1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 void *dm_per_bio_data(struct bio *bio, size_t data_size) 83 { 84 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 85 if (!tio->inside_dm_io) 86 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 87 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 88 } 89 EXPORT_SYMBOL_GPL(dm_per_bio_data); 90 91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 92 { 93 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 94 if (io->magic == DM_IO_MAGIC) 95 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 96 BUG_ON(io->magic != DM_TIO_MAGIC); 97 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 98 } 99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 100 101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 102 { 103 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 104 } 105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 106 107 #define MINOR_ALLOCED ((void *)-1) 108 109 #define DM_NUMA_NODE NUMA_NO_NODE 110 static int dm_numa_node = DM_NUMA_NODE; 111 112 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 113 static int swap_bios = DEFAULT_SWAP_BIOS; 114 static int get_swap_bios(void) 115 { 116 int latch = READ_ONCE(swap_bios); 117 if (unlikely(latch <= 0)) 118 latch = DEFAULT_SWAP_BIOS; 119 return latch; 120 } 121 122 /* 123 * For mempools pre-allocation at the table loading time. 124 */ 125 struct dm_md_mempools { 126 struct bio_set bs; 127 struct bio_set io_bs; 128 }; 129 130 struct table_device { 131 struct list_head list; 132 refcount_t count; 133 struct dm_dev dm_dev; 134 }; 135 136 /* 137 * Bio-based DM's mempools' reserved IOs set by the user. 138 */ 139 #define RESERVED_BIO_BASED_IOS 16 140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 141 142 static int __dm_get_module_param_int(int *module_param, int min, int max) 143 { 144 int param = READ_ONCE(*module_param); 145 int modified_param = 0; 146 bool modified = true; 147 148 if (param < min) 149 modified_param = min; 150 else if (param > max) 151 modified_param = max; 152 else 153 modified = false; 154 155 if (modified) { 156 (void)cmpxchg(module_param, param, modified_param); 157 param = modified_param; 158 } 159 160 return param; 161 } 162 163 unsigned __dm_get_module_param(unsigned *module_param, 164 unsigned def, unsigned max) 165 { 166 unsigned param = READ_ONCE(*module_param); 167 unsigned modified_param = 0; 168 169 if (!param) 170 modified_param = def; 171 else if (param > max) 172 modified_param = max; 173 174 if (modified_param) { 175 (void)cmpxchg(module_param, param, modified_param); 176 param = modified_param; 177 } 178 179 return param; 180 } 181 182 unsigned dm_get_reserved_bio_based_ios(void) 183 { 184 return __dm_get_module_param(&reserved_bio_based_ios, 185 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 186 } 187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 188 189 static unsigned dm_get_numa_node(void) 190 { 191 return __dm_get_module_param_int(&dm_numa_node, 192 DM_NUMA_NODE, num_online_nodes() - 1); 193 } 194 195 static int __init local_init(void) 196 { 197 int r; 198 199 r = dm_uevent_init(); 200 if (r) 201 return r; 202 203 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 204 if (!deferred_remove_workqueue) { 205 r = -ENOMEM; 206 goto out_uevent_exit; 207 } 208 209 _major = major; 210 r = register_blkdev(_major, _name); 211 if (r < 0) 212 goto out_free_workqueue; 213 214 if (!_major) 215 _major = r; 216 217 return 0; 218 219 out_free_workqueue: 220 destroy_workqueue(deferred_remove_workqueue); 221 out_uevent_exit: 222 dm_uevent_exit(); 223 224 return r; 225 } 226 227 static void local_exit(void) 228 { 229 flush_scheduled_work(); 230 destroy_workqueue(deferred_remove_workqueue); 231 232 unregister_blkdev(_major, _name); 233 dm_uevent_exit(); 234 235 _major = 0; 236 237 DMINFO("cleaned up"); 238 } 239 240 static int (*_inits[])(void) __initdata = { 241 local_init, 242 dm_target_init, 243 dm_linear_init, 244 dm_stripe_init, 245 dm_io_init, 246 dm_kcopyd_init, 247 dm_interface_init, 248 dm_statistics_init, 249 }; 250 251 static void (*_exits[])(void) = { 252 local_exit, 253 dm_target_exit, 254 dm_linear_exit, 255 dm_stripe_exit, 256 dm_io_exit, 257 dm_kcopyd_exit, 258 dm_interface_exit, 259 dm_statistics_exit, 260 }; 261 262 static int __init dm_init(void) 263 { 264 const int count = ARRAY_SIZE(_inits); 265 int r, i; 266 267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 268 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 269 " Duplicate IMA measurements will not be recorded in the IMA log."); 270 #endif 271 272 for (i = 0; i < count; i++) { 273 r = _inits[i](); 274 if (r) 275 goto bad; 276 } 277 278 return 0; 279 bad: 280 while (i--) 281 _exits[i](); 282 283 return r; 284 } 285 286 static void __exit dm_exit(void) 287 { 288 int i = ARRAY_SIZE(_exits); 289 290 while (i--) 291 _exits[i](); 292 293 /* 294 * Should be empty by this point. 295 */ 296 idr_destroy(&_minor_idr); 297 } 298 299 /* 300 * Block device functions 301 */ 302 int dm_deleting_md(struct mapped_device *md) 303 { 304 return test_bit(DMF_DELETING, &md->flags); 305 } 306 307 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 308 { 309 struct mapped_device *md; 310 311 spin_lock(&_minor_lock); 312 313 md = bdev->bd_disk->private_data; 314 if (!md) 315 goto out; 316 317 if (test_bit(DMF_FREEING, &md->flags) || 318 dm_deleting_md(md)) { 319 md = NULL; 320 goto out; 321 } 322 323 dm_get(md); 324 atomic_inc(&md->open_count); 325 out: 326 spin_unlock(&_minor_lock); 327 328 return md ? 0 : -ENXIO; 329 } 330 331 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = disk->private_data; 338 if (WARN_ON(!md)) 339 goto out; 340 341 if (atomic_dec_and_test(&md->open_count) && 342 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 343 queue_work(deferred_remove_workqueue, &deferred_remove_work); 344 345 dm_put(md); 346 out: 347 spin_unlock(&_minor_lock); 348 } 349 350 int dm_open_count(struct mapped_device *md) 351 { 352 return atomic_read(&md->open_count); 353 } 354 355 /* 356 * Guarantees nothing is using the device before it's deleted. 357 */ 358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 359 { 360 int r = 0; 361 362 spin_lock(&_minor_lock); 363 364 if (dm_open_count(md)) { 365 r = -EBUSY; 366 if (mark_deferred) 367 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 368 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 369 r = -EEXIST; 370 else 371 set_bit(DMF_DELETING, &md->flags); 372 373 spin_unlock(&_minor_lock); 374 375 return r; 376 } 377 378 int dm_cancel_deferred_remove(struct mapped_device *md) 379 { 380 int r = 0; 381 382 spin_lock(&_minor_lock); 383 384 if (test_bit(DMF_DELETING, &md->flags)) 385 r = -EBUSY; 386 else 387 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 388 389 spin_unlock(&_minor_lock); 390 391 return r; 392 } 393 394 static void do_deferred_remove(struct work_struct *w) 395 { 396 dm_deferred_remove(); 397 } 398 399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 400 { 401 struct mapped_device *md = bdev->bd_disk->private_data; 402 403 return dm_get_geometry(md, geo); 404 } 405 406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 407 struct block_device **bdev) 408 { 409 struct dm_target *tgt; 410 struct dm_table *map; 411 int r; 412 413 retry: 414 r = -ENOTTY; 415 map = dm_get_live_table(md, srcu_idx); 416 if (!map || !dm_table_get_size(map)) 417 return r; 418 419 /* We only support devices that have a single target */ 420 if (dm_table_get_num_targets(map) != 1) 421 return r; 422 423 tgt = dm_table_get_target(map, 0); 424 if (!tgt->type->prepare_ioctl) 425 return r; 426 427 if (dm_suspended_md(md)) 428 return -EAGAIN; 429 430 r = tgt->type->prepare_ioctl(tgt, bdev); 431 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 432 dm_put_live_table(md, *srcu_idx); 433 msleep(10); 434 goto retry; 435 } 436 437 return r; 438 } 439 440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 441 { 442 dm_put_live_table(md, srcu_idx); 443 } 444 445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 446 unsigned int cmd, unsigned long arg) 447 { 448 struct mapped_device *md = bdev->bd_disk->private_data; 449 int r, srcu_idx; 450 451 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 452 if (r < 0) 453 goto out; 454 455 if (r > 0) { 456 /* 457 * Target determined this ioctl is being issued against a 458 * subset of the parent bdev; require extra privileges. 