xref: /openbmc/linux/drivers/md/dm.c (revision 643d1f7f)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	struct bio *bio;
41 	atomic_t io_count;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * One of these is allocated per target within a bio.  Hopefully
47  * this will be simplified out one day.
48  */
49 struct dm_target_io {
50 	struct dm_io *io;
51 	struct dm_target *ti;
52 	union map_info info;
53 };
54 
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 	if (bio && bio->bi_private)
58 		return &((struct dm_target_io *)bio->bi_private)->info;
59 	return NULL;
60 }
61 
62 #define MINOR_ALLOCED ((void *)-1)
63 
64 /*
65  * Bits for the md->flags field.
66  */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73 
74 struct mapped_device {
75 	struct rw_semaphore io_lock;
76 	struct semaphore suspend_lock;
77 	spinlock_t pushback_lock;
78 	rwlock_t map_lock;
79 	atomic_t holders;
80 	atomic_t open_count;
81 
82 	unsigned long flags;
83 
84 	struct request_queue *queue;
85 	struct gendisk *disk;
86 	char name[16];
87 
88 	void *interface_ptr;
89 
90 	/*
91 	 * A list of ios that arrived while we were suspended.
92 	 */
93 	atomic_t pending;
94 	wait_queue_head_t wait;
95 	struct bio_list deferred;
96 	struct bio_list pushback;
97 
98 	/*
99 	 * The current mapping.
100 	 */
101 	struct dm_table *map;
102 
103 	/*
104 	 * io objects are allocated from here.
105 	 */
106 	mempool_t *io_pool;
107 	mempool_t *tio_pool;
108 
109 	struct bio_set *bs;
110 
111 	/*
112 	 * Event handling.
113 	 */
114 	atomic_t event_nr;
115 	wait_queue_head_t eventq;
116 	atomic_t uevent_seq;
117 	struct list_head uevent_list;
118 	spinlock_t uevent_lock; /* Protect access to uevent_list */
119 
120 	/*
121 	 * freeze/thaw support require holding onto a super block
122 	 */
123 	struct super_block *frozen_sb;
124 	struct block_device *suspended_bdev;
125 
126 	/* forced geometry settings */
127 	struct hd_geometry geometry;
128 };
129 
130 #define MIN_IOS 256
131 static struct kmem_cache *_io_cache;
132 static struct kmem_cache *_tio_cache;
133 
134 static int __init local_init(void)
135 {
136 	int r;
137 
138 	/* allocate a slab for the dm_ios */
139 	_io_cache = KMEM_CACHE(dm_io, 0);
140 	if (!_io_cache)
141 		return -ENOMEM;
142 
143 	/* allocate a slab for the target ios */
144 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
145 	if (!_tio_cache) {
146 		kmem_cache_destroy(_io_cache);
147 		return -ENOMEM;
148 	}
149 
150 	r = dm_uevent_init();
151 	if (r) {
152 		kmem_cache_destroy(_tio_cache);
153 		kmem_cache_destroy(_io_cache);
154 		return r;
155 	}
156 
157 	_major = major;
158 	r = register_blkdev(_major, _name);
159 	if (r < 0) {
160 		kmem_cache_destroy(_tio_cache);
161 		kmem_cache_destroy(_io_cache);
162 		dm_uevent_exit();
163 		return r;
164 	}
165 
166 	if (!_major)
167 		_major = r;
168 
169 	return 0;
170 }
171 
172 static void local_exit(void)
173 {
174 	kmem_cache_destroy(_tio_cache);
175 	kmem_cache_destroy(_io_cache);
176 	unregister_blkdev(_major, _name);
177 	dm_uevent_exit();
178 
179 	_major = 0;
180 
181 	DMINFO("cleaned up");
182 }
183 
184 int (*_inits[])(void) __initdata = {
185 	local_init,
186 	dm_target_init,
187 	dm_linear_init,
188 	dm_stripe_init,
189 	dm_interface_init,
190 };
191 
192 void (*_exits[])(void) = {
193 	local_exit,
194 	dm_target_exit,
195 	dm_linear_exit,
196 	dm_stripe_exit,
197 	dm_interface_exit,
198 };
199 
200 static int __init dm_init(void)
201 {
202 	const int count = ARRAY_SIZE(_inits);
203 
204 	int r, i;
205 
206 	for (i = 0; i < count; i++) {
207 		r = _inits[i]();
208 		if (r)
209 			goto bad;
210 	}
211 
212 	return 0;
213 
214       bad:
215 	while (i--)
216 		_exits[i]();
217 
218 	return r;
219 }
220 
221 static void __exit dm_exit(void)
222 {
223 	int i = ARRAY_SIZE(_exits);
224 
225 	while (i--)
226 		_exits[i]();
227 }
228 
229 /*
230  * Block device functions
231  */
232 static int dm_blk_open(struct inode *inode, struct file *file)
233 {
234 	struct mapped_device *md;
235 
236 	spin_lock(&_minor_lock);
237 
238 	md = inode->i_bdev->bd_disk->private_data;
239 	if (!md)
240 		goto out;
241 
242 	if (test_bit(DMF_FREEING, &md->flags) ||
243 	    test_bit(DMF_DELETING, &md->flags)) {
244 		md = NULL;
245 		goto out;
246 	}
247 
248 	dm_get(md);
249 	atomic_inc(&md->open_count);
250 
251 out:
252 	spin_unlock(&_minor_lock);
253 
254 	return md ? 0 : -ENXIO;
255 }
256 
257 static int dm_blk_close(struct inode *inode, struct file *file)
258 {
259 	struct mapped_device *md;
260 
261 	md = inode->i_bdev->bd_disk->private_data;
262 	atomic_dec(&md->open_count);
263 	dm_put(md);
264 	return 0;
265 }
266 
267 int dm_open_count(struct mapped_device *md)
268 {
269 	return atomic_read(&md->open_count);
270 }
271 
272 /*
273  * Guarantees nothing is using the device before it's deleted.
