1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones) 445 { 446 #ifdef CONFIG_BLK_DEV_ZONED 447 struct mapped_device *md = disk->private_data; 448 struct dm_target *tgt; 449 struct dm_table *map; 450 int srcu_idx, ret; 451 452 if (dm_suspended_md(md)) 453 return -EAGAIN; 454 455 map = dm_get_live_table(md, &srcu_idx); 456 if (!map) 457 return -EIO; 458 459 tgt = dm_table_find_target(map, sector); 460 if (!dm_target_is_valid(tgt)) { 461 ret = -EIO; 462 goto out; 463 } 464 465 /* 466 * If we are executing this, we already know that the block device 467 * is a zoned device and so each target should have support for that 468 * type of drive. A missing report_zones method means that the target 469 * driver has a problem. 470 */ 471 if (WARN_ON(!tgt->type->report_zones)) { 472 ret = -EIO; 473 goto out; 474 } 475 476 /* 477 * blkdev_report_zones() will loop and call this again to cover all the 478 * zones of the target, eventually moving on to the next target. 479 * So there is no need to loop here trying to fill the entire array 480 * of zones. 481 */ 482 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones); 483 484 out: 485 dm_put_live_table(md, srcu_idx); 486 return ret; 487 #else 488 return -ENOTSUPP; 489 #endif 490 } 491 492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 493 struct block_device **bdev) 494 __acquires(md->io_barrier) 495 { 496 struct dm_target *tgt; 497 struct dm_table *map; 498 int r; 499 500 retry: 501 r = -ENOTTY; 502 map = dm_get_live_table(md, srcu_idx); 503 if (!map || !dm_table_get_size(map)) 504 return r; 505 506 /* We only support devices that have a single target */ 507 if (dm_table_get_num_targets(map) != 1) 508 return r; 509 510 tgt = dm_table_get_target(map, 0); 511 if (!tgt->type->prepare_ioctl) 512 return r; 513 514 if (dm_suspended_md(md)) 515 return -EAGAIN; 516 517 r = tgt->type->prepare_ioctl(tgt, bdev); 518 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 519 dm_put_live_table(md, *srcu_idx); 520 msleep(10); 521 goto retry; 522 } 523 524 return r; 525 } 526 527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 528 __releases(md->io_barrier) 529 { 530 dm_put_live_table(md, srcu_idx); 531 } 532 533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 534 unsigned int cmd, unsigned long arg) 535 { 536 struct mapped_device *md = bdev->bd_disk->private_data; 537 int r, srcu_idx; 538 539 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 540 if (r < 0) 541 goto out; 542 543 if (r > 0) { 544 /* 545 * Target determined this ioctl is being issued against a 546 * subset of the parent bdev; require extra privileges. 547 */ 548 if (!capable(CAP_SYS_RAWIO)) { 549 DMWARN_LIMIT( 550 "%s: sending ioctl %x to DM device without required privilege.", 551 current->comm, cmd); 552 r = -ENOIOCTLCMD; 553 goto out; 554 } 555 } 556 557 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 558 out: 559 dm_unprepare_ioctl(md, srcu_idx); 560 return r; 561 } 562 563 static void start_io_acct(struct dm_io *io); 564 565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 566 { 567 struct dm_io *io; 568 struct dm_target_io *tio; 569 struct bio *clone; 570 571 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 572 if (!clone) 573 return NULL; 574 575 tio = container_of(clone, struct dm_target_io, clone); 576 tio->inside_dm_io = true; 577 tio->io = NULL; 578 579 io = container_of(tio, struct dm_io, tio); 580 io->magic = DM_IO_MAGIC; 581 io->status = 0; 582 atomic_set(&io->io_count, 1); 583 io->orig_bio = bio; 584 io->md = md; 585 spin_lock_init(&io->endio_lock); 586 587 start_io_acct(io); 588 589 return io; 590 } 591 592 static void free_io(struct mapped_device *md, struct dm_io *io) 593 { 594 bio_put(&io->tio.clone); 595 } 596 597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 598 unsigned target_bio_nr, gfp_t gfp_mask) 599 { 600 struct dm_target_io *tio; 601 602 if (!ci->io->tio.io) { 603 /* the dm_target_io embedded in ci->io is available */ 604 tio = &ci->io->tio; 605 } else { 606 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 607 if (!clone) 608 return NULL; 609 610 tio = container_of(clone, struct dm_target_io, clone); 611 tio->inside_dm_io = false; 612 } 613 614 tio->magic = DM_TIO_MAGIC; 615 tio->io = ci->io; 616 tio->ti = ti; 617 tio->target_bio_nr = target_bio_nr; 618 619 return tio; 620 } 621 622 static void free_tio(struct dm_target_io *tio) 623 { 624 if (tio->inside_dm_io) 625 return; 626 bio_put(&tio->clone); 627 } 628 629 static bool md_in_flight_bios(struct mapped_device *md) 630 { 631 int cpu; 632 struct hd_struct *part = &dm_disk(md)->part0; 633 long sum = 0; 634 635 for_each_possible_cpu(cpu) { 636 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 637 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 638 } 639 640 return sum != 0; 641 } 642 643 static bool md_in_flight(struct mapped_device *md) 644 { 645 if (queue_is_mq(md->queue)) 646 return blk_mq_queue_inflight(md->queue); 647 else 648 return md_in_flight_bios(md); 649 } 650 651 static void start_io_acct(struct dm_io *io) 652 { 653 struct mapped_device *md = io->md; 654 struct bio *bio = io->orig_bio; 655 656 io->start_time = jiffies; 657 658 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 659 &dm_disk(md)->part0); 660 661 if (unlikely(dm_stats_used(&md->stats))) 662 dm_stats_account_io(&md->stats, bio_data_dir(bio), 663 bio->bi_iter.bi_sector, bio_sectors(bio), 664 false, 0, &io->stats_aux); 665 } 666 667 static void end_io_acct(struct dm_io *io) 668 { 669 struct mapped_device *md = io->md; 670 struct bio *bio = io->orig_bio; 671 unsigned long duration = jiffies - io->start_time; 672 673 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 674 io->start_time); 675 676 if (unlikely(dm_stats_used(&md->stats))) 677 dm_stats_account_io(&md->stats, bio_data_dir(bio), 678 bio->bi_iter.bi_sector, bio_sectors(bio), 679 true, duration, &io->stats_aux); 680 681 /* nudge anyone waiting on suspend queue */ 682 if (unlikely(wq_has_sleeper(&md->wait))) 683 wake_up(&md->wait); 684 } 685 686 /* 687 * Add the bio to the list of deferred io. 688 */ 689 static void queue_io(struct mapped_device *md, struct bio *bio) 690 { 691 unsigned long flags; 692 693 spin_lock_irqsave(&md->deferred_lock, flags); 694 bio_list_add(&md->deferred, bio); 695 spin_unlock_irqrestore(&md->deferred_lock, flags); 696 queue_work(md->wq, &md->work); 697 } 698 699 /* 700 * Everyone (including functions in this file), should use this 701 * function to access the md->map field, and make sure they call 702 * dm_put_live_table() when finished. 703 */ 704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 705 { 706 *srcu_idx = srcu_read_lock(&md->io_barrier); 707 708 return srcu_dereference(md->map, &md->io_barrier); 709 } 710 711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 712 { 713 srcu_read_unlock(&md->io_barrier, srcu_idx); 714 } 715 716 void dm_sync_table(struct mapped_device *md) 717 { 718 synchronize_srcu(&md->io_barrier); 719 synchronize_rcu_expedited(); 720 } 721 722 /* 723 * A fast alternative to dm_get_live_table/dm_put_live_table. 724 * The caller must not block between these two functions. 725 */ 726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 727 { 728 rcu_read_lock(); 729 return rcu_dereference(md->map); 730 } 731 732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 733 { 734 rcu_read_unlock(); 735 } 736 737 static char *_dm_claim_ptr = "I belong to device-mapper"; 738 739 /* 740 * Open a table device so we can use it as a map destination. 741 */ 742 static int open_table_device(struct table_device *td, dev_t dev, 743 struct mapped_device *md) 744 { 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 763 return 0; 764 } 765 766 /* 767 * Close a table device that we've been using. 768 */ 769 static void close_table_device(struct table_device *td, struct mapped_device *md) 770 { 771 if (!td->dm_dev.bdev) 772 return; 773 774 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 775 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 776 put_dax(td->dm_dev.dax_dev); 777 td->dm_dev.bdev = NULL; 778 td->dm_dev.dax_dev = NULL; 779 } 780 781 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 782 fmode_t mode) 783 { 784 struct table_device *td; 785 786 list_for_each_entry(td, l, list) 787 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 788 return td; 789 790 return NULL; 791 } 792 793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 794 struct dm_dev **result) 795 { 796 int r; 797 struct table_device *td; 798 799 mutex_lock(&md->table_devices_lock); 800 td = find_table_device(&md->table_devices, dev, mode); 801 if (!td) { 802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 803 if (!td) { 804 mutex_unlock(&md->table_devices_lock); 805 return -ENOMEM; 806 } 807 808 td->dm_dev.mode = mode; 809 td->dm_dev.bdev = NULL; 810 811 if ((r = open_table_device(td, dev, md))) { 812 mutex_unlock(&md->table_devices_lock); 813 kfree(td); 814 return r; 815 } 816 817 format_dev_t(td->dm_dev.name, dev); 818 819 refcount_set(&td->count, 1); 820 list_add(&td->list, &md->table_devices); 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(dm_get_table_device); 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 EXPORT_SYMBOL(dm_put_table_device); 844 845 static void free_table_devices(struct list_head *devices) 846 { 847 struct list_head *tmp, *next; 848 849 list_for_each_safe(tmp, next, devices) { 850 struct table_device *td = list_entry(tmp, struct table_device, list); 851 852 DMWARN("dm_destroy: %s still exists with %d references", 853 td->dm_dev.name, refcount_read(&td->count)); 854 kfree(td); 855 } 856 } 857 858 /* 859 * Get the geometry associated with a dm device 860 */ 861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 862 { 863 *geo = md->geometry; 864 865 return 0; 866 } 867 868 /* 869 * Set the geometry of a device. 