459 */ 460 if (!capable(CAP_SYS_RAWIO)) { 461 DMDEBUG_LIMIT( 462 "%s: sending ioctl %x to DM device without required privilege.", 463 current->comm, cmd); 464 r = -ENOIOCTLCMD; 465 goto out; 466 } 467 } 468 469 if (!bdev->bd_disk->fops->ioctl) 470 r = -ENOTTY; 471 else 472 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 473 out: 474 dm_unprepare_ioctl(md, srcu_idx); 475 return r; 476 } 477 478 u64 dm_start_time_ns_from_clone(struct bio *bio) 479 { 480 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 481 struct dm_io *io = tio->io; 482 483 return jiffies_to_nsecs(io->start_time); 484 } 485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 486 487 static void start_io_acct(struct dm_io *io) 488 { 489 struct mapped_device *md = io->md; 490 struct bio *bio = io->orig_bio; 491 492 io->start_time = bio_start_io_acct(bio); 493 if (unlikely(dm_stats_used(&md->stats))) 494 dm_stats_account_io(&md->stats, bio_data_dir(bio), 495 bio->bi_iter.bi_sector, bio_sectors(bio), 496 false, 0, &io->stats_aux); 497 } 498 499 static void end_io_acct(struct mapped_device *md, struct bio *bio, 500 unsigned long start_time, struct dm_stats_aux *stats_aux) 501 { 502 unsigned long duration = jiffies - start_time; 503 504 bio_end_io_acct(bio, start_time); 505 506 if (unlikely(dm_stats_used(&md->stats))) 507 dm_stats_account_io(&md->stats, bio_data_dir(bio), 508 bio->bi_iter.bi_sector, bio_sectors(bio), 509 true, duration, stats_aux); 510 511 /* nudge anyone waiting on suspend queue */ 512 if (unlikely(wq_has_sleeper(&md->wait))) 513 wake_up(&md->wait); 514 } 515 516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 517 { 518 struct dm_io *io; 519 struct dm_target_io *tio; 520 struct bio *clone; 521 522 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 523 if (!clone) 524 return NULL; 525 526 tio = container_of(clone, struct dm_target_io, clone); 527 tio->inside_dm_io = true; 528 tio->io = NULL; 529 530 io = container_of(tio, struct dm_io, tio); 531 io->magic = DM_IO_MAGIC; 532 io->status = 0; 533 atomic_set(&io->io_count, 1); 534 io->orig_bio = bio; 535 io->md = md; 536 spin_lock_init(&io->endio_lock); 537 538 start_io_acct(io); 539 540 return io; 541 } 542 543 static void free_io(struct mapped_device *md, struct dm_io *io) 544 { 545 bio_put(&io->tio.clone); 546 } 547 548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 549 unsigned target_bio_nr, gfp_t gfp_mask) 550 { 551 struct dm_target_io *tio; 552 553 if (!ci->io->tio.io) { 554 /* the dm_target_io embedded in ci->io is available */ 555 tio = &ci->io->tio; 556 } else { 557 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = container_of(clone, struct dm_target_io, clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 570 return tio; 571 } 572 573 static void free_tio(struct dm_target_io *tio) 574 { 575 if (tio->inside_dm_io) 576 return; 577 bio_put(&tio->clone); 578 } 579 580 /* 581 * Add the bio to the list of deferred io. 582 */ 583 static void queue_io(struct mapped_device *md, struct bio *bio) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 bio_list_add(&md->deferred, bio); 589 spin_unlock_irqrestore(&md->deferred_lock, flags); 590 queue_work(md->wq, &md->work); 591 } 592 593 /* 594 * Everyone (including functions in this file), should use this 595 * function to access the md->map field, and make sure they call 596 * dm_put_live_table() when finished. 597 */ 598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 599 { 600 *srcu_idx = srcu_read_lock(&md->io_barrier); 601 602 return srcu_dereference(md->map, &md->io_barrier); 603 } 604 605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 606 { 607 srcu_read_unlock(&md->io_barrier, srcu_idx); 608 } 609 610 void dm_sync_table(struct mapped_device *md) 611 { 612 synchronize_srcu(&md->io_barrier); 613 synchronize_rcu_expedited(); 614 } 615 616 /* 617 * A fast alternative to dm_get_live_table/dm_put_live_table. 618 * The caller must not block between these two functions. 619 */ 620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 621 { 622 rcu_read_lock(); 623 return rcu_dereference(md->map); 624 } 625 626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 627 { 628 rcu_read_unlock(); 629 } 630 631 static char *_dm_claim_ptr = "I belong to device-mapper"; 632 633 /* 634 * Open a table device so we can use it as a map destination. 635 */ 636 static int open_table_device(struct table_device *td, dev_t dev, 637 struct mapped_device *md) 638 { 639 struct block_device *bdev; 640 641 int r; 642 643 BUG_ON(td->dm_dev.bdev); 644 645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 646 if (IS_ERR(bdev)) 647 return PTR_ERR(bdev); 648 649 r = bd_link_disk_holder(bdev, dm_disk(md)); 650 if (r) { 651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 652 return r; 653 } 654 655 td->dm_dev.bdev = bdev; 656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev); 657 return 0; 658 } 659 660 /* 661 * Close a table device that we've been using. 662 */ 663 static void close_table_device(struct table_device *td, struct mapped_device *md) 664 { 665 if (!td->dm_dev.bdev) 666 return; 667 668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 670 put_dax(td->dm_dev.dax_dev); 671 td->dm_dev.bdev = NULL; 672 td->dm_dev.dax_dev = NULL; 673 } 674 675 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 676 fmode_t mode) 677 { 678 struct table_device *td; 679 680 list_for_each_entry(td, l, list) 681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 682 return td; 683 684 return NULL; 685 } 686 687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 688 struct dm_dev **result) 689 { 690 int r; 691 struct table_device *td; 692 693 mutex_lock(&md->table_devices_lock); 694 td = find_table_device(&md->table_devices, dev, mode); 695 if (!td) { 696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 697 if (!td) { 698 mutex_unlock(&md->table_devices_lock); 699 return -ENOMEM; 700 } 701 702 td->dm_dev.mode = mode; 703 td->dm_dev.bdev = NULL; 704 705 if ((r = open_table_device(td, dev, md))) { 706 mutex_unlock(&md->table_devices_lock); 707 kfree(td); 708 return r; 709 } 710 711 format_dev_t(td->dm_dev.name, dev); 712 713 refcount_set(&td->count, 1); 714 list_add(&td->list, &md->table_devices); 715 } else { 716 refcount_inc(&td->count); 717 } 718 mutex_unlock(&md->table_devices_lock); 719 720 *result = &td->dm_dev; 721 return 0; 722 } 723 724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 725 { 726 struct table_device *td = container_of(d, struct table_device, dm_dev); 727 728 mutex_lock(&md->table_devices_lock); 729 if (refcount_dec_and_test(&td->count)) { 730 close_table_device(td, md); 731 list_del(&td->list); 732 kfree(td); 733 } 734 mutex_unlock(&md->table_devices_lock); 735 } 736 737 static void free_table_devices(struct list_head *devices) 738 { 739 struct list_head *tmp, *next; 740 741 list_for_each_safe(tmp, next, devices) { 742 struct table_device *td = list_entry(tmp, struct table_device, list); 743 744 DMWARN("dm_destroy: %s still exists with %d references", 745 td->dm_dev.name, refcount_read(&td->count)); 746 kfree(td); 747 } 748 } 749 750 /* 751 * Get the geometry associated with a dm device 752 */ 753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 754 { 755 *geo = md->geometry; 756 757 return 0; 758 } 759 760 /* 761 * Set the geometry of a device. 762 */ 763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 764 { 765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 766 767 if (geo->start > sz) { 768 DMWARN("Start sector is beyond the geometry limits."); 769 return -EINVAL; 770 } 771 772 md->geometry = *geo; 773 774 return 0; 775 } 776 777 static int __noflush_suspending(struct mapped_device *md) 778 { 779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 780 } 781 782 /* 783 * Decrements the number of outstanding ios that a bio has been 784 * cloned into, completing the original io if necc. 785 */ 786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 787 { 788 unsigned long flags; 789 blk_status_t io_error; 790 struct bio *bio; 791 struct mapped_device *md = io->md; 792 unsigned long start_time = 0; 793 struct dm_stats_aux stats_aux; 794 795 /* Push-back supersedes any I/O errors */ 796 if (unlikely(error)) { 797 spin_lock_irqsave(&io->endio_lock, flags); 798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 799 io->status = error; 800 spin_unlock_irqrestore(&io->endio_lock, flags); 801 } 802 803 if (atomic_dec_and_test(&io->io_count)) { 804 bio = io->orig_bio; 805 if (io->status == BLK_STS_DM_REQUEUE) { 806 /* 807 * Target requested pushing back the I/O. 808 */ 809 spin_lock_irqsave(&md->deferred_lock, flags); 810 if (__noflush_suspending(md) && 811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 813 bio_list_add_head(&md->deferred, bio); 814 } else { 815 /* 816 * noflush suspend was interrupted or this is 817 * a write to a zoned target. 818 */ 819 io->status = BLK_STS_IOERR; 820 } 821 spin_unlock_irqrestore(&md->deferred_lock, flags); 822 } 823 824 io_error = io->status; 825 start_time = io->start_time; 826 stats_aux = io->stats_aux; 827 free_io(md, io); 828 end_io_acct(md, bio, start_time, &stats_aux); 829 830 if (io_error == BLK_STS_DM_REQUEUE) 831 return; 832 833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 834 /* 835 * Preflush done for flush with data, reissue 836 * without REQ_PREFLUSH. 837 */ 838 bio->bi_opf &= ~REQ_PREFLUSH; 839 queue_io(md, bio); 840 } else { 841 /* done with normal IO or empty flush */ 842 if (io_error) 843 bio->bi_status = io_error; 844 bio_endio(bio); 845 } 846 } 847 } 848 849 void disable_discard(struct mapped_device *md) 850 { 851 struct queue_limits *limits = dm_get_queue_limits(md); 852 853 /* device doesn't really support DISCARD, disable it */ 854 limits->max_discard_sectors = 0; 855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 856 } 857 858 void disable_write_same(struct mapped_device *md) 859 { 860 struct queue_limits *limits = dm_get_queue_limits(md); 861 862 /* device doesn't really support WRITE SAME, disable it */ 863 limits->max_write_same_sectors = 0; 864 } 865 866 void disable_write_zeroes(struct mapped_device *md) 867 { 868 struct queue_limits *limits = dm_get_queue_limits(md); 869 870 /* device doesn't really support WRITE ZEROES, disable it */ 871 limits->max_write_zeroes_sectors = 0; 872 } 873 874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 875 { 876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 877 } 878 879 static void clone_endio(struct bio *bio) 880 { 881 blk_status_t error = bio->bi_status; 882 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 883 struct dm_io *io = tio->io; 884 struct mapped_device *md = tio->io->md; 885 dm_endio_fn endio = tio->ti->type->end_io; 886 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 887 888 if (unlikely(error == BLK_STS_TARGET)) { 889 if (bio_op(bio) == REQ_OP_DISCARD && 890 !q->limits.max_discard_sectors) 891 disable_discard(md); 892 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 893 !q->limits.max_write_same_sectors) 894 disable_write_same(md); 895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 896 !q->limits.max_write_zeroes_sectors) 897 disable_write_zeroes(md); 898 } 899 900 if (blk_queue_is_zoned(q)) 901 dm_zone_endio(io, bio); 902 903 if (endio) { 904 int r = endio(tio->ti, bio, &error); 905 switch (r) { 906 case DM_ENDIO_REQUEUE: 907 /* 908 * Requeuing writes to a sequential zone of a zoned 909 * target will break the sequential write pattern: 910 * fail such IO. 911 */ 912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 913 error = BLK_STS_IOERR; 914 else 915 error = BLK_STS_DM_REQUEUE; 916 fallthrough; 917 case DM_ENDIO_DONE: 918 break; 919 case DM_ENDIO_INCOMPLETE: 920 /* The target will handle the io */ 921 return; 922 default: 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(swap_bios_limit(tio->ti, bio))) { 929 struct mapped_device *md = io->md; 930 up(&md->swap_bios_semaphore); 931 } 932 933 free_tio(tio); 934 dm_io_dec_pending(io, error); 935 } 936 937 /* 938 * Return maximum size of I/O possible at the supplied sector up to the current 939 * target boundary. 