(&minor);
1831 	else
1832 		r = specific_minor(minor);
1833 	if (r < 0)
1834 		goto bad_minor;
1835 
1836 	r = init_srcu_struct(&md->io_barrier);
1837 	if (r < 0)
1838 		goto bad_io_barrier;
1839 
1840 	md->numa_node_id = numa_node_id;
1841 	md->init_tio_pdu = false;
1842 	md->type = DM_TYPE_NONE;
1843 	mutex_init(&md->suspend_lock);
1844 	mutex_init(&md->type_lock);
1845 	mutex_init(&md->table_devices_lock);
1846 	spin_lock_init(&md->deferred_lock);
1847 	atomic_set(&md->holders, 1);
1848 	atomic_set(&md->open_count, 0);
1849 	atomic_set(&md->event_nr, 0);
1850 	atomic_set(&md->uevent_seq, 0);
1851 	INIT_LIST_HEAD(&md->uevent_list);
1852 	INIT_LIST_HEAD(&md->table_devices);
1853 	spin_lock_init(&md->uevent_lock);
1854 
1855 	/*
1856 	 * default to bio-based until DM table is loaded and md->type
1857 	 * established. If request-based table is loaded: blk-mq will
1858 	 * override accordingly.
1859 	 */
1860 	md->disk = blk_alloc_disk(md->numa_node_id);
1861 	if (!md->disk)
1862 		goto bad;
1863 	md->queue = md->disk->queue;
1864 
1865 	init_waitqueue_head(&md->wait);
1866 	INIT_WORK(&md->work, dm_wq_work);
1867 	init_waitqueue_head(&md->eventq);
1868 	init_completion(&md->kobj_holder.completion);
1869 
1870 	md->swap_bios = get_swap_bios();
1871 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1872 	mutex_init(&md->swap_bios_lock);
1873 
1874 	md->disk->major = _major;
1875 	md->disk->first_minor = minor;
1876 	md->disk->minors = 1;
1877 	md->disk->flags |= GENHD_FL_NO_PART;
1878 	md->disk->fops = &dm_blk_dops;
1879 	md->disk->queue = md->queue;
1880 	md->disk->private_data = md;
1881 	sprintf(md->disk->disk_name, "dm-%d", minor);
1882 
1883 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1884 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1885 		if (IS_ERR(md->dax_dev)) {
1886 			md->dax_dev = NULL;
1887 			goto bad;
1888 		}
1889 		set_dax_nocache(md->dax_dev);
1890 		set_dax_nomc(md->dax_dev);
1891 		if (dax_add_host(md->dax_dev, md->disk))
1892 			goto bad;
1893 	}
1894 
1895 	format_dev_t(md->name, MKDEV(_major, minor));
1896 
1897 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1898 	if (!md->wq)
1899 		goto bad;
1900 
1901 	md->pending_io = alloc_percpu(unsigned long);
1902 	if (!md->pending_io)
1903 		goto bad;
1904 
1905 	dm_stats_init(&md->stats);
1906 
1907 	/* Populate the mapping, nobody knows we exist yet */
1908 	spin_lock(&_minor_lock);
1909 	old_md = idr_replace(&_minor_idr, md, minor);
1910 	spin_unlock(&_minor_lock);
1911 
1912 	BUG_ON(old_md != MINOR_ALLOCED);
1913 
1914 	return md;
1915 
1916 bad:
1917 	cleanup_mapped_device(md);
1918 bad_io_barrier:
1919 	free_minor(minor);
1920 bad_minor:
1921 	module_put(THIS_MODULE);
1922 bad_module_get:
1923 	kvfree(md);
1924 	return NULL;
1925 }
1926 
1927 static void unlock_fs(struct mapped_device *md);
1928 
1929 static void free_dev(struct mapped_device *md)
1930 {
1931 	int minor = MINOR(disk_devt(md->disk));
1932 
1933 	unlock_fs(md);
1934 
1935 	cleanup_mapped_device(md);
1936 
1937 	free_table_devices(&md->table_devices);
1938 	dm_stats_cleanup(&md->stats);
1939 	free_minor(minor);
1940 
1941 	module_put(THIS_MODULE);
1942 	kvfree(md);
1943 }
1944 
1945 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1946 {
1947 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1948 	int ret = 0;
1949 
1950 	if (dm_table_bio_based(t)) {
1951 		/*
1952 		 * The md may already have mempools that need changing.
1953 		 * If so, reload bioset because front_pad may have changed
1954 		 * because a different table was loaded.
1955 		 */
1956 		bioset_exit(&md->bs);
1957 		bioset_exit(&md->io_bs);
1958 
1959 	} else if (bioset_initialized(&md->bs)) {
1960 		/*
1961 		 * There's no need to reload with request-based dm
1962 		 * because the size of front_pad doesn't change.
1963 		 * Note for future: If you are to reload bioset,
1964 		 * prep-ed requests in the queue may refer
1965 		 * to bio from the old bioset, so you must walk
1966 		 * through the queue to unprep.
