1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 #include <linux/blk-crypto.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 /* 34 * Cookies are numeric values sent with CHANGE and REMOVE 35 * uevents while resuming, removing or renaming the device. 36 */ 37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 38 #define DM_COOKIE_LENGTH 24 39 40 static const char *_name = DM_NAME; 41 42 static unsigned int major = 0; 43 static unsigned int _major = 0; 44 45 static DEFINE_IDR(_minor_idr); 46 47 static DEFINE_SPINLOCK(_minor_lock); 48 49 static void do_deferred_remove(struct work_struct *w); 50 51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 52 53 static struct workqueue_struct *deferred_remove_workqueue; 54 55 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 57 58 void dm_issue_global_event(void) 59 { 60 atomic_inc(&dm_global_event_nr); 61 wake_up(&dm_global_eventq); 62 } 63 64 /* 65 * One of these is allocated (on-stack) per original bio. 66 */ 67 struct clone_info { 68 struct dm_table *map; 69 struct bio *bio; 70 struct dm_io *io; 71 sector_t sector; 72 unsigned sector_count; 73 }; 74 75 /* 76 * One of these is allocated per clone bio. 77 */ 78 #define DM_TIO_MAGIC 7282014 79 struct dm_target_io { 80 unsigned magic; 81 struct dm_io *io; 82 struct dm_target *ti; 83 unsigned target_bio_nr; 84 unsigned *len_ptr; 85 bool inside_dm_io; 86 struct bio clone; 87 }; 88 89 /* 90 * One of these is allocated per original bio. 91 * It contains the first clone used for that original. 92 */ 93 #define DM_IO_MAGIC 5191977 94 struct dm_io { 95 unsigned magic; 96 struct mapped_device *md; 97 blk_status_t status; 98 atomic_t io_count; 99 struct bio *orig_bio; 100 unsigned long start_time; 101 spinlock_t endio_lock; 102 struct dm_stats_aux stats_aux; 103 /* last member of dm_target_io is 'struct bio' */ 104 struct dm_target_io tio; 105 }; 106 107 void *dm_per_bio_data(struct bio *bio, size_t data_size) 108 { 109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 110 if (!tio->inside_dm_io) 111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 113 } 114 EXPORT_SYMBOL_GPL(dm_per_bio_data); 115 116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 117 { 118 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 119 if (io->magic == DM_IO_MAGIC) 120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 121 BUG_ON(io->magic != DM_TIO_MAGIC); 122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 123 } 124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 125 126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 127 { 128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 129 } 130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 131 132 #define MINOR_ALLOCED ((void *)-1) 133 134 /* 135 * Bits for the md->flags field. 136 */ 137 #define DMF_BLOCK_IO_FOR_SUSPEND 0 138 #define DMF_SUSPENDED 1 139 #define DMF_FROZEN 2 140 #define DMF_FREEING 3 141 #define DMF_DELETING 4 142 #define DMF_NOFLUSH_SUSPENDING 5 143 #define DMF_DEFERRED_REMOVE 6 144 #define DMF_SUSPENDED_INTERNALLY 7 145 146 #define DM_NUMA_NODE NUMA_NO_NODE 147 static int dm_numa_node = DM_NUMA_NODE; 148 149 /* 150 * For mempools pre-allocation at the table loading time. 151 */ 152 struct dm_md_mempools { 153 struct bio_set bs; 154 struct bio_set io_bs; 155 }; 156 157 struct table_device { 158 struct list_head list; 159 refcount_t count; 160 struct dm_dev dm_dev; 161 }; 162 163 /* 164 * Bio-based DM's mempools' reserved IOs set by the user. 165 */ 166 #define RESERVED_BIO_BASED_IOS 16 167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 168 169 static int __dm_get_module_param_int(int *module_param, int min, int max) 170 { 171 int param = READ_ONCE(*module_param); 172 int modified_param = 0; 173 bool modified = true; 174 175 if (param < min) 176 modified_param = min; 177 else if (param > max) 178 modified_param = max; 179 else 180 modified = false; 181 182 if (modified) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned __dm_get_module_param(unsigned *module_param, 191 unsigned def, unsigned max) 192 { 193 unsigned param = READ_ONCE(*module_param); 194 unsigned modified_param = 0; 195 196 if (!param) 197 modified_param = def; 198 else if (param > max) 199 modified_param = max; 200 201 if (modified_param) { 202 (void)cmpxchg(module_param, param, modified_param); 203 param = modified_param; 204 } 205 206 return param; 207 } 208 209 unsigned dm_get_reserved_bio_based_ios(void) 210 { 211 return __dm_get_module_param(&reserved_bio_based_ios, 212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 213 } 214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 215 216 static unsigned dm_get_numa_node(void) 217 { 218 return __dm_get_module_param_int(&dm_numa_node, 219 DM_NUMA_NODE, num_online_nodes() - 1); 220 } 221 222 static int __init local_init(void) 223 { 224 int r; 225 226 r = dm_uevent_init(); 227 if (r) 228 return r; 229 230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 231 if (!deferred_remove_workqueue) { 232 r = -ENOMEM; 233 goto out_uevent_exit; 234 } 235 236 _major = major; 237 r = register_blkdev(_major, _name); 238 if (r < 0) 239 goto out_free_workqueue; 240 241 if (!_major) 242 _major = r; 243 244 return 0; 245 246 out_free_workqueue: 247 destroy_workqueue(deferred_remove_workqueue); 248 out_uevent_exit: 249 dm_uevent_exit(); 250 251 return r; 252 } 253 254 static void local_exit(void) 255 { 256 flush_scheduled_work(); 257 destroy_workqueue(deferred_remove_workqueue); 258 259 unregister_blkdev(_major, _name); 260 dm_uevent_exit(); 261 262 _major = 0; 263 264 DMINFO("cleaned up"); 265 } 266 267 static int (*_inits[])(void) __initdata = { 268 local_init, 269 dm_target_init, 270 dm_linear_init, 271 dm_stripe_init, 272 dm_io_init, 273 dm_kcopyd_init, 274 dm_interface_init, 275 dm_statistics_init, 276 }; 277 278 static void (*_exits[])(void) = { 279 local_exit, 280 dm_target_exit, 281 dm_linear_exit, 282 dm_stripe_exit, 283 dm_io_exit, 284 dm_kcopyd_exit, 285 dm_interface_exit, 286 dm_statistics_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 317 /* 318 * Should be empty by this point. 319 */ 320 idr_destroy(&_minor_idr); 321 } 322 323 /* 324 * Block device functions 325 */ 326 int dm_deleting_md(struct mapped_device *md) 327 { 328 return test_bit(DMF_DELETING, &md->flags); 329 } 330 331 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = bdev->bd_disk->private_data; 338 if (!md) 339 goto out; 340 341 if (test_bit(DMF_FREEING, &md->flags) || 342 dm_deleting_md(md)) { 343 md = NULL; 344 goto out; 345 } 346 347 dm_get(md); 348 atomic_inc(&md->open_count); 349 out: 350 spin_unlock(&_minor_lock); 351 352 return md ? 0 : -ENXIO; 353 } 354 355 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 356 { 357 struct mapped_device *md; 358 359 spin_lock(&_minor_lock); 360 361 md = disk->private_data; 362 if (WARN_ON(!md)) 363 goto out; 364 365 if (atomic_dec_and_test(&md->open_count) && 366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 367 queue_work(deferred_remove_workqueue, &deferred_remove_work); 368 369 dm_put(md); 370 out: 371 spin_unlock(&_minor_lock); 372 } 373 374 int dm_open_count(struct mapped_device *md) 375 { 376 return atomic_read(&md->open_count); 377 } 378 379 /* 380 * Guarantees nothing is using the device before it's deleted. 381 */ 382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (dm_open_count(md)) { 389 r = -EBUSY; 390 if (mark_deferred) 391 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 393 r = -EEXIST; 394 else 395 set_bit(DMF_DELETING, &md->flags); 396 397 spin_unlock(&_minor_lock); 398 399 return r; 400 } 401 402 int dm_cancel_deferred_remove(struct mapped_device *md) 403 { 404 int r = 0; 405 406 spin_lock(&_minor_lock); 407 408 if (test_bit(DMF_DELETING, &md->flags)) 409 r = -EBUSY; 410 else 411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 static void do_deferred_remove(struct work_struct *w) 419 { 420 dm_deferred_remove(); 421 } 422 423 sector_t dm_get_size(struct mapped_device *md) 424 { 425 return get_capacity(md->disk); 426 } 427 428 struct request_queue *dm_get_md_queue(struct mapped_device *md) 429 { 430 return md->queue; 431 } 432 433 struct dm_stats *dm_get_stats(struct mapped_device *md) 434 { 435 return &md->stats; 436 } 437 438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 439 { 440 struct mapped_device *md = bdev->bd_disk->private_data; 441 442 return dm_get_geometry(md, geo); 443 } 444 445 #ifdef CONFIG_BLK_DEV_ZONED 446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 447 { 448 struct dm_report_zones_args *args = data; 449 sector_t sector_diff = args->tgt->begin - args->start; 450 451 /* 452 * Ignore zones beyond the target range. 453 */ 454 if (zone->start >= args->start + args->tgt->len) 455 return 0; 456 457 /* 458 * Remap the start sector and write pointer position of the zone 459 * to match its position in the target range. 460 */ 461 zone->start += sector_diff; 462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 463 if (zone->cond == BLK_ZONE_COND_FULL) 464 zone->wp = zone->start + zone->len; 465 else if (zone->cond == BLK_ZONE_COND_EMPTY) 466 zone->wp = zone->start; 467 else 468 zone->wp += sector_diff; 469 } 470 471 args->next_sector = zone->start + zone->len; 472 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 473 } 474 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 475 476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 477 unsigned int nr_zones, report_zones_cb cb, void *data) 478 { 479 struct mapped_device *md = disk->private_data; 480 struct dm_table *map; 481 int srcu_idx, ret; 482 struct dm_report_zones_args args = { 483 .next_sector = sector, 484 .orig_data = data, 485 .orig_cb = cb, 486 }; 487 488 if (dm_suspended_md(md)) 489 return -EAGAIN; 490 491 map = dm_get_live_table(md, &srcu_idx); 492 if (!map) 493 return -EIO; 494 495 do { 496 struct dm_target *tgt; 497 498 tgt = dm_table_find_target(map, args.next_sector); 499 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 500 ret = -EIO; 501 goto out; 502 } 503 504 args.tgt = tgt; 505 ret = tgt->type->report_zones(tgt, &args, nr_zones); 506 if (ret < 0) 507 goto out; 508 } while (args.zone_idx < nr_zones && 509 args.next_sector < get_capacity(disk)); 510 511 ret = args.zone_idx; 512 out: 513 dm_put_live_table(md, srcu_idx); 514 return ret; 515 } 516 #else 517 #define dm_blk_report_zones NULL 518 #endif /* CONFIG_BLK_DEV_ZONED */ 519 520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 521 struct block_device **bdev) 522 __acquires(md->io_barrier) 523 { 524 struct dm_target *tgt; 525 struct dm_table *map; 526 int r; 527 528 retry: 529 r = -ENOTTY; 530 map = dm_get_live_table(md, srcu_idx); 531 if (!map || !dm_table_get_size(map)) 532 return r; 533 534 /* We only support devices that have a single target */ 535 if (dm_table_get_num_targets(map) != 1) 536 return r; 537 538 tgt = dm_table_get_target(map, 0); 539 if (!tgt->type->prepare_ioctl) 540 return r; 541 542 if (dm_suspended_md(md)) 543 return -EAGAIN; 544 545 r = tgt->type->prepare_ioctl(tgt, bdev); 546 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 547 dm_put_live_table(md, *srcu_idx); 548 msleep(10); 549 goto retry; 550 } 551 552 return r; 553 } 554 555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 556 __releases(md->io_barrier) 557 { 558 dm_put_live_table(md, srcu_idx); 559 } 560 561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 562 unsigned int cmd, unsigned long arg) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 int r, srcu_idx; 566 567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 568 if (r < 0) 569 goto out; 570 571 if (r > 0) { 572 /* 573 * Target determined this ioctl is being issued against a 574 * subset of the parent bdev; require extra privileges. 