940 */ 941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 942 sector_t target_offset) 943 { 944 return ti->len - target_offset; 945 } 946 947 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 948 { 949 sector_t target_offset = dm_target_offset(ti, sector); 950 sector_t len = max_io_len_target_boundary(ti, target_offset); 951 sector_t max_len; 952 953 /* 954 * Does the target need to split IO even further? 955 * - varied (per target) IO splitting is a tenet of DM; this 956 * explains why stacked chunk_sectors based splitting via 957 * blk_max_size_offset() isn't possible here. So pass in 958 * ti->max_io_len to override stacked chunk_sectors. 959 */ 960 if (ti->max_io_len) { 961 max_len = blk_max_size_offset(ti->table->md->queue, 962 target_offset, ti->max_io_len); 963 if (len > max_len) 964 len = max_len; 965 } 966 967 return len; 968 } 969 970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 971 { 972 if (len > UINT_MAX) { 973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 974 (unsigned long long)len, UINT_MAX); 975 ti->error = "Maximum size of target IO is too large"; 976 return -EINVAL; 977 } 978 979 ti->max_io_len = (uint32_t) len; 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 984 985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 986 sector_t sector, int *srcu_idx) 987 __acquires(md->io_barrier) 988 { 989 struct dm_table *map; 990 struct dm_target *ti; 991 992 map = dm_get_live_table(md, srcu_idx); 993 if (!map) 994 return NULL; 995 996 ti = dm_table_find_target(map, sector); 997 if (!ti) 998 return NULL; 999 1000 return ti; 1001 } 1002 1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1004 long nr_pages, void **kaddr, pfn_t *pfn) 1005 { 1006 struct mapped_device *md = dax_get_private(dax_dev); 1007 sector_t sector = pgoff * PAGE_SECTORS; 1008 struct dm_target *ti; 1009 long len, ret = -EIO; 1010 int srcu_idx; 1011 1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1013 1014 if (!ti) 1015 goto out; 1016 if (!ti->type->direct_access) 1017 goto out; 1018 len = max_io_len(ti, sector) / PAGE_SECTORS; 1019 if (len < 1) 1020 goto out; 1021 nr_pages = min(len, nr_pages); 1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1023 1024 out: 1025 dm_put_live_table(md, srcu_idx); 1026 1027 return ret; 1028 } 1029 1030 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1031 int blocksize, sector_t start, sector_t len) 1032 { 1033 struct mapped_device *md = dax_get_private(dax_dev); 1034 struct dm_table *map; 1035 bool ret = false; 1036 int srcu_idx; 1037 1038 map = dm_get_live_table(md, &srcu_idx); 1039 if (!map) 1040 goto out; 1041 1042 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize); 1043 1044 out: 1045 dm_put_live_table(md, srcu_idx); 1046 1047 return ret; 1048 } 1049 1050 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1051 void *addr, size_t bytes, struct iov_iter *i) 1052 { 1053 struct mapped_device *md = dax_get_private(dax_dev); 1054 sector_t sector = pgoff * PAGE_SECTORS; 1055 struct dm_target *ti; 1056 long ret = 0; 1057 int srcu_idx; 1058 1059 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1060 1061 if (!ti) 1062 goto out; 1063 if (!ti->type->dax_copy_from_iter) { 1064 ret = copy_from_iter(addr, bytes, i); 1065 goto out; 1066 } 1067 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1068 out: 1069 dm_put_live_table(md, srcu_idx); 1070 1071 return ret; 1072 } 1073 1074 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1075 void *addr, size_t bytes, struct iov_iter *i) 1076 { 1077 struct mapped_device *md = dax_get_private(dax_dev); 1078 sector_t sector = pgoff * PAGE_SECTORS; 1079 struct dm_target *ti; 1080 long ret = 0; 1081 int srcu_idx; 1082 1083 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1084 1085 if (!ti) 1086 goto out; 1087 if (!ti->type->dax_copy_to_iter) { 1088 ret = copy_to_iter(addr, bytes, i); 1089 goto out; 1090 } 1091 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1092 out: 1093 dm_put_live_table(md, srcu_idx); 1094 1095 return ret; 1096 } 1097 1098 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1099 size_t nr_pages) 1100 { 1101 struct mapped_device *md = dax_get_private(dax_dev); 1102 sector_t sector = pgoff * PAGE_SECTORS; 1103 struct dm_target *ti; 1104 int ret = -EIO; 1105 int srcu_idx; 1106 1107 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1108 1109 if (!ti) 1110 goto out; 1111 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1112 /* 1113 * ->zero_page_range() is mandatory dax operation. If we are 1114 * here, something is wrong. 1115 */ 1116 goto out; 1117 } 1118 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1119 out: 1120 dm_put_live_table(md, srcu_idx); 1121 1122 return ret; 1123 } 1124 1125 /* 1126 * A target may call dm_accept_partial_bio only from the map routine. It is 1127 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1128 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1129 * 1130 * dm_accept_partial_bio informs the dm that the target only wants to process 1131 * additional n_sectors sectors of the bio and the rest of the data should be 1132 * sent in a next bio. 1133 * 1134 * A diagram that explains the arithmetics: 1135 * +--------------------+---------------+-------+ 1136 * | 1 | 2 | 3 | 1137 * +--------------------+---------------+-------+ 1138 * 1139 * <-------------- *tio->len_ptr ---------------> 1140 * <------- bi_size -------> 1141 * <-- n_sectors --> 1142 * 1143 * Region 1 was already iterated over with bio_advance or similar function. 1144 * (it may be empty if the target doesn't use bio_advance) 1145 * Region 2 is the remaining bio size that the target wants to process. 1146 * (it may be empty if region 1 is non-empty, although there is no reason 1147 * to make it empty) 1148 * The target requires that region 3 is to be sent in the next bio. 1149 * 1150 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1151 * the partially processed part (the sum of regions 1+2) must be the same for all 1152 * copies of the bio. 1153 */ 1154 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1155 { 1156 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1157 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1158 1159 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1160 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1161 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1162 BUG_ON(bi_size > *tio->len_ptr); 1163 BUG_ON(n_sectors > bi_size); 1164 1165 *tio->len_ptr -= bi_size - n_sectors; 1166 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1167 } 1168 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1169 1170 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1171 { 1172 mutex_lock(&md->swap_bios_lock); 1173 while (latch < md->swap_bios) { 1174 cond_resched(); 1175 down(&md->swap_bios_semaphore); 1176 md->swap_bios--; 1177 } 1178 while (latch > md->swap_bios) { 1179 cond_resched(); 1180 up(&md->swap_bios_semaphore); 1181 md->swap_bios++; 1182 } 1183 mutex_unlock(&md->swap_bios_lock); 1184 } 1185 1186 static void __map_bio(struct dm_target_io *tio) 1187 { 1188 int r; 1189 sector_t sector; 1190 struct bio *clone = &tio->clone; 1191 struct dm_io *io = tio->io; 1192 struct dm_target *ti = tio->ti; 1193 1194 clone->bi_end_io = clone_endio; 1195 1196 /* 1197 * Map the clone. If r == 0 we don't need to do 1198 * anything, the target has assumed ownership of 1199 * this io. 1200 */ 1201 dm_io_inc_pending(io); 1202 sector = clone->bi_iter.bi_sector; 1203 1204 if (unlikely(swap_bios_limit(ti, clone))) { 1205 struct mapped_device *md = io->md; 1206 int latch = get_swap_bios(); 1207 if (unlikely(latch != md->swap_bios)) 1208 __set_swap_bios_limit(md, latch); 1209 down(&md->swap_bios_semaphore); 1210 } 1211 1212 /* 1213 * Check if the IO needs a special mapping due to zone append emulation 1214 * on zoned target. In this case, dm_zone_map_bio() calls the target 1215 * map operation. 