xref: /openbmc/linux/drivers/md/dm.c (revision 513dbc10)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
580 	tio = clone_to_tio(clone);
581 	tio->flags = 0;
582 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 	tio->io = NULL;
584 
585 	io = container_of(tio, struct dm_io, tio);
586 	io->magic = DM_IO_MAGIC;
587 	io->status = BLK_STS_OK;
588 
589 	/* one ref is for submission, the other is for completion */
590 	atomic_set(&io->io_count, 2);
591 	this_cpu_inc(*md->pending_io);
592 	io->orig_bio = bio;
593 	io->md = md;
594 	spin_lock_init(&io->lock);
595 	io->start_time = jiffies;
596 	io->flags = 0;
597 	if (blk_queue_io_stat(md->queue))
598 		dm_io_set_flag(io, DM_IO_BLK_STAT);
599 
600 	if (static_branch_unlikely(&stats_enabled) &&
601 	    unlikely(dm_stats_used(&md->stats)))
602 		dm_stats_record_start(&md->stats, &io->stats_aux);
603 
604 	return io;
605 }
606 
607 static void free_io(struct dm_io *io)
608 {
609 	bio_put(&io->tio.clone);
610 }
611 
612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
613 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
614 {
615 	struct mapped_device *md = ci->io->md;
616 	struct dm_target_io *tio;
617 	struct bio *clone;
618 
619 	if (!ci->io->tio.io) {
620 		/* the dm_target_io embedded in ci->io is available */
621 		tio = &ci->io->tio;
622 		/* alloc_io() already initialized embedded clone */
623 		clone = &tio->clone;
624 	} else {
625 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
626 					&md->mempools->bs);
627 		if (!clone)
628 			return NULL;
629 
630 		/* REQ_DM_POLL_LIST shouldn't be inherited */
631 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
632 
633 		tio = clone_to_tio(clone);
634 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
635 	}
636 
637 	tio->magic = DM_TIO_MAGIC;
638 	tio->io = ci->io;
639 	tio->ti = ti;
640 	tio->target_bio_nr = target_bio_nr;
641 	tio->len_ptr = len;
642 	tio->old_sector = 0;
643 
644 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
645 	clone->bi_bdev = md->disk->part0;
646 	if (unlikely(ti->needs_bio_set_dev))
647 		bio_set_dev(clone, md->disk->part0);
648 
649 	if (len) {
650 		clone->bi_iter.bi_size = to_bytes(*len);
651 		if (bio_integrity(clone))
652 			bio_integrity_trim(clone);
653 	}
654 
655 	return clone;
656 }
657 
658 static void free_tio(struct bio *clone)
659 {
660 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661 		return;
662 	bio_put(clone);
663 }
664 
665 /*
666  * Add the bio to the list of deferred io.
667  */
668 static void queue_io(struct mapped_device *md, struct bio *bio)
669 {
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&md->deferred_lock, flags);
673 	bio_list_add(&md->deferred, bio);
674 	spin_unlock_irqrestore(&md->deferred_lock, flags);
675 	queue_work(md->wq, &md->work);
676 }
677 
678 /*
679  * Everyone (including functions in this file), should use this
680  * function to access the md->map field, and make sure they call
681  * dm_put_live_table() when finished.
682  */
683 struct dm_table *dm_get_live_table(struct mapped_device *md,
684 				   int *srcu_idx) __acquires(md->io_barrier)
685 {
686 	*srcu_idx = srcu_read_lock(&md->io_barrier);
687 
688 	return srcu_dereference(md->map, &md->io_barrier);
689 }
690 
691 void dm_put_live_table(struct mapped_device *md,
692 		       int srcu_idx) __releases(md->io_barrier)
693 {
694 	srcu_read_unlock(&md->io_barrier, srcu_idx);
695 }
696 
697 void dm_sync_table(struct mapped_device *md)
698 {
699 	synchronize_srcu(&md->io_barrier);
700 	synchronize_rcu_expedited();
701 }
702 
703 /*
704  * A fast alternative to dm_get_live_table/dm_put_live_table.
705  * The caller must not block between these two functions.
706  */
707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
708 {
709 	rcu_read_lock();
710 	return rcu_dereference(md->map);
711 }
712 
713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
714 {
715 	rcu_read_unlock();
716 }
717 
718 static char *_dm_claim_ptr = "I belong to device-mapper";
719 
720 /*
721  * Open a table device so we can use it as a map destination.