575 */ 576 if (!capable(CAP_SYS_RAWIO)) { 577 DMWARN_LIMIT( 578 "%s: sending ioctl %x to DM device without required privilege.", 579 current->comm, cmd); 580 r = -ENOIOCTLCMD; 581 goto out; 582 } 583 } 584 585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 586 out: 587 dm_unprepare_ioctl(md, srcu_idx); 588 return r; 589 } 590 591 static void start_io_acct(struct dm_io *io); 592 593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 594 { 595 struct dm_io *io; 596 struct dm_target_io *tio; 597 struct bio *clone; 598 599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 600 if (!clone) 601 return NULL; 602 603 tio = container_of(clone, struct dm_target_io, clone); 604 tio->inside_dm_io = true; 605 tio->io = NULL; 606 607 io = container_of(tio, struct dm_io, tio); 608 io->magic = DM_IO_MAGIC; 609 io->status = 0; 610 atomic_set(&io->io_count, 1); 611 io->orig_bio = bio; 612 io->md = md; 613 spin_lock_init(&io->endio_lock); 614 615 start_io_acct(io); 616 617 return io; 618 } 619 620 static void free_io(struct mapped_device *md, struct dm_io *io) 621 { 622 bio_put(&io->tio.clone); 623 } 624 625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 626 unsigned target_bio_nr, gfp_t gfp_mask) 627 { 628 struct dm_target_io *tio; 629 630 if (!ci->io->tio.io) { 631 /* the dm_target_io embedded in ci->io is available */ 632 tio = &ci->io->tio; 633 } else { 634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 635 if (!clone) 636 return NULL; 637 638 tio = container_of(clone, struct dm_target_io, clone); 639 tio->inside_dm_io = false; 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 647 return tio; 648 } 649 650 static void free_tio(struct dm_target_io *tio) 651 { 652 if (tio->inside_dm_io) 653 return; 654 bio_put(&tio->clone); 655 } 656 657 static bool md_in_flight_bios(struct mapped_device *md) 658 { 659 int cpu; 660 struct hd_struct *part = &dm_disk(md)->part0; 661 long sum = 0; 662 663 for_each_possible_cpu(cpu) { 664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 666 } 667 668 return sum != 0; 669 } 670 671 static bool md_in_flight(struct mapped_device *md) 672 { 673 if (queue_is_mq(md->queue)) 674 return blk_mq_queue_inflight(md->queue); 675 else 676 return md_in_flight_bios(md); 677 } 678 679 u64 dm_start_time_ns_from_clone(struct bio *bio) 680 { 681 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 682 struct dm_io *io = tio->io; 683 684 return jiffies_to_nsecs(io->start_time); 685 } 686 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 687 688 static void start_io_acct(struct dm_io *io) 689 { 690 struct mapped_device *md = io->md; 691 struct bio *bio = io->orig_bio; 692 693 io->start_time = bio_start_io_acct(bio); 694 if (unlikely(dm_stats_used(&md->stats))) 695 dm_stats_account_io(&md->stats, bio_data_dir(bio), 696 bio->bi_iter.bi_sector, bio_sectors(bio), 697 false, 0, &io->stats_aux); 698 } 699 700 static void end_io_acct(struct dm_io *io) 701 { 702 struct mapped_device *md = io->md; 703 struct bio *bio = io->orig_bio; 704 unsigned long duration = jiffies - io->start_time; 705 706 bio_end_io_acct(bio, io->start_time); 707 708 if (unlikely(dm_stats_used(&md->stats))) 709 dm_stats_account_io(&md->stats, bio_data_dir(bio), 710 bio->bi_iter.bi_sector, bio_sectors(bio), 711 true, duration, &io->stats_aux); 712 713 /* nudge anyone waiting on suspend queue */ 714 if (unlikely(wq_has_sleeper(&md->wait))) 715 wake_up(&md->wait); 716 } 717 718 /* 719 * Add the bio to the list of deferred io. 720 */ 721 static void queue_io(struct mapped_device *md, struct bio *bio) 722 { 723 unsigned long flags; 724 725 spin_lock_irqsave(&md->deferred_lock, flags); 726 bio_list_add(&md->deferred, bio); 727 spin_unlock_irqrestore(&md->deferred_lock, flags); 728 queue_work(md->wq, &md->work); 729 } 730 731 /* 732 * Everyone (including functions in this file), should use this 733 * function to access the md->map field, and make sure they call 734 * dm_put_live_table() when finished. 735 */ 736 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 737 { 738 *srcu_idx = srcu_read_lock(&md->io_barrier); 739 740 return srcu_dereference(md->map, &md->io_barrier); 741 } 742 743 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 744 { 745 srcu_read_unlock(&md->io_barrier, srcu_idx); 746 } 747 748 void dm_sync_table(struct mapped_device *md) 749 { 750 synchronize_srcu(&md->io_barrier); 751 synchronize_rcu_expedited(); 752 } 753 754 /* 755 * A fast alternative to dm_get_live_table/dm_put_live_table. 756 * The caller must not block between these two functions. 757 */ 758 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 759 { 760 rcu_read_lock(); 761 return rcu_dereference(md->map); 762 } 763 764 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 765 { 766 rcu_read_unlock(); 767 } 768 769 static char *_dm_claim_ptr = "I belong to device-mapper"; 770 771 /* 772 * Open a table device so we can use it as a map destination. 773 */ 774 static int open_table_device(struct table_device *td, dev_t dev, 775 struct mapped_device *md) 776 { 777 struct block_device *bdev; 778 779 int r; 780 781 BUG_ON(td->dm_dev.bdev); 782 783 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 784 if (IS_ERR(bdev)) 785 return PTR_ERR(bdev); 786 787 r = bd_link_disk_holder(bdev, dm_disk(md)); 788 if (r) { 789 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 790 return r; 791 } 792 793 td->dm_dev.bdev = bdev; 794 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 795 return 0; 796 } 797 798 /* 799 * Close a table device that we've been using. 800 */ 801 static void close_table_device(struct table_device *td, struct mapped_device *md) 802 { 803 if (!td->dm_dev.bdev) 804 return; 805 806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 808 put_dax(td->dm_dev.dax_dev); 809 td->dm_dev.bdev = NULL; 810 td->dm_dev.dax_dev = NULL; 811 } 812 813 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 814 fmode_t mode) 815 { 816 struct table_device *td; 817 818 list_for_each_entry(td, l, list) 819 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 820 return td; 821 822 return NULL; 823 } 824 825 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 826 struct dm_dev **result) 827 { 828 int r; 829 struct table_device *td; 830 831 mutex_lock(&md->table_devices_lock); 832 td = find_table_device(&md->table_devices, dev, mode); 833 if (!td) { 834 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 835 if (!td) { 836 mutex_unlock(&md->table_devices_lock); 837 return -ENOMEM; 838 } 839 840 td->dm_dev.mode = mode; 841 td->dm_dev.bdev = NULL; 842 843 if ((r = open_table_device(td, dev, md))) { 844 mutex_unlock(&md->table_devices_lock); 845 kfree(td); 846 return r; 847 } 848 849 format_dev_t(td->dm_dev.name, dev); 850 851 refcount_set(&td->count, 1); 852 list_add(&td->list, &md->table_devices); 853 } else { 854 refcount_inc(&td->count); 855 } 856 mutex_unlock(&md->table_devices_lock); 857 858 *result = &td->dm_dev; 859 return 0; 860 } 861 EXPORT_SYMBOL_GPL(dm_get_table_device); 862 863 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 864 { 865 struct table_device *td = container_of(d, struct table_device, dm_dev); 866 867 mutex_lock(&md->table_devices_lock); 868 if (refcount_dec_and_test(&td->count)) { 869 close_table_device(td, md); 870 list_del(&td->list); 871 kfree(td); 872 } 873 mutex_unlock(&md->table_devices_lock); 874 } 875 EXPORT_SYMBOL(dm_put_table_device); 876 877 static void free_table_devices(struct list_head *devices) 878 { 879 struct list_head *tmp, *next; 880 881 list_for_each_safe(tmp, next, devices) { 882 struct table_device *td = list_entry(tmp, struct table_device, list); 883 884 DMWARN("dm_destroy: %s still exists with %d references", 885 td->dm_dev.name, refcount_read(&td->count)); 886 kfree(td); 887 } 888 } 889 890 /* 891 * Get the geometry associated with a dm device 892 */ 893 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 894 { 895 *geo = md->geometry; 896 897 return 0; 898 } 899 900 /* 901 * Set the geometry of a device. 902 */ 903 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 904 { 905 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 906 907 if (geo->start > sz) { 908 DMWARN("Start sector is beyond the geometry limits."); 909 return -EINVAL; 910 } 911 912 md->geometry = *geo; 913 914 return 0; 915 } 916 917 static int __noflush_suspending(struct mapped_device *md) 918 { 919 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 920 } 921 922 /* 923 * Decrements the number of outstanding ios that a bio has been 924 * cloned into, completing the original io if necc. 925 */ 926 static void dec_pending(struct dm_io *io, blk_status_t error) 927 { 928 unsigned long flags; 929 blk_status_t io_error; 930 struct bio *bio; 931 struct mapped_device *md = io->md; 932 933 /* Push-back supersedes any I/O errors */ 934 if (unlikely(error)) { 935 spin_lock_irqsave(&io->endio_lock, flags); 936 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 937 io->status = error; 938 spin_unlock_irqrestore(&io->endio_lock, flags); 939 } 940 941 if (atomic_dec_and_test(&io->io_count)) { 942 if (io->status == BLK_STS_DM_REQUEUE) { 943 /* 944 * Target requested pushing back the I/O. 945 */ 946 spin_lock_irqsave(&md->deferred_lock, flags); 947 if (__noflush_suspending(md)) 948 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 949 bio_list_add_head(&md->deferred, io->orig_bio); 950 else 951 /* noflush suspend was interrupted. */ 952 io->status = BLK_STS_IOERR; 953 spin_unlock_irqrestore(&md->deferred_lock, flags); 954 } 955 956 io_error = io->status; 957 bio = io->orig_bio; 958 end_io_acct(io); 959 free_io(md, io); 960 961 if (io_error == BLK_STS_DM_REQUEUE) 962 return; 963 964 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 965 /* 966 * Preflush done for flush with data, reissue 967 * without REQ_PREFLUSH. 