1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 462 struct block_device **bdev) 463 __acquires(md->io_barrier) 464 { 465 struct dm_target *tgt; 466 struct dm_table *map; 467 int r; 468 469 retry: 470 r = -ENOTTY; 471 map = dm_get_live_table(md, srcu_idx); 472 if (!map || !dm_table_get_size(map)) 473 return r; 474 475 /* We only support devices that have a single target */ 476 if (dm_table_get_num_targets(map) != 1) 477 return r; 478 479 tgt = dm_table_get_target(map, 0); 480 if (!tgt->type->prepare_ioctl) 481 return r; 482 483 if (dm_suspended_md(md)) 484 return -EAGAIN; 485 486 r = tgt->type->prepare_ioctl(tgt, bdev); 487 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 488 dm_put_live_table(md, *srcu_idx); 489 msleep(10); 490 goto retry; 491 } 492 493 return r; 494 } 495 496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 497 __releases(md->io_barrier) 498 { 499 dm_put_live_table(md, srcu_idx); 500 } 501 502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned int cmd, unsigned long arg) 504 { 505 struct mapped_device *md = bdev->bd_disk->private_data; 506 int r, srcu_idx; 507 508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 509 if (r < 0) 510 goto out; 511 512 if (r > 0) { 513 /* 514 * Target determined this ioctl is being issued against a 515 * subset of the parent bdev; require extra privileges. 516 */ 517 if (!capable(CAP_SYS_RAWIO)) { 518 DMWARN_LIMIT( 519 "%s: sending ioctl %x to DM device without required privilege.", 520 current->comm, cmd); 521 r = -ENOIOCTLCMD; 522 goto out; 523 } 524 } 525 526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 527 out: 528 dm_unprepare_ioctl(md, srcu_idx); 529 return r; 530 } 531 532 static void start_io_acct(struct dm_io *io); 533 534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 535 { 536 struct dm_io *io; 537 struct dm_target_io *tio; 538 struct bio *clone; 539 540 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 541 if (!clone) 542 return NULL; 543 544 tio = container_of(clone, struct dm_target_io, clone); 545 tio->inside_dm_io = true; 546 tio->io = NULL; 547 548 io = container_of(tio, struct dm_io, tio); 549 io->magic = DM_IO_MAGIC; 550 io->status = 0; 551 atomic_set(&io->io_count, 1); 552 io->orig_bio = bio; 553 io->md = md; 554 spin_lock_init(&io->endio_lock); 555 556 start_io_acct(io); 557 558 return io; 559 } 560 561 static void free_io(struct mapped_device *md, struct dm_io *io) 562 { 563 bio_put(&io->tio.clone); 564 } 565 566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 567 unsigned target_bio_nr, gfp_t gfp_mask) 568 { 569 struct dm_target_io *tio; 570 571 if (!ci->io->tio.io) { 572 /* the dm_target_io embedded in ci->io is available */ 573 tio = &ci->io->tio; 574 } else { 575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 576 if (!clone) 577 return NULL; 578 579 tio = container_of(clone, struct dm_target_io, clone); 580 tio->inside_dm_io = false; 581 } 582 583 tio->magic = DM_TIO_MAGIC; 584 tio->io = ci->io; 585 tio->ti = ti; 586 tio->target_bio_nr = target_bio_nr; 587 588 return tio; 589 } 590 591 static void free_tio(struct dm_target_io *tio) 592 { 593 if (tio->inside_dm_io) 594 return; 595 bio_put(&tio->clone); 596 } 597 598 int md_in_flight(struct mapped_device *md) 599 { 600 return atomic_read(&md->pending[READ]) + 601 atomic_read(&md->pending[WRITE]); 602 } 603 604 static void start_io_acct(struct dm_io *io) 605 { 606 struct mapped_device *md = io->md; 607 struct bio *bio = io->orig_bio; 608 int rw = bio_data_dir(bio); 609 610 io->start_time = jiffies; 611 612 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 613 &dm_disk(md)->part0); 614 615 atomic_set(&dm_disk(md)->part0.in_flight[rw], 616 atomic_inc_return(&md->pending[rw])); 617 618 if (unlikely(dm_stats_used(&md->stats))) 619 dm_stats_account_io(&md->stats, bio_data_dir(bio), 620 bio->bi_iter.bi_sector, bio_sectors(bio), 621 false, 0, &io->stats_aux); 622 } 623 624 static void end_io_acct(struct dm_io *io) 625 { 626 struct mapped_device *md = io->md; 627 struct bio *bio = io->orig_bio; 628 unsigned long duration = jiffies - io->start_time; 629 int pending; 630 int rw = bio_data_dir(bio); 631 632 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 633 io->start_time); 634 635 if (unlikely(dm_stats_used(&md->stats))) 636 dm_stats_account_io(&md->stats, bio_data_dir(bio), 637 bio->bi_iter.bi_sector, bio_sectors(bio), 638 true, duration, &io->stats_aux); 639 640 /* 641 * After this is decremented the bio must not be touched if it is 642 * a flush. 643 */ 644 pending = atomic_dec_return(&md->pending[rw]); 645 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 646 pending += atomic_read(&md->pending[rw^0x1]); 647 648 /* nudge anyone waiting on suspend queue */ 649 if (!pending) 650 wake_up(&md->wait); 651 } 652 653 /* 654 * Add the bio to the list of deferred io. 655 */ 656 static void queue_io(struct mapped_device *md, struct bio *bio) 657 { 658 unsigned long flags; 659 660 spin_lock_irqsave(&md->deferred_lock, flags); 661 bio_list_add(&md->deferred, bio); 662 spin_unlock_irqrestore(&md->deferred_lock, flags); 663 queue_work(md->wq, &md->work); 664 } 665 666 /* 667 * Everyone (including functions in this file), should use this 668 * function to access the md->map field, and make sure they call 669 * dm_put_live_table() when finished. 670 */ 671 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 672 { 673 *srcu_idx = srcu_read_lock(&md->io_barrier); 674 675 return srcu_dereference(md->map, &md->io_barrier); 676 } 677 678 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 679 { 680 srcu_read_unlock(&md->io_barrier, srcu_idx); 681 } 682 683 void dm_sync_table(struct mapped_device *md) 684 { 685 synchronize_srcu(&md->io_barrier); 686 synchronize_rcu_expedited(); 687 } 688 689 /* 690 * A fast alternative to dm_get_live_table/dm_put_live_table. 691 * The caller must not block between these two functions. 692 */ 693 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 694 { 695 rcu_read_lock(); 696 return rcu_dereference(md->map); 697 } 698 699 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 700 { 701 rcu_read_unlock(); 702 } 703 704 static char *_dm_claim_ptr = "I belong to device-mapper"; 705 706 /* 707 * Open a table device so we can use it as a map destination. 708 */ 709 static int open_table_device(struct table_device *td, dev_t dev, 710 struct mapped_device *md) 711 { 712 struct block_device *bdev; 713 714 int r; 715 716 BUG_ON(td->dm_dev.bdev); 717 718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 719 if (IS_ERR(bdev)) 720 return PTR_ERR(bdev); 721 722 r = bd_link_disk_holder(bdev, dm_disk(md)); 723 if (r) { 724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 725 return r; 726 } 727 728 td->dm_dev.bdev = bdev; 729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 730 return 0; 731 } 732 733 /* 734 * Close a table device that we've been using. 735 */ 736 static void close_table_device(struct table_device *td, struct mapped_device *md) 737 { 738 if (!td->dm_dev.bdev) 739 return; 740 741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 743 put_dax(td->dm_dev.dax_dev); 744 td->dm_dev.bdev = NULL; 745 td->dm_dev.dax_dev = NULL; 746 } 747 748 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 749 fmode_t mode) { 750 struct table_device *td; 751 752 list_for_each_entry(td, l, list) 753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 754 return td; 755 756 return NULL; 757 } 758 759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 760 struct dm_dev **result) { 761 int r; 762 struct table_device *td; 763 764 mutex_lock(&md->table_devices_lock); 765 td = find_table_device(&md->table_devices, dev, mode); 766 if (!td) { 767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 768 if (!td) { 769 mutex_unlock(&md->table_devices_lock); 770 return -ENOMEM; 771 } 772 773 td->dm_dev.mode = mode; 774 td->dm_dev.bdev = NULL; 775 776 if ((r = open_table_device(td, dev, md))) { 777 mutex_unlock(&md->table_devices_lock); 778 kfree(td); 779 return r; 780 } 781 782 format_dev_t(td->dm_dev.name, dev); 783 784 refcount_set(&td->count, 1); 785 list_add(&td->list, &md->table_devices); 786 } else { 787 refcount_inc(&td->count); 788 } 789 mutex_unlock(&md->table_devices_lock); 790 791 *result = &td->dm_dev; 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(dm_get_table_device); 795 796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 797 { 798 struct table_device *td = container_of(d, struct table_device, dm_dev); 799 800 mutex_lock(&md->table_devices_lock); 801 if (refcount_dec_and_test(&td->count)) { 802 close_table_device(td, md); 803 list_del(&td->list); 804 kfree(td); 805 } 806 mutex_unlock(&md->table_devices_lock); 807 } 808 EXPORT_SYMBOL(dm_put_table_device); 809 810 static void free_table_devices(struct list_head *devices) 811 { 812 struct list_head *tmp, *next; 813 814 list_for_each_safe(tmp, next, devices) { 815 struct table_device *td = list_entry(tmp, struct table_device, list); 816 817 DMWARN("dm_destroy: %s still exists with %d references", 818 td->dm_dev.name, refcount_read(&td->count)); 819 kfree(td); 820 } 821 } 822 823 /* 824 * Get the geometry associated with a dm device 825 */ 826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 827 { 828 *geo = md->geometry; 829 830 return 0; 831 } 832 833 /* 834 * Set the geometry of a device. 