xref: /openbmc/linux/drivers/md/dm.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
580 	tio = clone_to_tio(clone);
581 	tio->flags = 0;
582 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 	tio->io = NULL;
584 
585 	io = container_of(tio, struct dm_io, tio);
586 	io->magic = DM_IO_MAGIC;
587 	io->status = BLK_STS_OK;
588 
589 	/* one ref is for submission, the other is for completion */
590 	atomic_set(&io->io_count, 2);
591 	this_cpu_inc(*md->pending_io);
592 	io->orig_bio = bio;
593 	io->md = md;
594 	spin_lock_init(&io->lock);
595 	io->start_time = jiffies;
596 	io->flags = 0;
597 	if (blk_queue_io_stat(md->queue))
598 		dm_io_set_flag(io, DM_IO_BLK_STAT);
599 
600 	if (static_branch_unlikely(&stats_enabled) &&
601 	    unlikely(dm_stats_used(&md->stats)))
602 		dm_stats_record_start(&md->stats, &io->stats_aux);
603 
604 	return io;
605 }
606 
607 static void free_io(struct dm_io *io)
608 {
609 	bio_put(&io->tio.clone);
610 }
611 
612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
613 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
614 {
615 	struct mapped_device *md = ci->io->md;
616 	struct dm_target_io *tio;
617 	struct bio *clone;
618 
619 	if (!ci->io->tio.io) {
620 		/* the dm_target_io embedded in ci->io is available */
621 		tio = &ci->io->tio;
622 		/* alloc_io() already initialized embedded clone */
623 		clone = &tio->clone;
624 	} else {
625 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
626 					&md->mempools->bs);
627 		if (!clone)
628 			return NULL;
629 
630 		/* REQ_DM_POLL_LIST shouldn't be inherited */
631 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
632 
633 		tio = clone_to_tio(clone);
634 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
635 	}
636 
637 	tio->magic = DM_TIO_MAGIC;
638 	tio->io = ci->io;
639 	tio->ti = ti;
640 	tio->target_bio_nr = target_bio_nr;
641 	tio->len_ptr = len;
642 	tio->old_sector = 0;
643 
644 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
645 	clone->bi_bdev = md->disk->part0;
646 	if (unlikely(ti->needs_bio_set_dev))
647 		bio_set_dev(clone, md->disk->part0);
648 
649 	if (len) {
650 		clone->bi_iter.bi_size = to_bytes(*len);
651 		if (bio_integrity(clone))
652 			bio_integrity_trim(clone);
653 	}
654 
655 	return clone;
656 }
657 
658 static void free_tio(struct bio *clone)
659 {
660 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661 		return;
662 	bio_put(clone);
663 }
664 
665 /*
666  * Add the bio to the list of deferred io.
667  */
668 static void queue_io(struct mapped_device *md, struct bio *bio)
669 {
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&md->deferred_lock, flags);
673 	bio_list_add(&md->deferred, bio);
674 	spin_unlock_irqrestore(&md->deferred_lock, flags);
675 	queue_work(md->wq, &md->work);
676 }
677 
678 /*
679  * Everyone (including functions in this file), should use this
680  * function to access the md->map field, and make sure they call
681  * dm_put_live_table() when finished.
682  */
683 struct dm_table *dm_get_live_table(struct mapped_device *md,
684 				   int *srcu_idx) __acquires(md->io_barrier)
685 {
686 	*srcu_idx = srcu_read_lock(&md->io_barrier);
687 
688 	return srcu_dereference(md->map, &md->io_barrier);
689 }
690 
691 void dm_put_live_table(struct mapped_device *md,
692 		       int srcu_idx) __releases(md->io_barrier)
693 {
694 	srcu_read_unlock(&md->io_barrier, srcu_idx);
695 }
696 
697 void dm_sync_table(struct mapped_device *md)
698 {
699 	synchronize_srcu(&md->io_barrier);
700 	synchronize_rcu_expedited();
701 }
702 
703 /*
704  * A fast alternative to dm_get_live_table/dm_put_live_table.
705  * The caller must not block between these two functions.
706  */
707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
708 {
709 	rcu_read_lock();
710 	return rcu_dereference(md->map);
711 }
712 
713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
714 {
715 	rcu_read_unlock();
716 }
717 
718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
719 					int *srcu_idx, blk_opf_t bio_opf)
720 {
721 	if (bio_opf & REQ_NOWAIT)
722 		return dm_get_live_table_fast(md);
723 	else
724 		return dm_get_live_table(md, srcu_idx);
725 }
726 
727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
728 					 blk_opf_t bio_opf)
729 {
730 	if (bio_opf & REQ_NOWAIT)
731 		dm_put_live_table_fast(md);
732 	else
733 		dm_put_live_table(md, srcu_idx);
734 }
735 
736 static char *_dm_claim_ptr = "I belong to device-mapper";
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static struct table_device *open_table_device(struct mapped_device *md,
742 		dev_t dev, blk_mode_t mode)
743 {
744 	struct table_device *td;
745 	struct block_device *bdev;
746 	u64 part_off;
747 	int r;
748 
749 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
750 	if (!td)
751 		return ERR_PTR(-ENOMEM);
752 	refcount_set(&td->count, 1);
753 
754 	bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL);
755 	if (IS_ERR(bdev)) {
756 		r = PTR_ERR(bdev);
757 		goto out_free_td;
758 	}
759 
760 	/*
761 	 * We can be called before the dm disk is added.  In that case we can't
762 	 * register the holder relation here.  It will be done once add_disk was
763 	 * called.
764 	 */
765 	if (md->disk->slave_dir) {
766 		r = bd_link_disk_holder(bdev, md->disk);
767 		if (r)
768 			goto out_blkdev_put;
769 	}
770 
771 	td->dm_dev.mode = mode;
772 	td->dm_dev.bdev = bdev;
773 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
774 	format_dev_t(td->dm_dev.name, dev);
775 	list_add(&td->list, &md->table_devices);
776 	return td;
777 
778 out_blkdev_put:
779 	blkdev_put(bdev, _dm_claim_ptr);
780 out_free_td:
781 	kfree(td);
782 	return ERR_PTR(r);
783 }
784 
785 /*
786  * Close a table device that we've been using.
787  */
788 static void close_table_device(struct table_device *td, struct mapped_device *md)
789 {
790 	if (md->disk->slave_dir)
791 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
792 	blkdev_put(td->dm_dev.bdev, _dm_claim_ptr);
793 	put_dax(td->dm_dev.dax_dev);
794 	list_del(&td->list);
795 	kfree(td);
796 }
797 
798 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
799 					      blk_mode_t mode)
800 {
801 	struct table_device *td;
802 
803 	list_for_each_entry(td, l, list)
804 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
805 			return td;
806 
807 	return NULL;
808 }
809 
810 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
811 			struct dm_dev **result)
812 {
813 	struct table_device *td;
814 
815 	mutex_lock(&md->table_devices_lock);
816 	td = find_table_device(&md->table_devices, dev, mode);
817 	if (!td) {
818 		td = open_table_device(md, dev, mode);
819 		if (IS_ERR(td)) {
820 			mutex_unlock(&md->table_devices_lock);
821 			return PTR_ERR(td);
822 		}
823 	} else {
824 		refcount_inc(&td->count);
825 	}
826 	mutex_unlock(&md->table_devices_lock);
827 
828 	*result = &td->dm_dev;
829 	return 0;
830 }
831 
832 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
833 {
834 	struct table_device *td = container_of(d, struct table_device, dm_dev);
835 
836 	mutex_lock(&md->table_devices_lock);
837 	if (refcount_dec_and_test(&td->count))
838 		close_table_device(td, md);
839 	mutex_unlock(&md->table_devices_lock);
840 }
841 
842 /*
843  * Get the geometry associated with a dm device
844  */
845 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
846 {
847 	*geo = md->geometry;
848 
849 	return 0;
850 }
851 
852 /*
853  * Set the geometry of a device.
854  */
855 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
858 
859 	if (geo->start > sz) {
860 		DMERR("Start sector is beyond the geometry limits.");
861 		return -EINVAL;
862 	}
863 
864 	md->geometry = *geo;
865 
866 	return 0;
867 }
868 
869 static int __noflush_suspending(struct mapped_device *md)
870 {
871 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
872 }
873 
874 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
875 {
876 	struct mapped_device *md = io->md;
877 
878 	if (first_stage) {
879 		struct dm_io *next = md->requeue_list;
880 
881 		md->requeue_list = io;
882 		io->next = next;
883 	} else {
884 		bio_list_add_head(&md->deferred, io->orig_bio);
885 	}
886 }
887 
888 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
889 {
890 	if (first_stage)
891 		queue_work(md->wq, &md->requeue_work);
892 	else
893 		queue_work(md->wq, &md->work);
894 }
895 
896 /*
897  * Return true if the dm_io's original bio is requeued.
898  * io->status is updated with error if requeue disallowed.
899  */
900 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
901 {
902 	struct bio *bio = io->orig_bio;
903 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
904 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
905 				     (bio->bi_opf & REQ_POLLED));
906 	struct mapped_device *md = io->md;
907 	bool requeued = false;
908 
909 	if (handle_requeue || handle_polled_eagain) {
910 		unsigned long flags;
911 
912 		if (bio->bi_opf & REQ_POLLED) {
913 			/*
914 			 * Upper layer won't help us poll split bio
915 			 * (io->orig_bio may only reflect a subset of the
916 			 * pre-split original) so clear REQ_POLLED.
917 			 */
918 			bio_clear_polled(bio);
919 		}
920 
921 		/*
922 		 * Target requested pushing back the I/O or
923 		 * polled IO hit BLK_STS_AGAIN.
924 		 */
925 		spin_lock_irqsave(&md->deferred_lock, flags);
926 		if ((__noflush_suspending(md) &&
927 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
928 		    handle_polled_eagain || first_stage) {
929 			dm_requeue_add_io(io, first_stage);
930 			requeued = true;
931 		} else {
932 			/*
933 			 * noflush suspend was interrupted or this is
934 			 * a write to a zoned target.
935 			 */
936 			io->status = BLK_STS_IOERR;
937 		}
938 		spin_unlock_irqrestore(&md->deferred_lock, flags);
939 	}
940 
941 	if (requeued)
942 		dm_kick_requeue(md, first_stage);
943 
944 	return requeued;
945 }
946 
947 static void __dm_io_complete(struct dm_io *io, bool first_stage)
948 {
949 	struct bio *bio = io->orig_bio;
950 	struct mapped_device *md = io->md;
951 	blk_status_t io_error;
952 	bool requeued;
953 
954 	requeued = dm_handle_requeue(io, first_stage);
955 	if (requeued && first_stage)
956 		return;
957 
958 	io_error = io->status;
959 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
960 		dm_end_io_acct(io);
961 	else if (!io_error) {
962 		/*
963 		 * Must handle target that DM_MAPIO_SUBMITTED only to
964 		 * then bio_endio() rather than dm_submit_bio_remap()
965 		 */
966 		__dm_start_io_acct(io);
967 		dm_end_io_acct(io);
968 	}
969 	free_io(io);
970 	smp_wmb();
971 	this_cpu_dec(*md->pending_io);
972 
973 	/* nudge anyone waiting on suspend queue */
974 	if (unlikely(wq_has_sleeper(&md->wait)))
975 		wake_up(&md->wait);
976 
977 	/* Return early if the original bio was requeued */
978 	if (requeued)
979 		return;
980 
981 	if (bio_is_flush_with_data(bio)) {
982 		/*
983 		 * Preflush done for flush with data, reissue
984 		 * without REQ_PREFLUSH.