722  */
723 static struct table_device *open_table_device(struct mapped_device *md,
724 		dev_t dev, blk_mode_t mode)
725 {
726 	struct table_device *td;
727 	struct block_device *bdev;
728 	u64 part_off;
729 	int r;
730 
731 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
732 	if (!td)
733 		return ERR_PTR(-ENOMEM);
734 	refcount_set(&td->count, 1);
735 
736 	bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL);
737 	if (IS_ERR(bdev)) {
738 		r = PTR_ERR(bdev);
739 		goto out_free_td;
740 	}
741 
742 	/*
743 	 * We can be called before the dm disk is added.  In that case we can't
744 	 * register the holder relation here.  It will be done once add_disk was
745 	 * called.
746 	 */
747 	if (md->disk->slave_dir) {
748 		r = bd_link_disk_holder(bdev, md->disk);
749 		if (r)
750 			goto out_blkdev_put;
751 	}
752 
753 	td->dm_dev.mode = mode;
754 	td->dm_dev.bdev = bdev;
755 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
756 	format_dev_t(td->dm_dev.name, dev);
757 	list_add(&td->list, &md->table_devices);
758 	return td;
759 
760 out_blkdev_put:
761 	blkdev_put(bdev, _dm_claim_ptr);
762 out_free_td:
763 	kfree(td);
764 	return ERR_PTR(r);
765 }
766 
767 /*
768  * Close a table device that we've been using.
769  */
770 static void close_table_device(struct table_device *td, struct mapped_device *md)
771 {
772 	if (md->disk->slave_dir)
773 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
774 	blkdev_put(td->dm_dev.bdev, _dm_claim_ptr);
775 	put_dax(td->dm_dev.dax_dev);
776 	list_del(&td->list);
777 	kfree(td);
778 }
779 
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 					      blk_mode_t mode)
782 {
783 	struct table_device *td;
784 
785 	list_for_each_entry(td, l, list)
786 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 			return td;
788 
789 	return NULL;
790 }
791 
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
793 			struct dm_dev **result)
794 {
795 	struct table_device *td;
796 
797 	mutex_lock(&md->table_devices_lock);
798 	td = find_table_device(&md->table_devices, dev, mode);
799 	if (!td) {
800 		td = open_table_device(md, dev, mode);
801 		if (IS_ERR(td)) {
802 			mutex_unlock(&md->table_devices_lock);
803 			return PTR_ERR(td);
804 		}
805 	} else {
806 		refcount_inc(&td->count);
807 	}
808 	mutex_unlock(&md->table_devices_lock);
809 
810 	*result = &td->dm_dev;
811 	return 0;
812 }
813 
814 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
815 {
816 	struct table_device *td = container_of(d, struct table_device, dm_dev);
817 
818 	mutex_lock(&md->table_devices_lock);
819 	if (refcount_dec_and_test(&td->count))
820 		close_table_device(td, md);
821 	mutex_unlock(&md->table_devices_lock);
822 }
823 
824 /*
825  * Get the geometry associated with a dm device
826  */
827 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828 {
829 	*geo = md->geometry;
830 
831 	return 0;
832 }
833 
834 /*
835  * Set the geometry of a device.
836  */
837 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
838 {
839 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
840 
841 	if (geo->start > sz) {
842 		DMERR("Start sector is beyond the geometry limits.");
843 		return -EINVAL;
844 	}
845 
846 	md->geometry = *geo;
847 
848 	return 0;
849 }
850 
851 static int __noflush_suspending(struct mapped_device *md)
852 {
853 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
854 }
855 
856 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
857 {
858 	struct mapped_device *md = io->md;
859 
860 	if (first_stage) {
861 		struct dm_io *next = md->requeue_list;
862 
863 		md->requeue_list = io;
864 		io->next = next;
865 	} else {
866 		bio_list_add_head(&md->deferred, io->orig_bio);
867 	}
868 }
869 
870 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
871 {
872 	if (first_stage)
873 		queue_work(md->wq, &md->requeue_work);
874 	else
875 		queue_work(md->wq, &md->work);
876 }
877 
878 /*
879  * Return true if the dm_io's original bio is requeued.
880  * io->status is updated with error if requeue disallowed.
881  */
882 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
883 {
884 	struct bio *bio = io->orig_bio;
885 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
886 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
887 				     (bio->bi_opf & REQ_POLLED));
888 	struct mapped_device *md = io->md;
889 	bool requeued = false;
890 
891 	if (handle_requeue || handle_polled_eagain) {
892 		unsigned long flags;
893 
894 		if (bio->bi_opf & REQ_POLLED) {
895 			/*
896 			 * Upper layer won't help us poll split bio
897 			 * (io->orig_bio may only reflect a subset of the
898 			 * pre-split original) so clear REQ_POLLED.
