xref: /openbmc/linux/drivers/md/dm.c (revision 52fb57e7)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 };
90 
91 /*
92  * For request-based dm - the bio clones we allocate are embedded in these
93  * structs.
94  *
95  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96  * the bioset is created - this means the bio has to come at the end of the
97  * struct.
98  */
99 struct dm_rq_clone_bio_info {
100 	struct bio *orig;
101 	struct dm_rq_target_io *tio;
102 	struct bio clone;
103 };
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127 
128 /*
129  * A dummy definition to make RCU happy.
130  * struct dm_table should never be dereferenced in this file.
131  */
132 struct dm_table {
133 	int undefined__;
134 };
135 
136 /*
137  * Work processed by per-device workqueue.
138  */
139 struct mapped_device {
140 	struct srcu_struct io_barrier;
141 	struct mutex suspend_lock;
142 	atomic_t holders;
143 	atomic_t open_count;
144 
145 	/*
146 	 * The current mapping.
147 	 * Use dm_get_live_table{_fast} or take suspend_lock for
148 	 * dereference.
149 	 */
150 	struct dm_table __rcu *map;
151 
152 	struct list_head table_devices;
153 	struct mutex table_devices_lock;
154 
155 	unsigned long flags;
156 
157 	struct request_queue *queue;
158 	unsigned type;
159 	/* Protect queue and type against concurrent access. */
160 	struct mutex type_lock;
161 
162 	struct target_type *immutable_target_type;
163 
164 	struct gendisk *disk;
165 	char name[16];
166 
167 	void *interface_ptr;
168 
169 	/*
170 	 * A list of ios that arrived while we were suspended.
171 	 */
172 	atomic_t pending[2];
173 	wait_queue_head_t wait;
174 	struct work_struct work;
175 	struct bio_list deferred;
176 	spinlock_t deferred_lock;
177 
178 	/*
179 	 * Processing queue (flush)
180 	 */
181 	struct workqueue_struct *wq;
182 
183 	/*
184 	 * io objects are allocated from here.
185 	 */
186 	mempool_t *io_pool;
187 	mempool_t *rq_pool;
188 
189 	struct bio_set *bs;
190 
191 	/*
192 	 * Event handling.
193 	 */
194 	atomic_t event_nr;
195 	wait_queue_head_t eventq;
196 	atomic_t uevent_seq;
197 	struct list_head uevent_list;
198 	spinlock_t uevent_lock; /* Protect access to uevent_list */
199 
200 	/*
201 	 * freeze/thaw support require holding onto a super block
202 	 */
203 	struct super_block *frozen_sb;
204 	struct block_device *bdev;
205 
206 	/* forced geometry settings */
207 	struct hd_geometry geometry;
208 
209 	/* kobject and completion */
210 	struct dm_kobject_holder kobj_holder;
211 
212 	/* zero-length flush that will be cloned and submitted to targets */
213 	struct bio flush_bio;
214 
215 	/* the number of internal suspends */
216 	unsigned internal_suspend_count;
217 
218 	struct dm_stats stats;
219 
220 	struct kthread_worker kworker;
221 	struct task_struct *kworker_task;
222 
223 	/* for request-based merge heuristic in dm_request_fn() */
224 	unsigned seq_rq_merge_deadline_usecs;
225 	int last_rq_rw;
226 	sector_t last_rq_pos;
227 	ktime_t last_rq_start_time;
228 
229 	/* for blk-mq request-based DM support */
230 	struct blk_mq_tag_set tag_set;
231 	bool use_blk_mq;
232 };
233 
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239 
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 	return md->use_blk_mq;
243 }
244 
245 /*
246  * For mempools pre-allocation at the table loading time.
247  */
248 struct dm_md_mempools {
249 	mempool_t *io_pool;
250 	mempool_t *rq_pool;
251 	struct bio_set *bs;
252 };
253 
254 struct table_device {
255 	struct list_head list;
256 	atomic_t count;
257 	struct dm_dev dm_dev;
258 };
259 
260 #define RESERVED_BIO_BASED_IOS		16
261 #define RESERVED_REQUEST_BASED_IOS	256
262 #define RESERVED_MAX_IOS		1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266 
267 /*
268  * Bio-based DM's mempools' reserved IOs set by the user.
269  */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271 
272 /*
273  * Request-based DM's mempools' reserved IOs set by the user.
274  */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276 
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 				      unsigned def, unsigned max)
279 {
280 	unsigned param = ACCESS_ONCE(*module_param);
281 	unsigned modified_param = 0;
282 
283 	if (!param)
284 		modified_param = def;
285 	else if (param > max)
286 		modified_param = max;
287 
288 	if (modified_param) {
289 		(void)cmpxchg(module_param, param, modified_param);
290 		param = modified_param;
291 	}
292 
293 	return param;
294 }
295 
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 	return __dm_get_module_param(&reserved_bio_based_ios,
299 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302 
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 	return __dm_get_module_param(&reserved_rq_based_ios,
306 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309 
310 static int __init local_init(void)
311 {
312 	int r = -ENOMEM;
313 
314 	/* allocate a slab for the dm_ios */
315 	_io_cache = KMEM_CACHE(dm_io, 0);
316 	if (!_io_cache)
317 		return r;
318 
319 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 	if (!_rq_tio_cache)
321 		goto out_free_io_cache;
322 
323 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 				      __alignof__(struct request), 0, NULL);
325 	if (!_rq_cache)
326 		goto out_free_rq_tio_cache;
327 
328 	r = dm_uevent_init();
329 	if (r)
330 		goto out_free_rq_cache;
331 
332 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 	if (!deferred_remove_workqueue) {
334 		r = -ENOMEM;
335 		goto out_uevent_exit;
336 	}
337 
338 	_major = major;
339 	r = register_blkdev(_major, _name);
340 	if (r < 0)
341 		goto out_free_workqueue;
342 
343 	if (!_major)
344 		_major = r;
345 
346 	return 0;
347 
348 out_free_workqueue:
349 	destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 	dm_uevent_exit();
352 out_free_rq_cache:
353 	kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 	kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 	kmem_cache_destroy(_io_cache);
358 
359 	return r;
360 }
361 
362 static void local_exit(void)
363 {
364 	flush_scheduled_work();
365 	destroy_workqueue(deferred_remove_workqueue);
366 
367 	kmem_cache_destroy(_rq_cache);
368 	kmem_cache_destroy(_rq_tio_cache);
369 	kmem_cache_destroy(_io_cache);
370 	unregister_blkdev(_major, _name);
371 	dm_uevent_exit();
372 
373 	_major = 0;
374 
375 	DMINFO("cleaned up");
376 }
377 
378 static int (*_inits[])(void) __initdata = {
379 	local_init,
380 	dm_target_init,
381 	dm_linear_init,
382 	dm_stripe_init,
383 	dm_io_init,
384 	dm_kcopyd_init,
385 	dm_interface_init,
386 	dm_statistics_init,
387 };
388 
389 static void (*_exits[])(void) = {
390 	local_exit,
391 	dm_target_exit,
392 	dm_linear_exit,
393 	dm_stripe_exit,
394 	dm_io_exit,
395 	dm_kcopyd_exit,
396 	dm_interface_exit,
397 	dm_statistics_exit,
398 };
399 
400 static int __init dm_init(void)
401 {
402 	const int count = ARRAY_SIZE(_inits);
403 
404 	int r, i;
405 
406 	for (i = 0; i < count; i++) {
407 		r = _inits[i]();
408 		if (r)
409 			goto bad;
410 	}
411 
412 	return 0;
413 
414       bad:
415 	while (i--)
416 		_exits[i]();
417 
418 	return r;
419 }
420 
421 static void __exit dm_exit(void)
422 {
423 	int i = ARRAY_SIZE(_exits);
424 
425 	while (i--)
426 		_exits[i]();
427 
428 	/*
429 	 * Should be empty by this point.
430 	 */
431 	idr_destroy(&_minor_idr);
432 }
433 
434 /*
435  * Block device functions
436  */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 	return test_bit(DMF_DELETING, &md->flags);
440 }
441 
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 	struct mapped_device *md;
445 
446 	spin_lock(&_minor_lock);
447 
448 	md = bdev->bd_disk->private_data;
449 	if (!md)
450 		goto out;
451 
452 	if (test_bit(DMF_FREEING, &md->flags) ||
453 	    dm_deleting_md(md)) {
454 		md = NULL;
455 		goto out;
456 	}
457 
458 	dm_get(md);
459 	atomic_inc(&md->open_count);
460 out:
461 	spin_unlock(&_minor_lock);
462 
463 	return md ? 0 : -ENXIO;
464 }
465 
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 	struct mapped_device *md;
469 
470 	spin_lock(&_minor_lock);
471 
472 	md = disk->private_data;
473 	if (WARN_ON(!md))
474 		goto out;
475 
476 	if (atomic_dec_and_test(&md->open_count) &&
477 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
479 
480 	dm_put(md);
481 out:
482 	spin_unlock(&_minor_lock);
483 }
484 
485 int dm_open_count(struct mapped_device *md)
486 {
487 	return atomic_read(&md->open_count);
488 }
489 
490 /*
491  * Guarantees nothing is using the device before it's deleted.
492  */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 	int r = 0;
496 
497 	spin_lock(&_minor_lock);
498 
499 	if (dm_open_count(md)) {
500 		r = -EBUSY;
501 		if (mark_deferred)
502 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 		r = -EEXIST;
505 	else
506 		set_bit(DMF_DELETING, &md->flags);
507 
508 	spin_unlock(&_minor_lock);
509 
510 	return r;
511 }
512 
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 	int r = 0;
516 
517 	spin_lock(&_minor_lock);
518 
519 	if (test_bit(DMF_DELETING, &md->flags))
520 		r = -EBUSY;
521 	else
522 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523 
524 	spin_unlock(&_minor_lock);
525 
526 	return r;
527 }
528 
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 	dm_deferred_remove();
532 }
533 
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 	return get_capacity(md->disk);
537 }
538 
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 	return md->queue;
542 }
543 
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 	return &md->stats;
547 }
548 
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 	struct mapped_device *md = bdev->bd_disk->private_data;
552 
553 	return dm_get_geometry(md, geo);
554 }
555 
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 			unsigned int cmd, unsigned long arg)
558 {
559 	struct mapped_device *md = bdev->bd_disk->private_data;
560 	int srcu_idx;
561 	struct dm_table *map;
562 	struct dm_target *tgt;
563 	int r = -ENOTTY;
564 
565 retry:
566 	map = dm_get_live_table(md, &srcu_idx);
567 
568 	if (!map || !dm_table_get_size(map))
569 		goto out;
570 
571 	/* We only support devices that have a single target */
572 	if (dm_table_get_num_targets(map) != 1)
573 		goto out;
574 
575 	tgt = dm_table_get_target(map, 0);
576 	if (!tgt->type->ioctl)
577 		goto out;
578 
579 	if (dm_suspended_md(md)) {
580 		r = -EAGAIN;
581 		goto out;
582 	}
583 
584 	r = tgt->type->ioctl(tgt, cmd, arg);
585 
586 out:
587 	dm_put_live_table(md, srcu_idx);
588 
589 	if (r == -ENOTCONN) {
590 		msleep(10);
591 		goto retry;
592 	}
593 
594 	return r;
595 }
596 
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 	return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601 
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 	mempool_free(io, md->io_pool);
605 }
606 
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 	bio_put(&tio->clone);
610 }
611 
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 					    gfp_t gfp_mask)
614 {
615 	return mempool_alloc(md->io_pool, gfp_mask);
616 }
617 
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 	mempool_free(tio, tio->md->io_pool);
621 }
622 
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 					   gfp_t gfp_mask)
625 {
626 	return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628 
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 	mempool_free(rq, md->rq_pool);
632 }
633 
634 static int md_in_flight(struct mapped_device *md)
635 {
636 	return atomic_read(&md->pending[READ]) +
637 	       atomic_read(&md->pending[WRITE]);
638 }
639 
640 static void start_io_acct(struct dm_io *io)
641 {
642 	struct mapped_device *md = io->md;
643 	struct bio *bio = io->bio;
644 	int cpu;
645 	int rw = bio_data_dir(bio);
646 
647 	io->start_time = jiffies;
648 
649 	cpu = part_stat_lock();
650 	part_round_stats(cpu, &dm_disk(md)->part0);
651 	part_stat_unlock();
652 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 		atomic_inc_return(&md->pending[rw]));
654 
655 	if (unlikely(dm_stats_used(&md->stats)))
656 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 				    bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659 
660 static void end_io_acct(struct dm_io *io)
661 {
662 	struct mapped_device *md = io->md;
663 	struct bio *bio = io->bio;
664 	unsigned long duration = jiffies - io->start_time;
665 	int pending;
666 	int rw = bio_data_dir(bio);
667 
668 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669 
670 	if (unlikely(dm_stats_used(&md->stats)))
671 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 				    bio_sectors(bio), true, duration, &io->stats_aux);
673 
674 	/*
675 	 * After this is decremented the bio must not be touched if it is
676 	 * a flush.