835 */ 836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 837 { 838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 839 840 if (geo->start > sz) { 841 DMWARN("Start sector is beyond the geometry limits."); 842 return -EINVAL; 843 } 844 845 md->geometry = *geo; 846 847 return 0; 848 } 849 850 static int __noflush_suspending(struct mapped_device *md) 851 { 852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 853 } 854 855 /* 856 * Decrements the number of outstanding ios that a bio has been 857 * cloned into, completing the original io if necc. 858 */ 859 static void dec_pending(struct dm_io *io, blk_status_t error) 860 { 861 unsigned long flags; 862 blk_status_t io_error; 863 struct bio *bio; 864 struct mapped_device *md = io->md; 865 866 /* Push-back supersedes any I/O errors */ 867 if (unlikely(error)) { 868 spin_lock_irqsave(&io->endio_lock, flags); 869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 870 io->status = error; 871 spin_unlock_irqrestore(&io->endio_lock, flags); 872 } 873 874 if (atomic_dec_and_test(&io->io_count)) { 875 if (io->status == BLK_STS_DM_REQUEUE) { 876 /* 877 * Target requested pushing back the I/O. 878 */ 879 spin_lock_irqsave(&md->deferred_lock, flags); 880 if (__noflush_suspending(md)) 881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 else 884 /* noflush suspend was interrupted. */ 885 io->status = BLK_STS_IOERR; 886 spin_unlock_irqrestore(&md->deferred_lock, flags); 887 } 888 889 io_error = io->status; 890 bio = io->orig_bio; 891 end_io_acct(io); 892 free_io(md, io); 893 894 if (io_error == BLK_STS_DM_REQUEUE) 895 return; 896 897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 898 /* 899 * Preflush done for flush with data, reissue 900 * without REQ_PREFLUSH. 901 */ 902 bio->bi_opf &= ~REQ_PREFLUSH; 903 queue_io(md, bio); 904 } else { 905 /* done with normal IO or empty flush */ 906 if (io_error) 907 bio->bi_status = io_error; 908 bio_endio(bio); 909 } 910 } 911 } 912 913 void disable_write_same(struct mapped_device *md) 914 { 915 struct queue_limits *limits = dm_get_queue_limits(md); 916 917 /* device doesn't really support WRITE SAME, disable it */ 918 limits->max_write_same_sectors = 0; 919 } 920 921 void disable_write_zeroes(struct mapped_device *md) 922 { 923 struct queue_limits *limits = dm_get_queue_limits(md); 924 925 /* device doesn't really support WRITE ZEROES, disable it */ 926 limits->max_write_zeroes_sectors = 0; 927 } 928 929 static void clone_endio(struct bio *bio) 930 { 931 blk_status_t error = bio->bi_status; 932 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 933 struct dm_io *io = tio->io; 934 struct mapped_device *md = tio->io->md; 935 dm_endio_fn endio = tio->ti->type->end_io; 936 937 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 938 if (bio_op(bio) == REQ_OP_WRITE_SAME && 939 !bio->bi_disk->queue->limits.max_write_same_sectors) 940 disable_write_same(md); 941 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 942 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 943 disable_write_zeroes(md); 944 } 945 946 if (endio) { 947 int r = endio(tio->ti, bio, &error); 948 switch (r) { 949 case DM_ENDIO_REQUEUE: 950 error = BLK_STS_DM_REQUEUE; 951 /*FALLTHRU*/ 952 case DM_ENDIO_DONE: 953 break; 954 case DM_ENDIO_INCOMPLETE: 955 /* The target will handle the io */ 956 return; 957 default: 958 DMWARN("unimplemented target endio return value: %d", r); 959 BUG(); 960 } 961 } 962 963 free_tio(tio); 964 dec_pending(io, error); 965 } 966 967 /* 968 * Return maximum size of I/O possible at the supplied sector up to the current 969 * target boundary. 970 */ 971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 972 { 973 sector_t target_offset = dm_target_offset(ti, sector); 974 975 return ti->len - target_offset; 976 } 977 978 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 979 { 980 sector_t len = max_io_len_target_boundary(sector, ti); 981 sector_t offset, max_len; 982 983 /* 984 * Does the target need to split even further? 985 */ 986 if (ti->max_io_len) { 987 offset = dm_target_offset(ti, sector); 988 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 989 max_len = sector_div(offset, ti->max_io_len); 990 else 991 max_len = offset & (ti->max_io_len - 1); 992 max_len = ti->max_io_len - max_len; 993 994 if (len > max_len) 995 len = max_len; 996 } 997 998 return len; 999 } 1000 1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1002 { 1003 if (len > UINT_MAX) { 1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1005 (unsigned long long)len, UINT_MAX); 1006 ti->error = "Maximum size of target IO is too large"; 1007 return -EINVAL; 1008 } 1009 1010 /* 1011 * BIO based queue uses its own splitting. When multipage bvecs 1012 * is switched on, size of the incoming bio may be too big to 1013 * be handled in some targets, such as crypt. 1014 * 1015 * When these targets are ready for the big bio, we can remove 1016 * the limit. 1017 */ 1018 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1023 1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1025 sector_t sector, int *srcu_idx) 1026 __acquires(md->io_barrier) 1027 { 1028 struct dm_table *map; 1029 struct dm_target *ti; 1030 1031 map = dm_get_live_table(md, srcu_idx); 1032 if (!map) 1033 return NULL; 1034 1035 ti = dm_table_find_target(map, sector); 1036 if (!dm_target_is_valid(ti)) 1037 return NULL; 1038 1039 return ti; 1040 } 1041 1042 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1043 long nr_pages, void **kaddr, pfn_t *pfn) 1044 { 1045 struct mapped_device *md = dax_get_private(dax_dev); 1046 sector_t sector = pgoff * PAGE_SECTORS; 1047 struct dm_target *ti; 1048 long len, ret = -EIO; 1049 int srcu_idx; 1050 1051 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1052 1053 if (!ti) 1054 goto out; 1055 if (!ti->type->direct_access) 1056 goto out; 1057 len = max_io_len(sector, ti) / PAGE_SECTORS; 1058 if (len < 1) 1059 goto out; 1060 nr_pages = min(len, nr_pages); 1061 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1062 1063 out: 1064 dm_put_live_table(md, srcu_idx); 1065 1066 return ret; 1067 } 1068 1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1070 void *addr, size_t bytes, struct iov_iter *i) 1071 { 1072 struct mapped_device *md = dax_get_private(dax_dev); 1073 sector_t sector = pgoff * PAGE_SECTORS; 1074 struct dm_target *ti; 1075 long ret = 0; 1076 int srcu_idx; 1077 1078 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1079 1080 if (!ti) 1081 goto out; 1082 if (!ti->type->dax_copy_from_iter) { 1083 ret = copy_from_iter(addr, bytes, i); 1084 goto out; 1085 } 1086 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1087 out: 1088 dm_put_live_table(md, srcu_idx); 1089 1090 return ret; 1091 } 1092 1093 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1094 void *addr, size_t bytes, struct iov_iter *i) 1095 { 1096 struct mapped_device *md = dax_get_private(dax_dev); 1097 sector_t sector = pgoff * PAGE_SECTORS; 1098 struct dm_target *ti; 1099 long ret = 0; 1100 int srcu_idx; 1101 1102 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1103 1104 if (!ti) 1105 goto out; 1106 if (!ti->type->dax_copy_to_iter) { 1107 ret = copy_to_iter(addr, bytes, i); 1108 goto out; 1109 } 1110 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1111 out: 1112 dm_put_live_table(md, srcu_idx); 1113 1114 return ret; 1115 } 1116 1117 /* 1118 * A target may call dm_accept_partial_bio only from the map routine. It is 1119 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1120 * 1121 * dm_accept_partial_bio informs the dm that the target only wants to process 1122 * additional n_sectors sectors of the bio and the rest of the data should be 1123 * sent in a next bio. 1124 * 1125 * A diagram that explains the arithmetics: 1126 * +--------------------+---------------+-------+ 1127 * | 1 | 2 | 3 | 1128 * +--------------------+---------------+-------+ 1129 * 1130 * <-------------- *tio->len_ptr ---------------> 1131 * <------- bi_size -------> 1132 * <-- n_sectors --> 1133 * 1134 * Region 1 was already iterated over with bio_advance or similar function. 1135 * (it may be empty if the target doesn't use bio_advance) 1136 * Region 2 is the remaining bio size that the target wants to process. 1137 * (it may be empty if region 1 is non-empty, although there is no reason 1138 * to make it empty) 1139 * The target requires that region 3 is to be sent in the next bio. 1140 * 1141 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1142 * the partially processed part (the sum of regions 1+2) must be the same for all 1143 * copies of the bio. 1144 */ 1145 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1146 { 1147 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1148 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1149 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1150 BUG_ON(bi_size > *tio->len_ptr); 1151 BUG_ON(n_sectors > bi_size); 1152 *tio->len_ptr -= bi_size - n_sectors; 1153 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1154 } 1155 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1156 1157 /* 1158 * The zone descriptors obtained with a zone report indicate 1159 * zone positions within the target device. The zone descriptors 1160 * must be remapped to match their position within the dm device. 