985 		 */
986 		bio->bi_opf &= ~REQ_PREFLUSH;
987 		queue_io(md, bio);
988 	} else {
989 		/* done with normal IO or empty flush */
990 		if (io_error)
991 			bio->bi_status = io_error;
992 		bio_endio(bio);
993 	}
994 }
995 
996 static void dm_wq_requeue_work(struct work_struct *work)
997 {
998 	struct mapped_device *md = container_of(work, struct mapped_device,
999 						requeue_work);
1000 	unsigned long flags;
1001 	struct dm_io *io;
1002 
1003 	/* reuse deferred lock to simplify dm_handle_requeue */
1004 	spin_lock_irqsave(&md->deferred_lock, flags);
1005 	io = md->requeue_list;
1006 	md->requeue_list = NULL;
1007 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1008 
1009 	while (io) {
1010 		struct dm_io *next = io->next;
1011 
1012 		dm_io_rewind(io, &md->disk->bio_split);
1013 
1014 		io->next = NULL;
1015 		__dm_io_complete(io, false);
1016 		io = next;
1017 		cond_resched();
1018 	}
1019 }
1020 
1021 /*
1022  * Two staged requeue:
1023  *
1024  * 1) io->orig_bio points to the real original bio, and the part mapped to
1025  *    this io must be requeued, instead of other parts of the original bio.
1026  *
1027  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1028  */
1029 static void dm_io_complete(struct dm_io *io)
1030 {
1031 	bool first_requeue;
1032 
1033 	/*
1034 	 * Only dm_io that has been split needs two stage requeue, otherwise
1035 	 * we may run into long bio clone chain during suspend and OOM could
1036 	 * be triggered.
1037 	 *
1038 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1039 	 * also aren't handled via the first stage requeue.
1040 	 */
1041 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1042 		first_requeue = true;
1043 	else
1044 		first_requeue = false;
1045 
1046 	__dm_io_complete(io, first_requeue);
1047 }
1048 
1049 /*
1050  * Decrements the number of outstanding ios that a bio has been
1051  * cloned into, completing the original io if necc.
1052  */
1053 static inline void __dm_io_dec_pending(struct dm_io *io)
1054 {
1055 	if (atomic_dec_and_test(&io->io_count))
1056 		dm_io_complete(io);
1057 }
1058 
1059 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1060 {
1061 	unsigned long flags;
1062 
1063 	/* Push-back supersedes any I/O errors */
1064 	spin_lock_irqsave(&io->lock, flags);
1065 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1066 	      __noflush_suspending(io->md))) {
1067 		io->status = error;
1068 	}
1069 	spin_unlock_irqrestore(&io->lock, flags);
1070 }
1071 
1072 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1073 {
1074 	if (unlikely(error))
1075 		dm_io_set_error(io, error);
1076 
1077 	__dm_io_dec_pending(io);
1078 }
1079 
1080 /*
1081  * The queue_limits are only valid as long as you have a reference
1082  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1083  */
1084 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1085 {
1086 	return &md->queue->limits;
1087 }
1088 
1089 void disable_discard(struct mapped_device *md)
1090 {
1091 	struct queue_limits *limits = dm_get_queue_limits(md);
1092 
1093 	/* device doesn't really support DISCARD, disable it */
1094 	limits->max_discard_sectors = 0;
1095 }
1096 
1097 void disable_write_zeroes(struct mapped_device *md)
1098 {
1099 	struct queue_limits *limits = dm_get_queue_limits(md);
1100 
1101 	/* device doesn't really support WRITE ZEROES, disable it */
1102 	limits->max_write_zeroes_sectors = 0;
1103 }
1104 
1105 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1106 {
1107 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1108 }
1109 
1110 static void clone_endio(struct bio *bio)
1111 {
1112 	blk_status_t error = bio->bi_status;
1113 	struct dm_target_io *tio = clone_to_tio(bio);
1114 	struct dm_target *ti = tio->ti;
1115 	dm_endio_fn endio = ti->type->end_io;
1116 	struct dm_io *io = tio->io;
1117 	struct mapped_device *md = io->md;
1118 
1119 	if (unlikely(error == BLK_STS_TARGET)) {
1120 		if (bio_op(bio) == REQ_OP_DISCARD &&
1121 		    !bdev_max_discard_sectors(bio->bi_bdev))
1122 			disable_discard(md);
1123 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1124 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1125 			disable_write_zeroes(md);
1126 	}
1127 
1128 	if (static_branch_unlikely(&zoned_enabled) &&
1129 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1130 		dm_zone_endio(io, bio);
1131 
1132 	if (endio) {
1133 		int r = endio(ti, bio, &error);
1134 
1135 		switch (r) {
1136 		case DM_ENDIO_REQUEUE:
1137 			if (static_branch_unlikely(&zoned_enabled)) {
1138 				/*
1139 				 * Requeuing writes to a sequential zone of a zoned
1140 				 * target will break the sequential write pattern:
1141 				 * fail such IO.
1142 				 */
1143 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1144 					error = BLK_STS_IOERR;
1145 				else
1146 					error = BLK_STS_DM_REQUEUE;
1147 			} else
1148 				error = BLK_STS_DM_REQUEUE;
1149 			fallthrough;
1150 		case DM_ENDIO_DONE:
1151 			break;
1152 		case DM_ENDIO_INCOMPLETE:
1153 			/* The target will handle the io */
1154 			return;
1155 		default:
1156 			DMCRIT("unimplemented target endio return value: %d", r);
1157 			BUG();
1158 		}
1159 	}
1160 
1161 	if (static_branch_unlikely(&swap_bios_enabled) &&
1162 	    unlikely(swap_bios_limit(ti, bio)))
1163 		up(&md->swap_bios_semaphore);
1164 
1165 	free_tio(bio);
1166 	dm_io_dec_pending(io, error);
1167 }
1168 
1169 /*
1170  * Return maximum size of I/O possible at the supplied sector up to the current
1171  * target boundary.
1172  */
1173 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1174 						  sector_t target_offset)
1175 {
1176 	return ti->len - target_offset;
1177 }
1178 
1179 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1180 			     unsigned int max_granularity,
1181 			     unsigned int max_sectors)
1182 {
1183 	sector_t target_offset = dm_target_offset(ti, sector);
1184 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1185 
1186 	/*
1187 	 * Does the target need to split IO even further?
1188 	 * - varied (per target) IO splitting is a tenet of DM; this
1189 	 *   explains why stacked chunk_sectors based splitting via
1190 	 *   bio_split_to_limits() isn't possible here.
1191 	 */
1192 	if (!max_granularity)
1193 		return len;
1194 	return min_t(sector_t, len,
1195 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1196 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1197 }
1198 
1199 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1200 {
1201 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1202 }
1203 
1204 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1205 {
1206 	if (len > UINT_MAX) {
1207 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1208 		      (unsigned long long)len, UINT_MAX);
1209 		ti->error = "Maximum size of target IO is too large";
1210 		return -EINVAL;
1211 	}
1212 
1213 	ti->max_io_len = (uint32_t) len;
1214 
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1218 
1219 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1220 						sector_t sector, int *srcu_idx)
1221 	__acquires(md->io_barrier)
1222 {
1223 	struct dm_table *map;
1224 	struct dm_target *ti;
1225 
1226 	map = dm_get_live_table(md, srcu_idx);
1227 	if (!map)
1228 		return NULL;
1229 
1230 	ti = dm_table_find_target(map, sector);
1231 	if (!ti)
1232 		return NULL;
1233 
1234 	return ti;
1235 }
1236 
1237 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1238 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1239 		pfn_t *pfn)
1240 {
1241 	struct mapped_device *md = dax_get_private(dax_dev);
1242 	sector_t sector = pgoff * PAGE_SECTORS;
1243 	struct dm_target *ti;
1244 	long len, ret = -EIO;
1245 	int srcu_idx;
1246 
1247 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1248 
1249 	if (!ti)
1250 		goto out;
1251 	if (!ti->type->direct_access)
1252 		goto out;
1253 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1254 	if (len < 1)
1255 		goto out;
1256 	nr_pages = min(len, nr_pages);
1257 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1258 
1259  out:
1260 	dm_put_live_table(md, srcu_idx);
1261 
1262 	return ret;
1263 }
1264 
1265 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1266 				  size_t nr_pages)
1267 {
1268 	struct mapped_device *md = dax_get_private(dax_dev);
1269 	sector_t sector = pgoff * PAGE_SECTORS;
1270 	struct dm_target *ti;
1271 	int ret = -EIO;
1272 	int srcu_idx;
1273 
1274 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1275 
1276 	if (!ti)
1277 		goto out;
1278 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1279 		/*
1280 		 * ->zero_page_range() is mandatory dax operation. If we are
1281 		 *  here, something is wrong.
1282 		 */
1283 		goto out;
1284 	}
1285 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1286  out:
1287 	dm_put_live_table(md, srcu_idx);
1288 
1289 	return ret;
1290 }
1291 
1292 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1293 		void *addr, size_t bytes, struct iov_iter *i)
1294 {
1295 	struct mapped_device *md = dax_get_private(dax_dev);
1296 	sector_t sector = pgoff * PAGE_SECTORS;
1297 	struct dm_target *ti;
1298 	int srcu_idx;
1299 	long ret = 0;
1300 
1301 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1302 	if (!ti || !ti->type->dax_recovery_write)
1303 		goto out;
1304 
1305 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1306 out:
1307 	dm_put_live_table(md, srcu_idx);
1308 	return ret;
1309 }
1310 
1311 /*
1312  * A target may call dm_accept_partial_bio only from the map routine.  It is
1313  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1314  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1315  * __send_duplicate_bios().
1316  *
1317  * dm_accept_partial_bio informs the dm that the target only wants to process
1318  * additional n_sectors sectors of the bio and the rest of the data should be
1319  * sent in a next bio.
1320  *
1321  * A diagram that explains the arithmetics:
1322  * +--------------------+---------------+-------+
1323  * |         1          |       2       |   3   |
1324  * +--------------------+---------------+-------+
1325  *
1326  * <-------------- *tio->len_ptr --------------->
1327  *                      <----- bio_sectors ----->
1328  *                      <-- n_sectors -->
1329  *
1330  * Region 1 was already iterated over with bio_advance or similar function.
