xref: /openbmc/linux/drivers/md/dm.c (revision 519a8a6c)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 sector_t dm_get_size(struct mapped_device *md)
426 {
427 	return get_capacity(md->disk);
428 }
429 
430 struct request_queue *dm_get_md_queue(struct mapped_device *md)
431 {
432 	return md->queue;
433 }
434 
435 struct dm_stats *dm_get_stats(struct mapped_device *md)
436 {
437 	return &md->stats;
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map)
495 		return -EIO;
496 
497 	do {
498 		struct dm_target *tgt;
499 
500 		tgt = dm_table_find_target(map, args.next_sector);
501 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
502 			ret = -EIO;
503 			goto out;
504 		}
505 
506 		args.tgt = tgt;
507 		ret = tgt->type->report_zones(tgt, &args, nr_zones);
508 		if (ret < 0)
509 			goto out;
510 	} while (args.zone_idx < nr_zones &&
511 		 args.next_sector < get_capacity(disk));
512 
513 	ret = args.zone_idx;
514 out:
515 	dm_put_live_table(md, srcu_idx);
516 	return ret;
517 }
518 #else
519 #define dm_blk_report_zones		NULL
520 #endif /* CONFIG_BLK_DEV_ZONED */
521 
522 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
523 			    struct block_device **bdev)
524 	__acquires(md->io_barrier)
525 {
526 	struct dm_target *tgt;
527 	struct dm_table *map;
528 	int r;
529 
530 retry:
531 	r = -ENOTTY;
532 	map = dm_get_live_table(md, srcu_idx);
533 	if (!map || !dm_table_get_size(map))
534 		return r;
535 
536 	/* We only support devices that have a single target */
537 	if (dm_table_get_num_targets(map) != 1)
538 		return r;
539 
540 	tgt = dm_table_get_target(map, 0);
541 	if (!tgt->type->prepare_ioctl)
542 		return r;
543 
544 	if (dm_suspended_md(md))
545 		return -EAGAIN;
546 
547 	r = tgt->type->prepare_ioctl(tgt, bdev);
548 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
549 		dm_put_live_table(md, *srcu_idx);
550 		msleep(10);
551 		goto retry;
552 	}
553 
554 	return r;
555 }
556 
557 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
558 	__releases(md->io_barrier)
559 {
560 	dm_put_live_table(md, srcu_idx);
561 }
562 
563 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
564 			unsigned int cmd, unsigned long arg)
565 {
566 	struct mapped_device *md = bdev->bd_disk->private_data;
567 	int r, srcu_idx;
568 
569 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
570 	if (r < 0)
571 		goto out;
572 
573 	if (r > 0) {
574 		/*
575 		 * Target determined this ioctl is being issued against a
576 		 * subset of the parent bdev; require extra privileges.
577 		 */
578 		if (!capable(CAP_SYS_RAWIO)) {
579 			DMWARN_LIMIT(
580 	"%s: sending ioctl %x to DM device without required privilege.",
581 				current->comm, cmd);
582 			r = -ENOIOCTLCMD;
583 			goto out;
584 		}
585 	}
586 
587 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
588 out:
589 	dm_unprepare_ioctl(md, srcu_idx);
590 	return r;
591 }
592 
593 static void start_io_acct(struct dm_io *io);
594 
595 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
596 {
597 	struct dm_io *io;
598 	struct dm_target_io *tio;
599 	struct bio *clone;
600 
601 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
602 	if (!clone)
603 		return NULL;
604 
605 	tio = container_of(clone, struct dm_target_io, clone);
606 	tio->inside_dm_io = true;
607 	tio->io = NULL;
608 
609 	io = container_of(tio, struct dm_io, tio);
610 	io->magic = DM_IO_MAGIC;
611 	io->status = 0;
612 	atomic_set(&io->io_count, 1);
613 	io->orig_bio = bio;
614 	io->md = md;
615 	spin_lock_init(&io->endio_lock);
616 
617 	start_io_acct(io);
618 
619 	return io;
620 }
621 
622 static void free_io(struct mapped_device *md, struct dm_io *io)
623 {
624 	bio_put(&io->tio.clone);
625 }
626 
627 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
628 				      unsigned target_bio_nr, gfp_t gfp_mask)
629 {
630 	struct dm_target_io *tio;
631 
632 	if (!ci->io->tio.io) {
633 		/* the dm_target_io embedded in ci->io is available */
634 		tio = &ci->io->tio;
635 	} else {
636 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
637 		if (!clone)
638 			return NULL;
639 
640 		tio = container_of(clone, struct dm_target_io, clone);
641 		tio->inside_dm_io = false;
642 	}
643 
644 	tio->magic = DM_TIO_MAGIC;
645 	tio->io = ci->io;
646 	tio->ti = ti;
647 	tio->target_bio_nr = target_bio_nr;
648 
649 	return tio;
650 }
651 
652 static void free_tio(struct dm_target_io *tio)
653 {
654 	if (tio->inside_dm_io)
655 		return;
656 	bio_put(&tio->clone);
657 }
658 
659 u64 dm_start_time_ns_from_clone(struct bio *bio)
660 {
661 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
662 	struct dm_io *io = tio->io;
663 
664 	return jiffies_to_nsecs(io->start_time);
665 }
666 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
667 
668 static void start_io_acct(struct dm_io *io)
669 {
670 	struct mapped_device *md = io->md;
671 	struct bio *bio = io->orig_bio;
672 
673 	io->start_time = bio_start_io_acct(bio);
674 	if (unlikely(dm_stats_used(&md->stats)))
675 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
676 				    bio->bi_iter.bi_sector, bio_sectors(bio),
677 				    false, 0, &io->stats_aux);
678 }
679 
680 static void end_io_acct(struct dm_io *io)
681 {
682 	struct mapped_device *md = io->md;
683 	struct bio *bio = io->orig_bio;
684 	unsigned long duration = jiffies - io->start_time;
685 
686 	bio_end_io_acct(bio, io->start_time);
687 
688 	if (unlikely(dm_stats_used(&md->stats)))
689 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
690 				    bio->bi_iter.bi_sector, bio_sectors(bio),
691 				    true, duration, &io->stats_aux);
692 
693 	/* nudge anyone waiting on suspend queue */
694 	if (unlikely(wq_has_sleeper(&md->wait)))
695 		wake_up(&md->wait);
696 }
697 
698 /*
699  * Add the bio to the list of deferred io.
700  */
701 static void queue_io(struct mapped_device *md, struct bio *bio)
702 {
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&md->deferred_lock, flags);
706 	bio_list_add(&md->deferred, bio);
707 	spin_unlock_irqrestore(&md->deferred_lock, flags);
708 	queue_work(md->wq, &md->work);
709 }
710 
711 /*
712  * Everyone (including functions in this file), should use this
713  * function to access the md->map field, and make sure they call
714  * dm_put_live_table() when finished.
715  */
716 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
717 {
718 	*srcu_idx = srcu_read_lock(&md->io_barrier);
719 
720 	return srcu_dereference(md->map, &md->io_barrier);
721 }
722 
723 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
724 {
725 	srcu_read_unlock(&md->io_barrier, srcu_idx);
726 }
727 
728 void dm_sync_table(struct mapped_device *md)
729 {
730 	synchronize_srcu(&md->io_barrier);
731 	synchronize_rcu_expedited();
732 }
733 
734 /*
735  * A fast alternative to dm_get_live_table/dm_put_live_table.
736  * The caller must not block between these two functions.
737  */
738 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
739 {
740 	rcu_read_lock();
741 	return rcu_dereference(md->map);
742 }
743 
744 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
745 {
746 	rcu_read_unlock();
747 }
748 
749 static char *_dm_claim_ptr = "I belong to device-mapper";
750 
751 /*
752  * Open a table device so we can use it as a map destination.
753  */
754 static int open_table_device(struct table_device *td, dev_t dev,
755 			     struct mapped_device *md)
756 {
757 	struct block_device *bdev;
758 
759 	int r;
760 
761 	BUG_ON(td->dm_dev.bdev);
762 
763 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
764 	if (IS_ERR(bdev))
765 		return PTR_ERR(bdev);
766 
767 	r = bd_link_disk_holder(bdev, dm_disk(md));
768 	if (r) {
769 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
770 		return r;
771 	}
772 
773 	td->dm_dev.bdev = bdev;
774 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
775 	return 0;
776 }
777 
778 /*
779  * Close a table device that we've been using.
780  */
781 static void close_table_device(struct table_device *td, struct mapped_device *md)
782 {
783 	if (!td->dm_dev.bdev)
784 		return;
785 
786 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
787 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 	put_dax(td->dm_dev.dax_dev);
789 	td->dm_dev.bdev = NULL;
790 	td->dm_dev.dax_dev = NULL;
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      fmode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 			struct dm_dev **result)
807 {
808 	int r;
809 	struct table_device *td;
810 
811 	mutex_lock(&md->table_devices_lock);
812 	td = find_table_device(&md->table_devices, dev, mode);
813 	if (!td) {
814 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
815 		if (!td) {
816 			mutex_unlock(&md->table_devices_lock);
817 			return -ENOMEM;
818 		}
819 
820 		td->dm_dev.mode = mode;
821 		td->dm_dev.bdev = NULL;
822 
823 		if ((r = open_table_device(td, dev, md))) {
824 			mutex_unlock(&md->table_devices_lock);
825 			kfree(td);
826 			return r;
827 		}
828 
829 		format_dev_t(td->dm_dev.name, dev);
830 
831 		refcount_set(&td->count, 1);
832 		list_add(&td->list, &md->table_devices);
833 	} else {
834 		refcount_inc(&td->count);
835 	}
836 	mutex_unlock(&md->table_devices_lock);
837 
838 	*result = &td->dm_dev;
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(dm_get_table_device);
842 
843 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
844 {
845 	struct table_device *td = container_of(d, struct table_device, dm_dev);
846 
847 	mutex_lock(&md->table_devices_lock);
848 	if (refcount_dec_and_test(&td->count)) {
849 		close_table_device(td, md);
850 		list_del(&td->list);
851 		kfree(td);
852 	}
853 	mutex_unlock(&md->table_devices_lock);
854 }
855 EXPORT_SYMBOL(dm_put_table_device);
856 
857 static void free_table_devices(struct list_head *devices)
858 {
859 	struct list_head *tmp, *next;
860 
861 	list_for_each_safe(tmp, next, devices) {
862 		struct table_device *td = list_entry(tmp, struct table_device, list);
863 
864 		DMWARN("dm_destroy: %s still exists with %d references",
865 		       td->dm_dev.name, refcount_read(&td->count));
866 		kfree(td);
867 	}
868 }
869 
870 /*
871  * Get the geometry associated with a dm device
872  */
873 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
874 {
875 	*geo = md->geometry;
876 
877 	return 0;
878 }
879 
880 /*
881  * Set the geometry of a device.