968 */ 969 bio->bi_opf &= ~REQ_PREFLUSH; 970 queue_io(md, bio); 971 } else { 972 /* done with normal IO or empty flush */ 973 if (io_error) 974 bio->bi_status = io_error; 975 bio_endio(bio); 976 } 977 } 978 } 979 980 void disable_discard(struct mapped_device *md) 981 { 982 struct queue_limits *limits = dm_get_queue_limits(md); 983 984 /* device doesn't really support DISCARD, disable it */ 985 limits->max_discard_sectors = 0; 986 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 987 } 988 989 void disable_write_same(struct mapped_device *md) 990 { 991 struct queue_limits *limits = dm_get_queue_limits(md); 992 993 /* device doesn't really support WRITE SAME, disable it */ 994 limits->max_write_same_sectors = 0; 995 } 996 997 void disable_write_zeroes(struct mapped_device *md) 998 { 999 struct queue_limits *limits = dm_get_queue_limits(md); 1000 1001 /* device doesn't really support WRITE ZEROES, disable it */ 1002 limits->max_write_zeroes_sectors = 0; 1003 } 1004 1005 static void clone_endio(struct bio *bio) 1006 { 1007 blk_status_t error = bio->bi_status; 1008 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1009 struct dm_io *io = tio->io; 1010 struct mapped_device *md = tio->io->md; 1011 dm_endio_fn endio = tio->ti->type->end_io; 1012 struct bio *orig_bio = io->orig_bio; 1013 1014 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1015 if (bio_op(bio) == REQ_OP_DISCARD && 1016 !bio->bi_disk->queue->limits.max_discard_sectors) 1017 disable_discard(md); 1018 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1019 !bio->bi_disk->queue->limits.max_write_same_sectors) 1020 disable_write_same(md); 1021 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1022 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1023 disable_write_zeroes(md); 1024 } 1025 1026 /* 1027 * For zone-append bios get offset in zone of the written 1028 * sector and add that to the original bio sector pos. 1029 */ 1030 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 1031 sector_t written_sector = bio->bi_iter.bi_sector; 1032 struct request_queue *q = orig_bio->bi_disk->queue; 1033 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 1034 1035 orig_bio->bi_iter.bi_sector += written_sector & mask; 1036 } 1037 1038 if (endio) { 1039 int r = endio(tio->ti, bio, &error); 1040 switch (r) { 1041 case DM_ENDIO_REQUEUE: 1042 error = BLK_STS_DM_REQUEUE; 1043 /*FALLTHRU*/ 1044 case DM_ENDIO_DONE: 1045 break; 1046 case DM_ENDIO_INCOMPLETE: 1047 /* The target will handle the io */ 1048 return; 1049 default: 1050 DMWARN("unimplemented target endio return value: %d", r); 1051 BUG(); 1052 } 1053 } 1054 1055 free_tio(tio); 1056 dec_pending(io, error); 1057 } 1058 1059 /* 1060 * Return maximum size of I/O possible at the supplied sector up to the current 1061 * target boundary. 1062 */ 1063 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1064 { 1065 sector_t target_offset = dm_target_offset(ti, sector); 1066 1067 return ti->len - target_offset; 1068 } 1069 1070 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1071 { 1072 sector_t len = max_io_len_target_boundary(sector, ti); 1073 sector_t offset, max_len; 1074 1075 /* 1076 * Does the target need to split even further? 1077 */ 1078 if (ti->max_io_len) { 1079 offset = dm_target_offset(ti, sector); 1080 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1081 max_len = sector_div(offset, ti->max_io_len); 1082 else 1083 max_len = offset & (ti->max_io_len - 1); 1084 max_len = ti->max_io_len - max_len; 1085 1086 if (len > max_len) 1087 len = max_len; 1088 } 1089 1090 return len; 1091 } 1092 1093 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1094 { 1095 if (len > UINT_MAX) { 1096 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1097 (unsigned long long)len, UINT_MAX); 1098 ti->error = "Maximum size of target IO is too large"; 1099 return -EINVAL; 1100 } 1101 1102 ti->max_io_len = (uint32_t) len; 1103 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1107 1108 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1109 sector_t sector, int *srcu_idx) 1110 __acquires(md->io_barrier) 1111 { 1112 struct dm_table *map; 1113 struct dm_target *ti; 1114 1115 map = dm_get_live_table(md, srcu_idx); 1116 if (!map) 1117 return NULL; 1118 1119 ti = dm_table_find_target(map, sector); 1120 if (!ti) 1121 return NULL; 1122 1123 return ti; 1124 } 1125 1126 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1127 long nr_pages, void **kaddr, pfn_t *pfn) 1128 { 1129 struct mapped_device *md = dax_get_private(dax_dev); 1130 sector_t sector = pgoff * PAGE_SECTORS; 1131 struct dm_target *ti; 1132 long len, ret = -EIO; 1133 int srcu_idx; 1134 1135 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1136 1137 if (!ti) 1138 goto out; 1139 if (!ti->type->direct_access) 1140 goto out; 1141 len = max_io_len(sector, ti) / PAGE_SECTORS; 1142 if (len < 1) 1143 goto out; 1144 nr_pages = min(len, nr_pages); 1145 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1146 1147 out: 1148 dm_put_live_table(md, srcu_idx); 1149 1150 return ret; 1151 } 1152 1153 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1154 int blocksize, sector_t start, sector_t len) 1155 { 1156 struct mapped_device *md = dax_get_private(dax_dev); 1157 struct dm_table *map; 1158 int srcu_idx; 1159 bool ret; 1160 1161 map = dm_get_live_table(md, &srcu_idx); 1162 if (!map) 1163 return false; 1164 1165 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1166 1167 dm_put_live_table(md, srcu_idx); 1168 1169 return ret; 1170 } 1171 1172 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1173 void *addr, size_t bytes, struct iov_iter *i) 1174 { 1175 struct mapped_device *md = dax_get_private(dax_dev); 1176 sector_t sector = pgoff * PAGE_SECTORS; 1177 struct dm_target *ti; 1178 long ret = 0; 1179 int srcu_idx; 1180 1181 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1182 1183 if (!ti) 1184 goto out; 1185 if (!ti->type->dax_copy_from_iter) { 1186 ret = copy_from_iter(addr, bytes, i); 1187 goto out; 1188 } 1189 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1190 out: 1191 dm_put_live_table(md, srcu_idx); 1192 1193 return ret; 1194 } 1195 1196 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1197 void *addr, size_t bytes, struct iov_iter *i) 1198 { 1199 struct mapped_device *md = dax_get_private(dax_dev); 1200 sector_t sector = pgoff * PAGE_SECTORS; 1201 struct dm_target *ti; 1202 long ret = 0; 1203 int srcu_idx; 1204 1205 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1206 1207 if (!ti) 1208 goto out; 1209 if (!ti->type->dax_copy_to_iter) { 1210 ret = copy_to_iter(addr, bytes, i); 1211 goto out; 1212 } 1213 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1214 out: 1215 dm_put_live_table(md, srcu_idx); 1216 1217 return ret; 1218 } 1219 1220 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1221 size_t nr_pages) 1222 { 1223 struct mapped_device *md = dax_get_private(dax_dev); 1224 sector_t sector = pgoff * PAGE_SECTORS; 1225 struct dm_target *ti; 1226 int ret = -EIO; 1227 int srcu_idx; 1228 1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1230 1231 if (!ti) 1232 goto out; 1233 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1234 /* 1235 * ->zero_page_range() is mandatory dax operation. If we are 1236 * here, something is wrong. 1237 */ 1238 dm_put_live_table(md, srcu_idx); 1239 goto out; 1240 } 1241 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1242 1243 out: 1244 dm_put_live_table(md, srcu_idx); 1245 1246 return ret; 1247 } 1248 1249 /* 1250 * A target may call dm_accept_partial_bio only from the map routine. It is 1251 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1252 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1253 * 1254 * dm_accept_partial_bio informs the dm that the target only wants to process 1255 * additional n_sectors sectors of the bio and the rest of the data should be 1256 * sent in a next bio. 1257 * 1258 * A diagram that explains the arithmetics: 1259 * +--------------------+---------------+-------+ 1260 * | 1 | 2 | 3 | 1261 * +--------------------+---------------+-------+ 1262 * 1263 * <-------------- *tio->len_ptr ---------------> 1264 * <------- bi_size -------> 1265 * <-- n_sectors --> 1266 * 1267 * Region 1 was already iterated over with bio_advance or similar function. 1268 * (it may be empty if the target doesn't use bio_advance) 1269 * Region 2 is the remaining bio size that the target wants to process. 1270 * (it may be empty if region 1 is non-empty, although there is no reason 1271 * to make it empty) 1272 * The target requires that region 3 is to be sent in the next bio. 1273 * 1274 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1275 * the partially processed part (the sum of regions 1+2) must be the same for all 1276 * copies of the bio. 1277 */ 1278 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1279 { 1280 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1281 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1282 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1283 BUG_ON(bi_size > *tio->len_ptr); 1284 BUG_ON(n_sectors > bi_size); 1285 *tio->len_ptr -= bi_size - n_sectors; 1286 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1287 } 1288 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1289 1290 static blk_qc_t __map_bio(struct dm_target_io *tio) 1291 { 1292 int r; 1293 sector_t sector; 1294 struct bio *clone = &tio->clone; 1295 struct dm_io *io = tio->io; 1296 struct mapped_device *md = io->md; 1297 struct dm_target *ti = tio->ti; 1298 blk_qc_t ret = BLK_QC_T_NONE; 1299 1300 clone->bi_end_io = clone_endio; 1301 1302 /* 1303 * Map the clone. If r == 0 we don't need to do 1304 * anything, the target has assumed ownership of 1305 * this io. 1306 */ 1307 atomic_inc(&io->io_count); 1308 sector = clone->bi_iter.bi_sector; 1309 1310 r = ti->type->map(ti, clone); 1311 switch (r) { 1312 case DM_MAPIO_SUBMITTED: 1313 break; 1314 case DM_MAPIO_REMAPPED: 1315 /* the bio has been remapped so dispatch it */ 1316 trace_block_bio_remap(clone->bi_disk->queue, clone, 1317 bio_dev(io->orig_bio), sector); 1318 if (md->type == DM_TYPE_NVME_BIO_BASED) 1319 ret = direct_make_request(clone); 1320 else 1321 ret = generic_make_request(clone); 1322 break; 1323 case DM_MAPIO_KILL: 1324 free_tio(tio); 1325 dec_pending(io, BLK_STS_IOERR); 1326 break; 1327 case DM_MAPIO_REQUEUE: 1328 free_tio(tio); 1329 dec_pending(io, BLK_STS_DM_REQUEUE); 1330 break; 1331 default: 1332 DMWARN("unimplemented target map return value: %d", r); 1333 BUG(); 1334 } 1335 1336 return ret; 1337 } 1338 1339 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1340 { 1341 bio->bi_iter.bi_sector = sector; 1342 bio->bi_iter.bi_size = to_bytes(len); 1343 } 1344 1345 /* 1346 * Creates a bio that consists of range of complete bvecs. 