1331  *	(it may be empty if the target doesn't use bio_advance)
1332  * Region 2 is the remaining bio size that the target wants to process.
1333  *	(it may be empty if region 1 is non-empty, although there is no reason
1334  *	 to make it empty)
1335  * The target requires that region 3 is to be sent in the next bio.
1336  *
1337  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1338  * the partially processed part (the sum of regions 1+2) must be the same for all
1339  * copies of the bio.
1340  */
1341 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1342 {
1343 	struct dm_target_io *tio = clone_to_tio(bio);
1344 	struct dm_io *io = tio->io;
1345 	unsigned int bio_sectors = bio_sectors(bio);
1346 
1347 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1348 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1349 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1350 	BUG_ON(bio_sectors > *tio->len_ptr);
1351 	BUG_ON(n_sectors > bio_sectors);
1352 
1353 	*tio->len_ptr -= bio_sectors - n_sectors;
1354 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1355 
1356 	/*
1357 	 * __split_and_process_bio() may have already saved mapped part
1358 	 * for accounting but it is being reduced so update accordingly.
1359 	 */
1360 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1361 	io->sectors = n_sectors;
1362 	io->sector_offset = bio_sectors(io->orig_bio);
1363 }
1364 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1365 
1366 /*
1367  * @clone: clone bio that DM core passed to target's .map function
1368  * @tgt_clone: clone of @clone bio that target needs submitted
1369  *
1370  * Targets should use this interface to submit bios they take
1371  * ownership of when returning DM_MAPIO_SUBMITTED.
1372  *
1373  * Target should also enable ti->accounts_remapped_io
1374  */
1375 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1376 {
1377 	struct dm_target_io *tio = clone_to_tio(clone);
1378 	struct dm_io *io = tio->io;
1379 
1380 	/* establish bio that will get submitted */
1381 	if (!tgt_clone)
1382 		tgt_clone = clone;
1383 
1384 	/*
1385 	 * Account io->origin_bio to DM dev on behalf of target
1386 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1387 	 */
1388 	dm_start_io_acct(io, clone);
1389 
1390 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1391 			      tio->old_sector);
1392 	submit_bio_noacct(tgt_clone);
1393 }
1394 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1395 
1396 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1397 {
1398 	mutex_lock(&md->swap_bios_lock);
1399 	while (latch < md->swap_bios) {
1400 		cond_resched();
1401 		down(&md->swap_bios_semaphore);
1402 		md->swap_bios--;
1403 	}
1404 	while (latch > md->swap_bios) {
1405 		cond_resched();
1406 		up(&md->swap_bios_semaphore);
1407 		md->swap_bios++;
1408 	}
1409 	mutex_unlock(&md->swap_bios_lock);
1410 }
1411 
1412 static void __map_bio(struct bio *clone)
1413 {
1414 	struct dm_target_io *tio = clone_to_tio(clone);
1415 	struct dm_target *ti = tio->ti;
1416 	struct dm_io *io = tio->io;
1417 	struct mapped_device *md = io->md;
1418 	int r;
1419 
1420 	clone->bi_end_io = clone_endio;
1421 
1422 	/*
1423 	 * Map the clone.
1424 	 */
1425 	tio->old_sector = clone->bi_iter.bi_sector;
1426 
1427 	if (static_branch_unlikely(&swap_bios_enabled) &&
1428 	    unlikely(swap_bios_limit(ti, clone))) {
1429 		int latch = get_swap_bios();
1430 
1431 		if (unlikely(latch != md->swap_bios))
1432 			__set_swap_bios_limit(md, latch);
1433 		down(&md->swap_bios_semaphore);
1434 	}
1435 
1436 	if (static_branch_unlikely(&zoned_enabled)) {
1437 		/*
1438 		 * Check if the IO needs a special mapping due to zone append
1439 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1440 		 * calls the target map operation.
1441 		 */
1442 		if (unlikely(dm_emulate_zone_append(md)))
1443 			r = dm_zone_map_bio(tio);
1444 		else
1445 			r = ti->type->map(ti, clone);
1446 	} else
1447 		r = ti->type->map(ti, clone);
1448 
1449 	switch (r) {
1450 	case DM_MAPIO_SUBMITTED:
1451 		/* target has assumed ownership of this io */
1452 		if (!ti->accounts_remapped_io)
1453 			dm_start_io_acct(io, clone);
1454 		break;
1455 	case DM_MAPIO_REMAPPED:
1456 		dm_submit_bio_remap(clone, NULL);
1457 		break;
1458 	case DM_MAPIO_KILL:
1459 	case DM_MAPIO_REQUEUE:
1460 		if (static_branch_unlikely(&swap_bios_enabled) &&
1461 		    unlikely(swap_bios_limit(ti, clone)))
1462 			up(&md->swap_bios_semaphore);
1463 		free_tio(clone);
1464 		if (r == DM_MAPIO_KILL)
1465 			dm_io_dec_pending(io, BLK_STS_IOERR);
1466 		else
1467 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1468 		break;
1469 	default:
1470 		DMCRIT("unimplemented target map return value: %d", r);
1471 		BUG();
1472 	}
1473 }
1474 
1475 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1476 {
1477 	struct dm_io *io = ci->io;
1478 
1479 	if (ci->sector_count > len) {
1480 		/*
1481 		 * Split needed, save the mapped part for accounting.
1482 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1483 		 */
1484 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1485 		io->sectors = len;
1486 		io->sector_offset = bio_sectors(ci->bio);
1487 	}
1488 }
1489 
1490 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1491 				struct dm_target *ti, unsigned int num_bios,
1492 				unsigned *len)
1493 {
1494 	struct bio *bio;
1495 	int try;
1496 
1497 	for (try = 0; try < 2; try++) {
1498 		int bio_nr;
1499 
1500 		if (try)
1501 			mutex_lock(&ci->io->md->table_devices_lock);
1502 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1503 			bio = alloc_tio(ci, ti, bio_nr, len,
1504 					try ? GFP_NOIO : GFP_NOWAIT);
1505 			if (!bio)
1506 				break;
1507 
1508 			bio_list_add(blist, bio);
1509 		}
1510 		if (try)
1511 			mutex_unlock(&ci->io->md->table_devices_lock);
1512 		if (bio_nr == num_bios)
1513 			return;
1514 
1515 		while ((bio = bio_list_pop(blist)))
1516 			free_tio(bio);
1517 	}
1518 }
1519 
1520 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1521 				 unsigned int num_bios, unsigned int *len)
1522 {
1523 	struct bio_list blist = BIO_EMPTY_LIST;
1524 	struct bio *clone;
1525 	unsigned int ret = 0;
1526 
1527 	switch (num_bios) {
1528 	case 0:
1529 		break;
1530 	case 1:
1531 		if (len)
1532 			setup_split_accounting(ci, *len);
1533 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1534 		__map_bio(clone);
1535 		ret = 1;
1536 		break;
1537 	default:
1538 		if (len)
1539 			setup_split_accounting(ci, *len);
1540 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1541 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1542 		while ((clone = bio_list_pop(&blist))) {
1543 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1544 			__map_bio(clone);
1545 			ret += 1;
1546 		}
1547 		break;
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 static void __send_empty_flush(struct clone_info *ci)
1554 {
1555 	struct dm_table *t = ci->map;
1556 	struct bio flush_bio;
1557 
1558 	/*
1559 	 * Use an on-stack bio for this, it's safe since we don't
1560 	 * need to reference it after submit. It's just used as
1561 	 * the basis for the clone(s).
1562 	 */
1563 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1564 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1565 
1566 	ci->bio = &flush_bio;
1567 	ci->sector_count = 0;
1568 	ci->io->tio.clone.bi_iter.bi_size = 0;
1569 
1570 	for (unsigned int i = 0; i < t->num_targets; i++) {
1571 		unsigned int bios;
1572 		struct dm_target *ti = dm_table_get_target(t, i);
1573 
1574 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1575 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1576 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1577 	}
1578 
1579 	/*
1580 	 * alloc_io() takes one extra reference for submission, so the
1581 	 * reference won't reach 0 without the following subtraction
1582 	 */
1583 	atomic_sub(1, &ci->io->io_count);
1584 
1585 	bio_uninit(ci->bio);
1586 }
1587 
1588 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1589 					unsigned int num_bios,
1590 					unsigned int max_granularity,
1591 					unsigned int max_sectors)
1592 {
1593 	unsigned int len, bios;
1594 
1595 	len = min_t(sector_t, ci->sector_count,
1596 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1597 
1598 	atomic_add(num_bios, &ci->io->io_count);
1599 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1600 	/*
1601 	 * alloc_io() takes one extra reference for submission, so the
1602 	 * reference won't reach 0 without the following (+1) subtraction
1603 	 */
1604 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1605 
1606 	ci->sector += len;
1607 	ci->sector_count -= len;
1608 }
1609 
1610 static bool is_abnormal_io(struct bio *bio)
1611 {
1612 	enum req_op op = bio_op(bio);
1613 
1614 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1615 		switch (op) {
1616 		case REQ_OP_DISCARD:
1617 		case REQ_OP_SECURE_ERASE:
1618 		case REQ_OP_WRITE_ZEROES:
1619 			return true;
1620 		default:
1621 			break;
1622 		}
1623 	}
1624 
1625 	return false;
1626 }
1627 
1628 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1629 					  struct dm_target *ti)
1630 {
1631 	unsigned int num_bios = 0;
1632 	unsigned int max_granularity = 0;
1633 	unsigned int max_sectors = 0;
1634 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1635 
1636 	switch (bio_op(ci->bio)) {
1637 	case REQ_OP_DISCARD:
1638 		num_bios = ti->num_discard_bios;
1639 		max_sectors = limits->max_discard_sectors;
1640 		if (ti->max_discard_granularity)
1641 			max_granularity = max_sectors;
1642 		break;
1643 	case REQ_OP_SECURE_ERASE:
1644 		num_bios = ti->num_secure_erase_bios;
1645 		max_sectors = limits->max_secure_erase_sectors;
1646 		if (ti->max_secure_erase_granularity)
1647 			max_granularity = max_sectors;
1648 		break;
1649 	case REQ_OP_WRITE_ZEROES:
1650 		num_bios = ti->num_write_zeroes_bios;
1651 		max_sectors = limits->max_write_zeroes_sectors;
1652 		if (ti->max_write_zeroes_granularity)
1653 			max_granularity = max_sectors;
1654 		break;
1655 	default:
1656 		break;
1657 	}
1658 
1659 	/*
1660 	 * Even though the device advertised support for this type of
1661 	 * request, that does not mean every target supports it, and
1662 	 * reconfiguration might also have changed that since the
1663 	 * check was performed.