274  */
275 int dm_lock_for_deletion(struct mapped_device *md)
276 {
277 	int r = 0;
278 
279 	spin_lock(&_minor_lock);
280 
281 	if (dm_open_count(md))
282 		r = -EBUSY;
283 	else
284 		set_bit(DMF_DELETING, &md->flags);
285 
286 	spin_unlock(&_minor_lock);
287 
288 	return r;
289 }
290 
291 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 	struct mapped_device *md = bdev->bd_disk->private_data;
294 
295 	return dm_get_geometry(md, geo);
296 }
297 
298 static int dm_blk_ioctl(struct inode *inode, struct file *file,
299 			unsigned int cmd, unsigned long arg)
300 {
301 	struct mapped_device *md;
302 	struct dm_table *map;
303 	struct dm_target *tgt;
304 	int r = -ENOTTY;
305 
306 	/* We don't really need this lock, but we do need 'inode'. */
307 	unlock_kernel();
308 
309 	md = inode->i_bdev->bd_disk->private_data;
310 
311 	map = dm_get_table(md);
312 
313 	if (!map || !dm_table_get_size(map))
314 		goto out;
315 
316 	/* We only support devices that have a single target */
317 	if (dm_table_get_num_targets(map) != 1)
318 		goto out;
319 
320 	tgt = dm_table_get_target(map, 0);
321 
322 	if (dm_suspended(md)) {
323 		r = -EAGAIN;
324 		goto out;
325 	}
326 
327 	if (tgt->type->ioctl)
328 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
329 
330 out:
331 	dm_table_put(map);
332 
333 	lock_kernel();
334 	return r;
335 }
336 
337 static struct dm_io *alloc_io(struct mapped_device *md)
338 {
339 	return mempool_alloc(md->io_pool, GFP_NOIO);
340 }
341 
342 static void free_io(struct mapped_device *md, struct dm_io *io)
343 {
344 	mempool_free(io, md->io_pool);
345 }
346 
347 static struct dm_target_io *alloc_tio(struct mapped_device *md)
348 {
349 	return mempool_alloc(md->tio_pool, GFP_NOIO);
350 }
351 
352 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
353 {
354 	mempool_free(tio, md->tio_pool);
355 }
356 
357 static void start_io_acct(struct dm_io *io)
358 {
359 	struct mapped_device *md = io->md;
360 
361 	io->start_time = jiffies;
362 
363 	preempt_disable();
364 	disk_round_stats(dm_disk(md));
365 	preempt_enable();
366 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
367 }
368 
369 static int end_io_acct(struct dm_io *io)
370 {
371 	struct mapped_device *md = io->md;
372 	struct bio *bio = io->bio;
373 	unsigned long duration = jiffies - io->start_time;
374 	int pending;
375 	int rw = bio_data_dir(bio);
376 
377 	preempt_disable();
378 	disk_round_stats(dm_disk(md));
379 	preempt_enable();
380 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
381 
382 	disk_stat_add(dm_disk(md), ticks[rw], duration);
383 
384 	return !pending;
385 }
386 
387 /*
388  * Add the bio to the list of deferred io.
389  */
390 static int queue_io(struct mapped_device *md, struct bio *bio)
391 {
392 	down_write(&md->io_lock);
393 
394 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
395 		up_write(&md->io_lock);
396 		return 1;
397 	}
398 
399 	bio_list_add(&md->deferred, bio);
400 
401 	up_write(&md->io_lock);
402 	return 0;		/* deferred successfully */
403 }
404 
405 /*
406  * Everyone (including functions in this file), should use this
407  * function to access the md->map field, and make sure they call
408  * dm_table_put() when finished.
409  */
410 struct dm_table *dm_get_table(struct mapped_device *md)
411 {
412 	struct dm_table *t;
413 
414 	read_lock(&md->map_lock);
415 	t = md->map;
416 	if (t)
417 		dm_table_get(t);
418 	read_unlock(&md->map_lock);
419 
420 	return t;
421 }
422 
423 /*
424  * Get the geometry associated with a dm device
425  */
426 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
427 {
428 	*geo = md->geometry;
429 
430 	return 0;
431 }
432 
433 /*
434  * Set the geometry of a device.
435  */
436 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
437 {
438 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
439 
440 	if (geo->start > sz) {
441 		DMWARN("Start sector is beyond the geometry limits.");
442 		return -EINVAL;
443 	}
444 
445 	md->geometry = *geo;
446 
447 	return 0;
448 }
449 
450 /*-----------------------------------------------------------------
451  * CRUD START:
452  *   A more elegant soln is in the works that uses the queue
453  *   merge fn, unfortunately there are a couple of changes to
454  *   the block layer that I want to make for this.  So in the
455  *   interests of getting something for people to use I give
456  *   you this clearly demarcated crap.
457  *---------------------------------------------------------------*/
458 
459 static int __noflush_suspending(struct mapped_device *md)
460 {
461 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
462 }
463 
464 /*
465  * Decrements the number of outstanding ios that a bio has been
466  * cloned into, completing the original io if necc.
467  */
468 static void dec_pending(struct dm_io *io, int error)
469 {
470 	unsigned long flags;
471 
472 	/* Push-back supersedes any I/O errors */
473 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
474 		io->error = error;
475 
476 	if (atomic_dec_and_test(&io->io_count)) {
477 		if (io->error == DM_ENDIO_REQUEUE) {
478 			/*
479 			 * Target requested pushing back the I/O.