870 */ 871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 872 { 873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 874 875 if (geo->start > sz) { 876 DMWARN("Start sector is beyond the geometry limits."); 877 return -EINVAL; 878 } 879 880 md->geometry = *geo; 881 882 return 0; 883 } 884 885 static int __noflush_suspending(struct mapped_device *md) 886 { 887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 888 } 889 890 /* 891 * Decrements the number of outstanding ios that a bio has been 892 * cloned into, completing the original io if necc. 893 */ 894 static void dec_pending(struct dm_io *io, blk_status_t error) 895 { 896 unsigned long flags; 897 blk_status_t io_error; 898 struct bio *bio; 899 struct mapped_device *md = io->md; 900 901 /* Push-back supersedes any I/O errors */ 902 if (unlikely(error)) { 903 spin_lock_irqsave(&io->endio_lock, flags); 904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 905 io->status = error; 906 spin_unlock_irqrestore(&io->endio_lock, flags); 907 } 908 909 if (atomic_dec_and_test(&io->io_count)) { 910 if (io->status == BLK_STS_DM_REQUEUE) { 911 /* 912 * Target requested pushing back the I/O. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if (__noflush_suspending(md)) 916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 917 bio_list_add_head(&md->deferred, io->orig_bio); 918 else 919 /* noflush suspend was interrupted. */ 920 io->status = BLK_STS_IOERR; 921 spin_unlock_irqrestore(&md->deferred_lock, flags); 922 } 923 924 io_error = io->status; 925 bio = io->orig_bio; 926 end_io_acct(io); 927 free_io(md, io); 928 929 if (io_error == BLK_STS_DM_REQUEUE) 930 return; 931 932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 933 /* 934 * Preflush done for flush with data, reissue 935 * without REQ_PREFLUSH. 936 */ 937 bio->bi_opf &= ~REQ_PREFLUSH; 938 queue_io(md, bio); 939 } else { 940 /* done with normal IO or empty flush */ 941 if (io_error) 942 bio->bi_status = io_error; 943 bio_endio(bio); 944 } 945 } 946 } 947 948 void disable_discard(struct mapped_device *md) 949 { 950 struct queue_limits *limits = dm_get_queue_limits(md); 951 952 /* device doesn't really support DISCARD, disable it */ 953 limits->max_discard_sectors = 0; 954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 955 } 956 957 void disable_write_same(struct mapped_device *md) 958 { 959 struct queue_limits *limits = dm_get_queue_limits(md); 960 961 /* device doesn't really support WRITE SAME, disable it */ 962 limits->max_write_same_sectors = 0; 963 } 964 965 void disable_write_zeroes(struct mapped_device *md) 966 { 967 struct queue_limits *limits = dm_get_queue_limits(md); 968 969 /* device doesn't really support WRITE ZEROES, disable it */ 970 limits->max_write_zeroes_sectors = 0; 971 } 972 973 static void clone_endio(struct bio *bio) 974 { 975 blk_status_t error = bio->bi_status; 976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 977 struct dm_io *io = tio->io; 978 struct mapped_device *md = tio->io->md; 979 dm_endio_fn endio = tio->ti->type->end_io; 980 981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 982 if (bio_op(bio) == REQ_OP_DISCARD && 983 !bio->bi_disk->queue->limits.max_discard_sectors) 984 disable_discard(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 986 !bio->bi_disk->queue->limits.max_write_same_sectors) 987 disable_write_same(md); 988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 990 disable_write_zeroes(md); 991 } 992 993 if (endio) { 994 int r = endio(tio->ti, bio, &error); 995 switch (r) { 996 case DM_ENDIO_REQUEUE: 997 error = BLK_STS_DM_REQUEUE; 998 /*FALLTHRU*/ 999 case DM_ENDIO_DONE: 1000 break; 1001 case DM_ENDIO_INCOMPLETE: 1002 /* The target will handle the io */ 1003 return; 1004 default: 1005 DMWARN("unimplemented target endio return value: %d", r); 1006 BUG(); 1007 } 1008 } 1009 1010 free_tio(tio); 1011 dec_pending(io, error); 1012 } 1013 1014 /* 1015 * Return maximum size of I/O possible at the supplied sector up to the current 1016 * target boundary. 1017 */ 1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1019 { 1020 sector_t target_offset = dm_target_offset(ti, sector); 1021 1022 return ti->len - target_offset; 1023 } 1024 1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1026 { 1027 sector_t len = max_io_len_target_boundary(sector, ti); 1028 sector_t offset, max_len; 1029 1030 /* 1031 * Does the target need to split even further? 1032 */ 1033 if (ti->max_io_len) { 1034 offset = dm_target_offset(ti, sector); 1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1036 max_len = sector_div(offset, ti->max_io_len); 1037 else 1038 max_len = offset & (ti->max_io_len - 1); 1039 max_len = ti->max_io_len - max_len; 1040 1041 if (len > max_len) 1042 len = max_len; 1043 } 1044 1045 return len; 1046 } 1047 1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1049 { 1050 if (len > UINT_MAX) { 1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1052 (unsigned long long)len, UINT_MAX); 1053 ti->error = "Maximum size of target IO is too large"; 1054 return -EINVAL; 1055 } 1056 1057 ti->max_io_len = (uint32_t) len; 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1062 1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1064 sector_t sector, int *srcu_idx) 1065 __acquires(md->io_barrier) 1066 { 1067 struct dm_table *map; 1068 struct dm_target *ti; 1069 1070 map = dm_get_live_table(md, srcu_idx); 1071 if (!map) 1072 return NULL; 1073 1074 ti = dm_table_find_target(map, sector); 1075 if (!dm_target_is_valid(ti)) 1076 return NULL; 1077 1078 return ti; 1079 } 1080 1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1082 long nr_pages, void **kaddr, pfn_t *pfn) 1083 { 1084 struct mapped_device *md = dax_get_private(dax_dev); 1085 sector_t sector = pgoff * PAGE_SECTORS; 1086 struct dm_target *ti; 1087 long len, ret = -EIO; 1088 int srcu_idx; 1089 1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1091 1092 if (!ti) 1093 goto out; 1094 if (!ti->type->direct_access) 1095 goto out; 1096 len = max_io_len(sector, ti) / PAGE_SECTORS; 1097 if (len < 1) 1098 goto out; 1099 nr_pages = min(len, nr_pages); 1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1101 1102 out: 1103 dm_put_live_table(md, srcu_idx); 1104 1105 return ret; 1106 } 1107 1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1109 int blocksize, sector_t start, sector_t len) 1110 { 1111 struct mapped_device *md = dax_get_private(dax_dev); 1112 struct dm_table *map; 1113 int srcu_idx; 1114 bool ret; 1115 1116 map = dm_get_live_table(md, &srcu_idx); 1117 if (!map) 1118 return false; 1119 1120 ret = dm_table_supports_dax(map, blocksize); 1121 1122 dm_put_live_table(md, srcu_idx); 1123 1124 return ret; 1125 } 1126 1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1128 void *addr, size_t bytes, struct iov_iter *i) 1129 { 1130 struct mapped_device *md = dax_get_private(dax_dev); 1131 sector_t sector = pgoff * PAGE_SECTORS; 1132 struct dm_target *ti; 1133 long ret = 0; 1134 int srcu_idx; 1135 1136 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1137 1138 if (!ti) 1139 goto out; 1140 if (!ti->type->dax_copy_from_iter) { 1141 ret = copy_from_iter(addr, bytes, i); 1142 goto out; 1143 } 1144 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1145 out: 1146 dm_put_live_table(md, srcu_idx); 1147 1148 return ret; 1149 } 1150 1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1152 void *addr, size_t bytes, struct iov_iter *i) 1153 { 1154 struct mapped_device *md = dax_get_private(dax_dev); 1155 sector_t sector = pgoff * PAGE_SECTORS; 1156 struct dm_target *ti; 1157 long ret = 0; 1158 int srcu_idx; 1159 1160 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1161 1162 if (!ti) 1163 goto out; 1164 if (!ti->type->dax_copy_to_iter) { 1165 ret = copy_to_iter(addr, bytes, i); 1166 goto out; 1167 } 1168 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1169 out: 1170 dm_put_live_table(md, srcu_idx); 1171 1172 return ret; 1173 } 1174 1175 /* 1176 * A target may call dm_accept_partial_bio only from the map routine. It is 1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1178 * 1179 * dm_accept_partial_bio informs the dm that the target only wants to process 1180 * additional n_sectors sectors of the bio and the rest of the data should be 1181 * sent in a next bio. 1182 * 1183 * A diagram that explains the arithmetics: 1184 * +--------------------+---------------+-------+ 1185 * | 1 | 2 | 3 | 1186 * +--------------------+---------------+-------+ 1187 * 1188 * <-------------- *tio->len_ptr ---------------> 1189 * <------- bi_size -------> 1190 * <-- n_sectors --> 1191 * 1192 * Region 1 was already iterated over with bio_advance or similar function. 