899 			 */
900 			bio_clear_polled(bio);
901 		}
902 
903 		/*
904 		 * Target requested pushing back the I/O or
905 		 * polled IO hit BLK_STS_AGAIN.
906 		 */
907 		spin_lock_irqsave(&md->deferred_lock, flags);
908 		if ((__noflush_suspending(md) &&
909 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
910 		    handle_polled_eagain || first_stage) {
911 			dm_requeue_add_io(io, first_stage);
912 			requeued = true;
913 		} else {
914 			/*
915 			 * noflush suspend was interrupted or this is
916 			 * a write to a zoned target.
917 			 */
918 			io->status = BLK_STS_IOERR;
919 		}
920 		spin_unlock_irqrestore(&md->deferred_lock, flags);
921 	}
922 
923 	if (requeued)
924 		dm_kick_requeue(md, first_stage);
925 
926 	return requeued;
927 }
928 
929 static void __dm_io_complete(struct dm_io *io, bool first_stage)
930 {
931 	struct bio *bio = io->orig_bio;
932 	struct mapped_device *md = io->md;
933 	blk_status_t io_error;
934 	bool requeued;
935 
936 	requeued = dm_handle_requeue(io, first_stage);
937 	if (requeued && first_stage)
938 		return;
939 
940 	io_error = io->status;
941 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
942 		dm_end_io_acct(io);
943 	else if (!io_error) {
944 		/*
945 		 * Must handle target that DM_MAPIO_SUBMITTED only to
946 		 * then bio_endio() rather than dm_submit_bio_remap()
947 		 */
948 		__dm_start_io_acct(io);
949 		dm_end_io_acct(io);
950 	}
951 	free_io(io);
952 	smp_wmb();
953 	this_cpu_dec(*md->pending_io);
954 
955 	/* nudge anyone waiting on suspend queue */
956 	if (unlikely(wq_has_sleeper(&md->wait)))
957 		wake_up(&md->wait);
958 
959 	/* Return early if the original bio was requeued */
960 	if (requeued)
961 		return;
962 
963 	if (bio_is_flush_with_data(bio)) {
964 		/*
965 		 * Preflush done for flush with data, reissue
966 		 * without REQ_PREFLUSH.
967 		 */
968 		bio->bi_opf &= ~REQ_PREFLUSH;
969 		queue_io(md, bio);
970 	} else {
971 		/* done with normal IO or empty flush */
972 		if (io_error)
973 			bio->bi_status = io_error;
974 		bio_endio(bio);
975 	}
976 }
977 
978 static void dm_wq_requeue_work(struct work_struct *work)
979 {
980 	struct mapped_device *md = container_of(work, struct mapped_device,
981 						requeue_work);
982 	unsigned long flags;
983 	struct dm_io *io;
984 
985 	/* reuse deferred lock to simplify dm_handle_requeue */
986 	spin_lock_irqsave(&md->deferred_lock, flags);
987 	io = md->requeue_list;
988 	md->requeue_list = NULL;
989 	spin_unlock_irqrestore(&md->deferred_lock, flags);
990 
991 	while (io) {
992 		struct dm_io *next = io->next;
993 
994 		dm_io_rewind(io, &md->disk->bio_split);
995 
996 		io->next = NULL;
997 		__dm_io_complete(io, false);
998 		io = next;
999 		cond_resched();
1000 	}
1001 }
1002 
1003 /*
1004  * Two staged requeue:
1005  *
1006  * 1) io->orig_bio points to the real original bio, and the part mapped to
1007  *    this io must be requeued, instead of other parts of the original bio.
1008  *
1009  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1010  */
1011 static void dm_io_complete(struct dm_io *io)
1012 {
1013 	bool first_requeue;
1014 
1015 	/*
1016 	 * Only dm_io that has been split needs two stage requeue, otherwise
1017 	 * we may run into long bio clone chain during suspend and OOM could
1018 	 * be triggered.
1019 	 *
1020 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1021 	 * also aren't handled via the first stage requeue.
1022 	 */
1023 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1024 		first_requeue = true;
1025 	else
1026 		first_requeue = false;
1027 
1028 	__dm_io_complete(io, first_requeue);
1029 }
1030 
1031 /*
1032  * Decrements the number of outstanding ios that a bio has been
1033  * cloned into, completing the original io if necc.