1967 		 */
1968 		goto out;
1969 	}
1970 
1971 	BUG_ON(!p ||
1972 	       bioset_initialized(&md->bs) ||
1973 	       bioset_initialized(&md->io_bs));
1974 
1975 	ret = bioset_init_from_src(&md->bs, &p->bs);
1976 	if (ret)
1977 		goto out;
1978 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1979 	if (ret)
1980 		bioset_exit(&md->bs);
1981 out:
1982 	/* mempool bind completed, no longer need any mempools in the table */
1983 	dm_table_free_md_mempools(t);
1984 	return ret;
1985 }
1986 
1987 /*
1988  * Bind a table to the device.
1989  */
1990 static void event_callback(void *context)
1991 {
1992 	unsigned long flags;
1993 	LIST_HEAD(uevents);
1994 	struct mapped_device *md = (struct mapped_device *) context;
1995 
1996 	spin_lock_irqsave(&md->uevent_lock, flags);
1997 	list_splice_init(&md->uevent_list, &uevents);
1998 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1999 
2000 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2001 
2002 	atomic_inc(&md->event_nr);
2003 	wake_up(&md->eventq);
2004 	dm_issue_global_event();
2005 }
2006 
2007 /*
2008  * Returns old map, which caller must destroy.
2009  */
2010 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2011 			       struct queue_limits *limits)
2012 {
2013 	struct dm_table *old_map;
2014 	sector_t size;
2015 	int ret;
2016 
2017 	lockdep_assert_held(&md->suspend_lock);
2018 
2019 	size = dm_table_get_size(t);
2020 
2021 	/*
2022 	 * Wipe any geometry if the size of the table changed.
2023 	 */
2024 	if (size != dm_get_size(md))
2025 		memset(&md->geometry, 0, sizeof(md->geometry));
2026 
2027 	if (!get_capacity(md->disk))
2028 		set_capacity(md->disk, size);
2029 	else
2030 		set_capacity_and_notify(md->disk, size);
2031 
2032 	dm_table_event_callback(t, event_callback, md);
2033 
2034 	if (dm_table_request_based(t)) {
2035 		/*
2036 		 * Leverage the fact that request-based DM targets are
2037 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2038 		 */
2039 		md->immutable_target = dm_table_get_immutable_target(t);
2040 	}
2041 
2042 	ret = __bind_mempools(md, t);
2043 	if (ret) {
2044 		old_map = ERR_PTR(ret);
2045 		goto out;
2046 	}
2047 
2048 	ret = dm_table_set_restrictions(t, md->queue, limits);
2049 	if (ret) {
2050 		old_map = ERR_PTR(ret);
2051 		goto out;
2052 	}
2053 
2054 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2055 	rcu_assign_pointer(md->map, (void *)t);
2056 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2057 
2058 	if (old_map)
2059 		dm_sync_table(md);
2060 out:
2061 	return old_map;
2062 }
2063 
2064 /*
2065  * Returns unbound table for the caller to free.
2066  */
2067 static struct dm_table *__unbind(struct mapped_device *md)
2068 {
2069 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2070 
2071 	if (!map)
2072 		return NULL;
2073 
2074 	dm_table_event_callback(map, NULL, NULL);
2075 	RCU_INIT_POINTER(md->map, NULL);
2076 	dm_sync_table(md);
2077 
2078 	return map;
2079 }
2080 
2081 /*
2082  * Constructor for a new device.
2083  */
2084 int dm_create(int minor, struct mapped_device **result)
2085 {
2086 	struct mapped_device *md;
2087 
2088 	md = alloc_dev(minor);
2089 	if (!md)
2090 		return -ENXIO;
2091 
2092 	dm_ima_reset_data(md);
2093 
2094 	*result = md;
2095 	return 0;
2096 }
2097 
2098 /*
2099  * Functions to manage md->type.
2100  * All are required to hold md->type_lock.
2101  */
2102 void dm_lock_md_type(struct mapped_device *md)
2103 {
2104 	mutex_lock(&md->type_lock);
2105 }
2106 
2107 void dm_unlock_md_type(struct mapped_device *md)
2108 {
2109 	mutex_unlock(&md->type_lock);
2110 }
2111 
2112 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2113 {
2114 	BUG_ON(!mutex_is_locked(&md->type_lock));
2115 	md->type = type;
2116 }
2117 
2118 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2119 {
2120 	return md->type;
2121 }
2122 
2123 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2124 {
2125 	return md->immutable_target_type;
2126 }
2127 
2128 /*
2129  * The queue_limits are only valid as long as you have a reference
2130  * count on 'md'.