1347 */ 1348 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1349 sector_t sector, unsigned len) 1350 { 1351 struct bio *clone = &tio->clone; 1352 1353 __bio_clone_fast(clone, bio); 1354 1355 bio_crypt_clone(clone, bio, GFP_NOIO); 1356 1357 if (bio_integrity(bio)) { 1358 int r; 1359 1360 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1361 !dm_target_passes_integrity(tio->ti->type))) { 1362 DMWARN("%s: the target %s doesn't support integrity data.", 1363 dm_device_name(tio->io->md), 1364 tio->ti->type->name); 1365 return -EIO; 1366 } 1367 1368 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1369 if (r < 0) 1370 return r; 1371 } 1372 1373 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1374 clone->bi_iter.bi_size = to_bytes(len); 1375 1376 if (bio_integrity(bio)) 1377 bio_integrity_trim(clone); 1378 1379 return 0; 1380 } 1381 1382 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1383 struct dm_target *ti, unsigned num_bios) 1384 { 1385 struct dm_target_io *tio; 1386 int try; 1387 1388 if (!num_bios) 1389 return; 1390 1391 if (num_bios == 1) { 1392 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1393 bio_list_add(blist, &tio->clone); 1394 return; 1395 } 1396 1397 for (try = 0; try < 2; try++) { 1398 int bio_nr; 1399 struct bio *bio; 1400 1401 if (try) 1402 mutex_lock(&ci->io->md->table_devices_lock); 1403 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1404 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1405 if (!tio) 1406 break; 1407 1408 bio_list_add(blist, &tio->clone); 1409 } 1410 if (try) 1411 mutex_unlock(&ci->io->md->table_devices_lock); 1412 if (bio_nr == num_bios) 1413 return; 1414 1415 while ((bio = bio_list_pop(blist))) { 1416 tio = container_of(bio, struct dm_target_io, clone); 1417 free_tio(tio); 1418 } 1419 } 1420 } 1421 1422 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1423 struct dm_target_io *tio, unsigned *len) 1424 { 1425 struct bio *clone = &tio->clone; 1426 1427 tio->len_ptr = len; 1428 1429 __bio_clone_fast(clone, ci->bio); 1430 if (len) 1431 bio_setup_sector(clone, ci->sector, *len); 1432 1433 return __map_bio(tio); 1434 } 1435 1436 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1437 unsigned num_bios, unsigned *len) 1438 { 1439 struct bio_list blist = BIO_EMPTY_LIST; 1440 struct bio *bio; 1441 struct dm_target_io *tio; 1442 1443 alloc_multiple_bios(&blist, ci, ti, num_bios); 1444 1445 while ((bio = bio_list_pop(&blist))) { 1446 tio = container_of(bio, struct dm_target_io, clone); 1447 (void) __clone_and_map_simple_bio(ci, tio, len); 1448 } 1449 } 1450 1451 static int __send_empty_flush(struct clone_info *ci) 1452 { 1453 unsigned target_nr = 0; 1454 struct dm_target *ti; 1455 1456 /* 1457 * Empty flush uses a statically initialized bio, as the base for 1458 * cloning. However, blkg association requires that a bdev is 1459 * associated with a gendisk, which doesn't happen until the bdev is 1460 * opened. So, blkg association is done at issue time of the flush 1461 * rather than when the device is created in alloc_dev(). 1462 */ 1463 bio_set_dev(ci->bio, ci->io->md->bdev); 1464 1465 BUG_ON(bio_has_data(ci->bio)); 1466 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1467 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1468 1469 bio_disassociate_blkg(ci->bio); 1470 1471 return 0; 1472 } 1473 1474 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1475 sector_t sector, unsigned *len) 1476 { 1477 struct bio *bio = ci->bio; 1478 struct dm_target_io *tio; 1479 int r; 1480 1481 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1482 tio->len_ptr = len; 1483 r = clone_bio(tio, bio, sector, *len); 1484 if (r < 0) { 1485 free_tio(tio); 1486 return r; 1487 } 1488 (void) __map_bio(tio); 1489 1490 return 0; 1491 } 1492 1493 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1494 1495 static unsigned get_num_discard_bios(struct dm_target *ti) 1496 { 1497 return ti->num_discard_bios; 1498 } 1499 1500 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1501 { 1502 return ti->num_secure_erase_bios; 1503 } 1504 1505 static unsigned get_num_write_same_bios(struct dm_target *ti) 1506 { 1507 return ti->num_write_same_bios; 1508 } 1509 1510 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1511 { 1512 return ti->num_write_zeroes_bios; 1513 } 1514 1515 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1516 unsigned num_bios) 1517 { 1518 unsigned len; 1519 1520 /* 1521 * Even though the device advertised support for this type of 1522 * request, that does not mean every target supports it, and 1523 * reconfiguration might also have changed that since the 1524 * check was performed. 1525 */ 1526 if (!num_bios) 1527 return -EOPNOTSUPP; 1528 1529 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1530 1531 __send_duplicate_bios(ci, ti, num_bios, &len); 1532 1533 ci->sector += len; 1534 ci->sector_count -= len; 1535 1536 return 0; 1537 } 1538 1539 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1540 { 1541 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1542 } 1543 1544 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1545 { 1546 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1547 } 1548 1549 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1550 { 1551 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1552 } 1553 1554 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1555 { 1556 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1557 } 1558 1559 static bool is_abnormal_io(struct bio *bio) 1560 { 1561 bool r = false; 1562 1563 switch (bio_op(bio)) { 1564 case REQ_OP_DISCARD: 1565 case REQ_OP_SECURE_ERASE: 1566 case REQ_OP_WRITE_SAME: 1567 case REQ_OP_WRITE_ZEROES: 1568 r = true; 1569 break; 1570 } 1571 1572 return r; 1573 } 1574 1575 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1576 int *result) 1577 { 1578 struct bio *bio = ci->bio; 1579 1580 if (bio_op(bio) == REQ_OP_DISCARD) 1581 *result = __send_discard(ci, ti); 1582 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1583 *result = __send_secure_erase(ci, ti); 1584 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1585 *result = __send_write_same(ci, ti); 1586 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1587 *result = __send_write_zeroes(ci, ti); 1588 else 1589 return false; 1590 1591 return true; 1592 } 1593 1594 /* 1595 * Select the correct strategy for processing a non-flush bio. 1596 */ 1597 static int __split_and_process_non_flush(struct clone_info *ci) 1598 { 1599 struct dm_target *ti; 1600 unsigned len; 1601 int r; 1602 1603 ti = dm_table_find_target(ci->map, ci->sector); 1604 if (!ti) 1605 return -EIO; 1606 1607 if (__process_abnormal_io(ci, ti, &r)) 1608 return r; 1609 1610 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1611 1612 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1613 if (r < 0) 1614 return r; 1615 1616 ci->sector += len; 1617 ci->sector_count -= len; 1618 1619 return 0; 1620 } 1621 1622 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1623 struct dm_table *map, struct bio *bio) 1624 { 1625 ci->map = map; 1626 ci->io = alloc_io(md, bio); 1627 ci->sector = bio->bi_iter.bi_sector; 1628 } 1629 1630 #define __dm_part_stat_sub(part, field, subnd) \ 1631 (part_stat_get(part, field) -= (subnd)) 1632 1633 /* 1634 * Entry point to split a bio into clones and submit them to the targets. 1635 */ 1636 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1637 struct dm_table *map, struct bio *bio) 1638 { 1639 struct clone_info ci; 1640 blk_qc_t ret = BLK_QC_T_NONE; 1641 int error = 0; 1642 1643 init_clone_info(&ci, md, map, bio); 1644 1645 if (bio->bi_opf & REQ_PREFLUSH) { 1646 struct bio flush_bio; 1647 1648 /* 1649 * Use an on-stack bio for this, it's safe since we don't 1650 * need to reference it after submit. It's just used as 1651 * the basis for the clone(s). 1652 */ 1653 bio_init(&flush_bio, NULL, 0); 1654 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1655 ci.bio = &flush_bio; 1656 ci.sector_count = 0; 1657 error = __send_empty_flush(&ci); 1658 /* dec_pending submits any data associated with flush */ 1659 } else if (op_is_zone_mgmt(bio_op(bio))) { 1660 ci.bio = bio; 1661 ci.sector_count = 0; 1662 error = __split_and_process_non_flush(&ci); 1663 } else { 1664 ci.bio = bio; 1665 ci.sector_count = bio_sectors(bio); 1666 while (ci.sector_count && !error) { 1667 error = __split_and_process_non_flush(&ci); 1668 if (current->bio_list && ci.sector_count && !error) { 1669 /* 1670 * Remainder must be passed to generic_make_request() 1671 * so that it gets handled *after* bios already submitted 1672 * have been completely processed. 1673 * We take a clone of the original to store in 1674 * ci.io->orig_bio to be used by end_io_acct() and 1675 * for dec_pending to use for completion handling. 1676 */ 1677 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1678 GFP_NOIO, &md->queue->bio_split); 1679 ci.io->orig_bio = b; 1680 1681 /* 1682 * Adjust IO stats for each split, otherwise upon queue 1683 * reentry there will be redundant IO accounting. 