480 			 * This must be handled before the sleeper on
481 			 * suspend queue merges the pushback list.
482 			 */
483 			spin_lock_irqsave(&io->md->pushback_lock, flags);
484 			if (__noflush_suspending(io->md))
485 				bio_list_add(&io->md->pushback, io->bio);
486 			else
487 				/* noflush suspend was interrupted. */
488 				io->error = -EIO;
489 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
490 		}
491 
492 		if (end_io_acct(io))
493 			/* nudge anyone waiting on suspend queue */
494 			wake_up(&io->md->wait);
495 
496 		if (io->error != DM_ENDIO_REQUEUE) {
497 			blk_add_trace_bio(io->md->queue, io->bio,
498 					  BLK_TA_COMPLETE);
499 
500 			bio_endio(io->bio, io->error);
501 		}
502 
503 		free_io(io->md, io);
504 	}
505 }
506 
507 static void clone_endio(struct bio *bio, int error)
508 {
509 	int r = 0;
510 	struct dm_target_io *tio = bio->bi_private;
511 	struct mapped_device *md = tio->io->md;
512 	dm_endio_fn endio = tio->ti->type->end_io;
513 
514 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
515 		error = -EIO;
516 
517 	if (endio) {
518 		r = endio(tio->ti, bio, error, &tio->info);
519 		if (r < 0 || r == DM_ENDIO_REQUEUE)
520 			/*
521 			 * error and requeue request are handled
522 			 * in dec_pending().
523 			 */
524 			error = r;
525 		else if (r == DM_ENDIO_INCOMPLETE)
526 			/* The target will handle the io */
527 			return;
528 		else if (r) {
529 			DMWARN("unimplemented target endio return value: %d", r);
530 			BUG();
531 		}
532 	}
533 
534 	dec_pending(tio->io, error);
535 
536 	/*
537 	 * Store md for cleanup instead of tio which is about to get freed.
538 	 */
539 	bio->bi_private = md->bs;
540 
541 	bio_put(bio);
542 	free_tio(md, tio);
543 }
544 
545 static sector_t max_io_len(struct mapped_device *md,
546 			   sector_t sector, struct dm_target *ti)
547 {
548 	sector_t offset = sector - ti->begin;
549 	sector_t len = ti->len - offset;
550 
551 	/*
552 	 * Does the target need to split even further ?
553 	 */
554 	if (ti->split_io) {
555 		sector_t boundary;
556 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
557 			   - offset;
558 		if (len > boundary)
559 			len = boundary;
560 	}
561 
562 	return len;
563 }
564 
565 static void __map_bio(struct dm_target *ti, struct bio *clone,
566 		      struct dm_target_io *tio)
567 {
568 	int r;
569 	sector_t sector;
570 	struct mapped_device *md;
571 
572 	/*
573 	 * Sanity checks.
574 	 */
575 	BUG_ON(!clone->bi_size);
576 
577 	clone->bi_end_io = clone_endio;
578 	clone->bi_private = tio;
579 
580 	/*
581 	 * Map the clone.  If r == 0 we don't need to do
582 	 * anything, the target has assumed ownership of
583 	 * this io.
584 	 */
585 	atomic_inc(&tio->io->io_count);
586 	sector = clone->bi_sector;
587 	r = ti->type->map(ti, clone, &tio->info);
588 	if (r == DM_MAPIO_REMAPPED) {
589 		/* the bio has been remapped so dispatch it */
590 
591 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
592 				    tio->io->bio->bi_bdev->bd_dev,
593 				    clone->bi_sector, sector);
594 
595 		generic_make_request(clone);
596 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
597 		/* error the io and bail out, or requeue it if needed */
598 		md = tio->io->md;
599 		dec_pending(tio->io, r);
600 		/*
601 		 * Store bio_set for cleanup.
602 		 */
603 		clone->bi_private = md->bs;
604 		bio_put(clone);
605 		free_tio(md, tio);
606 	} else if (r) {
607 		DMWARN("unimplemented target map return value: %d", r);
608 		BUG();
609 	}
610 }
611 
612 struct clone_info {
613 	struct mapped_device *md;
614 	struct dm_table *map;
615 	struct bio *bio;
616 	struct dm_io *io;
617 	sector_t sector;
618 	sector_t sector_count;
619 	unsigned short idx;
620 };
621 
622 static void dm_bio_destructor(struct bio *bio)
623 {
624 	struct bio_set *bs = bio->bi_private;
625 
626 	bio_free(bio, bs);
627 }
628 
629 /*
630  * Creates a little bio that is just does part of a bvec.
631  */
632 static struct bio *split_bvec(struct bio *bio, sector_t sector,
633 			      unsigned short idx, unsigned int offset,
634 			      unsigned int len, struct bio_set *bs)
635 {
636 	struct bio *clone;
637 	struct bio_vec *bv = bio->bi_io_vec + idx;
638 
639 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
640 	clone->bi_destructor = dm_bio_destructor;
641 	*clone->bi_io_vec = *bv;
642 
643 	clone->bi_sector = sector;
644 	clone->bi_bdev = bio->bi_bdev;
645 	clone->bi_rw = bio->bi_rw;
646 	clone->bi_vcnt = 1;
647 	clone->bi_size = to_bytes(len);
648 	clone->bi_io_vec->bv_offset = offset;
649 	clone->bi_io_vec->bv_len = clone->bi_size;
650 
651 	return clone;
652 }
653 
654 /*
655  * Creates a bio that consists of range of complete bvecs.