2131  */
2132 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2133 {
2134 	BUG_ON(!atomic_read(&md->holders));
2135 	return &md->queue->limits;
2136 }
2137 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2138 
2139 /*
2140  * Setup the DM device's queue based on md's type
2141  */
2142 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2143 {
2144 	enum dm_queue_mode type = dm_table_get_type(t);
2145 	struct queue_limits limits;
2146 	int r;
2147 
2148 	switch (type) {
2149 	case DM_TYPE_REQUEST_BASED:
2150 		md->disk->fops = &dm_rq_blk_dops;
2151 		r = dm_mq_init_request_queue(md, t);
2152 		if (r) {
2153 			DMERR("Cannot initialize queue for request-based dm mapped device");
2154 			return r;
2155 		}
2156 		break;
2157 	case DM_TYPE_BIO_BASED:
2158 	case DM_TYPE_DAX_BIO_BASED:
2159 		break;
2160 	case DM_TYPE_NONE:
2161 		WARN_ON_ONCE(true);
2162 		break;
2163 	}
2164 
2165 	r = dm_calculate_queue_limits(t, &limits);
2166 	if (r) {
2167 		DMERR("Cannot calculate initial queue limits");
2168 		return r;
2169 	}
2170 	r = dm_table_set_restrictions(t, md->queue, &limits);
2171 	if (r)
2172 		return r;
2173 
2174 	r = add_disk(md->disk);
2175 	if (r)
2176 		return r;
2177 
2178 	r = dm_sysfs_init(md);
2179 	if (r) {
2180 		del_gendisk(md->disk);
2181 		return r;
2182 	}
2183 	md->type = type;
2184 	return 0;
2185 }
2186 
2187 struct mapped_device *dm_get_md(dev_t dev)
2188 {
2189 	struct mapped_device *md;
2190 	unsigned minor = MINOR(dev);
2191 
2192 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2193 		return NULL;
2194 
2195 	spin_lock(&_minor_lock);
2196 
2197 	md = idr_find(&_minor_idr, minor);
2198 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2199 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2200 		md = NULL;
2201 		goto out;
2202 	}
2203 	dm_get(md);
2204 out:
2205 	spin_unlock(&_minor_lock);
2206 
2207 	return md;
2208 }
2209 EXPORT_SYMBOL_GPL(dm_get_md);
2210 
2211 void *dm_get_mdptr(struct mapped_device *md)
2212 {
2213 	return md->interface_ptr;
2214 }
2215 
2216 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2217 {
2218 	md->interface_ptr = ptr;
2219 }
2220 
2221 void dm_get(struct mapped_device *md)
2222 {
2223 	atomic_inc(&md->holders);
2224 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2225 }
2226 
2227 int dm_hold(struct mapped_device *md)
2228 {
2229 	spin_lock(&_minor_lock);
2230 	if (test_bit(DMF_FREEING, &md->flags)) {
2231 		spin_unlock(&_minor_lock);
2232 		return -EBUSY;
2233 	}
2234 	dm_get(md);
2235 	spin_unlock(&_minor_lock);
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(dm_hold);
2239 
2240 const char *dm_device_name(struct mapped_device *md)
2241 {
2242 	return md->name;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_device_name);
2245 
2246 static void __dm_destroy(struct mapped_device *md, bool wait)
2247 {
2248 	struct dm_table *map;
2249 	int srcu_idx;
2250 
2251 	might_sleep();
2252 
2253 	spin_lock(&_minor_lock);
2254 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2255 	set_bit(DMF_FREEING, &md->flags);
2256 	spin_unlock(&_minor_lock);
2257 
2258 	blk_mark_disk_dead(md->disk);
2259 
2260 	/*
2261 	 * Take suspend_lock so that presuspend and postsuspend methods
2262 	 * do not race with internal suspend.
2263 	 */
2264 	mutex_lock(&md->suspend_lock);
2265 	map = dm_get_live_table(md, &srcu_idx);
2266 	if (!dm_suspended_md(md)) {
2267 		dm_table_presuspend_targets(map);
2268 		set_bit(DMF_SUSPENDED, &md->flags);
2269 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2270 		dm_table_postsuspend_targets(map);
2271 	}
2272 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2273 	dm_put_live_table(md, srcu_idx);
2274 	mutex_unlock(&md->suspend_lock);
2275 
2276 	/*
2277 	 * Rare, but there may be I/O requests still going to complete,
2278 	 * for example.  Wait for all references to disappear.
2279 	 * No one should increment the reference count of the mapped_device,
2280 	 * after the mapped_device state becomes DMF_FREEING.