1216 */ 1217 if (dm_emulate_zone_append(io->md)) 1218 r = dm_zone_map_bio(tio); 1219 else 1220 r = ti->type->map(ti, clone); 1221 1222 switch (r) { 1223 case DM_MAPIO_SUBMITTED: 1224 break; 1225 case DM_MAPIO_REMAPPED: 1226 /* the bio has been remapped so dispatch it */ 1227 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1228 submit_bio_noacct(clone); 1229 break; 1230 case DM_MAPIO_KILL: 1231 if (unlikely(swap_bios_limit(ti, clone))) { 1232 struct mapped_device *md = io->md; 1233 up(&md->swap_bios_semaphore); 1234 } 1235 free_tio(tio); 1236 dm_io_dec_pending(io, BLK_STS_IOERR); 1237 break; 1238 case DM_MAPIO_REQUEUE: 1239 if (unlikely(swap_bios_limit(ti, clone))) { 1240 struct mapped_device *md = io->md; 1241 up(&md->swap_bios_semaphore); 1242 } 1243 free_tio(tio); 1244 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1245 break; 1246 default: 1247 DMWARN("unimplemented target map return value: %d", r); 1248 BUG(); 1249 } 1250 } 1251 1252 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1253 { 1254 bio->bi_iter.bi_sector = sector; 1255 bio->bi_iter.bi_size = to_bytes(len); 1256 } 1257 1258 /* 1259 * Creates a bio that consists of range of complete bvecs. 1260 */ 1261 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1262 sector_t sector, unsigned len) 1263 { 1264 struct bio *clone = &tio->clone; 1265 int r; 1266 1267 __bio_clone_fast(clone, bio); 1268 1269 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1270 if (r < 0) 1271 return r; 1272 1273 if (bio_integrity(bio)) { 1274 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1275 !dm_target_passes_integrity(tio->ti->type))) { 1276 DMWARN("%s: the target %s doesn't support integrity data.", 1277 dm_device_name(tio->io->md), 1278 tio->ti->type->name); 1279 return -EIO; 1280 } 1281 1282 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1283 if (r < 0) 1284 return r; 1285 } 1286 1287 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1288 clone->bi_iter.bi_size = to_bytes(len); 1289 1290 if (bio_integrity(bio)) 1291 bio_integrity_trim(clone); 1292 1293 return 0; 1294 } 1295 1296 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1297 struct dm_target *ti, unsigned num_bios) 1298 { 1299 struct dm_target_io *tio; 1300 int try; 1301 1302 if (!num_bios) 1303 return; 1304 1305 if (num_bios == 1) { 1306 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1307 bio_list_add(blist, &tio->clone); 1308 return; 1309 } 1310 1311 for (try = 0; try < 2; try++) { 1312 int bio_nr; 1313 struct bio *bio; 1314 1315 if (try) 1316 mutex_lock(&ci->io->md->table_devices_lock); 1317 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1318 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1319 if (!tio) 1320 break; 1321 1322 bio_list_add(blist, &tio->clone); 1323 } 1324 if (try) 1325 mutex_unlock(&ci->io->md->table_devices_lock); 1326 if (bio_nr == num_bios) 1327 return; 1328 1329 while ((bio = bio_list_pop(blist))) { 1330 tio = container_of(bio, struct dm_target_io, clone); 1331 free_tio(tio); 1332 } 1333 } 1334 } 1335 1336 static void __clone_and_map_simple_bio(struct clone_info *ci, 1337 struct dm_target_io *tio, unsigned *len) 1338 { 1339 struct bio *clone = &tio->clone; 1340 1341 tio->len_ptr = len; 1342 1343 __bio_clone_fast(clone, ci->bio); 1344 if (len) 1345 bio_setup_sector(clone, ci->sector, *len); 1346 __map_bio(tio); 1347 } 1348 1349 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1350 unsigned num_bios, unsigned *len) 1351 { 1352 struct bio_list blist = BIO_EMPTY_LIST; 1353 struct bio *bio; 1354 struct dm_target_io *tio; 1355 1356 alloc_multiple_bios(&blist, ci, ti, num_bios); 1357 1358 while ((bio = bio_list_pop(&blist))) { 1359 tio = container_of(bio, struct dm_target_io, clone); 1360 __clone_and_map_simple_bio(ci, tio, len); 1361 } 1362 } 1363 1364 static int __send_empty_flush(struct clone_info *ci) 1365 { 1366 unsigned target_nr = 0; 1367 struct dm_target *ti; 1368 struct bio flush_bio; 1369 1370 /* 1371 * Use an on-stack bio for this, it's safe since we don't 1372 * need to reference it after submit. It's just used as 1373 * the basis for the clone(s). 1374 */ 1375 bio_init(&flush_bio, NULL, 0); 1376 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1377 bio_set_dev(&flush_bio, ci->io->md->disk->part0); 1378 1379 ci->bio = &flush_bio; 1380 ci->sector_count = 0; 1381 1382 BUG_ON(bio_has_data(ci->bio)); 1383 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1384 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1385 1386 bio_uninit(ci->bio); 1387 return 0; 1388 } 1389 1390 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1391 sector_t sector, unsigned *len) 1392 { 1393 struct bio *bio = ci->bio; 1394 struct dm_target_io *tio; 1395 int r; 1396 1397 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1398 tio->len_ptr = len; 1399 r = clone_bio(tio, bio, sector, *len); 1400 if (r < 0) { 1401 free_tio(tio); 1402 return r; 1403 } 1404 __map_bio(tio); 1405 1406 return 0; 1407 } 1408 1409 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1410 unsigned num_bios) 1411 { 1412 unsigned len; 1413 1414 /* 1415 * Even though the device advertised support for this type of 1416 * request, that does not mean every target supports it, and 1417 * reconfiguration might also have changed that since the 1418 * check was performed. 1419 */ 1420 if (!num_bios) 1421 return -EOPNOTSUPP; 1422 1423 len = min_t(sector_t, ci->sector_count, 1424 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1425 1426 __send_duplicate_bios(ci, ti, num_bios, &len); 1427 1428 ci->sector += len; 1429 ci->sector_count -= len; 1430 1431 return 0; 1432 } 1433 1434 static bool is_abnormal_io(struct bio *bio) 1435 { 1436 bool r = false; 1437 1438 switch (bio_op(bio)) { 1439 case REQ_OP_DISCARD: 1440 case REQ_OP_SECURE_ERASE: 1441 case REQ_OP_WRITE_SAME: 1442 case REQ_OP_WRITE_ZEROES: 1443 r = true; 1444 break; 1445 } 1446 1447 return r; 1448 } 1449 1450 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1451 int *result) 1452 { 1453 struct bio *bio = ci->bio; 1454 unsigned num_bios = 0; 1455 1456 switch (bio_op(bio)) { 1457 case REQ_OP_DISCARD: 1458 num_bios = ti->num_discard_bios; 1459 break; 1460 case REQ_OP_SECURE_ERASE: 1461 num_bios = ti->num_secure_erase_bios; 1462 break; 1463 case REQ_OP_WRITE_SAME: 1464 num_bios = ti->num_write_same_bios; 1465 break; 1466 case REQ_OP_WRITE_ZEROES: 1467 num_bios = ti->num_write_zeroes_bios; 1468 break; 1469 default: 1470 return false; 1471 } 1472 1473 *result = __send_changing_extent_only(ci, ti, num_bios); 1474 return true; 1475 } 1476 1477 /* 1478 * Select the correct strategy for processing a non-flush bio. 1479 */ 1480 static int __split_and_process_non_flush(struct clone_info *ci) 1481 { 1482 struct dm_target *ti; 1483 unsigned len; 1484 int r; 1485 1486 ti = dm_table_find_target(ci->map, ci->sector); 1487 if (!ti) 1488 return -EIO; 1489 1490 if (__process_abnormal_io(ci, ti, &r)) 1491 return r; 1492 1493 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1494 1495 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1496 if (r < 0) 1497 return r; 1498 1499 ci->sector += len; 1500 ci->sector_count -= len; 1501 1502 return 0; 1503 } 1504 1505 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1506 struct dm_table *map, struct bio *bio) 1507 { 1508 ci->map = map; 1509 ci->io = alloc_io(md, bio); 1510 ci->sector = bio->bi_iter.bi_sector; 1511 } 1512 1513 #define __dm_part_stat_sub(part, field, subnd) \ 1514 (part_stat_get(part, field) -= (subnd)) 1515 1516 /* 1517 * Entry point to split a bio into clones and submit them to the targets. 1518 */ 1519 static void __split_and_process_bio(struct mapped_device *md, 1520 struct dm_table *map, struct bio *bio) 1521 { 1522 struct clone_info ci; 1523 int error = 0; 1524 1525 init_clone_info(&ci, md, map, bio); 1526 1527 if (bio->bi_opf & REQ_PREFLUSH) { 1528 error = __send_empty_flush(&ci); 1529 /* dm_io_dec_pending submits any data associated with flush */ 1530 } else if (op_is_zone_mgmt(bio_op(bio))) { 1531 ci.bio = bio; 1532 ci.sector_count = 0; 1533 error = __split_and_process_non_flush(&ci); 1534 } else { 1535 ci.bio = bio; 1536 ci.sector_count = bio_sectors(bio); 1537 error = __split_and_process_non_flush(&ci); 1538 if (ci.sector_count && !error) { 1539 /* 1540 * Remainder must be passed to submit_bio_noacct() 1541 * so that it gets handled *after* bios already submitted 1542 * have been completely processed. 1543 * We take a clone of the original to store in 1544 * ci.io->orig_bio to be used by end_io_acct() and 1545 * for dec_pending to use for completion handling. 1546 */ 1547 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1548 GFP_NOIO, &md->queue->bio_split); 1549 ci.io->orig_bio = b; 1550 1551 /* 1552 * Adjust IO stats for each split, otherwise upon queue 1553 * reentry there will be redundant IO accounting. 1554 * NOTE: this is a stop-gap fix, a proper fix involves 1555 * significant refactoring of DM core's bio splitting 1556 * (by eliminating DM's splitting and just using bio_split) 1557 */ 1558 part_stat_lock(); 1559 __dm_part_stat_sub(dm_disk(md)->part0, 1560 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1561 part_stat_unlock(); 1562 1563 bio_chain(b, bio); 1564 trace_block_split(b, bio->bi_iter.bi_sector); 1565 submit_bio_noacct(bio); 1566 } 1567 } 1568 1569 /* drop the extra reference count */ 1570 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1571 } 1572 1573 static void dm_submit_bio(struct bio *bio) 1574 { 1575 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1576 int srcu_idx; 1577 struct dm_table *map; 1578 1579 map = dm_get_live_table(md, &srcu_idx); 1580 if (unlikely(!map)) { 1581 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1582 dm_device_name(md)); 1583 bio_io_error(bio); 1584 goto out; 1585 } 1586 1587 /* If suspended, queue this IO for later */ 1588 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1589 if (bio->bi_opf & REQ_NOWAIT) 1590 bio_wouldblock_error(bio); 1591 else if (bio->bi_opf & REQ_RAHEAD) 1592 bio_io_error(bio); 1593 else 1594 queue_io(md, bio); 1595 goto out; 1596 } 1597 1598 /* 1599 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1600 * otherwise associated queue_limits won't be imposed. 