1684 * NOTE: this is a stop-gap fix, a proper fix involves 1685 * significant refactoring of DM core's bio splitting 1686 * (by eliminating DM's splitting and just using bio_split) 1687 */ 1688 part_stat_lock(); 1689 __dm_part_stat_sub(&dm_disk(md)->part0, 1690 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1691 part_stat_unlock(); 1692 1693 bio_chain(b, bio); 1694 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1695 ret = generic_make_request(bio); 1696 break; 1697 } 1698 } 1699 } 1700 1701 /* drop the extra reference count */ 1702 dec_pending(ci.io, errno_to_blk_status(error)); 1703 return ret; 1704 } 1705 1706 /* 1707 * Optimized variant of __split_and_process_bio that leverages the 1708 * fact that targets that use it do _not_ have a need to split bios. 1709 */ 1710 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1711 struct bio *bio, struct dm_target *ti) 1712 { 1713 struct clone_info ci; 1714 blk_qc_t ret = BLK_QC_T_NONE; 1715 int error = 0; 1716 1717 init_clone_info(&ci, md, map, bio); 1718 1719 if (bio->bi_opf & REQ_PREFLUSH) { 1720 struct bio flush_bio; 1721 1722 /* 1723 * Use an on-stack bio for this, it's safe since we don't 1724 * need to reference it after submit. It's just used as 1725 * the basis for the clone(s). 1726 */ 1727 bio_init(&flush_bio, NULL, 0); 1728 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1729 ci.bio = &flush_bio; 1730 ci.sector_count = 0; 1731 error = __send_empty_flush(&ci); 1732 /* dec_pending submits any data associated with flush */ 1733 } else { 1734 struct dm_target_io *tio; 1735 1736 ci.bio = bio; 1737 ci.sector_count = bio_sectors(bio); 1738 if (__process_abnormal_io(&ci, ti, &error)) 1739 goto out; 1740 1741 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1742 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1743 } 1744 out: 1745 /* drop the extra reference count */ 1746 dec_pending(ci.io, errno_to_blk_status(error)); 1747 return ret; 1748 } 1749 1750 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1751 { 1752 unsigned len, sector_count; 1753 1754 sector_count = bio_sectors(*bio); 1755 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1756 1757 if (sector_count > len) { 1758 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1759 1760 bio_chain(split, *bio); 1761 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1762 generic_make_request(*bio); 1763 *bio = split; 1764 } 1765 } 1766 1767 static blk_qc_t dm_process_bio(struct mapped_device *md, 1768 struct dm_table *map, struct bio *bio) 1769 { 1770 blk_qc_t ret = BLK_QC_T_NONE; 1771 struct dm_target *ti = md->immutable_target; 1772 1773 if (unlikely(!map)) { 1774 bio_io_error(bio); 1775 return ret; 1776 } 1777 1778 if (!ti) { 1779 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1780 if (unlikely(!ti)) { 1781 bio_io_error(bio); 1782 return ret; 1783 } 1784 } 1785 1786 /* 1787 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1788 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1789 * won't be imposed. 1790 */ 1791 if (current->bio_list) { 1792 if (is_abnormal_io(bio)) 1793 blk_queue_split(md->queue, &bio); 1794 else 1795 dm_queue_split(md, ti, &bio); 1796 } 1797 1798 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1799 return __process_bio(md, map, bio, ti); 1800 else 1801 return __split_and_process_bio(md, map, bio); 1802 } 1803 1804 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1805 { 1806 struct mapped_device *md = q->queuedata; 1807 blk_qc_t ret = BLK_QC_T_NONE; 1808 int srcu_idx; 1809 struct dm_table *map; 1810 1811 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1812 /* 1813 * We are called with a live reference on q_usage_counter, but 1814 * that one will be released as soon as we return. Grab an 1815 * extra one as blk_mq_make_request expects to be able to 1816 * consume a reference (which lives until the request is freed 1817 * in case a request is allocated). 1818 */ 1819 percpu_ref_get(&q->q_usage_counter); 1820 return blk_mq_make_request(q, bio); 1821 } 1822 1823 map = dm_get_live_table(md, &srcu_idx); 1824 1825 /* if we're suspended, we have to queue this io for later */ 1826 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1827 dm_put_live_table(md, srcu_idx); 1828 1829 if (!(bio->bi_opf & REQ_RAHEAD)) 1830 queue_io(md, bio); 1831 else 1832 bio_io_error(bio); 1833 return ret; 1834 } 1835 1836 ret = dm_process_bio(md, map, bio); 1837 1838 dm_put_live_table(md, srcu_idx); 1839 return ret; 1840 } 1841 1842 static int dm_any_congested(void *congested_data, int bdi_bits) 1843 { 1844 int r = bdi_bits; 1845 struct mapped_device *md = congested_data; 1846 struct dm_table *map; 1847 1848 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1849 if (dm_request_based(md)) { 1850 /* 1851 * With request-based DM we only need to check the 1852 * top-level queue for congestion. 1853 */ 1854 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1855 r = bdi->wb.congested->state & bdi_bits; 1856 } else { 1857 map = dm_get_live_table_fast(md); 1858 if (map) 1859 r = dm_table_any_congested(map, bdi_bits); 1860 dm_put_live_table_fast(md); 1861 } 1862 } 1863 1864 return r; 1865 } 1866 1867 /*----------------------------------------------------------------- 1868 * An IDR is used to keep track of allocated minor numbers. 1869 *---------------------------------------------------------------*/ 1870 static void free_minor(int minor) 1871 { 1872 spin_lock(&_minor_lock); 1873 idr_remove(&_minor_idr, minor); 1874 spin_unlock(&_minor_lock); 1875 } 1876 1877 /* 1878 * See if the device with a specific minor # is free. 1879 */ 1880 static int specific_minor(int minor) 1881 { 1882 int r; 1883 1884 if (minor >= (1 << MINORBITS)) 1885 return -EINVAL; 1886 1887 idr_preload(GFP_KERNEL); 1888 spin_lock(&_minor_lock); 1889 1890 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1891 1892 spin_unlock(&_minor_lock); 1893 idr_preload_end(); 1894 if (r < 0) 1895 return r == -ENOSPC ? -EBUSY : r; 1896 return 0; 1897 } 1898 1899 static int next_free_minor(int *minor) 1900 { 1901 int r; 1902 1903 idr_preload(GFP_KERNEL); 1904 spin_lock(&_minor_lock); 1905 1906 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1907 1908 spin_unlock(&_minor_lock); 1909 idr_preload_end(); 1910 if (r < 0) 1911 return r; 1912 *minor = r; 1913 return 0; 1914 } 1915 1916 static const struct block_device_operations dm_blk_dops; 1917 static const struct dax_operations dm_dax_ops; 1918 1919 static void dm_wq_work(struct work_struct *work); 1920 1921 static void cleanup_mapped_device(struct mapped_device *md) 1922 { 1923 if (md->wq) 1924 destroy_workqueue(md->wq); 1925 bioset_exit(&md->bs); 1926 bioset_exit(&md->io_bs); 1927 1928 if (md->dax_dev) { 1929 kill_dax(md->dax_dev); 1930 put_dax(md->dax_dev); 1931 md->dax_dev = NULL; 1932 } 1933 1934 if (md->disk) { 1935 spin_lock(&_minor_lock); 1936 md->disk->private_data = NULL; 1937 spin_unlock(&_minor_lock); 1938 del_gendisk(md->disk); 1939 put_disk(md->disk); 1940 } 1941 1942 if (md->queue) 1943 blk_cleanup_queue(md->queue); 1944 1945 cleanup_srcu_struct(&md->io_barrier); 1946 1947 if (md->bdev) { 1948 bdput(md->bdev); 1949 md->bdev = NULL; 1950 } 1951 1952 mutex_destroy(&md->suspend_lock); 1953 mutex_destroy(&md->type_lock); 1954 mutex_destroy(&md->table_devices_lock); 1955 1956 dm_mq_cleanup_mapped_device(md); 1957 } 1958 1959 /* 1960 * Allocate and initialise a blank device with a given minor. 1961 */ 1962 static struct mapped_device *alloc_dev(int minor) 1963 { 1964 int r, numa_node_id = dm_get_numa_node(); 1965 struct mapped_device *md; 1966 void *old_md; 1967 1968 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1969 if (!md) { 1970 DMWARN("unable to allocate device, out of memory."); 1971 return NULL; 1972 } 1973 1974 if (!try_module_get(THIS_MODULE)) 1975 goto bad_module_get; 1976 1977 /* get a minor number for the dev */ 1978 if (minor == DM_ANY_MINOR) 1979 r = next_free_minor(&minor); 1980 else 1981 r = specific_minor(minor); 1982 if (r < 0) 1983 goto bad_minor; 1984 1985 r = init_srcu_struct(&md->io_barrier); 1986 if (r < 0) 1987 goto bad_io_barrier; 1988 1989 md->numa_node_id = numa_node_id; 1990 md->init_tio_pdu = false; 1991 md->type = DM_TYPE_NONE; 1992 mutex_init(&md->suspend_lock); 1993 mutex_init(&md->type_lock); 1994 mutex_init(&md->table_devices_lock); 1995 spin_lock_init(&md->deferred_lock); 1996 atomic_set(&md->holders, 1); 1997 atomic_set(&md->open_count, 0); 1998 atomic_set(&md->event_nr, 0); 1999 atomic_set(&md->uevent_seq, 0); 2000 INIT_LIST_HEAD(&md->uevent_list); 2001 INIT_LIST_HEAD(&md->table_devices); 2002 spin_lock_init(&md->uevent_lock); 2003 2004 /* 2005 * default to bio-based required ->make_request_fn until DM 2006 * table is loaded and md->type established. If request-based 2007 * table is loaded: blk-mq will override accordingly. 2008 */ 2009 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 2010 if (!md->queue) 2011 goto bad; 2012 md->queue->queuedata = md; 2013 2014 md->disk = alloc_disk_node(1, md->numa_node_id); 2015 if (!md->disk) 2016 goto bad; 2017 2018 init_waitqueue_head(&md->wait); 2019 INIT_WORK(&md->work, dm_wq_work); 2020 init_waitqueue_head(&md->eventq); 2021 init_completion(&md->kobj_holder.completion); 2022 2023 md->disk->major = _major; 2024 md->disk->first_minor = minor; 2025 md->disk->fops = &dm_blk_dops; 2026 md->disk->queue = md->queue; 2027 md->disk->private_data = md; 2028 sprintf(md->disk->disk_name, "dm-%d", minor); 2029 2030 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2031 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2032 &dm_dax_ops, 0); 2033 if (IS_ERR(md->dax_dev)) 2034 goto bad; 2035 } 2036 2037 add_disk_no_queue_reg(md->disk); 2038 format_dev_t(md->name, MKDEV(_major, minor)); 2039 2040 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2041 if (!md->wq) 2042 goto bad; 2043 2044 md->bdev = bdget_disk(md->disk, 0); 2045 if (!md->bdev) 2046 goto bad; 2047 2048 dm_stats_init(&md->stats); 2049 2050 /* Populate the mapping, nobody knows we exist yet */ 2051 spin_lock(&_minor_lock); 2052 old_md = idr_replace(&_minor_idr, md, minor); 2053 spin_unlock(&_minor_lock); 2054 2055 BUG_ON(old_md != MINOR_ALLOCED); 2056 2057 return md; 2058 2059 bad: 2060 cleanup_mapped_device(md); 2061 bad_io_barrier: 2062 free_minor(minor); 2063 bad_minor: 2064 module_put(THIS_MODULE); 2065 bad_module_get: 2066 kvfree(md); 2067 return NULL; 2068 } 2069 2070 static void unlock_fs(struct mapped_device *md); 2071 2072 static void free_dev(struct mapped_device *md) 2073 { 2074 int minor = MINOR(disk_devt(md->disk)); 2075 2076 unlock_fs(md); 2077 2078 cleanup_mapped_device(md); 2079 2080 free_table_devices(&md->table_devices); 2081 dm_stats_cleanup(&md->stats); 2082 free_minor(minor); 2083 2084 module_put(THIS_MODULE); 2085 kvfree(md); 2086 } 2087 2088 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2089 { 2090 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2091 int ret = 0; 2092 2093 if (dm_table_bio_based(t)) { 2094 /* 2095 * The md may already have mempools that need changing. 2096 * If so, reload bioset because front_pad may have changed 2097 * because a different table was loaded. 