xref: /openbmc/linux/drivers/md/dm.c (revision 65b96377)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO.
542 	 */
543 	if (!clone ||
544 	    likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) {
545 		if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
546 			return;
547 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
548 	} else {
549 		unsigned long flags;
550 		if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 			return;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->lock, flags);
554 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 		spin_unlock_irqrestore(&io->lock, flags);
556 	}
557 
558 	__dm_start_io_acct(io, bio);
559 }
560 
561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
562 {
563 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
564 }
565 
566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
567 {
568 	struct dm_io *io;
569 	struct dm_target_io *tio;
570 	struct bio *clone;
571 
572 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
573 
574 	tio = clone_to_tio(clone);
575 	tio->flags = 0;
576 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	this_cpu_inc(*md->pending_io);
584 	io->orig_bio = NULL;
585 	io->md = md;
586 	io->map_task = current;
587 	spin_lock_init(&io->lock);
588 	io->start_time = jiffies;
589 	io->flags = 0;
590 
591 	dm_stats_record_start(&md->stats, &io->stats_aux);
592 
593 	return io;
594 }
595 
596 static void free_io(struct dm_io *io)
597 {
598 	bio_put(&io->tio.clone);
599 }
600 
601 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
602 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
603 {
604 	struct dm_target_io *tio;
605 	struct bio *clone;
606 
607 	if (!ci->io->tio.io) {
608 		/* the dm_target_io embedded in ci->io is available */
609 		tio = &ci->io->tio;
610 		/* alloc_io() already initialized embedded clone */
611 		clone = &tio->clone;
612 	} else {
613 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
614 					gfp_mask, &ci->io->md->bs);
615 		if (!clone)
616 			return NULL;
617 
618 		/* REQ_DM_POLL_LIST shouldn't be inherited */
619 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
620 
621 		tio = clone_to_tio(clone);
622 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
623 	}
624 
625 	tio->magic = DM_TIO_MAGIC;
626 	tio->io = ci->io;
627 	tio->ti = ti;
628 	tio->target_bio_nr = target_bio_nr;
629 	tio->len_ptr = len;
630 	tio->old_sector = 0;
631 
632 	if (len) {
633 		clone->bi_iter.bi_size = to_bytes(*len);
634 		if (bio_integrity(clone))
635 			bio_integrity_trim(clone);
636 	}
637 
638 	return clone;
639 }
640 
641 static void free_tio(struct bio *clone)
642 {
643 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
644 		return;
645 	bio_put(clone);
646 }
647 
648 /*
649  * Add the bio to the list of deferred io.
650  */
651 static void queue_io(struct mapped_device *md, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&md->deferred_lock, flags);
656 	bio_list_add(&md->deferred, bio);
657 	spin_unlock_irqrestore(&md->deferred_lock, flags);
658 	queue_work(md->wq, &md->work);
659 }
660 
661 /*
662  * Everyone (including functions in this file), should use this
663  * function to access the md->map field, and make sure they call
664  * dm_put_live_table() when finished.
665  */
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
667 {
668 	*srcu_idx = srcu_read_lock(&md->io_barrier);
669 
670 	return srcu_dereference(md->map, &md->io_barrier);
671 }
672 
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
674 {
675 	srcu_read_unlock(&md->io_barrier, srcu_idx);
676 }
677 
678 void dm_sync_table(struct mapped_device *md)
679 {
680 	synchronize_srcu(&md->io_barrier);
681 	synchronize_rcu_expedited();
682 }
683 
684 /*
685  * A fast alternative to dm_get_live_table/dm_put_live_table.
686  * The caller must not block between these two functions.
687  */
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
689 {
690 	rcu_read_lock();
691 	return rcu_dereference(md->map);
692 }
693 
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
695 {
696 	rcu_read_unlock();
697 }
698 
699 static char *_dm_claim_ptr = "I belong to device-mapper";
700 
701 /*
702  * Open a table device so we can use it as a map destination.
703  */
704 static int open_table_device(struct table_device *td, dev_t dev,
705 			     struct mapped_device *md)
706 {
707 	struct block_device *bdev;
708 	u64 part_off;
709 	int r;
710 
711 	BUG_ON(td->dm_dev.bdev);
712 
713 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
714 	if (IS_ERR(bdev))
715 		return PTR_ERR(bdev);
716 
717 	r = bd_link_disk_holder(bdev, dm_disk(md));
718 	if (r) {
719 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
720 		return r;
721 	}
722 
723 	td->dm_dev.bdev = bdev;
724 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
725 	return 0;
726 }
727 
728 /*
729  * Close a table device that we've been using.
730  */
731 static void close_table_device(struct table_device *td, struct mapped_device *md)
732 {
733 	if (!td->dm_dev.bdev)
734 		return;
735 
736 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
737 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
738 	put_dax(td->dm_dev.dax_dev);
739 	td->dm_dev.bdev = NULL;
740 	td->dm_dev.dax_dev = NULL;
741 }
742 
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
744 					      fmode_t mode)
745 {
746 	struct table_device *td;
747 
748 	list_for_each_entry(td, l, list)
749 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
750 			return td;
751 
752 	return NULL;
753 }
754 
755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
756 			struct dm_dev **result)
757 {
758 	int r;
759 	struct table_device *td;
760 
761 	mutex_lock(&md->table_devices_lock);
762 	td = find_table_device(&md->table_devices, dev, mode);
763 	if (!td) {
764 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
765 		if (!td) {
766 			mutex_unlock(&md->table_devices_lock);
767 			return -ENOMEM;
768 		}
769 
770 		td->dm_dev.mode = mode;
771 		td->dm_dev.bdev = NULL;
772 
773 		if ((r = open_table_device(td, dev, md))) {
774 			mutex_unlock(&md->table_devices_lock);
775 			kfree(td);
776 			return r;
777 		}
778 
779 		format_dev_t(td->dm_dev.name, dev);
780 
781 		refcount_set(&td->count, 1);
782 		list_add(&td->list, &md->table_devices);
783 	} else {
784 		refcount_inc(&td->count);
785 	}
786 	mutex_unlock(&md->table_devices_lock);
787 
788 	*result = &td->dm_dev;
789 	return 0;
790 }
791 
792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
793 {
794 	struct table_device *td = container_of(d, struct table_device, dm_dev);
795 
796 	mutex_lock(&md->table_devices_lock);
797 	if (refcount_dec_and_test(&td->count)) {
798 		close_table_device(td, md);
799 		list_del(&td->list);
800 		kfree(td);
801 	}
802 	mutex_unlock(&md->table_devices_lock);
803 }
804 
805 static void free_table_devices(struct list_head *devices)
806 {
807 	struct list_head *tmp, *next;
808 
809 	list_for_each_safe(tmp, next, devices) {
810 		struct table_device *td = list_entry(tmp, struct table_device, list);
811 
812 		DMWARN("dm_destroy: %s still exists with %d references",
813 		       td->dm_dev.name, refcount_read(&td->count));
814 		kfree(td);
815 	}
816 }
817 
818 /*
819  * Get the geometry associated with a dm device
820  */
821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
822 {
823 	*geo = md->geometry;
824 
825 	return 0;
826 }
827 
828 /*
829  * Set the geometry of a device.
830  */
831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
834 
835 	if (geo->start > sz) {
836 		DMWARN("Start sector is beyond the geometry limits.");
837 		return -EINVAL;
838 	}
839 
840 	md->geometry = *geo;
841 
842 	return 0;
843 }
844 
845 static int __noflush_suspending(struct mapped_device *md)
846 {
847 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
848 }
849 
850 static void dm_io_complete(struct dm_io *io)
851 {
852 	blk_status_t io_error;
853 	struct mapped_device *md = io->md;
854 	struct bio *bio = io->orig_bio;
855 
856 	if (io->status == BLK_STS_DM_REQUEUE) {
857 		unsigned long flags;
858 		/*
859 		 * Target requested pushing back the I/O.
860 		 */
861 		spin_lock_irqsave(&md->deferred_lock, flags);
862 		if (__noflush_suspending(md) &&
863 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
864 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
865 			bio_list_add_head(&md->deferred, bio);
866 		} else {
867 			/*
868 			 * noflush suspend was interrupted or this is
869 			 * a write to a zoned target.
870 			 */
871 			io->status = BLK_STS_IOERR;
872 		}
873 		spin_unlock_irqrestore(&md->deferred_lock, flags);
874 	}
875 
876 	io_error = io->status;
877 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
878 		dm_end_io_acct(io, bio);
879 	else if (!io_error) {
880 		/*
881 		 * Must handle target that DM_MAPIO_SUBMITTED only to
882 		 * then bio_endio() rather than dm_submit_bio_remap()
883 		 */
884 		__dm_start_io_acct(io, bio);
885 		dm_end_io_acct(io, bio);
886 	}
887 	free_io(io);
888 	smp_wmb();
889 	this_cpu_dec(*md->pending_io);
890 
891 	/* nudge anyone waiting on suspend queue */
892 	if (unlikely(wq_has_sleeper(&md->wait)))
893 		wake_up(&md->wait);
894 
895 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
896 		if (bio->bi_opf & REQ_POLLED) {
897 			/*
898 			 * Upper layer won't help us poll split bio (io->orig_bio
899 			 * may only reflect a subset of the pre-split original)
900 			 * so clear REQ_POLLED in case of requeue.
901 			 */
902 			bio->bi_opf &= ~REQ_POLLED;
903 			if (io_error == BLK_STS_AGAIN) {
904 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
905 				queue_io(md, bio);
906 			}
907 		}
908 		return;
909 	}
910 
911 	if (bio_is_flush_with_data(bio)) {
912 		/*
913 		 * Preflush done for flush with data, reissue
914 		 * without REQ_PREFLUSH.