677 	 */
678 	pending = atomic_dec_return(&md->pending[rw]);
679 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 	pending += atomic_read(&md->pending[rw^0x1]);
681 
682 	/* nudge anyone waiting on suspend queue */
683 	if (!pending)
684 		wake_up(&md->wait);
685 }
686 
687 /*
688  * Add the bio to the list of deferred io.
689  */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&md->deferred_lock, flags);
695 	bio_list_add(&md->deferred, bio);
696 	spin_unlock_irqrestore(&md->deferred_lock, flags);
697 	queue_work(md->wq, &md->work);
698 }
699 
700 /*
701  * Everyone (including functions in this file), should use this
702  * function to access the md->map field, and make sure they call
703  * dm_put_live_table() when finished.
704  */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 	*srcu_idx = srcu_read_lock(&md->io_barrier);
708 
709 	return srcu_dereference(md->map, &md->io_barrier);
710 }
711 
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 	srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716 
717 void dm_sync_table(struct mapped_device *md)
718 {
719 	synchronize_srcu(&md->io_barrier);
720 	synchronize_rcu_expedited();
721 }
722 
723 /*
724  * A fast alternative to dm_get_live_table/dm_put_live_table.
725  * The caller must not block between these two functions.
726  */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 	rcu_read_lock();
730 	return rcu_dereference(md->map);
731 }
732 
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 	rcu_read_unlock();
736 }
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	static char *_claim_ptr = "I belong to device-mapper";
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	td->dm_dev.bdev = NULL;
776 }
777 
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 					      fmode_t mode) {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result) {
791 	int r;
792 	struct table_device *td;
793 
794 	mutex_lock(&md->table_devices_lock);
795 	td = find_table_device(&md->table_devices, dev, mode);
796 	if (!td) {
797 		td = kmalloc(sizeof(*td), GFP_KERNEL);
798 		if (!td) {
799 			mutex_unlock(&md->table_devices_lock);
800 			return -ENOMEM;
801 		}
802 
803 		td->dm_dev.mode = mode;
804 		td->dm_dev.bdev = NULL;
805 
806 		if ((r = open_table_device(td, dev, md))) {
807 			mutex_unlock(&md->table_devices_lock);
808 			kfree(td);
809 			return r;
810 		}
811 
812 		format_dev_t(td->dm_dev.name, dev);
813 
814 		atomic_set(&td->count, 0);
815 		list_add(&td->list, &md->table_devices);
816 	}
817 	atomic_inc(&td->count);
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824 
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 	struct table_device *td = container_of(d, struct table_device, dm_dev);
828 
829 	mutex_lock(&md->table_devices_lock);
830 	if (atomic_dec_and_test(&td->count)) {
831 		close_table_device(td, md);
832 		list_del(&td->list);
833 		kfree(td);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838 
839 static void free_table_devices(struct list_head *devices)
840 {
841 	struct list_head *tmp, *next;
842 
843 	list_for_each_safe(tmp, next, devices) {
844 		struct table_device *td = list_entry(tmp, struct table_device, list);
845 
846 		DMWARN("dm_destroy: %s still exists with %d references",
847 		       td->dm_dev.name, atomic_read(&td->count));
848 		kfree(td);
849 	}
850 }
851 
852 /*
853  * Get the geometry associated with a dm device
854  */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	*geo = md->geometry;
858 
859 	return 0;
860 }
861 
862 /*
863  * Set the geometry of a device.
864  */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868 
869 	if (geo->start > sz) {
870 		DMWARN("Start sector is beyond the geometry limits.");
871 		return -EINVAL;
872 	}
873 
874 	md->geometry = *geo;
875 
876 	return 0;
877 }
878 
879 /*-----------------------------------------------------------------
880  * CRUD START:
881  *   A more elegant soln is in the works that uses the queue
882  *   merge fn, unfortunately there are a couple of changes to
883  *   the block layer that I want to make for this.  So in the
884  *   interests of getting something for people to use I give
885  *   you this clearly demarcated crap.
886  *---------------------------------------------------------------*/
887 
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892 
893 /*
894  * Decrements the number of outstanding ios that a bio has been
895  * cloned into, completing the original io if necc.
896  */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 	unsigned long flags;
900 	int io_error;
901 	struct bio *bio;
902 	struct mapped_device *md = io->md;
903 
904 	/* Push-back supersedes any I/O errors */
905 	if (unlikely(error)) {
906 		spin_lock_irqsave(&io->endio_lock, flags);
907 		if (!(io->error > 0 && __noflush_suspending(md)))
908 			io->error = error;
909 		spin_unlock_irqrestore(&io->endio_lock, flags);
910 	}
911 
912 	if (atomic_dec_and_test(&io->io_count)) {
913 		if (io->error == DM_ENDIO_REQUEUE) {
914 			/*
915 			 * Target requested pushing back the I/O.
916 			 */
917 			spin_lock_irqsave(&md->deferred_lock, flags);
918 			if (__noflush_suspending(md))
919 				bio_list_add_head(&md->deferred, io->bio);
920 			else
921 				/* noflush suspend was interrupted. */
922 				io->error = -EIO;
923 			spin_unlock_irqrestore(&md->deferred_lock, flags);
924 		}
925 
926 		io_error = io->error;
927 		bio = io->bio;
928 		end_io_acct(io);
929 		free_io(md, io);
930 
931 		if (io_error == DM_ENDIO_REQUEUE)
932 			return;
933 
934 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 			/*
936 			 * Preflush done for flush with data, reissue
937 			 * without REQ_FLUSH.
938 			 */
939 			bio->bi_rw &= ~REQ_FLUSH;
940 			queue_io(md, bio);
941 		} else {
942 			/* done with normal IO or empty flush */
943 			trace_block_bio_complete(md->queue, bio, io_error);
944 			bio_endio(bio, io_error);
945 		}
946 	}
947 }
948 
949 static void disable_write_same(struct mapped_device *md)
950 {
951 	struct queue_limits *limits = dm_get_queue_limits(md);
952 
953 	/* device doesn't really support WRITE SAME, disable it */
954 	limits->max_write_same_sectors = 0;
955 }
956 
957 static void clone_endio(struct bio *bio, int error)
958 {
959 	int r = error;
960 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 	struct dm_io *io = tio->io;
962 	struct mapped_device *md = tio->io->md;
963 	dm_endio_fn endio = tio->ti->type->end_io;
964 
965 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 		error = -EIO;
967 
968 	if (endio) {
969 		r = endio(tio->ti, bio, error);
970 		if (r < 0 || r == DM_ENDIO_REQUEUE)
971 			/*
972 			 * error and requeue request are handled
973 			 * in dec_pending().
974 			 */
975 			error = r;
976 		else if (r == DM_ENDIO_INCOMPLETE)
977 			/* The target will handle the io */
978 			return;
979 		else if (r) {
980 			DMWARN("unimplemented target endio return value: %d", r);
981 			BUG();
982 		}
983 	}
984 
985 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 		disable_write_same(md);
988 
989 	free_tio(md, tio);
990 	dec_pending(io, error);
991 }
992 
993 /*
994  * Partial completion handling for request-based dm
995  */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 	struct dm_rq_clone_bio_info *info =
999 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 	struct dm_rq_target_io *tio = info->tio;
1001 	struct bio *bio = info->orig;
1002 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003 
1004 	bio_put(clone);
1005 
1006 	if (tio->error)
1007 		/*
1008 		 * An error has already been detected on the request.
1009 		 * Once error occurred, just let clone->end_io() handle
1010 		 * the remainder.
1011 		 */
1012 		return;
1013 	else if (error) {
1014 		/*
1015 		 * Don't notice the error to the upper layer yet.
1016 		 * The error handling decision is made by the target driver,
1017 		 * when the request is completed.
1018 		 */
1019 		tio->error = error;
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * I/O for the bio successfully completed.
1025 	 * Notice the data completion to the upper layer.
1026 	 */
1027 
1028 	/*
1029 	 * bios are processed from the head of the list.
1030 	 * So the completing bio should always be rq->bio.
1031 	 * If it's not, something wrong is happening.
1032 	 */
1033 	if (tio->orig->bio != bio)
1034 		DMERR("bio completion is going in the middle of the request");
1035 
1036 	/*
1037 	 * Update the original request.
1038 	 * Do not use blk_end_request() here, because it may complete
1039 	 * the original request before the clone, and break the ordering.
1040 	 */
1041 	blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043 
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048 
1049 /*
1050  * Don't touch any member of the md after calling this function because
1051  * the md may be freed in dm_put() at the end of this function.
1052  * Or do dm_get() before calling this function and dm_put() later.
1053  */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 	int nr_requests_pending;
1057 
1058 	atomic_dec(&md->pending[rw]);
1059 
1060 	/* nudge anyone waiting on suspend queue */
1061 	nr_requests_pending = md_in_flight(md);
1062 	if (!nr_requests_pending)
1063 		wake_up(&md->wait);
1064 
1065 	/*
1066 	 * Run this off this callpath, as drivers could invoke end_io while
1067 	 * inside their request_fn (and holding the queue lock). Calling
1068 	 * back into ->request_fn() could deadlock attempting to grab the
1069 	 * queue lock again.
1070 	 */
1071 	if (run_queue) {
1072 		if (md->queue->mq_ops)
1073 			blk_mq_run_hw_queues(md->queue, true);
1074 		else if (!nr_requests_pending ||
1075 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 			blk_run_queue_async(md->queue);
1077 	}
1078 
1079 	/*
1080 	 * dm_put() must be at the end of this function. See the comment above
1081 	 */
1082 	dm_put(md);
1083 }
1084 
1085 static void free_rq_clone(struct request *clone)
1086 {
1087 	struct dm_rq_target_io *tio = clone->end_io_data;
1088 	struct mapped_device *md = tio->md;
1089 
1090 	blk_rq_unprep_clone(clone);
1091 
1092 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1093 		/* stacked on blk-mq queue(s) */
1094 		tio->ti->type->release_clone_rq(clone);
1095 	else if (!md->queue->mq_ops)
1096 		/* request_fn queue stacked on request_fn queue(s) */
1097 		free_clone_request(md, clone);
1098 	/*
1099 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1100 	 * no need to call free_clone_request() because we leverage blk-mq by
1101 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1102 	 */
1103 
1104 	if (!md->queue->mq_ops)
1105 		free_rq_tio(tio);
1106 }
1107 
1108 /*
1109  * Complete the clone and the original request.
1110  * Must be called without clone's queue lock held,
1111  * see end_clone_request() for more details.
1112  */
1113 static void dm_end_request(struct request *clone, int error)
1114 {
1115 	int rw = rq_data_dir(clone);
1116 	struct dm_rq_target_io *tio = clone->end_io_data;
1117 	struct mapped_device *md = tio->md;
1118 	struct request *rq = tio->orig;
1119 
1120 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1121 		rq->errors = clone->errors;
1122 		rq->resid_len = clone->resid_len;
1123 
1124 		if (rq->sense)
1125 			/*
1126 			 * We are using the sense buffer of the original
1127 			 * request.
1128 			 * So setting the length of the sense data is enough.
1129 			 */
1130 			rq->sense_len = clone->sense_len;
1131 	}
1132 
1133 	free_rq_clone(clone);
1134 	if (!rq->q->mq_ops)
1135 		blk_end_request_all(rq, error);
1136 	else
1137 		blk_mq_end_request(rq, error);
1138 	rq_completed(md, rw, true);
1139 }
1140 
1141 static void dm_unprep_request(struct request *rq)
1142 {
1143 	struct dm_rq_target_io *tio = tio_from_request(rq);
1144 	struct request *clone = tio->clone;
1145 
1146 	if (!rq->q->mq_ops) {
1147 		rq->special = NULL;
1148 		rq->cmd_flags &= ~REQ_DONTPREP;
1149 	}
1150 
1151 	if (clone)
1152 		free_rq_clone(clone);
1153 }
1154 
1155 /*
1156  * Requeue the original request of a clone.