2098 */ 2099 bioset_exit(&md->bs); 2100 bioset_exit(&md->io_bs); 2101 2102 } else if (bioset_initialized(&md->bs)) { 2103 /* 2104 * There's no need to reload with request-based dm 2105 * because the size of front_pad doesn't change. 2106 * Note for future: If you are to reload bioset, 2107 * prep-ed requests in the queue may refer 2108 * to bio from the old bioset, so you must walk 2109 * through the queue to unprep. 2110 */ 2111 goto out; 2112 } 2113 2114 BUG_ON(!p || 2115 bioset_initialized(&md->bs) || 2116 bioset_initialized(&md->io_bs)); 2117 2118 ret = bioset_init_from_src(&md->bs, &p->bs); 2119 if (ret) 2120 goto out; 2121 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2122 if (ret) 2123 bioset_exit(&md->bs); 2124 out: 2125 /* mempool bind completed, no longer need any mempools in the table */ 2126 dm_table_free_md_mempools(t); 2127 return ret; 2128 } 2129 2130 /* 2131 * Bind a table to the device. 2132 */ 2133 static void event_callback(void *context) 2134 { 2135 unsigned long flags; 2136 LIST_HEAD(uevents); 2137 struct mapped_device *md = (struct mapped_device *) context; 2138 2139 spin_lock_irqsave(&md->uevent_lock, flags); 2140 list_splice_init(&md->uevent_list, &uevents); 2141 spin_unlock_irqrestore(&md->uevent_lock, flags); 2142 2143 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2144 2145 atomic_inc(&md->event_nr); 2146 wake_up(&md->eventq); 2147 dm_issue_global_event(); 2148 } 2149 2150 /* 2151 * Protected by md->suspend_lock obtained by dm_swap_table(). 2152 */ 2153 static void __set_size(struct mapped_device *md, sector_t size) 2154 { 2155 lockdep_assert_held(&md->suspend_lock); 2156 2157 set_capacity(md->disk, size); 2158 2159 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2160 } 2161 2162 /* 2163 * Returns old map, which caller must destroy. 2164 */ 2165 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2166 struct queue_limits *limits) 2167 { 2168 struct dm_table *old_map; 2169 struct request_queue *q = md->queue; 2170 bool request_based = dm_table_request_based(t); 2171 sector_t size; 2172 int ret; 2173 2174 lockdep_assert_held(&md->suspend_lock); 2175 2176 size = dm_table_get_size(t); 2177 2178 /* 2179 * Wipe any geometry if the size of the table changed. 2180 */ 2181 if (size != dm_get_size(md)) 2182 memset(&md->geometry, 0, sizeof(md->geometry)); 2183 2184 __set_size(md, size); 2185 2186 dm_table_event_callback(t, event_callback, md); 2187 2188 /* 2189 * The queue hasn't been stopped yet, if the old table type wasn't 2190 * for request-based during suspension. So stop it to prevent 2191 * I/O mapping before resume. 2192 * This must be done before setting the queue restrictions, 2193 * because request-based dm may be run just after the setting. 2194 */ 2195 if (request_based) 2196 dm_stop_queue(q); 2197 2198 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2199 /* 2200 * Leverage the fact that request-based DM targets and 2201 * NVMe bio based targets are immutable singletons 2202 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2203 * and __process_bio. 2204 */ 2205 md->immutable_target = dm_table_get_immutable_target(t); 2206 } 2207 2208 ret = __bind_mempools(md, t); 2209 if (ret) { 2210 old_map = ERR_PTR(ret); 2211 goto out; 2212 } 2213 2214 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2215 rcu_assign_pointer(md->map, (void *)t); 2216 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2217 2218 dm_table_set_restrictions(t, q, limits); 2219 if (old_map) 2220 dm_sync_table(md); 2221 2222 out: 2223 return old_map; 2224 } 2225 2226 /* 2227 * Returns unbound table for the caller to free. 2228 */ 2229 static struct dm_table *__unbind(struct mapped_device *md) 2230 { 2231 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2232 2233 if (!map) 2234 return NULL; 2235 2236 dm_table_event_callback(map, NULL, NULL); 2237 RCU_INIT_POINTER(md->map, NULL); 2238 dm_sync_table(md); 2239 2240 return map; 2241 } 2242 2243 /* 2244 * Constructor for a new device. 2245 */ 2246 int dm_create(int minor, struct mapped_device **result) 2247 { 2248 int r; 2249 struct mapped_device *md; 2250 2251 md = alloc_dev(minor); 2252 if (!md) 2253 return -ENXIO; 2254 2255 r = dm_sysfs_init(md); 2256 if (r) { 2257 free_dev(md); 2258 return r; 2259 } 2260 2261 *result = md; 2262 return 0; 2263 } 2264 2265 /* 2266 * Functions to manage md->type. 2267 * All are required to hold md->type_lock. 2268 */ 2269 void dm_lock_md_type(struct mapped_device *md) 2270 { 2271 mutex_lock(&md->type_lock); 2272 } 2273 2274 void dm_unlock_md_type(struct mapped_device *md) 2275 { 2276 mutex_unlock(&md->type_lock); 2277 } 2278 2279 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2280 { 2281 BUG_ON(!mutex_is_locked(&md->type_lock)); 2282 md->type = type; 2283 } 2284 2285 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2286 { 2287 return md->type; 2288 } 2289 2290 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2291 { 2292 return md->immutable_target_type; 2293 } 2294 2295 /* 2296 * The queue_limits are only valid as long as you have a reference 2297 * count on 'md'. 2298 */ 2299 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2300 { 2301 BUG_ON(!atomic_read(&md->holders)); 2302 return &md->queue->limits; 2303 } 2304 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2305 2306 static void dm_init_congested_fn(struct mapped_device *md) 2307 { 2308 md->queue->backing_dev_info->congested_data = md; 2309 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2310 } 2311 2312 /* 2313 * Setup the DM device's queue based on md's type 2314 */ 2315 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2316 { 2317 int r; 2318 struct queue_limits limits; 2319 enum dm_queue_mode type = dm_get_md_type(md); 2320 2321 switch (type) { 2322 case DM_TYPE_REQUEST_BASED: 2323 r = dm_mq_init_request_queue(md, t); 2324 if (r) { 2325 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2326 return r; 2327 } 2328 dm_init_congested_fn(md); 2329 break; 2330 case DM_TYPE_BIO_BASED: 2331 case DM_TYPE_DAX_BIO_BASED: 2332 case DM_TYPE_NVME_BIO_BASED: 2333 dm_init_congested_fn(md); 2334 break; 2335 case DM_TYPE_NONE: 2336 WARN_ON_ONCE(true); 2337 break; 2338 } 2339 2340 r = dm_calculate_queue_limits(t, &limits); 2341 if (r) { 2342 DMERR("Cannot calculate initial queue limits"); 2343 return r; 2344 } 2345 dm_table_set_restrictions(t, md->queue, &limits); 2346 blk_register_queue(md->disk); 2347 2348 return 0; 2349 } 2350 2351 struct mapped_device *dm_get_md(dev_t dev) 2352 { 2353 struct mapped_device *md; 2354 unsigned minor = MINOR(dev); 2355 2356 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2357 return NULL; 2358 2359 spin_lock(&_minor_lock); 2360 2361 md = idr_find(&_minor_idr, minor); 2362 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2363 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2364 md = NULL; 2365 goto out; 2366 } 2367 dm_get(md); 2368 out: 2369 spin_unlock(&_minor_lock); 2370 2371 return md; 2372 } 2373 EXPORT_SYMBOL_GPL(dm_get_md); 2374 2375 void *dm_get_mdptr(struct mapped_device *md) 2376 { 2377 return md->interface_ptr; 2378 } 2379 2380 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2381 { 2382 md->interface_ptr = ptr; 2383 } 2384 2385 void dm_get(struct mapped_device *md) 2386 { 2387 atomic_inc(&md->holders); 2388 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2389 } 2390 2391 int dm_hold(struct mapped_device *md) 2392 { 2393 spin_lock(&_minor_lock); 2394 if (test_bit(DMF_FREEING, &md->flags)) { 2395 spin_unlock(&_minor_lock); 2396 return -EBUSY; 2397 } 2398 dm_get(md); 2399 spin_unlock(&_minor_lock); 2400 return 0; 2401 } 2402 EXPORT_SYMBOL_GPL(dm_hold); 2403 2404 const char *dm_device_name(struct mapped_device *md) 2405 { 2406 return md->name; 2407 } 2408 EXPORT_SYMBOL_GPL(dm_device_name); 2409 2410 static void __dm_destroy(struct mapped_device *md, bool wait) 2411 { 2412 struct dm_table *map; 2413 int srcu_idx; 2414 2415 might_sleep(); 2416 2417 spin_lock(&_minor_lock); 2418 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2419 set_bit(DMF_FREEING, &md->flags); 2420 spin_unlock(&_minor_lock); 2421 2422 blk_set_queue_dying(md->queue); 2423 2424 /* 2425 * Take suspend_lock so that presuspend and postsuspend methods 2426 * do not race with internal suspend. 2427 */ 2428 mutex_lock(&md->suspend_lock); 2429 map = dm_get_live_table(md, &srcu_idx); 2430 if (!dm_suspended_md(md)) { 2431 dm_table_presuspend_targets(map); 2432 set_bit(DMF_SUSPENDED, &md->flags); 2433 dm_table_postsuspend_targets(map); 2434 } 2435 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2436 dm_put_live_table(md, srcu_idx); 2437 mutex_unlock(&md->suspend_lock); 2438 2439 /* 2440 * Rare, but there may be I/O requests still going to complete, 2441 * for example. Wait for all references to disappear. 2442 * No one should increment the reference count of the mapped_device, 2443 * after the mapped_device state becomes DMF_FREEING. 2444 */ 2445 if (wait) 2446 while (atomic_read(&md->holders)) 2447 msleep(1); 2448 else if (atomic_read(&md->holders)) 2449 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2450 dm_device_name(md), atomic_read(&md->holders)); 2451 2452 dm_sysfs_exit(md); 2453 dm_table_destroy(__unbind(md)); 2454 free_dev(md); 2455 } 2456 2457 void dm_destroy(struct mapped_device *md) 2458 { 2459 __dm_destroy(md, true); 2460 } 2461 2462 void dm_destroy_immediate(struct mapped_device *md) 2463 { 2464 __dm_destroy(md, false); 2465 } 2466 2467 void dm_put(struct mapped_device *md) 2468 { 2469 atomic_dec(&md->holders); 2470 } 2471 EXPORT_SYMBOL_GPL(dm_put); 2472 2473 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2474 { 2475 int r = 0; 2476 DEFINE_WAIT(wait); 2477 2478 while (1) { 2479 prepare_to_wait(&md->wait, &wait, task_state); 2480 2481 if (!md_in_flight(md)) 2482 break; 2483 2484 if (signal_pending_state(task_state, current)) { 2485 r = -EINTR; 2486 break; 2487 } 2488 2489 io_schedule(); 2490 } 2491 finish_wait(&md->wait, &wait); 2492 2493 return r; 2494 } 2495 2496 /* 2497 * Process the deferred bios 2498 */ 2499 static void dm_wq_work(struct work_struct *work) 2500 { 2501 struct mapped_device *md = container_of(work, struct mapped_device, 2502 work); 2503 struct bio *c; 2504 int srcu_idx; 2505 struct dm_table *map; 2506 2507 map = dm_get_live_table(md, &srcu_idx); 2508 2509 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2510 spin_lock_irq(&md->deferred_lock); 2511 c = bio_list_pop(&md->deferred); 2512 spin_unlock_irq(&md->deferred_lock); 2513 2514 if (!c) 2515 break; 2516 2517 if (dm_request_based(md)) 2518 (void) generic_make_request(c); 2519 else 2520 (void) dm_process_bio(md, map, c); 2521 } 2522 2523 dm_put_live_table(md, srcu_idx); 2524 } 2525 2526 static void dm_queue_flush(struct mapped_device *md) 2527 { 2528 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2529 smp_mb__after_atomic(); 2530 queue_work(md->wq, &md->work); 2531 } 2532 2533 /* 2534 * Swap in a new table, returning the old one for the caller to destroy. 