915 		 */
916 		bio->bi_opf &= ~REQ_PREFLUSH;
917 		queue_io(md, bio);
918 	} else {
919 		/* done with normal IO or empty flush */
920 		if (io_error)
921 			bio->bi_status = io_error;
922 		bio_endio(bio);
923 	}
924 }
925 
926 static inline bool dm_tio_is_normal(struct dm_target_io *tio)
927 {
928 	return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
929 		!dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
930 }
931 
932 /*
933  * Decrements the number of outstanding ios that a bio has been
934  * cloned into, completing the original io if necc.
935  */
936 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
937 {
938 	/* Push-back supersedes any I/O errors */
939 	if (unlikely(error)) {
940 		unsigned long flags;
941 		spin_lock_irqsave(&io->lock, flags);
942 		if (!(io->status == BLK_STS_DM_REQUEUE &&
943 		      __noflush_suspending(io->md)))
944 			io->status = error;
945 		spin_unlock_irqrestore(&io->lock, flags);
946 	}
947 
948 	if (atomic_dec_and_test(&io->io_count))
949 		dm_io_complete(io);
950 }
951 
952 void disable_discard(struct mapped_device *md)
953 {
954 	struct queue_limits *limits = dm_get_queue_limits(md);
955 
956 	/* device doesn't really support DISCARD, disable it */
957 	limits->max_discard_sectors = 0;
958 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
959 }
960 
961 void disable_write_zeroes(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support WRITE ZEROES, disable it */
966 	limits->max_write_zeroes_sectors = 0;
967 }
968 
969 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
970 {
971 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
972 }
973 
974 static void clone_endio(struct bio *bio)
975 {
976 	blk_status_t error = bio->bi_status;
977 	struct dm_target_io *tio = clone_to_tio(bio);
978 	struct dm_io *io = tio->io;
979 	struct mapped_device *md = tio->io->md;
980 	dm_endio_fn endio = tio->ti->type->end_io;
981 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
982 
983 	if (unlikely(error == BLK_STS_TARGET)) {
984 		if (bio_op(bio) == REQ_OP_DISCARD &&
985 		    !q->limits.max_discard_sectors)
986 			disable_discard(md);
987 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
988 			 !q->limits.max_write_zeroes_sectors)
989 			disable_write_zeroes(md);
990 	}
991 
992 	if (blk_queue_is_zoned(q))
993 		dm_zone_endio(io, bio);
994 
995 	if (endio) {
996 		int r = endio(tio->ti, bio, &error);
997 		switch (r) {
998 		case DM_ENDIO_REQUEUE:
999 			/*
1000 			 * Requeuing writes to a sequential zone of a zoned
1001 			 * target will break the sequential write pattern:
1002 			 * fail such IO.
1003 			 */
1004 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1005 				error = BLK_STS_IOERR;
1006 			else
1007 				error = BLK_STS_DM_REQUEUE;
1008 			fallthrough;
1009 		case DM_ENDIO_DONE:
1010 			break;
1011 		case DM_ENDIO_INCOMPLETE:
1012 			/* The target will handle the io */
1013 			return;
1014 		default:
1015 			DMWARN("unimplemented target endio return value: %d", r);
1016 			BUG();
1017 		}
1018 	}
1019 
1020 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1021 		struct mapped_device *md = io->md;
1022 		up(&md->swap_bios_semaphore);
1023 	}
1024 
1025 	free_tio(bio);
1026 	dm_io_dec_pending(io, error);
1027 }
1028 
1029 /*
1030  * Return maximum size of I/O possible at the supplied sector up to the current
1031  * target boundary.
1032  */
1033 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1034 						  sector_t target_offset)
1035 {
1036 	return ti->len - target_offset;
1037 }
1038 
1039 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1040 {
1041 	sector_t target_offset = dm_target_offset(ti, sector);
1042 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1043 	sector_t max_len;
1044 
1045 	/*
1046 	 * Does the target need to split IO even further?
1047 	 * - varied (per target) IO splitting is a tenet of DM; this
1048 	 *   explains why stacked chunk_sectors based splitting via
1049 	 *   blk_max_size_offset() isn't possible here. So pass in
1050 	 *   ti->max_io_len to override stacked chunk_sectors.
1051 	 */
1052 	if (ti->max_io_len) {
1053 		max_len = blk_max_size_offset(ti->table->md->queue,
1054 					      target_offset, ti->max_io_len);
1055 		if (len > max_len)
1056 			len = max_len;
1057 	}
1058 
1059 	return len;
1060 }
1061 
1062 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1063 {
1064 	if (len > UINT_MAX) {
1065 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1066 		      (unsigned long long)len, UINT_MAX);
1067 		ti->error = "Maximum size of target IO is too large";
1068 		return -EINVAL;
1069 	}
1070 
1071 	ti->max_io_len = (uint32_t) len;
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1076 
1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1078 						sector_t sector, int *srcu_idx)
1079 	__acquires(md->io_barrier)
1080 {
1081 	struct dm_table *map;
1082 	struct dm_target *ti;
1083 
1084 	map = dm_get_live_table(md, srcu_idx);
1085 	if (!map)
1086 		return NULL;
1087 
1088 	ti = dm_table_find_target(map, sector);
1089 	if (!ti)
1090 		return NULL;
1091 
1092 	return ti;
1093 }
1094 
1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1096 				 long nr_pages, void **kaddr, pfn_t *pfn)
1097 {
1098 	struct mapped_device *md = dax_get_private(dax_dev);
1099 	sector_t sector = pgoff * PAGE_SECTORS;
1100 	struct dm_target *ti;
1101 	long len, ret = -EIO;
1102 	int srcu_idx;
1103 
1104 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1105 
1106 	if (!ti)
1107 		goto out;
1108 	if (!ti->type->direct_access)
1109 		goto out;
1110 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1111 	if (len < 1)
1112 		goto out;
1113 	nr_pages = min(len, nr_pages);
1114 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1115 
1116  out:
1117 	dm_put_live_table(md, srcu_idx);
1118 
1119 	return ret;
1120 }
1121 
1122 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1123 				  size_t nr_pages)
1124 {
1125 	struct mapped_device *md = dax_get_private(dax_dev);
1126 	sector_t sector = pgoff * PAGE_SECTORS;
1127 	struct dm_target *ti;
1128 	int ret = -EIO;
1129 	int srcu_idx;
1130 
1131 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1132 
1133 	if (!ti)
1134 		goto out;
1135 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1136 		/*
1137 		 * ->zero_page_range() is mandatory dax operation. If we are
1138 		 *  here, something is wrong.
1139 		 */
1140 		goto out;
1141 	}
1142 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1143  out:
1144 	dm_put_live_table(md, srcu_idx);
1145 
1146 	return ret;
1147 }
1148 
1149 /*
1150  * A target may call dm_accept_partial_bio only from the map routine.  It is
1151  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1152  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1153  * __send_duplicate_bios().
1154  *
1155  * dm_accept_partial_bio informs the dm that the target only wants to process
1156  * additional n_sectors sectors of the bio and the rest of the data should be
1157  * sent in a next bio.
1158  *
1159  * A diagram that explains the arithmetics:
1160  * +--------------------+---------------+-------+
1161  * |         1          |       2       |   3   |
1162  * +--------------------+---------------+-------+
1163  *
1164  * <-------------- *tio->len_ptr --------------->
1165  *                      <------- bi_size ------->
1166  *                      <-- n_sectors -->
1167  *
1168  * Region 1 was already iterated over with bio_advance or similar function.
1169  *	(it may be empty if the target doesn't use bio_advance)
1170  * Region 2 is the remaining bio size that the target wants to process.
1171  *	(it may be empty if region 1 is non-empty, although there is no reason
1172  *	 to make it empty)
1173  * The target requires that region 3 is to be sent in the next bio.
1174  *
1175  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1176  * the partially processed part (the sum of regions 1+2) must be the same for all
1177  * copies of the bio.
1178  */
1179 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1180 {
1181 	struct dm_target_io *tio = clone_to_tio(bio);
1182 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1183 
1184 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1185 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1186 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1187 	BUG_ON(bi_size > *tio->len_ptr);
1188 	BUG_ON(n_sectors > bi_size);
1189 
1190 	*tio->len_ptr -= bi_size - n_sectors;
1191 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1192 }
1193 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1194 
1195 static inline void __dm_submit_bio_remap(struct bio *clone,
1196 					 dev_t dev, sector_t old_sector)
1197 {
1198 	trace_block_bio_remap(clone, dev, old_sector);
1199 	submit_bio_noacct(clone);
1200 }
1201 
1202 /*
1203  * @clone: clone bio that DM core passed to target's .map function
1204  * @tgt_clone: clone of @clone bio that target needs submitted
1205  *
1206  * Targets should use this interface to submit bios they take
1207  * ownership of when returning DM_MAPIO_SUBMITTED.