1664 	 */
1665 	if (unlikely(!num_bios))
1666 		return BLK_STS_NOTSUPP;
1667 
1668 	__send_changing_extent_only(ci, ti, num_bios,
1669 				    max_granularity, max_sectors);
1670 	return BLK_STS_OK;
1671 }
1672 
1673 /*
1674  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1675  * associated with this bio, and this bio's bi_private needs to be
1676  * stored in dm_io->data before the reuse.
1677  *
1678  * bio->bi_private is owned by fs or upper layer, so block layer won't
1679  * touch it after splitting. Meantime it won't be changed by anyone after
1680  * bio is submitted. So this reuse is safe.
1681  */
1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1683 {
1684 	return (struct dm_io **)&bio->bi_private;
1685 }
1686 
1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1688 {
1689 	struct dm_io **head = dm_poll_list_head(bio);
1690 
1691 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1692 		bio->bi_opf |= REQ_DM_POLL_LIST;
1693 		/*
1694 		 * Save .bi_private into dm_io, so that we can reuse
1695 		 * .bi_private as dm_io list head for storing dm_io list
1696 		 */
1697 		io->data = bio->bi_private;
1698 
1699 		/* tell block layer to poll for completion */
1700 		bio->bi_cookie = ~BLK_QC_T_NONE;
1701 
1702 		io->next = NULL;
1703 	} else {
1704 		/*
1705 		 * bio recursed due to split, reuse original poll list,
1706 		 * and save bio->bi_private too.
1707 		 */
1708 		io->data = (*head)->data;
1709 		io->next = *head;
1710 	}
1711 
1712 	*head = io;
1713 }
1714 
1715 /*
1716  * Select the correct strategy for processing a non-flush bio.
1717  */
1718 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1719 {
1720 	struct bio *clone;
1721 	struct dm_target *ti;
1722 	unsigned int len;
1723 
1724 	ti = dm_table_find_target(ci->map, ci->sector);
1725 	if (unlikely(!ti))
1726 		return BLK_STS_IOERR;
1727 
1728 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1729 	    unlikely(!dm_target_supports_nowait(ti->type)))
1730 		return BLK_STS_NOTSUPP;
1731 
1732 	if (unlikely(ci->is_abnormal_io))
1733 		return __process_abnormal_io(ci, ti);
1734 
1735 	/*
1736 	 * Only support bio polling for normal IO, and the target io is
1737 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1738 	 */
1739 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1740 
1741 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1742 	setup_split_accounting(ci, len);
1743 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1744 	__map_bio(clone);
1745 
1746 	ci->sector += len;
1747 	ci->sector_count -= len;
1748 
1749 	return BLK_STS_OK;
1750 }
1751 
1752 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1753 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1754 {
1755 	ci->map = map;
1756 	ci->io = alloc_io(md, bio);
1757 	ci->bio = bio;
1758 	ci->is_abnormal_io = is_abnormal;
1759 	ci->submit_as_polled = false;
1760 	ci->sector = bio->bi_iter.bi_sector;
1761 	ci->sector_count = bio_sectors(bio);
1762 
1763 	/* Shouldn't happen but sector_count was being set to 0 so... */
1764 	if (static_branch_unlikely(&zoned_enabled) &&
1765 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1766 		ci->sector_count = 0;
1767 }
1768 
1769 /*
1770  * Entry point to split a bio into clones and submit them to the targets.
1771  */
1772 static void dm_split_and_process_bio(struct mapped_device *md,
1773 				     struct dm_table *map, struct bio *bio)
1774 {
1775 	struct clone_info ci;
1776 	struct dm_io *io;
1777 	blk_status_t error = BLK_STS_OK;
1778 	bool is_abnormal;
1779 
1780 	is_abnormal = is_abnormal_io(bio);
1781 	if (unlikely(is_abnormal)) {
1782 		/*
1783 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1784 		 * otherwise associated queue_limits won't be imposed.
1785 		 */
1786 		bio = bio_split_to_limits(bio);
1787 		if (!bio)
1788 			return;
1789 	}
1790 
1791 	init_clone_info(&ci, md, map, bio, is_abnormal);
1792 	io = ci.io;
1793 
1794 	if (bio->bi_opf & REQ_PREFLUSH) {
1795 		__send_empty_flush(&ci);
1796 		/* dm_io_complete submits any data associated with flush */
1797 		goto out;
1798 	}
1799 
1800 	error = __split_and_process_bio(&ci);
1801 	if (error || !ci.sector_count)
1802 		goto out;
1803 	/*
1804 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1805 	 * *after* bios already submitted have been completely processed.
1806 	 */
1807 	bio_trim(bio, io->sectors, ci.sector_count);
1808 	trace_block_split(bio, bio->bi_iter.bi_sector);
1809 	bio_inc_remaining(bio);
1810 	submit_bio_noacct(bio);
1811 out:
1812 	/*
1813 	 * Drop the extra reference count for non-POLLED bio, and hold one
1814 	 * reference for POLLED bio, which will be released in dm_poll_bio
1815 	 *
1816 	 * Add every dm_io instance into the dm_io list head which is stored
1817 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1818 	 */
1819 	if (error || !ci.submit_as_polled) {
1820 		/*
1821 		 * In case of submission failure, the extra reference for
1822 		 * submitting io isn't consumed yet
1823 		 */
1824 		if (error)
1825 			atomic_dec(&io->io_count);
1826 		dm_io_dec_pending(io, error);
1827 	} else
1828 		dm_queue_poll_io(bio, io);
1829 }
1830 
1831 static void dm_submit_bio(struct bio *bio)
1832 {
1833 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1834 	int srcu_idx;
1835 	struct dm_table *map;
1836 	blk_opf_t bio_opf = bio->bi_opf;
1837 
1838 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1839 
1840 	/* If suspended, or map not yet available, queue this IO for later */
1841 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1842 	    unlikely(!map)) {
1843 		if (bio->bi_opf & REQ_NOWAIT)
1844 			bio_wouldblock_error(bio);
1845 		else if (bio->bi_opf & REQ_RAHEAD)
1846 			bio_io_error(bio);
1847 		else
1848 			queue_io(md, bio);
1849 		goto out;
1850 	}
1851 
1852 	dm_split_and_process_bio(md, map, bio);
1853 out:
1854 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1855 }
1856 
1857 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1858 			  unsigned int flags)
1859 {
1860 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1861 
1862 	/* don't poll if the mapped io is done */
1863 	if (atomic_read(&io->io_count) > 1)
1864 		bio_poll(&io->tio.clone, iob, flags);
1865 
1866 	/* bio_poll holds the last reference */
1867 	return atomic_read(&io->io_count) == 1;
1868 }
1869 
1870 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1871 		       unsigned int flags)
1872 {
1873 	struct dm_io **head = dm_poll_list_head(bio);
1874 	struct dm_io *list = *head;
1875 	struct dm_io *tmp = NULL;
1876 	struct dm_io *curr, *next;
1877 
1878 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1879 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1880 		return 0;
1881 
1882 	WARN_ON_ONCE(!list);
1883 
1884 	/*
1885 	 * Restore .bi_private before possibly completing dm_io.
1886 	 *
1887 	 * bio_poll() is only possible once @bio has been completely
1888 	 * submitted via submit_bio_noacct()'s depth-first submission.
1889 	 * So there is no dm_queue_poll_io() race associated with
1890 	 * clearing REQ_DM_POLL_LIST here.
1891 	 */
1892 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1893 	bio->bi_private = list->data;
1894 
1895 	for (curr = list, next = curr->next; curr; curr = next, next =
1896 			curr ? curr->next : NULL) {
1897 		if (dm_poll_dm_io(curr, iob, flags)) {
1898 			/*
1899 			 * clone_endio() has already occurred, so no
1900 			 * error handling is needed here.
1901 			 */
1902 			__dm_io_dec_pending(curr);
1903 		} else {
1904 			curr->next = tmp;
1905 			tmp = curr;
1906 		}
1907 	}
1908 
1909 	/* Not done? */
1910 	if (tmp) {
1911 		bio->bi_opf |= REQ_DM_POLL_LIST;
1912 		/* Reset bio->bi_private to dm_io list head */
1913 		*head = tmp;
1914 		return 0;
1915 	}
1916 	return 1;
1917 }
1918 
1919 /*
1920  *---------------------------------------------------------------
1921  * An IDR is used to keep track of allocated minor numbers.
1922  *---------------------------------------------------------------
1923  */
1924 static void free_minor(int minor)
1925 {
1926 	spin_lock(&_minor_lock);
1927 	idr_remove(&_minor_idr, minor);
1928 	spin_unlock(&_minor_lock);
1929 }
1930 
1931 /*
1932  * See if the device with a specific minor # is free.
1933  */
1934 static int specific_minor(int minor)
1935 {
1936 	int r;
1937 
1938 	if (minor >= (1 << MINORBITS))
1939 		return -EINVAL;
1940 
1941 	idr_preload(GFP_KERNEL);
1942 	spin_lock(&_minor_lock);
1943 
1944 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1945 
1946 	spin_unlock(&_minor_lock);
1947 	idr_preload_end();
1948 	if (r < 0)
1949 		return r == -ENOSPC ? -EBUSY : r;
1950 	return 0;
1951 }
1952 
1953 static int next_free_minor(int *minor)
1954 {
1955 	int r;
1956 
1957 	idr_preload(GFP_KERNEL);
1958 	spin_lock(&_minor_lock);
1959 
1960 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1961 
1962 	spin_unlock(&_minor_lock);
1963 	idr_preload_end();
1964 	if (r < 0)
1965 		return r;
1966 	*minor = r;
1967 	return 0;
1968 }
1969 
1970 static const struct block_device_operations dm_blk_dops;
1971 static const struct block_device_operations dm_rq_blk_dops;
1972 static const struct dax_operations dm_dax_ops;
1973 
1974 static void dm_wq_work(struct work_struct *work);
1975 
1976 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1977 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1978 {
1979 	dm_destroy_crypto_profile(q->crypto_profile);
1980 }
1981 
1982 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1983 
1984 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1985 {
1986 }
1987 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1988 
1989 static void cleanup_mapped_device(struct mapped_device *md)
1990 {
1991 	if (md->wq)
1992 		destroy_workqueue(md->wq);
1993 	dm_free_md_mempools(md->mempools);
1994 
1995 	if (md->dax_dev) {
1996 		dax_remove_host(md->disk);
1997 		kill_dax(md->dax_dev);
1998 		put_dax(md->dax_dev);
1999 		md->dax_dev = NULL;
2000 	}
2001 
2002 	dm_cleanup_zoned_dev(md);
2003 	if (md->disk) {
2004 		spin_lock(&_minor_lock);
2005 		md->disk->private_data = NULL;
2006 		spin_unlock(&_minor_lock);
2007 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2008 			struct table_device *td;
2009 
2010 			dm_sysfs_exit(md);
2011 			list_for_each_entry(td, &md->table_devices, list) {
2012 				bd_unlink_disk_holder(td->dm_dev.bdev,
2013 						      md->disk);
2014 			}
2015 
2016 			/*
2017 			 * Hold lock to make sure del_gendisk() won't concurrent
2018 			 * with open/close_table_device().