882  */
883 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
884 {
885 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
886 
887 	if (geo->start > sz) {
888 		DMWARN("Start sector is beyond the geometry limits.");
889 		return -EINVAL;
890 	}
891 
892 	md->geometry = *geo;
893 
894 	return 0;
895 }
896 
897 static int __noflush_suspending(struct mapped_device *md)
898 {
899 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
900 }
901 
902 /*
903  * Decrements the number of outstanding ios that a bio has been
904  * cloned into, completing the original io if necc.
905  */
906 static void dec_pending(struct dm_io *io, blk_status_t error)
907 {
908 	unsigned long flags;
909 	blk_status_t io_error;
910 	struct bio *bio;
911 	struct mapped_device *md = io->md;
912 
913 	/* Push-back supersedes any I/O errors */
914 	if (unlikely(error)) {
915 		spin_lock_irqsave(&io->endio_lock, flags);
916 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
917 			io->status = error;
918 		spin_unlock_irqrestore(&io->endio_lock, flags);
919 	}
920 
921 	if (atomic_dec_and_test(&io->io_count)) {
922 		if (io->status == BLK_STS_DM_REQUEUE) {
923 			/*
924 			 * Target requested pushing back the I/O.
925 			 */
926 			spin_lock_irqsave(&md->deferred_lock, flags);
927 			if (__noflush_suspending(md))
928 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
929 				bio_list_add_head(&md->deferred, io->orig_bio);
930 			else
931 				/* noflush suspend was interrupted. */
932 				io->status = BLK_STS_IOERR;
933 			spin_unlock_irqrestore(&md->deferred_lock, flags);
934 		}
935 
936 		io_error = io->status;
937 		bio = io->orig_bio;
938 		end_io_acct(io);
939 		free_io(md, io);
940 
941 		if (io_error == BLK_STS_DM_REQUEUE)
942 			return;
943 
944 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
945 			/*
946 			 * Preflush done for flush with data, reissue
947 			 * without REQ_PREFLUSH.
948 			 */
949 			bio->bi_opf &= ~REQ_PREFLUSH;
950 			queue_io(md, bio);
951 		} else {
952 			/* done with normal IO or empty flush */
953 			if (io_error)
954 				bio->bi_status = io_error;
955 			bio_endio(bio);
956 		}
957 	}
958 }
959 
960 void disable_discard(struct mapped_device *md)
961 {
962 	struct queue_limits *limits = dm_get_queue_limits(md);
963 
964 	/* device doesn't really support DISCARD, disable it */
965 	limits->max_discard_sectors = 0;
966 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
967 }
968 
969 void disable_write_same(struct mapped_device *md)
970 {
971 	struct queue_limits *limits = dm_get_queue_limits(md);
972 
973 	/* device doesn't really support WRITE SAME, disable it */
974 	limits->max_write_same_sectors = 0;
975 }
976 
977 void disable_write_zeroes(struct mapped_device *md)
978 {
979 	struct queue_limits *limits = dm_get_queue_limits(md);
980 
981 	/* device doesn't really support WRITE ZEROES, disable it */
982 	limits->max_write_zeroes_sectors = 0;
983 }
984 
985 static void clone_endio(struct bio *bio)
986 {
987 	blk_status_t error = bio->bi_status;
988 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
989 	struct dm_io *io = tio->io;
990 	struct mapped_device *md = tio->io->md;
991 	dm_endio_fn endio = tio->ti->type->end_io;
992 	struct bio *orig_bio = io->orig_bio;
993 
994 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
995 		if (bio_op(bio) == REQ_OP_DISCARD &&
996 		    !bio->bi_disk->queue->limits.max_discard_sectors)
997 			disable_discard(md);
998 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
999 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1000 			disable_write_same(md);
1001 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1002 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1003 			disable_write_zeroes(md);
1004 	}
1005 
1006 	/*
1007 	 * For zone-append bios get offset in zone of the written
1008 	 * sector and add that to the original bio sector pos.
1009 	 */
1010 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1011 		sector_t written_sector = bio->bi_iter.bi_sector;
1012 		struct request_queue *q = orig_bio->bi_disk->queue;
1013 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1014 
1015 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1016 	}
1017 
1018 	if (endio) {
1019 		int r = endio(tio->ti, bio, &error);
1020 		switch (r) {
1021 		case DM_ENDIO_REQUEUE:
1022 			error = BLK_STS_DM_REQUEUE;
1023 			/*FALLTHRU*/
1024 		case DM_ENDIO_DONE:
1025 			break;
1026 		case DM_ENDIO_INCOMPLETE:
1027 			/* The target will handle the io */
1028 			return;
1029 		default:
1030 			DMWARN("unimplemented target endio return value: %d", r);
1031 			BUG();
1032 		}
1033 	}
1034 
1035 	free_tio(tio);
1036 	dec_pending(io, error);
1037 }
1038 
1039 /*
1040  * Return maximum size of I/O possible at the supplied sector up to the current
1041  * target boundary.
1042  */
1043 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1044 {
1045 	sector_t target_offset = dm_target_offset(ti, sector);
1046 
1047 	return ti->len - target_offset;
1048 }
1049 
1050 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1051 {
1052 	sector_t len = max_io_len_target_boundary(sector, ti);
1053 	sector_t offset, max_len;
1054 
1055 	/*
1056 	 * Does the target need to split even further?
1057 	 */
1058 	if (ti->max_io_len) {
1059 		offset = dm_target_offset(ti, sector);
1060 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1061 			max_len = sector_div(offset, ti->max_io_len);
1062 		else
1063 			max_len = offset & (ti->max_io_len - 1);
1064 		max_len = ti->max_io_len - max_len;
1065 
1066 		if (len > max_len)
1067 			len = max_len;
1068 	}
1069 
1070 	return len;
1071 }
1072 
1073 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1074 {
1075 	if (len > UINT_MAX) {
1076 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1077 		      (unsigned long long)len, UINT_MAX);
1078 		ti->error = "Maximum size of target IO is too large";
1079 		return -EINVAL;
1080 	}
1081 
1082 	ti->max_io_len = (uint32_t) len;
1083 
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1087 
1088 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1089 						sector_t sector, int *srcu_idx)
1090 	__acquires(md->io_barrier)
1091 {
1092 	struct dm_table *map;
1093 	struct dm_target *ti;
1094 
1095 	map = dm_get_live_table(md, srcu_idx);
1096 	if (!map)
1097 		return NULL;
1098 
1099 	ti = dm_table_find_target(map, sector);
1100 	if (!ti)
1101 		return NULL;
1102 
1103 	return ti;
1104 }
1105 
1106 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1107 				 long nr_pages, void **kaddr, pfn_t *pfn)
1108 {
1109 	struct mapped_device *md = dax_get_private(dax_dev);
1110 	sector_t sector = pgoff * PAGE_SECTORS;
1111 	struct dm_target *ti;
1112 	long len, ret = -EIO;
1113 	int srcu_idx;
1114 
1115 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1116 
1117 	if (!ti)
1118 		goto out;
1119 	if (!ti->type->direct_access)
1120 		goto out;
1121 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1122 	if (len < 1)
1123 		goto out;
1124 	nr_pages = min(len, nr_pages);
1125 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1126 
1127  out:
1128 	dm_put_live_table(md, srcu_idx);
1129 
1130 	return ret;
1131 }
1132 
1133 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1134 		int blocksize, sector_t start, sector_t len)
1135 {
1136 	struct mapped_device *md = dax_get_private(dax_dev);
1137 	struct dm_table *map;
1138 	int srcu_idx;
1139 	bool ret;
1140 
1141 	map = dm_get_live_table(md, &srcu_idx);
1142 	if (!map)
1143 		return false;
1144 
1145 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1146 
1147 	dm_put_live_table(md, srcu_idx);
1148 
1149 	return ret;
1150 }
1151 
1152 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1153 				    void *addr, size_t bytes, struct iov_iter *i)
1154 {
1155 	struct mapped_device *md = dax_get_private(dax_dev);
1156 	sector_t sector = pgoff * PAGE_SECTORS;
1157 	struct dm_target *ti;
1158 	long ret = 0;
1159 	int srcu_idx;
1160 
1161 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1162 
1163 	if (!ti)
1164 		goto out;
1165 	if (!ti->type->dax_copy_from_iter) {
1166 		ret = copy_from_iter(addr, bytes, i);
1167 		goto out;
1168 	}
1169 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1170  out:
1171 	dm_put_live_table(md, srcu_idx);
1172 
1173 	return ret;
1174 }
1175 
1176 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1177 		void *addr, size_t bytes, struct iov_iter *i)
1178 {
1179 	struct mapped_device *md = dax_get_private(dax_dev);
1180 	sector_t sector = pgoff * PAGE_SECTORS;
1181 	struct dm_target *ti;
1182 	long ret = 0;
1183 	int srcu_idx;
1184 
1185 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1186 
1187 	if (!ti)
1188 		goto out;
1189 	if (!ti->type->dax_copy_to_iter) {
1190 		ret = copy_to_iter(addr, bytes, i);
1191 		goto out;
1192 	}
1193 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1194  out:
1195 	dm_put_live_table(md, srcu_idx);
1196 
1197 	return ret;
1198 }
1199 
1200 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1201 				  size_t nr_pages)
1202 {
1203 	struct mapped_device *md = dax_get_private(dax_dev);
1204 	sector_t sector = pgoff * PAGE_SECTORS;
1205 	struct dm_target *ti;
1206 	int ret = -EIO;
1207 	int srcu_idx;
1208 
1209 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1210 
1211 	if (!ti)
1212 		goto out;
1213 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1214 		/*
1215 		 * ->zero_page_range() is mandatory dax operation. If we are
1216 		 *  here, something is wrong.