1157  */
1158 static void old_requeue_request(struct request *rq)
1159 {
1160 	struct request_queue *q = rq->q;
1161 	unsigned long flags;
1162 
1163 	spin_lock_irqsave(q->queue_lock, flags);
1164 	blk_requeue_request(q, rq);
1165 	blk_run_queue_async(q);
1166 	spin_unlock_irqrestore(q->queue_lock, flags);
1167 }
1168 
1169 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1170 						 struct request *rq)
1171 {
1172 	int rw = rq_data_dir(rq);
1173 
1174 	dm_unprep_request(rq);
1175 
1176 	if (!rq->q->mq_ops)
1177 		old_requeue_request(rq);
1178 	else {
1179 		blk_mq_requeue_request(rq);
1180 		blk_mq_kick_requeue_list(rq->q);
1181 	}
1182 
1183 	rq_completed(md, rw, false);
1184 }
1185 
1186 static void dm_requeue_unmapped_request(struct request *clone)
1187 {
1188 	struct dm_rq_target_io *tio = clone->end_io_data;
1189 
1190 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1191 }
1192 
1193 static void old_stop_queue(struct request_queue *q)
1194 {
1195 	unsigned long flags;
1196 
1197 	if (blk_queue_stopped(q))
1198 		return;
1199 
1200 	spin_lock_irqsave(q->queue_lock, flags);
1201 	blk_stop_queue(q);
1202 	spin_unlock_irqrestore(q->queue_lock, flags);
1203 }
1204 
1205 static void stop_queue(struct request_queue *q)
1206 {
1207 	if (!q->mq_ops)
1208 		old_stop_queue(q);
1209 	else
1210 		blk_mq_stop_hw_queues(q);
1211 }
1212 
1213 static void old_start_queue(struct request_queue *q)
1214 {
1215 	unsigned long flags;
1216 
1217 	spin_lock_irqsave(q->queue_lock, flags);
1218 	if (blk_queue_stopped(q))
1219 		blk_start_queue(q);
1220 	spin_unlock_irqrestore(q->queue_lock, flags);
1221 }
1222 
1223 static void start_queue(struct request_queue *q)
1224 {
1225 	if (!q->mq_ops)
1226 		old_start_queue(q);
1227 	else
1228 		blk_mq_start_stopped_hw_queues(q, true);
1229 }
1230 
1231 static void dm_done(struct request *clone, int error, bool mapped)
1232 {
1233 	int r = error;
1234 	struct dm_rq_target_io *tio = clone->end_io_data;
1235 	dm_request_endio_fn rq_end_io = NULL;
1236 
1237 	if (tio->ti) {
1238 		rq_end_io = tio->ti->type->rq_end_io;
1239 
1240 		if (mapped && rq_end_io)
1241 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1242 	}
1243 
1244 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1245 		     !clone->q->limits.max_write_same_sectors))
1246 		disable_write_same(tio->md);
1247 
1248 	if (r <= 0)
1249 		/* The target wants to complete the I/O */
1250 		dm_end_request(clone, r);
1251 	else if (r == DM_ENDIO_INCOMPLETE)
1252 		/* The target will handle the I/O */
1253 		return;
1254 	else if (r == DM_ENDIO_REQUEUE)
1255 		/* The target wants to requeue the I/O */
1256 		dm_requeue_unmapped_request(clone);
1257 	else {
1258 		DMWARN("unimplemented target endio return value: %d", r);
1259 		BUG();
1260 	}
1261 }
1262 
1263 /*
1264  * Request completion handler for request-based dm
1265  */
1266 static void dm_softirq_done(struct request *rq)
1267 {
1268 	bool mapped = true;
1269 	struct dm_rq_target_io *tio = tio_from_request(rq);
1270 	struct request *clone = tio->clone;
1271 	int rw;
1272 
1273 	if (!clone) {
1274 		rw = rq_data_dir(rq);
1275 		if (!rq->q->mq_ops) {
1276 			blk_end_request_all(rq, tio->error);
1277 			rq_completed(tio->md, rw, false);
1278 			free_rq_tio(tio);
1279 		} else {
1280 			blk_mq_end_request(rq, tio->error);
1281 			rq_completed(tio->md, rw, false);
1282 		}
1283 		return;
1284 	}
1285 
1286 	if (rq->cmd_flags & REQ_FAILED)
1287 		mapped = false;
1288 
1289 	dm_done(clone, tio->error, mapped);
1290 }
1291 
1292 /*
1293  * Complete the clone and the original request with the error status
1294  * through softirq context.
1295  */
1296 static void dm_complete_request(struct request *rq, int error)
1297 {
1298 	struct dm_rq_target_io *tio = tio_from_request(rq);
1299 
1300 	tio->error = error;
1301 	blk_complete_request(rq);
1302 }
1303 
1304 /*
1305  * Complete the not-mapped clone and the original request with the error status
1306  * through softirq context.
1307  * Target's rq_end_io() function isn't called.
1308  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1309  */
1310 static void dm_kill_unmapped_request(struct request *rq, int error)
1311 {
1312 	rq->cmd_flags |= REQ_FAILED;
1313 	dm_complete_request(rq, error);
1314 }
1315 
1316 /*
1317  * Called with the clone's queue lock held (for non-blk-mq)
1318  */
1319 static void end_clone_request(struct request *clone, int error)
1320 {
1321 	struct dm_rq_target_io *tio = clone->end_io_data;
1322 
1323 	if (!clone->q->mq_ops) {
1324 		/*
1325 		 * For just cleaning up the information of the queue in which
1326 		 * the clone was dispatched.
1327 		 * The clone is *NOT* freed actually here because it is alloced
1328 		 * from dm own mempool (REQ_ALLOCED isn't set).
1329 		 */
1330 		__blk_put_request(clone->q, clone);
1331 	}
1332 
1333 	/*
1334 	 * Actual request completion is done in a softirq context which doesn't
1335 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1336 	 *     - another request may be submitted by the upper level driver
1337 	 *       of the stacking during the completion
1338 	 *     - the submission which requires queue lock may be done
1339 	 *       against this clone's queue
1340 	 */
1341 	dm_complete_request(tio->orig, error);
1342 }
1343 
1344 /*
1345  * Return maximum size of I/O possible at the supplied sector up to the current
1346  * target boundary.
1347  */
1348 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1349 {
1350 	sector_t target_offset = dm_target_offset(ti, sector);
1351 
1352 	return ti->len - target_offset;
1353 }
1354 
1355 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1356 {
1357 	sector_t len = max_io_len_target_boundary(sector, ti);
1358 	sector_t offset, max_len;
1359 
1360 	/*
1361 	 * Does the target need to split even further?
1362 	 */
1363 	if (ti->max_io_len) {
1364 		offset = dm_target_offset(ti, sector);
1365 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1366 			max_len = sector_div(offset, ti->max_io_len);
1367 		else
1368 			max_len = offset & (ti->max_io_len - 1);
1369 		max_len = ti->max_io_len - max_len;
1370 
1371 		if (len > max_len)
1372 			len = max_len;
1373 	}
1374 
1375 	return len;
1376 }
1377 
1378 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1379 {
1380 	if (len > UINT_MAX) {
1381 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1382 		      (unsigned long long)len, UINT_MAX);
1383 		ti->error = "Maximum size of target IO is too large";
1384 		return -EINVAL;
1385 	}
1386 
1387 	ti->max_io_len = (uint32_t) len;
1388 
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1392 
1393 /*
1394  * A target may call dm_accept_partial_bio only from the map routine.  It is
1395  * allowed for all bio types except REQ_FLUSH.
1396  *
1397  * dm_accept_partial_bio informs the dm that the target only wants to process
1398  * additional n_sectors sectors of the bio and the rest of the data should be
1399  * sent in a next bio.
1400  *
1401  * A diagram that explains the arithmetics:
1402  * +--------------------+---------------+-------+
1403  * |         1          |       2       |   3   |
1404  * +--------------------+---------------+-------+
1405  *
1406  * <-------------- *tio->len_ptr --------------->
1407  *                      <------- bi_size ------->
1408  *                      <-- n_sectors -->
1409  *
1410  * Region 1 was already iterated over with bio_advance or similar function.
1411  *	(it may be empty if the target doesn't use bio_advance)
1412  * Region 2 is the remaining bio size that the target wants to process.
1413  *	(it may be empty if region 1 is non-empty, although there is no reason
1414  *	 to make it empty)
1415  * The target requires that region 3 is to be sent in the next bio.
1416  *
1417  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1418  * the partially processed part (the sum of regions 1+2) must be the same for all
1419  * copies of the bio.
1420  */
1421 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1422 {
1423 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1424 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1425 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1426 	BUG_ON(bi_size > *tio->len_ptr);
1427 	BUG_ON(n_sectors > bi_size);
1428 	*tio->len_ptr -= bi_size - n_sectors;
1429 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1430 }
1431 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1432 
1433 static void __map_bio(struct dm_target_io *tio)
1434 {
1435 	int r;
1436 	sector_t sector;
1437 	struct mapped_device *md;
1438 	struct bio *clone = &tio->clone;
1439 	struct dm_target *ti = tio->ti;
1440 
1441 	clone->bi_end_io = clone_endio;
1442 
1443 	/*
1444 	 * Map the clone.  If r == 0 we don't need to do
1445 	 * anything, the target has assumed ownership of
1446 	 * this io.
1447 	 */
1448 	atomic_inc(&tio->io->io_count);
1449 	sector = clone->bi_iter.bi_sector;
1450 	r = ti->type->map(ti, clone);
1451 	if (r == DM_MAPIO_REMAPPED) {
1452 		/* the bio has been remapped so dispatch it */
1453 
1454 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1455 				      tio->io->bio->bi_bdev->bd_dev, sector);
1456 
1457 		generic_make_request(clone);
1458 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1459 		/* error the io and bail out, or requeue it if needed */
1460 		md = tio->io->md;
1461 		dec_pending(tio->io, r);
1462 		free_tio(md, tio);
1463 	} else if (r) {
1464 		DMWARN("unimplemented target map return value: %d", r);
1465 		BUG();
1466 	}
1467 }
1468 
1469 struct clone_info {
1470 	struct mapped_device *md;
1471 	struct dm_table *map;
1472 	struct bio *bio;
1473 	struct dm_io *io;
1474 	sector_t sector;
1475 	unsigned sector_count;
1476 };
1477 
1478 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1479 {
1480 	bio->bi_iter.bi_sector = sector;
1481 	bio->bi_iter.bi_size = to_bytes(len);
1482 }
1483 
1484 /*
1485  * Creates a bio that consists of range of complete bvecs.
1486  */
1487 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1488 		      sector_t sector, unsigned len)
1489 {
1490 	struct bio *clone = &tio->clone;
1491 
1492 	__bio_clone_fast(clone, bio);
1493 
1494 	if (bio_integrity(bio))
1495 		bio_integrity_clone(clone, bio, GFP_NOIO);
1496 
1497 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1498 	clone->bi_iter.bi_size = to_bytes(len);
1499 
1500 	if (bio_integrity(bio))
1501 		bio_integrity_trim(clone, 0, len);
1502 }
1503 
1504 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1505 				      struct dm_target *ti,
1506 				      unsigned target_bio_nr)
1507 {
1508 	struct dm_target_io *tio;
1509 	struct bio *clone;
1510 
1511 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1512 	tio = container_of(clone, struct dm_target_io, clone);
1513 
1514 	tio->io = ci->io;
1515 	tio->ti = ti;
1516 	tio->target_bio_nr = target_bio_nr;
1517 
1518 	return tio;
1519 }
1520 
1521 static void __clone_and_map_simple_bio(struct clone_info *ci,
1522 				       struct dm_target *ti,
1523 				       unsigned target_bio_nr, unsigned *len)
1524 {
1525 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1526 	struct bio *clone = &tio->clone;
1527 
1528 	tio->len_ptr = len;
1529 
1530 	__bio_clone_fast(clone, ci->bio);
1531 	if (len)
1532 		bio_setup_sector(clone, ci->sector, *len);
1533 
1534 	__map_bio(tio);
1535 }
1536 
1537 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1538 				  unsigned num_bios, unsigned *len)
1539 {
1540 	unsigned target_bio_nr;
1541 
1542 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1543 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1544 }
1545 
1546 static int __send_empty_flush(struct clone_info *ci)
1547 {
1548 	unsigned target_nr = 0;
1549 	struct dm_target *ti;
1550 
1551 	BUG_ON(bio_has_data(ci->bio));
1552 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1553 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1554 
1555 	return 0;
1556 }
1557 
1558 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1559 				     sector_t sector, unsigned *len)
1560 {
1561 	struct bio *bio = ci->bio;
1562 	struct dm_target_io *tio;
1563 	unsigned target_bio_nr;
1564 	unsigned num_target_bios = 1;
1565 
1566 	/*
1567 	 * Does the target want to receive duplicate copies of the bio?