1208  *
1209  * Target should also enable ti->accounts_remapped_io
1210  */
1211 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1212 {
1213 	struct dm_target_io *tio = clone_to_tio(clone);
1214 	struct dm_io *io = tio->io;
1215 
1216 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1217 
1218 	/* establish bio that will get submitted */
1219 	if (!tgt_clone)
1220 		tgt_clone = clone;
1221 
1222 	/*
1223 	 * Account io->origin_bio to DM dev on behalf of target
1224 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1225 	 */
1226 	if (io->map_task == current) {
1227 		/* Still in target's map function */
1228 		dm_io_set_flag(io, DM_IO_START_ACCT);
1229 	} else {
1230 		/*
1231 		 * Called by another thread, managed by DM target,
1232 		 * wait for dm_split_and_process_bio() to store
1233 		 * io->orig_bio
1234 		 */
1235 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1236 			msleep(1);
1237 		dm_start_io_acct(io, clone);
1238 	}
1239 
1240 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1241 			      tio->old_sector);
1242 }
1243 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1244 
1245 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1246 {
1247 	mutex_lock(&md->swap_bios_lock);
1248 	while (latch < md->swap_bios) {
1249 		cond_resched();
1250 		down(&md->swap_bios_semaphore);
1251 		md->swap_bios--;
1252 	}
1253 	while (latch > md->swap_bios) {
1254 		cond_resched();
1255 		up(&md->swap_bios_semaphore);
1256 		md->swap_bios++;
1257 	}
1258 	mutex_unlock(&md->swap_bios_lock);
1259 }
1260 
1261 static void __map_bio(struct bio *clone)
1262 {
1263 	struct dm_target_io *tio = clone_to_tio(clone);
1264 	int r;
1265 	struct dm_io *io = tio->io;
1266 	struct dm_target *ti = tio->ti;
1267 
1268 	clone->bi_end_io = clone_endio;
1269 
1270 	/*
1271 	 * Map the clone.
1272 	 */
1273 	dm_io_inc_pending(io);
1274 	tio->old_sector = clone->bi_iter.bi_sector;
1275 
1276 	if (unlikely(swap_bios_limit(ti, clone))) {
1277 		struct mapped_device *md = io->md;
1278 		int latch = get_swap_bios();
1279 		if (unlikely(latch != md->swap_bios))
1280 			__set_swap_bios_limit(md, latch);
1281 		down(&md->swap_bios_semaphore);
1282 	}
1283 
1284 	/*
1285 	 * Check if the IO needs a special mapping due to zone append emulation
1286 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1287 	 * map operation.
1288 	 */
1289 	if (dm_emulate_zone_append(io->md))
1290 		r = dm_zone_map_bio(tio);
1291 	else
1292 		r = ti->type->map(ti, clone);
1293 
1294 	switch (r) {
1295 	case DM_MAPIO_SUBMITTED:
1296 		/* target has assumed ownership of this io */
1297 		if (!ti->accounts_remapped_io)
1298 			dm_io_set_flag(io, DM_IO_START_ACCT);
1299 		break;
1300 	case DM_MAPIO_REMAPPED:
1301 		/*
1302 		 * the bio has been remapped so dispatch it, but defer
1303 		 * dm_start_io_acct() until after possible bio_split().
1304 		 */
1305 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1306 				      tio->old_sector);
1307 		dm_io_set_flag(io, DM_IO_START_ACCT);
1308 		break;
1309 	case DM_MAPIO_KILL:
1310 	case DM_MAPIO_REQUEUE:
1311 		if (unlikely(swap_bios_limit(ti, clone)))
1312 			up(&io->md->swap_bios_semaphore);
1313 		free_tio(clone);
1314 		if (r == DM_MAPIO_KILL)
1315 			dm_io_dec_pending(io, BLK_STS_IOERR);
1316 		else
1317 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1318 		break;
1319 	default:
1320 		DMWARN("unimplemented target map return value: %d", r);
1321 		BUG();
1322 	}
1323 }
1324 
1325 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1326 				struct dm_target *ti, unsigned num_bios,
1327 				unsigned *len)
1328 {
1329 	struct bio *bio;
1330 	int try;
1331 
1332 	for (try = 0; try < 2; try++) {
1333 		int bio_nr;
1334 
1335 		if (try)
1336 			mutex_lock(&ci->io->md->table_devices_lock);
1337 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1338 			bio = alloc_tio(ci, ti, bio_nr, len,
1339 					try ? GFP_NOIO : GFP_NOWAIT);
1340 			if (!bio)
1341 				break;
1342 
1343 			bio_list_add(blist, bio);
1344 		}
1345 		if (try)
1346 			mutex_unlock(&ci->io->md->table_devices_lock);
1347 		if (bio_nr == num_bios)
1348 			return;
1349 
1350 		while ((bio = bio_list_pop(blist)))
1351 			free_tio(bio);
1352 	}
1353 }
1354 
1355 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1356 				  unsigned num_bios, unsigned *len)
1357 {
1358 	struct bio_list blist = BIO_EMPTY_LIST;
1359 	struct bio *clone;
1360 
1361 	switch (num_bios) {
1362 	case 0:
1363 		break;
1364 	case 1:
1365 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1366 		dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1367 		__map_bio(clone);
1368 		break;
1369 	default:
1370 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1371 		while ((clone = bio_list_pop(&blist))) {
1372 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1373 			__map_bio(clone);
1374 		}
1375 		break;
1376 	}
1377 }
1378 
1379 static void __send_empty_flush(struct clone_info *ci)
1380 {
1381 	unsigned target_nr = 0;
1382 	struct dm_target *ti;
1383 	struct bio flush_bio;
1384 
1385 	/*
1386 	 * Use an on-stack bio for this, it's safe since we don't
1387 	 * need to reference it after submit. It's just used as
1388 	 * the basis for the clone(s).
1389 	 */
1390 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1391 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1392 
1393 	ci->bio = &flush_bio;
1394 	ci->sector_count = 0;
1395 
1396 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1397 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1398 
1399 	bio_uninit(ci->bio);
1400 }
1401 
1402 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1403 					unsigned num_bios)
1404 {
1405 	unsigned len;
1406 
1407 	len = min_t(sector_t, ci->sector_count,
1408 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1409 
1410 	/*
1411 	 * dm_accept_partial_bio cannot be used with duplicate bios,
1412 	 * so update clone_info cursor before __send_duplicate_bios().
1413 	 */
1414 	ci->sector += len;
1415 	ci->sector_count -= len;
1416 
1417 	__send_duplicate_bios(ci, ti, num_bios, &len);
1418 }
1419 
1420 static bool is_abnormal_io(struct bio *bio)
1421 {
1422 	bool r = false;
1423 
1424 	switch (bio_op(bio)) {
1425 	case REQ_OP_DISCARD:
1426 	case REQ_OP_SECURE_ERASE:
1427 	case REQ_OP_WRITE_ZEROES:
1428 		r = true;
1429 		break;
1430 	}
1431 
1432 	return r;
1433 }
1434 
1435 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1436 				  int *result)
1437 {
1438 	unsigned num_bios = 0;
1439 
1440 	switch (bio_op(ci->bio)) {
1441 	case REQ_OP_DISCARD:
1442 		num_bios = ti->num_discard_bios;
1443 		break;
1444 	case REQ_OP_SECURE_ERASE:
1445 		num_bios = ti->num_secure_erase_bios;
1446 		break;
1447 	case REQ_OP_WRITE_ZEROES:
1448 		num_bios = ti->num_write_zeroes_bios;
1449 		break;
1450 	default:
1451 		return false;
1452 	}
1453 
1454 	/*
1455 	 * Even though the device advertised support for this type of
1456 	 * request, that does not mean every target supports it, and
1457 	 * reconfiguration might also have changed that since the
1458 	 * check was performed.
1459 	 */
1460 	if (!num_bios)
1461 		*result = -EOPNOTSUPP;
1462 	else {
1463 		__send_changing_extent_only(ci, ti, num_bios);
1464 		*result = 0;
1465 	}
1466 	return true;
1467 }
1468 
1469 /*
1470  * Reuse ->bi_private as hlist head for storing all dm_io instances
1471  * associated with this bio, and this bio's bi_private needs to be
1472  * stored in dm_io->data before the reuse.
1473  *
1474  * bio->bi_private is owned by fs or upper layer, so block layer won't
1475  * touch it after splitting. Meantime it won't be changed by anyone after
1476  * bio is submitted. So this reuse is safe.
1477  */
1478 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1479 {
1480 	return (struct hlist_head *)&bio->bi_private;
1481 }
1482 
1483 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1484 {
1485 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1486 
1487 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1488 		bio->bi_opf |= REQ_DM_POLL_LIST;
1489 		/*
1490 		 * Save .bi_private into dm_io, so that we can reuse
1491 		 * .bi_private as hlist head for storing dm_io list
1492 		 */
1493 		io->data = bio->bi_private;
1494 
1495 		INIT_HLIST_HEAD(head);
1496 
1497 		/* tell block layer to poll for completion */
1498 		bio->bi_cookie = ~BLK_QC_T_NONE;
1499 	} else {
1500 		/*
1501 		 * bio recursed due to split, reuse original poll list,
1502 		 * and save bio->bi_private too.
1503 		 */
1504 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1505 	}
1506 
1507 	hlist_add_head(&io->node, head);
1508 }
1509 
1510 /*
1511  * Select the correct strategy for processing a non-flush bio.
1512  */
1513 static int __split_and_process_bio(struct clone_info *ci)
1514 {
1515 	struct bio *clone;
1516 	struct dm_target *ti;
1517 	unsigned len;
1518 	int r;
1519 
1520 	ti = dm_table_find_target(ci->map, ci->sector);
1521 	if (!ti)
1522 		return -EIO;
1523 
1524 	if (__process_abnormal_io(ci, ti, &r))
1525 		return r;
1526 
1527 	/*
1528 	 * Only support bio polling for normal IO, and the target io is
1529 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1530 	 */
1531 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1532 
1533 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1534 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1535 	__map_bio(clone);
1536 
1537 	ci->sector += len;
1538 	ci->sector_count -= len;
1539 
1540 	return 0;
1541 }
1542 
1543 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1544 			    struct dm_table *map, struct bio *bio)
1545 {
1546 	ci->map = map;
1547 	ci->io = alloc_io(md, bio);
1548 	ci->bio = bio;
1549 	ci->submit_as_polled = false;
1550 	ci->sector = bio->bi_iter.bi_sector;
1551 	ci->sector_count = bio_sectors(bio);
1552 
1553 	/* Shouldn't happen but sector_count was being set to 0 so... */
1554 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1555 		ci->sector_count = 0;
1556 }
1557 
1558 /*
1559  * Entry point to split a bio into clones and submit them to the targets.