1193 * (it may be empty if the target doesn't use bio_advance) 1194 * Region 2 is the remaining bio size that the target wants to process. 1195 * (it may be empty if region 1 is non-empty, although there is no reason 1196 * to make it empty) 1197 * The target requires that region 3 is to be sent in the next bio. 1198 * 1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1200 * the partially processed part (the sum of regions 1+2) must be the same for all 1201 * copies of the bio. 1202 */ 1203 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1204 { 1205 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1206 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1207 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1208 BUG_ON(bi_size > *tio->len_ptr); 1209 BUG_ON(n_sectors > bi_size); 1210 *tio->len_ptr -= bi_size - n_sectors; 1211 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1212 } 1213 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1214 1215 /* 1216 * The zone descriptors obtained with a zone report indicate 1217 * zone positions within the underlying device of the target. The zone 1218 * descriptors must be remapped to match their position within the dm device. 1219 * The caller target should obtain the zones information using 1220 * blkdev_report_zones() to ensure that remapping for partition offset is 1221 * already handled. 1222 */ 1223 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1224 struct blk_zone *zones, unsigned int *nr_zones) 1225 { 1226 #ifdef CONFIG_BLK_DEV_ZONED 1227 struct blk_zone *zone; 1228 unsigned int nrz = *nr_zones; 1229 int i; 1230 1231 /* 1232 * Remap the start sector and write pointer position of the zones in 1233 * the array. Since we may have obtained from the target underlying 1234 * device more zones that the target size, also adjust the number 1235 * of zones. 1236 */ 1237 for (i = 0; i < nrz; i++) { 1238 zone = zones + i; 1239 if (zone->start >= start + ti->len) { 1240 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1241 break; 1242 } 1243 1244 zone->start = zone->start + ti->begin - start; 1245 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1246 continue; 1247 1248 if (zone->cond == BLK_ZONE_COND_FULL) 1249 zone->wp = zone->start + zone->len; 1250 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1251 zone->wp = zone->start; 1252 else 1253 zone->wp = zone->wp + ti->begin - start; 1254 } 1255 1256 *nr_zones = i; 1257 #else /* !CONFIG_BLK_DEV_ZONED */ 1258 *nr_zones = 0; 1259 #endif 1260 } 1261 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1262 1263 static blk_qc_t __map_bio(struct dm_target_io *tio) 1264 { 1265 int r; 1266 sector_t sector; 1267 struct bio *clone = &tio->clone; 1268 struct dm_io *io = tio->io; 1269 struct mapped_device *md = io->md; 1270 struct dm_target *ti = tio->ti; 1271 blk_qc_t ret = BLK_QC_T_NONE; 1272 1273 clone->bi_end_io = clone_endio; 1274 1275 /* 1276 * Map the clone. If r == 0 we don't need to do 1277 * anything, the target has assumed ownership of 1278 * this io. 1279 */ 1280 atomic_inc(&io->io_count); 1281 sector = clone->bi_iter.bi_sector; 1282 1283 r = ti->type->map(ti, clone); 1284 switch (r) { 1285 case DM_MAPIO_SUBMITTED: 1286 break; 1287 case DM_MAPIO_REMAPPED: 1288 /* the bio has been remapped so dispatch it */ 1289 trace_block_bio_remap(clone->bi_disk->queue, clone, 1290 bio_dev(io->orig_bio), sector); 1291 if (md->type == DM_TYPE_NVME_BIO_BASED) 1292 ret = direct_make_request(clone); 1293 else 1294 ret = generic_make_request(clone); 1295 break; 1296 case DM_MAPIO_KILL: 1297 free_tio(tio); 1298 dec_pending(io, BLK_STS_IOERR); 1299 break; 1300 case DM_MAPIO_REQUEUE: 1301 free_tio(tio); 1302 dec_pending(io, BLK_STS_DM_REQUEUE); 1303 break; 1304 default: 1305 DMWARN("unimplemented target map return value: %d", r); 1306 BUG(); 1307 } 1308 1309 return ret; 1310 } 1311 1312 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1313 { 1314 bio->bi_iter.bi_sector = sector; 1315 bio->bi_iter.bi_size = to_bytes(len); 1316 } 1317 1318 /* 1319 * Creates a bio that consists of range of complete bvecs. 1320 */ 1321 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1322 sector_t sector, unsigned len) 1323 { 1324 struct bio *clone = &tio->clone; 1325 1326 __bio_clone_fast(clone, bio); 1327 1328 if (bio_integrity(bio)) { 1329 int r; 1330 1331 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1332 !dm_target_passes_integrity(tio->ti->type))) { 1333 DMWARN("%s: the target %s doesn't support integrity data.", 1334 dm_device_name(tio->io->md), 1335 tio->ti->type->name); 1336 return -EIO; 1337 } 1338 1339 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1340 if (r < 0) 1341 return r; 1342 } 1343 1344 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1345 clone->bi_iter.bi_size = to_bytes(len); 1346 1347 if (bio_integrity(bio)) 1348 bio_integrity_trim(clone); 1349 1350 return 0; 1351 } 1352 1353 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1354 struct dm_target *ti, unsigned num_bios) 1355 { 1356 struct dm_target_io *tio; 1357 int try; 1358 1359 if (!num_bios) 1360 return; 1361 1362 if (num_bios == 1) { 1363 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1364 bio_list_add(blist, &tio->clone); 1365 return; 1366 } 1367 1368 for (try = 0; try < 2; try++) { 1369 int bio_nr; 1370 struct bio *bio; 1371 1372 if (try) 1373 mutex_lock(&ci->io->md->table_devices_lock); 1374 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1375 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1376 if (!tio) 1377 break; 1378 1379 bio_list_add(blist, &tio->clone); 1380 } 1381 if (try) 1382 mutex_unlock(&ci->io->md->table_devices_lock); 1383 if (bio_nr == num_bios) 1384 return; 1385 1386 while ((bio = bio_list_pop(blist))) { 1387 tio = container_of(bio, struct dm_target_io, clone); 1388 free_tio(tio); 1389 } 1390 } 1391 } 1392 1393 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1394 struct dm_target_io *tio, unsigned *len) 1395 { 1396 struct bio *clone = &tio->clone; 1397 1398 tio->len_ptr = len; 1399 1400 __bio_clone_fast(clone, ci->bio); 1401 if (len) 1402 bio_setup_sector(clone, ci->sector, *len); 1403 1404 return __map_bio(tio); 1405 } 1406 1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1408 unsigned num_bios, unsigned *len) 1409 { 1410 struct bio_list blist = BIO_EMPTY_LIST; 1411 struct bio *bio; 1412 struct dm_target_io *tio; 1413 1414 alloc_multiple_bios(&blist, ci, ti, num_bios); 1415 1416 while ((bio = bio_list_pop(&blist))) { 1417 tio = container_of(bio, struct dm_target_io, clone); 1418 (void) __clone_and_map_simple_bio(ci, tio, len); 1419 } 1420 } 1421 1422 static int __send_empty_flush(struct clone_info *ci) 1423 { 1424 unsigned target_nr = 0; 1425 struct dm_target *ti; 1426 1427 /* 1428 * Empty flush uses a statically initialized bio, as the base for 1429 * cloning. However, blkg association requires that a bdev is 1430 * associated with a gendisk, which doesn't happen until the bdev is 1431 * opened. So, blkg association is done at issue time of the flush 1432 * rather than when the device is created in alloc_dev(). 1433 */ 1434 bio_set_dev(ci->bio, ci->io->md->bdev); 1435 1436 BUG_ON(bio_has_data(ci->bio)); 1437 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1438 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1439 1440 bio_disassociate_blkg(ci->bio); 1441 1442 return 0; 1443 } 1444 1445 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1446 sector_t sector, unsigned *len) 1447 { 1448 struct bio *bio = ci->bio; 1449 struct dm_target_io *tio; 1450 int r; 1451 1452 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1453 tio->len_ptr = len; 1454 r = clone_bio(tio, bio, sector, *len); 1455 if (r < 0) { 1456 free_tio(tio); 1457 return r; 1458 } 1459 (void) __map_bio(tio); 1460 1461 return 0; 1462 } 1463 1464 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1465 1466 static unsigned get_num_discard_bios(struct dm_target *ti) 1467 { 1468 return ti->num_discard_bios; 1469 } 1470 1471 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1472 { 1473 return ti->num_secure_erase_bios; 1474 } 1475 1476 static unsigned get_num_write_same_bios(struct dm_target *ti) 1477 { 1478 return ti->num_write_same_bios; 1479 } 1480 1481 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1482 { 1483 return ti->num_write_zeroes_bios; 1484 } 1485 1486 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1487 unsigned num_bios) 1488 { 1489 unsigned len; 1490 1491 /* 1492 * Even though the device advertised support for this type of 1493 * request, that does not mean every target supports it, and 1494 * reconfiguration might also have changed that since the 1495 * check was performed. 