656  */
657 static struct bio *clone_bio(struct bio *bio, sector_t sector,
658 			     unsigned short idx, unsigned short bv_count,
659 			     unsigned int len, struct bio_set *bs)
660 {
661 	struct bio *clone;
662 
663 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
664 	__bio_clone(clone, bio);
665 	clone->bi_destructor = dm_bio_destructor;
666 	clone->bi_sector = sector;
667 	clone->bi_idx = idx;
668 	clone->bi_vcnt = idx + bv_count;
669 	clone->bi_size = to_bytes(len);
670 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
671 
672 	return clone;
673 }
674 
675 static int __clone_and_map(struct clone_info *ci)
676 {
677 	struct bio *clone, *bio = ci->bio;
678 	struct dm_target *ti;
679 	sector_t len = 0, max;
680 	struct dm_target_io *tio;
681 
682 	ti = dm_table_find_target(ci->map, ci->sector);
683 	if (!dm_target_is_valid(ti))
684 		return -EIO;
685 
686 	max = max_io_len(ci->md, ci->sector, ti);
687 
688 	/*
689 	 * Allocate a target io object.
690 	 */
691 	tio = alloc_tio(ci->md);
692 	tio->io = ci->io;
693 	tio->ti = ti;
694 	memset(&tio->info, 0, sizeof(tio->info));
695 
696 	if (ci->sector_count <= max) {
697 		/*
698 		 * Optimise for the simple case where we can do all of
699 		 * the remaining io with a single clone.
700 		 */
701 		clone = clone_bio(bio, ci->sector, ci->idx,
702 				  bio->bi_vcnt - ci->idx, ci->sector_count,
703 				  ci->md->bs);
704 		__map_bio(ti, clone, tio);
705 		ci->sector_count = 0;
706 
707 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
708 		/*
709 		 * There are some bvecs that don't span targets.
710 		 * Do as many of these as possible.
711 		 */
712 		int i;
713 		sector_t remaining = max;
714 		sector_t bv_len;
715 
716 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
717 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
718 
719 			if (bv_len > remaining)
720 				break;
721 
722 			remaining -= bv_len;
723 			len += bv_len;
724 		}
725 
726 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
727 				  ci->md->bs);
728 		__map_bio(ti, clone, tio);
729 
730 		ci->sector += len;
731 		ci->sector_count -= len;
732 		ci->idx = i;
733 
734 	} else {
735 		/*
736 		 * Handle a bvec that must be split between two or more targets.
737 		 */
738 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
739 		sector_t remaining = to_sector(bv->bv_len);
740 		unsigned int offset = 0;
741 
742 		do {
743 			if (offset) {
744 				ti = dm_table_find_target(ci->map, ci->sector);
745 				if (!dm_target_is_valid(ti))
746 					return -EIO;
747 
748 				max = max_io_len(ci->md, ci->sector, ti);
749 
750 				tio = alloc_tio(ci->md);
751 				tio->io = ci->io;
752 				tio->ti = ti;
753 				memset(&tio->info, 0, sizeof(tio->info));
754 			}
755 
756 			len = min(remaining, max);
757 
758 			clone = split_bvec(bio, ci->sector, ci->idx,
759 					   bv->bv_offset + offset, len,
760 					   ci->md->bs);
761 
762 			__map_bio(ti, clone, tio);
763 
764 			ci->sector += len;
765 			ci->sector_count -= len;
766 			offset += to_bytes(len);
767 		} while (remaining -= len);
768 
769 		ci->idx++;
770 	}
771 
772 	return 0;
773 }
774 
775 /*
776  * Split the bio into several clones.
777  */
778 static int __split_bio(struct mapped_device *md, struct bio *bio)
779 {
780 	struct clone_info ci;
781 	int error = 0;
782 
783 	ci.map = dm_get_table(md);
784 	if (unlikely(!ci.map))
785 		return -EIO;
786 
787 	ci.md = md;
788 	ci.bio = bio;
789 	ci.io = alloc_io(md);
790 	ci.io->error = 0;
791 	atomic_set(&ci.io->io_count, 1);
792 	ci.io->bio = bio;
793 	ci.io->md = md;
794 	ci.sector = bio->bi_sector;
795 	ci.sector_count = bio_sectors(bio);
796 	ci.idx = bio->bi_idx;
797 
798 	start_io_acct(ci.io);
799 	while (ci.sector_count && !error)
800 		error = __clone_and_map(&ci);
801 
802 	/* drop the extra reference count */
803 	dec_pending(ci.io, error);
804 	dm_table_put(ci.map);
805 
806 	return 0;
807 }
808 /*-----------------------------------------------------------------
809  * CRUD END
810  *---------------------------------------------------------------*/
811 
812 /*
813  * The request function that just remaps the bio built up by
814  * dm_merge_bvec.
815  */
816 static int dm_request(struct request_queue *q, struct bio *bio)
817 {
818 	int r = -EIO;
819 	int rw = bio_data_dir(bio);
820 	struct mapped_device *md = q->queuedata;
821 
822 	/*
823 	 * There is no use in forwarding any barrier request since we can't
824 	 * guarantee it is (or can be) handled by the targets correctly.
825 	 */
826 	if (unlikely(bio_barrier(bio))) {
827 		bio_endio(bio, -EOPNOTSUPP);
828 		return 0;
829 	}
830 
831 	down_read(&md->io_lock);
832 
833 	disk_stat_inc(dm_disk(md), ios[rw]);
834 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
835 
836 	/*
837 	 * If we're suspended we have to queue
838 	 * this io for later.
839 	 */
840 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
841 		up_read(&md->io_lock);
842 
843 		if (bio_rw(bio) != READA)
844 			r = queue_io(md, bio);
845 
846 		if (r <= 0)
847 			goto out_req;
848 
849 		/*
850 		 * We're in a while loop, because someone could suspend
851 		 * before we get to the following read lock.