1568 	 */
1569 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1570 		num_target_bios = ti->num_write_bios(ti, bio);
1571 
1572 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1573 		tio = alloc_tio(ci, ti, target_bio_nr);
1574 		tio->len_ptr = len;
1575 		clone_bio(tio, bio, sector, *len);
1576 		__map_bio(tio);
1577 	}
1578 }
1579 
1580 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1581 
1582 static unsigned get_num_discard_bios(struct dm_target *ti)
1583 {
1584 	return ti->num_discard_bios;
1585 }
1586 
1587 static unsigned get_num_write_same_bios(struct dm_target *ti)
1588 {
1589 	return ti->num_write_same_bios;
1590 }
1591 
1592 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1593 
1594 static bool is_split_required_for_discard(struct dm_target *ti)
1595 {
1596 	return ti->split_discard_bios;
1597 }
1598 
1599 static int __send_changing_extent_only(struct clone_info *ci,
1600 				       get_num_bios_fn get_num_bios,
1601 				       is_split_required_fn is_split_required)
1602 {
1603 	struct dm_target *ti;
1604 	unsigned len;
1605 	unsigned num_bios;
1606 
1607 	do {
1608 		ti = dm_table_find_target(ci->map, ci->sector);
1609 		if (!dm_target_is_valid(ti))
1610 			return -EIO;
1611 
1612 		/*
1613 		 * Even though the device advertised support for this type of
1614 		 * request, that does not mean every target supports it, and
1615 		 * reconfiguration might also have changed that since the
1616 		 * check was performed.
1617 		 */
1618 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1619 		if (!num_bios)
1620 			return -EOPNOTSUPP;
1621 
1622 		if (is_split_required && !is_split_required(ti))
1623 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1624 		else
1625 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1626 
1627 		__send_duplicate_bios(ci, ti, num_bios, &len);
1628 
1629 		ci->sector += len;
1630 	} while (ci->sector_count -= len);
1631 
1632 	return 0;
1633 }
1634 
1635 static int __send_discard(struct clone_info *ci)
1636 {
1637 	return __send_changing_extent_only(ci, get_num_discard_bios,
1638 					   is_split_required_for_discard);
1639 }
1640 
1641 static int __send_write_same(struct clone_info *ci)
1642 {
1643 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1644 }
1645 
1646 /*
1647  * Select the correct strategy for processing a non-flush bio.
1648  */
1649 static int __split_and_process_non_flush(struct clone_info *ci)
1650 {
1651 	struct bio *bio = ci->bio;
1652 	struct dm_target *ti;
1653 	unsigned len;
1654 
1655 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1656 		return __send_discard(ci);
1657 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1658 		return __send_write_same(ci);
1659 
1660 	ti = dm_table_find_target(ci->map, ci->sector);
1661 	if (!dm_target_is_valid(ti))
1662 		return -EIO;
1663 
1664 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1665 
1666 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1667 
1668 	ci->sector += len;
1669 	ci->sector_count -= len;
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Entry point to split a bio into clones and submit them to the targets.
1676  */
1677 static void __split_and_process_bio(struct mapped_device *md,
1678 				    struct dm_table *map, struct bio *bio)
1679 {
1680 	struct clone_info ci;
1681 	int error = 0;
1682 
1683 	if (unlikely(!map)) {
1684 		bio_io_error(bio);
1685 		return;
1686 	}
1687 
1688 	ci.map = map;
1689 	ci.md = md;
1690 	ci.io = alloc_io(md);
1691 	ci.io->error = 0;
1692 	atomic_set(&ci.io->io_count, 1);
1693 	ci.io->bio = bio;
1694 	ci.io->md = md;
1695 	spin_lock_init(&ci.io->endio_lock);
1696 	ci.sector = bio->bi_iter.bi_sector;
1697 
1698 	start_io_acct(ci.io);
1699 
1700 	if (bio->bi_rw & REQ_FLUSH) {
1701 		ci.bio = &ci.md->flush_bio;
1702 		ci.sector_count = 0;
1703 		error = __send_empty_flush(&ci);
1704 		/* dec_pending submits any data associated with flush */
1705 	} else {
1706 		ci.bio = bio;
1707 		ci.sector_count = bio_sectors(bio);
1708 		while (ci.sector_count && !error)
1709 			error = __split_and_process_non_flush(&ci);
1710 	}
1711 
1712 	/* drop the extra reference count */
1713 	dec_pending(ci.io, error);
1714 }
1715 /*-----------------------------------------------------------------
1716  * CRUD END
1717  *---------------------------------------------------------------*/
1718 
1719 static int dm_merge_bvec(struct request_queue *q,
1720 			 struct bvec_merge_data *bvm,
1721 			 struct bio_vec *biovec)
1722 {
1723 	struct mapped_device *md = q->queuedata;
1724 	struct dm_table *map = dm_get_live_table_fast(md);
1725 	struct dm_target *ti;
1726 	sector_t max_sectors, max_size = 0;
1727 
1728 	if (unlikely(!map))
1729 		goto out;
1730 
1731 	ti = dm_table_find_target(map, bvm->bi_sector);
1732 	if (!dm_target_is_valid(ti))
1733 		goto out;
1734 
1735 	/*
1736 	 * Find maximum amount of I/O that won't need splitting
1737 	 */
1738 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1739 			  (sector_t) queue_max_sectors(q));
1740 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1741 
1742 	/*
1743 	 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1744 	 * to the targets' merge function since it holds sectors not bytes).
1745 	 * Just doing this as an interim fix for stable@ because the more
1746 	 * comprehensive cleanup of switching to sector_t will impact every
1747 	 * DM target that implements a ->merge hook.
1748 	 */
1749 	if (max_size > INT_MAX)
1750 		max_size = INT_MAX;
1751 
1752 	/*
1753 	 * merge_bvec_fn() returns number of bytes
1754 	 * it can accept at this offset
1755 	 * max is precomputed maximal io size
1756 	 */
1757 	if (max_size && ti->type->merge)
1758 		max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1759 	/*
1760 	 * If the target doesn't support merge method and some of the devices
1761 	 * provided their merge_bvec method (we know this by looking for the
1762 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1763 	 * allow bios with multiple vector entries.  So always set max_size
1764 	 * to 0, and the code below allows just one page.
1765 	 */
1766 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1767 		max_size = 0;
1768 
1769 out:
1770 	dm_put_live_table_fast(md);
1771 	/*
1772 	 * Always allow an entire first page
1773 	 */
1774 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1775 		max_size = biovec->bv_len;
1776 
1777 	return max_size;
1778 }
1779 
1780 /*
1781  * The request function that just remaps the bio built up by
1782  * dm_merge_bvec.
1783  */
1784 static void dm_make_request(struct request_queue *q, struct bio *bio)
1785 {
1786 	int rw = bio_data_dir(bio);
1787 	struct mapped_device *md = q->queuedata;
1788 	int srcu_idx;
1789 	struct dm_table *map;
1790 
1791 	map = dm_get_live_table(md, &srcu_idx);
1792 
1793 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1794 
1795 	/* if we're suspended, we have to queue this io for later */
1796 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1797 		dm_put_live_table(md, srcu_idx);
1798 
1799 		if (bio_rw(bio) != READA)
1800 			queue_io(md, bio);
1801 		else
1802 			bio_io_error(bio);
1803 		return;
1804 	}
1805 
1806 	__split_and_process_bio(md, map, bio);
1807 	dm_put_live_table(md, srcu_idx);
1808 	return;
1809 }
1810 
1811 int dm_request_based(struct mapped_device *md)
1812 {
1813 	return blk_queue_stackable(md->queue);
1814 }
1815 
1816 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1817 {
1818 	int r;
1819 
1820 	if (blk_queue_io_stat(clone->q))
1821 		clone->cmd_flags |= REQ_IO_STAT;
1822 
1823 	clone->start_time = jiffies;
1824 	r = blk_insert_cloned_request(clone->q, clone);
1825 	if (r)
1826 		/* must complete clone in terms of original request */
1827 		dm_complete_request(rq, r);
1828 }
1829 
1830 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1831 				 void *data)
1832 {
1833 	struct dm_rq_target_io *tio = data;
1834 	struct dm_rq_clone_bio_info *info =
1835 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1836 
1837 	info->orig = bio_orig;
1838 	info->tio = tio;
1839 	bio->bi_end_io = end_clone_bio;
1840 
1841 	return 0;
1842 }
1843 
1844 static int setup_clone(struct request *clone, struct request *rq,
1845 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1846 {
1847 	int r;
1848 
1849 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1850 			      dm_rq_bio_constructor, tio);
1851 	if (r)
1852 		return r;
1853 
1854 	clone->cmd = rq->cmd;
1855 	clone->cmd_len = rq->cmd_len;
1856 	clone->sense = rq->sense;
1857 	clone->end_io = end_clone_request;
1858 	clone->end_io_data = tio;
1859 
1860 	tio->clone = clone;
1861 
1862 	return 0;
1863 }
1864 
1865 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1866 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1867 {
1868 	/*
1869 	 * Do not allocate a clone if tio->clone was already set
1870 	 * (see: dm_mq_queue_rq).
1871 	 */
1872 	bool alloc_clone = !tio->clone;
1873 	struct request *clone;
1874 
1875 	if (alloc_clone) {
1876 		clone = alloc_clone_request(md, gfp_mask);
1877 		if (!clone)
1878 			return NULL;
1879 	} else
1880 		clone = tio->clone;
1881 
1882 	blk_rq_init(NULL, clone);
1883 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1884 		/* -ENOMEM */
1885 		if (alloc_clone)
1886 			free_clone_request(md, clone);
1887 		return NULL;
1888 	}
1889 
1890 	return clone;
1891 }
1892 
1893 static void map_tio_request(struct kthread_work *work);
1894 
1895 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1896 		     struct mapped_device *md)
1897 {
1898 	tio->md = md;
1899 	tio->ti = NULL;
1900 	tio->clone = NULL;
1901 	tio->orig = rq;
1902 	tio->error = 0;
1903 	memset(&tio->info, 0, sizeof(tio->info));
1904 	if (md->kworker_task)
1905 		init_kthread_work(&tio->work, map_tio_request);
1906 }
1907 
1908 static struct dm_rq_target_io *prep_tio(struct request *rq,
1909 					struct mapped_device *md, gfp_t gfp_mask)
1910 {
1911 	struct dm_rq_target_io *tio;
1912 	int srcu_idx;
1913 	struct dm_table *table;
1914 
1915 	tio = alloc_rq_tio(md, gfp_mask);
1916 	if (!tio)
1917 		return NULL;
1918 
1919 	init_tio(tio, rq, md);
1920 
1921 	table = dm_get_live_table(md, &srcu_idx);
1922 	if (!dm_table_mq_request_based(table)) {
1923 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1924 			dm_put_live_table(md, srcu_idx);
1925 			free_rq_tio(tio);
1926 			return NULL;
1927 		}
1928 	}
1929 	dm_put_live_table(md, srcu_idx);
1930 
1931 	return tio;
1932 }
1933 
1934 /*
1935  * Called with the queue lock held.