1034  */
1035 static inline void __dm_io_dec_pending(struct dm_io *io)
1036 {
1037 	if (atomic_dec_and_test(&io->io_count))
1038 		dm_io_complete(io);
1039 }
1040 
1041 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1042 {
1043 	unsigned long flags;
1044 
1045 	/* Push-back supersedes any I/O errors */
1046 	spin_lock_irqsave(&io->lock, flags);
1047 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1048 	      __noflush_suspending(io->md))) {
1049 		io->status = error;
1050 	}
1051 	spin_unlock_irqrestore(&io->lock, flags);
1052 }
1053 
1054 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1055 {
1056 	if (unlikely(error))
1057 		dm_io_set_error(io, error);
1058 
1059 	__dm_io_dec_pending(io);
1060 }
1061 
1062 /*
1063  * The queue_limits are only valid as long as you have a reference
1064  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1065  */
1066 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1067 {
1068 	return &md->queue->limits;
1069 }
1070 
1071 void disable_discard(struct mapped_device *md)
1072 {
1073 	struct queue_limits *limits = dm_get_queue_limits(md);
1074 
1075 	/* device doesn't really support DISCARD, disable it */
1076 	limits->max_discard_sectors = 0;
1077 }
1078 
1079 void disable_write_zeroes(struct mapped_device *md)
1080 {
1081 	struct queue_limits *limits = dm_get_queue_limits(md);
1082 
1083 	/* device doesn't really support WRITE ZEROES, disable it */
1084 	limits->max_write_zeroes_sectors = 0;
1085 }
1086 
1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1088 {
1089 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1090 }
1091 
1092 static void clone_endio(struct bio *bio)
1093 {
1094 	blk_status_t error = bio->bi_status;
1095 	struct dm_target_io *tio = clone_to_tio(bio);
1096 	struct dm_target *ti = tio->ti;
1097 	dm_endio_fn endio = ti->type->end_io;
1098 	struct dm_io *io = tio->io;
1099 	struct mapped_device *md = io->md;
1100 
1101 	if (unlikely(error == BLK_STS_TARGET)) {
1102 		if (bio_op(bio) == REQ_OP_DISCARD &&
1103 		    !bdev_max_discard_sectors(bio->bi_bdev))
1104 			disable_discard(md);
1105 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107 			disable_write_zeroes(md);
1108 	}
1109 
1110 	if (static_branch_unlikely(&zoned_enabled) &&
1111 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1112 		dm_zone_endio(io, bio);
1113 
1114 	if (endio) {
1115 		int r = endio(ti, bio, &error);
1116 
1117 		switch (r) {
1118 		case DM_ENDIO_REQUEUE:
1119 			if (static_branch_unlikely(&zoned_enabled)) {
1120 				/*
1121 				 * Requeuing writes to a sequential zone of a zoned
1122 				 * target will break the sequential write pattern:
1123 				 * fail such IO.
1124 				 */
1125 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126 					error = BLK_STS_IOERR;
1127 				else
1128 					error = BLK_STS_DM_REQUEUE;
1129 			} else
1130 				error = BLK_STS_DM_REQUEUE;
1131 			fallthrough;
1132 		case DM_ENDIO_DONE:
1133 			break;
1134 		case DM_ENDIO_INCOMPLETE:
1135 			/* The target will handle the io */
1136 			return;
1137 		default:
1138 			DMCRIT("unimplemented target endio return value: %d", r);
1139 			BUG();
1140 		}
1141 	}
1142 
1143 	if (static_branch_unlikely(&swap_bios_enabled) &&
1144 	    unlikely(swap_bios_limit(ti, bio)))
1145 		up(&md->swap_bios_semaphore);
1146 
1147 	free_tio(bio);
1148 	dm_io_dec_pending(io, error);
1149 }
1150 
1151 /*
1152  * Return maximum size of I/O possible at the supplied sector up to the current
1153  * target boundary.
1154  */
1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156 						  sector_t target_offset)
1157 {
1158 	return ti->len - target_offset;
1159 }
1160 
1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162 			     unsigned int max_granularity,
1163 			     unsigned int max_sectors)
1164 {
1165 	sector_t target_offset = dm_target_offset(ti, sector);
1166 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1167 
1168 	/*
1169 	 * Does the target need to split IO even further?
1170 	 * - varied (per target) IO splitting is a tenet of DM; this
1171 	 *   explains why stacked chunk_sectors based splitting via
1172 	 *   bio_split_to_limits() isn't possible here.