1161 * A target may call dm_remap_zone_report after completion of a 1162 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1163 * from the target device mapping to the dm device. 1164 */ 1165 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1166 { 1167 #ifdef CONFIG_BLK_DEV_ZONED 1168 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1169 struct bio *report_bio = tio->io->orig_bio; 1170 struct blk_zone_report_hdr *hdr = NULL; 1171 struct blk_zone *zone; 1172 unsigned int nr_rep = 0; 1173 unsigned int ofst; 1174 struct bio_vec bvec; 1175 struct bvec_iter iter; 1176 void *addr; 1177 1178 if (bio->bi_status) 1179 return; 1180 1181 /* 1182 * Remap the start sector of the reported zones. For sequential zones, 1183 * also remap the write pointer position. 1184 */ 1185 bio_for_each_segment(bvec, report_bio, iter) { 1186 addr = kmap_atomic(bvec.bv_page); 1187 1188 /* Remember the report header in the first page */ 1189 if (!hdr) { 1190 hdr = addr; 1191 ofst = sizeof(struct blk_zone_report_hdr); 1192 } else 1193 ofst = 0; 1194 1195 /* Set zones start sector */ 1196 while (hdr->nr_zones && ofst < bvec.bv_len) { 1197 zone = addr + ofst; 1198 if (zone->start >= start + ti->len) { 1199 hdr->nr_zones = 0; 1200 break; 1201 } 1202 zone->start = zone->start + ti->begin - start; 1203 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1204 if (zone->cond == BLK_ZONE_COND_FULL) 1205 zone->wp = zone->start + zone->len; 1206 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1207 zone->wp = zone->start; 1208 else 1209 zone->wp = zone->wp + ti->begin - start; 1210 } 1211 ofst += sizeof(struct blk_zone); 1212 hdr->nr_zones--; 1213 nr_rep++; 1214 } 1215 1216 if (addr != hdr) 1217 kunmap_atomic(addr); 1218 1219 if (!hdr->nr_zones) 1220 break; 1221 } 1222 1223 if (hdr) { 1224 hdr->nr_zones = nr_rep; 1225 kunmap_atomic(hdr); 1226 } 1227 1228 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1229 1230 #else /* !CONFIG_BLK_DEV_ZONED */ 1231 bio->bi_status = BLK_STS_NOTSUPP; 1232 #endif 1233 } 1234 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1235 1236 static blk_qc_t __map_bio(struct dm_target_io *tio) 1237 { 1238 int r; 1239 sector_t sector; 1240 struct bio *clone = &tio->clone; 1241 struct dm_io *io = tio->io; 1242 struct mapped_device *md = io->md; 1243 struct dm_target *ti = tio->ti; 1244 blk_qc_t ret = BLK_QC_T_NONE; 1245 1246 clone->bi_end_io = clone_endio; 1247 1248 /* 1249 * Map the clone. If r == 0 we don't need to do 1250 * anything, the target has assumed ownership of 1251 * this io. 1252 */ 1253 atomic_inc(&io->io_count); 1254 sector = clone->bi_iter.bi_sector; 1255 1256 r = ti->type->map(ti, clone); 1257 switch (r) { 1258 case DM_MAPIO_SUBMITTED: 1259 break; 1260 case DM_MAPIO_REMAPPED: 1261 /* the bio has been remapped so dispatch it */ 1262 trace_block_bio_remap(clone->bi_disk->queue, clone, 1263 bio_dev(io->orig_bio), sector); 1264 if (md->type == DM_TYPE_NVME_BIO_BASED) 1265 ret = direct_make_request(clone); 1266 else 1267 ret = generic_make_request(clone); 1268 break; 1269 case DM_MAPIO_KILL: 1270 free_tio(tio); 1271 dec_pending(io, BLK_STS_IOERR); 1272 break; 1273 case DM_MAPIO_REQUEUE: 1274 free_tio(tio); 1275 dec_pending(io, BLK_STS_DM_REQUEUE); 1276 break; 1277 default: 1278 DMWARN("unimplemented target map return value: %d", r); 1279 BUG(); 1280 } 1281 1282 return ret; 1283 } 1284 1285 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1286 { 1287 bio->bi_iter.bi_sector = sector; 1288 bio->bi_iter.bi_size = to_bytes(len); 1289 } 1290 1291 /* 1292 * Creates a bio that consists of range of complete bvecs. 1293 */ 1294 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1295 sector_t sector, unsigned len) 1296 { 1297 struct bio *clone = &tio->clone; 1298 1299 __bio_clone_fast(clone, bio); 1300 1301 if (unlikely(bio_integrity(bio) != NULL)) { 1302 int r; 1303 1304 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1305 !dm_target_passes_integrity(tio->ti->type))) { 1306 DMWARN("%s: the target %s doesn't support integrity data.", 1307 dm_device_name(tio->io->md), 1308 tio->ti->type->name); 1309 return -EIO; 1310 } 1311 1312 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1313 if (r < 0) 1314 return r; 1315 } 1316 1317 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1318 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1319 clone->bi_iter.bi_size = to_bytes(len); 1320 1321 if (unlikely(bio_integrity(bio) != NULL)) 1322 bio_integrity_trim(clone); 1323 1324 return 0; 1325 } 1326 1327 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1328 struct dm_target *ti, unsigned num_bios) 1329 { 1330 struct dm_target_io *tio; 1331 int try; 1332 1333 if (!num_bios) 1334 return; 1335 1336 if (num_bios == 1) { 1337 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1338 bio_list_add(blist, &tio->clone); 1339 return; 1340 } 1341 1342 for (try = 0; try < 2; try++) { 1343 int bio_nr; 1344 struct bio *bio; 1345 1346 if (try) 1347 mutex_lock(&ci->io->md->table_devices_lock); 1348 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1349 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1350 if (!tio) 1351 break; 1352 1353 bio_list_add(blist, &tio->clone); 1354 } 1355 if (try) 1356 mutex_unlock(&ci->io->md->table_devices_lock); 1357 if (bio_nr == num_bios) 1358 return; 1359 1360 while ((bio = bio_list_pop(blist))) { 1361 tio = container_of(bio, struct dm_target_io, clone); 1362 free_tio(tio); 1363 } 1364 } 1365 } 1366 1367 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1368 struct dm_target_io *tio, unsigned *len) 1369 { 1370 struct bio *clone = &tio->clone; 1371 1372 tio->len_ptr = len; 1373 1374 __bio_clone_fast(clone, ci->bio); 1375 if (len) 1376 bio_setup_sector(clone, ci->sector, *len); 1377 1378 return __map_bio(tio); 1379 } 1380 1381 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1382 unsigned num_bios, unsigned *len) 1383 { 1384 struct bio_list blist = BIO_EMPTY_LIST; 1385 struct bio *bio; 1386 struct dm_target_io *tio; 1387 1388 alloc_multiple_bios(&blist, ci, ti, num_bios); 1389 1390 while ((bio = bio_list_pop(&blist))) { 1391 tio = container_of(bio, struct dm_target_io, clone); 1392 (void) __clone_and_map_simple_bio(ci, tio, len); 1393 } 1394 } 1395 1396 static int __send_empty_flush(struct clone_info *ci) 1397 { 1398 unsigned target_nr = 0; 1399 struct dm_target *ti; 1400 1401 BUG_ON(bio_has_data(ci->bio)); 1402 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1403 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1404 1405 return 0; 1406 } 1407 1408 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1409 sector_t sector, unsigned *len) 1410 { 1411 struct bio *bio = ci->bio; 1412 struct dm_target_io *tio; 1413 int r; 1414 1415 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1416 tio->len_ptr = len; 1417 r = clone_bio(tio, bio, sector, *len); 1418 if (r < 0) { 1419 free_tio(tio); 1420 return r; 1421 } 1422 (void) __map_bio(tio); 1423 1424 return 0; 1425 } 1426 1427 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1428 1429 static unsigned get_num_discard_bios(struct dm_target *ti) 1430 { 1431 return ti->num_discard_bios; 1432 } 1433 1434 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1435 { 1436 return ti->num_secure_erase_bios; 1437 } 1438 1439 static unsigned get_num_write_same_bios(struct dm_target *ti) 1440 { 1441 return ti->num_write_same_bios; 1442 } 1443 1444 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1445 { 1446 return ti->num_write_zeroes_bios; 1447 } 1448 1449 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1450 1451 static bool is_split_required_for_discard(struct dm_target *ti) 1452 { 1453 return ti->split_discard_bios; 1454 } 1455 1456 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1457 get_num_bios_fn get_num_bios, 1458 is_split_required_fn is_split_required) 1459 { 1460 unsigned len; 1461 unsigned num_bios; 1462 1463 /* 1464 * Even though the device advertised support for this type of 1465 * request, that does not mean every target supports it, and 1466 * reconfiguration might also have changed that since the 1467 * check was performed. 