1560  */
1561 static void dm_split_and_process_bio(struct mapped_device *md,
1562 				     struct dm_table *map, struct bio *bio)
1563 {
1564 	struct clone_info ci;
1565 	struct bio *orig_bio = NULL;
1566 	int error = 0;
1567 
1568 	init_clone_info(&ci, md, map, bio);
1569 
1570 	if (bio->bi_opf & REQ_PREFLUSH) {
1571 		__send_empty_flush(&ci);
1572 		/* dm_io_complete submits any data associated with flush */
1573 		goto out;
1574 	}
1575 
1576 	error = __split_and_process_bio(&ci);
1577 	ci.io->map_task = NULL;
1578 	if (error || !ci.sector_count)
1579 		goto out;
1580 
1581 	/*
1582 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1583 	 * *after* bios already submitted have been completely processed.
1584 	 * We take a clone of the original to store in ci.io->orig_bio to be
1585 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1586 	 * completion handling.
1587 	 */
1588 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1589 			     GFP_NOIO, &md->queue->bio_split);
1590 	bio_chain(orig_bio, bio);
1591 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1592 	submit_bio_noacct(bio);
1593 out:
1594 	if (!orig_bio)
1595 		orig_bio = bio;
1596 	smp_store_release(&ci.io->orig_bio, orig_bio);
1597 	if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1598 		dm_start_io_acct(ci.io, NULL);
1599 
1600 	/*
1601 	 * Drop the extra reference count for non-POLLED bio, and hold one
1602 	 * reference for POLLED bio, which will be released in dm_poll_bio
1603 	 *
1604 	 * Add every dm_io instance into the hlist_head which is stored in
1605 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1606 	 */
1607 	if (error || !ci.submit_as_polled)
1608 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1609 	else
1610 		dm_queue_poll_io(bio, ci.io);
1611 }
1612 
1613 static void dm_submit_bio(struct bio *bio)
1614 {
1615 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1616 	int srcu_idx;
1617 	struct dm_table *map;
1618 
1619 	map = dm_get_live_table(md, &srcu_idx);
1620 
1621 	/* If suspended, or map not yet available, queue this IO for later */
1622 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1623 	    unlikely(!map)) {
1624 		if (bio->bi_opf & REQ_NOWAIT)
1625 			bio_wouldblock_error(bio);
1626 		else if (bio->bi_opf & REQ_RAHEAD)
1627 			bio_io_error(bio);
1628 		else
1629 			queue_io(md, bio);
1630 		goto out;
1631 	}
1632 
1633 	/*
1634 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1635 	 * otherwise associated queue_limits won't be imposed.
1636 	 */
1637 	if (is_abnormal_io(bio))
1638 		blk_queue_split(&bio);
1639 
1640 	dm_split_and_process_bio(md, map, bio);
1641 out:
1642 	dm_put_live_table(md, srcu_idx);
1643 }
1644 
1645 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1646 			  unsigned int flags)
1647 {
1648 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1649 
1650 	/* don't poll if the mapped io is done */
1651 	if (atomic_read(&io->io_count) > 1)
1652 		bio_poll(&io->tio.clone, iob, flags);
1653 
1654 	/* bio_poll holds the last reference */
1655 	return atomic_read(&io->io_count) == 1;
1656 }
1657 
1658 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1659 		       unsigned int flags)
1660 {
1661 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1662 	struct hlist_head tmp = HLIST_HEAD_INIT;
1663 	struct hlist_node *next;
1664 	struct dm_io *io;
1665 
1666 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1667 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1668 		return 0;
1669 
1670 	WARN_ON_ONCE(hlist_empty(head));
1671 
1672 	hlist_move_list(head, &tmp);
1673 
1674 	/*
1675 	 * Restore .bi_private before possibly completing dm_io.
1676 	 *
1677 	 * bio_poll() is only possible once @bio has been completely
1678 	 * submitted via submit_bio_noacct()'s depth-first submission.
1679 	 * So there is no dm_queue_poll_io() race associated with
1680 	 * clearing REQ_DM_POLL_LIST here.
1681 	 */
1682 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1683 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1684 
1685 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1686 		if (dm_poll_dm_io(io, iob, flags)) {
1687 			hlist_del_init(&io->node);
1688 			/*
1689 			 * clone_endio() has already occurred, so passing
1690 			 * error as 0 here doesn't override io->status
1691 			 */
1692 			dm_io_dec_pending(io, 0);
1693 		}
1694 	}
1695 
1696 	/* Not done? */
1697 	if (!hlist_empty(&tmp)) {
1698 		bio->bi_opf |= REQ_DM_POLL_LIST;
1699 		/* Reset bio->bi_private to dm_io list head */
1700 		hlist_move_list(&tmp, head);
1701 		return 0;
1702 	}
1703 	return 1;
1704 }
1705 
1706 /*-----------------------------------------------------------------
1707  * An IDR is used to keep track of allocated minor numbers.
1708  *---------------------------------------------------------------*/
1709 static void free_minor(int minor)
1710 {
1711 	spin_lock(&_minor_lock);
1712 	idr_remove(&_minor_idr, minor);
1713 	spin_unlock(&_minor_lock);
1714 }
1715 
1716 /*
1717  * See if the device with a specific minor # is free.
1718  */
1719 static int specific_minor(int minor)
1720 {
1721 	int r;
1722 
1723 	if (minor >= (1 << MINORBITS))
1724 		return -EINVAL;
1725 
1726 	idr_preload(GFP_KERNEL);
1727 	spin_lock(&_minor_lock);
1728 
1729 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1730 
1731 	spin_unlock(&_minor_lock);
1732 	idr_preload_end();
1733 	if (r < 0)
1734 		return r == -ENOSPC ? -EBUSY : r;
1735 	return 0;
1736 }
1737 
1738 static int next_free_minor(int *minor)
1739 {
1740 	int r;
1741 
1742 	idr_preload(GFP_KERNEL);
1743 	spin_lock(&_minor_lock);
1744 
1745 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1746 
1747 	spin_unlock(&_minor_lock);
1748 	idr_preload_end();
1749 	if (r < 0)
1750 		return r;
1751 	*minor = r;
1752 	return 0;
1753 }
1754 
1755 static const struct block_device_operations dm_blk_dops;
1756 static const struct block_device_operations dm_rq_blk_dops;
1757 static const struct dax_operations dm_dax_ops;
1758 
1759 static void dm_wq_work(struct work_struct *work);
1760 
1761 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1762 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1763 {
1764 	dm_destroy_crypto_profile(q->crypto_profile);
1765 }
1766 
1767 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1768 
1769 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1770 {
1771 }
1772 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1773 
1774 static void cleanup_mapped_device(struct mapped_device *md)
1775 {
1776 	if (md->wq)
1777 		destroy_workqueue(md->wq);
1778 	bioset_exit(&md->bs);
1779 	bioset_exit(&md->io_bs);
1780 
1781 	if (md->dax_dev) {
1782 		dax_remove_host(md->disk);
1783 		kill_dax(md->dax_dev);
1784 		put_dax(md->dax_dev);
1785 		md->dax_dev = NULL;
1786 	}
1787 
1788 	dm_cleanup_zoned_dev(md);
1789 	if (md->disk) {
1790 		spin_lock(&_minor_lock);
1791 		md->disk->private_data = NULL;
1792 		spin_unlock(&_minor_lock);
1793 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1794 			dm_sysfs_exit(md);
1795 			del_gendisk(md->disk);
1796 		}
1797 		dm_queue_destroy_crypto_profile(md->queue);
1798 		blk_cleanup_disk(md->disk);
1799 	}
1800 
1801 	if (md->pending_io) {
1802 		free_percpu(md->pending_io);
1803 		md->pending_io = NULL;
1804 	}
1805 
1806 	cleanup_srcu_struct(&md->io_barrier);
1807 
1808 	mutex_destroy(&md->suspend_lock);
1809 	mutex_destroy(&md->type_lock);
1810 	mutex_destroy(&md->table_devices_lock);
1811 	mutex_destroy(&md->swap_bios_lock);
1812 
1813 	dm_mq_cleanup_mapped_device(md);
1814 }
1815 
1816 /*
1817  * Allocate and initialise a blank device with a given minor.
1818  */
1819 static struct mapped_device *alloc_dev(int minor)
1820 {
1821 	int r, numa_node_id = dm_get_numa_node();
1822 	struct mapped_device *md;
1823 	void *old_md;
1824 
1825 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1826 	if (!md) {
1827 		DMWARN("unable to allocate device, out of memory.");
1828 		return NULL;
1829 	}
1830 
1831 	if (!try_module_get(THIS_MODULE))
1832 		goto bad_module_get;
1833 
1834 	/* get a minor number for the dev */
1835 	if (minor == DM_ANY_MINOR)
1836 		r = next_free_minor(&minor);
1837 	else
1838 		r = specific_minor(minor);
1839 	if (r < 0)
1840 		goto bad_minor;
1841 
1842 	r = init_srcu_struct(&md->io_barrier);
1843 	if (r < 0)
1844 		goto bad_io_barrier;
1845 
1846 	md->numa_node_id = numa_node_id;
1847 	md->init_tio_pdu = false;
1848 	md->type = DM_TYPE_NONE;
1849 	mutex_init(&md->suspend_lock);
1850 	mutex_init(&md->type_lock);
1851 	mutex_init(&md->table_devices_lock);
1852 	spin_lock_init(&md->deferred_lock);
1853 	atomic_set(&md->holders, 1);
1854 	atomic_set(&md->open_count, 0);
1855 	atomic_set(&md->event_nr, 0);
1856 	atomic_set(&md->uevent_seq, 0);
1857 	INIT_LIST_HEAD(&md->uevent_list);
1858 	INIT_LIST_HEAD(&md->table_devices);
1859 	spin_lock_init(&md->uevent_lock);
1860 
1861 	/*
1862 	 * default to bio-based until DM table is loaded and md->type
1863 	 * established. If request-based table is loaded: blk-mq will
1864 	 * override accordingly.