1173 	 */
1174 	if (!max_granularity)
1175 		return len;
1176 	return min_t(sector_t, len,
1177 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1179 }
1180 
1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1182 {
1183 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1184 }
1185 
1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1187 {
1188 	if (len > UINT_MAX) {
1189 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190 		      (unsigned long long)len, UINT_MAX);
1191 		ti->error = "Maximum size of target IO is too large";
1192 		return -EINVAL;
1193 	}
1194 
1195 	ti->max_io_len = (uint32_t) len;
1196 
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1200 
1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202 						sector_t sector, int *srcu_idx)
1203 	__acquires(md->io_barrier)
1204 {
1205 	struct dm_table *map;
1206 	struct dm_target *ti;
1207 
1208 	map = dm_get_live_table(md, srcu_idx);
1209 	if (!map)
1210 		return NULL;
1211 
1212 	ti = dm_table_find_target(map, sector);
1213 	if (!ti)
1214 		return NULL;
1215 
1216 	return ti;
1217 }
1218 
1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1221 		pfn_t *pfn)
1222 {
1223 	struct mapped_device *md = dax_get_private(dax_dev);
1224 	sector_t sector = pgoff * PAGE_SECTORS;
1225 	struct dm_target *ti;
1226 	long len, ret = -EIO;
1227 	int srcu_idx;
1228 
1229 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230 
1231 	if (!ti)
1232 		goto out;
1233 	if (!ti->type->direct_access)
1234 		goto out;
1235 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1236 	if (len < 1)
1237 		goto out;
1238 	nr_pages = min(len, nr_pages);
1239 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1240 
1241  out:
1242 	dm_put_live_table(md, srcu_idx);
1243 
1244 	return ret;
1245 }
1246 
1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1248 				  size_t nr_pages)
1249 {
1250 	struct mapped_device *md = dax_get_private(dax_dev);
1251 	sector_t sector = pgoff * PAGE_SECTORS;
1252 	struct dm_target *ti;
1253 	int ret = -EIO;
1254 	int srcu_idx;
1255 
1256 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257 
1258 	if (!ti)
1259 		goto out;
1260 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1261 		/*
1262 		 * ->zero_page_range() is mandatory dax operation. If we are
1263 		 *  here, something is wrong.
1264 		 */
1265 		goto out;
1266 	}
1267 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1268  out:
1269 	dm_put_live_table(md, srcu_idx);
1270 
1271 	return ret;
1272 }
1273 
1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275 		void *addr, size_t bytes, struct iov_iter *i)
1276 {
1277 	struct mapped_device *md = dax_get_private(dax_dev);
1278 	sector_t sector = pgoff * PAGE_SECTORS;
1279 	struct dm_target *ti;
1280 	int srcu_idx;
1281 	long ret = 0;
1282 
1283 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284 	if (!ti || !ti->type->dax_recovery_write)
1285 		goto out;
1286 
1287 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1288 out:
1289 	dm_put_live_table(md, srcu_idx);
1290 	return ret;
1291 }
1292 
1293 /*
1294  * A target may call dm_accept_partial_bio only from the map routine.  It is
1295  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1297  * __send_duplicate_bios().
1298  *
1299  * dm_accept_partial_bio informs the dm that the target only wants to process
1300  * additional n_sectors sectors of the bio and the rest of the data should be
1301  * sent in a next bio.
1302  *
1303  * A diagram that explains the arithmetics:
1304  * +--------------------+---------------+-------+
1305  * |         1          |       2       |   3   |
1306  * +--------------------+---------------+-------+
1307  *
1308  * <-------------- *tio->len_ptr --------------->
1309  *                      <----- bio_sectors ----->
1310  *                      <-- n_sectors -->
1311  *
1312  * Region 1 was already iterated over with bio_advance or similar function.
1313  *	(it may be empty if the target doesn't use bio_advance)
1314  * Region 2 is the remaining bio size that the target wants to process.
1315  *	(it may be empty if region 1 is non-empty, although there is no reason
1316  *	 to make it empty)
1317  * The target requires that region 3 is to be sent in the next bio.
1318  *
1319  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1320  * the partially processed part (the sum of regions 1+2) must be the same for all
1321  * copies of the bio.
1322  */
1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1324 {
1325 	struct dm_target_io *tio = clone_to_tio(bio);
1326 	struct dm_io *io = tio->io;
1327 	unsigned int bio_sectors = bio_sectors(bio);
1328 
1329 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1330 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1331 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1332 	BUG_ON(bio_sectors > *tio->len_ptr);
1333 	BUG_ON(n_sectors > bio_sectors);
1334 
1335 	*tio->len_ptr -= bio_sectors - n_sectors;
1336 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1337 
1338 	/*
1339 	 * __split_and_process_bio() may have already saved mapped part
1340 	 * for accounting but it is being reduced so update accordingly.