852 		 */
853 		down_read(&md->io_lock);
854 	}
855 
856 	r = __split_bio(md, bio);
857 	up_read(&md->io_lock);
858 
859 out_req:
860 	if (r < 0)
861 		bio_io_error(bio);
862 
863 	return 0;
864 }
865 
866 static void dm_unplug_all(struct request_queue *q)
867 {
868 	struct mapped_device *md = q->queuedata;
869 	struct dm_table *map = dm_get_table(md);
870 
871 	if (map) {
872 		dm_table_unplug_all(map);
873 		dm_table_put(map);
874 	}
875 }
876 
877 static int dm_any_congested(void *congested_data, int bdi_bits)
878 {
879 	int r;
880 	struct mapped_device *md = (struct mapped_device *) congested_data;
881 	struct dm_table *map = dm_get_table(md);
882 
883 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
884 		r = bdi_bits;
885 	else
886 		r = dm_table_any_congested(map, bdi_bits);
887 
888 	dm_table_put(map);
889 	return r;
890 }
891 
892 /*-----------------------------------------------------------------
893  * An IDR is used to keep track of allocated minor numbers.
894  *---------------------------------------------------------------*/
895 static DEFINE_IDR(_minor_idr);
896 
897 static void free_minor(int minor)
898 {
899 	spin_lock(&_minor_lock);
900 	idr_remove(&_minor_idr, minor);
901 	spin_unlock(&_minor_lock);
902 }
903 
904 /*
905  * See if the device with a specific minor # is free.
906  */
907 static int specific_minor(struct mapped_device *md, int minor)
908 {
909 	int r, m;
910 
911 	if (minor >= (1 << MINORBITS))
912 		return -EINVAL;
913 
914 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
915 	if (!r)
916 		return -ENOMEM;
917 
918 	spin_lock(&_minor_lock);
919 
920 	if (idr_find(&_minor_idr, minor)) {
921 		r = -EBUSY;
922 		goto out;
923 	}
924 
925 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
926 	if (r)
927 		goto out;
928 
929 	if (m != minor) {
930 		idr_remove(&_minor_idr, m);
931 		r = -EBUSY;
932 		goto out;
933 	}
934 
935 out:
936 	spin_unlock(&_minor_lock);
937 	return r;
938 }
939 
940 static int next_free_minor(struct mapped_device *md, int *minor)
941 {
942 	int r, m;
943 
944 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
945 	if (!r)
946 		return -ENOMEM;
947 
948 	spin_lock(&_minor_lock);
949 
950 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
951 	if (r) {
952 		goto out;
953 	}
954 
955 	if (m >= (1 << MINORBITS)) {
956 		idr_remove(&_minor_idr, m);
957 		r = -ENOSPC;
958 		goto out;
959 	}
960 
961 	*minor = m;
962 
963 out:
964 	spin_unlock(&_minor_lock);
965 	return r;
966 }
967 
968 static struct block_device_operations dm_blk_dops;
969 
970 /*
971  * Allocate and initialise a blank device with a given minor.
972  */
973 static struct mapped_device *alloc_dev(int minor)
974 {
975 	int r;
976 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
977 	void *old_md;
978 
979 	if (!md) {
980 		DMWARN("unable to allocate device, out of memory.");
981 		return NULL;
982 	}
983 
984 	if (!try_module_get(THIS_MODULE))
985 		goto bad0;
986 
987 	/* get a minor number for the dev */
988 	if (minor == DM_ANY_MINOR)
989 		r = next_free_minor(md, &minor);
990 	else
991 		r = specific_minor(md, minor);
992 	if (r < 0)
993 		goto bad1;
994 
995 	memset(md, 0, sizeof(*md));
996 	init_rwsem(&md->io_lock);
997 	init_MUTEX(&md->suspend_lock);
998 	spin_lock_init(&md->pushback_lock);
999 	rwlock_init(&md->map_lock);
1000 	atomic_set(&md->holders, 1);
1001 	atomic_set(&md->open_count, 0);
1002 	atomic_set(&md->event_nr, 0);
1003 	atomic_set(&md->uevent_seq, 0);
1004 	INIT_LIST_HEAD(&md->uevent_list);
1005 	spin_lock_init(&md->uevent_lock);
1006 
1007 	md->queue = blk_alloc_queue(GFP_KERNEL);
1008 	if (!md->queue)
1009 		goto bad1_free_minor;
1010 
1011 	md->queue->queuedata = md;
1012 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1013 	md->queue->backing_dev_info.congested_data = md;
1014 	blk_queue_make_request(md->queue, dm_request);
1015 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1016 	md->queue->unplug_fn = dm_unplug_all;
1017 
1018 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1019 	if (!md->io_pool)
1020 		goto bad2;
1021 
1022 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1023 	if (!md->tio_pool)
1024 		goto bad3;
1025 
1026 	md->bs = bioset_create(16, 16);
1027 	if (!md->bs)
1028 		goto bad_no_bioset;
1029 
1030 	md->disk = alloc_disk(1);
1031 	if (!md->disk)
1032 		goto bad4;
1033 
1034 	atomic_set(&md->pending, 0);
1035 	init_waitqueue_head(&md->wait);
1036 	init_waitqueue_head(&md->eventq);
1037 
1038 	md->disk->major = _major;
1039 	md->disk->first_minor = minor;
1040 	md->disk->fops = &dm_blk_dops;
1041 	md->disk->queue = md->queue;
1042 	md->disk->private_data = md;
1043 	sprintf(md->disk->disk_name, "dm-%d", minor);
1044 	add_disk(md->disk);
1045 	format_dev_t(md->name, MKDEV(_major, minor));
1046 
1047 	/* Populate the mapping, nobody knows we exist yet */
1048 	spin_lock(&_minor_lock);
1049 	old_md = idr_replace(&_minor_idr, md, minor);
1050 	spin_unlock(&_minor_lock);
1051 
1052 	BUG_ON(old_md != MINOR_ALLOCED);
1053 
1054 	return md;
1055 
1056  bad4:
1057 	bioset_free(md->bs);
1058  bad_no_bioset:
1059 	mempool_destroy(md->tio_pool);
1060  bad3:
1061 	mempool_destroy(md->io_pool);