1936  */
1937 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1938 {
1939 	struct mapped_device *md = q->queuedata;
1940 	struct dm_rq_target_io *tio;
1941 
1942 	if (unlikely(rq->special)) {
1943 		DMWARN("Already has something in rq->special.");
1944 		return BLKPREP_KILL;
1945 	}
1946 
1947 	tio = prep_tio(rq, md, GFP_ATOMIC);
1948 	if (!tio)
1949 		return BLKPREP_DEFER;
1950 
1951 	rq->special = tio;
1952 	rq->cmd_flags |= REQ_DONTPREP;
1953 
1954 	return BLKPREP_OK;
1955 }
1956 
1957 /*
1958  * Returns:
1959  * 0                : the request has been processed
1960  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1961  * < 0              : the request was completed due to failure
1962  */
1963 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1964 		       struct mapped_device *md)
1965 {
1966 	int r;
1967 	struct dm_target *ti = tio->ti;
1968 	struct request *clone = NULL;
1969 
1970 	if (tio->clone) {
1971 		clone = tio->clone;
1972 		r = ti->type->map_rq(ti, clone, &tio->info);
1973 	} else {
1974 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1975 		if (r < 0) {
1976 			/* The target wants to complete the I/O */
1977 			dm_kill_unmapped_request(rq, r);
1978 			return r;
1979 		}
1980 		if (r != DM_MAPIO_REMAPPED)
1981 			return r;
1982 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1983 			/* -ENOMEM */
1984 			ti->type->release_clone_rq(clone);
1985 			return DM_MAPIO_REQUEUE;
1986 		}
1987 	}
1988 
1989 	switch (r) {
1990 	case DM_MAPIO_SUBMITTED:
1991 		/* The target has taken the I/O to submit by itself later */
1992 		break;
1993 	case DM_MAPIO_REMAPPED:
1994 		/* The target has remapped the I/O so dispatch it */
1995 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1996 				     blk_rq_pos(rq));
1997 		dm_dispatch_clone_request(clone, rq);
1998 		break;
1999 	case DM_MAPIO_REQUEUE:
2000 		/* The target wants to requeue the I/O */
2001 		dm_requeue_unmapped_request(clone);
2002 		break;
2003 	default:
2004 		if (r > 0) {
2005 			DMWARN("unimplemented target map return value: %d", r);
2006 			BUG();
2007 		}
2008 
2009 		/* The target wants to complete the I/O */
2010 		dm_kill_unmapped_request(rq, r);
2011 		return r;
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static void map_tio_request(struct kthread_work *work)
2018 {
2019 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2020 	struct request *rq = tio->orig;
2021 	struct mapped_device *md = tio->md;
2022 
2023 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2024 		dm_requeue_unmapped_original_request(md, rq);
2025 }
2026 
2027 static void dm_start_request(struct mapped_device *md, struct request *orig)
2028 {
2029 	if (!orig->q->mq_ops)
2030 		blk_start_request(orig);
2031 	else
2032 		blk_mq_start_request(orig);
2033 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2034 
2035 	if (md->seq_rq_merge_deadline_usecs) {
2036 		md->last_rq_pos = rq_end_sector(orig);
2037 		md->last_rq_rw = rq_data_dir(orig);
2038 		md->last_rq_start_time = ktime_get();
2039 	}
2040 
2041 	/*
2042 	 * Hold the md reference here for the in-flight I/O.
2043 	 * We can't rely on the reference count by device opener,
2044 	 * because the device may be closed during the request completion
2045 	 * when all bios are completed.
2046 	 * See the comment in rq_completed() too.
2047 	 */
2048 	dm_get(md);
2049 }
2050 
2051 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2052 
2053 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2054 {
2055 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2056 }
2057 
2058 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2059 						     const char *buf, size_t count)
2060 {
2061 	unsigned deadline;
2062 
2063 	if (!dm_request_based(md) || md->use_blk_mq)
2064 		return count;
2065 
2066 	if (kstrtouint(buf, 10, &deadline))
2067 		return -EINVAL;
2068 
2069 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2070 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2071 
2072 	md->seq_rq_merge_deadline_usecs = deadline;
2073 
2074 	return count;
2075 }
2076 
2077 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2078 {
2079 	ktime_t kt_deadline;
2080 
2081 	if (!md->seq_rq_merge_deadline_usecs)
2082 		return false;
2083 
2084 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2085 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2086 
2087 	return !ktime_after(ktime_get(), kt_deadline);
2088 }
2089 
2090 /*
2091  * q->request_fn for request-based dm.
2092  * Called with the queue lock held.
2093  */
2094 static void dm_request_fn(struct request_queue *q)
2095 {
2096 	struct mapped_device *md = q->queuedata;
2097 	int srcu_idx;
2098 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2099 	struct dm_target *ti;
2100 	struct request *rq;
2101 	struct dm_rq_target_io *tio;
2102 	sector_t pos;
2103 
2104 	/*
2105 	 * For suspend, check blk_queue_stopped() and increment
2106 	 * ->pending within a single queue_lock not to increment the
2107 	 * number of in-flight I/Os after the queue is stopped in
2108 	 * dm_suspend().
2109 	 */
2110 	while (!blk_queue_stopped(q)) {
2111 		rq = blk_peek_request(q);
2112 		if (!rq)
2113 			goto out;
2114 
2115 		/* always use block 0 to find the target for flushes for now */
2116 		pos = 0;
2117 		if (!(rq->cmd_flags & REQ_FLUSH))
2118 			pos = blk_rq_pos(rq);
2119 
2120 		ti = dm_table_find_target(map, pos);
2121 		if (!dm_target_is_valid(ti)) {
2122 			/*
2123 			 * Must perform setup, that rq_completed() requires,
2124 			 * before calling dm_kill_unmapped_request
2125 			 */
2126 			DMERR_LIMIT("request attempted access beyond the end of device");
2127 			dm_start_request(md, rq);
2128 			dm_kill_unmapped_request(rq, -EIO);
2129 			continue;
2130 		}
2131 
2132 		if (dm_request_peeked_before_merge_deadline(md) &&
2133 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2134 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2135 			goto delay_and_out;
2136 
2137 		if (ti->type->busy && ti->type->busy(ti))
2138 			goto delay_and_out;
2139 
2140 		dm_start_request(md, rq);
2141 
2142 		tio = tio_from_request(rq);
2143 		/* Establish tio->ti before queuing work (map_tio_request) */
2144 		tio->ti = ti;
2145 		queue_kthread_work(&md->kworker, &tio->work);
2146 		BUG_ON(!irqs_disabled());
2147 	}
2148 
2149 	goto out;
2150 
2151 delay_and_out:
2152 	blk_delay_queue(q, HZ / 100);
2153 out:
2154 	dm_put_live_table(md, srcu_idx);
2155 }
2156 
2157 static int dm_any_congested(void *congested_data, int bdi_bits)
2158 {
2159 	int r = bdi_bits;
2160 	struct mapped_device *md = congested_data;
2161 	struct dm_table *map;
2162 
2163 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2164 		map = dm_get_live_table_fast(md);
2165 		if (map) {
2166 			/*
2167 			 * Request-based dm cares about only own queue for
2168 			 * the query about congestion status of request_queue
2169 			 */
2170 			if (dm_request_based(md))
2171 				r = md->queue->backing_dev_info.state &
2172 				    bdi_bits;
2173 			else
2174 				r = dm_table_any_congested(map, bdi_bits);
2175 		}
2176 		dm_put_live_table_fast(md);
2177 	}
2178 
2179 	return r;
2180 }
2181 
2182 /*-----------------------------------------------------------------
2183  * An IDR is used to keep track of allocated minor numbers.
2184  *---------------------------------------------------------------*/
2185 static void free_minor(int minor)
2186 {
2187 	spin_lock(&_minor_lock);
2188 	idr_remove(&_minor_idr, minor);
2189 	spin_unlock(&_minor_lock);
2190 }
2191 
2192 /*
2193  * See if the device with a specific minor # is free.
2194  */
2195 static int specific_minor(int minor)
2196 {
2197 	int r;
2198 
2199 	if (minor >= (1 << MINORBITS))
2200 		return -EINVAL;
2201 
2202 	idr_preload(GFP_KERNEL);
2203 	spin_lock(&_minor_lock);
2204 
2205 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2206 
2207 	spin_unlock(&_minor_lock);
2208 	idr_preload_end();
2209 	if (r < 0)
2210 		return r == -ENOSPC ? -EBUSY : r;
2211 	return 0;
2212 }
2213 
2214 static int next_free_minor(int *minor)
2215 {
2216 	int r;
2217 
2218 	idr_preload(GFP_KERNEL);
2219 	spin_lock(&_minor_lock);
2220 
2221 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2222 
2223 	spin_unlock(&_minor_lock);
2224 	idr_preload_end();
2225 	if (r < 0)
2226 		return r;
2227 	*minor = r;
2228 	return 0;
2229 }
2230 
2231 static const struct block_device_operations dm_blk_dops;
2232 
2233 static void dm_wq_work(struct work_struct *work);
2234 
2235 static void dm_init_md_queue(struct mapped_device *md)
2236 {
2237 	/*
2238 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2239 	 * devices.  The type of this dm device may not have been decided yet.
2240 	 * The type is decided at the first table loading time.
2241 	 * To prevent problematic device stacking, clear the queue flag
2242 	 * for request stacking support until then.
2243 	 *
2244 	 * This queue is new, so no concurrency on the queue_flags.
2245 	 */
2246 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2247 }
2248 
2249 static void dm_init_old_md_queue(struct mapped_device *md)
2250 {
2251 	md->use_blk_mq = false;
2252 	dm_init_md_queue(md);
2253 
2254 	/*
2255 	 * Initialize aspects of queue that aren't relevant for blk-mq
2256 	 */
2257 	md->queue->queuedata = md;
2258 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2259 	md->queue->backing_dev_info.congested_data = md;
2260 
2261 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2262 }
2263 
2264 /*
2265  * Allocate and initialise a blank device with a given minor.
2266  */
2267 static struct mapped_device *alloc_dev(int minor)
2268 {
2269 	int r;
2270 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2271 	void *old_md;
2272 
2273 	if (!md) {
2274 		DMWARN("unable to allocate device, out of memory.");
2275 		return NULL;
2276 	}
2277 
2278 	if (!try_module_get(THIS_MODULE))
2279 		goto bad_module_get;
2280 
2281 	/* get a minor number for the dev */
2282 	if (minor == DM_ANY_MINOR)
2283 		r = next_free_minor(&minor);
2284 	else
2285 		r = specific_minor(minor);
2286 	if (r < 0)
2287 		goto bad_minor;
2288 
2289 	r = init_srcu_struct(&md->io_barrier);
2290 	if (r < 0)
2291 		goto bad_io_barrier;
2292 
2293 	md->use_blk_mq = use_blk_mq;
2294 	md->type = DM_TYPE_NONE;
2295 	mutex_init(&md->suspend_lock);
2296 	mutex_init(&md->type_lock);
2297 	mutex_init(&md->table_devices_lock);
2298 	spin_lock_init(&md->deferred_lock);
2299 	atomic_set(&md->holders, 1);
2300 	atomic_set(&md->open_count, 0);
2301 	atomic_set(&md->event_nr, 0);
2302 	atomic_set(&md->uevent_seq, 0);
2303 	INIT_LIST_HEAD(&md->uevent_list);
2304 	INIT_LIST_HEAD(&md->table_devices);
2305 	spin_lock_init(&md->uevent_lock);
2306 
2307 	md->queue = blk_alloc_queue(GFP_KERNEL);
2308 	if (!md->queue)
2309 		goto bad_queue;
2310 
2311 	dm_init_md_queue(md);
2312 
2313 	md->disk = alloc_disk(1);
2314 	if (!md->disk)
2315 		goto bad_disk;
2316 
2317 	atomic_set(&md->pending[0], 0);
2318 	atomic_set(&md->pending[1], 0);
2319 	init_waitqueue_head(&md->wait);
2320 	INIT_WORK(&md->work, dm_wq_work);
2321 	init_waitqueue_head(&md->eventq);
2322 	init_completion(&md->kobj_holder.completion);
2323 	md->kworker_task = NULL;
2324 
2325 	md->disk->major = _major;
2326 	md->disk->first_minor = minor;
2327 	md->disk->fops = &dm_blk_dops;
2328 	md->disk->queue = md->queue;
2329 	md->disk->private_data = md;
2330 	sprintf(md->disk->disk_name, "dm-%d", minor);
2331 	add_disk(md->disk);
2332 	format_dev_t(md->name, MKDEV(_major, minor));
2333 
2334 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2335 	if (!md->wq)
2336 		goto bad_thread;
2337 
2338 	md->bdev = bdget_disk(md->disk, 0);
2339 	if (!md->bdev)
2340 		goto bad_bdev;
2341 
2342 	bio_init(&md->flush_bio);
2343 	md->flush_bio.bi_bdev = md->bdev;
2344 	md->flush_bio.bi_rw = WRITE_FLUSH;
2345 
2346 	dm_stats_init(&md->stats);
2347 
2348 	/* Populate the mapping, nobody knows we exist yet */
2349 	spin_lock(&_minor_lock);
2350 	old_md = idr_replace(&_minor_idr, md, minor);
2351 	spin_unlock(&_minor_lock);
2352 
2353 	BUG_ON(old_md != MINOR_ALLOCED);
2354 
2355 	return md;
2356 
2357 bad_bdev:
2358 	destroy_workqueue(md->wq);
2359 bad_thread:
2360 	del_gendisk(md->disk);
2361 	put_disk(md->disk);
2362 bad_disk:
2363 	blk_cleanup_queue(md->queue);
2364 bad_queue:
2365 	cleanup_srcu_struct(&md->io_barrier);
2366 bad_io_barrier:
2367 	free_minor(minor);
2368 bad_minor:
2369 	module_put(THIS_MODULE);
2370 bad_module_get:
2371 	kfree(md);
2372 	return NULL;
2373 }
2374 
2375 static void unlock_fs(struct mapped_device *md);
2376 
2377 static void free_dev(struct mapped_device *md)
2378 {
2379 	int minor = MINOR(disk_devt(md->disk));
2380 
2381 	unlock_fs(md);
2382 	destroy_workqueue(md->wq);
2383 
2384 	if (md->kworker_task)
2385 		kthread_stop(md->kworker_task);
2386 	if (md->io_pool)
2387 		mempool_destroy(md->io_pool);
2388 	if (md->rq_pool)
2389 		mempool_destroy(md->rq_pool);
2390 	if (md->bs)
2391 		bioset_free(md->bs);
2392 
2393 	cleanup_srcu_struct(&md->io_barrier);
2394 	free_table_devices(&md->table_devices);
2395 	dm_stats_cleanup(&md->stats);
2396 
2397 	spin_lock(&_minor_lock);
2398 	md->disk->private_data = NULL;
2399 	spin_unlock(&_minor_lock);
2400 	if (blk_get_integrity(md->disk))
2401 		blk_integrity_unregister(md->disk);
2402 	del_gendisk(md->disk);
2403 	put_disk(md->disk);
2404 	blk_cleanup_queue(md->queue);
2405 	if (md->use_blk_mq)
2406 		blk_mq_free_tag_set(&md->tag_set);
2407 	bdput(md->bdev);
2408 	free_minor(minor);
2409 
2410 	module_put(THIS_MODULE);
2411 	kfree(md);
2412 }
2413 
2414 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2415 {
2416 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2417 
2418 	if (md->bs) {
2419 		/* The md already has necessary mempools. */
2420 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2421 			/*
2422 			 * Reload bioset because front_pad may have changed
2423 			 * because a different table was loaded.