1341 	 */
1342 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1343 	io->sectors = n_sectors;
1344 	io->sector_offset = bio_sectors(io->orig_bio);
1345 }
1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1347 
1348 /*
1349  * @clone: clone bio that DM core passed to target's .map function
1350  * @tgt_clone: clone of @clone bio that target needs submitted
1351  *
1352  * Targets should use this interface to submit bios they take
1353  * ownership of when returning DM_MAPIO_SUBMITTED.
1354  *
1355  * Target should also enable ti->accounts_remapped_io
1356  */
1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1358 {
1359 	struct dm_target_io *tio = clone_to_tio(clone);
1360 	struct dm_io *io = tio->io;
1361 
1362 	/* establish bio that will get submitted */
1363 	if (!tgt_clone)
1364 		tgt_clone = clone;
1365 
1366 	/*
1367 	 * Account io->origin_bio to DM dev on behalf of target
1368 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1369 	 */
1370 	dm_start_io_acct(io, clone);
1371 
1372 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1373 			      tio->old_sector);
1374 	submit_bio_noacct(tgt_clone);
1375 }
1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1377 
1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1379 {
1380 	mutex_lock(&md->swap_bios_lock);
1381 	while (latch < md->swap_bios) {
1382 		cond_resched();
1383 		down(&md->swap_bios_semaphore);
1384 		md->swap_bios--;
1385 	}
1386 	while (latch > md->swap_bios) {
1387 		cond_resched();
1388 		up(&md->swap_bios_semaphore);
1389 		md->swap_bios++;
1390 	}
1391 	mutex_unlock(&md->swap_bios_lock);
1392 }
1393 
1394 static void __map_bio(struct bio *clone)
1395 {
1396 	struct dm_target_io *tio = clone_to_tio(clone);
1397 	struct dm_target *ti = tio->ti;
1398 	struct dm_io *io = tio->io;
1399 	struct mapped_device *md = io->md;
1400 	int r;
1401 
1402 	clone->bi_end_io = clone_endio;
1403 
1404 	/*
1405 	 * Map the clone.
1406 	 */
1407 	tio->old_sector = clone->bi_iter.bi_sector;
1408 
1409 	if (static_branch_unlikely(&swap_bios_enabled) &&
1410 	    unlikely(swap_bios_limit(ti, clone))) {
1411 		int latch = get_swap_bios();
1412 
1413 		if (unlikely(latch != md->swap_bios))
1414 			__set_swap_bios_limit(md, latch);
1415 		down(&md->swap_bios_semaphore);
1416 	}
1417 
1418 	if (static_branch_unlikely(&zoned_enabled)) {
1419 		/*
1420 		 * Check if the IO needs a special mapping due to zone append
1421 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1422 		 * calls the target map operation.
1423 		 */
1424 		if (unlikely(dm_emulate_zone_append(md)))
1425 			r = dm_zone_map_bio(tio);
1426 		else
1427 			r = ti->type->map(ti, clone);
1428 	} else
1429 		r = ti->type->map(ti, clone);
1430 
1431 	switch (r) {
1432 	case DM_MAPIO_SUBMITTED:
1433 		/* target has assumed ownership of this io */
1434 		if (!ti->accounts_remapped_io)
1435 			dm_start_io_acct(io, clone);
1436 		break;
1437 	case DM_MAPIO_REMAPPED:
1438 		dm_submit_bio_remap(clone, NULL);
1439 		break;
1440 	case DM_MAPIO_KILL:
1441 	case DM_MAPIO_REQUEUE:
1442 		if (static_branch_unlikely(&swap_bios_enabled) &&
1443 		    unlikely(swap_bios_limit(ti, clone)))
1444 			up(&md->swap_bios_semaphore);
1445 		free_tio(clone);
1446 		if (r == DM_MAPIO_KILL)
1447 			dm_io_dec_pending(io, BLK_STS_IOERR);
1448 		else
1449 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1450 		break;
1451 	default:
1452 		DMCRIT("unimplemented target map return value: %d", r);
1453 		BUG();
1454 	}
1455 }
1456 
1457 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1458 {
1459 	struct dm_io *io = ci->io;
1460 
1461 	if (ci->sector_count > len) {
1462 		/*
1463 		 * Split needed, save the mapped part for accounting.