2281 	 */
2282 	if (wait)
2283 		while (atomic_read(&md->holders))
2284 			msleep(1);
2285 	else if (atomic_read(&md->holders))
2286 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2287 		       dm_device_name(md), atomic_read(&md->holders));
2288 
2289 	dm_table_destroy(__unbind(md));
2290 	free_dev(md);
2291 }
2292 
2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 	__dm_destroy(md, true);
2296 }
2297 
2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 	__dm_destroy(md, false);
2301 }
2302 
2303 void dm_put(struct mapped_device *md)
2304 {
2305 	atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308 
2309 static bool dm_in_flight_bios(struct mapped_device *md)
2310 {
2311 	int cpu;
2312 	unsigned long sum = 0;
2313 
2314 	for_each_possible_cpu(cpu)
2315 		sum += *per_cpu_ptr(md->pending_io, cpu);
2316 
2317 	return sum != 0;
2318 }
2319 
2320 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2321 {
2322 	int r = 0;
2323 	DEFINE_WAIT(wait);
2324 
2325 	while (true) {
2326 		prepare_to_wait(&md->wait, &wait, task_state);
2327 
2328 		if (!dm_in_flight_bios(md))
2329 			break;
2330 
2331 		if (signal_pending_state(task_state, current)) {
2332 			r = -EINTR;
2333 			break;
2334 		}
2335 
2336 		io_schedule();
2337 	}
2338 	finish_wait(&md->wait, &wait);
2339 
2340 	smp_rmb();
2341 
2342 	return r;
2343 }
2344 
2345 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2346 {
2347 	int r = 0;
2348 
2349 	if (!queue_is_mq(md->queue))
2350 		return dm_wait_for_bios_completion(md, task_state);
2351 
2352 	while (true) {
2353 		if (!blk_mq_queue_inflight(md->queue))
2354 			break;
2355 
2356 		if (signal_pending_state(task_state, current)) {
2357 			r = -EINTR;
2358 			break;
2359 		}
2360 
2361 		msleep(5);
2362 	}
2363 
2364 	return r;
2365 }
2366 
2367 /*
2368  * Process the deferred bios
2369  */
2370 static void dm_wq_work(struct work_struct *work)
2371 {
2372 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2373 	struct bio *bio;
2374 
2375 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2376 		spin_lock_irq(&md->deferred_lock);
2377 		bio = bio_list_pop(&md->deferred);
2378 		spin_unlock_irq(&md->deferred_lock);
2379 
2380 		if (!bio)
2381 			break;
2382 
2383 		submit_bio_noacct(bio);
2384 	}
2385 }
2386 
2387 static void dm_queue_flush(struct mapped_device *md)
2388 {
2389 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2390 	smp_mb__after_atomic();
2391 	queue_work(md->wq, &md->work);
2392 }
2393 
2394 /*
2395  * Swap in a new table, returning the old one for the caller to destroy.
2396  */
2397 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2398 {
2399 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2400 	struct queue_limits limits;
2401 	int r;
2402 
2403 	mutex_lock(&md->suspend_lock);
2404 
2405 	/* device must be suspended */
2406 	if (!dm_suspended_md(md))
2407 		goto out;
2408 
2409 	/*
2410 	 * If the new table has no data devices, retain the existing limits.
2411 	 * This helps multipath with queue_if_no_path if all paths disappear,
2412 	 * then new I/O is queued based on these limits, and then some paths
2413 	 * reappear.
2414 	 */
2415 	if (dm_table_has_no_data_devices(table)) {
2416 		live_map = dm_get_live_table_fast(md);
2417 		if (live_map)
2418 			limits = md->queue->limits;
2419 		dm_put_live_table_fast(md);
2420 	}
2421 
2422 	if (!live_map) {
2423 		r = dm_calculate_queue_limits(table, &limits);
2424 		if (r) {
2425 			map = ERR_PTR(r);
2426 			goto out;
2427 		}
2428 	}
2429 
2430 	map = __bind(md, table, &limits);
2431 	dm_issue_global_event();
2432 
2433 out:
2434 	mutex_unlock(&md->suspend_lock);
2435 	return map;
2436 }
2437 
2438 /*
2439  * Functions to lock and unlock any filesystem running on the
2440  * device.
2441  */
2442 static int lock_fs(struct mapped_device *md)
2443 {
2444 	int r;
2445 
2446 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2447 
2448 	r = freeze_bdev(md->disk->part0);
2449 	if (!r)
2450 		set_bit(DMF_FROZEN, &md->flags);
2451 	return r;
2452 }
2453 
2454 static void unlock_fs(struct mapped_device *md)
2455 {
2456 	if (!test_bit(DMF_FROZEN, &md->flags))
2457 		return;
2458 	thaw_bdev(md->disk->part0);
2459 	clear_bit(DMF_FROZEN, &md->flags);
2460 }
2461 
2462 /*
2463  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2464  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2465  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2466  *
2467  * If __dm_suspend returns 0, the device is completely quiescent
2468  * now. There is no request-processing activity. All new requests
2469  * are being added to md->deferred list.
2470  */
2471 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2472 			unsigned suspend_flags, unsigned int task_state,
2473 			int dmf_suspended_flag)
2474 {
2475 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2476 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2477 	int r;
2478 
2479 	lockdep_assert_held(&md->suspend_lock);
2480 
2481 	/*
2482 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2483 	 * This flag is cleared before dm_suspend returns.