1468 */ 1469 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1470 if (!num_bios) 1471 return -EOPNOTSUPP; 1472 1473 if (is_split_required && !is_split_required(ti)) 1474 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1475 else 1476 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1477 1478 __send_duplicate_bios(ci, ti, num_bios, &len); 1479 1480 ci->sector += len; 1481 ci->sector_count -= len; 1482 1483 return 0; 1484 } 1485 1486 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1487 { 1488 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1489 is_split_required_for_discard); 1490 } 1491 1492 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1493 { 1494 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL); 1495 } 1496 1497 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1498 { 1499 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1500 } 1501 1502 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1503 { 1504 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1505 } 1506 1507 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1508 int *result) 1509 { 1510 struct bio *bio = ci->bio; 1511 1512 if (bio_op(bio) == REQ_OP_DISCARD) 1513 *result = __send_discard(ci, ti); 1514 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1515 *result = __send_secure_erase(ci, ti); 1516 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1517 *result = __send_write_same(ci, ti); 1518 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1519 *result = __send_write_zeroes(ci, ti); 1520 else 1521 return false; 1522 1523 return true; 1524 } 1525 1526 /* 1527 * Select the correct strategy for processing a non-flush bio. 1528 */ 1529 static int __split_and_process_non_flush(struct clone_info *ci) 1530 { 1531 struct bio *bio = ci->bio; 1532 struct dm_target *ti; 1533 unsigned len; 1534 int r; 1535 1536 ti = dm_table_find_target(ci->map, ci->sector); 1537 if (!dm_target_is_valid(ti)) 1538 return -EIO; 1539 1540 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1541 return r; 1542 1543 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1544 len = ci->sector_count; 1545 else 1546 len = min_t(sector_t, max_io_len(ci->sector, ti), 1547 ci->sector_count); 1548 1549 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1550 if (r < 0) 1551 return r; 1552 1553 ci->sector += len; 1554 ci->sector_count -= len; 1555 1556 return 0; 1557 } 1558 1559 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1560 struct dm_table *map, struct bio *bio) 1561 { 1562 ci->map = map; 1563 ci->io = alloc_io(md, bio); 1564 ci->sector = bio->bi_iter.bi_sector; 1565 } 1566 1567 /* 1568 * Entry point to split a bio into clones and submit them to the targets. 1569 */ 1570 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1571 struct dm_table *map, struct bio *bio) 1572 { 1573 struct clone_info ci; 1574 blk_qc_t ret = BLK_QC_T_NONE; 1575 int error = 0; 1576 1577 if (unlikely(!map)) { 1578 bio_io_error(bio); 1579 return ret; 1580 } 1581 1582 init_clone_info(&ci, md, map, bio); 1583 1584 if (bio->bi_opf & REQ_PREFLUSH) { 1585 ci.bio = &ci.io->md->flush_bio; 1586 ci.sector_count = 0; 1587 error = __send_empty_flush(&ci); 1588 /* dec_pending submits any data associated with flush */ 1589 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1590 ci.bio = bio; 1591 ci.sector_count = 0; 1592 error = __split_and_process_non_flush(&ci); 1593 } else { 1594 ci.bio = bio; 1595 ci.sector_count = bio_sectors(bio); 1596 while (ci.sector_count && !error) { 1597 error = __split_and_process_non_flush(&ci); 1598 if (current->bio_list && ci.sector_count && !error) { 1599 /* 1600 * Remainder must be passed to generic_make_request() 1601 * so that it gets handled *after* bios already submitted 1602 * have been completely processed. 1603 * We take a clone of the original to store in 1604 * ci.io->orig_bio to be used by end_io_acct() and 1605 * for dec_pending to use for completion handling. 1606 * As this path is not used for REQ_OP_ZONE_REPORT, 1607 * the usage of io->orig_bio in dm_remap_zone_report() 1608 * won't be affected by this reassignment. 1609 */ 1610 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1611 GFP_NOIO, &md->queue->bio_split); 1612 ci.io->orig_bio = b; 1613 bio_chain(b, bio); 1614 ret = generic_make_request(bio); 1615 break; 1616 } 1617 } 1618 } 1619 1620 /* drop the extra reference count */ 1621 dec_pending(ci.io, errno_to_blk_status(error)); 1622 return ret; 1623 } 1624 1625 /* 1626 * Optimized variant of __split_and_process_bio that leverages the 1627 * fact that targets that use it do _not_ have a need to split bios. 1628 */ 1629 static blk_qc_t __process_bio(struct mapped_device *md, 1630 struct dm_table *map, struct bio *bio) 1631 { 1632 struct clone_info ci; 1633 blk_qc_t ret = BLK_QC_T_NONE; 1634 int error = 0; 1635 1636 if (unlikely(!map)) { 1637 bio_io_error(bio); 1638 return ret; 1639 } 1640 1641 init_clone_info(&ci, md, map, bio); 1642 1643 if (bio->bi_opf & REQ_PREFLUSH) { 1644 ci.bio = &ci.io->md->flush_bio; 1645 ci.sector_count = 0; 1646 error = __send_empty_flush(&ci); 1647 /* dec_pending submits any data associated with flush */ 1648 } else { 1649 struct dm_target *ti = md->immutable_target; 1650 struct dm_target_io *tio; 1651 1652 /* 1653 * Defend against IO still getting in during teardown 1654 * - as was seen for a time with nvme-fcloop 1655 */ 1656 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1657 error = -EIO; 1658 goto out; 1659 } 1660 1661 ci.bio = bio; 1662 ci.sector_count = bio_sectors(bio); 1663 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1664 goto out; 1665 1666 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1667 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1668 } 1669 out: 1670 /* drop the extra reference count */ 1671 dec_pending(ci.io, errno_to_blk_status(error)); 1672 return ret; 1673 } 1674 1675 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1676 1677 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1678 process_bio_fn process_bio) 1679 { 1680 struct mapped_device *md = q->queuedata; 1681 blk_qc_t ret = BLK_QC_T_NONE; 1682 int srcu_idx; 1683 struct dm_table *map; 1684 1685 map = dm_get_live_table(md, &srcu_idx); 1686 1687 /* if we're suspended, we have to queue this io for later */ 1688 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1689 dm_put_live_table(md, srcu_idx); 1690 1691 if (!(bio->bi_opf & REQ_RAHEAD)) 1692 queue_io(md, bio); 1693 else 1694 bio_io_error(bio); 1695 return ret; 1696 } 1697 1698 ret = process_bio(md, map, bio); 1699 1700 dm_put_live_table(md, srcu_idx); 1701 return ret; 1702 } 1703 1704 /* 1705 * The request function that remaps the bio to one target and 1706 * splits off any remainder. 1707 */ 1708 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1709 { 1710 return __dm_make_request(q, bio, __split_and_process_bio); 1711 } 1712 1713 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1714 { 1715 return __dm_make_request(q, bio, __process_bio); 1716 } 1717 1718 static int dm_any_congested(void *congested_data, int bdi_bits) 1719 { 1720 int r = bdi_bits; 1721 struct mapped_device *md = congested_data; 1722 struct dm_table *map; 1723 1724 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1725 if (dm_request_based(md)) { 1726 /* 1727 * With request-based DM we only need to check the 1728 * top-level queue for congestion. 1729 */ 1730 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1731 } else { 1732 map = dm_get_live_table_fast(md); 1733 if (map) 1734 r = dm_table_any_congested(map, bdi_bits); 1735 dm_put_live_table_fast(md); 1736 } 1737 } 1738 1739 return r; 1740 } 1741 1742 /*----------------------------------------------------------------- 1743 * An IDR is used to keep track of allocated minor numbers. 1744 *---------------------------------------------------------------*/ 1745 static void free_minor(int minor) 1746 { 1747 spin_lock(&_minor_lock); 1748 idr_remove(&_minor_idr, minor); 1749 spin_unlock(&_minor_lock); 1750 } 1751 1752 /* 1753 * See if the device with a specific minor # is free. 1754 */ 1755 static int specific_minor(int minor) 1756 { 1757 int r; 1758 1759 if (minor >= (1 << MINORBITS)) 1760 return -EINVAL; 1761 1762 idr_preload(GFP_KERNEL); 1763 spin_lock(&_minor_lock); 1764 1765 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1766 1767 spin_unlock(&_minor_lock); 1768 idr_preload_end(); 1769 if (r < 0) 1770 return r == -ENOSPC ? -EBUSY : r; 1771 return 0; 1772 } 1773 1774 static int next_free_minor(int *minor) 1775 { 1776 int r; 1777 1778 idr_preload(GFP_KERNEL); 1779 spin_lock(&_minor_lock); 1780 1781 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1782 1783 spin_unlock(&_minor_lock); 1784 idr_preload_end(); 1785 if (r < 0) 1786 return r; 1787 *minor = r; 1788 return 0; 1789 } 1790 1791 static const struct block_device_operations dm_blk_dops; 1792 static const struct dax_operations dm_dax_ops; 1793 1794 static void dm_wq_work(struct work_struct *work); 1795 1796 static void dm_init_normal_md_queue(struct mapped_device *md) 1797 { 1798 md->use_blk_mq = false; 1799 1800 /* 1801 * Initialize aspects of queue that aren't relevant for blk-mq 1802 */ 1803 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1804 } 1805 1806 static void cleanup_mapped_device(struct mapped_device *md) 1807 { 1808 if (md->wq) 1809 destroy_workqueue(md->wq); 1810 if (md->kworker_task) 1811 kthread_stop(md->kworker_task); 1812 bioset_exit(&md->bs); 1813 bioset_exit(&md->io_bs); 1814 1815 if (md->dax_dev) { 1816 kill_dax(md->dax_dev); 1817 put_dax(md->dax_dev); 1818 md->dax_dev = NULL; 1819 } 1820 1821 if (md->disk) { 1822 spin_lock(&_minor_lock); 1823 md->disk->private_data = NULL; 1824 spin_unlock(&_minor_lock); 1825 del_gendisk(md->disk); 1826 put_disk(md->disk); 1827 } 1828 1829 if (md->queue) 1830 blk_cleanup_queue(md->queue); 1831 1832 cleanup_srcu_struct(&md->io_barrier); 1833 1834 if (md->bdev) { 1835 bdput(md->bdev); 1836 md->bdev = NULL; 1837 } 1838 1839 mutex_destroy(&md->suspend_lock); 1840 mutex_destroy(&md->type_lock); 1841 mutex_destroy(&md->table_devices_lock); 1842 1843 dm_mq_cleanup_mapped_device(md); 1844 } 1845 1846 /* 1847 * Allocate and initialise a blank device with a given minor. 