1464 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1465 		 */
1466 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1467 		io->sectors = len;
1468 		io->sector_offset = bio_sectors(ci->bio);
1469 	}
1470 }
1471 
1472 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1473 				struct dm_target *ti, unsigned int num_bios,
1474 				unsigned *len)
1475 {
1476 	struct bio *bio;
1477 	int try;
1478 
1479 	for (try = 0; try < 2; try++) {
1480 		int bio_nr;
1481 
1482 		if (try)
1483 			mutex_lock(&ci->io->md->table_devices_lock);
1484 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1485 			bio = alloc_tio(ci, ti, bio_nr, len,
1486 					try ? GFP_NOIO : GFP_NOWAIT);
1487 			if (!bio)
1488 				break;
1489 
1490 			bio_list_add(blist, bio);
1491 		}
1492 		if (try)
1493 			mutex_unlock(&ci->io->md->table_devices_lock);
1494 		if (bio_nr == num_bios)
1495 			return;
1496 
1497 		while ((bio = bio_list_pop(blist)))
1498 			free_tio(bio);
1499 	}
1500 }
1501 
1502 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1503 				 unsigned int num_bios, unsigned int *len)
1504 {
1505 	struct bio_list blist = BIO_EMPTY_LIST;
1506 	struct bio *clone;
1507 	unsigned int ret = 0;
1508 
1509 	switch (num_bios) {
1510 	case 0:
1511 		break;
1512 	case 1:
1513 		if (len)
1514 			setup_split_accounting(ci, *len);
1515 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1516 		__map_bio(clone);
1517 		ret = 1;
1518 		break;
1519 	default:
1520 		if (len)
1521 			setup_split_accounting(ci, *len);
1522 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1523 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1524 		while ((clone = bio_list_pop(&blist))) {
1525 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1526 			__map_bio(clone);
1527 			ret += 1;
1528 		}
1529 		break;
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static void __send_empty_flush(struct clone_info *ci)
1536 {
1537 	struct dm_table *t = ci->map;
1538 	struct bio flush_bio;
1539 
1540 	/*
1541 	 * Use an on-stack bio for this, it's safe since we don't
1542 	 * need to reference it after submit. It's just used as
1543 	 * the basis for the clone(s).
1544 	 */
1545 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1546 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1547 
1548 	ci->bio = &flush_bio;
1549 	ci->sector_count = 0;
1550 	ci->io->tio.clone.bi_iter.bi_size = 0;
1551 
1552 	for (unsigned int i = 0; i < t->num_targets; i++) {
1553 		unsigned int bios;
1554 		struct dm_target *ti = dm_table_get_target(t, i);
1555 
1556 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1557 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1558 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1559 	}
1560 
1561 	/*
1562 	 * alloc_io() takes one extra reference for submission, so the
1563 	 * reference won't reach 0 without the following subtraction
1564 	 */
1565 	atomic_sub(1, &ci->io->io_count);
1566 
1567 	bio_uninit(ci->bio);
1568 }
1569 
1570 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1571 					unsigned int num_bios,
1572 					unsigned int max_granularity,
1573 					unsigned int max_sectors)
1574 {
1575 	unsigned int len, bios;
1576 
1577 	len = min_t(sector_t, ci->sector_count,
1578 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1579 
1580 	atomic_add(num_bios, &ci->io->io_count);
1581 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1582 	/*
1583 	 * alloc_io() takes one extra reference for submission, so the
1584 	 * reference won't reach 0 without the following (+1) subtraction
1585 	 */
1586 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1587 
1588 	ci->sector += len;
1589 	ci->sector_count -= len;
1590 }
1591 
1592 static bool is_abnormal_io(struct bio *bio)
1593 {
1594 	enum req_op op = bio_op(bio);
1595 
1596 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1597 		switch (op) {
1598 		case REQ_OP_DISCARD:
1599 		case REQ_OP_SECURE_ERASE:
1600 		case REQ_OP_WRITE_ZEROES:
1601 			return true;
1602 		default:
1603 			break;
1604 		}
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1611 					  struct dm_target *ti)
1612 {
1613 	unsigned int num_bios = 0;
1614 	unsigned int max_granularity = 0;
1615 	unsigned int max_sectors = 0;
1616 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1617 
1618 	switch (bio_op(ci->bio)) {
1619 	case REQ_OP_DISCARD:
1620 		num_bios = ti->num_discard_bios;
1621 		max_sectors = limits->max_discard_sectors;
1622 		if (ti->max_discard_granularity)
1623 			max_granularity = max_sectors;
1624 		break;
1625 	case REQ_OP_SECURE_ERASE:
1626 		num_bios = ti->num_secure_erase_bios;
1627 		max_sectors = limits->max_secure_erase_sectors;
1628 		if (ti->max_secure_erase_granularity)
1629 			max_granularity = max_sectors;
1630 		break;
1631 	case REQ_OP_WRITE_ZEROES:
1632 		num_bios = ti->num_write_zeroes_bios;
1633 		max_sectors = limits->max_write_zeroes_sectors;
1634 		if (ti->max_write_zeroes_granularity)
1635 			max_granularity = max_sectors;
1636 		break;
1637 	default:
1638 		break;
1639 	}
1640 
1641 	/*
1642 	 * Even though the device advertised support for this type of
1643 	 * request, that does not mean every target supports it, and
1644 	 * reconfiguration might also have changed that since the
1645 	 * check was performed.