2484 	 */
2485 	if (noflush)
2486 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2487 	else
2488 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2489 
2490 	/*
2491 	 * This gets reverted if there's an error later and the targets
2492 	 * provide the .presuspend_undo hook.
2493 	 */
2494 	dm_table_presuspend_targets(map);
2495 
2496 	/*
2497 	 * Flush I/O to the device.
2498 	 * Any I/O submitted after lock_fs() may not be flushed.
2499 	 * noflush takes precedence over do_lockfs.
2500 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2501 	 */
2502 	if (!noflush && do_lockfs) {
2503 		r = lock_fs(md);
2504 		if (r) {
2505 			dm_table_presuspend_undo_targets(map);
2506 			return r;
2507 		}
2508 	}
2509 
2510 	/*
2511 	 * Here we must make sure that no processes are submitting requests
2512 	 * to target drivers i.e. no one may be executing
2513 	 * dm_split_and_process_bio from dm_submit_bio.
2514 	 *
2515 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2516 	 * we take the write lock. To prevent any process from reentering
2517 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2518 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2519 	 * flush_workqueue(md->wq).
2520 	 */
2521 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2522 	if (map)
2523 		synchronize_srcu(&md->io_barrier);
2524 
2525 	/*
2526 	 * Stop md->queue before flushing md->wq in case request-based
2527 	 * dm defers requests to md->wq from md->queue.
2528 	 */
2529 	if (dm_request_based(md))
2530 		dm_stop_queue(md->queue);
2531 
2532 	flush_workqueue(md->wq);
2533 
2534 	/*
2535 	 * At this point no more requests are entering target request routines.
2536 	 * We call dm_wait_for_completion to wait for all existing requests
2537 	 * to finish.
2538 	 */
2539 	r = dm_wait_for_completion(md, task_state);
2540 	if (!r)
2541 		set_bit(dmf_suspended_flag, &md->flags);
2542 
2543 	if (noflush)
2544 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545 	if (map)
2546 		synchronize_srcu(&md->io_barrier);
2547 
2548 	/* were we interrupted ? */
2549 	if (r < 0) {
2550 		dm_queue_flush(md);
2551 
2552 		if (dm_request_based(md))
2553 			dm_start_queue(md->queue);
2554 
2555 		unlock_fs(md);
2556 		dm_table_presuspend_undo_targets(map);
2557 		/* pushback list is already flushed, so skip flush */
2558 	}
2559 
2560 	return r;
2561 }
2562 
2563 /*
2564  * We need to be able to change a mapping table under a mounted
2565  * filesystem.  For example we might want to move some data in
2566  * the background.  Before the table can be swapped with
2567  * dm_bind_table, dm_suspend must be called to flush any in
2568  * flight bios and ensure that any further io gets deferred.
2569  */
2570 /*
2571  * Suspend mechanism in request-based dm.
2572  *
2573  * 1. Flush all I/Os by lock_fs() if needed.
2574  * 2. Stop dispatching any I/O by stopping the request_queue.
2575  * 3. Wait for all in-flight I/Os to be completed or requeued.
2576  *
2577  * To abort suspend, start the request_queue.
2578  */
2579 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2580 {
2581 	struct dm_table *map = NULL;
2582 	int r = 0;
2583 
2584 retry:
2585 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2586 
2587 	if (dm_suspended_md(md)) {
2588 		r = -EINVAL;
2589 		goto out_unlock;
2590 	}
2591 
2592 	if (dm_suspended_internally_md(md)) {
2593 		/* already internally suspended, wait for internal resume */
2594 		mutex_unlock(&md->suspend_lock);
2595 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2596 		if (r)
2597 			return r;
2598 		goto retry;
2599 	}
2600 
2601 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2602 
2603 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2604 	if (r)
2605 		goto out_unlock;
2606 
2607 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2608 	dm_table_postsuspend_targets(map);
2609 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2610 
2611 out_unlock:
2612 	mutex_unlock(&md->suspend_lock);
2613 	return r;
2614 }
2615 
2616 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2617 {
2618 	if (map) {
2619 		int r = dm_table_resume_targets(map);
2620 		if (r)
2621 			return r;
2622 	}
2623 
2624 	dm_queue_flush(md);
2625 
2626 	/*
2627 	 * Flushing deferred I/Os must be done after targets are resumed
2628 	 * so that mapping of targets can work correctly.