1848 */ 1849 static struct mapped_device *alloc_dev(int minor) 1850 { 1851 int r, numa_node_id = dm_get_numa_node(); 1852 struct dax_device *dax_dev = NULL; 1853 struct mapped_device *md; 1854 void *old_md; 1855 1856 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1857 if (!md) { 1858 DMWARN("unable to allocate device, out of memory."); 1859 return NULL; 1860 } 1861 1862 if (!try_module_get(THIS_MODULE)) 1863 goto bad_module_get; 1864 1865 /* get a minor number for the dev */ 1866 if (minor == DM_ANY_MINOR) 1867 r = next_free_minor(&minor); 1868 else 1869 r = specific_minor(minor); 1870 if (r < 0) 1871 goto bad_minor; 1872 1873 r = init_srcu_struct(&md->io_barrier); 1874 if (r < 0) 1875 goto bad_io_barrier; 1876 1877 md->numa_node_id = numa_node_id; 1878 md->use_blk_mq = dm_use_blk_mq_default(); 1879 md->init_tio_pdu = false; 1880 md->type = DM_TYPE_NONE; 1881 mutex_init(&md->suspend_lock); 1882 mutex_init(&md->type_lock); 1883 mutex_init(&md->table_devices_lock); 1884 spin_lock_init(&md->deferred_lock); 1885 atomic_set(&md->holders, 1); 1886 atomic_set(&md->open_count, 0); 1887 atomic_set(&md->event_nr, 0); 1888 atomic_set(&md->uevent_seq, 0); 1889 INIT_LIST_HEAD(&md->uevent_list); 1890 INIT_LIST_HEAD(&md->table_devices); 1891 spin_lock_init(&md->uevent_lock); 1892 1893 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL); 1894 if (!md->queue) 1895 goto bad; 1896 md->queue->queuedata = md; 1897 md->queue->backing_dev_info->congested_data = md; 1898 1899 md->disk = alloc_disk_node(1, md->numa_node_id); 1900 if (!md->disk) 1901 goto bad; 1902 1903 atomic_set(&md->pending[0], 0); 1904 atomic_set(&md->pending[1], 0); 1905 init_waitqueue_head(&md->wait); 1906 INIT_WORK(&md->work, dm_wq_work); 1907 init_waitqueue_head(&md->eventq); 1908 init_completion(&md->kobj_holder.completion); 1909 md->kworker_task = NULL; 1910 1911 md->disk->major = _major; 1912 md->disk->first_minor = minor; 1913 md->disk->fops = &dm_blk_dops; 1914 md->disk->queue = md->queue; 1915 md->disk->private_data = md; 1916 sprintf(md->disk->disk_name, "dm-%d", minor); 1917 1918 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1919 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1920 if (!dax_dev) 1921 goto bad; 1922 } 1923 md->dax_dev = dax_dev; 1924 1925 add_disk_no_queue_reg(md->disk); 1926 format_dev_t(md->name, MKDEV(_major, minor)); 1927 1928 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1929 if (!md->wq) 1930 goto bad; 1931 1932 md->bdev = bdget_disk(md->disk, 0); 1933 if (!md->bdev) 1934 goto bad; 1935 1936 bio_init(&md->flush_bio, NULL, 0); 1937 bio_set_dev(&md->flush_bio, md->bdev); 1938 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1939 1940 dm_stats_init(&md->stats); 1941 1942 /* Populate the mapping, nobody knows we exist yet */ 1943 spin_lock(&_minor_lock); 1944 old_md = idr_replace(&_minor_idr, md, minor); 1945 spin_unlock(&_minor_lock); 1946 1947 BUG_ON(old_md != MINOR_ALLOCED); 1948 1949 return md; 1950 1951 bad: 1952 cleanup_mapped_device(md); 1953 bad_io_barrier: 1954 free_minor(minor); 1955 bad_minor: 1956 module_put(THIS_MODULE); 1957 bad_module_get: 1958 kvfree(md); 1959 return NULL; 1960 } 1961 1962 static void unlock_fs(struct mapped_device *md); 1963 1964 static void free_dev(struct mapped_device *md) 1965 { 1966 int minor = MINOR(disk_devt(md->disk)); 1967 1968 unlock_fs(md); 1969 1970 cleanup_mapped_device(md); 1971 1972 free_table_devices(&md->table_devices); 1973 dm_stats_cleanup(&md->stats); 1974 free_minor(minor); 1975 1976 module_put(THIS_MODULE); 1977 kvfree(md); 1978 } 1979 1980 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1981 { 1982 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1983 int ret = 0; 1984 1985 if (dm_table_bio_based(t)) { 1986 /* 1987 * The md may already have mempools that need changing. 1988 * If so, reload bioset because front_pad may have changed 1989 * because a different table was loaded. 1990 */ 1991 bioset_exit(&md->bs); 1992 bioset_exit(&md->io_bs); 1993 1994 } else if (bioset_initialized(&md->bs)) { 1995 /* 1996 * There's no need to reload with request-based dm 1997 * because the size of front_pad doesn't change. 1998 * Note for future: If you are to reload bioset, 1999 * prep-ed requests in the queue may refer 2000 * to bio from the old bioset, so you must walk 2001 * through the queue to unprep. 2002 */ 2003 goto out; 2004 } 2005 2006 BUG_ON(!p || 2007 bioset_initialized(&md->bs) || 2008 bioset_initialized(&md->io_bs)); 2009 2010 ret = bioset_init_from_src(&md->bs, &p->bs); 2011 if (ret) 2012 goto out; 2013 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2014 if (ret) 2015 bioset_exit(&md->bs); 2016 out: 2017 /* mempool bind completed, no longer need any mempools in the table */ 2018 dm_table_free_md_mempools(t); 2019 return ret; 2020 } 2021 2022 /* 2023 * Bind a table to the device. 2024 */ 2025 static void event_callback(void *context) 2026 { 2027 unsigned long flags; 2028 LIST_HEAD(uevents); 2029 struct mapped_device *md = (struct mapped_device *) context; 2030 2031 spin_lock_irqsave(&md->uevent_lock, flags); 2032 list_splice_init(&md->uevent_list, &uevents); 2033 spin_unlock_irqrestore(&md->uevent_lock, flags); 2034 2035 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2036 2037 atomic_inc(&md->event_nr); 2038 wake_up(&md->eventq); 2039 dm_issue_global_event(); 2040 } 2041 2042 /* 2043 * Protected by md->suspend_lock obtained by dm_swap_table(). 2044 */ 2045 static void __set_size(struct mapped_device *md, sector_t size) 2046 { 2047 lockdep_assert_held(&md->suspend_lock); 2048 2049 set_capacity(md->disk, size); 2050 2051 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2052 } 2053 2054 /* 2055 * Returns old map, which caller must destroy. 2056 */ 2057 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2058 struct queue_limits *limits) 2059 { 2060 struct dm_table *old_map; 2061 struct request_queue *q = md->queue; 2062 bool request_based = dm_table_request_based(t); 2063 sector_t size; 2064 int ret; 2065 2066 lockdep_assert_held(&md->suspend_lock); 2067 2068 size = dm_table_get_size(t); 2069 2070 /* 2071 * Wipe any geometry if the size of the table changed. 2072 */ 2073 if (size != dm_get_size(md)) 2074 memset(&md->geometry, 0, sizeof(md->geometry)); 2075 2076 __set_size(md, size); 2077 2078 dm_table_event_callback(t, event_callback, md); 2079 2080 /* 2081 * The queue hasn't been stopped yet, if the old table type wasn't 2082 * for request-based during suspension. So stop it to prevent 2083 * I/O mapping before resume. 2084 * This must be done before setting the queue restrictions, 2085 * because request-based dm may be run just after the setting. 2086 */ 2087 if (request_based) 2088 dm_stop_queue(q); 2089 2090 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2091 /* 2092 * Leverage the fact that request-based DM targets and 2093 * NVMe bio based targets are immutable singletons 2094 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2095 * and __process_bio. 2096 */ 2097 md->immutable_target = dm_table_get_immutable_target(t); 2098 } 2099 2100 ret = __bind_mempools(md, t); 2101 if (ret) { 2102 old_map = ERR_PTR(ret); 2103 goto out; 2104 } 2105 2106 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2107 rcu_assign_pointer(md->map, (void *)t); 2108 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2109 2110 dm_table_set_restrictions(t, q, limits); 2111 if (old_map) 2112 dm_sync_table(md); 2113 2114 out: 2115 return old_map; 2116 } 2117 2118 /* 2119 * Returns unbound table for the caller to free. 2120 */ 2121 static struct dm_table *__unbind(struct mapped_device *md) 2122 { 2123 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2124 2125 if (!map) 2126 return NULL; 2127 2128 dm_table_event_callback(map, NULL, NULL); 2129 RCU_INIT_POINTER(md->map, NULL); 2130 dm_sync_table(md); 2131 2132 return map; 2133 } 2134 2135 /* 2136 * Constructor for a new device. 