1865 	 */
1866 	md->disk = blk_alloc_disk(md->numa_node_id);
1867 	if (!md->disk)
1868 		goto bad;
1869 	md->queue = md->disk->queue;
1870 
1871 	init_waitqueue_head(&md->wait);
1872 	INIT_WORK(&md->work, dm_wq_work);
1873 	init_waitqueue_head(&md->eventq);
1874 	init_completion(&md->kobj_holder.completion);
1875 
1876 	md->swap_bios = get_swap_bios();
1877 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1878 	mutex_init(&md->swap_bios_lock);
1879 
1880 	md->disk->major = _major;
1881 	md->disk->first_minor = minor;
1882 	md->disk->minors = 1;
1883 	md->disk->flags |= GENHD_FL_NO_PART;
1884 	md->disk->fops = &dm_blk_dops;
1885 	md->disk->queue = md->queue;
1886 	md->disk->private_data = md;
1887 	sprintf(md->disk->disk_name, "dm-%d", minor);
1888 
1889 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1890 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1891 		if (IS_ERR(md->dax_dev)) {
1892 			md->dax_dev = NULL;
1893 			goto bad;
1894 		}
1895 		set_dax_nocache(md->dax_dev);
1896 		set_dax_nomc(md->dax_dev);
1897 		if (dax_add_host(md->dax_dev, md->disk))
1898 			goto bad;
1899 	}
1900 
1901 	format_dev_t(md->name, MKDEV(_major, minor));
1902 
1903 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1904 	if (!md->wq)
1905 		goto bad;
1906 
1907 	md->pending_io = alloc_percpu(unsigned long);
1908 	if (!md->pending_io)
1909 		goto bad;
1910 
1911 	dm_stats_init(&md->stats);
1912 
1913 	/* Populate the mapping, nobody knows we exist yet */
1914 	spin_lock(&_minor_lock);
1915 	old_md = idr_replace(&_minor_idr, md, minor);
1916 	spin_unlock(&_minor_lock);
1917 
1918 	BUG_ON(old_md != MINOR_ALLOCED);
1919 
1920 	return md;
1921 
1922 bad:
1923 	cleanup_mapped_device(md);
1924 bad_io_barrier:
1925 	free_minor(minor);
1926 bad_minor:
1927 	module_put(THIS_MODULE);
1928 bad_module_get:
1929 	kvfree(md);
1930 	return NULL;
1931 }
1932 
1933 static void unlock_fs(struct mapped_device *md);
1934 
1935 static void free_dev(struct mapped_device *md)
1936 {
1937 	int minor = MINOR(disk_devt(md->disk));
1938 
1939 	unlock_fs(md);
1940 
1941 	cleanup_mapped_device(md);
1942 
1943 	free_table_devices(&md->table_devices);
1944 	dm_stats_cleanup(&md->stats);
1945 	free_minor(minor);
1946 
1947 	module_put(THIS_MODULE);
1948 	kvfree(md);
1949 }
1950 
1951 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1952 {
1953 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1954 	int ret = 0;
1955 
1956 	if (dm_table_bio_based(t)) {
1957 		/*
1958 		 * The md may already have mempools that need changing.
1959 		 * If so, reload bioset because front_pad may have changed
1960 		 * because a different table was loaded.
1961 		 */
1962 		bioset_exit(&md->bs);
1963 		bioset_exit(&md->io_bs);
1964 
1965 	} else if (bioset_initialized(&md->bs)) {
1966 		/*
1967 		 * There's no need to reload with request-based dm
1968 		 * because the size of front_pad doesn't change.
1969 		 * Note for future: If you are to reload bioset,
1970 		 * prep-ed requests in the queue may refer
1971 		 * to bio from the old bioset, so you must walk
1972 		 * through the queue to unprep.
1973 		 */
1974 		goto out;
1975 	}
1976 
1977 	BUG_ON(!p ||
1978 	       bioset_initialized(&md->bs) ||
1979 	       bioset_initialized(&md->io_bs));
1980 
1981 	ret = bioset_init_from_src(&md->bs, &p->bs);
1982 	if (ret)
1983 		goto out;
1984 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1985 	if (ret)
1986 		bioset_exit(&md->bs);
1987 out:
1988 	/* mempool bind completed, no longer need any mempools in the table */
1989 	dm_table_free_md_mempools(t);
1990 	return ret;
1991 }
1992 
1993 /*
1994  * Bind a table to the device.
1995  */
1996 static void event_callback(void *context)
1997 {
1998 	unsigned long flags;
1999 	LIST_HEAD(uevents);
2000 	struct mapped_device *md = (struct mapped_device *) context;
2001 
2002 	spin_lock_irqsave(&md->uevent_lock, flags);
2003 	list_splice_init(&md->uevent_list, &uevents);
2004 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2005 
2006 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2007 
2008 	atomic_inc(&md->event_nr);
2009 	wake_up(&md->eventq);
2010 	dm_issue_global_event();
2011 }
2012 
2013 /*
2014  * Returns old map, which caller must destroy.
2015  */
2016 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2017 			       struct queue_limits *limits)
2018 {
2019 	struct dm_table *old_map;
2020 	sector_t size;
2021 	int ret;
2022 
2023 	lockdep_assert_held(&md->suspend_lock);
2024 
2025 	size = dm_table_get_size(t);
2026 
2027 	/*
2028 	 * Wipe any geometry if the size of the table changed.
2029 	 */
2030 	if (size != dm_get_size(md))
2031 		memset(&md->geometry, 0, sizeof(md->geometry));
2032 
2033 	if (!get_capacity(md->disk))
2034 		set_capacity(md->disk, size);
2035 	else
2036 		set_capacity_and_notify(md->disk, size);
2037 
2038 	dm_table_event_callback(t, event_callback, md);
2039 
2040 	if (dm_table_request_based(t)) {
2041 		/*
2042 		 * Leverage the fact that request-based DM targets are
2043 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2044 		 */
2045 		md->immutable_target = dm_table_get_immutable_target(t);
2046 	}
2047 
2048 	ret = __bind_mempools(md, t);
2049 	if (ret) {
2050 		old_map = ERR_PTR(ret);
2051 		goto out;
2052 	}
2053 
2054 	ret = dm_table_set_restrictions(t, md->queue, limits);
2055 	if (ret) {
2056 		old_map = ERR_PTR(ret);
2057 		goto out;
2058 	}
2059 
2060 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2061 	rcu_assign_pointer(md->map, (void *)t);
2062 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2063 
2064 	if (old_map)
2065 		dm_sync_table(md);
2066 out:
2067 	return old_map;
2068 }
2069 
2070 /*
2071  * Returns unbound table for the caller to free.
2072  */
2073 static struct dm_table *__unbind(struct mapped_device *md)
2074 {
2075 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2076 
2077 	if (!map)
2078 		return NULL;
2079 
2080 	dm_table_event_callback(map, NULL, NULL);
2081 	RCU_INIT_POINTER(md->map, NULL);
2082 	dm_sync_table(md);
2083 
2084 	return map;
2085 }
2086 
2087 /*
2088  * Constructor for a new device.
2089  */
2090 int dm_create(int minor, struct mapped_device **result)
2091 {
2092 	struct mapped_device *md;
2093 
2094 	md = alloc_dev(minor);
2095 	if (!md)
2096 		return -ENXIO;
2097 
2098 	dm_ima_reset_data(md);
2099 
2100 	*result = md;
2101 	return 0;
2102 }
2103 
2104 /*
2105  * Functions to manage md->type.
2106  * All are required to hold md->type_lock.
2107  */
2108 void dm_lock_md_type(struct mapped_device *md)
2109 {
2110 	mutex_lock(&md->type_lock);
2111 }
2112 
2113 void dm_unlock_md_type(struct mapped_device *md)
2114 {
2115 	mutex_unlock(&md->type_lock);
2116 }
2117 
2118 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2119 {
2120 	BUG_ON(!mutex_is_locked(&md->type_lock));
2121 	md->type = type;
2122 }
2123 
2124 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2125 {
2126 	return md->type;
2127 }
2128 
2129 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2130 {
2131 	return md->immutable_target_type;
2132 }
2133 
2134 /*
2135  * The queue_limits are only valid as long as you have a reference
2136  * count on 'md'.