1217 		 */
1218 		dm_put_live_table(md, srcu_idx);
1219 		goto out;
1220 	}
1221 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1222 
1223  out:
1224 	dm_put_live_table(md, srcu_idx);
1225 
1226 	return ret;
1227 }
1228 
1229 /*
1230  * A target may call dm_accept_partial_bio only from the map routine.  It is
1231  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1232  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1233  *
1234  * dm_accept_partial_bio informs the dm that the target only wants to process
1235  * additional n_sectors sectors of the bio and the rest of the data should be
1236  * sent in a next bio.
1237  *
1238  * A diagram that explains the arithmetics:
1239  * +--------------------+---------------+-------+
1240  * |         1          |       2       |   3   |
1241  * +--------------------+---------------+-------+
1242  *
1243  * <-------------- *tio->len_ptr --------------->
1244  *                      <------- bi_size ------->
1245  *                      <-- n_sectors -->
1246  *
1247  * Region 1 was already iterated over with bio_advance or similar function.
1248  *	(it may be empty if the target doesn't use bio_advance)
1249  * Region 2 is the remaining bio size that the target wants to process.
1250  *	(it may be empty if region 1 is non-empty, although there is no reason
1251  *	 to make it empty)
1252  * The target requires that region 3 is to be sent in the next bio.
1253  *
1254  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1255  * the partially processed part (the sum of regions 1+2) must be the same for all
1256  * copies of the bio.
1257  */
1258 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1259 {
1260 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1261 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1262 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1263 	BUG_ON(bi_size > *tio->len_ptr);
1264 	BUG_ON(n_sectors > bi_size);
1265 	*tio->len_ptr -= bi_size - n_sectors;
1266 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1267 }
1268 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1269 
1270 static blk_qc_t __map_bio(struct dm_target_io *tio)
1271 {
1272 	int r;
1273 	sector_t sector;
1274 	struct bio *clone = &tio->clone;
1275 	struct dm_io *io = tio->io;
1276 	struct dm_target *ti = tio->ti;
1277 	blk_qc_t ret = BLK_QC_T_NONE;
1278 
1279 	clone->bi_end_io = clone_endio;
1280 
1281 	/*
1282 	 * Map the clone.  If r == 0 we don't need to do
1283 	 * anything, the target has assumed ownership of
1284 	 * this io.
1285 	 */
1286 	atomic_inc(&io->io_count);
1287 	sector = clone->bi_iter.bi_sector;
1288 
1289 	r = ti->type->map(ti, clone);
1290 	switch (r) {
1291 	case DM_MAPIO_SUBMITTED:
1292 		break;
1293 	case DM_MAPIO_REMAPPED:
1294 		/* the bio has been remapped so dispatch it */
1295 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1296 				      bio_dev(io->orig_bio), sector);
1297 		ret = submit_bio_noacct(clone);
1298 		break;
1299 	case DM_MAPIO_KILL:
1300 		free_tio(tio);
1301 		dec_pending(io, BLK_STS_IOERR);
1302 		break;
1303 	case DM_MAPIO_REQUEUE:
1304 		free_tio(tio);
1305 		dec_pending(io, BLK_STS_DM_REQUEUE);
1306 		break;
1307 	default:
1308 		DMWARN("unimplemented target map return value: %d", r);
1309 		BUG();
1310 	}
1311 
1312 	return ret;
1313 }
1314 
1315 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1316 {
1317 	bio->bi_iter.bi_sector = sector;
1318 	bio->bi_iter.bi_size = to_bytes(len);
1319 }
1320 
1321 /*
1322  * Creates a bio that consists of range of complete bvecs.
1323  */
1324 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1325 		     sector_t sector, unsigned len)
1326 {
1327 	struct bio *clone = &tio->clone;
1328 
1329 	__bio_clone_fast(clone, bio);
1330 
1331 	bio_crypt_clone(clone, bio, GFP_NOIO);
1332 
1333 	if (bio_integrity(bio)) {
1334 		int r;
1335 
1336 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1337 			     !dm_target_passes_integrity(tio->ti->type))) {
1338 			DMWARN("%s: the target %s doesn't support integrity data.",
1339 				dm_device_name(tio->io->md),
1340 				tio->ti->type->name);
1341 			return -EIO;
1342 		}
1343 
1344 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1345 		if (r < 0)
1346 			return r;
1347 	}
1348 
1349 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1350 	clone->bi_iter.bi_size = to_bytes(len);
1351 
1352 	if (bio_integrity(bio))
1353 		bio_integrity_trim(clone);
1354 
1355 	return 0;
1356 }
1357 
1358 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1359 				struct dm_target *ti, unsigned num_bios)
1360 {
1361 	struct dm_target_io *tio;
1362 	int try;
1363 
1364 	if (!num_bios)
1365 		return;
1366 
1367 	if (num_bios == 1) {
1368 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1369 		bio_list_add(blist, &tio->clone);
1370 		return;
1371 	}
1372 
1373 	for (try = 0; try < 2; try++) {
1374 		int bio_nr;
1375 		struct bio *bio;
1376 
1377 		if (try)
1378 			mutex_lock(&ci->io->md->table_devices_lock);
1379 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1380 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1381 			if (!tio)
1382 				break;
1383 
1384 			bio_list_add(blist, &tio->clone);
1385 		}
1386 		if (try)
1387 			mutex_unlock(&ci->io->md->table_devices_lock);
1388 		if (bio_nr == num_bios)
1389 			return;
1390 
1391 		while ((bio = bio_list_pop(blist))) {
1392 			tio = container_of(bio, struct dm_target_io, clone);
1393 			free_tio(tio);
1394 		}
1395 	}
1396 }
1397 
1398 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1399 					   struct dm_target_io *tio, unsigned *len)
1400 {
1401 	struct bio *clone = &tio->clone;
1402 
1403 	tio->len_ptr = len;
1404 
1405 	__bio_clone_fast(clone, ci->bio);
1406 	if (len)
1407 		bio_setup_sector(clone, ci->sector, *len);
1408 
1409 	return __map_bio(tio);
1410 }
1411 
1412 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1413 				  unsigned num_bios, unsigned *len)
1414 {
1415 	struct bio_list blist = BIO_EMPTY_LIST;
1416 	struct bio *bio;
1417 	struct dm_target_io *tio;
1418 
1419 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1420 
1421 	while ((bio = bio_list_pop(&blist))) {
1422 		tio = container_of(bio, struct dm_target_io, clone);
1423 		(void) __clone_and_map_simple_bio(ci, tio, len);
1424 	}
1425 }
1426 
1427 static int __send_empty_flush(struct clone_info *ci)
1428 {
1429 	unsigned target_nr = 0;
1430 	struct dm_target *ti;
1431 
1432 	/*
1433 	 * Empty flush uses a statically initialized bio, as the base for
1434 	 * cloning.  However, blkg association requires that a bdev is
1435 	 * associated with a gendisk, which doesn't happen until the bdev is
1436 	 * opened.  So, blkg association is done at issue time of the flush
1437 	 * rather than when the device is created in alloc_dev().
1438 	 */
1439 	bio_set_dev(ci->bio, ci->io->md->bdev);
1440 
1441 	BUG_ON(bio_has_data(ci->bio));
1442 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1443 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1444 	return 0;
1445 }
1446 
1447 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1448 				    sector_t sector, unsigned *len)
1449 {
1450 	struct bio *bio = ci->bio;
1451 	struct dm_target_io *tio;
1452 	int r;
1453 
1454 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1455 	tio->len_ptr = len;
1456 	r = clone_bio(tio, bio, sector, *len);
1457 	if (r < 0) {
1458 		free_tio(tio);
1459 		return r;
1460 	}
1461 	(void) __map_bio(tio);
1462 
1463 	return 0;
1464 }
1465 
1466 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1467 
1468 static unsigned get_num_discard_bios(struct dm_target *ti)
1469 {
1470 	return ti->num_discard_bios;
1471 }
1472 
1473 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1474 {
1475 	return ti->num_secure_erase_bios;
1476 }
1477 
1478 static unsigned get_num_write_same_bios(struct dm_target *ti)
1479 {
1480 	return ti->num_write_same_bios;
1481 }
1482 
1483 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1484 {
1485 	return ti->num_write_zeroes_bios;
1486 }
1487 
1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1489 				       unsigned num_bios)
1490 {
1491 	unsigned len;
1492 
1493 	/*
1494 	 * Even though the device advertised support for this type of
1495 	 * request, that does not mean every target supports it, and
1496 	 * reconfiguration might also have changed that since the
1497 	 * check was performed.
1498 	 */
1499 	if (!num_bios)
1500 		return -EOPNOTSUPP;
1501 
1502 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1503 
1504 	__send_duplicate_bios(ci, ti, num_bios, &len);
1505 
1506 	ci->sector += len;
1507 	ci->sector_count -= len;
1508 
1509 	return 0;
1510 }
1511 
1512 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1513 {
1514 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1515 }
1516 
1517 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1518 {
1519 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1520 }
1521 
1522 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1523 {
1524 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1525 }
1526 
1527 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1528 {
1529 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1530 }
1531 
1532 static bool is_abnormal_io(struct bio *bio)
1533 {
1534 	bool r = false;
1535 
1536 	switch (bio_op(bio)) {
1537 	case REQ_OP_DISCARD:
1538 	case REQ_OP_SECURE_ERASE:
1539 	case REQ_OP_WRITE_SAME:
1540 	case REQ_OP_WRITE_ZEROES:
1541 		r = true;
1542 		break;
1543 	}
1544 
1545 	return r;
1546 }
1547 
1548 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1549 				  int *result)
1550 {
1551 	struct bio *bio = ci->bio;
1552 
1553 	if (bio_op(bio) == REQ_OP_DISCARD)
1554 		*result = __send_discard(ci, ti);
1555 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1556 		*result = __send_secure_erase(ci, ti);
1557 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1558 		*result = __send_write_same(ci, ti);
1559 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1560 		*result = __send_write_zeroes(ci, ti);
1561 	else
1562 		return false;
1563 
1564 	return true;
1565 }
1566 
1567 /*
1568  * Select the correct strategy for processing a non-flush bio.