2137 */ 2138 int dm_create(int minor, struct mapped_device **result) 2139 { 2140 int r; 2141 struct mapped_device *md; 2142 2143 md = alloc_dev(minor); 2144 if (!md) 2145 return -ENXIO; 2146 2147 r = dm_sysfs_init(md); 2148 if (r) { 2149 free_dev(md); 2150 return r; 2151 } 2152 2153 *result = md; 2154 return 0; 2155 } 2156 2157 /* 2158 * Functions to manage md->type. 2159 * All are required to hold md->type_lock. 2160 */ 2161 void dm_lock_md_type(struct mapped_device *md) 2162 { 2163 mutex_lock(&md->type_lock); 2164 } 2165 2166 void dm_unlock_md_type(struct mapped_device *md) 2167 { 2168 mutex_unlock(&md->type_lock); 2169 } 2170 2171 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2172 { 2173 BUG_ON(!mutex_is_locked(&md->type_lock)); 2174 md->type = type; 2175 } 2176 2177 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2178 { 2179 return md->type; 2180 } 2181 2182 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2183 { 2184 return md->immutable_target_type; 2185 } 2186 2187 /* 2188 * The queue_limits are only valid as long as you have a reference 2189 * count on 'md'. 2190 */ 2191 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2192 { 2193 BUG_ON(!atomic_read(&md->holders)); 2194 return &md->queue->limits; 2195 } 2196 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2197 2198 /* 2199 * Setup the DM device's queue based on md's type 2200 */ 2201 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2202 { 2203 int r; 2204 struct queue_limits limits; 2205 enum dm_queue_mode type = dm_get_md_type(md); 2206 2207 switch (type) { 2208 case DM_TYPE_REQUEST_BASED: 2209 dm_init_normal_md_queue(md); 2210 r = dm_old_init_request_queue(md, t); 2211 if (r) { 2212 DMERR("Cannot initialize queue for request-based mapped device"); 2213 return r; 2214 } 2215 break; 2216 case DM_TYPE_MQ_REQUEST_BASED: 2217 r = dm_mq_init_request_queue(md, t); 2218 if (r) { 2219 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2220 return r; 2221 } 2222 break; 2223 case DM_TYPE_BIO_BASED: 2224 case DM_TYPE_DAX_BIO_BASED: 2225 dm_init_normal_md_queue(md); 2226 blk_queue_make_request(md->queue, dm_make_request); 2227 break; 2228 case DM_TYPE_NVME_BIO_BASED: 2229 dm_init_normal_md_queue(md); 2230 blk_queue_make_request(md->queue, dm_make_request_nvme); 2231 break; 2232 case DM_TYPE_NONE: 2233 WARN_ON_ONCE(true); 2234 break; 2235 } 2236 2237 r = dm_calculate_queue_limits(t, &limits); 2238 if (r) { 2239 DMERR("Cannot calculate initial queue limits"); 2240 return r; 2241 } 2242 dm_table_set_restrictions(t, md->queue, &limits); 2243 blk_register_queue(md->disk); 2244 2245 return 0; 2246 } 2247 2248 struct mapped_device *dm_get_md(dev_t dev) 2249 { 2250 struct mapped_device *md; 2251 unsigned minor = MINOR(dev); 2252 2253 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2254 return NULL; 2255 2256 spin_lock(&_minor_lock); 2257 2258 md = idr_find(&_minor_idr, minor); 2259 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2260 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2261 md = NULL; 2262 goto out; 2263 } 2264 dm_get(md); 2265 out: 2266 spin_unlock(&_minor_lock); 2267 2268 return md; 2269 } 2270 EXPORT_SYMBOL_GPL(dm_get_md); 2271 2272 void *dm_get_mdptr(struct mapped_device *md) 2273 { 2274 return md->interface_ptr; 2275 } 2276 2277 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2278 { 2279 md->interface_ptr = ptr; 2280 } 2281 2282 void dm_get(struct mapped_device *md) 2283 { 2284 atomic_inc(&md->holders); 2285 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2286 } 2287 2288 int dm_hold(struct mapped_device *md) 2289 { 2290 spin_lock(&_minor_lock); 2291 if (test_bit(DMF_FREEING, &md->flags)) { 2292 spin_unlock(&_minor_lock); 2293 return -EBUSY; 2294 } 2295 dm_get(md); 2296 spin_unlock(&_minor_lock); 2297 return 0; 2298 } 2299 EXPORT_SYMBOL_GPL(dm_hold); 2300 2301 const char *dm_device_name(struct mapped_device *md) 2302 { 2303 return md->name; 2304 } 2305 EXPORT_SYMBOL_GPL(dm_device_name); 2306 2307 static void __dm_destroy(struct mapped_device *md, bool wait) 2308 { 2309 struct dm_table *map; 2310 int srcu_idx; 2311 2312 might_sleep(); 2313 2314 spin_lock(&_minor_lock); 2315 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2316 set_bit(DMF_FREEING, &md->flags); 2317 spin_unlock(&_minor_lock); 2318 2319 blk_set_queue_dying(md->queue); 2320 2321 if (dm_request_based(md) && md->kworker_task) 2322 kthread_flush_worker(&md->kworker); 2323 2324 /* 2325 * Take suspend_lock so that presuspend and postsuspend methods 2326 * do not race with internal suspend. 2327 */ 2328 mutex_lock(&md->suspend_lock); 2329 map = dm_get_live_table(md, &srcu_idx); 2330 if (!dm_suspended_md(md)) { 2331 dm_table_presuspend_targets(map); 2332 dm_table_postsuspend_targets(map); 2333 } 2334 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2335 dm_put_live_table(md, srcu_idx); 2336 mutex_unlock(&md->suspend_lock); 2337 2338 /* 2339 * Rare, but there may be I/O requests still going to complete, 2340 * for example. Wait for all references to disappear. 2341 * No one should increment the reference count of the mapped_device, 2342 * after the mapped_device state becomes DMF_FREEING. 2343 */ 2344 if (wait) 2345 while (atomic_read(&md->holders)) 2346 msleep(1); 2347 else if (atomic_read(&md->holders)) 2348 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2349 dm_device_name(md), atomic_read(&md->holders)); 2350 2351 dm_sysfs_exit(md); 2352 dm_table_destroy(__unbind(md)); 2353 free_dev(md); 2354 } 2355 2356 void dm_destroy(struct mapped_device *md) 2357 { 2358 __dm_destroy(md, true); 2359 } 2360 2361 void dm_destroy_immediate(struct mapped_device *md) 2362 { 2363 __dm_destroy(md, false); 2364 } 2365 2366 void dm_put(struct mapped_device *md) 2367 { 2368 atomic_dec(&md->holders); 2369 } 2370 EXPORT_SYMBOL_GPL(dm_put); 2371 2372 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2373 { 2374 int r = 0; 2375 DEFINE_WAIT(wait); 2376 2377 while (1) { 2378 prepare_to_wait(&md->wait, &wait, task_state); 2379 2380 if (!md_in_flight(md)) 2381 break; 2382 2383 if (signal_pending_state(task_state, current)) { 2384 r = -EINTR; 2385 break; 2386 } 2387 2388 io_schedule(); 2389 } 2390 finish_wait(&md->wait, &wait); 2391 2392 return r; 2393 } 2394 2395 /* 2396 * Process the deferred bios 2397 */ 2398 static void dm_wq_work(struct work_struct *work) 2399 { 2400 struct mapped_device *md = container_of(work, struct mapped_device, 2401 work); 2402 struct bio *c; 2403 int srcu_idx; 2404 struct dm_table *map; 2405 2406 map = dm_get_live_table(md, &srcu_idx); 2407 2408 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2409 spin_lock_irq(&md->deferred_lock); 2410 c = bio_list_pop(&md->deferred); 2411 spin_unlock_irq(&md->deferred_lock); 2412 2413 if (!c) 2414 break; 2415 2416 if (dm_request_based(md)) 2417 generic_make_request(c); 2418 else 2419 __split_and_process_bio(md, map, c); 2420 } 2421 2422 dm_put_live_table(md, srcu_idx); 2423 } 2424 2425 static void dm_queue_flush(struct mapped_device *md) 2426 { 2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2428 smp_mb__after_atomic(); 2429 queue_work(md->wq, &md->work); 2430 } 2431 2432 /* 2433 * Swap in a new table, returning the old one for the caller to destroy. 2434 */ 2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2436 { 2437 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2438 struct queue_limits limits; 2439 int r; 2440 2441 mutex_lock(&md->suspend_lock); 2442 2443 /* device must be suspended */ 2444 if (!dm_suspended_md(md)) 2445 goto out; 2446 2447 /* 2448 * If the new table has no data devices, retain the existing limits. 2449 * This helps multipath with queue_if_no_path if all paths disappear, 2450 * then new I/O is queued based on these limits, and then some paths 2451 * reappear. 2452 */ 2453 if (dm_table_has_no_data_devices(table)) { 2454 live_map = dm_get_live_table_fast(md); 2455 if (live_map) 2456 limits = md->queue->limits; 2457 dm_put_live_table_fast(md); 2458 } 2459 2460 if (!live_map) { 2461 r = dm_calculate_queue_limits(table, &limits); 2462 if (r) { 2463 map = ERR_PTR(r); 2464 goto out; 2465 } 2466 } 2467 2468 map = __bind(md, table, &limits); 2469 dm_issue_global_event(); 2470 2471 out: 2472 mutex_unlock(&md->suspend_lock); 2473 return map; 2474 } 2475 2476 /* 2477 * Functions to lock and unlock any filesystem running on the 2478 * device. 2479 */ 2480 static int lock_fs(struct mapped_device *md) 2481 { 2482 int r; 2483 2484 WARN_ON(md->frozen_sb); 2485 2486 md->frozen_sb = freeze_bdev(md->bdev); 2487 if (IS_ERR(md->frozen_sb)) { 2488 r = PTR_ERR(md->frozen_sb); 2489 md->frozen_sb = NULL; 2490 return r; 2491 } 2492 2493 set_bit(DMF_FROZEN, &md->flags); 2494 2495 return 0; 2496 } 2497 2498 static void unlock_fs(struct mapped_device *md) 2499 { 2500 if (!test_bit(DMF_FROZEN, &md->flags)) 2501 return; 2502 2503 thaw_bdev(md->bdev, md->frozen_sb); 2504 md->frozen_sb = NULL; 2505 clear_bit(DMF_FROZEN, &md->flags); 2506 } 2507 2508 /* 2509 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2510 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2511 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2512 * 2513 * If __dm_suspend returns 0, the device is completely quiescent 2514 * now. There is no request-processing activity. All new requests 2515 * are being added to md->deferred list. 2516 */ 2517 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2518 unsigned suspend_flags, long task_state, 2519 int dmf_suspended_flag) 2520 { 2521 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2522 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2523 int r; 2524 2525 lockdep_assert_held(&md->suspend_lock); 2526 2527 /* 2528 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2529 * This flag is cleared before dm_suspend returns. 