2137  */
2138 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2139 {
2140 	BUG_ON(!atomic_read(&md->holders));
2141 	return &md->queue->limits;
2142 }
2143 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2144 
2145 /*
2146  * Setup the DM device's queue based on md's type
2147  */
2148 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2149 {
2150 	enum dm_queue_mode type = dm_table_get_type(t);
2151 	struct queue_limits limits;
2152 	int r;
2153 
2154 	switch (type) {
2155 	case DM_TYPE_REQUEST_BASED:
2156 		md->disk->fops = &dm_rq_blk_dops;
2157 		r = dm_mq_init_request_queue(md, t);
2158 		if (r) {
2159 			DMERR("Cannot initialize queue for request-based dm mapped device");
2160 			return r;
2161 		}
2162 		break;
2163 	case DM_TYPE_BIO_BASED:
2164 	case DM_TYPE_DAX_BIO_BASED:
2165 		break;
2166 	case DM_TYPE_NONE:
2167 		WARN_ON_ONCE(true);
2168 		break;
2169 	}
2170 
2171 	r = dm_calculate_queue_limits(t, &limits);
2172 	if (r) {
2173 		DMERR("Cannot calculate initial queue limits");
2174 		return r;
2175 	}
2176 	r = dm_table_set_restrictions(t, md->queue, &limits);
2177 	if (r)
2178 		return r;
2179 
2180 	r = add_disk(md->disk);
2181 	if (r)
2182 		return r;
2183 
2184 	r = dm_sysfs_init(md);
2185 	if (r) {
2186 		del_gendisk(md->disk);
2187 		return r;
2188 	}
2189 	md->type = type;
2190 	return 0;
2191 }
2192 
2193 struct mapped_device *dm_get_md(dev_t dev)
2194 {
2195 	struct mapped_device *md;
2196 	unsigned minor = MINOR(dev);
2197 
2198 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2199 		return NULL;
2200 
2201 	spin_lock(&_minor_lock);
2202 
2203 	md = idr_find(&_minor_idr, minor);
2204 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2205 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2206 		md = NULL;
2207 		goto out;
2208 	}
2209 	dm_get(md);
2210 out:
2211 	spin_unlock(&_minor_lock);
2212 
2213 	return md;
2214 }
2215 EXPORT_SYMBOL_GPL(dm_get_md);
2216 
2217 void *dm_get_mdptr(struct mapped_device *md)
2218 {
2219 	return md->interface_ptr;
2220 }
2221 
2222 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2223 {
2224 	md->interface_ptr = ptr;
2225 }
2226 
2227 void dm_get(struct mapped_device *md)
2228 {
2229 	atomic_inc(&md->holders);
2230 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2231 }
2232 
2233 int dm_hold(struct mapped_device *md)
2234 {
2235 	spin_lock(&_minor_lock);
2236 	if (test_bit(DMF_FREEING, &md->flags)) {
2237 		spin_unlock(&_minor_lock);
2238 		return -EBUSY;
2239 	}
2240 	dm_get(md);
2241 	spin_unlock(&_minor_lock);
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_hold);
2245 
2246 const char *dm_device_name(struct mapped_device *md)
2247 {
2248 	return md->name;
2249 }
2250 EXPORT_SYMBOL_GPL(dm_device_name);
2251 
2252 static void __dm_destroy(struct mapped_device *md, bool wait)
2253 {
2254 	struct dm_table *map;
2255 	int srcu_idx;
2256 
2257 	might_sleep();
2258 
2259 	spin_lock(&_minor_lock);
2260 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2261 	set_bit(DMF_FREEING, &md->flags);
2262 	spin_unlock(&_minor_lock);
2263 
2264 	blk_mark_disk_dead(md->disk);
2265 
2266 	/*
2267 	 * Take suspend_lock so that presuspend and postsuspend methods
2268 	 * do not race with internal suspend.
2269 	 */
2270 	mutex_lock(&md->suspend_lock);
2271 	map = dm_get_live_table(md, &srcu_idx);
2272 	if (!dm_suspended_md(md)) {
2273 		dm_table_presuspend_targets(map);
2274 		set_bit(DMF_SUSPENDED, &md->flags);
2275 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2276 		dm_table_postsuspend_targets(map);
2277 	}
2278 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2279 	dm_put_live_table(md, srcu_idx);
2280 	mutex_unlock(&md->suspend_lock);
2281 
2282 	/*
2283 	 * Rare, but there may be I/O requests still going to complete,
2284 	 * for example.  Wait for all references to disappear.
2285 	 * No one should increment the reference count of the mapped_device,
2286 	 * after the mapped_device state becomes DMF_FREEING.
2287 	 */
2288 	if (wait)
2289 		while (atomic_read(&md->holders))
2290 			msleep(1);
2291 	else if (atomic_read(&md->holders))
2292 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2293 		       dm_device_name(md), atomic_read(&md->holders));
2294 
2295 	dm_table_destroy(__unbind(md));
2296 	free_dev(md);
2297 }
2298 
2299 void dm_destroy(struct mapped_device *md)
2300 {
2301 	__dm_destroy(md, true);
2302 }
2303 
2304 void dm_destroy_immediate(struct mapped_device *md)
2305 {
2306 	__dm_destroy(md, false);
2307 }
2308 
2309 void dm_put(struct mapped_device *md)
2310 {
2311 	atomic_dec(&md->holders);
2312 }
2313 EXPORT_SYMBOL_GPL(dm_put);
2314 
2315 static bool dm_in_flight_bios(struct mapped_device *md)
2316 {
2317 	int cpu;
2318 	unsigned long sum = 0;
2319 
2320 	for_each_possible_cpu(cpu)
2321 		sum += *per_cpu_ptr(md->pending_io, cpu);
2322 
2323 	return sum != 0;
2324 }
2325 
2326 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2327 {
2328 	int r = 0;
2329 	DEFINE_WAIT(wait);
2330 
2331 	while (true) {
2332 		prepare_to_wait(&md->wait, &wait, task_state);
2333 
2334 		if (!dm_in_flight_bios(md))
2335 			break;
2336 
2337 		if (signal_pending_state(task_state, current)) {
2338 			r = -EINTR;
2339 			break;
2340 		}
2341 
2342 		io_schedule();
2343 	}
2344 	finish_wait(&md->wait, &wait);
2345 
2346 	smp_rmb();
2347 
2348 	return r;
2349 }
2350 
2351 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2352 {
2353 	int r = 0;
2354 
2355 	if (!queue_is_mq(md->queue))
2356 		return dm_wait_for_bios_completion(md, task_state);
2357 
2358 	while (true) {
2359 		if (!blk_mq_queue_inflight(md->queue))
2360 			break;
2361 
2362 		if (signal_pending_state(task_state, current)) {
2363 			r = -EINTR;
2364 			break;
2365 		}
2366 
2367 		msleep(5);
2368 	}
2369 
2370 	return r;
2371 }
2372 
2373 /*
2374  * Process the deferred bios
2375  */
2376 static void dm_wq_work(struct work_struct *work)
2377 {
2378 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2379 	struct bio *bio;
2380 
2381 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2382 		spin_lock_irq(&md->deferred_lock);
2383 		bio = bio_list_pop(&md->deferred);
2384 		spin_unlock_irq(&md->deferred_lock);
2385 
2386 		if (!bio)
2387 			break;
2388 
2389 		submit_bio_noacct(bio);
2390 	}
2391 }
2392 
2393 static void dm_queue_flush(struct mapped_device *md)
2394 {
2395 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2396 	smp_mb__after_atomic();
2397 	queue_work(md->wq, &md->work);
2398 }
2399 
2400 /*
2401  * Swap in a new table, returning the old one for the caller to destroy.
2402  */
2403 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2404 {
2405 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2406 	struct queue_limits limits;
2407 	int r;
2408 
2409 	mutex_lock(&md->suspend_lock);
2410 
2411 	/* device must be suspended */
2412 	if (!dm_suspended_md(md))
2413 		goto out;
2414 
2415 	/*
2416 	 * If the new table has no data devices, retain the existing limits.
2417 	 * This helps multipath with queue_if_no_path if all paths disappear,
2418 	 * then new I/O is queued based on these limits, and then some paths
2419 	 * reappear.
2420 	 */
2421 	if (dm_table_has_no_data_devices(table)) {
2422 		live_map = dm_get_live_table_fast(md);
2423 		if (live_map)
2424 			limits = md->queue->limits;
2425 		dm_put_live_table_fast(md);
2426 	}
2427 
2428 	if (!live_map) {
2429 		r = dm_calculate_queue_limits(table, &limits);
2430 		if (r) {
2431 			map = ERR_PTR(r);
2432 			goto out;
2433 		}
2434 	}
2435 
2436 	map = __bind(md, table, &limits);
2437 	dm_issue_global_event();
2438 
2439 out:
2440 	mutex_unlock(&md->suspend_lock);
2441 	return map;
2442 }
2443 
2444 /*
2445  * Functions to lock and unlock any filesystem running on the
2446  * device.
2447  */
2448 static int lock_fs(struct mapped_device *md)
2449 {
2450 	int r;
2451 
2452 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2453 
2454 	r = freeze_bdev(md->disk->part0);
2455 	if (!r)
2456 		set_bit(DMF_FROZEN, &md->flags);
2457 	return r;
2458 }
2459 
2460 static void unlock_fs(struct mapped_device *md)
2461 {
2462 	if (!test_bit(DMF_FROZEN, &md->flags))
2463 		return;
2464 	thaw_bdev(md->disk->part0);
2465 	clear_bit(DMF_FROZEN, &md->flags);
2466 }
2467 
2468 /*
2469  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2470  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2471  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2472  *
2473  * If __dm_suspend returns 0, the device is completely quiescent
2474  * now. There is no request-processing activity. All new requests
2475  * are being added to md->deferred list.
2476  */
2477 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2478 			unsigned suspend_flags, unsigned int task_state,
2479 			int dmf_suspended_flag)
2480 {
2481 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2482 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2483 	int r;
2484 
2485 	lockdep_assert_held(&md->suspend_lock);
2486 
2487 	/*
2488 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2489 	 * This flag is cleared before dm_suspend returns.
2490 	 */
2491 	if (noflush)
2492 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2493 	else
2494 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2495 
2496 	/*
2497 	 * This gets reverted if there's an error later and the targets
2498 	 * provide the .presuspend_undo hook.