1601 */ 1602 if (is_abnormal_io(bio)) 1603 blk_queue_split(&bio); 1604 1605 __split_and_process_bio(md, map, bio); 1606 out: 1607 dm_put_live_table(md, srcu_idx); 1608 } 1609 1610 /*----------------------------------------------------------------- 1611 * An IDR is used to keep track of allocated minor numbers. 1612 *---------------------------------------------------------------*/ 1613 static void free_minor(int minor) 1614 { 1615 spin_lock(&_minor_lock); 1616 idr_remove(&_minor_idr, minor); 1617 spin_unlock(&_minor_lock); 1618 } 1619 1620 /* 1621 * See if the device with a specific minor # is free. 1622 */ 1623 static int specific_minor(int minor) 1624 { 1625 int r; 1626 1627 if (minor >= (1 << MINORBITS)) 1628 return -EINVAL; 1629 1630 idr_preload(GFP_KERNEL); 1631 spin_lock(&_minor_lock); 1632 1633 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1634 1635 spin_unlock(&_minor_lock); 1636 idr_preload_end(); 1637 if (r < 0) 1638 return r == -ENOSPC ? -EBUSY : r; 1639 return 0; 1640 } 1641 1642 static int next_free_minor(int *minor) 1643 { 1644 int r; 1645 1646 idr_preload(GFP_KERNEL); 1647 spin_lock(&_minor_lock); 1648 1649 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1650 1651 spin_unlock(&_minor_lock); 1652 idr_preload_end(); 1653 if (r < 0) 1654 return r; 1655 *minor = r; 1656 return 0; 1657 } 1658 1659 static const struct block_device_operations dm_blk_dops; 1660 static const struct block_device_operations dm_rq_blk_dops; 1661 static const struct dax_operations dm_dax_ops; 1662 1663 static void dm_wq_work(struct work_struct *work); 1664 1665 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1666 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1667 { 1668 dm_destroy_crypto_profile(q->crypto_profile); 1669 } 1670 1671 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1672 1673 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1674 { 1675 } 1676 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1677 1678 static void cleanup_mapped_device(struct mapped_device *md) 1679 { 1680 if (md->wq) 1681 destroy_workqueue(md->wq); 1682 bioset_exit(&md->bs); 1683 bioset_exit(&md->io_bs); 1684 1685 if (md->dax_dev) { 1686 kill_dax(md->dax_dev); 1687 put_dax(md->dax_dev); 1688 md->dax_dev = NULL; 1689 } 1690 1691 if (md->disk) { 1692 spin_lock(&_minor_lock); 1693 md->disk->private_data = NULL; 1694 spin_unlock(&_minor_lock); 1695 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1696 dm_sysfs_exit(md); 1697 del_gendisk(md->disk); 1698 } 1699 dm_queue_destroy_crypto_profile(md->queue); 1700 blk_cleanup_disk(md->disk); 1701 } 1702 1703 cleanup_srcu_struct(&md->io_barrier); 1704 1705 mutex_destroy(&md->suspend_lock); 1706 mutex_destroy(&md->type_lock); 1707 mutex_destroy(&md->table_devices_lock); 1708 mutex_destroy(&md->swap_bios_lock); 1709 1710 dm_mq_cleanup_mapped_device(md); 1711 dm_cleanup_zoned_dev(md); 1712 } 1713 1714 /* 1715 * Allocate and initialise a blank device with a given minor. 1716 */ 1717 static struct mapped_device *alloc_dev(int minor) 1718 { 1719 int r, numa_node_id = dm_get_numa_node(); 1720 struct mapped_device *md; 1721 void *old_md; 1722 1723 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1724 if (!md) { 1725 DMWARN("unable to allocate device, out of memory."); 1726 return NULL; 1727 } 1728 1729 if (!try_module_get(THIS_MODULE)) 1730 goto bad_module_get; 1731 1732 /* get a minor number for the dev */ 1733 if (minor == DM_ANY_MINOR) 1734 r = next_free_minor(&minor); 1735 else 1736 r = specific_minor(minor); 1737 if (r < 0) 1738 goto bad_minor; 1739 1740 r = init_srcu_struct(&md->io_barrier); 1741 if (r < 0) 1742 goto bad_io_barrier; 1743 1744 md->numa_node_id = numa_node_id; 1745 md->init_tio_pdu = false; 1746 md->type = DM_TYPE_NONE; 1747 mutex_init(&md->suspend_lock); 1748 mutex_init(&md->type_lock); 1749 mutex_init(&md->table_devices_lock); 1750 spin_lock_init(&md->deferred_lock); 1751 atomic_set(&md->holders, 1); 1752 atomic_set(&md->open_count, 0); 1753 atomic_set(&md->event_nr, 0); 1754 atomic_set(&md->uevent_seq, 0); 1755 INIT_LIST_HEAD(&md->uevent_list); 1756 INIT_LIST_HEAD(&md->table_devices); 1757 spin_lock_init(&md->uevent_lock); 1758 1759 /* 1760 * default to bio-based until DM table is loaded and md->type 1761 * established. If request-based table is loaded: blk-mq will 1762 * override accordingly. 1763 */ 1764 md->disk = blk_alloc_disk(md->numa_node_id); 1765 if (!md->disk) 1766 goto bad; 1767 md->queue = md->disk->queue; 1768 1769 init_waitqueue_head(&md->wait); 1770 INIT_WORK(&md->work, dm_wq_work); 1771 init_waitqueue_head(&md->eventq); 1772 init_completion(&md->kobj_holder.completion); 1773 1774 md->swap_bios = get_swap_bios(); 1775 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1776 mutex_init(&md->swap_bios_lock); 1777 1778 md->disk->major = _major; 1779 md->disk->first_minor = minor; 1780 md->disk->minors = 1; 1781 md->disk->fops = &dm_blk_dops; 1782 md->disk->queue = md->queue; 1783 md->disk->private_data = md; 1784 sprintf(md->disk->disk_name, "dm-%d", minor); 1785 1786 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1787 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1788 &dm_dax_ops, 0); 1789 if (IS_ERR(md->dax_dev)) 1790 goto bad; 1791 } 1792 1793 format_dev_t(md->name, MKDEV(_major, minor)); 1794 1795 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1796 if (!md->wq) 1797 goto bad; 1798 1799 dm_stats_init(&md->stats); 1800 1801 /* Populate the mapping, nobody knows we exist yet */ 1802 spin_lock(&_minor_lock); 1803 old_md = idr_replace(&_minor_idr, md, minor); 1804 spin_unlock(&_minor_lock); 1805 1806 BUG_ON(old_md != MINOR_ALLOCED); 1807 1808 return md; 1809 1810 bad: 1811 cleanup_mapped_device(md); 1812 bad_io_barrier: 1813 free_minor(minor); 1814 bad_minor: 1815 module_put(THIS_MODULE); 1816 bad_module_get: 1817 kvfree(md); 1818 return NULL; 1819 } 1820 1821 static void unlock_fs(struct mapped_device *md); 1822 1823 static void free_dev(struct mapped_device *md) 1824 { 1825 int minor = MINOR(disk_devt(md->disk)); 1826 1827 unlock_fs(md); 1828 1829 cleanup_mapped_device(md); 1830 1831 free_table_devices(&md->table_devices); 1832 dm_stats_cleanup(&md->stats); 1833 free_minor(minor); 1834 1835 module_put(THIS_MODULE); 1836 kvfree(md); 1837 } 1838 1839 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1840 { 1841 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1842 int ret = 0; 1843 1844 if (dm_table_bio_based(t)) { 1845 /* 1846 * The md may already have mempools that need changing. 1847 * If so, reload bioset because front_pad may have changed 1848 * because a different table was loaded. 1849 */ 1850 bioset_exit(&md->bs); 1851 bioset_exit(&md->io_bs); 1852 1853 } else if (bioset_initialized(&md->bs)) { 1854 /* 1855 * There's no need to reload with request-based dm 1856 * because the size of front_pad doesn't change. 1857 * Note for future: If you are to reload bioset, 1858 * prep-ed requests in the queue may refer 1859 * to bio from the old bioset, so you must walk 1860 * through the queue to unprep. 1861 */ 1862 goto out; 1863 } 1864 1865 BUG_ON(!p || 1866 bioset_initialized(&md->bs) || 1867 bioset_initialized(&md->io_bs)); 1868 1869 ret = bioset_init_from_src(&md->bs, &p->bs); 1870 if (ret) 1871 goto out; 1872 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1873 if (ret) 1874 bioset_exit(&md->bs); 1875 out: 1876 /* mempool bind completed, no longer need any mempools in the table */ 1877 dm_table_free_md_mempools(t); 1878 return ret; 1879 } 1880 1881 /* 1882 * Bind a table to the device. 1883 */ 1884 static void event_callback(void *context) 1885 { 1886 unsigned long flags; 1887 LIST_HEAD(uevents); 1888 struct mapped_device *md = (struct mapped_device *) context; 1889 1890 spin_lock_irqsave(&md->uevent_lock, flags); 1891 list_splice_init(&md->uevent_list, &uevents); 1892 spin_unlock_irqrestore(&md->uevent_lock, flags); 1893 1894 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1895 1896 atomic_inc(&md->event_nr); 1897 wake_up(&md->eventq); 1898 dm_issue_global_event(); 1899 } 1900 1901 /* 1902 * Returns old map, which caller must destroy. 1903 */ 1904 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1905 struct queue_limits *limits) 1906 { 1907 struct dm_table *old_map; 1908 struct request_queue *q = md->queue; 1909 bool request_based = dm_table_request_based(t); 1910 sector_t size; 1911 int ret; 1912 1913 lockdep_assert_held(&md->suspend_lock); 1914 1915 size = dm_table_get_size(t); 1916 1917 /* 1918 * Wipe any geometry if the size of the table changed. 1919 */ 1920 if (size != dm_get_size(md)) 1921 memset(&md->geometry, 0, sizeof(md->geometry)); 1922 1923 if (!get_capacity(md->disk)) 1924 set_capacity(md->disk, size); 1925 else 1926 set_capacity_and_notify(md->disk, size); 1927 1928 dm_table_event_callback(t, event_callback, md); 1929 1930 if (request_based) { 1931 /* 1932 * Leverage the fact that request-based DM targets are 1933 * immutable singletons - used to optimize dm_mq_queue_rq. 1934 */ 1935 md->immutable_target = dm_table_get_immutable_target(t); 1936 } 1937 1938 ret = __bind_mempools(md, t); 1939 if (ret) { 1940 old_map = ERR_PTR(ret); 1941 goto out; 1942 } 1943 1944 ret = dm_table_set_restrictions(t, q, limits); 1945 if (ret) { 1946 old_map = ERR_PTR(ret); 1947 goto out; 1948 } 1949 1950 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1951 rcu_assign_pointer(md->map, (void *)t); 1952 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1953 1954 if (old_map) 1955 dm_sync_table(md); 1956 1957 out: 1958 return old_map; 1959 } 1960 1961 /* 1962 * Returns unbound table for the caller to free. 1963 */ 1964 static struct dm_table *__unbind(struct mapped_device *md) 1965 { 1966 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1967 1968 if (!map) 1969 return NULL; 1970 1971 dm_table_event_callback(map, NULL, NULL); 1972 RCU_INIT_POINTER(md->map, NULL); 1973 dm_sync_table(md); 1974 1975 return map; 1976 } 1977 1978 /* 1979 * Constructor for a new device. 