2019 			 */
2020 			mutex_lock(&md->table_devices_lock);
2021 			del_gendisk(md->disk);
2022 			mutex_unlock(&md->table_devices_lock);
2023 		}
2024 		dm_queue_destroy_crypto_profile(md->queue);
2025 		put_disk(md->disk);
2026 	}
2027 
2028 	if (md->pending_io) {
2029 		free_percpu(md->pending_io);
2030 		md->pending_io = NULL;
2031 	}
2032 
2033 	cleanup_srcu_struct(&md->io_barrier);
2034 
2035 	mutex_destroy(&md->suspend_lock);
2036 	mutex_destroy(&md->type_lock);
2037 	mutex_destroy(&md->table_devices_lock);
2038 	mutex_destroy(&md->swap_bios_lock);
2039 
2040 	dm_mq_cleanup_mapped_device(md);
2041 }
2042 
2043 /*
2044  * Allocate and initialise a blank device with a given minor.
2045  */
2046 static struct mapped_device *alloc_dev(int minor)
2047 {
2048 	int r, numa_node_id = dm_get_numa_node();
2049 	struct mapped_device *md;
2050 	void *old_md;
2051 
2052 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2053 	if (!md) {
2054 		DMERR("unable to allocate device, out of memory.");
2055 		return NULL;
2056 	}
2057 
2058 	if (!try_module_get(THIS_MODULE))
2059 		goto bad_module_get;
2060 
2061 	/* get a minor number for the dev */
2062 	if (minor == DM_ANY_MINOR)
2063 		r = next_free_minor(&minor);
2064 	else
2065 		r = specific_minor(minor);
2066 	if (r < 0)
2067 		goto bad_minor;
2068 
2069 	r = init_srcu_struct(&md->io_barrier);
2070 	if (r < 0)
2071 		goto bad_io_barrier;
2072 
2073 	md->numa_node_id = numa_node_id;
2074 	md->init_tio_pdu = false;
2075 	md->type = DM_TYPE_NONE;
2076 	mutex_init(&md->suspend_lock);
2077 	mutex_init(&md->type_lock);
2078 	mutex_init(&md->table_devices_lock);
2079 	spin_lock_init(&md->deferred_lock);
2080 	atomic_set(&md->holders, 1);
2081 	atomic_set(&md->open_count, 0);
2082 	atomic_set(&md->event_nr, 0);
2083 	atomic_set(&md->uevent_seq, 0);
2084 	INIT_LIST_HEAD(&md->uevent_list);
2085 	INIT_LIST_HEAD(&md->table_devices);
2086 	spin_lock_init(&md->uevent_lock);
2087 
2088 	/*
2089 	 * default to bio-based until DM table is loaded and md->type
2090 	 * established. If request-based table is loaded: blk-mq will
2091 	 * override accordingly.
2092 	 */
2093 	md->disk = blk_alloc_disk(md->numa_node_id);
2094 	if (!md->disk)
2095 		goto bad;
2096 	md->queue = md->disk->queue;
2097 
2098 	init_waitqueue_head(&md->wait);
2099 	INIT_WORK(&md->work, dm_wq_work);
2100 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2101 	init_waitqueue_head(&md->eventq);
2102 	init_completion(&md->kobj_holder.completion);
2103 
2104 	md->requeue_list = NULL;
2105 	md->swap_bios = get_swap_bios();
2106 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2107 	mutex_init(&md->swap_bios_lock);
2108 
2109 	md->disk->major = _major;
2110 	md->disk->first_minor = minor;
2111 	md->disk->minors = 1;
2112 	md->disk->flags |= GENHD_FL_NO_PART;
2113 	md->disk->fops = &dm_blk_dops;
2114 	md->disk->private_data = md;
2115 	sprintf(md->disk->disk_name, "dm-%d", minor);
2116 
2117 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2118 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2119 		if (IS_ERR(md->dax_dev)) {
2120 			md->dax_dev = NULL;
2121 			goto bad;
2122 		}
2123 		set_dax_nocache(md->dax_dev);
2124 		set_dax_nomc(md->dax_dev);
2125 		if (dax_add_host(md->dax_dev, md->disk))
2126 			goto bad;
2127 	}
2128 
2129 	format_dev_t(md->name, MKDEV(_major, minor));
2130 
2131 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2132 	if (!md->wq)
2133 		goto bad;
2134 
2135 	md->pending_io = alloc_percpu(unsigned long);
2136 	if (!md->pending_io)
2137 		goto bad;
2138 
2139 	r = dm_stats_init(&md->stats);
2140 	if (r < 0)
2141 		goto bad;
2142 
2143 	/* Populate the mapping, nobody knows we exist yet */
2144 	spin_lock(&_minor_lock);
2145 	old_md = idr_replace(&_minor_idr, md, minor);
2146 	spin_unlock(&_minor_lock);
2147 
2148 	BUG_ON(old_md != MINOR_ALLOCED);
2149 
2150 	return md;
2151 
2152 bad:
2153 	cleanup_mapped_device(md);
2154 bad_io_barrier:
2155 	free_minor(minor);
2156 bad_minor:
2157 	module_put(THIS_MODULE);
2158 bad_module_get:
2159 	kvfree(md);
2160 	return NULL;
2161 }
2162 
2163 static void unlock_fs(struct mapped_device *md);
2164 
2165 static void free_dev(struct mapped_device *md)
2166 {
2167 	int minor = MINOR(disk_devt(md->disk));
2168 
2169 	unlock_fs(md);
2170 
2171 	cleanup_mapped_device(md);
2172 
2173 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2174 	dm_stats_cleanup(&md->stats);
2175 	free_minor(minor);
2176 
2177 	module_put(THIS_MODULE);
2178 	kvfree(md);
2179 }
2180 
2181 /*
2182  * Bind a table to the device.
2183  */
2184 static void event_callback(void *context)
2185 {
2186 	unsigned long flags;
2187 	LIST_HEAD(uevents);
2188 	struct mapped_device *md = context;
2189 
2190 	spin_lock_irqsave(&md->uevent_lock, flags);
2191 	list_splice_init(&md->uevent_list, &uevents);
2192 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2193 
2194 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2195 
2196 	atomic_inc(&md->event_nr);
2197 	wake_up(&md->eventq);
2198 	dm_issue_global_event();
2199 }
2200 
2201 /*
2202  * Returns old map, which caller must destroy.
2203  */
2204 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2205 			       struct queue_limits *limits)
2206 {
2207 	struct dm_table *old_map;
2208 	sector_t size;
2209 	int ret;
2210 
2211 	lockdep_assert_held(&md->suspend_lock);
2212 
2213 	size = dm_table_get_size(t);
2214 
2215 	/*
2216 	 * Wipe any geometry if the size of the table changed.
2217 	 */
2218 	if (size != dm_get_size(md))
2219 		memset(&md->geometry, 0, sizeof(md->geometry));
2220 
2221 	set_capacity(md->disk, size);
2222 
2223 	dm_table_event_callback(t, event_callback, md);
2224 
2225 	if (dm_table_request_based(t)) {
2226 		/*
2227 		 * Leverage the fact that request-based DM targets are
2228 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2229 		 */
2230 		md->immutable_target = dm_table_get_immutable_target(t);
2231 
2232 		/*
2233 		 * There is no need to reload with request-based dm because the
2234 		 * size of front_pad doesn't change.
2235 		 *
2236 		 * Note for future: If you are to reload bioset, prep-ed
2237 		 * requests in the queue may refer to bio from the old bioset,
2238 		 * so you must walk through the queue to unprep.
2239 		 */
2240 		if (!md->mempools) {
2241 			md->mempools = t->mempools;
2242 			t->mempools = NULL;
2243 		}
2244 	} else {
2245 		/*
2246 		 * The md may already have mempools that need changing.
2247 		 * If so, reload bioset because front_pad may have changed
2248 		 * because a different table was loaded.
2249 		 */
2250 		dm_free_md_mempools(md->mempools);
2251 		md->mempools = t->mempools;
2252 		t->mempools = NULL;
2253 	}
2254 
2255 	ret = dm_table_set_restrictions(t, md->queue, limits);
2256 	if (ret) {
2257 		old_map = ERR_PTR(ret);
2258 		goto out;
2259 	}
2260 
2261 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2262 	rcu_assign_pointer(md->map, (void *)t);
2263 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2264 
2265 	if (old_map)
2266 		dm_sync_table(md);
2267 out:
2268 	return old_map;
2269 }
2270 
2271 /*
2272  * Returns unbound table for the caller to free.
2273  */
2274 static struct dm_table *__unbind(struct mapped_device *md)
2275 {
2276 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2277 
2278 	if (!map)
2279 		return NULL;
2280 
2281 	dm_table_event_callback(map, NULL, NULL);
2282 	RCU_INIT_POINTER(md->map, NULL);
2283 	dm_sync_table(md);
2284 
2285 	return map;
2286 }
2287 
2288 /*
2289  * Constructor for a new device.
2290  */
2291 int dm_create(int minor, struct mapped_device **result)
2292 {
2293 	struct mapped_device *md;
2294 
2295 	md = alloc_dev(minor);
2296 	if (!md)
2297 		return -ENXIO;
2298 
2299 	dm_ima_reset_data(md);
2300 
2301 	*result = md;
2302 	return 0;
2303 }
2304 
2305 /*
2306  * Functions to manage md->type.
2307  * All are required to hold md->type_lock.
2308  */
2309 void dm_lock_md_type(struct mapped_device *md)
2310 {
2311 	mutex_lock(&md->type_lock);
2312 }
2313 
2314 void dm_unlock_md_type(struct mapped_device *md)
2315 {
2316 	mutex_unlock(&md->type_lock);
2317 }
2318 
2319 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2320 {
2321 	BUG_ON(!mutex_is_locked(&md->type_lock));
2322 	md->type = type;
2323 }
2324 
2325 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2326 {
2327 	return md->type;
2328 }
2329 
2330 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2331 {
2332 	return md->immutable_target_type;
2333 }
2334 
2335 /*
2336  * Setup the DM device's queue based on md's type
2337  */
2338 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2339 {
2340 	enum dm_queue_mode type = dm_table_get_type(t);
2341 	struct queue_limits limits;
2342 	struct table_device *td;
2343 	int r;
2344 
2345 	switch (type) {
2346 	case DM_TYPE_REQUEST_BASED:
2347 		md->disk->fops = &dm_rq_blk_dops;
2348 		r = dm_mq_init_request_queue(md, t);
2349 		if (r) {
2350 			DMERR("Cannot initialize queue for request-based dm mapped device");
2351 			return r;
2352 		}
2353 		break;
2354 	case DM_TYPE_BIO_BASED:
2355 	case DM_TYPE_DAX_BIO_BASED:
2356 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2357 		break;
2358 	case DM_TYPE_NONE:
2359 		WARN_ON_ONCE(true);
2360 		break;
2361 	}
2362 
2363 	r = dm_calculate_queue_limits(t, &limits);
2364 	if (r) {
2365 		DMERR("Cannot calculate initial queue limits");
2366 		return r;
2367 	}
2368 	r = dm_table_set_restrictions(t, md->queue, &limits);
2369 	if (r)
2370 		return r;
2371 
2372 	/*
2373 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2374 	 * with open_table_device() and close_table_device().