2499 	 */
2500 	dm_table_presuspend_targets(map);
2501 
2502 	/*
2503 	 * Flush I/O to the device.
2504 	 * Any I/O submitted after lock_fs() may not be flushed.
2505 	 * noflush takes precedence over do_lockfs.
2506 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2507 	 */
2508 	if (!noflush && do_lockfs) {
2509 		r = lock_fs(md);
2510 		if (r) {
2511 			dm_table_presuspend_undo_targets(map);
2512 			return r;
2513 		}
2514 	}
2515 
2516 	/*
2517 	 * Here we must make sure that no processes are submitting requests
2518 	 * to target drivers i.e. no one may be executing
2519 	 * dm_split_and_process_bio from dm_submit_bio.
2520 	 *
2521 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2522 	 * we take the write lock. To prevent any process from reentering
2523 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2524 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2525 	 * flush_workqueue(md->wq).
2526 	 */
2527 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2528 	if (map)
2529 		synchronize_srcu(&md->io_barrier);
2530 
2531 	/*
2532 	 * Stop md->queue before flushing md->wq in case request-based
2533 	 * dm defers requests to md->wq from md->queue.
2534 	 */
2535 	if (dm_request_based(md))
2536 		dm_stop_queue(md->queue);
2537 
2538 	flush_workqueue(md->wq);
2539 
2540 	/*
2541 	 * At this point no more requests are entering target request routines.
2542 	 * We call dm_wait_for_completion to wait for all existing requests
2543 	 * to finish.
2544 	 */
2545 	r = dm_wait_for_completion(md, task_state);
2546 	if (!r)
2547 		set_bit(dmf_suspended_flag, &md->flags);
2548 
2549 	if (noflush)
2550 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2551 	if (map)
2552 		synchronize_srcu(&md->io_barrier);
2553 
2554 	/* were we interrupted ? */
2555 	if (r < 0) {
2556 		dm_queue_flush(md);
2557 
2558 		if (dm_request_based(md))
2559 			dm_start_queue(md->queue);
2560 
2561 		unlock_fs(md);
2562 		dm_table_presuspend_undo_targets(map);
2563 		/* pushback list is already flushed, so skip flush */
2564 	}
2565 
2566 	return r;
2567 }
2568 
2569 /*
2570  * We need to be able to change a mapping table under a mounted
2571  * filesystem.  For example we might want to move some data in
2572  * the background.  Before the table can be swapped with
2573  * dm_bind_table, dm_suspend must be called to flush any in
2574  * flight bios and ensure that any further io gets deferred.
2575  */
2576 /*
2577  * Suspend mechanism in request-based dm.
2578  *
2579  * 1. Flush all I/Os by lock_fs() if needed.
2580  * 2. Stop dispatching any I/O by stopping the request_queue.
2581  * 3. Wait for all in-flight I/Os to be completed or requeued.
2582  *
2583  * To abort suspend, start the request_queue.
2584  */
2585 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2586 {
2587 	struct dm_table *map = NULL;
2588 	int r = 0;
2589 
2590 retry:
2591 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2592 
2593 	if (dm_suspended_md(md)) {
2594 		r = -EINVAL;
2595 		goto out_unlock;
2596 	}
2597 
2598 	if (dm_suspended_internally_md(md)) {
2599 		/* already internally suspended, wait for internal resume */
2600 		mutex_unlock(&md->suspend_lock);
2601 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2602 		if (r)
2603 			return r;
2604 		goto retry;
2605 	}
2606 
2607 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608 
2609 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2610 	if (r)
2611 		goto out_unlock;
2612 
2613 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2614 	dm_table_postsuspend_targets(map);
2615 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2616 
2617 out_unlock:
2618 	mutex_unlock(&md->suspend_lock);
2619 	return r;
2620 }
2621 
2622 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2623 {
2624 	if (map) {
2625 		int r = dm_table_resume_targets(map);
2626 		if (r)
2627 			return r;
2628 	}
2629 
2630 	dm_queue_flush(md);
2631 
2632 	/*
2633 	 * Flushing deferred I/Os must be done after targets are resumed
2634 	 * so that mapping of targets can work correctly.
2635 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2636 	 */
2637 	if (dm_request_based(md))
2638 		dm_start_queue(md->queue);
2639 
2640 	unlock_fs(md);
2641 
2642 	return 0;
2643 }
2644 
2645 int dm_resume(struct mapped_device *md)
2646 {
2647 	int r;
2648 	struct dm_table *map = NULL;
2649 
2650 retry:
2651 	r = -EINVAL;
2652 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2653 
2654 	if (!dm_suspended_md(md))
2655 		goto out;
2656 
2657 	if (dm_suspended_internally_md(md)) {
2658 		/* already internally suspended, wait for internal resume */
2659 		mutex_unlock(&md->suspend_lock);
2660 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2661 		if (r)
2662 			return r;
2663 		goto retry;
2664 	}
2665 
2666 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2667 	if (!map || !dm_table_get_size(map))
2668 		goto out;
2669 
2670 	r = __dm_resume(md, map);
2671 	if (r)
2672 		goto out;
2673 
2674 	clear_bit(DMF_SUSPENDED, &md->flags);
2675 out:
2676 	mutex_unlock(&md->suspend_lock);
2677 
2678 	return r;
2679 }
2680 
2681 /*
2682  * Internal suspend/resume works like userspace-driven suspend. It waits
2683  * until all bios finish and prevents issuing new bios to the target drivers.
2684  * It may be used only from the kernel.
2685  */
2686 
2687 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2688 {
2689 	struct dm_table *map = NULL;
2690 
2691 	lockdep_assert_held(&md->suspend_lock);
2692 
2693 	if (md->internal_suspend_count++)
2694 		return; /* nested internal suspend */
2695 
2696 	if (dm_suspended_md(md)) {
2697 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2698 		return; /* nest suspend */
2699 	}
2700 
2701 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2702 
2703 	/*
2704 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2705 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2706 	 * would require changing .presuspend to return an error -- avoid this
2707 	 * until there is a need for more elaborate variants of internal suspend.
2708 	 */
2709 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2710 			    DMF_SUSPENDED_INTERNALLY);
2711 
2712 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2713 	dm_table_postsuspend_targets(map);
2714 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2715 }
2716 
2717 static void __dm_internal_resume(struct mapped_device *md)
2718 {
2719 	BUG_ON(!md->internal_suspend_count);
2720 
2721 	if (--md->internal_suspend_count)
2722 		return; /* resume from nested internal suspend */
2723 
2724 	if (dm_suspended_md(md))
2725 		goto done; /* resume from nested suspend */
2726 
2727 	/*
2728 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2729 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2730 	 */
2731 	(void) __dm_resume(md, NULL);
2732 
2733 done:
2734 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2735 	smp_mb__after_atomic();
2736 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2737 }
2738 
2739 void dm_internal_suspend_noflush(struct mapped_device *md)
2740 {
2741 	mutex_lock(&md->suspend_lock);
2742 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2743 	mutex_unlock(&md->suspend_lock);
2744 }
2745 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2746 
2747 void dm_internal_resume(struct mapped_device *md)
2748 {
2749 	mutex_lock(&md->suspend_lock);
2750 	__dm_internal_resume(md);
2751 	mutex_unlock(&md->suspend_lock);
2752 }
2753 EXPORT_SYMBOL_GPL(dm_internal_resume);
2754 
2755 /*
2756  * Fast variants of internal suspend/resume hold md->suspend_lock,
2757  * which prevents interaction with userspace-driven suspend.
2758  */
2759 
2760 void dm_internal_suspend_fast(struct mapped_device *md)
2761 {
2762 	mutex_lock(&md->suspend_lock);
2763 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2764 		return;
2765 
2766 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2767 	synchronize_srcu(&md->io_barrier);
2768 	flush_workqueue(md->wq);
2769 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2770 }
2771 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2772 
2773 void dm_internal_resume_fast(struct mapped_device *md)
2774 {
2775 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776 		goto done;
2777 
2778 	dm_queue_flush(md);
2779 
2780 done:
2781 	mutex_unlock(&md->suspend_lock);
2782 }
2783 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2784 
2785 /*-----------------------------------------------------------------
2786  * Event notification.
2787  *---------------------------------------------------------------*/
2788 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2789 		       unsigned cookie)
2790 {
2791 	int r;
2792 	unsigned noio_flag;
2793 	char udev_cookie[DM_COOKIE_LENGTH];
2794 	char *envp[] = { udev_cookie, NULL };
2795 
2796 	noio_flag = memalloc_noio_save();
2797 
2798 	if (!cookie)
2799 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2800 	else {
2801 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2802 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2803 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2804 				       action, envp);
2805 	}
2806 
2807 	memalloc_noio_restore(noio_flag);
2808 
2809 	return r;
2810 }
2811 
2812 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2813 {
2814 	return atomic_add_return(1, &md->uevent_seq);
2815 }
2816 
2817 uint32_t dm_get_event_nr(struct mapped_device *md)
2818 {
2819 	return atomic_read(&md->event_nr);
2820 }
2821 
2822 int dm_wait_event(struct mapped_device *md, int event_nr)
2823 {
2824 	return wait_event_interruptible(md->eventq,
2825 			(event_nr != atomic_read(&md->event_nr)));
2826 }
2827 
2828 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2829 {
2830 	unsigned long flags;
2831 
2832 	spin_lock_irqsave(&md->uevent_lock, flags);
2833 	list_add(elist, &md->uevent_list);
2834 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2835 }
2836 
2837 /*
2838  * The gendisk is only valid as long as you have a reference
2839  * count on 'md'.