1496 */ 1497 if (!num_bios) 1498 return -EOPNOTSUPP; 1499 1500 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1501 1502 __send_duplicate_bios(ci, ti, num_bios, &len); 1503 1504 ci->sector += len; 1505 ci->sector_count -= len; 1506 1507 return 0; 1508 } 1509 1510 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1511 { 1512 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1513 } 1514 1515 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1516 { 1517 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1518 } 1519 1520 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1521 { 1522 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1523 } 1524 1525 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1526 { 1527 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1528 } 1529 1530 static bool is_abnormal_io(struct bio *bio) 1531 { 1532 bool r = false; 1533 1534 switch (bio_op(bio)) { 1535 case REQ_OP_DISCARD: 1536 case REQ_OP_SECURE_ERASE: 1537 case REQ_OP_WRITE_SAME: 1538 case REQ_OP_WRITE_ZEROES: 1539 r = true; 1540 break; 1541 } 1542 1543 return r; 1544 } 1545 1546 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1547 int *result) 1548 { 1549 struct bio *bio = ci->bio; 1550 1551 if (bio_op(bio) == REQ_OP_DISCARD) 1552 *result = __send_discard(ci, ti); 1553 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1554 *result = __send_secure_erase(ci, ti); 1555 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1556 *result = __send_write_same(ci, ti); 1557 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1558 *result = __send_write_zeroes(ci, ti); 1559 else 1560 return false; 1561 1562 return true; 1563 } 1564 1565 /* 1566 * Select the correct strategy for processing a non-flush bio. 1567 */ 1568 static int __split_and_process_non_flush(struct clone_info *ci) 1569 { 1570 struct dm_target *ti; 1571 unsigned len; 1572 int r; 1573 1574 ti = dm_table_find_target(ci->map, ci->sector); 1575 if (!dm_target_is_valid(ti)) 1576 return -EIO; 1577 1578 if (__process_abnormal_io(ci, ti, &r)) 1579 return r; 1580 1581 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1582 1583 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1584 if (r < 0) 1585 return r; 1586 1587 ci->sector += len; 1588 ci->sector_count -= len; 1589 1590 return 0; 1591 } 1592 1593 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1594 struct dm_table *map, struct bio *bio) 1595 { 1596 ci->map = map; 1597 ci->io = alloc_io(md, bio); 1598 ci->sector = bio->bi_iter.bi_sector; 1599 } 1600 1601 #define __dm_part_stat_sub(part, field, subnd) \ 1602 (part_stat_get(part, field) -= (subnd)) 1603 1604 /* 1605 * Entry point to split a bio into clones and submit them to the targets. 1606 */ 1607 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1608 struct dm_table *map, struct bio *bio) 1609 { 1610 struct clone_info ci; 1611 blk_qc_t ret = BLK_QC_T_NONE; 1612 int error = 0; 1613 1614 init_clone_info(&ci, md, map, bio); 1615 1616 if (bio->bi_opf & REQ_PREFLUSH) { 1617 struct bio flush_bio; 1618 1619 /* 1620 * Use an on-stack bio for this, it's safe since we don't 1621 * need to reference it after submit. It's just used as 1622 * the basis for the clone(s). 1623 */ 1624 bio_init(&flush_bio, NULL, 0); 1625 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1626 ci.bio = &flush_bio; 1627 ci.sector_count = 0; 1628 error = __send_empty_flush(&ci); 1629 /* dec_pending submits any data associated with flush */ 1630 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1631 ci.bio = bio; 1632 ci.sector_count = 0; 1633 error = __split_and_process_non_flush(&ci); 1634 } else { 1635 ci.bio = bio; 1636 ci.sector_count = bio_sectors(bio); 1637 while (ci.sector_count && !error) { 1638 error = __split_and_process_non_flush(&ci); 1639 if (current->bio_list && ci.sector_count && !error) { 1640 /* 1641 * Remainder must be passed to generic_make_request() 1642 * so that it gets handled *after* bios already submitted 1643 * have been completely processed. 1644 * We take a clone of the original to store in 1645 * ci.io->orig_bio to be used by end_io_acct() and 1646 * for dec_pending to use for completion handling. 1647 */ 1648 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1649 GFP_NOIO, &md->queue->bio_split); 1650 ci.io->orig_bio = b; 1651 1652 /* 1653 * Adjust IO stats for each split, otherwise upon queue 1654 * reentry there will be redundant IO accounting. 1655 * NOTE: this is a stop-gap fix, a proper fix involves 1656 * significant refactoring of DM core's bio splitting 1657 * (by eliminating DM's splitting and just using bio_split) 1658 */ 1659 part_stat_lock(); 1660 __dm_part_stat_sub(&dm_disk(md)->part0, 1661 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1662 part_stat_unlock(); 1663 1664 bio_chain(b, bio); 1665 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1666 ret = generic_make_request(bio); 1667 break; 1668 } 1669 } 1670 } 1671 1672 /* drop the extra reference count */ 1673 dec_pending(ci.io, errno_to_blk_status(error)); 1674 return ret; 1675 } 1676 1677 /* 1678 * Optimized variant of __split_and_process_bio that leverages the 1679 * fact that targets that use it do _not_ have a need to split bios. 1680 */ 1681 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1682 struct bio *bio, struct dm_target *ti) 1683 { 1684 struct clone_info ci; 1685 blk_qc_t ret = BLK_QC_T_NONE; 1686 int error = 0; 1687 1688 init_clone_info(&ci, md, map, bio); 1689 1690 if (bio->bi_opf & REQ_PREFLUSH) { 1691 struct bio flush_bio; 1692 1693 /* 1694 * Use an on-stack bio for this, it's safe since we don't 1695 * need to reference it after submit. It's just used as 1696 * the basis for the clone(s). 1697 */ 1698 bio_init(&flush_bio, NULL, 0); 1699 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1700 ci.bio = &flush_bio; 1701 ci.sector_count = 0; 1702 error = __send_empty_flush(&ci); 1703 /* dec_pending submits any data associated with flush */ 1704 } else { 1705 struct dm_target_io *tio; 1706 1707 ci.bio = bio; 1708 ci.sector_count = bio_sectors(bio); 1709 if (__process_abnormal_io(&ci, ti, &error)) 1710 goto out; 1711 1712 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1713 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1714 } 1715 out: 1716 /* drop the extra reference count */ 1717 dec_pending(ci.io, errno_to_blk_status(error)); 1718 return ret; 1719 } 1720 1721 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1722 { 1723 unsigned len, sector_count; 1724 1725 sector_count = bio_sectors(*bio); 1726 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1727 1728 if (sector_count > len) { 1729 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1730 1731 bio_chain(split, *bio); 1732 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1733 generic_make_request(*bio); 1734 *bio = split; 1735 } 1736 } 1737 1738 static blk_qc_t dm_process_bio(struct mapped_device *md, 1739 struct dm_table *map, struct bio *bio) 1740 { 1741 blk_qc_t ret = BLK_QC_T_NONE; 1742 struct dm_target *ti = md->immutable_target; 1743 1744 if (unlikely(!map)) { 1745 bio_io_error(bio); 1746 return ret; 1747 } 1748 1749 if (!ti) { 1750 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1751 if (unlikely(!ti || !dm_target_is_valid(ti))) { 1752 bio_io_error(bio); 1753 return ret; 1754 } 1755 } 1756 1757 /* 1758 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1759 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1760 * won't be imposed. 1761 */ 1762 if (current->bio_list) { 1763 blk_queue_split(md->queue, &bio); 1764 if (!is_abnormal_io(bio)) 1765 dm_queue_split(md, ti, &bio); 1766 } 1767 1768 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1769 return __process_bio(md, map, bio, ti); 1770 else 1771 return __split_and_process_bio(md, map, bio); 1772 } 1773 1774 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1775 { 1776 struct mapped_device *md = q->queuedata; 1777 blk_qc_t ret = BLK_QC_T_NONE; 1778 int srcu_idx; 1779 struct dm_table *map; 1780 1781 map = dm_get_live_table(md, &srcu_idx); 1782 1783 /* if we're suspended, we have to queue this io for later */ 1784 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1785 dm_put_live_table(md, srcu_idx); 1786 1787 if (!(bio->bi_opf & REQ_RAHEAD)) 1788 queue_io(md, bio); 1789 else 1790 bio_io_error(bio); 1791 return ret; 1792 } 1793 1794 ret = dm_process_bio(md, map, bio); 1795 1796 dm_put_live_table(md, srcu_idx); 1797 return ret; 1798 } 1799 1800 static int dm_any_congested(void *congested_data, int bdi_bits) 1801 { 1802 int r = bdi_bits; 1803 struct mapped_device *md = congested_data; 1804 struct dm_table *map; 1805 1806 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1807 if (dm_request_based(md)) { 1808 /* 1809 * With request-based DM we only need to check the 1810 * top-level queue for congestion. 1811 */ 1812 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1813 } else { 1814 map = dm_get_live_table_fast(md); 1815 if (map) 1816 r = dm_table_any_congested(map, bdi_bits); 1817 dm_put_live_table_fast(md); 1818 } 1819 } 1820 1821 return r; 1822 } 1823 1824 /*----------------------------------------------------------------- 1825 * An IDR is used to keep track of allocated minor numbers. 