1569  */
1570 static int __split_and_process_non_flush(struct clone_info *ci)
1571 {
1572 	struct dm_target *ti;
1573 	unsigned len;
1574 	int r;
1575 
1576 	ti = dm_table_find_target(ci->map, ci->sector);
1577 	if (!ti)
1578 		return -EIO;
1579 
1580 	if (__process_abnormal_io(ci, ti, &r))
1581 		return r;
1582 
1583 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1584 
1585 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1586 	if (r < 0)
1587 		return r;
1588 
1589 	ci->sector += len;
1590 	ci->sector_count -= len;
1591 
1592 	return 0;
1593 }
1594 
1595 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1596 			    struct dm_table *map, struct bio *bio)
1597 {
1598 	ci->map = map;
1599 	ci->io = alloc_io(md, bio);
1600 	ci->sector = bio->bi_iter.bi_sector;
1601 }
1602 
1603 #define __dm_part_stat_sub(part, field, subnd)	\
1604 	(part_stat_get(part, field) -= (subnd))
1605 
1606 /*
1607  * Entry point to split a bio into clones and submit them to the targets.
1608  */
1609 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1610 					struct dm_table *map, struct bio *bio)
1611 {
1612 	struct clone_info ci;
1613 	blk_qc_t ret = BLK_QC_T_NONE;
1614 	int error = 0;
1615 
1616 	init_clone_info(&ci, md, map, bio);
1617 
1618 	if (bio->bi_opf & REQ_PREFLUSH) {
1619 		struct bio flush_bio;
1620 
1621 		/*
1622 		 * Use an on-stack bio for this, it's safe since we don't
1623 		 * need to reference it after submit. It's just used as
1624 		 * the basis for the clone(s).
1625 		 */
1626 		bio_init(&flush_bio, NULL, 0);
1627 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1628 		ci.bio = &flush_bio;
1629 		ci.sector_count = 0;
1630 		error = __send_empty_flush(&ci);
1631 		bio_uninit(ci.bio);
1632 		/* dec_pending submits any data associated with flush */
1633 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1634 		ci.bio = bio;
1635 		ci.sector_count = 0;
1636 		error = __split_and_process_non_flush(&ci);
1637 	} else {
1638 		ci.bio = bio;
1639 		ci.sector_count = bio_sectors(bio);
1640 		while (ci.sector_count && !error) {
1641 			error = __split_and_process_non_flush(&ci);
1642 			if (current->bio_list && ci.sector_count && !error) {
1643 				/*
1644 				 * Remainder must be passed to submit_bio_noacct()
1645 				 * so that it gets handled *after* bios already submitted
1646 				 * have been completely processed.
1647 				 * We take a clone of the original to store in
1648 				 * ci.io->orig_bio to be used by end_io_acct() and
1649 				 * for dec_pending to use for completion handling.
1650 				 */
1651 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1652 							  GFP_NOIO, &md->queue->bio_split);
1653 				ci.io->orig_bio = b;
1654 
1655 				/*
1656 				 * Adjust IO stats for each split, otherwise upon queue
1657 				 * reentry there will be redundant IO accounting.
1658 				 * NOTE: this is a stop-gap fix, a proper fix involves
1659 				 * significant refactoring of DM core's bio splitting
1660 				 * (by eliminating DM's splitting and just using bio_split)
1661 				 */
1662 				part_stat_lock();
1663 				__dm_part_stat_sub(&dm_disk(md)->part0,
1664 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1665 				part_stat_unlock();
1666 
1667 				bio_chain(b, bio);
1668 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1669 				ret = submit_bio_noacct(bio);
1670 				break;
1671 			}
1672 		}
1673 	}
1674 
1675 	/* drop the extra reference count */
1676 	dec_pending(ci.io, errno_to_blk_status(error));
1677 	return ret;
1678 }
1679 
1680 /*
1681  * Optimized variant of __split_and_process_bio that leverages the
1682  * fact that targets that use it do _not_ have a need to split bios.
1683  */
1684 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1685 			      struct bio *bio, struct dm_target *ti)
1686 {
1687 	struct clone_info ci;
1688 	blk_qc_t ret = BLK_QC_T_NONE;
1689 	int error = 0;
1690 
1691 	init_clone_info(&ci, md, map, bio);
1692 
1693 	if (bio->bi_opf & REQ_PREFLUSH) {
1694 		struct bio flush_bio;
1695 
1696 		/*
1697 		 * Use an on-stack bio for this, it's safe since we don't
1698 		 * need to reference it after submit. It's just used as
1699 		 * the basis for the clone(s).
1700 		 */
1701 		bio_init(&flush_bio, NULL, 0);
1702 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1703 		ci.bio = &flush_bio;
1704 		ci.sector_count = 0;
1705 		error = __send_empty_flush(&ci);
1706 		bio_uninit(ci.bio);
1707 		/* dec_pending submits any data associated with flush */
1708 	} else {
1709 		struct dm_target_io *tio;
1710 
1711 		ci.bio = bio;
1712 		ci.sector_count = bio_sectors(bio);
1713 		if (__process_abnormal_io(&ci, ti, &error))
1714 			goto out;
1715 
1716 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1717 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1718 	}
1719 out:
1720 	/* drop the extra reference count */
1721 	dec_pending(ci.io, errno_to_blk_status(error));
1722 	return ret;
1723 }
1724 
1725 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1726 {
1727 	unsigned len, sector_count;
1728 
1729 	sector_count = bio_sectors(*bio);
1730 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1731 
1732 	if (sector_count > len) {
1733 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1734 
1735 		bio_chain(split, *bio);
1736 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1737 		submit_bio_noacct(*bio);
1738 		*bio = split;
1739 	}
1740 }
1741 
1742 static blk_qc_t dm_process_bio(struct mapped_device *md,
1743 			       struct dm_table *map, struct bio *bio)
1744 {
1745 	blk_qc_t ret = BLK_QC_T_NONE;
1746 	struct dm_target *ti = md->immutable_target;
1747 
1748 	if (unlikely(!map)) {
1749 		bio_io_error(bio);
1750 		return ret;
1751 	}
1752 
1753 	if (!ti) {
1754 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1755 		if (unlikely(!ti)) {
1756 			bio_io_error(bio);
1757 			return ret;
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * If in ->queue_bio we need to use blk_queue_split(), otherwise
1763 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1764 	 * won't be imposed.
1765 	 */
1766 	if (current->bio_list) {
1767 		if (is_abnormal_io(bio))
1768 			blk_queue_split(&bio);
1769 		else
1770 			dm_queue_split(md, ti, &bio);
1771 	}
1772 
1773 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1774 		return __process_bio(md, map, bio, ti);
1775 	else
1776 		return __split_and_process_bio(md, map, bio);
1777 }
1778 
1779 static blk_qc_t dm_submit_bio(struct bio *bio)
1780 {
1781 	struct mapped_device *md = bio->bi_disk->private_data;
1782 	blk_qc_t ret = BLK_QC_T_NONE;
1783 	int srcu_idx;
1784 	struct dm_table *map;
1785 
1786 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1787 		/*
1788 		 * We are called with a live reference on q_usage_counter, but
1789 		 * that one will be released as soon as we return.  Grab an
1790 		 * extra one as blk_mq_submit_bio expects to be able to consume
1791 		 * a reference (which lives until the request is freed in case a
1792 		 * request is allocated).
1793 		 */
1794 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1795 		return blk_mq_submit_bio(bio);
1796 	}
1797 
1798 	map = dm_get_live_table(md, &srcu_idx);
1799 
1800 	/* if we're suspended, we have to queue this io for later */
1801 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1802 		dm_put_live_table(md, srcu_idx);
1803 
1804 		if (!(bio->bi_opf & REQ_RAHEAD))
1805 			queue_io(md, bio);
1806 		else
1807 			bio_io_error(bio);
1808 		return ret;
1809 	}
1810 
1811 	ret = dm_process_bio(md, map, bio);
1812 
1813 	dm_put_live_table(md, srcu_idx);
1814 	return ret;
1815 }
1816 
1817 /*-----------------------------------------------------------------
1818  * An IDR is used to keep track of allocated minor numbers.
1819  *---------------------------------------------------------------*/
1820 static void free_minor(int minor)
1821 {
1822 	spin_lock(&_minor_lock);
1823 	idr_remove(&_minor_idr, minor);
1824 	spin_unlock(&_minor_lock);
1825 }
1826 
1827 /*
1828  * See if the device with a specific minor # is free.
1829  */
1830 static int specific_minor(int minor)
1831 {
1832 	int r;
1833 
1834 	if (minor >= (1 << MINORBITS))
1835 		return -EINVAL;
1836 
1837 	idr_preload(GFP_KERNEL);
1838 	spin_lock(&_minor_lock);
1839 
1840 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1841 
1842 	spin_unlock(&_minor_lock);
1843 	idr_preload_end();
1844 	if (r < 0)
1845 		return r == -ENOSPC ? -EBUSY : r;
1846 	return 0;
1847 }
1848 
1849 static int next_free_minor(int *minor)
1850 {
1851 	int r;
1852 
1853 	idr_preload(GFP_KERNEL);
1854 	spin_lock(&_minor_lock);
1855 
1856 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1857 
1858 	spin_unlock(&_minor_lock);
1859 	idr_preload_end();
1860 	if (r < 0)
1861 		return r;
1862 	*minor = r;
1863 	return 0;
1864 }
1865 
1866 static const struct block_device_operations dm_blk_dops;
1867 static const struct dax_operations dm_dax_ops;
1868 
1869 static void dm_wq_work(struct work_struct *work);
1870 
1871 static void cleanup_mapped_device(struct mapped_device *md)
1872 {
1873 	if (md->wq)
1874 		destroy_workqueue(md->wq);
1875 	bioset_exit(&md->bs);
1876 	bioset_exit(&md->io_bs);
1877 
1878 	if (md->dax_dev) {
1879 		kill_dax(md->dax_dev);
1880 		put_dax(md->dax_dev);
1881 		md->dax_dev = NULL;
1882 	}
1883 
1884 	if (md->disk) {
1885 		spin_lock(&_minor_lock);
1886 		md->disk->private_data = NULL;
1887 		spin_unlock(&_minor_lock);
1888 		del_gendisk(md->disk);
1889 		put_disk(md->disk);
1890 	}
1891 
1892 	if (md->queue)
1893 		blk_cleanup_queue(md->queue);
1894 
1895 	cleanup_srcu_struct(&md->io_barrier);
1896 
1897 	if (md->bdev) {
1898 		bdput(md->bdev);
1899 		md->bdev = NULL;
1900 	}
1901 
1902 	mutex_destroy(&md->suspend_lock);
1903 	mutex_destroy(&md->type_lock);
1904 	mutex_destroy(&md->table_devices_lock);
1905 
1906 	dm_mq_cleanup_mapped_device(md);
1907 }
1908 
1909 /*
1910  * Allocate and initialise a blank device with a given minor.