2840  */
2841 struct gendisk *dm_disk(struct mapped_device *md)
2842 {
2843 	return md->disk;
2844 }
2845 EXPORT_SYMBOL_GPL(dm_disk);
2846 
2847 struct kobject *dm_kobject(struct mapped_device *md)
2848 {
2849 	return &md->kobj_holder.kobj;
2850 }
2851 
2852 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2853 {
2854 	struct mapped_device *md;
2855 
2856 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2857 
2858 	spin_lock(&_minor_lock);
2859 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2860 		md = NULL;
2861 		goto out;
2862 	}
2863 	dm_get(md);
2864 out:
2865 	spin_unlock(&_minor_lock);
2866 
2867 	return md;
2868 }
2869 
2870 int dm_suspended_md(struct mapped_device *md)
2871 {
2872 	return test_bit(DMF_SUSPENDED, &md->flags);
2873 }
2874 
2875 static int dm_post_suspending_md(struct mapped_device *md)
2876 {
2877 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2878 }
2879 
2880 int dm_suspended_internally_md(struct mapped_device *md)
2881 {
2882 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2883 }
2884 
2885 int dm_test_deferred_remove_flag(struct mapped_device *md)
2886 {
2887 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2888 }
2889 
2890 int dm_suspended(struct dm_target *ti)
2891 {
2892 	return dm_suspended_md(ti->table->md);
2893 }
2894 EXPORT_SYMBOL_GPL(dm_suspended);
2895 
2896 int dm_post_suspending(struct dm_target *ti)
2897 {
2898 	return dm_post_suspending_md(ti->table->md);
2899 }
2900 EXPORT_SYMBOL_GPL(dm_post_suspending);
2901 
2902 int dm_noflush_suspending(struct dm_target *ti)
2903 {
2904 	return __noflush_suspending(ti->table->md);
2905 }
2906 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2907 
2908 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2909 					    unsigned integrity, unsigned per_io_data_size,
2910 					    unsigned min_pool_size)
2911 {
2912 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2913 	unsigned int pool_size = 0;
2914 	unsigned int front_pad, io_front_pad;
2915 	int ret;
2916 
2917 	if (!pools)
2918 		return NULL;
2919 
2920 	switch (type) {
2921 	case DM_TYPE_BIO_BASED:
2922 	case DM_TYPE_DAX_BIO_BASED:
2923 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2924 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2925 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2926 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2927 		if (ret)
2928 			goto out;
2929 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2930 			goto out;
2931 		break;
2932 	case DM_TYPE_REQUEST_BASED:
2933 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2934 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2935 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2936 		break;
2937 	default:
2938 		BUG();
2939 	}
2940 
2941 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2942 	if (ret)
2943 		goto out;
2944 
2945 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2946 		goto out;
2947 
2948 	return pools;
2949 
2950 out:
2951 	dm_free_md_mempools(pools);
2952 
2953 	return NULL;
2954 }
2955 
2956 void dm_free_md_mempools(struct dm_md_mempools *pools)
2957 {
2958 	if (!pools)
2959 		return;
2960 
2961 	bioset_exit(&pools->bs);
2962 	bioset_exit(&pools->io_bs);
2963 
2964 	kfree(pools);
2965 }
2966 
2967 struct dm_pr {
2968 	u64	old_key;
2969 	u64	new_key;
2970 	u32	flags;
2971 	bool	fail_early;
2972 };
2973 
2974 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2975 		      void *data)
2976 {
2977 	struct mapped_device *md = bdev->bd_disk->private_data;
2978 	struct dm_table *table;
2979 	struct dm_target *ti;
2980 	int ret = -ENOTTY, srcu_idx;
2981 
2982 	table = dm_get_live_table(md, &srcu_idx);
2983 	if (!table || !dm_table_get_size(table))
2984 		goto out;
2985 
2986 	/* We only support devices that have a single target */
2987 	if (dm_table_get_num_targets(table) != 1)
2988 		goto out;
2989 	ti = dm_table_get_target(table, 0);
2990 
2991 	ret = -EINVAL;
2992 	if (!ti->type->iterate_devices)
2993 		goto out;
2994 
2995 	ret = ti->type->iterate_devices(ti, fn, data);
2996 out:
2997 	dm_put_live_table(md, srcu_idx);
2998 	return ret;
2999 }
3000 
3001 /*
3002  * For register / unregister we need to manually call out to every path.
3003  */
3004 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3005 			    sector_t start, sector_t len, void *data)
3006 {
3007 	struct dm_pr *pr = data;
3008 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3009 
3010 	if (!ops || !ops->pr_register)
3011 		return -EOPNOTSUPP;
3012 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3013 }
3014 
3015 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3016 			  u32 flags)
3017 {
3018 	struct dm_pr pr = {
3019 		.old_key	= old_key,
3020 		.new_key	= new_key,
3021 		.flags		= flags,
3022 		.fail_early	= true,
3023 	};
3024 	int ret;
3025 
3026 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3027 	if (ret && new_key) {
3028 		/* unregister all paths if we failed to register any path */
3029 		pr.old_key = new_key;
3030 		pr.new_key = 0;
3031 		pr.flags = 0;
3032 		pr.fail_early = false;
3033 		dm_call_pr(bdev, __dm_pr_register, &pr);
3034 	}
3035 
3036 	return ret;
3037 }
3038 
3039 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3040 			 u32 flags)
3041 {
3042 	struct mapped_device *md = bdev->bd_disk->private_data;
3043 	const struct pr_ops *ops;
3044 	int r, srcu_idx;
3045 
3046 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3047 	if (r < 0)
3048 		goto out;
3049 
3050 	ops = bdev->bd_disk->fops->pr_ops;
3051 	if (ops && ops->pr_reserve)
3052 		r = ops->pr_reserve(bdev, key, type, flags);
3053 	else
3054 		r = -EOPNOTSUPP;
3055 out:
3056 	dm_unprepare_ioctl(md, srcu_idx);
3057 	return r;
3058 }
3059 
3060 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3061 {
3062 	struct mapped_device *md = bdev->bd_disk->private_data;
3063 	const struct pr_ops *ops;
3064 	int r, srcu_idx;
3065 
3066 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3067 	if (r < 0)
3068 		goto out;
3069 
3070 	ops = bdev->bd_disk->fops->pr_ops;
3071 	if (ops && ops->pr_release)
3072 		r = ops->pr_release(bdev, key, type);
3073 	else
3074 		r = -EOPNOTSUPP;
3075 out:
3076 	dm_unprepare_ioctl(md, srcu_idx);
3077 	return r;
3078 }
3079 
3080 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3081 			 enum pr_type type, bool abort)
3082 {
3083 	struct mapped_device *md = bdev->bd_disk->private_data;
3084 	const struct pr_ops *ops;
3085 	int r, srcu_idx;
3086 
3087 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3088 	if (r < 0)
3089 		goto out;
3090 
3091 	ops = bdev->bd_disk->fops->pr_ops;
3092 	if (ops && ops->pr_preempt)
3093 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3094 	else
3095 		r = -EOPNOTSUPP;
3096 out:
3097 	dm_unprepare_ioctl(md, srcu_idx);
3098 	return r;
3099 }
3100 
3101 static int dm_pr_clear(struct block_device *bdev, u64 key)
3102 {
3103 	struct mapped_device *md = bdev->bd_disk->private_data;
3104 	const struct pr_ops *ops;
3105 	int r, srcu_idx;
3106 
3107 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3108 	if (r < 0)
3109 		goto out;
3110 
3111 	ops = bdev->bd_disk->fops->pr_ops;
3112 	if (ops && ops->pr_clear)
3113 		r = ops->pr_clear(bdev, key);
3114 	else
3115 		r = -EOPNOTSUPP;
3116 out:
3117 	dm_unprepare_ioctl(md, srcu_idx);
3118 	return r;
3119 }
3120 
3121 static const struct pr_ops dm_pr_ops = {
3122 	.pr_register	= dm_pr_register,
3123 	.pr_reserve	= dm_pr_reserve,
3124 	.pr_release	= dm_pr_release,
3125 	.pr_preempt	= dm_pr_preempt,
3126 	.pr_clear	= dm_pr_clear,
3127 };
3128 
3129 static const struct block_device_operations dm_blk_dops = {
3130 	.submit_bio = dm_submit_bio,
3131 	.poll_bio = dm_poll_bio,
3132 	.open = dm_blk_open,
3133 	.release = dm_blk_close,
3134 	.ioctl = dm_blk_ioctl,
3135 	.getgeo = dm_blk_getgeo,
3136 	.report_zones = dm_blk_report_zones,
3137 	.pr_ops = &dm_pr_ops,
3138 	.owner = THIS_MODULE
3139 };
3140 
3141 static const struct block_device_operations dm_rq_blk_dops = {
3142 	.open = dm_blk_open,
3143 	.release = dm_blk_close,
3144 	.ioctl = dm_blk_ioctl,
3145 	.getgeo = dm_blk_getgeo,
3146 	.pr_ops = &dm_pr_ops,
3147 	.owner = THIS_MODULE
3148 };
3149 
3150 static const struct dax_operations dm_dax_ops = {
3151 	.direct_access = dm_dax_direct_access,
3152 	.zero_page_range = dm_dax_zero_page_range,
3153 };
3154 
3155 /*
3156  * module hooks
3157  */
3158 module_init(dm_init);
3159 module_exit(dm_exit);
3160 
3161 module_param(major, uint, 0);
3162 MODULE_PARM_DESC(major, "The major number of the device mapper");
3163 
3164 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3165 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3166 
3167 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3168 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3169 
3170 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3171 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3172 
3173 MODULE_DESCRIPTION(DM_NAME " driver");
3174 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3175 MODULE_LICENSE("GPL");
3176