1826 *---------------------------------------------------------------*/ 1827 static void free_minor(int minor) 1828 { 1829 spin_lock(&_minor_lock); 1830 idr_remove(&_minor_idr, minor); 1831 spin_unlock(&_minor_lock); 1832 } 1833 1834 /* 1835 * See if the device with a specific minor # is free. 1836 */ 1837 static int specific_minor(int minor) 1838 { 1839 int r; 1840 1841 if (minor >= (1 << MINORBITS)) 1842 return -EINVAL; 1843 1844 idr_preload(GFP_KERNEL); 1845 spin_lock(&_minor_lock); 1846 1847 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1848 1849 spin_unlock(&_minor_lock); 1850 idr_preload_end(); 1851 if (r < 0) 1852 return r == -ENOSPC ? -EBUSY : r; 1853 return 0; 1854 } 1855 1856 static int next_free_minor(int *minor) 1857 { 1858 int r; 1859 1860 idr_preload(GFP_KERNEL); 1861 spin_lock(&_minor_lock); 1862 1863 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1864 1865 spin_unlock(&_minor_lock); 1866 idr_preload_end(); 1867 if (r < 0) 1868 return r; 1869 *minor = r; 1870 return 0; 1871 } 1872 1873 static const struct block_device_operations dm_blk_dops; 1874 static const struct dax_operations dm_dax_ops; 1875 1876 static void dm_wq_work(struct work_struct *work); 1877 1878 static void dm_init_normal_md_queue(struct mapped_device *md) 1879 { 1880 /* 1881 * Initialize aspects of queue that aren't relevant for blk-mq 1882 */ 1883 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1884 } 1885 1886 static void cleanup_mapped_device(struct mapped_device *md) 1887 { 1888 if (md->wq) 1889 destroy_workqueue(md->wq); 1890 bioset_exit(&md->bs); 1891 bioset_exit(&md->io_bs); 1892 1893 if (md->dax_dev) { 1894 kill_dax(md->dax_dev); 1895 put_dax(md->dax_dev); 1896 md->dax_dev = NULL; 1897 } 1898 1899 if (md->disk) { 1900 spin_lock(&_minor_lock); 1901 md->disk->private_data = NULL; 1902 spin_unlock(&_minor_lock); 1903 del_gendisk(md->disk); 1904 put_disk(md->disk); 1905 } 1906 1907 if (md->queue) 1908 blk_cleanup_queue(md->queue); 1909 1910 cleanup_srcu_struct(&md->io_barrier); 1911 1912 if (md->bdev) { 1913 bdput(md->bdev); 1914 md->bdev = NULL; 1915 } 1916 1917 mutex_destroy(&md->suspend_lock); 1918 mutex_destroy(&md->type_lock); 1919 mutex_destroy(&md->table_devices_lock); 1920 1921 dm_mq_cleanup_mapped_device(md); 1922 } 1923 1924 /* 1925 * Allocate and initialise a blank device with a given minor. 1926 */ 1927 static struct mapped_device *alloc_dev(int minor) 1928 { 1929 int r, numa_node_id = dm_get_numa_node(); 1930 struct mapped_device *md; 1931 void *old_md; 1932 1933 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1934 if (!md) { 1935 DMWARN("unable to allocate device, out of memory."); 1936 return NULL; 1937 } 1938 1939 if (!try_module_get(THIS_MODULE)) 1940 goto bad_module_get; 1941 1942 /* get a minor number for the dev */ 1943 if (minor == DM_ANY_MINOR) 1944 r = next_free_minor(&minor); 1945 else 1946 r = specific_minor(minor); 1947 if (r < 0) 1948 goto bad_minor; 1949 1950 r = init_srcu_struct(&md->io_barrier); 1951 if (r < 0) 1952 goto bad_io_barrier; 1953 1954 md->numa_node_id = numa_node_id; 1955 md->init_tio_pdu = false; 1956 md->type = DM_TYPE_NONE; 1957 mutex_init(&md->suspend_lock); 1958 mutex_init(&md->type_lock); 1959 mutex_init(&md->table_devices_lock); 1960 spin_lock_init(&md->deferred_lock); 1961 atomic_set(&md->holders, 1); 1962 atomic_set(&md->open_count, 0); 1963 atomic_set(&md->event_nr, 0); 1964 atomic_set(&md->uevent_seq, 0); 1965 INIT_LIST_HEAD(&md->uevent_list); 1966 INIT_LIST_HEAD(&md->table_devices); 1967 spin_lock_init(&md->uevent_lock); 1968 1969 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1970 if (!md->queue) 1971 goto bad; 1972 md->queue->queuedata = md; 1973 md->queue->backing_dev_info->congested_data = md; 1974 1975 md->disk = alloc_disk_node(1, md->numa_node_id); 1976 if (!md->disk) 1977 goto bad; 1978 1979 init_waitqueue_head(&md->wait); 1980 INIT_WORK(&md->work, dm_wq_work); 1981 init_waitqueue_head(&md->eventq); 1982 init_completion(&md->kobj_holder.completion); 1983 1984 md->disk->major = _major; 1985 md->disk->first_minor = minor; 1986 md->disk->fops = &dm_blk_dops; 1987 md->disk->queue = md->queue; 1988 md->disk->private_data = md; 1989 sprintf(md->disk->disk_name, "dm-%d", minor); 1990 1991 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1992 md->dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1993 if (!md->dax_dev) 1994 goto bad; 1995 } 1996 1997 add_disk_no_queue_reg(md->disk); 1998 format_dev_t(md->name, MKDEV(_major, minor)); 1999 2000 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2001 if (!md->wq) 2002 goto bad; 2003 2004 md->bdev = bdget_disk(md->disk, 0); 2005 if (!md->bdev) 2006 goto bad; 2007 2008 dm_stats_init(&md->stats); 2009 2010 /* Populate the mapping, nobody knows we exist yet */ 2011 spin_lock(&_minor_lock); 2012 old_md = idr_replace(&_minor_idr, md, minor); 2013 spin_unlock(&_minor_lock); 2014 2015 BUG_ON(old_md != MINOR_ALLOCED); 2016 2017 return md; 2018 2019 bad: 2020 cleanup_mapped_device(md); 2021 bad_io_barrier: 2022 free_minor(minor); 2023 bad_minor: 2024 module_put(THIS_MODULE); 2025 bad_module_get: 2026 kvfree(md); 2027 return NULL; 2028 } 2029 2030 static void unlock_fs(struct mapped_device *md); 2031 2032 static void free_dev(struct mapped_device *md) 2033 { 2034 int minor = MINOR(disk_devt(md->disk)); 2035 2036 unlock_fs(md); 2037 2038 cleanup_mapped_device(md); 2039 2040 free_table_devices(&md->table_devices); 2041 dm_stats_cleanup(&md->stats); 2042 free_minor(minor); 2043 2044 module_put(THIS_MODULE); 2045 kvfree(md); 2046 } 2047 2048 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2049 { 2050 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2051 int ret = 0; 2052 2053 if (dm_table_bio_based(t)) { 2054 /* 2055 * The md may already have mempools that need changing. 2056 * If so, reload bioset because front_pad may have changed 2057 * because a different table was loaded. 2058 */ 2059 bioset_exit(&md->bs); 2060 bioset_exit(&md->io_bs); 2061 2062 } else if (bioset_initialized(&md->bs)) { 2063 /* 2064 * There's no need to reload with request-based dm 2065 * because the size of front_pad doesn't change. 2066 * Note for future: If you are to reload bioset, 2067 * prep-ed requests in the queue may refer 2068 * to bio from the old bioset, so you must walk 2069 * through the queue to unprep. 2070 */ 2071 goto out; 2072 } 2073 2074 BUG_ON(!p || 2075 bioset_initialized(&md->bs) || 2076 bioset_initialized(&md->io_bs)); 2077 2078 ret = bioset_init_from_src(&md->bs, &p->bs); 2079 if (ret) 2080 goto out; 2081 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2082 if (ret) 2083 bioset_exit(&md->bs); 2084 out: 2085 /* mempool bind completed, no longer need any mempools in the table */ 2086 dm_table_free_md_mempools(t); 2087 return ret; 2088 } 2089 2090 /* 2091 * Bind a table to the device. 2092 */ 2093 static void event_callback(void *context) 2094 { 2095 unsigned long flags; 2096 LIST_HEAD(uevents); 2097 struct mapped_device *md = (struct mapped_device *) context; 2098 2099 spin_lock_irqsave(&md->uevent_lock, flags); 2100 list_splice_init(&md->uevent_list, &uevents); 2101 spin_unlock_irqrestore(&md->uevent_lock, flags); 2102 2103 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2104 2105 atomic_inc(&md->event_nr); 2106 wake_up(&md->eventq); 2107 dm_issue_global_event(); 2108 } 2109 2110 /* 2111 * Protected by md->suspend_lock obtained by dm_swap_table(). 2112 */ 2113 static void __set_size(struct mapped_device *md, sector_t size) 2114 { 2115 lockdep_assert_held(&md->suspend_lock); 2116 2117 set_capacity(md->disk, size); 2118 2119 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2120 } 2121 2122 /* 2123 * Returns old map, which caller must destroy. 2124 */ 2125 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2126 struct queue_limits *limits) 2127 { 2128 struct dm_table *old_map; 2129 struct request_queue *q = md->queue; 2130 bool request_based = dm_table_request_based(t); 2131 sector_t size; 2132 int ret; 2133 2134 lockdep_assert_held(&md->suspend_lock); 2135 2136 size = dm_table_get_size(t); 2137 2138 /* 2139 * Wipe any geometry if the size of the table changed. 2140 */ 2141 if (size != dm_get_size(md)) 2142 memset(&md->geometry, 0, sizeof(md->geometry)); 2143 2144 __set_size(md, size); 2145 2146 dm_table_event_callback(t, event_callback, md); 2147 2148 /* 2149 * The queue hasn't been stopped yet, if the old table type wasn't 2150 * for request-based during suspension. So stop it to prevent 2151 * I/O mapping before resume. 2152 * This must be done before setting the queue restrictions, 2153 * because request-based dm may be run just after the setting. 2154 */ 2155 if (request_based) 2156 dm_stop_queue(q); 2157 2158 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2159 /* 2160 * Leverage the fact that request-based DM targets and 2161 * NVMe bio based targets are immutable singletons 2162 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2163 * and __process_bio. 2164 */ 2165 md->immutable_target = dm_table_get_immutable_target(t); 2166 } 2167 2168 ret = __bind_mempools(md, t); 2169 if (ret) { 2170 old_map = ERR_PTR(ret); 2171 goto out; 2172 } 2173 2174 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2175 rcu_assign_pointer(md->map, (void *)t); 2176 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2177 2178 dm_table_set_restrictions(t, q, limits); 2179 if (old_map) 2180 dm_sync_table(md); 2181 2182 out: 2183 return old_map; 2184 } 2185 2186 /* 2187 * Returns unbound table for the caller to free. 2188 */ 2189 static struct dm_table *__unbind(struct mapped_device *md) 2190 { 2191 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2192 2193 if (!map) 2194 return NULL; 2195 2196 dm_table_event_callback(map, NULL, NULL); 2197 RCU_INIT_POINTER(md->map, NULL); 2198 dm_sync_table(md); 2199 2200 return map; 2201 } 2202 2203 /* 2204 * Constructor for a new device. 