2629 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2630 	 */
2631 	if (dm_request_based(md))
2632 		dm_start_queue(md->queue);
2633 
2634 	unlock_fs(md);
2635 
2636 	return 0;
2637 }
2638 
2639 int dm_resume(struct mapped_device *md)
2640 {
2641 	int r;
2642 	struct dm_table *map = NULL;
2643 
2644 retry:
2645 	r = -EINVAL;
2646 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2647 
2648 	if (!dm_suspended_md(md))
2649 		goto out;
2650 
2651 	if (dm_suspended_internally_md(md)) {
2652 		/* already internally suspended, wait for internal resume */
2653 		mutex_unlock(&md->suspend_lock);
2654 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2655 		if (r)
2656 			return r;
2657 		goto retry;
2658 	}
2659 
2660 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2661 	if (!map || !dm_table_get_size(map))
2662 		goto out;
2663 
2664 	r = __dm_resume(md, map);
2665 	if (r)
2666 		goto out;
2667 
2668 	clear_bit(DMF_SUSPENDED, &md->flags);
2669 out:
2670 	mutex_unlock(&md->suspend_lock);
2671 
2672 	return r;
2673 }
2674 
2675 /*
2676  * Internal suspend/resume works like userspace-driven suspend. It waits
2677  * until all bios finish and prevents issuing new bios to the target drivers.
2678  * It may be used only from the kernel.
2679  */
2680 
2681 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2682 {
2683 	struct dm_table *map = NULL;
2684 
2685 	lockdep_assert_held(&md->suspend_lock);
2686 
2687 	if (md->internal_suspend_count++)
2688 		return; /* nested internal suspend */
2689 
2690 	if (dm_suspended_md(md)) {
2691 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2692 		return; /* nest suspend */
2693 	}
2694 
2695 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2696 
2697 	/*
2698 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2699 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2700 	 * would require changing .presuspend to return an error -- avoid this
2701 	 * until there is a need for more elaborate variants of internal suspend.
2702 	 */
2703 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2704 			    DMF_SUSPENDED_INTERNALLY);
2705 
2706 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2707 	dm_table_postsuspend_targets(map);
2708 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2709 }
2710 
2711 static void __dm_internal_resume(struct mapped_device *md)
2712 {
2713 	BUG_ON(!md->internal_suspend_count);
2714 
2715 	if (--md->internal_suspend_count)
2716 		return; /* resume from nested internal suspend */
2717 
2718 	if (dm_suspended_md(md))
2719 		goto done; /* resume from nested suspend */
2720 
2721 	/*
2722 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2723 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2724 	 */
2725 	(void) __dm_resume(md, NULL);
2726 
2727 done:
2728 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2729 	smp_mb__after_atomic();
2730 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2731 }
2732 
2733 void dm_internal_suspend_noflush(struct mapped_device *md)
2734 {
2735 	mutex_lock(&md->suspend_lock);
2736 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2737 	mutex_unlock(&md->suspend_lock);
2738 }
2739 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2740 
2741 void dm_internal_resume(struct mapped_device *md)
2742 {
2743 	mutex_lock(&md->suspend_lock);
2744 	__dm_internal_resume(md);
2745 	mutex_unlock(&md->suspend_lock);
2746 }
2747 EXPORT_SYMBOL_GPL(dm_internal_resume);
2748 
2749 /*
2750  * Fast variants of internal suspend/resume hold md->suspend_lock,
2751  * which prevents interaction with userspace-driven suspend.
2752  */
2753 
2754 void dm_internal_suspend_fast(struct mapped_device *md)
2755 {
2756 	mutex_lock(&md->suspend_lock);
2757 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2758 		return;
2759 
2760 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2761 	synchronize_srcu(&md->io_barrier);
2762 	flush_workqueue(md->wq);
2763 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2764 }
2765 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2766 
2767 void dm_internal_resume_fast(struct mapped_device *md)
2768 {
2769 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2770 		goto done;
2771 
2772 	dm_queue_flush(md);
2773 
2774 done:
2775 	mutex_unlock(&md->suspend_lock);
2776 }
2777 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2778 
2779 /*-----------------------------------------------------------------
2780  * Event notification.
2781  *---------------------------------------------------------------*/
2782 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2783 		       unsigned cookie)
2784 {
2785 	int r;
2786 	unsigned noio_flag;
2787 	char udev_cookie[DM_COOKIE_LENGTH];
2788 	char *envp[] = { udev_cookie, NULL };
2789 
2790 	noio_flag = memalloc_noio_save();
2791 
2792 	if (!cookie)
2793 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2794 	else {
2795 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2796 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2797 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2798 				       action, envp);
2799 	}
2800 
2801 	memalloc_noio_restore(noio_flag);
2802 
2803 	return r;
2804 }
2805 
2806 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2807 {
2808 	return atomic_add_return(1, &md->uevent_seq);
2809 }
2810 
2811 uint32_t dm_get_event_nr(struct mapped_device *md)
2812 {
2813 	return atomic_read(&md->event_nr);
2814 }
2815 
2816 int dm_wait_event(struct mapped_device *md, int event_nr)
2817 {
2818 	return wait_event_interruptible(md->eventq,
2819 			(event_nr != atomic_read(&md->event_nr)));
2820 }
2821 
2822 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2823 {
2824 	unsigned long flags;
2825 
2826 	spin_lock_irqsave(&md->uevent_lock, flags);
2827 	list_add(elist, &md->uevent_list);
2828 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2829 }
2830 
2831 /*
2832  * The gendisk is only valid as long as you have a reference
2833  * count on 'md'.