1911  */
1912 static struct mapped_device *alloc_dev(int minor)
1913 {
1914 	int r, numa_node_id = dm_get_numa_node();
1915 	struct mapped_device *md;
1916 	void *old_md;
1917 
1918 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1919 	if (!md) {
1920 		DMWARN("unable to allocate device, out of memory.");
1921 		return NULL;
1922 	}
1923 
1924 	if (!try_module_get(THIS_MODULE))
1925 		goto bad_module_get;
1926 
1927 	/* get a minor number for the dev */
1928 	if (minor == DM_ANY_MINOR)
1929 		r = next_free_minor(&minor);
1930 	else
1931 		r = specific_minor(minor);
1932 	if (r < 0)
1933 		goto bad_minor;
1934 
1935 	r = init_srcu_struct(&md->io_barrier);
1936 	if (r < 0)
1937 		goto bad_io_barrier;
1938 
1939 	md->numa_node_id = numa_node_id;
1940 	md->init_tio_pdu = false;
1941 	md->type = DM_TYPE_NONE;
1942 	mutex_init(&md->suspend_lock);
1943 	mutex_init(&md->type_lock);
1944 	mutex_init(&md->table_devices_lock);
1945 	spin_lock_init(&md->deferred_lock);
1946 	atomic_set(&md->holders, 1);
1947 	atomic_set(&md->open_count, 0);
1948 	atomic_set(&md->event_nr, 0);
1949 	atomic_set(&md->uevent_seq, 0);
1950 	INIT_LIST_HEAD(&md->uevent_list);
1951 	INIT_LIST_HEAD(&md->table_devices);
1952 	spin_lock_init(&md->uevent_lock);
1953 
1954 	/*
1955 	 * default to bio-based until DM table is loaded and md->type
1956 	 * established. If request-based table is loaded: blk-mq will
1957 	 * override accordingly.
1958 	 */
1959 	md->queue = blk_alloc_queue(numa_node_id);
1960 	if (!md->queue)
1961 		goto bad;
1962 
1963 	md->disk = alloc_disk_node(1, md->numa_node_id);
1964 	if (!md->disk)
1965 		goto bad;
1966 
1967 	init_waitqueue_head(&md->wait);
1968 	INIT_WORK(&md->work, dm_wq_work);
1969 	init_waitqueue_head(&md->eventq);
1970 	init_completion(&md->kobj_holder.completion);
1971 
1972 	md->disk->major = _major;
1973 	md->disk->first_minor = minor;
1974 	md->disk->fops = &dm_blk_dops;
1975 	md->disk->queue = md->queue;
1976 	md->disk->private_data = md;
1977 	sprintf(md->disk->disk_name, "dm-%d", minor);
1978 
1979 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1980 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1981 					&dm_dax_ops, 0);
1982 		if (IS_ERR(md->dax_dev))
1983 			goto bad;
1984 	}
1985 
1986 	add_disk_no_queue_reg(md->disk);
1987 	format_dev_t(md->name, MKDEV(_major, minor));
1988 
1989 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1990 	if (!md->wq)
1991 		goto bad;
1992 
1993 	md->bdev = bdget_disk(md->disk, 0);
1994 	if (!md->bdev)
1995 		goto bad;
1996 
1997 	dm_stats_init(&md->stats);
1998 
1999 	/* Populate the mapping, nobody knows we exist yet */
2000 	spin_lock(&_minor_lock);
2001 	old_md = idr_replace(&_minor_idr, md, minor);
2002 	spin_unlock(&_minor_lock);
2003 
2004 	BUG_ON(old_md != MINOR_ALLOCED);
2005 
2006 	return md;
2007 
2008 bad:
2009 	cleanup_mapped_device(md);
2010 bad_io_barrier:
2011 	free_minor(minor);
2012 bad_minor:
2013 	module_put(THIS_MODULE);
2014 bad_module_get:
2015 	kvfree(md);
2016 	return NULL;
2017 }
2018 
2019 static void unlock_fs(struct mapped_device *md);
2020 
2021 static void free_dev(struct mapped_device *md)
2022 {
2023 	int minor = MINOR(disk_devt(md->disk));
2024 
2025 	unlock_fs(md);
2026 
2027 	cleanup_mapped_device(md);
2028 
2029 	free_table_devices(&md->table_devices);
2030 	dm_stats_cleanup(&md->stats);
2031 	free_minor(minor);
2032 
2033 	module_put(THIS_MODULE);
2034 	kvfree(md);
2035 }
2036 
2037 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2038 {
2039 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2040 	int ret = 0;
2041 
2042 	if (dm_table_bio_based(t)) {
2043 		/*
2044 		 * The md may already have mempools that need changing.
2045 		 * If so, reload bioset because front_pad may have changed
2046 		 * because a different table was loaded.
2047 		 */
2048 		bioset_exit(&md->bs);
2049 		bioset_exit(&md->io_bs);
2050 
2051 	} else if (bioset_initialized(&md->bs)) {
2052 		/*
2053 		 * There's no need to reload with request-based dm
2054 		 * because the size of front_pad doesn't change.
2055 		 * Note for future: If you are to reload bioset,
2056 		 * prep-ed requests in the queue may refer
2057 		 * to bio from the old bioset, so you must walk
2058 		 * through the queue to unprep.
2059 		 */
2060 		goto out;
2061 	}
2062 
2063 	BUG_ON(!p ||
2064 	       bioset_initialized(&md->bs) ||
2065 	       bioset_initialized(&md->io_bs));
2066 
2067 	ret = bioset_init_from_src(&md->bs, &p->bs);
2068 	if (ret)
2069 		goto out;
2070 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2071 	if (ret)
2072 		bioset_exit(&md->bs);
2073 out:
2074 	/* mempool bind completed, no longer need any mempools in the table */
2075 	dm_table_free_md_mempools(t);
2076 	return ret;
2077 }
2078 
2079 /*
2080  * Bind a table to the device.
2081  */
2082 static void event_callback(void *context)
2083 {
2084 	unsigned long flags;
2085 	LIST_HEAD(uevents);
2086 	struct mapped_device *md = (struct mapped_device *) context;
2087 
2088 	spin_lock_irqsave(&md->uevent_lock, flags);
2089 	list_splice_init(&md->uevent_list, &uevents);
2090 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2091 
2092 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2093 
2094 	atomic_inc(&md->event_nr);
2095 	wake_up(&md->eventq);
2096 	dm_issue_global_event();
2097 }
2098 
2099 /*
2100  * Protected by md->suspend_lock obtained by dm_swap_table().
2101  */
2102 static void __set_size(struct mapped_device *md, sector_t size)
2103 {
2104 	lockdep_assert_held(&md->suspend_lock);
2105 
2106 	set_capacity(md->disk, size);
2107 
2108 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2109 }
2110 
2111 /*
2112  * Returns old map, which caller must destroy.
2113  */
2114 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2115 			       struct queue_limits *limits)
2116 {
2117 	struct dm_table *old_map;
2118 	struct request_queue *q = md->queue;
2119 	bool request_based = dm_table_request_based(t);
2120 	sector_t size;
2121 	int ret;
2122 
2123 	lockdep_assert_held(&md->suspend_lock);
2124 
2125 	size = dm_table_get_size(t);
2126 
2127 	/*
2128 	 * Wipe any geometry if the size of the table changed.
2129 	 */
2130 	if (size != dm_get_size(md))
2131 		memset(&md->geometry, 0, sizeof(md->geometry));
2132 
2133 	__set_size(md, size);
2134 
2135 	dm_table_event_callback(t, event_callback, md);
2136 
2137 	/*
2138 	 * The queue hasn't been stopped yet, if the old table type wasn't
2139 	 * for request-based during suspension.  So stop it to prevent
2140 	 * I/O mapping before resume.
2141 	 * This must be done before setting the queue restrictions,
2142 	 * because request-based dm may be run just after the setting.
2143 	 */
2144 	if (request_based)
2145 		dm_stop_queue(q);
2146 
2147 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2148 		/*
2149 		 * Leverage the fact that request-based DM targets and
2150 		 * NVMe bio based targets are immutable singletons
2151 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2152 		 *   and __process_bio.
2153 		 */
2154 		md->immutable_target = dm_table_get_immutable_target(t);
2155 	}
2156 
2157 	ret = __bind_mempools(md, t);
2158 	if (ret) {
2159 		old_map = ERR_PTR(ret);
2160 		goto out;
2161 	}
2162 
2163 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2164 	rcu_assign_pointer(md->map, (void *)t);
2165 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2166 
2167 	dm_table_set_restrictions(t, q, limits);
2168 	if (old_map)
2169 		dm_sync_table(md);
2170 
2171 out:
2172 	return old_map;
2173 }
2174 
2175 /*
2176  * Returns unbound table for the caller to free.
2177  */
2178 static struct dm_table *__unbind(struct mapped_device *md)
2179 {
2180 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2181 
2182 	if (!map)
2183 		return NULL;
2184 
2185 	dm_table_event_callback(map, NULL, NULL);
2186 	RCU_INIT_POINTER(md->map, NULL);
2187 	dm_sync_table(md);
2188 
2189 	return map;
2190 }
2191 
2192 /*
2193  * Constructor for a new device.
2194  */
2195 int dm_create(int minor, struct mapped_device **result)
2196 {
2197 	int r;
2198 	struct mapped_device *md;
2199 
2200 	md = alloc_dev(minor);
2201 	if (!md)
2202 		return -ENXIO;
2203 
2204 	r = dm_sysfs_init(md);
2205 	if (r) {
2206 		free_dev(md);
2207 		return r;
2208 	}
2209 
2210 	*result = md;
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Functions to manage md->type.