2205 */ 2206 int dm_create(int minor, struct mapped_device **result) 2207 { 2208 int r; 2209 struct mapped_device *md; 2210 2211 md = alloc_dev(minor); 2212 if (!md) 2213 return -ENXIO; 2214 2215 r = dm_sysfs_init(md); 2216 if (r) { 2217 free_dev(md); 2218 return r; 2219 } 2220 2221 *result = md; 2222 return 0; 2223 } 2224 2225 /* 2226 * Functions to manage md->type. 2227 * All are required to hold md->type_lock. 2228 */ 2229 void dm_lock_md_type(struct mapped_device *md) 2230 { 2231 mutex_lock(&md->type_lock); 2232 } 2233 2234 void dm_unlock_md_type(struct mapped_device *md) 2235 { 2236 mutex_unlock(&md->type_lock); 2237 } 2238 2239 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2240 { 2241 BUG_ON(!mutex_is_locked(&md->type_lock)); 2242 md->type = type; 2243 } 2244 2245 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2246 { 2247 return md->type; 2248 } 2249 2250 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2251 { 2252 return md->immutable_target_type; 2253 } 2254 2255 /* 2256 * The queue_limits are only valid as long as you have a reference 2257 * count on 'md'. 2258 */ 2259 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2260 { 2261 BUG_ON(!atomic_read(&md->holders)); 2262 return &md->queue->limits; 2263 } 2264 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2265 2266 /* 2267 * Setup the DM device's queue based on md's type 2268 */ 2269 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2270 { 2271 int r; 2272 struct queue_limits limits; 2273 enum dm_queue_mode type = dm_get_md_type(md); 2274 2275 switch (type) { 2276 case DM_TYPE_REQUEST_BASED: 2277 r = dm_mq_init_request_queue(md, t); 2278 if (r) { 2279 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2280 return r; 2281 } 2282 break; 2283 case DM_TYPE_BIO_BASED: 2284 case DM_TYPE_DAX_BIO_BASED: 2285 case DM_TYPE_NVME_BIO_BASED: 2286 dm_init_normal_md_queue(md); 2287 blk_queue_make_request(md->queue, dm_make_request); 2288 break; 2289 case DM_TYPE_NONE: 2290 WARN_ON_ONCE(true); 2291 break; 2292 } 2293 2294 r = dm_calculate_queue_limits(t, &limits); 2295 if (r) { 2296 DMERR("Cannot calculate initial queue limits"); 2297 return r; 2298 } 2299 dm_table_set_restrictions(t, md->queue, &limits); 2300 blk_register_queue(md->disk); 2301 2302 return 0; 2303 } 2304 2305 struct mapped_device *dm_get_md(dev_t dev) 2306 { 2307 struct mapped_device *md; 2308 unsigned minor = MINOR(dev); 2309 2310 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2311 return NULL; 2312 2313 spin_lock(&_minor_lock); 2314 2315 md = idr_find(&_minor_idr, minor); 2316 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2317 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2318 md = NULL; 2319 goto out; 2320 } 2321 dm_get(md); 2322 out: 2323 spin_unlock(&_minor_lock); 2324 2325 return md; 2326 } 2327 EXPORT_SYMBOL_GPL(dm_get_md); 2328 2329 void *dm_get_mdptr(struct mapped_device *md) 2330 { 2331 return md->interface_ptr; 2332 } 2333 2334 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2335 { 2336 md->interface_ptr = ptr; 2337 } 2338 2339 void dm_get(struct mapped_device *md) 2340 { 2341 atomic_inc(&md->holders); 2342 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2343 } 2344 2345 int dm_hold(struct mapped_device *md) 2346 { 2347 spin_lock(&_minor_lock); 2348 if (test_bit(DMF_FREEING, &md->flags)) { 2349 spin_unlock(&_minor_lock); 2350 return -EBUSY; 2351 } 2352 dm_get(md); 2353 spin_unlock(&_minor_lock); 2354 return 0; 2355 } 2356 EXPORT_SYMBOL_GPL(dm_hold); 2357 2358 const char *dm_device_name(struct mapped_device *md) 2359 { 2360 return md->name; 2361 } 2362 EXPORT_SYMBOL_GPL(dm_device_name); 2363 2364 static void __dm_destroy(struct mapped_device *md, bool wait) 2365 { 2366 struct dm_table *map; 2367 int srcu_idx; 2368 2369 might_sleep(); 2370 2371 spin_lock(&_minor_lock); 2372 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2373 set_bit(DMF_FREEING, &md->flags); 2374 spin_unlock(&_minor_lock); 2375 2376 blk_set_queue_dying(md->queue); 2377 2378 /* 2379 * Take suspend_lock so that presuspend and postsuspend methods 2380 * do not race with internal suspend. 2381 */ 2382 mutex_lock(&md->suspend_lock); 2383 map = dm_get_live_table(md, &srcu_idx); 2384 if (!dm_suspended_md(md)) { 2385 dm_table_presuspend_targets(map); 2386 dm_table_postsuspend_targets(map); 2387 } 2388 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2389 dm_put_live_table(md, srcu_idx); 2390 mutex_unlock(&md->suspend_lock); 2391 2392 /* 2393 * Rare, but there may be I/O requests still going to complete, 2394 * for example. Wait for all references to disappear. 2395 * No one should increment the reference count of the mapped_device, 2396 * after the mapped_device state becomes DMF_FREEING. 2397 */ 2398 if (wait) 2399 while (atomic_read(&md->holders)) 2400 msleep(1); 2401 else if (atomic_read(&md->holders)) 2402 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2403 dm_device_name(md), atomic_read(&md->holders)); 2404 2405 dm_sysfs_exit(md); 2406 dm_table_destroy(__unbind(md)); 2407 free_dev(md); 2408 } 2409 2410 void dm_destroy(struct mapped_device *md) 2411 { 2412 __dm_destroy(md, true); 2413 } 2414 2415 void dm_destroy_immediate(struct mapped_device *md) 2416 { 2417 __dm_destroy(md, false); 2418 } 2419 2420 void dm_put(struct mapped_device *md) 2421 { 2422 atomic_dec(&md->holders); 2423 } 2424 EXPORT_SYMBOL_GPL(dm_put); 2425 2426 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2427 { 2428 int r = 0; 2429 DEFINE_WAIT(wait); 2430 2431 while (1) { 2432 prepare_to_wait(&md->wait, &wait, task_state); 2433 2434 if (!md_in_flight(md)) 2435 break; 2436 2437 if (signal_pending_state(task_state, current)) { 2438 r = -EINTR; 2439 break; 2440 } 2441 2442 io_schedule(); 2443 } 2444 finish_wait(&md->wait, &wait); 2445 2446 return r; 2447 } 2448 2449 /* 2450 * Process the deferred bios 2451 */ 2452 static void dm_wq_work(struct work_struct *work) 2453 { 2454 struct mapped_device *md = container_of(work, struct mapped_device, 2455 work); 2456 struct bio *c; 2457 int srcu_idx; 2458 struct dm_table *map; 2459 2460 map = dm_get_live_table(md, &srcu_idx); 2461 2462 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2463 spin_lock_irq(&md->deferred_lock); 2464 c = bio_list_pop(&md->deferred); 2465 spin_unlock_irq(&md->deferred_lock); 2466 2467 if (!c) 2468 break; 2469 2470 if (dm_request_based(md)) 2471 (void) generic_make_request(c); 2472 else 2473 (void) dm_process_bio(md, map, c); 2474 } 2475 2476 dm_put_live_table(md, srcu_idx); 2477 } 2478 2479 static void dm_queue_flush(struct mapped_device *md) 2480 { 2481 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2482 smp_mb__after_atomic(); 2483 queue_work(md->wq, &md->work); 2484 } 2485 2486 /* 2487 * Swap in a new table, returning the old one for the caller to destroy. 2488 */ 2489 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2490 { 2491 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2492 struct queue_limits limits; 2493 int r; 2494 2495 mutex_lock(&md->suspend_lock); 2496 2497 /* device must be suspended */ 2498 if (!dm_suspended_md(md)) 2499 goto out; 2500 2501 /* 2502 * If the new table has no data devices, retain the existing limits. 2503 * This helps multipath with queue_if_no_path if all paths disappear, 2504 * then new I/O is queued based on these limits, and then some paths 2505 * reappear. 2506 */ 2507 if (dm_table_has_no_data_devices(table)) { 2508 live_map = dm_get_live_table_fast(md); 2509 if (live_map) 2510 limits = md->queue->limits; 2511 dm_put_live_table_fast(md); 2512 } 2513 2514 if (!live_map) { 2515 r = dm_calculate_queue_limits(table, &limits); 2516 if (r) { 2517 map = ERR_PTR(r); 2518 goto out; 2519 } 2520 } 2521 2522 map = __bind(md, table, &limits); 2523 dm_issue_global_event(); 2524 2525 out: 2526 mutex_unlock(&md->suspend_lock); 2527 return map; 2528 } 2529 2530 /* 2531 * Functions to lock and unlock any filesystem running on the 2532 * device. 2533 */ 2534 static int lock_fs(struct mapped_device *md) 2535 { 2536 int r; 2537 2538 WARN_ON(md->frozen_sb); 2539 2540 md->frozen_sb = freeze_bdev(md->bdev); 2541 if (IS_ERR(md->frozen_sb)) { 2542 r = PTR_ERR(md->frozen_sb); 2543 md->frozen_sb = NULL; 2544 return r; 2545 } 2546 2547 set_bit(DMF_FROZEN, &md->flags); 2548 2549 return 0; 2550 } 2551 2552 static void unlock_fs(struct mapped_device *md) 2553 { 2554 if (!test_bit(DMF_FROZEN, &md->flags)) 2555 return; 2556 2557 thaw_bdev(md->bdev, md->frozen_sb); 2558 md->frozen_sb = NULL; 2559 clear_bit(DMF_FROZEN, &md->flags); 2560 } 2561 2562 /* 2563 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2564 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2565 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2566 * 2567 * If __dm_suspend returns 0, the device is completely quiescent 2568 * now. There is no request-processing activity. All new requests 2569 * are being added to md->deferred list. 2570 */ 2571 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2572 unsigned suspend_flags, long task_state, 2573 int dmf_suspended_flag) 2574 { 2575 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2576 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2577 int r; 2578 2579 lockdep_assert_held(&md->suspend_lock); 2580 2581 /* 2582 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2583 * This flag is cleared before dm_suspend returns. 