2834  */
2835 struct gendisk *dm_disk(struct mapped_device *md)
2836 {
2837 	return md->disk;
2838 }
2839 EXPORT_SYMBOL_GPL(dm_disk);
2840 
2841 struct kobject *dm_kobject(struct mapped_device *md)
2842 {
2843 	return &md->kobj_holder.kobj;
2844 }
2845 
2846 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2847 {
2848 	struct mapped_device *md;
2849 
2850 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2851 
2852 	spin_lock(&_minor_lock);
2853 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2854 		md = NULL;
2855 		goto out;
2856 	}
2857 	dm_get(md);
2858 out:
2859 	spin_unlock(&_minor_lock);
2860 
2861 	return md;
2862 }
2863 
2864 int dm_suspended_md(struct mapped_device *md)
2865 {
2866 	return test_bit(DMF_SUSPENDED, &md->flags);
2867 }
2868 
2869 static int dm_post_suspending_md(struct mapped_device *md)
2870 {
2871 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2872 }
2873 
2874 int dm_suspended_internally_md(struct mapped_device *md)
2875 {
2876 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2877 }
2878 
2879 int dm_test_deferred_remove_flag(struct mapped_device *md)
2880 {
2881 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2882 }
2883 
2884 int dm_suspended(struct dm_target *ti)
2885 {
2886 	return dm_suspended_md(ti->table->md);
2887 }
2888 EXPORT_SYMBOL_GPL(dm_suspended);
2889 
2890 int dm_post_suspending(struct dm_target *ti)
2891 {
2892 	return dm_post_suspending_md(ti->table->md);
2893 }
2894 EXPORT_SYMBOL_GPL(dm_post_suspending);
2895 
2896 int dm_noflush_suspending(struct dm_target *ti)
2897 {
2898 	return __noflush_suspending(ti->table->md);
2899 }
2900 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2901 
2902 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2903 					    unsigned integrity, unsigned per_io_data_size,
2904 					    unsigned min_pool_size)
2905 {
2906 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2907 	unsigned int pool_size = 0;
2908 	unsigned int front_pad, io_front_pad;
2909 	int ret;
2910 
2911 	if (!pools)
2912 		return NULL;
2913 
2914 	switch (type) {
2915 	case DM_TYPE_BIO_BASED:
2916 	case DM_TYPE_DAX_BIO_BASED:
2917 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2918 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2919 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2920 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2921 		if (ret)
2922 			goto out;
2923 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2924 			goto out;
2925 		break;
2926 	case DM_TYPE_REQUEST_BASED:
2927 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930 		break;
2931 	default:
2932 		BUG();
2933 	}
2934 
2935 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2936 	if (ret)
2937 		goto out;
2938 
2939 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2940 		goto out;
2941 
2942 	return pools;
2943 
2944 out:
2945 	dm_free_md_mempools(pools);
2946 
2947 	return NULL;
2948 }
2949 
2950 void dm_free_md_mempools(struct dm_md_mempools *pools)
2951 {
2952 	if (!pools)
2953 		return;
2954 
2955 	bioset_exit(&pools->bs);
2956 	bioset_exit(&pools->io_bs);
2957 
2958 	kfree(pools);
2959 }
2960 
2961 struct dm_pr {
2962 	u64	old_key;
2963 	u64	new_key;
2964 	u32	flags;
2965 	bool	fail_early;
2966 };
2967 
2968 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2969 		      void *data)
2970 {
2971 	struct mapped_device *md = bdev->bd_disk->private_data;
2972 	struct dm_table *table;
2973 	struct dm_target *ti;
2974 	int ret = -ENOTTY, srcu_idx;
2975 
2976 	table = dm_get_live_table(md, &srcu_idx);
2977 	if (!table || !dm_table_get_size(table))
2978 		goto out;
2979 
2980 	/* We only support devices that have a single target */
2981 	if (dm_table_get_num_targets(table) != 1)
2982 		goto out;
2983 	ti = dm_table_get_target(table, 0);
2984 
2985 	ret = -EINVAL;
2986 	if (!ti->type->iterate_devices)
2987 		goto out;
2988 
2989 	ret = ti->type->iterate_devices(ti, fn, data);
2990 out:
2991 	dm_put_live_table(md, srcu_idx);
2992 	return ret;
2993 }
2994 
2995 /*
2996  * For register / unregister we need to manually call out to every path.