2216  * All are required to hold md->type_lock.
2217  */
2218 void dm_lock_md_type(struct mapped_device *md)
2219 {
2220 	mutex_lock(&md->type_lock);
2221 }
2222 
2223 void dm_unlock_md_type(struct mapped_device *md)
2224 {
2225 	mutex_unlock(&md->type_lock);
2226 }
2227 
2228 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2229 {
2230 	BUG_ON(!mutex_is_locked(&md->type_lock));
2231 	md->type = type;
2232 }
2233 
2234 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2235 {
2236 	return md->type;
2237 }
2238 
2239 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2240 {
2241 	return md->immutable_target_type;
2242 }
2243 
2244 /*
2245  * The queue_limits are only valid as long as you have a reference
2246  * count on 'md'.
2247  */
2248 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2249 {
2250 	BUG_ON(!atomic_read(&md->holders));
2251 	return &md->queue->limits;
2252 }
2253 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2254 
2255 /*
2256  * Setup the DM device's queue based on md's type
2257  */
2258 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2259 {
2260 	int r;
2261 	struct queue_limits limits;
2262 	enum dm_queue_mode type = dm_get_md_type(md);
2263 
2264 	switch (type) {
2265 	case DM_TYPE_REQUEST_BASED:
2266 		r = dm_mq_init_request_queue(md, t);
2267 		if (r) {
2268 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2269 			return r;
2270 		}
2271 		break;
2272 	case DM_TYPE_BIO_BASED:
2273 	case DM_TYPE_DAX_BIO_BASED:
2274 	case DM_TYPE_NVME_BIO_BASED:
2275 		break;
2276 	case DM_TYPE_NONE:
2277 		WARN_ON_ONCE(true);
2278 		break;
2279 	}
2280 
2281 	r = dm_calculate_queue_limits(t, &limits);
2282 	if (r) {
2283 		DMERR("Cannot calculate initial queue limits");
2284 		return r;
2285 	}
2286 	dm_table_set_restrictions(t, md->queue, &limits);
2287 	blk_register_queue(md->disk);
2288 
2289 	return 0;
2290 }
2291 
2292 struct mapped_device *dm_get_md(dev_t dev)
2293 {
2294 	struct mapped_device *md;
2295 	unsigned minor = MINOR(dev);
2296 
2297 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2298 		return NULL;
2299 
2300 	spin_lock(&_minor_lock);
2301 
2302 	md = idr_find(&_minor_idr, minor);
2303 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2304 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2305 		md = NULL;
2306 		goto out;
2307 	}
2308 	dm_get(md);
2309 out:
2310 	spin_unlock(&_minor_lock);
2311 
2312 	return md;
2313 }
2314 EXPORT_SYMBOL_GPL(dm_get_md);
2315 
2316 void *dm_get_mdptr(struct mapped_device *md)
2317 {
2318 	return md->interface_ptr;
2319 }
2320 
2321 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2322 {
2323 	md->interface_ptr = ptr;
2324 }
2325 
2326 void dm_get(struct mapped_device *md)
2327 {
2328 	atomic_inc(&md->holders);
2329 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2330 }
2331 
2332 int dm_hold(struct mapped_device *md)
2333 {
2334 	spin_lock(&_minor_lock);
2335 	if (test_bit(DMF_FREEING, &md->flags)) {
2336 		spin_unlock(&_minor_lock);
2337 		return -EBUSY;
2338 	}
2339 	dm_get(md);
2340 	spin_unlock(&_minor_lock);
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(dm_hold);
2344 
2345 const char *dm_device_name(struct mapped_device *md)
2346 {
2347 	return md->name;
2348 }
2349 EXPORT_SYMBOL_GPL(dm_device_name);
2350 
2351 static void __dm_destroy(struct mapped_device *md, bool wait)
2352 {
2353 	struct dm_table *map;
2354 	int srcu_idx;
2355 
2356 	might_sleep();
2357 
2358 	spin_lock(&_minor_lock);
2359 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2360 	set_bit(DMF_FREEING, &md->flags);
2361 	spin_unlock(&_minor_lock);
2362 
2363 	blk_set_queue_dying(md->queue);
2364 
2365 	/*
2366 	 * Take suspend_lock so that presuspend and postsuspend methods
2367 	 * do not race with internal suspend.
2368 	 */
2369 	mutex_lock(&md->suspend_lock);
2370 	map = dm_get_live_table(md, &srcu_idx);
2371 	if (!dm_suspended_md(md)) {
2372 		dm_table_presuspend_targets(map);
2373 		set_bit(DMF_SUSPENDED, &md->flags);
2374 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2375 		dm_table_postsuspend_targets(map);
2376 	}
2377 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2378 	dm_put_live_table(md, srcu_idx);
2379 	mutex_unlock(&md->suspend_lock);
2380 
2381 	/*
2382 	 * Rare, but there may be I/O requests still going to complete,
2383 	 * for example.  Wait for all references to disappear.
2384 	 * No one should increment the reference count of the mapped_device,
2385 	 * after the mapped_device state becomes DMF_FREEING.
2386 	 */
2387 	if (wait)
2388 		while (atomic_read(&md->holders))
2389 			msleep(1);
2390 	else if (atomic_read(&md->holders))
2391 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2392 		       dm_device_name(md), atomic_read(&md->holders));
2393 
2394 	dm_sysfs_exit(md);
2395 	dm_table_destroy(__unbind(md));
2396 	free_dev(md);
2397 }
2398 
2399 void dm_destroy(struct mapped_device *md)
2400 {
2401 	__dm_destroy(md, true);
2402 }
2403 
2404 void dm_destroy_immediate(struct mapped_device *md)
2405 {
2406 	__dm_destroy(md, false);
2407 }
2408 
2409 void dm_put(struct mapped_device *md)
2410 {
2411 	atomic_dec(&md->holders);
2412 }
2413 EXPORT_SYMBOL_GPL(dm_put);
2414 
2415 static bool md_in_flight_bios(struct mapped_device *md)
2416 {
2417 	int cpu;
2418 	struct hd_struct *part = &dm_disk(md)->part0;
2419 	long sum = 0;
2420 
2421 	for_each_possible_cpu(cpu) {
2422 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2423 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2424 	}
2425 
2426 	return sum != 0;
2427 }
2428 
2429 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2430 {
2431 	int r = 0;
2432 	DEFINE_WAIT(wait);
2433 
2434 	while (true) {
2435 		prepare_to_wait(&md->wait, &wait, task_state);
2436 
2437 		if (!md_in_flight_bios(md))
2438 			break;
2439 
2440 		if (signal_pending_state(task_state, current)) {
2441 			r = -EINTR;
2442 			break;
2443 		}
2444 
2445 		io_schedule();
2446 	}
2447 	finish_wait(&md->wait, &wait);
2448 
2449 	return r;
2450 }
2451 
2452 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2453 {
2454 	int r = 0;
2455 
2456 	if (!queue_is_mq(md->queue))
2457 		return dm_wait_for_bios_completion(md, task_state);
2458 
2459 	while (true) {
2460 		if (!blk_mq_queue_inflight(md->queue))
2461 			break;
2462 
2463 		if (signal_pending_state(task_state, current)) {
2464 			r = -EINTR;
2465 			break;
2466 		}
2467 
2468 		msleep(5);
2469 	}
2470 
2471 	return r;
2472 }
2473 
2474 /*
2475  * Process the deferred bios
2476  */
2477 static void dm_wq_work(struct work_struct *work)
2478 {
2479 	struct mapped_device *md = container_of(work, struct mapped_device,
2480 						work);
2481 	struct bio *c;
2482 	int srcu_idx;
2483 	struct dm_table *map;
2484 
2485 	map = dm_get_live_table(md, &srcu_idx);
2486 
2487 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2488 		spin_lock_irq(&md->deferred_lock);
2489 		c = bio_list_pop(&md->deferred);
2490 		spin_unlock_irq(&md->deferred_lock);
2491 
2492 		if (!c)
2493 			break;
2494 
2495 		if (dm_request_based(md))
2496 			(void) submit_bio_noacct(c);
2497 		else
2498 			(void) dm_process_bio(md, map, c);
2499 	}
2500 
2501 	dm_put_live_table(md, srcu_idx);
2502 }
2503 
2504 static void dm_queue_flush(struct mapped_device *md)
2505 {
2506 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2507 	smp_mb__after_atomic();
2508 	queue_work(md->wq, &md->work);
2509 }
2510 
2511 /*
2512  * Swap in a new table, returning the old one for the caller to destroy.
2513  */
2514 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2515 {
2516 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2517 	struct queue_limits limits;
2518 	int r;
2519 
2520 	mutex_lock(&md->suspend_lock);
2521 
2522 	/* device must be suspended */
2523 	if (!dm_suspended_md(md))
2524 		goto out;
2525 
2526 	/*
2527 	 * If the new table has no data devices, retain the existing limits.
2528 	 * This helps multipath with queue_if_no_path if all paths disappear,
2529 	 * then new I/O is queued based on these limits, and then some paths
2530 	 * reappear.
2531 	 */
2532 	if (dm_table_has_no_data_devices(table)) {
2533 		live_map = dm_get_live_table_fast(md);
2534 		if (live_map)
2535 			limits = md->queue->limits;
2536 		dm_put_live_table_fast(md);
2537 	}
2538 
2539 	if (!live_map) {
2540 		r = dm_calculate_queue_limits(table, &limits);
2541 		if (r) {
2542 			map = ERR_PTR(r);
2543 			goto out;
2544 		}
2545 	}
2546 
2547 	map = __bind(md, table, &limits);
2548 	dm_issue_global_event();
2549 
2550 out:
2551 	mutex_unlock(&md->suspend_lock);
2552 	return map;
2553 }
2554 
2555 /*
2556  * Functions to lock and unlock any filesystem running on the
2557  * device.