2375 	 */
2376 	mutex_lock(&md->table_devices_lock);
2377 	r = add_disk(md->disk);
2378 	mutex_unlock(&md->table_devices_lock);
2379 	if (r)
2380 		return r;
2381 
2382 	/*
2383 	 * Register the holder relationship for devices added before the disk
2384 	 * was live.
2385 	 */
2386 	list_for_each_entry(td, &md->table_devices, list) {
2387 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2388 		if (r)
2389 			goto out_undo_holders;
2390 	}
2391 
2392 	r = dm_sysfs_init(md);
2393 	if (r)
2394 		goto out_undo_holders;
2395 
2396 	md->type = type;
2397 	return 0;
2398 
2399 out_undo_holders:
2400 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2401 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2402 	mutex_lock(&md->table_devices_lock);
2403 	del_gendisk(md->disk);
2404 	mutex_unlock(&md->table_devices_lock);
2405 	return r;
2406 }
2407 
2408 struct mapped_device *dm_get_md(dev_t dev)
2409 {
2410 	struct mapped_device *md;
2411 	unsigned int minor = MINOR(dev);
2412 
2413 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2414 		return NULL;
2415 
2416 	spin_lock(&_minor_lock);
2417 
2418 	md = idr_find(&_minor_idr, minor);
2419 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2420 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2421 		md = NULL;
2422 		goto out;
2423 	}
2424 	dm_get(md);
2425 out:
2426 	spin_unlock(&_minor_lock);
2427 
2428 	return md;
2429 }
2430 EXPORT_SYMBOL_GPL(dm_get_md);
2431 
2432 void *dm_get_mdptr(struct mapped_device *md)
2433 {
2434 	return md->interface_ptr;
2435 }
2436 
2437 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2438 {
2439 	md->interface_ptr = ptr;
2440 }
2441 
2442 void dm_get(struct mapped_device *md)
2443 {
2444 	atomic_inc(&md->holders);
2445 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2446 }
2447 
2448 int dm_hold(struct mapped_device *md)
2449 {
2450 	spin_lock(&_minor_lock);
2451 	if (test_bit(DMF_FREEING, &md->flags)) {
2452 		spin_unlock(&_minor_lock);
2453 		return -EBUSY;
2454 	}
2455 	dm_get(md);
2456 	spin_unlock(&_minor_lock);
2457 	return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(dm_hold);
2460 
2461 const char *dm_device_name(struct mapped_device *md)
2462 {
2463 	return md->name;
2464 }
2465 EXPORT_SYMBOL_GPL(dm_device_name);
2466 
2467 static void __dm_destroy(struct mapped_device *md, bool wait)
2468 {
2469 	struct dm_table *map;
2470 	int srcu_idx;
2471 
2472 	might_sleep();
2473 
2474 	spin_lock(&_minor_lock);
2475 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2476 	set_bit(DMF_FREEING, &md->flags);
2477 	spin_unlock(&_minor_lock);
2478 
2479 	blk_mark_disk_dead(md->disk);
2480 
2481 	/*
2482 	 * Take suspend_lock so that presuspend and postsuspend methods
2483 	 * do not race with internal suspend.
2484 	 */
2485 	mutex_lock(&md->suspend_lock);
2486 	map = dm_get_live_table(md, &srcu_idx);
2487 	if (!dm_suspended_md(md)) {
2488 		dm_table_presuspend_targets(map);
2489 		set_bit(DMF_SUSPENDED, &md->flags);
2490 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2491 		dm_table_postsuspend_targets(map);
2492 	}
2493 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2494 	dm_put_live_table(md, srcu_idx);
2495 	mutex_unlock(&md->suspend_lock);
2496 
2497 	/*
2498 	 * Rare, but there may be I/O requests still going to complete,
2499 	 * for example.  Wait for all references to disappear.
2500 	 * No one should increment the reference count of the mapped_device,
2501 	 * after the mapped_device state becomes DMF_FREEING.
2502 	 */
2503 	if (wait)
2504 		while (atomic_read(&md->holders))
2505 			fsleep(1000);
2506 	else if (atomic_read(&md->holders))
2507 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2508 		       dm_device_name(md), atomic_read(&md->holders));
2509 
2510 	dm_table_destroy(__unbind(md));
2511 	free_dev(md);
2512 }
2513 
2514 void dm_destroy(struct mapped_device *md)
2515 {
2516 	__dm_destroy(md, true);
2517 }
2518 
2519 void dm_destroy_immediate(struct mapped_device *md)
2520 {
2521 	__dm_destroy(md, false);
2522 }
2523 
2524 void dm_put(struct mapped_device *md)
2525 {
2526 	atomic_dec(&md->holders);
2527 }
2528 EXPORT_SYMBOL_GPL(dm_put);
2529 
2530 static bool dm_in_flight_bios(struct mapped_device *md)
2531 {
2532 	int cpu;
2533 	unsigned long sum = 0;
2534 
2535 	for_each_possible_cpu(cpu)
2536 		sum += *per_cpu_ptr(md->pending_io, cpu);
2537 
2538 	return sum != 0;
2539 }
2540 
2541 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2542 {
2543 	int r = 0;
2544 	DEFINE_WAIT(wait);
2545 
2546 	while (true) {
2547 		prepare_to_wait(&md->wait, &wait, task_state);
2548 
2549 		if (!dm_in_flight_bios(md))
2550 			break;
2551 
2552 		if (signal_pending_state(task_state, current)) {
2553 			r = -EINTR;
2554 			break;
2555 		}
2556 
2557 		io_schedule();
2558 	}
2559 	finish_wait(&md->wait, &wait);
2560 
2561 	smp_rmb();
2562 
2563 	return r;
2564 }
2565 
2566 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2567 {
2568 	int r = 0;
2569 
2570 	if (!queue_is_mq(md->queue))
2571 		return dm_wait_for_bios_completion(md, task_state);
2572 
2573 	while (true) {
2574 		if (!blk_mq_queue_inflight(md->queue))
2575 			break;
2576 
2577 		if (signal_pending_state(task_state, current)) {
2578 			r = -EINTR;
2579 			break;
2580 		}
2581 
2582 		fsleep(5000);
2583 	}
2584 
2585 	return r;
2586 }
2587 
2588 /*
2589  * Process the deferred bios
2590  */
2591 static void dm_wq_work(struct work_struct *work)
2592 {
2593 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2594 	struct bio *bio;
2595 
2596 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2597 		spin_lock_irq(&md->deferred_lock);
2598 		bio = bio_list_pop(&md->deferred);
2599 		spin_unlock_irq(&md->deferred_lock);
2600 
2601 		if (!bio)
2602 			break;
2603 
2604 		submit_bio_noacct(bio);
2605 		cond_resched();
2606 	}
2607 }
2608 
2609 static void dm_queue_flush(struct mapped_device *md)
2610 {
2611 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2612 	smp_mb__after_atomic();
2613 	queue_work(md->wq, &md->work);
2614 }
2615 
2616 /*
2617  * Swap in a new table, returning the old one for the caller to destroy.
2618  */
2619 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2620 {
2621 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2622 	struct queue_limits limits;
2623 	int r;
2624 
2625 	mutex_lock(&md->suspend_lock);
2626 
2627 	/* device must be suspended */
2628 	if (!dm_suspended_md(md))
2629 		goto out;
2630 
2631 	/*
2632 	 * If the new table has no data devices, retain the existing limits.
2633 	 * This helps multipath with queue_if_no_path if all paths disappear,
2634 	 * then new I/O is queued based on these limits, and then some paths
2635 	 * reappear.
2636 	 */
2637 	if (dm_table_has_no_data_devices(table)) {
2638 		live_map = dm_get_live_table_fast(md);
2639 		if (live_map)
2640 			limits = md->queue->limits;
2641 		dm_put_live_table_fast(md);
2642 	}
2643 
2644 	if (!live_map) {
2645 		r = dm_calculate_queue_limits(table, &limits);
2646 		if (r) {
2647 			map = ERR_PTR(r);
2648 			goto out;
2649 		}
2650 	}
2651 
2652 	map = __bind(md, table, &limits);
2653 	dm_issue_global_event();
2654 
2655 out:
2656 	mutex_unlock(&md->suspend_lock);
2657 	return map;
2658 }
2659 
2660 /*
2661  * Functions to lock and unlock any filesystem running on the
2662  * device.
2663  */
2664 static int lock_fs(struct mapped_device *md)
2665 {
2666 	int r;
2667 
2668 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2669 
2670 	r = freeze_bdev(md->disk->part0);
2671 	if (!r)
2672 		set_bit(DMF_FROZEN, &md->flags);
2673 	return r;
2674 }
2675 
2676 static void unlock_fs(struct mapped_device *md)
2677 {
2678 	if (!test_bit(DMF_FROZEN, &md->flags))
2679 		return;
2680 	thaw_bdev(md->disk->part0);
2681 	clear_bit(DMF_FROZEN, &md->flags);
2682 }
2683 
2684 /*
2685  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2686  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2687  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2688  *
2689  * If __dm_suspend returns 0, the device is completely quiescent
2690  * now. There is no request-processing activity. All new requests
2691  * are being added to md->deferred list.
2692  */
2693 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2694 			unsigned int suspend_flags, unsigned int task_state,
2695 			int dmf_suspended_flag)
2696 {
2697 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2698 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2699 	int r;
2700 
2701 	lockdep_assert_held(&md->suspend_lock);
2702 
2703 	/*
2704 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2705 	 * This flag is cleared before dm_suspend returns.
2706 	 */
2707 	if (noflush)
2708 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2709 	else
2710 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2711 
2712 	/*
2713 	 * This gets reverted if there's an error later and the targets
2714 	 * provide the .presuspend_undo hook.
2715 	 */
2716 	dm_table_presuspend_targets(map);
2717 
2718 	/*
2719 	 * Flush I/O to the device.
2720 	 * Any I/O submitted after lock_fs() may not be flushed.
2721 	 * noflush takes precedence over do_lockfs.