1062  bad2:
1063 	blk_cleanup_queue(md->queue);
1064  bad1_free_minor:
1065 	free_minor(minor);
1066  bad1:
1067 	module_put(THIS_MODULE);
1068  bad0:
1069 	kfree(md);
1070 	return NULL;
1071 }
1072 
1073 static void unlock_fs(struct mapped_device *md);
1074 
1075 static void free_dev(struct mapped_device *md)
1076 {
1077 	int minor = md->disk->first_minor;
1078 
1079 	if (md->suspended_bdev) {
1080 		unlock_fs(md);
1081 		bdput(md->suspended_bdev);
1082 	}
1083 	mempool_destroy(md->tio_pool);
1084 	mempool_destroy(md->io_pool);
1085 	bioset_free(md->bs);
1086 	del_gendisk(md->disk);
1087 	free_minor(minor);
1088 
1089 	spin_lock(&_minor_lock);
1090 	md->disk->private_data = NULL;
1091 	spin_unlock(&_minor_lock);
1092 
1093 	put_disk(md->disk);
1094 	blk_cleanup_queue(md->queue);
1095 	module_put(THIS_MODULE);
1096 	kfree(md);
1097 }
1098 
1099 /*
1100  * Bind a table to the device.
1101  */
1102 static void event_callback(void *context)
1103 {
1104 	unsigned long flags;
1105 	LIST_HEAD(uevents);
1106 	struct mapped_device *md = (struct mapped_device *) context;
1107 
1108 	spin_lock_irqsave(&md->uevent_lock, flags);
1109 	list_splice_init(&md->uevent_list, &uevents);
1110 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1111 
1112 	dm_send_uevents(&uevents, &md->disk->dev.kobj);
1113 
1114 	atomic_inc(&md->event_nr);
1115 	wake_up(&md->eventq);
1116 }
1117 
1118 static void __set_size(struct mapped_device *md, sector_t size)
1119 {
1120 	set_capacity(md->disk, size);
1121 
1122 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1123 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1124 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1125 }
1126 
1127 static int __bind(struct mapped_device *md, struct dm_table *t)
1128 {
1129 	struct request_queue *q = md->queue;
1130 	sector_t size;
1131 
1132 	size = dm_table_get_size(t);
1133 
1134 	/*
1135 	 * Wipe any geometry if the size of the table changed.
1136 	 */
1137 	if (size != get_capacity(md->disk))
1138 		memset(&md->geometry, 0, sizeof(md->geometry));
1139 
1140 	if (md->suspended_bdev)
1141 		__set_size(md, size);
1142 	if (size == 0)
1143 		return 0;
1144 
1145 	dm_table_get(t);
1146 	dm_table_event_callback(t, event_callback, md);
1147 
1148 	write_lock(&md->map_lock);
1149 	md->map = t;
1150 	dm_table_set_restrictions(t, q);
1151 	write_unlock(&md->map_lock);
1152 
1153 	return 0;
1154 }
1155 
1156 static void __unbind(struct mapped_device *md)
1157 {
1158 	struct dm_table *map = md->map;
1159 
1160 	if (!map)
1161 		return;
1162 
1163 	dm_table_event_callback(map, NULL, NULL);
1164 	write_lock(&md->map_lock);
1165 	md->map = NULL;
1166 	write_unlock(&md->map_lock);
1167 	dm_table_put(map);
1168 }
1169 
1170 /*
1171  * Constructor for a new device.
1172  */
1173 int dm_create(int minor, struct mapped_device **result)
1174 {
1175 	struct mapped_device *md;
1176 
1177 	md = alloc_dev(minor);
1178 	if (!md)
1179 		return -ENXIO;
1180 
1181 	*result = md;
1182 	return 0;
1183 }
1184 
1185 static struct mapped_device *dm_find_md(dev_t dev)
1186 {
1187 	struct mapped_device *md;
1188 	unsigned minor = MINOR(dev);
1189 
1190 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1191 		return NULL;
1192 
1193 	spin_lock(&_minor_lock);
1194 
1195 	md = idr_find(&_minor_idr, minor);
1196 	if (md && (md == MINOR_ALLOCED ||
1197 		   (dm_disk(md)->first_minor != minor) ||
1198 		   test_bit(DMF_FREEING, &md->flags))) {
1199 		md = NULL;
1200 		goto out;
1201 	}
1202 
1203 out:
1204 	spin_unlock(&_minor_lock);
1205 
1206 	return md;
1207 }
1208 
1209 struct mapped_device *dm_get_md(dev_t dev)
1210 {
1211 	struct mapped_device *md = dm_find_md(dev);
1212 
1213 	if (md)
1214 		dm_get(md);
1215 
1216 	return md;
1217 }
1218 
1219 void *dm_get_mdptr(struct mapped_device *md)
1220 {
1221 	return md->interface_ptr;
1222 }
1223 
1224 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1225 {
1226 	md->interface_ptr = ptr;
1227 }
1228 
1229 void dm_get(struct mapped_device *md)
1230 {
1231 	atomic_inc(&md->holders);
1232 }
1233 
1234 const char *dm_device_name(struct mapped_device *md)
1235 {
1236 	return md->name;
1237 }
1238 EXPORT_SYMBOL_GPL(dm_device_name);
1239 
1240 void dm_put(struct mapped_device *md)
1241 {
1242 	struct dm_table *map;
1243 
1244 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1245 
1246 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1247 		map = dm_get_table(md);
1248 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1249 		set_bit(DMF_FREEING, &md->flags);
1250 		spin_unlock(&_minor_lock);
1251 		if (!dm_suspended(md)) {
1252 			dm_table_presuspend_targets(map);
1253 			dm_table_postsuspend_targets(map);
1254 		}
1255 		__unbind(md);
1256 		dm_table_put(map);
1257 		free_dev(md);
1258 	}
1259 }
1260 EXPORT_SYMBOL_GPL(dm_put);
1261 
1262 /*
1263  * Process the deferred bios
1264  */
1265 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1266 {
1267 	struct bio *n;
1268 
1269 	while (c) {
1270 		n = c->bi_next;
1271 		c->bi_next = NULL;
1272 		if (__split_bio(md, c))
1273 			bio_io_error(c);
1274 		c = n;
1275 	}
1276 }
1277 
1278 /*
1279  * Swap in a new table (destroying old one).