2558  */
2559 static int lock_fs(struct mapped_device *md)
2560 {
2561 	int r;
2562 
2563 	WARN_ON(md->frozen_sb);
2564 
2565 	md->frozen_sb = freeze_bdev(md->bdev);
2566 	if (IS_ERR(md->frozen_sb)) {
2567 		r = PTR_ERR(md->frozen_sb);
2568 		md->frozen_sb = NULL;
2569 		return r;
2570 	}
2571 
2572 	set_bit(DMF_FROZEN, &md->flags);
2573 
2574 	return 0;
2575 }
2576 
2577 static void unlock_fs(struct mapped_device *md)
2578 {
2579 	if (!test_bit(DMF_FROZEN, &md->flags))
2580 		return;
2581 
2582 	thaw_bdev(md->bdev, md->frozen_sb);
2583 	md->frozen_sb = NULL;
2584 	clear_bit(DMF_FROZEN, &md->flags);
2585 }
2586 
2587 /*
2588  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2589  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2590  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2591  *
2592  * If __dm_suspend returns 0, the device is completely quiescent
2593  * now. There is no request-processing activity. All new requests
2594  * are being added to md->deferred list.
2595  */
2596 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2597 			unsigned suspend_flags, long task_state,
2598 			int dmf_suspended_flag)
2599 {
2600 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2601 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2602 	int r;
2603 
2604 	lockdep_assert_held(&md->suspend_lock);
2605 
2606 	/*
2607 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2608 	 * This flag is cleared before dm_suspend returns.
2609 	 */
2610 	if (noflush)
2611 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2612 	else
2613 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2614 
2615 	/*
2616 	 * This gets reverted if there's an error later and the targets
2617 	 * provide the .presuspend_undo hook.
2618 	 */
2619 	dm_table_presuspend_targets(map);
2620 
2621 	/*
2622 	 * Flush I/O to the device.
2623 	 * Any I/O submitted after lock_fs() may not be flushed.
2624 	 * noflush takes precedence over do_lockfs.
2625 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2626 	 */
2627 	if (!noflush && do_lockfs) {
2628 		r = lock_fs(md);
2629 		if (r) {
2630 			dm_table_presuspend_undo_targets(map);
2631 			return r;
2632 		}
2633 	}
2634 
2635 	/*
2636 	 * Here we must make sure that no processes are submitting requests
2637 	 * to target drivers i.e. no one may be executing
2638 	 * __split_and_process_bio. This is called from dm_request and
2639 	 * dm_wq_work.
2640 	 *
2641 	 * To get all processes out of __split_and_process_bio in dm_request,
2642 	 * we take the write lock. To prevent any process from reentering
2643 	 * __split_and_process_bio from dm_request and quiesce the thread
2644 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2645 	 * flush_workqueue(md->wq).
2646 	 */
2647 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2648 	if (map)
2649 		synchronize_srcu(&md->io_barrier);
2650 
2651 	/*
2652 	 * Stop md->queue before flushing md->wq in case request-based
2653 	 * dm defers requests to md->wq from md->queue.
2654 	 */
2655 	if (dm_request_based(md))
2656 		dm_stop_queue(md->queue);
2657 
2658 	flush_workqueue(md->wq);
2659 
2660 	/*
2661 	 * At this point no more requests are entering target request routines.
2662 	 * We call dm_wait_for_completion to wait for all existing requests
2663 	 * to finish.
2664 	 */
2665 	r = dm_wait_for_completion(md, task_state);
2666 	if (!r)
2667 		set_bit(dmf_suspended_flag, &md->flags);
2668 
2669 	if (noflush)
2670 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2671 	if (map)
2672 		synchronize_srcu(&md->io_barrier);
2673 
2674 	/* were we interrupted ? */
2675 	if (r < 0) {
2676 		dm_queue_flush(md);
2677 
2678 		if (dm_request_based(md))
2679 			dm_start_queue(md->queue);
2680 
2681 		unlock_fs(md);
2682 		dm_table_presuspend_undo_targets(map);
2683 		/* pushback list is already flushed, so skip flush */
2684 	}
2685 
2686 	return r;
2687 }
2688 
2689 /*
2690  * We need to be able to change a mapping table under a mounted
2691  * filesystem.  For example we might want to move some data in
2692  * the background.  Before the table can be swapped with
2693  * dm_bind_table, dm_suspend must be called to flush any in
2694  * flight bios and ensure that any further io gets deferred.
2695  */
2696 /*
2697  * Suspend mechanism in request-based dm.
2698  *
2699  * 1. Flush all I/Os by lock_fs() if needed.
2700  * 2. Stop dispatching any I/O by stopping the request_queue.
2701  * 3. Wait for all in-flight I/Os to be completed or requeued.
2702  *
2703  * To abort suspend, start the request_queue.
2704  */
2705 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2706 {
2707 	struct dm_table *map = NULL;
2708 	int r = 0;
2709 
2710 retry:
2711 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2712 
2713 	if (dm_suspended_md(md)) {
2714 		r = -EINVAL;
2715 		goto out_unlock;
2716 	}
2717 
2718 	if (dm_suspended_internally_md(md)) {
2719 		/* already internally suspended, wait for internal resume */
2720 		mutex_unlock(&md->suspend_lock);
2721 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2722 		if (r)
2723 			return r;
2724 		goto retry;
2725 	}
2726 
2727 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2728 
2729 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2730 	if (r)
2731 		goto out_unlock;
2732 
2733 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2734 	dm_table_postsuspend_targets(map);
2735 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2736 
2737 out_unlock:
2738 	mutex_unlock(&md->suspend_lock);
2739 	return r;
2740 }
2741 
2742 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2743 {
2744 	if (map) {
2745 		int r = dm_table_resume_targets(map);
2746 		if (r)
2747 			return r;
2748 	}
2749 
2750 	dm_queue_flush(md);
2751 
2752 	/*
2753 	 * Flushing deferred I/Os must be done after targets are resumed
2754 	 * so that mapping of targets can work correctly.
2755 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2756 	 */
2757 	if (dm_request_based(md))
2758 		dm_start_queue(md->queue);
2759 
2760 	unlock_fs(md);
2761 
2762 	return 0;
2763 }
2764 
2765 int dm_resume(struct mapped_device *md)
2766 {
2767 	int r;
2768 	struct dm_table *map = NULL;
2769 
2770 retry:
2771 	r = -EINVAL;
2772 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2773 
2774 	if (!dm_suspended_md(md))
2775 		goto out;
2776 
2777 	if (dm_suspended_internally_md(md)) {
2778 		/* already internally suspended, wait for internal resume */
2779 		mutex_unlock(&md->suspend_lock);
2780 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2781 		if (r)
2782 			return r;
2783 		goto retry;
2784 	}
2785 
2786 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2787 	if (!map || !dm_table_get_size(map))
2788 		goto out;
2789 
2790 	r = __dm_resume(md, map);
2791 	if (r)
2792 		goto out;
2793 
2794 	clear_bit(DMF_SUSPENDED, &md->flags);
2795 out:
2796 	mutex_unlock(&md->suspend_lock);
2797 
2798 	return r;
2799 }
2800 
2801 /*
2802  * Internal suspend/resume works like userspace-driven suspend. It waits
2803  * until all bios finish and prevents issuing new bios to the target drivers.
2804  * It may be used only from the kernel.
2805  */
2806 
2807 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2808 {
2809 	struct dm_table *map = NULL;
2810 
2811 	lockdep_assert_held(&md->suspend_lock);
2812 
2813 	if (md->internal_suspend_count++)
2814 		return; /* nested internal suspend */
2815 
2816 	if (dm_suspended_md(md)) {
2817 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2818 		return; /* nest suspend */
2819 	}
2820 
2821 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2822 
2823 	/*
2824 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2825 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2826 	 * would require changing .presuspend to return an error -- avoid this
2827 	 * until there is a need for more elaborate variants of internal suspend.
2828 	 */
2829 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2830 			    DMF_SUSPENDED_INTERNALLY);
2831 
2832 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2833 	dm_table_postsuspend_targets(map);
2834 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2835 }
2836 
2837 static void __dm_internal_resume(struct mapped_device *md)
2838 {
2839 	BUG_ON(!md->internal_suspend_count);
2840 
2841 	if (--md->internal_suspend_count)
2842 		return; /* resume from nested internal suspend */
2843 
2844 	if (dm_suspended_md(md))
2845 		goto done; /* resume from nested suspend */
2846 
2847 	/*
2848 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2849 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2850 	 */
2851 	(void) __dm_resume(md, NULL);
2852 
2853 done:
2854 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2855 	smp_mb__after_atomic();
2856 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2857 }
2858 
2859 void dm_internal_suspend_noflush(struct mapped_device *md)
2860 {
2861 	mutex_lock(&md->suspend_lock);
2862 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2863 	mutex_unlock(&md->suspend_lock);
2864 }
2865 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2866 
2867 void dm_internal_resume(struct mapped_device *md)
2868 {
2869 	mutex_lock(&md->suspend_lock);
2870 	__dm_internal_resume(md);
2871 	mutex_unlock(&md->suspend_lock);
2872 }
2873 EXPORT_SYMBOL_GPL(dm_internal_resume);
2874 
2875 /*
2876  * Fast variants of internal suspend/resume hold md->suspend_lock,
2877  * which prevents interaction with userspace-driven suspend.
2878  */
2879 
2880 void dm_internal_suspend_fast(struct mapped_device *md)
2881 {
2882 	mutex_lock(&md->suspend_lock);
2883 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2884 		return;
2885 
2886 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2887 	synchronize_srcu(&md->io_barrier);
2888 	flush_workqueue(md->wq);
2889 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2890 }
2891 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2892 
2893 void dm_internal_resume_fast(struct mapped_device *md)
2894 {
2895 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2896 		goto done;
2897 
2898 	dm_queue_flush(md);
2899 
2900 done:
2901 	mutex_unlock(&md->suspend_lock);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2904 
2905 /*-----------------------------------------------------------------
2906  * Event notification.
2907  *---------------------------------------------------------------*/
2908 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2909 		       unsigned cookie)
2910 {
2911 	int r;
2912 	unsigned noio_flag;
2913 	char udev_cookie[DM_COOKIE_LENGTH];
2914 	char *envp[] = { udev_cookie, NULL };
2915 
2916 	noio_flag = memalloc_noio_save();
2917 
2918 	if (!cookie)
2919 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2920 	else {
2921 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2922 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2923 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2924 				       action, envp);
2925 	}
2926 
2927 	memalloc_noio_restore(noio_flag);
2928 
2929 	return r;
2930 }
2931 
2932 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2933 {
2934 	return atomic_add_return(1, &md->uevent_seq);
2935 }
2936 
2937 uint32_t dm_get_event_nr(struct mapped_device *md)
2938 {
2939 	return atomic_read(&md->event_nr);
2940 }
2941 
2942 int dm_wait_event(struct mapped_device *md, int event_nr)
2943 {
2944 	return wait_event_interruptible(md->eventq,
2945 			(event_nr != atomic_read(&md->event_nr)));
2946 }
2947 
2948 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2949 {
2950 	unsigned long flags;
2951 
2952 	spin_lock_irqsave(&md->uevent_lock, flags);
2953 	list_add(elist, &md->uevent_list);
2954 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2955 }
2956 
2957 /*
2958  * The gendisk is only valid as long as you have a reference
2959  * count on 'md'.