1980 */ 1981 int dm_create(int minor, struct mapped_device **result) 1982 { 1983 struct mapped_device *md; 1984 1985 md = alloc_dev(minor); 1986 if (!md) 1987 return -ENXIO; 1988 1989 dm_ima_reset_data(md); 1990 1991 *result = md; 1992 return 0; 1993 } 1994 1995 /* 1996 * Functions to manage md->type. 1997 * All are required to hold md->type_lock. 1998 */ 1999 void dm_lock_md_type(struct mapped_device *md) 2000 { 2001 mutex_lock(&md->type_lock); 2002 } 2003 2004 void dm_unlock_md_type(struct mapped_device *md) 2005 { 2006 mutex_unlock(&md->type_lock); 2007 } 2008 2009 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2010 { 2011 BUG_ON(!mutex_is_locked(&md->type_lock)); 2012 md->type = type; 2013 } 2014 2015 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2016 { 2017 return md->type; 2018 } 2019 2020 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2021 { 2022 return md->immutable_target_type; 2023 } 2024 2025 /* 2026 * The queue_limits are only valid as long as you have a reference 2027 * count on 'md'. 2028 */ 2029 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2030 { 2031 BUG_ON(!atomic_read(&md->holders)); 2032 return &md->queue->limits; 2033 } 2034 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2035 2036 /* 2037 * Setup the DM device's queue based on md's type 2038 */ 2039 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2040 { 2041 enum dm_queue_mode type = dm_table_get_type(t); 2042 struct queue_limits limits; 2043 int r; 2044 2045 switch (type) { 2046 case DM_TYPE_REQUEST_BASED: 2047 md->disk->fops = &dm_rq_blk_dops; 2048 r = dm_mq_init_request_queue(md, t); 2049 if (r) { 2050 DMERR("Cannot initialize queue for request-based dm mapped device"); 2051 return r; 2052 } 2053 break; 2054 case DM_TYPE_BIO_BASED: 2055 case DM_TYPE_DAX_BIO_BASED: 2056 break; 2057 case DM_TYPE_NONE: 2058 WARN_ON_ONCE(true); 2059 break; 2060 } 2061 2062 r = dm_calculate_queue_limits(t, &limits); 2063 if (r) { 2064 DMERR("Cannot calculate initial queue limits"); 2065 return r; 2066 } 2067 r = dm_table_set_restrictions(t, md->queue, &limits); 2068 if (r) 2069 return r; 2070 2071 r = add_disk(md->disk); 2072 if (r) 2073 return r; 2074 2075 r = dm_sysfs_init(md); 2076 if (r) { 2077 del_gendisk(md->disk); 2078 return r; 2079 } 2080 md->type = type; 2081 return 0; 2082 } 2083 2084 struct mapped_device *dm_get_md(dev_t dev) 2085 { 2086 struct mapped_device *md; 2087 unsigned minor = MINOR(dev); 2088 2089 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2090 return NULL; 2091 2092 spin_lock(&_minor_lock); 2093 2094 md = idr_find(&_minor_idr, minor); 2095 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2096 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2097 md = NULL; 2098 goto out; 2099 } 2100 dm_get(md); 2101 out: 2102 spin_unlock(&_minor_lock); 2103 2104 return md; 2105 } 2106 EXPORT_SYMBOL_GPL(dm_get_md); 2107 2108 void *dm_get_mdptr(struct mapped_device *md) 2109 { 2110 return md->interface_ptr; 2111 } 2112 2113 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2114 { 2115 md->interface_ptr = ptr; 2116 } 2117 2118 void dm_get(struct mapped_device *md) 2119 { 2120 atomic_inc(&md->holders); 2121 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2122 } 2123 2124 int dm_hold(struct mapped_device *md) 2125 { 2126 spin_lock(&_minor_lock); 2127 if (test_bit(DMF_FREEING, &md->flags)) { 2128 spin_unlock(&_minor_lock); 2129 return -EBUSY; 2130 } 2131 dm_get(md); 2132 spin_unlock(&_minor_lock); 2133 return 0; 2134 } 2135 EXPORT_SYMBOL_GPL(dm_hold); 2136 2137 const char *dm_device_name(struct mapped_device *md) 2138 { 2139 return md->name; 2140 } 2141 EXPORT_SYMBOL_GPL(dm_device_name); 2142 2143 static void __dm_destroy(struct mapped_device *md, bool wait) 2144 { 2145 struct dm_table *map; 2146 int srcu_idx; 2147 2148 might_sleep(); 2149 2150 spin_lock(&_minor_lock); 2151 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2152 set_bit(DMF_FREEING, &md->flags); 2153 spin_unlock(&_minor_lock); 2154 2155 blk_set_queue_dying(md->queue); 2156 2157 /* 2158 * Take suspend_lock so that presuspend and postsuspend methods 2159 * do not race with internal suspend. 2160 */ 2161 mutex_lock(&md->suspend_lock); 2162 map = dm_get_live_table(md, &srcu_idx); 2163 if (!dm_suspended_md(md)) { 2164 dm_table_presuspend_targets(map); 2165 set_bit(DMF_SUSPENDED, &md->flags); 2166 set_bit(DMF_POST_SUSPENDING, &md->flags); 2167 dm_table_postsuspend_targets(map); 2168 } 2169 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2170 dm_put_live_table(md, srcu_idx); 2171 mutex_unlock(&md->suspend_lock); 2172 2173 /* 2174 * Rare, but there may be I/O requests still going to complete, 2175 * for example. Wait for all references to disappear. 2176 * No one should increment the reference count of the mapped_device, 2177 * after the mapped_device state becomes DMF_FREEING. 2178 */ 2179 if (wait) 2180 while (atomic_read(&md->holders)) 2181 msleep(1); 2182 else if (atomic_read(&md->holders)) 2183 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2184 dm_device_name(md), atomic_read(&md->holders)); 2185 2186 dm_table_destroy(__unbind(md)); 2187 free_dev(md); 2188 } 2189 2190 void dm_destroy(struct mapped_device *md) 2191 { 2192 __dm_destroy(md, true); 2193 } 2194 2195 void dm_destroy_immediate(struct mapped_device *md) 2196 { 2197 __dm_destroy(md, false); 2198 } 2199 2200 void dm_put(struct mapped_device *md) 2201 { 2202 atomic_dec(&md->holders); 2203 } 2204 EXPORT_SYMBOL_GPL(dm_put); 2205 2206 static bool md_in_flight_bios(struct mapped_device *md) 2207 { 2208 int cpu; 2209 struct block_device *part = dm_disk(md)->part0; 2210 long sum = 0; 2211 2212 for_each_possible_cpu(cpu) { 2213 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2214 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2215 } 2216 2217 return sum != 0; 2218 } 2219 2220 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2221 { 2222 int r = 0; 2223 DEFINE_WAIT(wait); 2224 2225 while (true) { 2226 prepare_to_wait(&md->wait, &wait, task_state); 2227 2228 if (!md_in_flight_bios(md)) 2229 break; 2230 2231 if (signal_pending_state(task_state, current)) { 2232 r = -EINTR; 2233 break; 2234 } 2235 2236 io_schedule(); 2237 } 2238 finish_wait(&md->wait, &wait); 2239 2240 return r; 2241 } 2242 2243 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2244 { 2245 int r = 0; 2246 2247 if (!queue_is_mq(md->queue)) 2248 return dm_wait_for_bios_completion(md, task_state); 2249 2250 while (true) { 2251 if (!blk_mq_queue_inflight(md->queue)) 2252 break; 2253 2254 if (signal_pending_state(task_state, current)) { 2255 r = -EINTR; 2256 break; 2257 } 2258 2259 msleep(5); 2260 } 2261 2262 return r; 2263 } 2264 2265 /* 2266 * Process the deferred bios 2267 */ 2268 static void dm_wq_work(struct work_struct *work) 2269 { 2270 struct mapped_device *md = container_of(work, struct mapped_device, work); 2271 struct bio *bio; 2272 2273 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2274 spin_lock_irq(&md->deferred_lock); 2275 bio = bio_list_pop(&md->deferred); 2276 spin_unlock_irq(&md->deferred_lock); 2277 2278 if (!bio) 2279 break; 2280 2281 submit_bio_noacct(bio); 2282 } 2283 } 2284 2285 static void dm_queue_flush(struct mapped_device *md) 2286 { 2287 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2288 smp_mb__after_atomic(); 2289 queue_work(md->wq, &md->work); 2290 } 2291 2292 /* 2293 * Swap in a new table, returning the old one for the caller to destroy. 2294 */ 2295 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2296 { 2297 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2298 struct queue_limits limits; 2299 int r; 2300 2301 mutex_lock(&md->suspend_lock); 2302 2303 /* device must be suspended */ 2304 if (!dm_suspended_md(md)) 2305 goto out; 2306 2307 /* 2308 * If the new table has no data devices, retain the existing limits. 2309 * This helps multipath with queue_if_no_path if all paths disappear, 2310 * then new I/O is queued based on these limits, and then some paths 2311 * reappear. 2312 */ 2313 if (dm_table_has_no_data_devices(table)) { 2314 live_map = dm_get_live_table_fast(md); 2315 if (live_map) 2316 limits = md->queue->limits; 2317 dm_put_live_table_fast(md); 2318 } 2319 2320 if (!live_map) { 2321 r = dm_calculate_queue_limits(table, &limits); 2322 if (r) { 2323 map = ERR_PTR(r); 2324 goto out; 2325 } 2326 } 2327 2328 map = __bind(md, table, &limits); 2329 dm_issue_global_event(); 2330 2331 out: 2332 mutex_unlock(&md->suspend_lock); 2333 return map; 2334 } 2335 2336 /* 2337 * Functions to lock and unlock any filesystem running on the 2338 * device. 2339 */ 2340 static int lock_fs(struct mapped_device *md) 2341 { 2342 int r; 2343 2344 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2345 2346 r = freeze_bdev(md->disk->part0); 2347 if (!r) 2348 set_bit(DMF_FROZEN, &md->flags); 2349 return r; 2350 } 2351 2352 static void unlock_fs(struct mapped_device *md) 2353 { 2354 if (!test_bit(DMF_FROZEN, &md->flags)) 2355 return; 2356 thaw_bdev(md->disk->part0); 2357 clear_bit(DMF_FROZEN, &md->flags); 2358 } 2359 2360 /* 2361 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2362 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2363 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2364 * 2365 * If __dm_suspend returns 0, the device is completely quiescent 2366 * now. There is no request-processing activity. All new requests 2367 * are being added to md->deferred list. 2368 */ 2369 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2370 unsigned suspend_flags, unsigned int task_state, 2371 int dmf_suspended_flag) 2372 { 2373 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2374 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2375 int r; 2376 2377 lockdep_assert_held(&md->suspend_lock); 2378 2379 /* 2380 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2381 * This flag is cleared before dm_suspend returns. 