2584 */ 2585 if (noflush) 2586 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2587 else 2588 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2589 2590 /* 2591 * This gets reverted if there's an error later and the targets 2592 * provide the .presuspend_undo hook. 2593 */ 2594 dm_table_presuspend_targets(map); 2595 2596 /* 2597 * Flush I/O to the device. 2598 * Any I/O submitted after lock_fs() may not be flushed. 2599 * noflush takes precedence over do_lockfs. 2600 * (lock_fs() flushes I/Os and waits for them to complete.) 2601 */ 2602 if (!noflush && do_lockfs) { 2603 r = lock_fs(md); 2604 if (r) { 2605 dm_table_presuspend_undo_targets(map); 2606 return r; 2607 } 2608 } 2609 2610 /* 2611 * Here we must make sure that no processes are submitting requests 2612 * to target drivers i.e. no one may be executing 2613 * __split_and_process_bio. This is called from dm_request and 2614 * dm_wq_work. 2615 * 2616 * To get all processes out of __split_and_process_bio in dm_request, 2617 * we take the write lock. To prevent any process from reentering 2618 * __split_and_process_bio from dm_request and quiesce the thread 2619 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2620 * flush_workqueue(md->wq). 2621 */ 2622 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2623 if (map) 2624 synchronize_srcu(&md->io_barrier); 2625 2626 /* 2627 * Stop md->queue before flushing md->wq in case request-based 2628 * dm defers requests to md->wq from md->queue. 2629 */ 2630 if (dm_request_based(md)) 2631 dm_stop_queue(md->queue); 2632 2633 flush_workqueue(md->wq); 2634 2635 /* 2636 * At this point no more requests are entering target request routines. 2637 * We call dm_wait_for_completion to wait for all existing requests 2638 * to finish. 2639 */ 2640 r = dm_wait_for_completion(md, task_state); 2641 if (!r) 2642 set_bit(dmf_suspended_flag, &md->flags); 2643 2644 if (noflush) 2645 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2646 if (map) 2647 synchronize_srcu(&md->io_barrier); 2648 2649 /* were we interrupted ? */ 2650 if (r < 0) { 2651 dm_queue_flush(md); 2652 2653 if (dm_request_based(md)) 2654 dm_start_queue(md->queue); 2655 2656 unlock_fs(md); 2657 dm_table_presuspend_undo_targets(map); 2658 /* pushback list is already flushed, so skip flush */ 2659 } 2660 2661 return r; 2662 } 2663 2664 /* 2665 * We need to be able to change a mapping table under a mounted 2666 * filesystem. For example we might want to move some data in 2667 * the background. Before the table can be swapped with 2668 * dm_bind_table, dm_suspend must be called to flush any in 2669 * flight bios and ensure that any further io gets deferred. 2670 */ 2671 /* 2672 * Suspend mechanism in request-based dm. 2673 * 2674 * 1. Flush all I/Os by lock_fs() if needed. 2675 * 2. Stop dispatching any I/O by stopping the request_queue. 2676 * 3. Wait for all in-flight I/Os to be completed or requeued. 2677 * 2678 * To abort suspend, start the request_queue. 2679 */ 2680 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2681 { 2682 struct dm_table *map = NULL; 2683 int r = 0; 2684 2685 retry: 2686 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2687 2688 if (dm_suspended_md(md)) { 2689 r = -EINVAL; 2690 goto out_unlock; 2691 } 2692 2693 if (dm_suspended_internally_md(md)) { 2694 /* already internally suspended, wait for internal resume */ 2695 mutex_unlock(&md->suspend_lock); 2696 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2697 if (r) 2698 return r; 2699 goto retry; 2700 } 2701 2702 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2703 2704 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2705 if (r) 2706 goto out_unlock; 2707 2708 dm_table_postsuspend_targets(map); 2709 2710 out_unlock: 2711 mutex_unlock(&md->suspend_lock); 2712 return r; 2713 } 2714 2715 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2716 { 2717 if (map) { 2718 int r = dm_table_resume_targets(map); 2719 if (r) 2720 return r; 2721 } 2722 2723 dm_queue_flush(md); 2724 2725 /* 2726 * Flushing deferred I/Os must be done after targets are resumed 2727 * so that mapping of targets can work correctly. 2728 * Request-based dm is queueing the deferred I/Os in its request_queue. 2729 */ 2730 if (dm_request_based(md)) 2731 dm_start_queue(md->queue); 2732 2733 unlock_fs(md); 2734 2735 return 0; 2736 } 2737 2738 int dm_resume(struct mapped_device *md) 2739 { 2740 int r; 2741 struct dm_table *map = NULL; 2742 2743 retry: 2744 r = -EINVAL; 2745 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2746 2747 if (!dm_suspended_md(md)) 2748 goto out; 2749 2750 if (dm_suspended_internally_md(md)) { 2751 /* already internally suspended, wait for internal resume */ 2752 mutex_unlock(&md->suspend_lock); 2753 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2754 if (r) 2755 return r; 2756 goto retry; 2757 } 2758 2759 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2760 if (!map || !dm_table_get_size(map)) 2761 goto out; 2762 2763 r = __dm_resume(md, map); 2764 if (r) 2765 goto out; 2766 2767 clear_bit(DMF_SUSPENDED, &md->flags); 2768 out: 2769 mutex_unlock(&md->suspend_lock); 2770 2771 return r; 2772 } 2773 2774 /* 2775 * Internal suspend/resume works like userspace-driven suspend. It waits 2776 * until all bios finish and prevents issuing new bios to the target drivers. 2777 * It may be used only from the kernel. 2778 */ 2779 2780 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2781 { 2782 struct dm_table *map = NULL; 2783 2784 lockdep_assert_held(&md->suspend_lock); 2785 2786 if (md->internal_suspend_count++) 2787 return; /* nested internal suspend */ 2788 2789 if (dm_suspended_md(md)) { 2790 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2791 return; /* nest suspend */ 2792 } 2793 2794 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2795 2796 /* 2797 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2798 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2799 * would require changing .presuspend to return an error -- avoid this 2800 * until there is a need for more elaborate variants of internal suspend. 2801 */ 2802 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2803 DMF_SUSPENDED_INTERNALLY); 2804 2805 dm_table_postsuspend_targets(map); 2806 } 2807 2808 static void __dm_internal_resume(struct mapped_device *md) 2809 { 2810 BUG_ON(!md->internal_suspend_count); 2811 2812 if (--md->internal_suspend_count) 2813 return; /* resume from nested internal suspend */ 2814 2815 if (dm_suspended_md(md)) 2816 goto done; /* resume from nested suspend */ 2817 2818 /* 2819 * NOTE: existing callers don't need to call dm_table_resume_targets 2820 * (which may fail -- so best to avoid it for now by passing NULL map) 2821 */ 2822 (void) __dm_resume(md, NULL); 2823 2824 done: 2825 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2826 smp_mb__after_atomic(); 2827 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2828 } 2829 2830 void dm_internal_suspend_noflush(struct mapped_device *md) 2831 { 2832 mutex_lock(&md->suspend_lock); 2833 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2834 mutex_unlock(&md->suspend_lock); 2835 } 2836 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2837 2838 void dm_internal_resume(struct mapped_device *md) 2839 { 2840 mutex_lock(&md->suspend_lock); 2841 __dm_internal_resume(md); 2842 mutex_unlock(&md->suspend_lock); 2843 } 2844 EXPORT_SYMBOL_GPL(dm_internal_resume); 2845 2846 /* 2847 * Fast variants of internal suspend/resume hold md->suspend_lock, 2848 * which prevents interaction with userspace-driven suspend. 2849 */ 2850 2851 void dm_internal_suspend_fast(struct mapped_device *md) 2852 { 2853 mutex_lock(&md->suspend_lock); 2854 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2855 return; 2856 2857 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2858 synchronize_srcu(&md->io_barrier); 2859 flush_workqueue(md->wq); 2860 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2861 } 2862 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2863 2864 void dm_internal_resume_fast(struct mapped_device *md) 2865 { 2866 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2867 goto done; 2868 2869 dm_queue_flush(md); 2870 2871 done: 2872 mutex_unlock(&md->suspend_lock); 2873 } 2874 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2875 2876 /*----------------------------------------------------------------- 2877 * Event notification. 