2530 */ 2531 if (noflush) 2532 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2533 else 2534 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2535 2536 /* 2537 * This gets reverted if there's an error later and the targets 2538 * provide the .presuspend_undo hook. 2539 */ 2540 dm_table_presuspend_targets(map); 2541 2542 /* 2543 * Flush I/O to the device. 2544 * Any I/O submitted after lock_fs() may not be flushed. 2545 * noflush takes precedence over do_lockfs. 2546 * (lock_fs() flushes I/Os and waits for them to complete.) 2547 */ 2548 if (!noflush && do_lockfs) { 2549 r = lock_fs(md); 2550 if (r) { 2551 dm_table_presuspend_undo_targets(map); 2552 return r; 2553 } 2554 } 2555 2556 /* 2557 * Here we must make sure that no processes are submitting requests 2558 * to target drivers i.e. no one may be executing 2559 * __split_and_process_bio. This is called from dm_request and 2560 * dm_wq_work. 2561 * 2562 * To get all processes out of __split_and_process_bio in dm_request, 2563 * we take the write lock. To prevent any process from reentering 2564 * __split_and_process_bio from dm_request and quiesce the thread 2565 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2566 * flush_workqueue(md->wq). 2567 */ 2568 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2569 if (map) 2570 synchronize_srcu(&md->io_barrier); 2571 2572 /* 2573 * Stop md->queue before flushing md->wq in case request-based 2574 * dm defers requests to md->wq from md->queue. 2575 */ 2576 if (dm_request_based(md)) { 2577 dm_stop_queue(md->queue); 2578 if (md->kworker_task) 2579 kthread_flush_worker(&md->kworker); 2580 } 2581 2582 flush_workqueue(md->wq); 2583 2584 /* 2585 * At this point no more requests are entering target request routines. 2586 * We call dm_wait_for_completion to wait for all existing requests 2587 * to finish. 2588 */ 2589 r = dm_wait_for_completion(md, task_state); 2590 if (!r) 2591 set_bit(dmf_suspended_flag, &md->flags); 2592 2593 if (noflush) 2594 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2595 if (map) 2596 synchronize_srcu(&md->io_barrier); 2597 2598 /* were we interrupted ? */ 2599 if (r < 0) { 2600 dm_queue_flush(md); 2601 2602 if (dm_request_based(md)) 2603 dm_start_queue(md->queue); 2604 2605 unlock_fs(md); 2606 dm_table_presuspend_undo_targets(map); 2607 /* pushback list is already flushed, so skip flush */ 2608 } 2609 2610 return r; 2611 } 2612 2613 /* 2614 * We need to be able to change a mapping table under a mounted 2615 * filesystem. For example we might want to move some data in 2616 * the background. Before the table can be swapped with 2617 * dm_bind_table, dm_suspend must be called to flush any in 2618 * flight bios and ensure that any further io gets deferred. 2619 */ 2620 /* 2621 * Suspend mechanism in request-based dm. 2622 * 2623 * 1. Flush all I/Os by lock_fs() if needed. 2624 * 2. Stop dispatching any I/O by stopping the request_queue. 2625 * 3. Wait for all in-flight I/Os to be completed or requeued. 2626 * 2627 * To abort suspend, start the request_queue. 2628 */ 2629 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2630 { 2631 struct dm_table *map = NULL; 2632 int r = 0; 2633 2634 retry: 2635 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2636 2637 if (dm_suspended_md(md)) { 2638 r = -EINVAL; 2639 goto out_unlock; 2640 } 2641 2642 if (dm_suspended_internally_md(md)) { 2643 /* already internally suspended, wait for internal resume */ 2644 mutex_unlock(&md->suspend_lock); 2645 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2646 if (r) 2647 return r; 2648 goto retry; 2649 } 2650 2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2652 2653 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2654 if (r) 2655 goto out_unlock; 2656 2657 dm_table_postsuspend_targets(map); 2658 2659 out_unlock: 2660 mutex_unlock(&md->suspend_lock); 2661 return r; 2662 } 2663 2664 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2665 { 2666 if (map) { 2667 int r = dm_table_resume_targets(map); 2668 if (r) 2669 return r; 2670 } 2671 2672 dm_queue_flush(md); 2673 2674 /* 2675 * Flushing deferred I/Os must be done after targets are resumed 2676 * so that mapping of targets can work correctly. 2677 * Request-based dm is queueing the deferred I/Os in its request_queue. 2678 */ 2679 if (dm_request_based(md)) 2680 dm_start_queue(md->queue); 2681 2682 unlock_fs(md); 2683 2684 return 0; 2685 } 2686 2687 int dm_resume(struct mapped_device *md) 2688 { 2689 int r; 2690 struct dm_table *map = NULL; 2691 2692 retry: 2693 r = -EINVAL; 2694 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2695 2696 if (!dm_suspended_md(md)) 2697 goto out; 2698 2699 if (dm_suspended_internally_md(md)) { 2700 /* already internally suspended, wait for internal resume */ 2701 mutex_unlock(&md->suspend_lock); 2702 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2703 if (r) 2704 return r; 2705 goto retry; 2706 } 2707 2708 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2709 if (!map || !dm_table_get_size(map)) 2710 goto out; 2711 2712 r = __dm_resume(md, map); 2713 if (r) 2714 goto out; 2715 2716 clear_bit(DMF_SUSPENDED, &md->flags); 2717 out: 2718 mutex_unlock(&md->suspend_lock); 2719 2720 return r; 2721 } 2722 2723 /* 2724 * Internal suspend/resume works like userspace-driven suspend. It waits 2725 * until all bios finish and prevents issuing new bios to the target drivers. 2726 * It may be used only from the kernel. 2727 */ 2728 2729 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2730 { 2731 struct dm_table *map = NULL; 2732 2733 lockdep_assert_held(&md->suspend_lock); 2734 2735 if (md->internal_suspend_count++) 2736 return; /* nested internal suspend */ 2737 2738 if (dm_suspended_md(md)) { 2739 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2740 return; /* nest suspend */ 2741 } 2742 2743 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2744 2745 /* 2746 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2747 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2748 * would require changing .presuspend to return an error -- avoid this 2749 * until there is a need for more elaborate variants of internal suspend. 2750 */ 2751 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2752 DMF_SUSPENDED_INTERNALLY); 2753 2754 dm_table_postsuspend_targets(map); 2755 } 2756 2757 static void __dm_internal_resume(struct mapped_device *md) 2758 { 2759 BUG_ON(!md->internal_suspend_count); 2760 2761 if (--md->internal_suspend_count) 2762 return; /* resume from nested internal suspend */ 2763 2764 if (dm_suspended_md(md)) 2765 goto done; /* resume from nested suspend */ 2766 2767 /* 2768 * NOTE: existing callers don't need to call dm_table_resume_targets 2769 * (which may fail -- so best to avoid it for now by passing NULL map) 2770 */ 2771 (void) __dm_resume(md, NULL); 2772 2773 done: 2774 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2775 smp_mb__after_atomic(); 2776 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2777 } 2778 2779 void dm_internal_suspend_noflush(struct mapped_device *md) 2780 { 2781 mutex_lock(&md->suspend_lock); 2782 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2783 mutex_unlock(&md->suspend_lock); 2784 } 2785 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2786 2787 void dm_internal_resume(struct mapped_device *md) 2788 { 2789 mutex_lock(&md->suspend_lock); 2790 __dm_internal_resume(md); 2791 mutex_unlock(&md->suspend_lock); 2792 } 2793 EXPORT_SYMBOL_GPL(dm_internal_resume); 2794 2795 /* 2796 * Fast variants of internal suspend/resume hold md->suspend_lock, 2797 * which prevents interaction with userspace-driven suspend. 2798 */ 2799 2800 void dm_internal_suspend_fast(struct mapped_device *md) 2801 { 2802 mutex_lock(&md->suspend_lock); 2803 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2804 return; 2805 2806 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2807 synchronize_srcu(&md->io_barrier); 2808 flush_workqueue(md->wq); 2809 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2810 } 2811 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2812 2813 void dm_internal_resume_fast(struct mapped_device *md) 2814 { 2815 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2816 goto done; 2817 2818 dm_queue_flush(md); 2819 2820 done: 2821 mutex_unlock(&md->suspend_lock); 2822 } 2823 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2824 2825 /*----------------------------------------------------------------- 2826 * Event notification. 