2382 */ 2383 if (noflush) 2384 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2385 else 2386 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2387 2388 /* 2389 * This gets reverted if there's an error later and the targets 2390 * provide the .presuspend_undo hook. 2391 */ 2392 dm_table_presuspend_targets(map); 2393 2394 /* 2395 * Flush I/O to the device. 2396 * Any I/O submitted after lock_fs() may not be flushed. 2397 * noflush takes precedence over do_lockfs. 2398 * (lock_fs() flushes I/Os and waits for them to complete.) 2399 */ 2400 if (!noflush && do_lockfs) { 2401 r = lock_fs(md); 2402 if (r) { 2403 dm_table_presuspend_undo_targets(map); 2404 return r; 2405 } 2406 } 2407 2408 /* 2409 * Here we must make sure that no processes are submitting requests 2410 * to target drivers i.e. no one may be executing 2411 * __split_and_process_bio from dm_submit_bio. 2412 * 2413 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2414 * we take the write lock. To prevent any process from reentering 2415 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2416 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2417 * flush_workqueue(md->wq). 2418 */ 2419 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2420 if (map) 2421 synchronize_srcu(&md->io_barrier); 2422 2423 /* 2424 * Stop md->queue before flushing md->wq in case request-based 2425 * dm defers requests to md->wq from md->queue. 2426 */ 2427 if (dm_request_based(md)) 2428 dm_stop_queue(md->queue); 2429 2430 flush_workqueue(md->wq); 2431 2432 /* 2433 * At this point no more requests are entering target request routines. 2434 * We call dm_wait_for_completion to wait for all existing requests 2435 * to finish. 2436 */ 2437 r = dm_wait_for_completion(md, task_state); 2438 if (!r) 2439 set_bit(dmf_suspended_flag, &md->flags); 2440 2441 if (noflush) 2442 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2443 if (map) 2444 synchronize_srcu(&md->io_barrier); 2445 2446 /* were we interrupted ? */ 2447 if (r < 0) { 2448 dm_queue_flush(md); 2449 2450 if (dm_request_based(md)) 2451 dm_start_queue(md->queue); 2452 2453 unlock_fs(md); 2454 dm_table_presuspend_undo_targets(map); 2455 /* pushback list is already flushed, so skip flush */ 2456 } 2457 2458 return r; 2459 } 2460 2461 /* 2462 * We need to be able to change a mapping table under a mounted 2463 * filesystem. For example we might want to move some data in 2464 * the background. Before the table can be swapped with 2465 * dm_bind_table, dm_suspend must be called to flush any in 2466 * flight bios and ensure that any further io gets deferred. 2467 */ 2468 /* 2469 * Suspend mechanism in request-based dm. 2470 * 2471 * 1. Flush all I/Os by lock_fs() if needed. 2472 * 2. Stop dispatching any I/O by stopping the request_queue. 2473 * 3. Wait for all in-flight I/Os to be completed or requeued. 2474 * 2475 * To abort suspend, start the request_queue. 2476 */ 2477 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2478 { 2479 struct dm_table *map = NULL; 2480 int r = 0; 2481 2482 retry: 2483 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2484 2485 if (dm_suspended_md(md)) { 2486 r = -EINVAL; 2487 goto out_unlock; 2488 } 2489 2490 if (dm_suspended_internally_md(md)) { 2491 /* already internally suspended, wait for internal resume */ 2492 mutex_unlock(&md->suspend_lock); 2493 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2494 if (r) 2495 return r; 2496 goto retry; 2497 } 2498 2499 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2500 2501 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2502 if (r) 2503 goto out_unlock; 2504 2505 set_bit(DMF_POST_SUSPENDING, &md->flags); 2506 dm_table_postsuspend_targets(map); 2507 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2508 2509 out_unlock: 2510 mutex_unlock(&md->suspend_lock); 2511 return r; 2512 } 2513 2514 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2515 { 2516 if (map) { 2517 int r = dm_table_resume_targets(map); 2518 if (r) 2519 return r; 2520 } 2521 2522 dm_queue_flush(md); 2523 2524 /* 2525 * Flushing deferred I/Os must be done after targets are resumed 2526 * so that mapping of targets can work correctly. 2527 * Request-based dm is queueing the deferred I/Os in its request_queue. 2528 */ 2529 if (dm_request_based(md)) 2530 dm_start_queue(md->queue); 2531 2532 unlock_fs(md); 2533 2534 return 0; 2535 } 2536 2537 int dm_resume(struct mapped_device *md) 2538 { 2539 int r; 2540 struct dm_table *map = NULL; 2541 2542 retry: 2543 r = -EINVAL; 2544 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2545 2546 if (!dm_suspended_md(md)) 2547 goto out; 2548 2549 if (dm_suspended_internally_md(md)) { 2550 /* already internally suspended, wait for internal resume */ 2551 mutex_unlock(&md->suspend_lock); 2552 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2553 if (r) 2554 return r; 2555 goto retry; 2556 } 2557 2558 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2559 if (!map || !dm_table_get_size(map)) 2560 goto out; 2561 2562 r = __dm_resume(md, map); 2563 if (r) 2564 goto out; 2565 2566 clear_bit(DMF_SUSPENDED, &md->flags); 2567 out: 2568 mutex_unlock(&md->suspend_lock); 2569 2570 return r; 2571 } 2572 2573 /* 2574 * Internal suspend/resume works like userspace-driven suspend. It waits 2575 * until all bios finish and prevents issuing new bios to the target drivers. 2576 * It may be used only from the kernel. 2577 */ 2578 2579 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2580 { 2581 struct dm_table *map = NULL; 2582 2583 lockdep_assert_held(&md->suspend_lock); 2584 2585 if (md->internal_suspend_count++) 2586 return; /* nested internal suspend */ 2587 2588 if (dm_suspended_md(md)) { 2589 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2590 return; /* nest suspend */ 2591 } 2592 2593 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2594 2595 /* 2596 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2597 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2598 * would require changing .presuspend to return an error -- avoid this 2599 * until there is a need for more elaborate variants of internal suspend. 2600 */ 2601 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2602 DMF_SUSPENDED_INTERNALLY); 2603 2604 set_bit(DMF_POST_SUSPENDING, &md->flags); 2605 dm_table_postsuspend_targets(map); 2606 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2607 } 2608 2609 static void __dm_internal_resume(struct mapped_device *md) 2610 { 2611 BUG_ON(!md->internal_suspend_count); 2612 2613 if (--md->internal_suspend_count) 2614 return; /* resume from nested internal suspend */ 2615 2616 if (dm_suspended_md(md)) 2617 goto done; /* resume from nested suspend */ 2618 2619 /* 2620 * NOTE: existing callers don't need to call dm_table_resume_targets 2621 * (which may fail -- so best to avoid it for now by passing NULL map) 2622 */ 2623 (void) __dm_resume(md, NULL); 2624 2625 done: 2626 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2627 smp_mb__after_atomic(); 2628 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2629 } 2630 2631 void dm_internal_suspend_noflush(struct mapped_device *md) 2632 { 2633 mutex_lock(&md->suspend_lock); 2634 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2635 mutex_unlock(&md->suspend_lock); 2636 } 2637 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2638 2639 void dm_internal_resume(struct mapped_device *md) 2640 { 2641 mutex_lock(&md->suspend_lock); 2642 __dm_internal_resume(md); 2643 mutex_unlock(&md->suspend_lock); 2644 } 2645 EXPORT_SYMBOL_GPL(dm_internal_resume); 2646 2647 /* 2648 * Fast variants of internal suspend/resume hold md->suspend_lock, 2649 * which prevents interaction with userspace-driven suspend. 2650 */ 2651 2652 void dm_internal_suspend_fast(struct mapped_device *md) 2653 { 2654 mutex_lock(&md->suspend_lock); 2655 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2656 return; 2657 2658 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2659 synchronize_srcu(&md->io_barrier); 2660 flush_workqueue(md->wq); 2661 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2662 } 2663 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2664 2665 void dm_internal_resume_fast(struct mapped_device *md) 2666 { 2667 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2668 goto done; 2669 2670 dm_queue_flush(md); 2671 2672 done: 2673 mutex_unlock(&md->suspend_lock); 2674 } 2675 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2676 2677 /*----------------------------------------------------------------- 2678 * Event notification. 