2997  */
2998 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2999 			    sector_t start, sector_t len, void *data)
3000 {
3001 	struct dm_pr *pr = data;
3002 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3003 
3004 	if (!ops || !ops->pr_register)
3005 		return -EOPNOTSUPP;
3006 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3007 }
3008 
3009 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3010 			  u32 flags)
3011 {
3012 	struct dm_pr pr = {
3013 		.old_key	= old_key,
3014 		.new_key	= new_key,
3015 		.flags		= flags,
3016 		.fail_early	= true,
3017 	};
3018 	int ret;
3019 
3020 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3021 	if (ret && new_key) {
3022 		/* unregister all paths if we failed to register any path */
3023 		pr.old_key = new_key;
3024 		pr.new_key = 0;
3025 		pr.flags = 0;
3026 		pr.fail_early = false;
3027 		dm_call_pr(bdev, __dm_pr_register, &pr);
3028 	}
3029 
3030 	return ret;
3031 }
3032 
3033 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3034 			 u32 flags)
3035 {
3036 	struct mapped_device *md = bdev->bd_disk->private_data;
3037 	const struct pr_ops *ops;
3038 	int r, srcu_idx;
3039 
3040 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3041 	if (r < 0)
3042 		goto out;
3043 
3044 	ops = bdev->bd_disk->fops->pr_ops;
3045 	if (ops && ops->pr_reserve)
3046 		r = ops->pr_reserve(bdev, key, type, flags);
3047 	else
3048 		r = -EOPNOTSUPP;
3049 out:
3050 	dm_unprepare_ioctl(md, srcu_idx);
3051 	return r;
3052 }
3053 
3054 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3055 {
3056 	struct mapped_device *md = bdev->bd_disk->private_data;
3057 	const struct pr_ops *ops;
3058 	int r, srcu_idx;
3059 
3060 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3061 	if (r < 0)
3062 		goto out;
3063 
3064 	ops = bdev->bd_disk->fops->pr_ops;
3065 	if (ops && ops->pr_release)
3066 		r = ops->pr_release(bdev, key, type);
3067 	else
3068 		r = -EOPNOTSUPP;
3069 out:
3070 	dm_unprepare_ioctl(md, srcu_idx);
3071 	return r;
3072 }
3073 
3074 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3075 			 enum pr_type type, bool abort)
3076 {
3077 	struct mapped_device *md = bdev->bd_disk->private_data;
3078 	const struct pr_ops *ops;
3079 	int r, srcu_idx;
3080 
3081 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3082 	if (r < 0)
3083 		goto out;
3084 
3085 	ops = bdev->bd_disk->fops->pr_ops;
3086 	if (ops && ops->pr_preempt)
3087 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3088 	else
3089 		r = -EOPNOTSUPP;
3090 out:
3091 	dm_unprepare_ioctl(md, srcu_idx);
3092 	return r;
3093 }
3094 
3095 static int dm_pr_clear(struct block_device *bdev, u64 key)
3096 {
3097 	struct mapped_device *md = bdev->bd_disk->private_data;
3098 	const struct pr_ops *ops;
3099 	int r, srcu_idx;
3100 
3101 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3102 	if (r < 0)
3103 		goto out;
3104 
3105 	ops = bdev->bd_disk->fops->pr_ops;
3106 	if (ops && ops->pr_clear)
3107 		r = ops->pr_clear(bdev, key);
3108 	else
3109 		r = -EOPNOTSUPP;
3110 out:
3111 	dm_unprepare_ioctl(md, srcu_idx);
3112 	return r;
3113 }
3114 
3115 static const struct pr_ops dm_pr_ops = {
3116 	.pr_register	= dm_pr_register,
3117 	.pr_reserve	= dm_pr_reserve,
3118 	.pr_release	= dm_pr_release,
3119 	.pr_preempt	= dm_pr_preempt,
3120 	.pr_clear	= dm_pr_clear,
3121 };
3122 
3123 static const struct block_device_operations dm_blk_dops = {
3124 	.submit_bio = dm_submit_bio,
3125 	.poll_bio = dm_poll_bio,
3126 	.open = dm_blk_open,
3127 	.release = dm_blk_close,
3128 	.ioctl = dm_blk_ioctl,
3129 	.getgeo = dm_blk_getgeo,
3130 	.report_zones = dm_blk_report_zones,
3131 	.pr_ops = &dm_pr_ops,
3132 	.owner = THIS_MODULE
3133 };
3134 
3135 static const struct block_device_operations dm_rq_blk_dops = {
3136 	.open = dm_blk_open,
3137 	.release = dm_blk_close,
3138 	.ioctl = dm_blk_ioctl,
3139 	.getgeo = dm_blk_getgeo,
3140 	.pr_ops = &dm_pr_ops,
3141 	.owner = THIS_MODULE
3142 };
3143 
3144 static const struct dax_operations dm_dax_ops = {
3145 	.direct_access = dm_dax_direct_access,
3146 	.zero_page_range = dm_dax_zero_page_range,
3147 };
3148 
3149 /*
3150  * module hooks
3151  */
3152 module_init(dm_init);
3153 module_exit(dm_exit);
3154 
3155 module_param(major, uint, 0);
3156 MODULE_PARM_DESC(major, "The major number of the device mapper");
3157 
3158 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3159 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3160 
3161 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3162 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3163 
3164 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3165 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3166 
3167 MODULE_DESCRIPTION(DM_NAME " driver");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");
3170