2722 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2723 	 */
2724 	if (!noflush && do_lockfs) {
2725 		r = lock_fs(md);
2726 		if (r) {
2727 			dm_table_presuspend_undo_targets(map);
2728 			return r;
2729 		}
2730 	}
2731 
2732 	/*
2733 	 * Here we must make sure that no processes are submitting requests
2734 	 * to target drivers i.e. no one may be executing
2735 	 * dm_split_and_process_bio from dm_submit_bio.
2736 	 *
2737 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2738 	 * we take the write lock. To prevent any process from reentering
2739 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2740 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2741 	 * flush_workqueue(md->wq).
2742 	 */
2743 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2744 	if (map)
2745 		synchronize_srcu(&md->io_barrier);
2746 
2747 	/*
2748 	 * Stop md->queue before flushing md->wq in case request-based
2749 	 * dm defers requests to md->wq from md->queue.
2750 	 */
2751 	if (dm_request_based(md))
2752 		dm_stop_queue(md->queue);
2753 
2754 	flush_workqueue(md->wq);
2755 
2756 	/*
2757 	 * At this point no more requests are entering target request routines.
2758 	 * We call dm_wait_for_completion to wait for all existing requests
2759 	 * to finish.
2760 	 */
2761 	r = dm_wait_for_completion(md, task_state);
2762 	if (!r)
2763 		set_bit(dmf_suspended_flag, &md->flags);
2764 
2765 	if (noflush)
2766 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2767 	if (map)
2768 		synchronize_srcu(&md->io_barrier);
2769 
2770 	/* were we interrupted ? */
2771 	if (r < 0) {
2772 		dm_queue_flush(md);
2773 
2774 		if (dm_request_based(md))
2775 			dm_start_queue(md->queue);
2776 
2777 		unlock_fs(md);
2778 		dm_table_presuspend_undo_targets(map);
2779 		/* pushback list is already flushed, so skip flush */
2780 	}
2781 
2782 	return r;
2783 }
2784 
2785 /*
2786  * We need to be able to change a mapping table under a mounted
2787  * filesystem.  For example we might want to move some data in
2788  * the background.  Before the table can be swapped with
2789  * dm_bind_table, dm_suspend must be called to flush any in
2790  * flight bios and ensure that any further io gets deferred.
2791  */
2792 /*
2793  * Suspend mechanism in request-based dm.
2794  *
2795  * 1. Flush all I/Os by lock_fs() if needed.
2796  * 2. Stop dispatching any I/O by stopping the request_queue.
2797  * 3. Wait for all in-flight I/Os to be completed or requeued.
2798  *
2799  * To abort suspend, start the request_queue.
2800  */
2801 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2802 {
2803 	struct dm_table *map = NULL;
2804 	int r = 0;
2805 
2806 retry:
2807 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2808 
2809 	if (dm_suspended_md(md)) {
2810 		r = -EINVAL;
2811 		goto out_unlock;
2812 	}
2813 
2814 	if (dm_suspended_internally_md(md)) {
2815 		/* already internally suspended, wait for internal resume */
2816 		mutex_unlock(&md->suspend_lock);
2817 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2818 		if (r)
2819 			return r;
2820 		goto retry;
2821 	}
2822 
2823 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2824 	if (!map) {
2825 		/* avoid deadlock with fs/namespace.c:do_mount() */
2826 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2827 	}
2828 
2829 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2830 	if (r)
2831 		goto out_unlock;
2832 
2833 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2834 	dm_table_postsuspend_targets(map);
2835 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2836 
2837 out_unlock:
2838 	mutex_unlock(&md->suspend_lock);
2839 	return r;
2840 }
2841 
2842 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2843 {
2844 	if (map) {
2845 		int r = dm_table_resume_targets(map);
2846 
2847 		if (r)
2848 			return r;
2849 	}
2850 
2851 	dm_queue_flush(md);
2852 
2853 	/*
2854 	 * Flushing deferred I/Os must be done after targets are resumed
2855 	 * so that mapping of targets can work correctly.
2856 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2857 	 */
2858 	if (dm_request_based(md))
2859 		dm_start_queue(md->queue);
2860 
2861 	unlock_fs(md);
2862 
2863 	return 0;
2864 }
2865 
2866 int dm_resume(struct mapped_device *md)
2867 {
2868 	int r;
2869 	struct dm_table *map = NULL;
2870 
2871 retry:
2872 	r = -EINVAL;
2873 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2874 
2875 	if (!dm_suspended_md(md))
2876 		goto out;
2877 
2878 	if (dm_suspended_internally_md(md)) {
2879 		/* already internally suspended, wait for internal resume */
2880 		mutex_unlock(&md->suspend_lock);
2881 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2882 		if (r)
2883 			return r;
2884 		goto retry;
2885 	}
2886 
2887 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2888 	if (!map || !dm_table_get_size(map))
2889 		goto out;
2890 
2891 	r = __dm_resume(md, map);
2892 	if (r)
2893 		goto out;
2894 
2895 	clear_bit(DMF_SUSPENDED, &md->flags);
2896 out:
2897 	mutex_unlock(&md->suspend_lock);
2898 
2899 	return r;
2900 }
2901 
2902 /*
2903  * Internal suspend/resume works like userspace-driven suspend. It waits
2904  * until all bios finish and prevents issuing new bios to the target drivers.
2905  * It may be used only from the kernel.
2906  */
2907 
2908 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2909 {
2910 	struct dm_table *map = NULL;
2911 
2912 	lockdep_assert_held(&md->suspend_lock);
2913 
2914 	if (md->internal_suspend_count++)
2915 		return; /* nested internal suspend */
2916 
2917 	if (dm_suspended_md(md)) {
2918 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2919 		return; /* nest suspend */
2920 	}
2921 
2922 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2923 
2924 	/*
2925 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2926 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2927 	 * would require changing .presuspend to return an error -- avoid this
2928 	 * until there is a need for more elaborate variants of internal suspend.
2929 	 */
2930 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2931 			    DMF_SUSPENDED_INTERNALLY);
2932 
2933 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2934 	dm_table_postsuspend_targets(map);
2935 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2936 }
2937 
2938 static void __dm_internal_resume(struct mapped_device *md)
2939 {
2940 	BUG_ON(!md->internal_suspend_count);
2941 
2942 	if (--md->internal_suspend_count)
2943 		return; /* resume from nested internal suspend */
2944 
2945 	if (dm_suspended_md(md))
2946 		goto done; /* resume from nested suspend */
2947 
2948 	/*
2949 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2950 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2951 	 */
2952 	(void) __dm_resume(md, NULL);
2953 
2954 done:
2955 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2956 	smp_mb__after_atomic();
2957 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2958 }
2959 
2960 void dm_internal_suspend_noflush(struct mapped_device *md)
2961 {
2962 	mutex_lock(&md->suspend_lock);
2963 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2964 	mutex_unlock(&md->suspend_lock);
2965 }
2966 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2967 
2968 void dm_internal_resume(struct mapped_device *md)
2969 {
2970 	mutex_lock(&md->suspend_lock);
2971 	__dm_internal_resume(md);
2972 	mutex_unlock(&md->suspend_lock);
2973 }
2974 EXPORT_SYMBOL_GPL(dm_internal_resume);
2975 
2976 /*
2977  * Fast variants of internal suspend/resume hold md->suspend_lock,
2978  * which prevents interaction with userspace-driven suspend.
2979  */
2980 
2981 void dm_internal_suspend_fast(struct mapped_device *md)
2982 {
2983 	mutex_lock(&md->suspend_lock);
2984 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2985 		return;
2986 
2987 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2988 	synchronize_srcu(&md->io_barrier);
2989 	flush_workqueue(md->wq);
2990 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2991 }
2992 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2993 
2994 void dm_internal_resume_fast(struct mapped_device *md)
2995 {
2996 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2997 		goto done;
2998 
2999 	dm_queue_flush(md);
3000 
3001 done:
3002 	mutex_unlock(&md->suspend_lock);
3003 }
3004 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3005 
3006 /*
3007  *---------------------------------------------------------------
3008  * Event notification.
3009  *---------------------------------------------------------------
3010  */
3011 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3012 		      unsigned int cookie, bool need_resize_uevent)
3013 {
3014 	int r;
3015 	unsigned int noio_flag;
3016 	char udev_cookie[DM_COOKIE_LENGTH];
3017 	char *envp[3] = { NULL, NULL, NULL };
3018 	char **envpp = envp;
3019 	if (cookie) {
3020 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3021 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3022 		*envpp++ = udev_cookie;
3023 	}
3024 	if (need_resize_uevent) {
3025 		*envpp++ = "RESIZE=1";
3026 	}
3027 
3028 	noio_flag = memalloc_noio_save();
3029 
3030 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3031 
3032 	memalloc_noio_restore(noio_flag);
3033 
3034 	return r;
3035 }
3036 
3037 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3038 {
3039 	return atomic_add_return(1, &md->uevent_seq);
3040 }
3041 
3042 uint32_t dm_get_event_nr(struct mapped_device *md)
3043 {
3044 	return atomic_read(&md->event_nr);
3045 }
3046 
3047 int dm_wait_event(struct mapped_device *md, int event_nr)
3048 {
3049 	return wait_event_interruptible(md->eventq,
3050 			(event_nr != atomic_read(&md->event_nr)));
3051 }
3052 
3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3054 {
3055 	unsigned long flags;
3056 
3057 	spin_lock_irqsave(&md->uevent_lock, flags);
3058 	list_add(elist, &md->uevent_list);
3059 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3060 }
3061 
3062 /*
3063  * The gendisk is only valid as long as you have a reference
3064  * count on 'md'.