2679 *---------------------------------------------------------------*/ 2680 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2681 unsigned cookie) 2682 { 2683 int r; 2684 unsigned noio_flag; 2685 char udev_cookie[DM_COOKIE_LENGTH]; 2686 char *envp[] = { udev_cookie, NULL }; 2687 2688 noio_flag = memalloc_noio_save(); 2689 2690 if (!cookie) 2691 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2692 else { 2693 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2694 DM_COOKIE_ENV_VAR_NAME, cookie); 2695 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2696 action, envp); 2697 } 2698 2699 memalloc_noio_restore(noio_flag); 2700 2701 return r; 2702 } 2703 2704 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2705 { 2706 return atomic_add_return(1, &md->uevent_seq); 2707 } 2708 2709 uint32_t dm_get_event_nr(struct mapped_device *md) 2710 { 2711 return atomic_read(&md->event_nr); 2712 } 2713 2714 int dm_wait_event(struct mapped_device *md, int event_nr) 2715 { 2716 return wait_event_interruptible(md->eventq, 2717 (event_nr != atomic_read(&md->event_nr))); 2718 } 2719 2720 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2721 { 2722 unsigned long flags; 2723 2724 spin_lock_irqsave(&md->uevent_lock, flags); 2725 list_add(elist, &md->uevent_list); 2726 spin_unlock_irqrestore(&md->uevent_lock, flags); 2727 } 2728 2729 /* 2730 * The gendisk is only valid as long as you have a reference 2731 * count on 'md'. 2732 */ 2733 struct gendisk *dm_disk(struct mapped_device *md) 2734 { 2735 return md->disk; 2736 } 2737 EXPORT_SYMBOL_GPL(dm_disk); 2738 2739 struct kobject *dm_kobject(struct mapped_device *md) 2740 { 2741 return &md->kobj_holder.kobj; 2742 } 2743 2744 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2745 { 2746 struct mapped_device *md; 2747 2748 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2749 2750 spin_lock(&_minor_lock); 2751 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2752 md = NULL; 2753 goto out; 2754 } 2755 dm_get(md); 2756 out: 2757 spin_unlock(&_minor_lock); 2758 2759 return md; 2760 } 2761 2762 int dm_suspended_md(struct mapped_device *md) 2763 { 2764 return test_bit(DMF_SUSPENDED, &md->flags); 2765 } 2766 2767 static int dm_post_suspending_md(struct mapped_device *md) 2768 { 2769 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2770 } 2771 2772 int dm_suspended_internally_md(struct mapped_device *md) 2773 { 2774 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2775 } 2776 2777 int dm_test_deferred_remove_flag(struct mapped_device *md) 2778 { 2779 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2780 } 2781 2782 int dm_suspended(struct dm_target *ti) 2783 { 2784 return dm_suspended_md(ti->table->md); 2785 } 2786 EXPORT_SYMBOL_GPL(dm_suspended); 2787 2788 int dm_post_suspending(struct dm_target *ti) 2789 { 2790 return dm_post_suspending_md(ti->table->md); 2791 } 2792 EXPORT_SYMBOL_GPL(dm_post_suspending); 2793 2794 int dm_noflush_suspending(struct dm_target *ti) 2795 { 2796 return __noflush_suspending(ti->table->md); 2797 } 2798 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2799 2800 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2801 unsigned integrity, unsigned per_io_data_size, 2802 unsigned min_pool_size) 2803 { 2804 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2805 unsigned int pool_size = 0; 2806 unsigned int front_pad, io_front_pad; 2807 int ret; 2808 2809 if (!pools) 2810 return NULL; 2811 2812 switch (type) { 2813 case DM_TYPE_BIO_BASED: 2814 case DM_TYPE_DAX_BIO_BASED: 2815 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2816 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2817 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2818 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2819 if (ret) 2820 goto out; 2821 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2822 goto out; 2823 break; 2824 case DM_TYPE_REQUEST_BASED: 2825 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2826 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2827 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2828 break; 2829 default: 2830 BUG(); 2831 } 2832 2833 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2834 if (ret) 2835 goto out; 2836 2837 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2838 goto out; 2839 2840 return pools; 2841 2842 out: 2843 dm_free_md_mempools(pools); 2844 2845 return NULL; 2846 } 2847 2848 void dm_free_md_mempools(struct dm_md_mempools *pools) 2849 { 2850 if (!pools) 2851 return; 2852 2853 bioset_exit(&pools->bs); 2854 bioset_exit(&pools->io_bs); 2855 2856 kfree(pools); 2857 } 2858 2859 struct dm_pr { 2860 u64 old_key; 2861 u64 new_key; 2862 u32 flags; 2863 bool fail_early; 2864 }; 2865 2866 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2867 void *data) 2868 { 2869 struct mapped_device *md = bdev->bd_disk->private_data; 2870 struct dm_table *table; 2871 struct dm_target *ti; 2872 int ret = -ENOTTY, srcu_idx; 2873 2874 table = dm_get_live_table(md, &srcu_idx); 2875 if (!table || !dm_table_get_size(table)) 2876 goto out; 2877 2878 /* We only support devices that have a single target */ 2879 if (dm_table_get_num_targets(table) != 1) 2880 goto out; 2881 ti = dm_table_get_target(table, 0); 2882 2883 ret = -EINVAL; 2884 if (!ti->type->iterate_devices) 2885 goto out; 2886 2887 ret = ti->type->iterate_devices(ti, fn, data); 2888 out: 2889 dm_put_live_table(md, srcu_idx); 2890 return ret; 2891 } 2892 2893 /* 2894 * For register / unregister we need to manually call out to every path. 2895 */ 2896 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2897 sector_t start, sector_t len, void *data) 2898 { 2899 struct dm_pr *pr = data; 2900 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2901 2902 if (!ops || !ops->pr_register) 2903 return -EOPNOTSUPP; 2904 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2905 } 2906 2907 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2908 u32 flags) 2909 { 2910 struct dm_pr pr = { 2911 .old_key = old_key, 2912 .new_key = new_key, 2913 .flags = flags, 2914 .fail_early = true, 2915 }; 2916 int ret; 2917 2918 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2919 if (ret && new_key) { 2920 /* unregister all paths if we failed to register any path */ 2921 pr.old_key = new_key; 2922 pr.new_key = 0; 2923 pr.flags = 0; 2924 pr.fail_early = false; 2925 dm_call_pr(bdev, __dm_pr_register, &pr); 2926 } 2927 2928 return ret; 2929 } 2930 2931 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2932 u32 flags) 2933 { 2934 struct mapped_device *md = bdev->bd_disk->private_data; 2935 const struct pr_ops *ops; 2936 int r, srcu_idx; 2937 2938 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2939 if (r < 0) 2940 goto out; 2941 2942 ops = bdev->bd_disk->fops->pr_ops; 2943 if (ops && ops->pr_reserve) 2944 r = ops->pr_reserve(bdev, key, type, flags); 2945 else 2946 r = -EOPNOTSUPP; 2947 out: 2948 dm_unprepare_ioctl(md, srcu_idx); 2949 return r; 2950 } 2951 2952 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2953 { 2954 struct mapped_device *md = bdev->bd_disk->private_data; 2955 const struct pr_ops *ops; 2956 int r, srcu_idx; 2957 2958 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2959 if (r < 0) 2960 goto out; 2961 2962 ops = bdev->bd_disk->fops->pr_ops; 2963 if (ops && ops->pr_release) 2964 r = ops->pr_release(bdev, key, type); 2965 else 2966 r = -EOPNOTSUPP; 2967 out: 2968 dm_unprepare_ioctl(md, srcu_idx); 2969 return r; 2970 } 2971 2972 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2973 enum pr_type type, bool abort) 2974 { 2975 struct mapped_device *md = bdev->bd_disk->private_data; 2976 const struct pr_ops *ops; 2977 int r, srcu_idx; 2978 2979 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2980 if (r < 0) 2981 goto out; 2982 2983 ops = bdev->bd_disk->fops->pr_ops; 2984 if (ops && ops->pr_preempt) 2985 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2986 else 2987 r = -EOPNOTSUPP; 2988 out: 2989 dm_unprepare_ioctl(md, srcu_idx); 2990 return r; 2991 } 2992 2993 static int dm_pr_clear(struct block_device *bdev, u64 key) 2994 { 2995 struct mapped_device *md = bdev->bd_disk->private_data; 2996 const struct pr_ops *ops; 2997 int r, srcu_idx; 2998 2999 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3000 if (r < 0) 3001 goto out; 3002 3003 ops = bdev->bd_disk->fops->pr_ops; 3004 if (ops && ops->pr_clear) 3005 r = ops->pr_clear(bdev, key); 3006 else 3007 r = -EOPNOTSUPP; 3008 out: 3009 dm_unprepare_ioctl(md, srcu_idx); 3010 return r; 3011 } 3012 3013 static const struct pr_ops dm_pr_ops = { 3014 .pr_register = dm_pr_register, 3015 .pr_reserve = dm_pr_reserve, 3016 .pr_release = dm_pr_release, 3017 .pr_preempt = dm_pr_preempt, 3018 .pr_clear = dm_pr_clear, 3019 }; 3020 3021 static const struct block_device_operations dm_blk_dops = { 3022 .submit_bio = dm_submit_bio, 3023 .open = dm_blk_open, 3024 .release = dm_blk_close, 3025 .ioctl = dm_blk_ioctl, 3026 .getgeo = dm_blk_getgeo, 3027 .report_zones = dm_blk_report_zones, 3028 .pr_ops = &dm_pr_ops, 3029 .owner = THIS_MODULE 3030 }; 3031 3032 static const struct block_device_operations dm_rq_blk_dops = { 3033 .open = dm_blk_open, 3034 .release = dm_blk_close, 3035 .ioctl = dm_blk_ioctl, 3036 .getgeo = dm_blk_getgeo, 3037 .pr_ops = &dm_pr_ops, 3038 .owner = THIS_MODULE 3039 }; 3040 3041 static const struct dax_operations dm_dax_ops = { 3042 .direct_access = dm_dax_direct_access, 3043 .dax_supported = dm_dax_supported, 3044 .copy_from_iter = dm_dax_copy_from_iter, 3045 .copy_to_iter = dm_dax_copy_to_iter, 3046 .zero_page_range = dm_dax_zero_page_range, 3047 }; 3048 3049 /* 3050 * module hooks 3051 */ 3052 module_init(dm_init); 3053 module_exit(dm_exit); 3054 3055 module_param(major, uint, 0); 3056 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3057 3058 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3059 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3060 3061 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3062 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3063 3064 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3065 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3066 3067 MODULE_DESCRIPTION(DM_NAME " driver"); 3068 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3069 MODULE_LICENSE("GPL"); 3070