2424 			 */
2425 			bioset_free(md->bs);
2426 			md->bs = p->bs;
2427 			p->bs = NULL;
2428 		}
2429 		/*
2430 		 * There's no need to reload with request-based dm
2431 		 * because the size of front_pad doesn't change.
2432 		 * Note for future: If you are to reload bioset,
2433 		 * prep-ed requests in the queue may refer
2434 		 * to bio from the old bioset, so you must walk
2435 		 * through the queue to unprep.
2436 		 */
2437 		goto out;
2438 	}
2439 
2440 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2441 
2442 	md->io_pool = p->io_pool;
2443 	p->io_pool = NULL;
2444 	md->rq_pool = p->rq_pool;
2445 	p->rq_pool = NULL;
2446 	md->bs = p->bs;
2447 	p->bs = NULL;
2448 
2449 out:
2450 	/* mempool bind completed, no longer need any mempools in the table */
2451 	dm_table_free_md_mempools(t);
2452 }
2453 
2454 /*
2455  * Bind a table to the device.
2456  */
2457 static void event_callback(void *context)
2458 {
2459 	unsigned long flags;
2460 	LIST_HEAD(uevents);
2461 	struct mapped_device *md = (struct mapped_device *) context;
2462 
2463 	spin_lock_irqsave(&md->uevent_lock, flags);
2464 	list_splice_init(&md->uevent_list, &uevents);
2465 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2466 
2467 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2468 
2469 	atomic_inc(&md->event_nr);
2470 	wake_up(&md->eventq);
2471 }
2472 
2473 /*
2474  * Protected by md->suspend_lock obtained by dm_swap_table().
2475  */
2476 static void __set_size(struct mapped_device *md, sector_t size)
2477 {
2478 	set_capacity(md->disk, size);
2479 
2480 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2481 }
2482 
2483 /*
2484  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2485  *
2486  * If this function returns 0, then the device is either a non-dm
2487  * device without a merge_bvec_fn, or it is a dm device that is
2488  * able to split any bios it receives that are too big.
2489  */
2490 int dm_queue_merge_is_compulsory(struct request_queue *q)
2491 {
2492 	struct mapped_device *dev_md;
2493 
2494 	if (!q->merge_bvec_fn)
2495 		return 0;
2496 
2497 	if (q->make_request_fn == dm_make_request) {
2498 		dev_md = q->queuedata;
2499 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2500 			return 0;
2501 	}
2502 
2503 	return 1;
2504 }
2505 
2506 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2507 					 struct dm_dev *dev, sector_t start,
2508 					 sector_t len, void *data)
2509 {
2510 	struct block_device *bdev = dev->bdev;
2511 	struct request_queue *q = bdev_get_queue(bdev);
2512 
2513 	return dm_queue_merge_is_compulsory(q);
2514 }
2515 
2516 /*
2517  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2518  * on the properties of the underlying devices.
2519  */
2520 static int dm_table_merge_is_optional(struct dm_table *table)
2521 {
2522 	unsigned i = 0;
2523 	struct dm_target *ti;
2524 
2525 	while (i < dm_table_get_num_targets(table)) {
2526 		ti = dm_table_get_target(table, i++);
2527 
2528 		if (ti->type->iterate_devices &&
2529 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2530 			return 0;
2531 	}
2532 
2533 	return 1;
2534 }
2535 
2536 /*
2537  * Returns old map, which caller must destroy.
2538  */
2539 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2540 			       struct queue_limits *limits)
2541 {
2542 	struct dm_table *old_map;
2543 	struct request_queue *q = md->queue;
2544 	sector_t size;
2545 	int merge_is_optional;
2546 
2547 	size = dm_table_get_size(t);
2548 
2549 	/*
2550 	 * Wipe any geometry if the size of the table changed.
2551 	 */
2552 	if (size != dm_get_size(md))
2553 		memset(&md->geometry, 0, sizeof(md->geometry));
2554 
2555 	__set_size(md, size);
2556 
2557 	dm_table_event_callback(t, event_callback, md);
2558 
2559 	/*
2560 	 * The queue hasn't been stopped yet, if the old table type wasn't
2561 	 * for request-based during suspension.  So stop it to prevent
2562 	 * I/O mapping before resume.
2563 	 * This must be done before setting the queue restrictions,
2564 	 * because request-based dm may be run just after the setting.
2565 	 */
2566 	if (dm_table_request_based(t))
2567 		stop_queue(q);
2568 
2569 	__bind_mempools(md, t);
2570 
2571 	merge_is_optional = dm_table_merge_is_optional(t);
2572 
2573 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574 	rcu_assign_pointer(md->map, t);
2575 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576 
2577 	dm_table_set_restrictions(t, q, limits);
2578 	if (merge_is_optional)
2579 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2580 	else
2581 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2582 	if (old_map)
2583 		dm_sync_table(md);
2584 
2585 	return old_map;
2586 }
2587 
2588 /*
2589  * Returns unbound table for the caller to free.
2590  */
2591 static struct dm_table *__unbind(struct mapped_device *md)
2592 {
2593 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2594 
2595 	if (!map)
2596 		return NULL;
2597 
2598 	dm_table_event_callback(map, NULL, NULL);
2599 	RCU_INIT_POINTER(md->map, NULL);
2600 	dm_sync_table(md);
2601 
2602 	return map;
2603 }
2604 
2605 /*
2606  * Constructor for a new device.
2607  */
2608 int dm_create(int minor, struct mapped_device **result)
2609 {
2610 	struct mapped_device *md;
2611 
2612 	md = alloc_dev(minor);
2613 	if (!md)
2614 		return -ENXIO;
2615 
2616 	dm_sysfs_init(md);
2617 
2618 	*result = md;
2619 	return 0;
2620 }
2621 
2622 /*
2623  * Functions to manage md->type.
2624  * All are required to hold md->type_lock.
2625  */
2626 void dm_lock_md_type(struct mapped_device *md)
2627 {
2628 	mutex_lock(&md->type_lock);
2629 }
2630 
2631 void dm_unlock_md_type(struct mapped_device *md)
2632 {
2633 	mutex_unlock(&md->type_lock);
2634 }
2635 
2636 void dm_set_md_type(struct mapped_device *md, unsigned type)
2637 {
2638 	BUG_ON(!mutex_is_locked(&md->type_lock));
2639 	md->type = type;
2640 }
2641 
2642 unsigned dm_get_md_type(struct mapped_device *md)
2643 {
2644 	BUG_ON(!mutex_is_locked(&md->type_lock));
2645 	return md->type;
2646 }
2647 
2648 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2649 {
2650 	return md->immutable_target_type;
2651 }
2652 
2653 /*
2654  * The queue_limits are only valid as long as you have a reference
2655  * count on 'md'.
2656  */
2657 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2658 {
2659 	BUG_ON(!atomic_read(&md->holders));
2660 	return &md->queue->limits;
2661 }
2662 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2663 
2664 static void init_rq_based_worker_thread(struct mapped_device *md)
2665 {
2666 	/* Initialize the request-based DM worker thread */
2667 	init_kthread_worker(&md->kworker);
2668 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2669 				       "kdmwork-%s", dm_device_name(md));
2670 }
2671 
2672 /*
2673  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2674  */
2675 static int dm_init_request_based_queue(struct mapped_device *md)
2676 {
2677 	struct request_queue *q = NULL;
2678 
2679 	/* Fully initialize the queue */
2680 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2681 	if (!q)
2682 		return -EINVAL;
2683 
2684 	/* disable dm_request_fn's merge heuristic by default */
2685 	md->seq_rq_merge_deadline_usecs = 0;
2686 
2687 	md->queue = q;
2688 	dm_init_old_md_queue(md);
2689 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2690 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2691 
2692 	init_rq_based_worker_thread(md);
2693 
2694 	elv_register_queue(md->queue);
2695 
2696 	return 0;
2697 }
2698 
2699 static int dm_mq_init_request(void *data, struct request *rq,
2700 			      unsigned int hctx_idx, unsigned int request_idx,
2701 			      unsigned int numa_node)
2702 {
2703 	struct mapped_device *md = data;
2704 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2705 
2706 	/*
2707 	 * Must initialize md member of tio, otherwise it won't
2708 	 * be available in dm_mq_queue_rq.
2709 	 */
2710 	tio->md = md;
2711 
2712 	return 0;
2713 }
2714 
2715 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2716 			  const struct blk_mq_queue_data *bd)
2717 {
2718 	struct request *rq = bd->rq;
2719 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2720 	struct mapped_device *md = tio->md;
2721 	int srcu_idx;
2722 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2723 	struct dm_target *ti;
2724 	sector_t pos;
2725 
2726 	/* always use block 0 to find the target for flushes for now */
2727 	pos = 0;
2728 	if (!(rq->cmd_flags & REQ_FLUSH))
2729 		pos = blk_rq_pos(rq);
2730 
2731 	ti = dm_table_find_target(map, pos);
2732 	if (!dm_target_is_valid(ti)) {
2733 		dm_put_live_table(md, srcu_idx);
2734 		DMERR_LIMIT("request attempted access beyond the end of device");
2735 		/*
2736 		 * Must perform setup, that rq_completed() requires,
2737 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2738 		 */
2739 		dm_start_request(md, rq);
2740 		return BLK_MQ_RQ_QUEUE_ERROR;
2741 	}
2742 	dm_put_live_table(md, srcu_idx);
2743 
2744 	if (ti->type->busy && ti->type->busy(ti))
2745 		return BLK_MQ_RQ_QUEUE_BUSY;
2746 
2747 	dm_start_request(md, rq);
2748 
2749 	/* Init tio using md established in .init_request */
2750 	init_tio(tio, rq, md);
2751 
2752 	/*
2753 	 * Establish tio->ti before queuing work (map_tio_request)
2754 	 * or making direct call to map_request().