3065  */
3066 struct gendisk *dm_disk(struct mapped_device *md)
3067 {
3068 	return md->disk;
3069 }
3070 EXPORT_SYMBOL_GPL(dm_disk);
3071 
3072 struct kobject *dm_kobject(struct mapped_device *md)
3073 {
3074 	return &md->kobj_holder.kobj;
3075 }
3076 
3077 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3078 {
3079 	struct mapped_device *md;
3080 
3081 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3082 
3083 	spin_lock(&_minor_lock);
3084 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3085 		md = NULL;
3086 		goto out;
3087 	}
3088 	dm_get(md);
3089 out:
3090 	spin_unlock(&_minor_lock);
3091 
3092 	return md;
3093 }
3094 
3095 int dm_suspended_md(struct mapped_device *md)
3096 {
3097 	return test_bit(DMF_SUSPENDED, &md->flags);
3098 }
3099 
3100 static int dm_post_suspending_md(struct mapped_device *md)
3101 {
3102 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3103 }
3104 
3105 int dm_suspended_internally_md(struct mapped_device *md)
3106 {
3107 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3108 }
3109 
3110 int dm_test_deferred_remove_flag(struct mapped_device *md)
3111 {
3112 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3113 }
3114 
3115 int dm_suspended(struct dm_target *ti)
3116 {
3117 	return dm_suspended_md(ti->table->md);
3118 }
3119 EXPORT_SYMBOL_GPL(dm_suspended);
3120 
3121 int dm_post_suspending(struct dm_target *ti)
3122 {
3123 	return dm_post_suspending_md(ti->table->md);
3124 }
3125 EXPORT_SYMBOL_GPL(dm_post_suspending);
3126 
3127 int dm_noflush_suspending(struct dm_target *ti)
3128 {
3129 	return __noflush_suspending(ti->table->md);
3130 }
3131 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3132 
3133 void dm_free_md_mempools(struct dm_md_mempools *pools)
3134 {
3135 	if (!pools)
3136 		return;
3137 
3138 	bioset_exit(&pools->bs);
3139 	bioset_exit(&pools->io_bs);
3140 
3141 	kfree(pools);
3142 }
3143 
3144 struct dm_pr {
3145 	u64	old_key;
3146 	u64	new_key;
3147 	u32	flags;
3148 	bool	abort;
3149 	bool	fail_early;
3150 	int	ret;
3151 	enum pr_type type;
3152 	struct pr_keys *read_keys;
3153 	struct pr_held_reservation *rsv;
3154 };
3155 
3156 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3157 		      struct dm_pr *pr)
3158 {
3159 	struct mapped_device *md = bdev->bd_disk->private_data;
3160 	struct dm_table *table;
3161 	struct dm_target *ti;
3162 	int ret = -ENOTTY, srcu_idx;
3163 
3164 	table = dm_get_live_table(md, &srcu_idx);
3165 	if (!table || !dm_table_get_size(table))
3166 		goto out;
3167 
3168 	/* We only support devices that have a single target */
3169 	if (table->num_targets != 1)
3170 		goto out;
3171 	ti = dm_table_get_target(table, 0);
3172 
3173 	if (dm_suspended_md(md)) {
3174 		ret = -EAGAIN;
3175 		goto out;
3176 	}
3177 
3178 	ret = -EINVAL;
3179 	if (!ti->type->iterate_devices)
3180 		goto out;
3181 
3182 	ti->type->iterate_devices(ti, fn, pr);
3183 	ret = 0;
3184 out:
3185 	dm_put_live_table(md, srcu_idx);
3186 	return ret;
3187 }
3188 
3189 /*
3190  * For register / unregister we need to manually call out to every path.
3191  */
3192 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3193 			    sector_t start, sector_t len, void *data)
3194 {
3195 	struct dm_pr *pr = data;
3196 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3197 	int ret;
3198 
3199 	if (!ops || !ops->pr_register) {
3200 		pr->ret = -EOPNOTSUPP;
3201 		return -1;
3202 	}
3203 
3204 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3205 	if (!ret)
3206 		return 0;
3207 
3208 	if (!pr->ret)
3209 		pr->ret = ret;
3210 
3211 	if (pr->fail_early)
3212 		return -1;
3213 
3214 	return 0;
3215 }
3216 
3217 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3218 			  u32 flags)
3219 {
3220 	struct dm_pr pr = {
3221 		.old_key	= old_key,
3222 		.new_key	= new_key,
3223 		.flags		= flags,
3224 		.fail_early	= true,
3225 		.ret		= 0,
3226 	};
3227 	int ret;
3228 
3229 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3230 	if (ret) {
3231 		/* Didn't even get to register a path */
3232 		return ret;
3233 	}
3234 
3235 	if (!pr.ret)
3236 		return 0;
3237 	ret = pr.ret;
3238 
3239 	if (!new_key)
3240 		return ret;
3241 
3242 	/* unregister all paths if we failed to register any path */
3243 	pr.old_key = new_key;
3244 	pr.new_key = 0;
3245 	pr.flags = 0;
3246 	pr.fail_early = false;
3247 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3248 	return ret;
3249 }
3250 
3251 
3252 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3253 			   sector_t start, sector_t len, void *data)
3254 {
3255 	struct dm_pr *pr = data;
3256 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3257 
3258 	if (!ops || !ops->pr_reserve) {
3259 		pr->ret = -EOPNOTSUPP;
3260 		return -1;
3261 	}
3262 
3263 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3264 	if (!pr->ret)
3265 		return -1;
3266 
3267 	return 0;
3268 }
3269 
3270 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3271 			 u32 flags)
3272 {
3273 	struct dm_pr pr = {
3274 		.old_key	= key,
3275 		.flags		= flags,
3276 		.type		= type,
3277 		.fail_early	= false,
3278 		.ret		= 0,
3279 	};
3280 	int ret;
3281 
3282 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3283 	if (ret)
3284 		return ret;
3285 
3286 	return pr.ret;
3287 }
3288 
3289 /*
3290  * If there is a non-All Registrants type of reservation, the release must be
3291  * sent down the holding path. For the cases where there is no reservation or
3292  * the path is not the holder the device will also return success, so we must
3293  * try each path to make sure we got the correct path.
3294  */
3295 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3296 			   sector_t start, sector_t len, void *data)
3297 {
3298 	struct dm_pr *pr = data;
3299 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3300 
3301 	if (!ops || !ops->pr_release) {
3302 		pr->ret = -EOPNOTSUPP;
3303 		return -1;
3304 	}
3305 
3306 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3307 	if (pr->ret)
3308 		return -1;
3309 
3310 	return 0;
3311 }
3312 
3313 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3314 {
3315 	struct dm_pr pr = {
3316 		.old_key	= key,
3317 		.type		= type,
3318 		.fail_early	= false,
3319 	};
3320 	int ret;
3321 
3322 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3323 	if (ret)
3324 		return ret;
3325 
3326 	return pr.ret;
3327 }
3328 
3329 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3330 			   sector_t start, sector_t len, void *data)
3331 {
3332 	struct dm_pr *pr = data;
3333 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3334 
3335 	if (!ops || !ops->pr_preempt) {
3336 		pr->ret = -EOPNOTSUPP;
3337 		return -1;
3338 	}
3339 
3340 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3341 				  pr->abort);
3342 	if (!pr->ret)
3343 		return -1;
3344 
3345 	return 0;
3346 }
3347 
3348 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3349 			 enum pr_type type, bool abort)
3350 {
3351 	struct dm_pr pr = {
3352 		.new_key	= new_key,
3353 		.old_key	= old_key,
3354 		.type		= type,
3355 		.fail_early	= false,
3356 	};
3357 	int ret;
3358 
3359 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3360 	if (ret)
3361 		return ret;
3362 
3363 	return pr.ret;
3364 }
3365 
3366 static int dm_pr_clear(struct block_device *bdev, u64 key)
3367 {
3368 	struct mapped_device *md = bdev->bd_disk->private_data;
3369 	const struct pr_ops *ops;
3370 	int r, srcu_idx;
3371 
3372 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3373 	if (r < 0)
3374 		goto out;
3375 
3376 	ops = bdev->bd_disk->fops->pr_ops;
3377 	if (ops && ops->pr_clear)
3378 		r = ops->pr_clear(bdev, key);
3379 	else
3380 		r = -EOPNOTSUPP;
3381 out:
3382 	dm_unprepare_ioctl(md, srcu_idx);
3383 	return r;
3384 }
3385 
3386 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3387 			     sector_t start, sector_t len, void *data)
3388 {
3389 	struct dm_pr *pr = data;
3390 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3391 
3392 	if (!ops || !ops->pr_read_keys) {
3393 		pr->ret = -EOPNOTSUPP;
3394 		return -1;
3395 	}
3396 
3397 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3398 	if (!pr->ret)
3399 		return -1;
3400 
3401 	return 0;
3402 }
3403 
3404 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3405 {
3406 	struct dm_pr pr = {
3407 		.read_keys = keys,
3408 	};
3409 	int ret;
3410 
3411 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3412 	if (ret)
3413 		return ret;
3414 
3415 	return pr.ret;
3416 }
3417 
3418 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3419 				    sector_t start, sector_t len, void *data)
3420 {
3421 	struct dm_pr *pr = data;
3422 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3423 
3424 	if (!ops || !ops->pr_read_reservation) {
3425 		pr->ret = -EOPNOTSUPP;
3426 		return -1;
3427 	}
3428 
3429 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3430 	if (!pr->ret)
3431 		return -1;
3432 
3433 	return 0;
3434 }
3435 
3436 static int dm_pr_read_reservation(struct block_device *bdev,
3437 				  struct pr_held_reservation *rsv)
3438 {
3439 	struct dm_pr pr = {
3440 		.rsv = rsv,
3441 	};
3442 	int ret;
3443 
3444 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3445 	if (ret)
3446 		return ret;
3447 
3448 	return pr.ret;
3449 }
3450 
3451 static const struct pr_ops dm_pr_ops = {
3452 	.pr_register	= dm_pr_register,
3453 	.pr_reserve	= dm_pr_reserve,
3454 	.pr_release	= dm_pr_release,
3455 	.pr_preempt	= dm_pr_preempt,
3456 	.pr_clear	= dm_pr_clear,
3457 	.pr_read_keys	= dm_pr_read_keys,
3458 	.pr_read_reservation = dm_pr_read_reservation,
3459 };
3460 
3461 static const struct block_device_operations dm_blk_dops = {
3462 	.submit_bio = dm_submit_bio,
3463 	.poll_bio = dm_poll_bio,
3464 	.open = dm_blk_open,
3465 	.release = dm_blk_close,
3466 	.ioctl = dm_blk_ioctl,
3467 	.getgeo = dm_blk_getgeo,
3468 	.report_zones = dm_blk_report_zones,
3469 	.pr_ops = &dm_pr_ops,
3470 	.owner = THIS_MODULE
3471 };
3472 
3473 static const struct block_device_operations dm_rq_blk_dops = {
3474 	.open = dm_blk_open,
3475 	.release = dm_blk_close,
3476 	.ioctl = dm_blk_ioctl,
3477 	.getgeo = dm_blk_getgeo,
3478 	.pr_ops = &dm_pr_ops,
3479 	.owner = THIS_MODULE
3480 };
3481 
3482 static const struct dax_operations dm_dax_ops = {
3483 	.direct_access = dm_dax_direct_access,
3484 	.zero_page_range = dm_dax_zero_page_range,
3485 	.recovery_write = dm_dax_recovery_write,
3486 };
3487 
3488 /*
3489  * module hooks
3490  */
3491 module_init(dm_init);
3492 module_exit(dm_exit);
3493 
3494 module_param(major, uint, 0);
3495 MODULE_PARM_DESC(major, "The major number of the device mapper");
3496 
3497 module_param(reserved_bio_based_ios, uint, 0644);
3498 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3499 
3500 module_param(dm_numa_node, int, 0644);
3501 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3502 
3503 module_param(swap_bios, int, 0644);
3504 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3505 
3506 MODULE_DESCRIPTION(DM_NAME " driver");
3507 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3508 MODULE_LICENSE("GPL");
3509