2535 */ 2536 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2537 { 2538 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2539 struct queue_limits limits; 2540 int r; 2541 2542 mutex_lock(&md->suspend_lock); 2543 2544 /* device must be suspended */ 2545 if (!dm_suspended_md(md)) 2546 goto out; 2547 2548 /* 2549 * If the new table has no data devices, retain the existing limits. 2550 * This helps multipath with queue_if_no_path if all paths disappear, 2551 * then new I/O is queued based on these limits, and then some paths 2552 * reappear. 2553 */ 2554 if (dm_table_has_no_data_devices(table)) { 2555 live_map = dm_get_live_table_fast(md); 2556 if (live_map) 2557 limits = md->queue->limits; 2558 dm_put_live_table_fast(md); 2559 } 2560 2561 if (!live_map) { 2562 r = dm_calculate_queue_limits(table, &limits); 2563 if (r) { 2564 map = ERR_PTR(r); 2565 goto out; 2566 } 2567 } 2568 2569 map = __bind(md, table, &limits); 2570 dm_issue_global_event(); 2571 2572 out: 2573 mutex_unlock(&md->suspend_lock); 2574 return map; 2575 } 2576 2577 /* 2578 * Functions to lock and unlock any filesystem running on the 2579 * device. 2580 */ 2581 static int lock_fs(struct mapped_device *md) 2582 { 2583 int r; 2584 2585 WARN_ON(md->frozen_sb); 2586 2587 md->frozen_sb = freeze_bdev(md->bdev); 2588 if (IS_ERR(md->frozen_sb)) { 2589 r = PTR_ERR(md->frozen_sb); 2590 md->frozen_sb = NULL; 2591 return r; 2592 } 2593 2594 set_bit(DMF_FROZEN, &md->flags); 2595 2596 return 0; 2597 } 2598 2599 static void unlock_fs(struct mapped_device *md) 2600 { 2601 if (!test_bit(DMF_FROZEN, &md->flags)) 2602 return; 2603 2604 thaw_bdev(md->bdev, md->frozen_sb); 2605 md->frozen_sb = NULL; 2606 clear_bit(DMF_FROZEN, &md->flags); 2607 } 2608 2609 /* 2610 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2611 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2612 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2613 * 2614 * If __dm_suspend returns 0, the device is completely quiescent 2615 * now. There is no request-processing activity. All new requests 2616 * are being added to md->deferred list. 2617 */ 2618 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2619 unsigned suspend_flags, long task_state, 2620 int dmf_suspended_flag) 2621 { 2622 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2623 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2624 int r; 2625 2626 lockdep_assert_held(&md->suspend_lock); 2627 2628 /* 2629 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2630 * This flag is cleared before dm_suspend returns. 2631 */ 2632 if (noflush) 2633 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2634 else 2635 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2636 2637 /* 2638 * This gets reverted if there's an error later and the targets 2639 * provide the .presuspend_undo hook. 2640 */ 2641 dm_table_presuspend_targets(map); 2642 2643 /* 2644 * Flush I/O to the device. 2645 * Any I/O submitted after lock_fs() may not be flushed. 2646 * noflush takes precedence over do_lockfs. 2647 * (lock_fs() flushes I/Os and waits for them to complete.) 2648 */ 2649 if (!noflush && do_lockfs) { 2650 r = lock_fs(md); 2651 if (r) { 2652 dm_table_presuspend_undo_targets(map); 2653 return r; 2654 } 2655 } 2656 2657 /* 2658 * Here we must make sure that no processes are submitting requests 2659 * to target drivers i.e. no one may be executing 2660 * __split_and_process_bio. This is called from dm_request and 2661 * dm_wq_work. 2662 * 2663 * To get all processes out of __split_and_process_bio in dm_request, 2664 * we take the write lock. To prevent any process from reentering 2665 * __split_and_process_bio from dm_request and quiesce the thread 2666 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2667 * flush_workqueue(md->wq). 2668 */ 2669 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2670 if (map) 2671 synchronize_srcu(&md->io_barrier); 2672 2673 /* 2674 * Stop md->queue before flushing md->wq in case request-based 2675 * dm defers requests to md->wq from md->queue. 2676 */ 2677 if (dm_request_based(md)) 2678 dm_stop_queue(md->queue); 2679 2680 flush_workqueue(md->wq); 2681 2682 /* 2683 * At this point no more requests are entering target request routines. 2684 * We call dm_wait_for_completion to wait for all existing requests 2685 * to finish. 2686 */ 2687 r = dm_wait_for_completion(md, task_state); 2688 if (!r) 2689 set_bit(dmf_suspended_flag, &md->flags); 2690 2691 if (noflush) 2692 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2693 if (map) 2694 synchronize_srcu(&md->io_barrier); 2695 2696 /* were we interrupted ? */ 2697 if (r < 0) { 2698 dm_queue_flush(md); 2699 2700 if (dm_request_based(md)) 2701 dm_start_queue(md->queue); 2702 2703 unlock_fs(md); 2704 dm_table_presuspend_undo_targets(map); 2705 /* pushback list is already flushed, so skip flush */ 2706 } 2707 2708 return r; 2709 } 2710 2711 /* 2712 * We need to be able to change a mapping table under a mounted 2713 * filesystem. For example we might want to move some data in 2714 * the background. Before the table can be swapped with 2715 * dm_bind_table, dm_suspend must be called to flush any in 2716 * flight bios and ensure that any further io gets deferred. 2717 */ 2718 /* 2719 * Suspend mechanism in request-based dm. 2720 * 2721 * 1. Flush all I/Os by lock_fs() if needed. 2722 * 2. Stop dispatching any I/O by stopping the request_queue. 2723 * 3. Wait for all in-flight I/Os to be completed or requeued. 2724 * 2725 * To abort suspend, start the request_queue. 2726 */ 2727 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2728 { 2729 struct dm_table *map = NULL; 2730 int r = 0; 2731 2732 retry: 2733 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2734 2735 if (dm_suspended_md(md)) { 2736 r = -EINVAL; 2737 goto out_unlock; 2738 } 2739 2740 if (dm_suspended_internally_md(md)) { 2741 /* already internally suspended, wait for internal resume */ 2742 mutex_unlock(&md->suspend_lock); 2743 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2744 if (r) 2745 return r; 2746 goto retry; 2747 } 2748 2749 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2750 2751 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2752 if (r) 2753 goto out_unlock; 2754 2755 dm_table_postsuspend_targets(map); 2756 2757 out_unlock: 2758 mutex_unlock(&md->suspend_lock); 2759 return r; 2760 } 2761 2762 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2763 { 2764 if (map) { 2765 int r = dm_table_resume_targets(map); 2766 if (r) 2767 return r; 2768 } 2769 2770 dm_queue_flush(md); 2771 2772 /* 2773 * Flushing deferred I/Os must be done after targets are resumed 2774 * so that mapping of targets can work correctly. 2775 * Request-based dm is queueing the deferred I/Os in its request_queue. 2776 */ 2777 if (dm_request_based(md)) 2778 dm_start_queue(md->queue); 2779 2780 unlock_fs(md); 2781 2782 return 0; 2783 } 2784 2785 int dm_resume(struct mapped_device *md) 2786 { 2787 int r; 2788 struct dm_table *map = NULL; 2789 2790 retry: 2791 r = -EINVAL; 2792 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2793 2794 if (!dm_suspended_md(md)) 2795 goto out; 2796 2797 if (dm_suspended_internally_md(md)) { 2798 /* already internally suspended, wait for internal resume */ 2799 mutex_unlock(&md->suspend_lock); 2800 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2801 if (r) 2802 return r; 2803 goto retry; 2804 } 2805 2806 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2807 if (!map || !dm_table_get_size(map)) 2808 goto out; 2809 2810 r = __dm_resume(md, map); 2811 if (r) 2812 goto out; 2813 2814 clear_bit(DMF_SUSPENDED, &md->flags); 2815 out: 2816 mutex_unlock(&md->suspend_lock); 2817 2818 return r; 2819 } 2820 2821 /* 2822 * Internal suspend/resume works like userspace-driven suspend. It waits 2823 * until all bios finish and prevents issuing new bios to the target drivers. 2824 * It may be used only from the kernel. 2825 */ 2826 2827 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2828 { 2829 struct dm_table *map = NULL; 2830 2831 lockdep_assert_held(&md->suspend_lock); 2832 2833 if (md->internal_suspend_count++) 2834 return; /* nested internal suspend */ 2835 2836 if (dm_suspended_md(md)) { 2837 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2838 return; /* nest suspend */ 2839 } 2840 2841 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2842 2843 /* 2844 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2845 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2846 * would require changing .presuspend to return an error -- avoid this 2847 * until there is a need for more elaborate variants of internal suspend. 2848 */ 2849 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2850 DMF_SUSPENDED_INTERNALLY); 2851 2852 dm_table_postsuspend_targets(map); 2853 } 2854 2855 static void __dm_internal_resume(struct mapped_device *md) 2856 { 2857 BUG_ON(!md->internal_suspend_count); 2858 2859 if (--md->internal_suspend_count) 2860 return; /* resume from nested internal suspend */ 2861 2862 if (dm_suspended_md(md)) 2863 goto done; /* resume from nested suspend */ 2864 2865 /* 2866 * NOTE: existing callers don't need to call dm_table_resume_targets 2867 * (which may fail -- so best to avoid it for now by passing NULL map) 2868 */ 2869 (void) __dm_resume(md, NULL); 2870 2871 done: 2872 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2873 smp_mb__after_atomic(); 2874 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2875 } 2876 2877 void dm_internal_suspend_noflush(struct mapped_device *md) 2878 { 2879 mutex_lock(&md->suspend_lock); 2880 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2881 mutex_unlock(&md->suspend_lock); 2882 } 2883 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2884 2885 void dm_internal_resume(struct mapped_device *md) 2886 { 2887 mutex_lock(&md->suspend_lock); 2888 __dm_internal_resume(md); 2889 mutex_unlock(&md->suspend_lock); 2890 } 2891 EXPORT_SYMBOL_GPL(dm_internal_resume); 2892 2893 /* 2894 * Fast variants of internal suspend/resume hold md->suspend_lock, 2895 * which prevents interaction with userspace-driven suspend. 