2755 	 */
2756 	tio->ti = ti;
2757 
2758 	/* Clone the request if underlying devices aren't blk-mq */
2759 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2760 		/* clone request is allocated at the end of the pdu */
2761 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2762 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2763 		queue_kthread_work(&md->kworker, &tio->work);
2764 	} else {
2765 		/* Direct call is fine since .queue_rq allows allocations */
2766 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2767 			/* Undo dm_start_request() before requeuing */
2768 			rq_completed(md, rq_data_dir(rq), false);
2769 			return BLK_MQ_RQ_QUEUE_BUSY;
2770 		}
2771 	}
2772 
2773 	return BLK_MQ_RQ_QUEUE_OK;
2774 }
2775 
2776 static struct blk_mq_ops dm_mq_ops = {
2777 	.queue_rq = dm_mq_queue_rq,
2778 	.map_queue = blk_mq_map_queue,
2779 	.complete = dm_softirq_done,
2780 	.init_request = dm_mq_init_request,
2781 };
2782 
2783 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2784 {
2785 	unsigned md_type = dm_get_md_type(md);
2786 	struct request_queue *q;
2787 	int err;
2788 
2789 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2790 	md->tag_set.ops = &dm_mq_ops;
2791 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2792 	md->tag_set.numa_node = NUMA_NO_NODE;
2793 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2794 	md->tag_set.nr_hw_queues = 1;
2795 	if (md_type == DM_TYPE_REQUEST_BASED) {
2796 		/* make the memory for non-blk-mq clone part of the pdu */
2797 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2798 	} else
2799 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2800 	md->tag_set.driver_data = md;
2801 
2802 	err = blk_mq_alloc_tag_set(&md->tag_set);
2803 	if (err)
2804 		return err;
2805 
2806 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2807 	if (IS_ERR(q)) {
2808 		err = PTR_ERR(q);
2809 		goto out_tag_set;
2810 	}
2811 	md->queue = q;
2812 	dm_init_md_queue(md);
2813 
2814 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2815 	blk_mq_register_disk(md->disk);
2816 
2817 	if (md_type == DM_TYPE_REQUEST_BASED)
2818 		init_rq_based_worker_thread(md);
2819 
2820 	return 0;
2821 
2822 out_tag_set:
2823 	blk_mq_free_tag_set(&md->tag_set);
2824 	return err;
2825 }
2826 
2827 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2828 {
2829 	if (type == DM_TYPE_BIO_BASED)
2830 		return type;
2831 
2832 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2833 }
2834 
2835 /*
2836  * Setup the DM device's queue based on md's type
2837  */
2838 int dm_setup_md_queue(struct mapped_device *md)
2839 {
2840 	int r;
2841 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2842 
2843 	switch (md_type) {
2844 	case DM_TYPE_REQUEST_BASED:
2845 		r = dm_init_request_based_queue(md);
2846 		if (r) {
2847 			DMWARN("Cannot initialize queue for request-based mapped device");
2848 			return r;
2849 		}
2850 		break;
2851 	case DM_TYPE_MQ_REQUEST_BASED:
2852 		r = dm_init_request_based_blk_mq_queue(md);
2853 		if (r) {
2854 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2855 			return r;
2856 		}
2857 		break;
2858 	case DM_TYPE_BIO_BASED:
2859 		dm_init_old_md_queue(md);
2860 		blk_queue_make_request(md->queue, dm_make_request);
2861 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2862 		break;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 struct mapped_device *dm_get_md(dev_t dev)
2869 {
2870 	struct mapped_device *md;
2871 	unsigned minor = MINOR(dev);
2872 
2873 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2874 		return NULL;
2875 
2876 	spin_lock(&_minor_lock);
2877 
2878 	md = idr_find(&_minor_idr, minor);
2879 	if (md) {
2880 		if ((md == MINOR_ALLOCED ||
2881 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2882 		     dm_deleting_md(md) ||
2883 		     test_bit(DMF_FREEING, &md->flags))) {
2884 			md = NULL;
2885 			goto out;
2886 		}
2887 		dm_get(md);
2888 	}
2889 
2890 out:
2891 	spin_unlock(&_minor_lock);
2892 
2893 	return md;
2894 }
2895 EXPORT_SYMBOL_GPL(dm_get_md);
2896 
2897 void *dm_get_mdptr(struct mapped_device *md)
2898 {
2899 	return md->interface_ptr;
2900 }
2901 
2902 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2903 {
2904 	md->interface_ptr = ptr;
2905 }
2906 
2907 void dm_get(struct mapped_device *md)
2908 {
2909 	atomic_inc(&md->holders);
2910 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2911 }
2912 
2913 int dm_hold(struct mapped_device *md)
2914 {
2915 	spin_lock(&_minor_lock);
2916 	if (test_bit(DMF_FREEING, &md->flags)) {
2917 		spin_unlock(&_minor_lock);
2918 		return -EBUSY;
2919 	}
2920 	dm_get(md);
2921 	spin_unlock(&_minor_lock);
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL_GPL(dm_hold);
2925 
2926 const char *dm_device_name(struct mapped_device *md)
2927 {
2928 	return md->name;
2929 }
2930 EXPORT_SYMBOL_GPL(dm_device_name);
2931 
2932 static void __dm_destroy(struct mapped_device *md, bool wait)
2933 {
2934 	struct dm_table *map;
2935 	int srcu_idx;
2936 
2937 	might_sleep();
2938 
2939 	map = dm_get_live_table(md, &srcu_idx);
2940 
2941 	spin_lock(&_minor_lock);
2942 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2943 	set_bit(DMF_FREEING, &md->flags);
2944 	spin_unlock(&_minor_lock);
2945 
2946 	if (dm_request_based(md) && md->kworker_task)
2947 		flush_kthread_worker(&md->kworker);
2948 
2949 	/*
2950 	 * Take suspend_lock so that presuspend and postsuspend methods
2951 	 * do not race with internal suspend.
2952 	 */
2953 	mutex_lock(&md->suspend_lock);
2954 	if (!dm_suspended_md(md)) {
2955 		dm_table_presuspend_targets(map);
2956 		dm_table_postsuspend_targets(map);
2957 	}
2958 	mutex_unlock(&md->suspend_lock);
2959 
2960 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2961 	dm_put_live_table(md, srcu_idx);
2962 
2963 	/*
2964 	 * Rare, but there may be I/O requests still going to complete,
2965 	 * for example.  Wait for all references to disappear.
2966 	 * No one should increment the reference count of the mapped_device,
2967 	 * after the mapped_device state becomes DMF_FREEING.
2968 	 */
2969 	if (wait)
2970 		while (atomic_read(&md->holders))
2971 			msleep(1);
2972 	else if (atomic_read(&md->holders))
2973 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2974 		       dm_device_name(md), atomic_read(&md->holders));
2975 
2976 	dm_sysfs_exit(md);
2977 	dm_table_destroy(__unbind(md));
2978 	free_dev(md);
2979 }
2980 
2981 void dm_destroy(struct mapped_device *md)
2982 {
2983 	__dm_destroy(md, true);
2984 }
2985 
2986 void dm_destroy_immediate(struct mapped_device *md)
2987 {
2988 	__dm_destroy(md, false);
2989 }
2990 
2991 void dm_put(struct mapped_device *md)
2992 {
2993 	atomic_dec(&md->holders);
2994 }
2995 EXPORT_SYMBOL_GPL(dm_put);
2996 
2997 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2998 {
2999 	int r = 0;
3000 	DECLARE_WAITQUEUE(wait, current);
3001 
3002 	add_wait_queue(&md->wait, &wait);
3003 
3004 	while (1) {
3005 		set_current_state(interruptible);
3006 
3007 		if (!md_in_flight(md))
3008 			break;
3009 
3010 		if (interruptible == TASK_INTERRUPTIBLE &&
3011 		    signal_pending(current)) {
3012 			r = -EINTR;
3013 			break;
3014 		}
3015 
3016 		io_schedule();
3017 	}
3018 	set_current_state(TASK_RUNNING);
3019 
3020 	remove_wait_queue(&md->wait, &wait);
3021 
3022 	return r;
3023 }
3024 
3025 /*
3026  * Process the deferred bios
3027  */
3028 static void dm_wq_work(struct work_struct *work)
3029 {
3030 	struct mapped_device *md = container_of(work, struct mapped_device,
3031 						work);
3032 	struct bio *c;
3033 	int srcu_idx;
3034 	struct dm_table *map;
3035 
3036 	map = dm_get_live_table(md, &srcu_idx);
3037 
3038 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3039 		spin_lock_irq(&md->deferred_lock);
3040 		c = bio_list_pop(&md->deferred);
3041 		spin_unlock_irq(&md->deferred_lock);
3042 
3043 		if (!c)
3044 			break;
3045 
3046 		if (dm_request_based(md))
3047 			generic_make_request(c);
3048 		else
3049 			__split_and_process_bio(md, map, c);
3050 	}
3051 
3052 	dm_put_live_table(md, srcu_idx);
3053 }
3054 
3055 static void dm_queue_flush(struct mapped_device *md)
3056 {
3057 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3058 	smp_mb__after_atomic();
3059 	queue_work(md->wq, &md->work);
3060 }
3061 
3062 /*
3063  * Swap in a new table, returning the old one for the caller to destroy.
3064  */
3065 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3066 {
3067 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3068 	struct queue_limits limits;
3069 	int r;
3070 
3071 	mutex_lock(&md->suspend_lock);
3072 
3073 	/* device must be suspended */
3074 	if (!dm_suspended_md(md))
3075 		goto out;
3076 
3077 	/*
3078 	 * If the new table has no data devices, retain the existing limits.
3079 	 * This helps multipath with queue_if_no_path if all paths disappear,
3080 	 * then new I/O is queued based on these limits, and then some paths
3081 	 * reappear.
3082 	 */
3083 	if (dm_table_has_no_data_devices(table)) {
3084 		live_map = dm_get_live_table_fast(md);
3085 		if (live_map)
3086 			limits = md->queue->limits;
3087 		dm_put_live_table_fast(md);
3088 	}
3089 
3090 	if (!live_map) {
3091 		r = dm_calculate_queue_limits(table, &limits);
3092 		if (r) {
3093 			map = ERR_PTR(r);
3094 			goto out;
3095 		}
3096 	}
3097 
3098 	map = __bind(md, table, &limits);
3099 
3100 out:
3101 	mutex_unlock(&md->suspend_lock);
3102 	return map;
3103 }
3104 
3105 /*
3106  * Functions to lock and unlock any filesystem running on the
3107  * device.
3108  */
3109 static int lock_fs(struct mapped_device *md)
3110 {
3111 	int r;
3112 
3113 	WARN_ON(md->frozen_sb);
3114 
3115 	md->frozen_sb = freeze_bdev(md->bdev);
3116 	if (IS_ERR(md->frozen_sb)) {
3117 		r = PTR_ERR(md->frozen_sb);
3118 		md->frozen_sb = NULL;
3119 		return r;
3120 	}
3121 
3122 	set_bit(DMF_FROZEN, &md->flags);
3123 
3124 	return 0;
3125 }
3126 
3127 static void unlock_fs(struct mapped_device *md)
3128 {
3129 	if (!test_bit(DMF_FROZEN, &md->flags))
3130 		return;
3131 
3132 	thaw_bdev(md->bdev, md->frozen_sb);
3133 	md->frozen_sb = NULL;
3134 	clear_bit(DMF_FROZEN, &md->flags);
3135 }
3136 
3137 /*
3138  * If __dm_suspend returns 0, the device is completely quiescent
3139  * now. There is no request-processing activity. All new requests
3140  * are being added to md->deferred list.
3141  *
3142  * Caller must hold md->suspend_lock
3143  */
3144 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3145 			unsigned suspend_flags, int interruptible)
3146 {
3147 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3148 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3149 	int r;
3150 
3151 	/*
3152 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3153 	 * This flag is cleared before dm_suspend returns.
3154 	 */
3155 	if (noflush)
3156 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3157 
3158 	/*
3159 	 * This gets reverted if there's an error later and the targets
3160 	 * provide the .presuspend_undo hook.
3161 	 */
3162 	dm_table_presuspend_targets(map);
3163 
3164 	/*
3165 	 * Flush I/O to the device.
3166 	 * Any I/O submitted after lock_fs() may not be flushed.
3167 	 * noflush takes precedence over do_lockfs.
3168 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3169 	 */
3170 	if (!noflush && do_lockfs) {
3171 		r = lock_fs(md);
3172 		if (r) {
3173 			dm_table_presuspend_undo_targets(map);
3174 			return r;
3175 		}
3176 	}
3177 
3178 	/*
3179 	 * Here we must make sure that no processes are submitting requests
3180 	 * to target drivers i.e. no one may be executing
3181 	 * __split_and_process_bio. This is called from dm_request and
3182 	 * dm_wq_work.
3183 	 *
3184 	 * To get all processes out of __split_and_process_bio in dm_request,
3185 	 * we take the write lock. To prevent any process from reentering
3186 	 * __split_and_process_bio from dm_request and quiesce the thread
3187 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3188 	 * flush_workqueue(md->wq).
3189 	 */
3190 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3191 	if (map)
3192 		synchronize_srcu(&md->io_barrier);
3193 
3194 	/*
3195 	 * Stop md->queue before flushing md->wq in case request-based
3196 	 * dm defers requests to md->wq from md->queue.