1280  */
1281 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1282 {
1283 	int r = -EINVAL;
1284 
1285 	down(&md->suspend_lock);
1286 
1287 	/* device must be suspended */
1288 	if (!dm_suspended(md))
1289 		goto out;
1290 
1291 	/* without bdev, the device size cannot be changed */
1292 	if (!md->suspended_bdev)
1293 		if (get_capacity(md->disk) != dm_table_get_size(table))
1294 			goto out;
1295 
1296 	__unbind(md);
1297 	r = __bind(md, table);
1298 
1299 out:
1300 	up(&md->suspend_lock);
1301 	return r;
1302 }
1303 
1304 /*
1305  * Functions to lock and unlock any filesystem running on the
1306  * device.
1307  */
1308 static int lock_fs(struct mapped_device *md)
1309 {
1310 	int r;
1311 
1312 	WARN_ON(md->frozen_sb);
1313 
1314 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1315 	if (IS_ERR(md->frozen_sb)) {
1316 		r = PTR_ERR(md->frozen_sb);
1317 		md->frozen_sb = NULL;
1318 		return r;
1319 	}
1320 
1321 	set_bit(DMF_FROZEN, &md->flags);
1322 
1323 	/* don't bdput right now, we don't want the bdev
1324 	 * to go away while it is locked.
1325 	 */
1326 	return 0;
1327 }
1328 
1329 static void unlock_fs(struct mapped_device *md)
1330 {
1331 	if (!test_bit(DMF_FROZEN, &md->flags))
1332 		return;
1333 
1334 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1335 	md->frozen_sb = NULL;
1336 	clear_bit(DMF_FROZEN, &md->flags);
1337 }
1338 
1339 /*
1340  * We need to be able to change a mapping table under a mounted
1341  * filesystem.  For example we might want to move some data in
1342  * the background.  Before the table can be swapped with
1343  * dm_bind_table, dm_suspend must be called to flush any in
1344  * flight bios and ensure that any further io gets deferred.
1345  */
1346 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1347 {
1348 	struct dm_table *map = NULL;
1349 	unsigned long flags;
1350 	DECLARE_WAITQUEUE(wait, current);
1351 	struct bio *def;
1352 	int r = -EINVAL;
1353 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1354 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1355 
1356 	down(&md->suspend_lock);
1357 
1358 	if (dm_suspended(md))
1359 		goto out_unlock;
1360 
1361 	map = dm_get_table(md);
1362 
1363 	/*
1364 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1365 	 * This flag is cleared before dm_suspend returns.
1366 	 */
1367 	if (noflush)
1368 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1369 
1370 	/* This does not get reverted if there's an error later. */
1371 	dm_table_presuspend_targets(map);
1372 
1373 	/* bdget() can stall if the pending I/Os are not flushed */
1374 	if (!noflush) {
1375 		md->suspended_bdev = bdget_disk(md->disk, 0);
1376 		if (!md->suspended_bdev) {
1377 			DMWARN("bdget failed in dm_suspend");
1378 			r = -ENOMEM;
1379 			goto flush_and_out;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * Flush I/O to the device.
1385 	 * noflush supersedes do_lockfs, because lock_fs() needs to flush I/Os.
1386 	 */
1387 	if (do_lockfs && !noflush) {
1388 		r = lock_fs(md);
1389 		if (r)
1390 			goto out;
1391 	}
1392 
1393 	/*
1394 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1395 	 */
1396 	down_write(&md->io_lock);
1397 	set_bit(DMF_BLOCK_IO, &md->flags);
1398 
1399 	add_wait_queue(&md->wait, &wait);
1400 	up_write(&md->io_lock);
1401 
1402 	/* unplug */
1403 	if (map)
1404 		dm_table_unplug_all(map);
1405 
1406 	/*
1407 	 * Then we wait for the already mapped ios to
1408 	 * complete.