2827 *---------------------------------------------------------------*/ 2828 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2829 unsigned cookie) 2830 { 2831 char udev_cookie[DM_COOKIE_LENGTH]; 2832 char *envp[] = { udev_cookie, NULL }; 2833 2834 if (!cookie) 2835 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2836 else { 2837 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2838 DM_COOKIE_ENV_VAR_NAME, cookie); 2839 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2840 action, envp); 2841 } 2842 } 2843 2844 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2845 { 2846 return atomic_add_return(1, &md->uevent_seq); 2847 } 2848 2849 uint32_t dm_get_event_nr(struct mapped_device *md) 2850 { 2851 return atomic_read(&md->event_nr); 2852 } 2853 2854 int dm_wait_event(struct mapped_device *md, int event_nr) 2855 { 2856 return wait_event_interruptible(md->eventq, 2857 (event_nr != atomic_read(&md->event_nr))); 2858 } 2859 2860 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2861 { 2862 unsigned long flags; 2863 2864 spin_lock_irqsave(&md->uevent_lock, flags); 2865 list_add(elist, &md->uevent_list); 2866 spin_unlock_irqrestore(&md->uevent_lock, flags); 2867 } 2868 2869 /* 2870 * The gendisk is only valid as long as you have a reference 2871 * count on 'md'. 2872 */ 2873 struct gendisk *dm_disk(struct mapped_device *md) 2874 { 2875 return md->disk; 2876 } 2877 EXPORT_SYMBOL_GPL(dm_disk); 2878 2879 struct kobject *dm_kobject(struct mapped_device *md) 2880 { 2881 return &md->kobj_holder.kobj; 2882 } 2883 2884 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2885 { 2886 struct mapped_device *md; 2887 2888 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2889 2890 spin_lock(&_minor_lock); 2891 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2892 md = NULL; 2893 goto out; 2894 } 2895 dm_get(md); 2896 out: 2897 spin_unlock(&_minor_lock); 2898 2899 return md; 2900 } 2901 2902 int dm_suspended_md(struct mapped_device *md) 2903 { 2904 return test_bit(DMF_SUSPENDED, &md->flags); 2905 } 2906 2907 int dm_suspended_internally_md(struct mapped_device *md) 2908 { 2909 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2910 } 2911 2912 int dm_test_deferred_remove_flag(struct mapped_device *md) 2913 { 2914 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2915 } 2916 2917 int dm_suspended(struct dm_target *ti) 2918 { 2919 return dm_suspended_md(dm_table_get_md(ti->table)); 2920 } 2921 EXPORT_SYMBOL_GPL(dm_suspended); 2922 2923 int dm_noflush_suspending(struct dm_target *ti) 2924 { 2925 return __noflush_suspending(dm_table_get_md(ti->table)); 2926 } 2927 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2928 2929 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2930 unsigned integrity, unsigned per_io_data_size, 2931 unsigned min_pool_size) 2932 { 2933 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2934 unsigned int pool_size = 0; 2935 unsigned int front_pad, io_front_pad; 2936 int ret; 2937 2938 if (!pools) 2939 return NULL; 2940 2941 switch (type) { 2942 case DM_TYPE_BIO_BASED: 2943 case DM_TYPE_DAX_BIO_BASED: 2944 case DM_TYPE_NVME_BIO_BASED: 2945 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2946 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2947 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2948 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2949 if (ret) 2950 goto out; 2951 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2952 goto out; 2953 break; 2954 case DM_TYPE_REQUEST_BASED: 2955 case DM_TYPE_MQ_REQUEST_BASED: 2956 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2957 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2958 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2959 break; 2960 default: 2961 BUG(); 2962 } 2963 2964 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2965 if (ret) 2966 goto out; 2967 2968 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2969 goto out; 2970 2971 return pools; 2972 2973 out: 2974 dm_free_md_mempools(pools); 2975 2976 return NULL; 2977 } 2978 2979 void dm_free_md_mempools(struct dm_md_mempools *pools) 2980 { 2981 if (!pools) 2982 return; 2983 2984 bioset_exit(&pools->bs); 2985 bioset_exit(&pools->io_bs); 2986 2987 kfree(pools); 2988 } 2989 2990 struct dm_pr { 2991 u64 old_key; 2992 u64 new_key; 2993 u32 flags; 2994 bool fail_early; 2995 }; 2996 2997 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2998 void *data) 2999 { 3000 struct mapped_device *md = bdev->bd_disk->private_data; 3001 struct dm_table *table; 3002 struct dm_target *ti; 3003 int ret = -ENOTTY, srcu_idx; 3004 3005 table = dm_get_live_table(md, &srcu_idx); 3006 if (!table || !dm_table_get_size(table)) 3007 goto out; 3008 3009 /* We only support devices that have a single target */ 3010 if (dm_table_get_num_targets(table) != 1) 3011 goto out; 3012 ti = dm_table_get_target(table, 0); 3013 3014 ret = -EINVAL; 3015 if (!ti->type->iterate_devices) 3016 goto out; 3017 3018 ret = ti->type->iterate_devices(ti, fn, data); 3019 out: 3020 dm_put_live_table(md, srcu_idx); 3021 return ret; 3022 } 3023 3024 /* 3025 * For register / unregister we need to manually call out to every path. 3026 */ 3027 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3028 sector_t start, sector_t len, void *data) 3029 { 3030 struct dm_pr *pr = data; 3031 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3032 3033 if (!ops || !ops->pr_register) 3034 return -EOPNOTSUPP; 3035 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3036 } 3037 3038 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3039 u32 flags) 3040 { 3041 struct dm_pr pr = { 3042 .old_key = old_key, 3043 .new_key = new_key, 3044 .flags = flags, 3045 .fail_early = true, 3046 }; 3047 int ret; 3048 3049 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3050 if (ret && new_key) { 3051 /* unregister all paths if we failed to register any path */ 3052 pr.old_key = new_key; 3053 pr.new_key = 0; 3054 pr.flags = 0; 3055 pr.fail_early = false; 3056 dm_call_pr(bdev, __dm_pr_register, &pr); 3057 } 3058 3059 return ret; 3060 } 3061 3062 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3063 u32 flags) 3064 { 3065 struct mapped_device *md = bdev->bd_disk->private_data; 3066 const struct pr_ops *ops; 3067 int r, srcu_idx; 3068 3069 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3070 if (r < 0) 3071 goto out; 3072 3073 ops = bdev->bd_disk->fops->pr_ops; 3074 if (ops && ops->pr_reserve) 3075 r = ops->pr_reserve(bdev, key, type, flags); 3076 else 3077 r = -EOPNOTSUPP; 3078 out: 3079 dm_unprepare_ioctl(md, srcu_idx); 3080 return r; 3081 } 3082 3083 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3084 { 3085 struct mapped_device *md = bdev->bd_disk->private_data; 3086 const struct pr_ops *ops; 3087 int r, srcu_idx; 3088 3089 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3090 if (r < 0) 3091 goto out; 3092 3093 ops = bdev->bd_disk->fops->pr_ops; 3094 if (ops && ops->pr_release) 3095 r = ops->pr_release(bdev, key, type); 3096 else 3097 r = -EOPNOTSUPP; 3098 out: 3099 dm_unprepare_ioctl(md, srcu_idx); 3100 return r; 3101 } 3102 3103 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3104 enum pr_type type, bool abort) 3105 { 3106 struct mapped_device *md = bdev->bd_disk->private_data; 3107 const struct pr_ops *ops; 3108 int r, srcu_idx; 3109 3110 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3111 if (r < 0) 3112 goto out; 3113 3114 ops = bdev->bd_disk->fops->pr_ops; 3115 if (ops && ops->pr_preempt) 3116 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3117 else 3118 r = -EOPNOTSUPP; 3119 out: 3120 dm_unprepare_ioctl(md, srcu_idx); 3121 return r; 3122 } 3123 3124 static int dm_pr_clear(struct block_device *bdev, u64 key) 3125 { 3126 struct mapped_device *md = bdev->bd_disk->private_data; 3127 const struct pr_ops *ops; 3128 int r, srcu_idx; 3129 3130 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3131 if (r < 0) 3132 goto out; 3133 3134 ops = bdev->bd_disk->fops->pr_ops; 3135 if (ops && ops->pr_clear) 3136 r = ops->pr_clear(bdev, key); 3137 else 3138 r = -EOPNOTSUPP; 3139 out: 3140 dm_unprepare_ioctl(md, srcu_idx); 3141 return r; 3142 } 3143 3144 static const struct pr_ops dm_pr_ops = { 3145 .pr_register = dm_pr_register, 3146 .pr_reserve = dm_pr_reserve, 3147 .pr_release = dm_pr_release, 3148 .pr_preempt = dm_pr_preempt, 3149 .pr_clear = dm_pr_clear, 3150 }; 3151 3152 static const struct block_device_operations dm_blk_dops = { 3153 .open = dm_blk_open, 3154 .release = dm_blk_close, 3155 .ioctl = dm_blk_ioctl, 3156 .getgeo = dm_blk_getgeo, 3157 .pr_ops = &dm_pr_ops, 3158 .owner = THIS_MODULE 3159 }; 3160 3161 static const struct dax_operations dm_dax_ops = { 3162 .direct_access = dm_dax_direct_access, 3163 .copy_from_iter = dm_dax_copy_from_iter, 3164 .copy_to_iter = dm_dax_copy_to_iter, 3165 }; 3166 3167 /* 3168 * module hooks 3169 */ 3170 module_init(dm_init); 3171 module_exit(dm_exit); 3172 3173 module_param(major, uint, 0); 3174 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3175 3176 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3177 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3178 3179 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3180 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3181 3182 MODULE_DESCRIPTION(DM_NAME " driver"); 3183 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3184 MODULE_LICENSE("GPL"); 3185