2960  */
2961 struct gendisk *dm_disk(struct mapped_device *md)
2962 {
2963 	return md->disk;
2964 }
2965 EXPORT_SYMBOL_GPL(dm_disk);
2966 
2967 struct kobject *dm_kobject(struct mapped_device *md)
2968 {
2969 	return &md->kobj_holder.kobj;
2970 }
2971 
2972 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2973 {
2974 	struct mapped_device *md;
2975 
2976 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2977 
2978 	spin_lock(&_minor_lock);
2979 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2980 		md = NULL;
2981 		goto out;
2982 	}
2983 	dm_get(md);
2984 out:
2985 	spin_unlock(&_minor_lock);
2986 
2987 	return md;
2988 }
2989 
2990 int dm_suspended_md(struct mapped_device *md)
2991 {
2992 	return test_bit(DMF_SUSPENDED, &md->flags);
2993 }
2994 
2995 static int dm_post_suspending_md(struct mapped_device *md)
2996 {
2997 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2998 }
2999 
3000 int dm_suspended_internally_md(struct mapped_device *md)
3001 {
3002 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3003 }
3004 
3005 int dm_test_deferred_remove_flag(struct mapped_device *md)
3006 {
3007 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3008 }
3009 
3010 int dm_suspended(struct dm_target *ti)
3011 {
3012 	return dm_suspended_md(dm_table_get_md(ti->table));
3013 }
3014 EXPORT_SYMBOL_GPL(dm_suspended);
3015 
3016 int dm_post_suspending(struct dm_target *ti)
3017 {
3018 	return dm_post_suspending_md(dm_table_get_md(ti->table));
3019 }
3020 EXPORT_SYMBOL_GPL(dm_post_suspending);
3021 
3022 int dm_noflush_suspending(struct dm_target *ti)
3023 {
3024 	return __noflush_suspending(dm_table_get_md(ti->table));
3025 }
3026 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3027 
3028 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3029 					    unsigned integrity, unsigned per_io_data_size,
3030 					    unsigned min_pool_size)
3031 {
3032 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3033 	unsigned int pool_size = 0;
3034 	unsigned int front_pad, io_front_pad;
3035 	int ret;
3036 
3037 	if (!pools)
3038 		return NULL;
3039 
3040 	switch (type) {
3041 	case DM_TYPE_BIO_BASED:
3042 	case DM_TYPE_DAX_BIO_BASED:
3043 	case DM_TYPE_NVME_BIO_BASED:
3044 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3045 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3046 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3047 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3048 		if (ret)
3049 			goto out;
3050 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3051 			goto out;
3052 		break;
3053 	case DM_TYPE_REQUEST_BASED:
3054 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3055 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3056 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3057 		break;
3058 	default:
3059 		BUG();
3060 	}
3061 
3062 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3063 	if (ret)
3064 		goto out;
3065 
3066 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3067 		goto out;
3068 
3069 	return pools;
3070 
3071 out:
3072 	dm_free_md_mempools(pools);
3073 
3074 	return NULL;
3075 }
3076 
3077 void dm_free_md_mempools(struct dm_md_mempools *pools)
3078 {
3079 	if (!pools)
3080 		return;
3081 
3082 	bioset_exit(&pools->bs);
3083 	bioset_exit(&pools->io_bs);
3084 
3085 	kfree(pools);
3086 }
3087 
3088 struct dm_pr {
3089 	u64	old_key;
3090 	u64	new_key;
3091 	u32	flags;
3092 	bool	fail_early;
3093 };
3094 
3095 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3096 		      void *data)
3097 {
3098 	struct mapped_device *md = bdev->bd_disk->private_data;
3099 	struct dm_table *table;
3100 	struct dm_target *ti;
3101 	int ret = -ENOTTY, srcu_idx;
3102 
3103 	table = dm_get_live_table(md, &srcu_idx);
3104 	if (!table || !dm_table_get_size(table))
3105 		goto out;
3106 
3107 	/* We only support devices that have a single target */
3108 	if (dm_table_get_num_targets(table) != 1)
3109 		goto out;
3110 	ti = dm_table_get_target(table, 0);
3111 
3112 	ret = -EINVAL;
3113 	if (!ti->type->iterate_devices)
3114 		goto out;
3115 
3116 	ret = ti->type->iterate_devices(ti, fn, data);
3117 out:
3118 	dm_put_live_table(md, srcu_idx);
3119 	return ret;
3120 }
3121 
3122 /*
3123  * For register / unregister we need to manually call out to every path.
3124  */
3125 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3126 			    sector_t start, sector_t len, void *data)
3127 {
3128 	struct dm_pr *pr = data;
3129 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3130 
3131 	if (!ops || !ops->pr_register)
3132 		return -EOPNOTSUPP;
3133 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3134 }
3135 
3136 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3137 			  u32 flags)
3138 {
3139 	struct dm_pr pr = {
3140 		.old_key	= old_key,
3141 		.new_key	= new_key,
3142 		.flags		= flags,
3143 		.fail_early	= true,
3144 	};
3145 	int ret;
3146 
3147 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3148 	if (ret && new_key) {
3149 		/* unregister all paths if we failed to register any path */
3150 		pr.old_key = new_key;
3151 		pr.new_key = 0;
3152 		pr.flags = 0;
3153 		pr.fail_early = false;
3154 		dm_call_pr(bdev, __dm_pr_register, &pr);
3155 	}
3156 
3157 	return ret;
3158 }
3159 
3160 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3161 			 u32 flags)
3162 {
3163 	struct mapped_device *md = bdev->bd_disk->private_data;
3164 	const struct pr_ops *ops;
3165 	int r, srcu_idx;
3166 
3167 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3168 	if (r < 0)
3169 		goto out;
3170 
3171 	ops = bdev->bd_disk->fops->pr_ops;
3172 	if (ops && ops->pr_reserve)
3173 		r = ops->pr_reserve(bdev, key, type, flags);
3174 	else
3175 		r = -EOPNOTSUPP;
3176 out:
3177 	dm_unprepare_ioctl(md, srcu_idx);
3178 	return r;
3179 }
3180 
3181 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3182 {
3183 	struct mapped_device *md = bdev->bd_disk->private_data;
3184 	const struct pr_ops *ops;
3185 	int r, srcu_idx;
3186 
3187 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3188 	if (r < 0)
3189 		goto out;
3190 
3191 	ops = bdev->bd_disk->fops->pr_ops;
3192 	if (ops && ops->pr_release)
3193 		r = ops->pr_release(bdev, key, type);
3194 	else
3195 		r = -EOPNOTSUPP;
3196 out:
3197 	dm_unprepare_ioctl(md, srcu_idx);
3198 	return r;
3199 }
3200 
3201 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3202 			 enum pr_type type, bool abort)
3203 {
3204 	struct mapped_device *md = bdev->bd_disk->private_data;
3205 	const struct pr_ops *ops;
3206 	int r, srcu_idx;
3207 
3208 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3209 	if (r < 0)
3210 		goto out;
3211 
3212 	ops = bdev->bd_disk->fops->pr_ops;
3213 	if (ops && ops->pr_preempt)
3214 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3215 	else
3216 		r = -EOPNOTSUPP;
3217 out:
3218 	dm_unprepare_ioctl(md, srcu_idx);
3219 	return r;
3220 }
3221 
3222 static int dm_pr_clear(struct block_device *bdev, u64 key)
3223 {
3224 	struct mapped_device *md = bdev->bd_disk->private_data;
3225 	const struct pr_ops *ops;
3226 	int r, srcu_idx;
3227 
3228 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3229 	if (r < 0)
3230 		goto out;
3231 
3232 	ops = bdev->bd_disk->fops->pr_ops;
3233 	if (ops && ops->pr_clear)
3234 		r = ops->pr_clear(bdev, key);
3235 	else
3236 		r = -EOPNOTSUPP;
3237 out:
3238 	dm_unprepare_ioctl(md, srcu_idx);
3239 	return r;
3240 }
3241 
3242 static const struct pr_ops dm_pr_ops = {
3243 	.pr_register	= dm_pr_register,
3244 	.pr_reserve	= dm_pr_reserve,
3245 	.pr_release	= dm_pr_release,
3246 	.pr_preempt	= dm_pr_preempt,
3247 	.pr_clear	= dm_pr_clear,
3248 };
3249 
3250 static const struct block_device_operations dm_blk_dops = {
3251 	.submit_bio = dm_submit_bio,
3252 	.open = dm_blk_open,
3253 	.release = dm_blk_close,
3254 	.ioctl = dm_blk_ioctl,
3255 	.getgeo = dm_blk_getgeo,
3256 	.report_zones = dm_blk_report_zones,
3257 	.pr_ops = &dm_pr_ops,
3258 	.owner = THIS_MODULE
3259 };
3260 
3261 static const struct dax_operations dm_dax_ops = {
3262 	.direct_access = dm_dax_direct_access,
3263 	.dax_supported = dm_dax_supported,
3264 	.copy_from_iter = dm_dax_copy_from_iter,
3265 	.copy_to_iter = dm_dax_copy_to_iter,
3266 	.zero_page_range = dm_dax_zero_page_range,
3267 };
3268 
3269 /*
3270  * module hooks
3271  */
3272 module_init(dm_init);
3273 module_exit(dm_exit);
3274 
3275 module_param(major, uint, 0);
3276 MODULE_PARM_DESC(major, "The major number of the device mapper");
3277 
3278 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3279 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3280 
3281 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3282 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3283 
3284 MODULE_DESCRIPTION(DM_NAME " driver");
3285 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3286 MODULE_LICENSE("GPL");
3287