1409 	 */
1410 	while (1) {
1411 		set_current_state(TASK_INTERRUPTIBLE);
1412 
1413 		if (!atomic_read(&md->pending) || signal_pending(current))
1414 			break;
1415 
1416 		io_schedule();
1417 	}
1418 	set_current_state(TASK_RUNNING);
1419 
1420 	down_write(&md->io_lock);
1421 	remove_wait_queue(&md->wait, &wait);
1422 
1423 	if (noflush) {
1424 		spin_lock_irqsave(&md->pushback_lock, flags);
1425 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1426 		bio_list_merge_head(&md->deferred, &md->pushback);
1427 		bio_list_init(&md->pushback);
1428 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1429 	}
1430 
1431 	/* were we interrupted ? */
1432 	r = -EINTR;
1433 	if (atomic_read(&md->pending)) {
1434 		clear_bit(DMF_BLOCK_IO, &md->flags);
1435 		def = bio_list_get(&md->deferred);
1436 		__flush_deferred_io(md, def);
1437 		up_write(&md->io_lock);
1438 		unlock_fs(md);
1439 		goto out; /* pushback list is already flushed, so skip flush */
1440 	}
1441 	up_write(&md->io_lock);
1442 
1443 	dm_table_postsuspend_targets(map);
1444 
1445 	set_bit(DMF_SUSPENDED, &md->flags);
1446 
1447 	r = 0;
1448 
1449 flush_and_out:
1450 	if (r && noflush) {
1451 		/*
1452 		 * Because there may be already I/Os in the pushback list,
1453 		 * flush them before return.
1454 		 */
1455 		down_write(&md->io_lock);
1456 
1457 		spin_lock_irqsave(&md->pushback_lock, flags);
1458 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1459 		bio_list_merge_head(&md->deferred, &md->pushback);
1460 		bio_list_init(&md->pushback);
1461 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1462 
1463 		def = bio_list_get(&md->deferred);
1464 		__flush_deferred_io(md, def);
1465 		up_write(&md->io_lock);
1466 	}
1467 
1468 out:
1469 	if (r && md->suspended_bdev) {
1470 		bdput(md->suspended_bdev);
1471 		md->suspended_bdev = NULL;
1472 	}
1473 
1474 	dm_table_put(map);
1475 
1476 out_unlock:
1477 	up(&md->suspend_lock);
1478 	return r;
1479 }
1480 
1481 int dm_resume(struct mapped_device *md)
1482 {
1483 	int r = -EINVAL;
1484 	struct bio *def;
1485 	struct dm_table *map = NULL;
1486 
1487 	down(&md->suspend_lock);
1488 	if (!dm_suspended(md))
1489 		goto out;
1490 
1491 	map = dm_get_table(md);
1492 	if (!map || !dm_table_get_size(map))
1493 		goto out;
1494 
1495 	r = dm_table_resume_targets(map);
1496 	if (r)
1497 		goto out;
1498 
1499 	down_write(&md->io_lock);
1500 	clear_bit(DMF_BLOCK_IO, &md->flags);
1501 
1502 	def = bio_list_get(&md->deferred);
1503 	__flush_deferred_io(md, def);
1504 	up_write(&md->io_lock);
1505 
1506 	unlock_fs(md);
1507 
1508 	if (md->suspended_bdev) {
1509 		bdput(md->suspended_bdev);
1510 		md->suspended_bdev = NULL;
1511 	}
1512 
1513 	clear_bit(DMF_SUSPENDED, &md->flags);
1514 
1515 	dm_table_unplug_all(map);
1516 
1517 	dm_kobject_uevent(md);
1518 
1519 	r = 0;
1520 
1521 out:
1522 	dm_table_put(map);
1523 	up(&md->suspend_lock);
1524 
1525 	return r;
1526 }
1527 
1528 /*-----------------------------------------------------------------
1529  * Event notification.
1530  *---------------------------------------------------------------*/
1531 void dm_kobject_uevent(struct mapped_device *md)
1532 {
1533 	kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1534 }
1535 
1536 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1537 {
1538 	return atomic_add_return(1, &md->uevent_seq);
1539 }
1540 
1541 uint32_t dm_get_event_nr(struct mapped_device *md)
1542 {
1543 	return atomic_read(&md->event_nr);
1544 }
1545 
1546 int dm_wait_event(struct mapped_device *md, int event_nr)
1547 {
1548 	return wait_event_interruptible(md->eventq,
1549 			(event_nr != atomic_read(&md->event_nr)));
1550 }
1551 
1552 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1553 {
1554 	unsigned long flags;
1555 
1556 	spin_lock_irqsave(&md->uevent_lock, flags);
1557 	list_add(elist, &md->uevent_list);
1558 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1559 }
1560 
1561 /*
1562  * The gendisk is only valid as long as you have a reference
1563  * count on 'md'.
1564  */
1565 struct gendisk *dm_disk(struct mapped_device *md)
1566 {
1567 	return md->disk;
1568 }
1569 
1570 int dm_suspended(struct mapped_device *md)
1571 {
1572 	return test_bit(DMF_SUSPENDED, &md->flags);
1573 }
1574 
1575 int dm_noflush_suspending(struct dm_target *ti)
1576 {
1577 	struct mapped_device *md = dm_table_get_md(ti->table);
1578 	int r = __noflush_suspending(md);
1579 
1580 	dm_put(md);
1581 
1582 	return r;
1583 }
1584 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1585 
1586 static struct block_device_operations dm_blk_dops = {
1587 	.open = dm_blk_open,
1588 	.release = dm_blk_close,
1589 	.ioctl = dm_blk_ioctl,
1590 	.getgeo = dm_blk_getgeo,
1591 	.owner = THIS_MODULE
1592 };
1593 
1594 EXPORT_SYMBOL(dm_get_mapinfo);
1595 
1596 /*
1597  * module hooks
1598  */
1599 module_init(dm_init);
1600 module_exit(dm_exit);
1601 
1602 module_param(major, uint, 0);
1603 MODULE_PARM_DESC(major, "The major number of the device mapper");
1604 MODULE_DESCRIPTION(DM_NAME " driver");
1605 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1606 MODULE_LICENSE("GPL");
1607