3197 	 */
3198 	if (dm_request_based(md)) {
3199 		stop_queue(md->queue);
3200 		if (md->kworker_task)
3201 			flush_kthread_worker(&md->kworker);
3202 	}
3203 
3204 	flush_workqueue(md->wq);
3205 
3206 	/*
3207 	 * At this point no more requests are entering target request routines.
3208 	 * We call dm_wait_for_completion to wait for all existing requests
3209 	 * to finish.
3210 	 */
3211 	r = dm_wait_for_completion(md, interruptible);
3212 
3213 	if (noflush)
3214 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3215 	if (map)
3216 		synchronize_srcu(&md->io_barrier);
3217 
3218 	/* were we interrupted ? */
3219 	if (r < 0) {
3220 		dm_queue_flush(md);
3221 
3222 		if (dm_request_based(md))
3223 			start_queue(md->queue);
3224 
3225 		unlock_fs(md);
3226 		dm_table_presuspend_undo_targets(map);
3227 		/* pushback list is already flushed, so skip flush */
3228 	}
3229 
3230 	return r;
3231 }
3232 
3233 /*
3234  * We need to be able to change a mapping table under a mounted
3235  * filesystem.  For example we might want to move some data in
3236  * the background.  Before the table can be swapped with
3237  * dm_bind_table, dm_suspend must be called to flush any in
3238  * flight bios and ensure that any further io gets deferred.
3239  */
3240 /*
3241  * Suspend mechanism in request-based dm.
3242  *
3243  * 1. Flush all I/Os by lock_fs() if needed.
3244  * 2. Stop dispatching any I/O by stopping the request_queue.
3245  * 3. Wait for all in-flight I/Os to be completed or requeued.
3246  *
3247  * To abort suspend, start the request_queue.
3248  */
3249 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3250 {
3251 	struct dm_table *map = NULL;
3252 	int r = 0;
3253 
3254 retry:
3255 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3256 
3257 	if (dm_suspended_md(md)) {
3258 		r = -EINVAL;
3259 		goto out_unlock;
3260 	}
3261 
3262 	if (dm_suspended_internally_md(md)) {
3263 		/* already internally suspended, wait for internal resume */
3264 		mutex_unlock(&md->suspend_lock);
3265 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3266 		if (r)
3267 			return r;
3268 		goto retry;
3269 	}
3270 
3271 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3272 
3273 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3274 	if (r)
3275 		goto out_unlock;
3276 
3277 	set_bit(DMF_SUSPENDED, &md->flags);
3278 
3279 	dm_table_postsuspend_targets(map);
3280 
3281 out_unlock:
3282 	mutex_unlock(&md->suspend_lock);
3283 	return r;
3284 }
3285 
3286 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3287 {
3288 	if (map) {
3289 		int r = dm_table_resume_targets(map);
3290 		if (r)
3291 			return r;
3292 	}
3293 
3294 	dm_queue_flush(md);
3295 
3296 	/*
3297 	 * Flushing deferred I/Os must be done after targets are resumed
3298 	 * so that mapping of targets can work correctly.
3299 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3300 	 */
3301 	if (dm_request_based(md))
3302 		start_queue(md->queue);
3303 
3304 	unlock_fs(md);
3305 
3306 	return 0;
3307 }
3308 
3309 int dm_resume(struct mapped_device *md)
3310 {
3311 	int r = -EINVAL;
3312 	struct dm_table *map = NULL;
3313 
3314 retry:
3315 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3316 
3317 	if (!dm_suspended_md(md))
3318 		goto out;
3319 
3320 	if (dm_suspended_internally_md(md)) {
3321 		/* already internally suspended, wait for internal resume */
3322 		mutex_unlock(&md->suspend_lock);
3323 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3324 		if (r)
3325 			return r;
3326 		goto retry;
3327 	}
3328 
3329 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3330 	if (!map || !dm_table_get_size(map))
3331 		goto out;
3332 
3333 	r = __dm_resume(md, map);
3334 	if (r)
3335 		goto out;
3336 
3337 	clear_bit(DMF_SUSPENDED, &md->flags);
3338 
3339 	r = 0;
3340 out:
3341 	mutex_unlock(&md->suspend_lock);
3342 
3343 	return r;
3344 }
3345 
3346 /*
3347  * Internal suspend/resume works like userspace-driven suspend. It waits
3348  * until all bios finish and prevents issuing new bios to the target drivers.
3349  * It may be used only from the kernel.
3350  */
3351 
3352 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3353 {
3354 	struct dm_table *map = NULL;
3355 
3356 	if (md->internal_suspend_count++)
3357 		return; /* nested internal suspend */
3358 
3359 	if (dm_suspended_md(md)) {
3360 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3361 		return; /* nest suspend */
3362 	}
3363 
3364 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3365 
3366 	/*
3367 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3368 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3369 	 * would require changing .presuspend to return an error -- avoid this
3370 	 * until there is a need for more elaborate variants of internal suspend.
3371 	 */
3372 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3373 
3374 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3375 
3376 	dm_table_postsuspend_targets(map);
3377 }
3378 
3379 static void __dm_internal_resume(struct mapped_device *md)
3380 {
3381 	BUG_ON(!md->internal_suspend_count);
3382 
3383 	if (--md->internal_suspend_count)
3384 		return; /* resume from nested internal suspend */
3385 
3386 	if (dm_suspended_md(md))
3387 		goto done; /* resume from nested suspend */
3388 
3389 	/*
3390 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3391 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3392 	 */
3393 	(void) __dm_resume(md, NULL);
3394 
3395 done:
3396 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3397 	smp_mb__after_atomic();
3398 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3399 }
3400 
3401 void dm_internal_suspend_noflush(struct mapped_device *md)
3402 {
3403 	mutex_lock(&md->suspend_lock);
3404 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3405 	mutex_unlock(&md->suspend_lock);
3406 }
3407 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3408 
3409 void dm_internal_resume(struct mapped_device *md)
3410 {
3411 	mutex_lock(&md->suspend_lock);
3412 	__dm_internal_resume(md);
3413 	mutex_unlock(&md->suspend_lock);
3414 }
3415 EXPORT_SYMBOL_GPL(dm_internal_resume);
3416 
3417 /*
3418  * Fast variants of internal suspend/resume hold md->suspend_lock,
3419  * which prevents interaction with userspace-driven suspend.
3420  */
3421 
3422 void dm_internal_suspend_fast(struct mapped_device *md)
3423 {
3424 	mutex_lock(&md->suspend_lock);
3425 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426 		return;
3427 
3428 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3429 	synchronize_srcu(&md->io_barrier);
3430 	flush_workqueue(md->wq);
3431 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3432 }
3433 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3434 
3435 void dm_internal_resume_fast(struct mapped_device *md)
3436 {
3437 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3438 		goto done;
3439 
3440 	dm_queue_flush(md);
3441 
3442 done:
3443 	mutex_unlock(&md->suspend_lock);
3444 }
3445 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3446 
3447 /*-----------------------------------------------------------------
3448  * Event notification.
3449  *---------------------------------------------------------------*/
3450 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3451 		       unsigned cookie)
3452 {
3453 	char udev_cookie[DM_COOKIE_LENGTH];
3454 	char *envp[] = { udev_cookie, NULL };
3455 
3456 	if (!cookie)
3457 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3458 	else {
3459 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3460 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3461 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3462 					  action, envp);
3463 	}
3464 }
3465 
3466 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3467 {
3468 	return atomic_add_return(1, &md->uevent_seq);
3469 }
3470 
3471 uint32_t dm_get_event_nr(struct mapped_device *md)
3472 {
3473 	return atomic_read(&md->event_nr);
3474 }
3475 
3476 int dm_wait_event(struct mapped_device *md, int event_nr)
3477 {
3478 	return wait_event_interruptible(md->eventq,
3479 			(event_nr != atomic_read(&md->event_nr)));
3480 }
3481 
3482 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3483 {
3484 	unsigned long flags;
3485 
3486 	spin_lock_irqsave(&md->uevent_lock, flags);
3487 	list_add(elist, &md->uevent_list);
3488 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3489 }
3490 
3491 /*
3492  * The gendisk is only valid as long as you have a reference
3493  * count on 'md'.
3494  */
3495 struct gendisk *dm_disk(struct mapped_device *md)
3496 {
3497 	return md->disk;
3498 }
3499 EXPORT_SYMBOL_GPL(dm_disk);
3500 
3501 struct kobject *dm_kobject(struct mapped_device *md)
3502 {
3503 	return &md->kobj_holder.kobj;
3504 }
3505 
3506 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3507 {
3508 	struct mapped_device *md;
3509 
3510 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3511 
3512 	if (test_bit(DMF_FREEING, &md->flags) ||
3513 	    dm_deleting_md(md))
3514 		return NULL;
3515 
3516 	dm_get(md);
3517 	return md;
3518 }
3519 
3520 int dm_suspended_md(struct mapped_device *md)
3521 {
3522 	return test_bit(DMF_SUSPENDED, &md->flags);
3523 }
3524 
3525 int dm_suspended_internally_md(struct mapped_device *md)
3526 {
3527 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3528 }
3529 
3530 int dm_test_deferred_remove_flag(struct mapped_device *md)
3531 {
3532 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3533 }
3534 
3535 int dm_suspended(struct dm_target *ti)
3536 {
3537 	return dm_suspended_md(dm_table_get_md(ti->table));
3538 }
3539 EXPORT_SYMBOL_GPL(dm_suspended);
3540 
3541 int dm_noflush_suspending(struct dm_target *ti)
3542 {
3543 	return __noflush_suspending(dm_table_get_md(ti->table));
3544 }
3545 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3546 
3547 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3548 					    unsigned integrity, unsigned per_bio_data_size)
3549 {
3550 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3551 	struct kmem_cache *cachep = NULL;
3552 	unsigned int pool_size = 0;
3553 	unsigned int front_pad;
3554 
3555 	if (!pools)
3556 		return NULL;
3557 
3558 	type = filter_md_type(type, md);
3559 
3560 	switch (type) {
3561 	case DM_TYPE_BIO_BASED:
3562 		cachep = _io_cache;
3563 		pool_size = dm_get_reserved_bio_based_ios();
3564 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3565 		break;
3566 	case DM_TYPE_REQUEST_BASED:
3567 		cachep = _rq_tio_cache;
3568 		pool_size = dm_get_reserved_rq_based_ios();
3569 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3570 		if (!pools->rq_pool)
3571 			goto out;
3572 		/* fall through to setup remaining rq-based pools */
3573 	case DM_TYPE_MQ_REQUEST_BASED:
3574 		if (!pool_size)
3575 			pool_size = dm_get_reserved_rq_based_ios();
3576 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3577 		/* per_bio_data_size is not used. See __bind_mempools(). */
3578 		WARN_ON(per_bio_data_size != 0);
3579 		break;
3580 	default:
3581 		BUG();
3582 	}
3583 
3584 	if (cachep) {
3585 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3586 		if (!pools->io_pool)
3587 			goto out;
3588 	}
3589 
3590 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3591 	if (!pools->bs)
3592 		goto out;
3593 
3594 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3595 		goto out;
3596 
3597 	return pools;
3598 
3599 out:
3600 	dm_free_md_mempools(pools);
3601 
3602 	return NULL;
3603 }
3604 
3605 void dm_free_md_mempools(struct dm_md_mempools *pools)
3606 {
3607 	if (!pools)
3608 		return;
3609 
3610 	if (pools->io_pool)
3611 		mempool_destroy(pools->io_pool);
3612 
3613 	if (pools->rq_pool)
3614 		mempool_destroy(pools->rq_pool);
3615 
3616 	if (pools->bs)
3617 		bioset_free(pools->bs);
3618 
3619 	kfree(pools);
3620 }
3621 
3622 static const struct block_device_operations dm_blk_dops = {
3623 	.open = dm_blk_open,
3624 	.release = dm_blk_close,
3625 	.ioctl = dm_blk_ioctl,
3626 	.getgeo = dm_blk_getgeo,
3627 	.owner = THIS_MODULE
3628 };
3629 
3630 /*
3631  * module hooks
3632  */
3633 module_init(dm_init);
3634 module_exit(dm_exit);
3635 
3636 module_param(major, uint, 0);
3637 MODULE_PARM_DESC(major, "The major number of the device mapper");
3638 
3639 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3640 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3641 
3642 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3643 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3644 
3645 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3646 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3647 
3648 MODULE_DESCRIPTION(DM_NAME " driver");
3649 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3650 MODULE_LICENSE("GPL");
3651