2878 *---------------------------------------------------------------*/ 2879 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2880 unsigned cookie) 2881 { 2882 char udev_cookie[DM_COOKIE_LENGTH]; 2883 char *envp[] = { udev_cookie, NULL }; 2884 2885 if (!cookie) 2886 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2887 else { 2888 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2889 DM_COOKIE_ENV_VAR_NAME, cookie); 2890 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2891 action, envp); 2892 } 2893 } 2894 2895 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2896 { 2897 return atomic_add_return(1, &md->uevent_seq); 2898 } 2899 2900 uint32_t dm_get_event_nr(struct mapped_device *md) 2901 { 2902 return atomic_read(&md->event_nr); 2903 } 2904 2905 int dm_wait_event(struct mapped_device *md, int event_nr) 2906 { 2907 return wait_event_interruptible(md->eventq, 2908 (event_nr != atomic_read(&md->event_nr))); 2909 } 2910 2911 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2912 { 2913 unsigned long flags; 2914 2915 spin_lock_irqsave(&md->uevent_lock, flags); 2916 list_add(elist, &md->uevent_list); 2917 spin_unlock_irqrestore(&md->uevent_lock, flags); 2918 } 2919 2920 /* 2921 * The gendisk is only valid as long as you have a reference 2922 * count on 'md'. 2923 */ 2924 struct gendisk *dm_disk(struct mapped_device *md) 2925 { 2926 return md->disk; 2927 } 2928 EXPORT_SYMBOL_GPL(dm_disk); 2929 2930 struct kobject *dm_kobject(struct mapped_device *md) 2931 { 2932 return &md->kobj_holder.kobj; 2933 } 2934 2935 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2936 { 2937 struct mapped_device *md; 2938 2939 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2940 2941 spin_lock(&_minor_lock); 2942 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2943 md = NULL; 2944 goto out; 2945 } 2946 dm_get(md); 2947 out: 2948 spin_unlock(&_minor_lock); 2949 2950 return md; 2951 } 2952 2953 int dm_suspended_md(struct mapped_device *md) 2954 { 2955 return test_bit(DMF_SUSPENDED, &md->flags); 2956 } 2957 2958 int dm_suspended_internally_md(struct mapped_device *md) 2959 { 2960 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2961 } 2962 2963 int dm_test_deferred_remove_flag(struct mapped_device *md) 2964 { 2965 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2966 } 2967 2968 int dm_suspended(struct dm_target *ti) 2969 { 2970 return dm_suspended_md(dm_table_get_md(ti->table)); 2971 } 2972 EXPORT_SYMBOL_GPL(dm_suspended); 2973 2974 int dm_noflush_suspending(struct dm_target *ti) 2975 { 2976 return __noflush_suspending(dm_table_get_md(ti->table)); 2977 } 2978 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2979 2980 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2981 unsigned integrity, unsigned per_io_data_size, 2982 unsigned min_pool_size) 2983 { 2984 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2985 unsigned int pool_size = 0; 2986 unsigned int front_pad, io_front_pad; 2987 int ret; 2988 2989 if (!pools) 2990 return NULL; 2991 2992 switch (type) { 2993 case DM_TYPE_BIO_BASED: 2994 case DM_TYPE_DAX_BIO_BASED: 2995 case DM_TYPE_NVME_BIO_BASED: 2996 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2997 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2998 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2999 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3000 if (ret) 3001 goto out; 3002 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3003 goto out; 3004 break; 3005 case DM_TYPE_REQUEST_BASED: 3006 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3007 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3008 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3009 break; 3010 default: 3011 BUG(); 3012 } 3013 3014 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3015 if (ret) 3016 goto out; 3017 3018 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3019 goto out; 3020 3021 return pools; 3022 3023 out: 3024 dm_free_md_mempools(pools); 3025 3026 return NULL; 3027 } 3028 3029 void dm_free_md_mempools(struct dm_md_mempools *pools) 3030 { 3031 if (!pools) 3032 return; 3033 3034 bioset_exit(&pools->bs); 3035 bioset_exit(&pools->io_bs); 3036 3037 kfree(pools); 3038 } 3039 3040 struct dm_pr { 3041 u64 old_key; 3042 u64 new_key; 3043 u32 flags; 3044 bool fail_early; 3045 }; 3046 3047 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3048 void *data) 3049 { 3050 struct mapped_device *md = bdev->bd_disk->private_data; 3051 struct dm_table *table; 3052 struct dm_target *ti; 3053 int ret = -ENOTTY, srcu_idx; 3054 3055 table = dm_get_live_table(md, &srcu_idx); 3056 if (!table || !dm_table_get_size(table)) 3057 goto out; 3058 3059 /* We only support devices that have a single target */ 3060 if (dm_table_get_num_targets(table) != 1) 3061 goto out; 3062 ti = dm_table_get_target(table, 0); 3063 3064 ret = -EINVAL; 3065 if (!ti->type->iterate_devices) 3066 goto out; 3067 3068 ret = ti->type->iterate_devices(ti, fn, data); 3069 out: 3070 dm_put_live_table(md, srcu_idx); 3071 return ret; 3072 } 3073 3074 /* 3075 * For register / unregister we need to manually call out to every path. 3076 */ 3077 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3078 sector_t start, sector_t len, void *data) 3079 { 3080 struct dm_pr *pr = data; 3081 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3082 3083 if (!ops || !ops->pr_register) 3084 return -EOPNOTSUPP; 3085 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3086 } 3087 3088 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3089 u32 flags) 3090 { 3091 struct dm_pr pr = { 3092 .old_key = old_key, 3093 .new_key = new_key, 3094 .flags = flags, 3095 .fail_early = true, 3096 }; 3097 int ret; 3098 3099 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3100 if (ret && new_key) { 3101 /* unregister all paths if we failed to register any path */ 3102 pr.old_key = new_key; 3103 pr.new_key = 0; 3104 pr.flags = 0; 3105 pr.fail_early = false; 3106 dm_call_pr(bdev, __dm_pr_register, &pr); 3107 } 3108 3109 return ret; 3110 } 3111 3112 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3113 u32 flags) 3114 { 3115 struct mapped_device *md = bdev->bd_disk->private_data; 3116 const struct pr_ops *ops; 3117 int r, srcu_idx; 3118 3119 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3120 if (r < 0) 3121 goto out; 3122 3123 ops = bdev->bd_disk->fops->pr_ops; 3124 if (ops && ops->pr_reserve) 3125 r = ops->pr_reserve(bdev, key, type, flags); 3126 else 3127 r = -EOPNOTSUPP; 3128 out: 3129 dm_unprepare_ioctl(md, srcu_idx); 3130 return r; 3131 } 3132 3133 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3134 { 3135 struct mapped_device *md = bdev->bd_disk->private_data; 3136 const struct pr_ops *ops; 3137 int r, srcu_idx; 3138 3139 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3140 if (r < 0) 3141 goto out; 3142 3143 ops = bdev->bd_disk->fops->pr_ops; 3144 if (ops && ops->pr_release) 3145 r = ops->pr_release(bdev, key, type); 3146 else 3147 r = -EOPNOTSUPP; 3148 out: 3149 dm_unprepare_ioctl(md, srcu_idx); 3150 return r; 3151 } 3152 3153 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3154 enum pr_type type, bool abort) 3155 { 3156 struct mapped_device *md = bdev->bd_disk->private_data; 3157 const struct pr_ops *ops; 3158 int r, srcu_idx; 3159 3160 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3161 if (r < 0) 3162 goto out; 3163 3164 ops = bdev->bd_disk->fops->pr_ops; 3165 if (ops && ops->pr_preempt) 3166 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3167 else 3168 r = -EOPNOTSUPP; 3169 out: 3170 dm_unprepare_ioctl(md, srcu_idx); 3171 return r; 3172 } 3173 3174 static int dm_pr_clear(struct block_device *bdev, u64 key) 3175 { 3176 struct mapped_device *md = bdev->bd_disk->private_data; 3177 const struct pr_ops *ops; 3178 int r, srcu_idx; 3179 3180 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3181 if (r < 0) 3182 goto out; 3183 3184 ops = bdev->bd_disk->fops->pr_ops; 3185 if (ops && ops->pr_clear) 3186 r = ops->pr_clear(bdev, key); 3187 else 3188 r = -EOPNOTSUPP; 3189 out: 3190 dm_unprepare_ioctl(md, srcu_idx); 3191 return r; 3192 } 3193 3194 static const struct pr_ops dm_pr_ops = { 3195 .pr_register = dm_pr_register, 3196 .pr_reserve = dm_pr_reserve, 3197 .pr_release = dm_pr_release, 3198 .pr_preempt = dm_pr_preempt, 3199 .pr_clear = dm_pr_clear, 3200 }; 3201 3202 static const struct block_device_operations dm_blk_dops = { 3203 .open = dm_blk_open, 3204 .release = dm_blk_close, 3205 .ioctl = dm_blk_ioctl, 3206 .getgeo = dm_blk_getgeo, 3207 .report_zones = dm_blk_report_zones, 3208 .pr_ops = &dm_pr_ops, 3209 .owner = THIS_MODULE 3210 }; 3211 3212 static const struct dax_operations dm_dax_ops = { 3213 .direct_access = dm_dax_direct_access, 3214 .dax_supported = dm_dax_supported, 3215 .copy_from_iter = dm_dax_copy_from_iter, 3216 .copy_to_iter = dm_dax_copy_to_iter, 3217 }; 3218 3219 /* 3220 * module hooks 3221 */ 3222 module_init(dm_init); 3223 module_exit(dm_exit); 3224 3225 module_param(major, uint, 0); 3226 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3227 3228 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3229 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3230 3231 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3232 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3233 3234 MODULE_DESCRIPTION(DM_NAME " driver"); 3235 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3236 MODULE_LICENSE("GPL"); 3237