2896 */ 2897 2898 void dm_internal_suspend_fast(struct mapped_device *md) 2899 { 2900 mutex_lock(&md->suspend_lock); 2901 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2902 return; 2903 2904 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2905 synchronize_srcu(&md->io_barrier); 2906 flush_workqueue(md->wq); 2907 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2908 } 2909 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2910 2911 void dm_internal_resume_fast(struct mapped_device *md) 2912 { 2913 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2914 goto done; 2915 2916 dm_queue_flush(md); 2917 2918 done: 2919 mutex_unlock(&md->suspend_lock); 2920 } 2921 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2922 2923 /*----------------------------------------------------------------- 2924 * Event notification. 2925 *---------------------------------------------------------------*/ 2926 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2927 unsigned cookie) 2928 { 2929 char udev_cookie[DM_COOKIE_LENGTH]; 2930 char *envp[] = { udev_cookie, NULL }; 2931 2932 if (!cookie) 2933 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2934 else { 2935 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2936 DM_COOKIE_ENV_VAR_NAME, cookie); 2937 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2938 action, envp); 2939 } 2940 } 2941 2942 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2943 { 2944 return atomic_add_return(1, &md->uevent_seq); 2945 } 2946 2947 uint32_t dm_get_event_nr(struct mapped_device *md) 2948 { 2949 return atomic_read(&md->event_nr); 2950 } 2951 2952 int dm_wait_event(struct mapped_device *md, int event_nr) 2953 { 2954 return wait_event_interruptible(md->eventq, 2955 (event_nr != atomic_read(&md->event_nr))); 2956 } 2957 2958 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2959 { 2960 unsigned long flags; 2961 2962 spin_lock_irqsave(&md->uevent_lock, flags); 2963 list_add(elist, &md->uevent_list); 2964 spin_unlock_irqrestore(&md->uevent_lock, flags); 2965 } 2966 2967 /* 2968 * The gendisk is only valid as long as you have a reference 2969 * count on 'md'. 2970 */ 2971 struct gendisk *dm_disk(struct mapped_device *md) 2972 { 2973 return md->disk; 2974 } 2975 EXPORT_SYMBOL_GPL(dm_disk); 2976 2977 struct kobject *dm_kobject(struct mapped_device *md) 2978 { 2979 return &md->kobj_holder.kobj; 2980 } 2981 2982 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2983 { 2984 struct mapped_device *md; 2985 2986 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2987 2988 spin_lock(&_minor_lock); 2989 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2990 md = NULL; 2991 goto out; 2992 } 2993 dm_get(md); 2994 out: 2995 spin_unlock(&_minor_lock); 2996 2997 return md; 2998 } 2999 3000 int dm_suspended_md(struct mapped_device *md) 3001 { 3002 return test_bit(DMF_SUSPENDED, &md->flags); 3003 } 3004 3005 int dm_suspended_internally_md(struct mapped_device *md) 3006 { 3007 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3008 } 3009 3010 int dm_test_deferred_remove_flag(struct mapped_device *md) 3011 { 3012 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3013 } 3014 3015 int dm_suspended(struct dm_target *ti) 3016 { 3017 return dm_suspended_md(dm_table_get_md(ti->table)); 3018 } 3019 EXPORT_SYMBOL_GPL(dm_suspended); 3020 3021 int dm_noflush_suspending(struct dm_target *ti) 3022 { 3023 return __noflush_suspending(dm_table_get_md(ti->table)); 3024 } 3025 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3026 3027 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3028 unsigned integrity, unsigned per_io_data_size, 3029 unsigned min_pool_size) 3030 { 3031 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3032 unsigned int pool_size = 0; 3033 unsigned int front_pad, io_front_pad; 3034 int ret; 3035 3036 if (!pools) 3037 return NULL; 3038 3039 switch (type) { 3040 case DM_TYPE_BIO_BASED: 3041 case DM_TYPE_DAX_BIO_BASED: 3042 case DM_TYPE_NVME_BIO_BASED: 3043 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3044 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3045 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3046 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3047 if (ret) 3048 goto out; 3049 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3050 goto out; 3051 break; 3052 case DM_TYPE_REQUEST_BASED: 3053 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3054 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3055 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3056 break; 3057 default: 3058 BUG(); 3059 } 3060 3061 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3062 if (ret) 3063 goto out; 3064 3065 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3066 goto out; 3067 3068 return pools; 3069 3070 out: 3071 dm_free_md_mempools(pools); 3072 3073 return NULL; 3074 } 3075 3076 void dm_free_md_mempools(struct dm_md_mempools *pools) 3077 { 3078 if (!pools) 3079 return; 3080 3081 bioset_exit(&pools->bs); 3082 bioset_exit(&pools->io_bs); 3083 3084 kfree(pools); 3085 } 3086 3087 struct dm_pr { 3088 u64 old_key; 3089 u64 new_key; 3090 u32 flags; 3091 bool fail_early; 3092 }; 3093 3094 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3095 void *data) 3096 { 3097 struct mapped_device *md = bdev->bd_disk->private_data; 3098 struct dm_table *table; 3099 struct dm_target *ti; 3100 int ret = -ENOTTY, srcu_idx; 3101 3102 table = dm_get_live_table(md, &srcu_idx); 3103 if (!table || !dm_table_get_size(table)) 3104 goto out; 3105 3106 /* We only support devices that have a single target */ 3107 if (dm_table_get_num_targets(table) != 1) 3108 goto out; 3109 ti = dm_table_get_target(table, 0); 3110 3111 ret = -EINVAL; 3112 if (!ti->type->iterate_devices) 3113 goto out; 3114 3115 ret = ti->type->iterate_devices(ti, fn, data); 3116 out: 3117 dm_put_live_table(md, srcu_idx); 3118 return ret; 3119 } 3120 3121 /* 3122 * For register / unregister we need to manually call out to every path. 3123 */ 3124 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3125 sector_t start, sector_t len, void *data) 3126 { 3127 struct dm_pr *pr = data; 3128 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3129 3130 if (!ops || !ops->pr_register) 3131 return -EOPNOTSUPP; 3132 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3133 } 3134 3135 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3136 u32 flags) 3137 { 3138 struct dm_pr pr = { 3139 .old_key = old_key, 3140 .new_key = new_key, 3141 .flags = flags, 3142 .fail_early = true, 3143 }; 3144 int ret; 3145 3146 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3147 if (ret && new_key) { 3148 /* unregister all paths if we failed to register any path */ 3149 pr.old_key = new_key; 3150 pr.new_key = 0; 3151 pr.flags = 0; 3152 pr.fail_early = false; 3153 dm_call_pr(bdev, __dm_pr_register, &pr); 3154 } 3155 3156 return ret; 3157 } 3158 3159 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3160 u32 flags) 3161 { 3162 struct mapped_device *md = bdev->bd_disk->private_data; 3163 const struct pr_ops *ops; 3164 int r, srcu_idx; 3165 3166 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3167 if (r < 0) 3168 goto out; 3169 3170 ops = bdev->bd_disk->fops->pr_ops; 3171 if (ops && ops->pr_reserve) 3172 r = ops->pr_reserve(bdev, key, type, flags); 3173 else 3174 r = -EOPNOTSUPP; 3175 out: 3176 dm_unprepare_ioctl(md, srcu_idx); 3177 return r; 3178 } 3179 3180 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3181 { 3182 struct mapped_device *md = bdev->bd_disk->private_data; 3183 const struct pr_ops *ops; 3184 int r, srcu_idx; 3185 3186 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3187 if (r < 0) 3188 goto out; 3189 3190 ops = bdev->bd_disk->fops->pr_ops; 3191 if (ops && ops->pr_release) 3192 r = ops->pr_release(bdev, key, type); 3193 else 3194 r = -EOPNOTSUPP; 3195 out: 3196 dm_unprepare_ioctl(md, srcu_idx); 3197 return r; 3198 } 3199 3200 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3201 enum pr_type type, bool abort) 3202 { 3203 struct mapped_device *md = bdev->bd_disk->private_data; 3204 const struct pr_ops *ops; 3205 int r, srcu_idx; 3206 3207 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3208 if (r < 0) 3209 goto out; 3210 3211 ops = bdev->bd_disk->fops->pr_ops; 3212 if (ops && ops->pr_preempt) 3213 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3214 else 3215 r = -EOPNOTSUPP; 3216 out: 3217 dm_unprepare_ioctl(md, srcu_idx); 3218 return r; 3219 } 3220 3221 static int dm_pr_clear(struct block_device *bdev, u64 key) 3222 { 3223 struct mapped_device *md = bdev->bd_disk->private_data; 3224 const struct pr_ops *ops; 3225 int r, srcu_idx; 3226 3227 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3228 if (r < 0) 3229 goto out; 3230 3231 ops = bdev->bd_disk->fops->pr_ops; 3232 if (ops && ops->pr_clear) 3233 r = ops->pr_clear(bdev, key); 3234 else 3235 r = -EOPNOTSUPP; 3236 out: 3237 dm_unprepare_ioctl(md, srcu_idx); 3238 return r; 3239 } 3240 3241 static const struct pr_ops dm_pr_ops = { 3242 .pr_register = dm_pr_register, 3243 .pr_reserve = dm_pr_reserve, 3244 .pr_release = dm_pr_release, 3245 .pr_preempt = dm_pr_preempt, 3246 .pr_clear = dm_pr_clear, 3247 }; 3248 3249 static const struct block_device_operations dm_blk_dops = { 3250 .open = dm_blk_open, 3251 .release = dm_blk_close, 3252 .ioctl = dm_blk_ioctl, 3253 .getgeo = dm_blk_getgeo, 3254 .report_zones = dm_blk_report_zones, 3255 .pr_ops = &dm_pr_ops, 3256 .owner = THIS_MODULE 3257 }; 3258 3259 static const struct dax_operations dm_dax_ops = { 3260 .direct_access = dm_dax_direct_access, 3261 .dax_supported = dm_dax_supported, 3262 .copy_from_iter = dm_dax_copy_from_iter, 3263 .copy_to_iter = dm_dax_copy_to_iter, 3264 .zero_page_range = dm_dax_zero_page_range, 3265 }; 3266 3267 /* 3268 * module hooks 3269 */ 3270 module_init(dm_init); 3271 module_exit(dm_exit); 3272 3273 module_param(major, uint, 0); 3274 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3275 3276 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3277 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3278 3279 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3280 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3281 3282 MODULE_DESCRIPTION(DM_NAME " driver"); 3283 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3284 MODULE_LICENSE("GPL"); 3285