1646 	 */
1647 	if (unlikely(!num_bios))
1648 		return BLK_STS_NOTSUPP;
1649 
1650 	__send_changing_extent_only(ci, ti, num_bios,
1651 				    max_granularity, max_sectors);
1652 	return BLK_STS_OK;
1653 }
1654 
1655 /*
1656  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1657  * associated with this bio, and this bio's bi_private needs to be
1658  * stored in dm_io->data before the reuse.
1659  *
1660  * bio->bi_private is owned by fs or upper layer, so block layer won't
1661  * touch it after splitting. Meantime it won't be changed by anyone after
1662  * bio is submitted. So this reuse is safe.
1663  */
1664 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1665 {
1666 	return (struct dm_io **)&bio->bi_private;
1667 }
1668 
1669 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1670 {
1671 	struct dm_io **head = dm_poll_list_head(bio);
1672 
1673 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1674 		bio->bi_opf |= REQ_DM_POLL_LIST;
1675 		/*
1676 		 * Save .bi_private into dm_io, so that we can reuse
1677 		 * .bi_private as dm_io list head for storing dm_io list
1678 		 */
1679 		io->data = bio->bi_private;
1680 
1681 		/* tell block layer to poll for completion */
1682 		bio->bi_cookie = ~BLK_QC_T_NONE;
1683 
1684 		io->next = NULL;
1685 	} else {
1686 		/*
1687 		 * bio recursed due to split, reuse original poll list,
1688 		 * and save bio->bi_private too.
1689 		 */
1690 		io->data = (*head)->data;
1691 		io->next = *head;
1692 	}
1693 
1694 	*head = io;
1695 }
1696 
1697 /*
1698  * Select the correct strategy for processing a non-flush bio.
1699  */
1700 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1701 {
1702 	struct bio *clone;
1703 	struct dm_target *ti;
1704 	unsigned int len;
1705 
1706 	ti = dm_table_find_target(ci->map, ci->sector);
1707 	if (unlikely(!ti))
1708 		return BLK_STS_IOERR;
1709 
1710 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1711 	    unlikely(!dm_target_supports_nowait(ti->type)))
1712 		return BLK_STS_NOTSUPP;
1713 
1714 	if (unlikely(ci->is_abnormal_io))
1715 		return __process_abnormal_io(ci, ti);
1716 
1717 	/*
1718 	 * Only support bio polling for normal IO, and the target io is
1719 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1720 	 */
1721 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1722 
1723 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1724 	setup_split_accounting(ci, len);
1725 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1726 	__map_bio(clone);
1727 
1728 	ci->sector += len;
1729 	ci->sector_count -= len;
1730 
1731 	return BLK_STS_OK;
1732 }
1733 
1734 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1735 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1736 {
1737 	ci->map = map;
1738 	ci->io = alloc_io(md, bio);
1739 	ci->bio = bio;
1740 	ci->is_abnormal_io = is_abnormal;
1741 	ci->submit_as_polled = false;
1742 	ci->sector = bio->bi_iter.bi_sector;
1743 	ci->sector_count = bio_sectors(bio);
1744 
1745 	/* Shouldn't happen but sector_count was being set to 0 so... */
1746 	if (static_branch_unlikely(&zoned_enabled) &&
1747 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1748 		ci->sector_count = 0;
1749 }
1750 
1751 /*
1752  * Entry point to split a bio into clones and submit them to the targets.
1753  */
1754 static void dm_split_and_process_bio(struct mapped_device *md,
1755 				     struct dm_table *map, struct bio *bio)
1756 {
1757 	struct clone_info ci;
1758 	struct dm_io *io;
1759 	blk_status_t error = BLK_STS_OK;
1760 	bool is_abnormal;
1761 
1762 	is_abnormal = is_abnormal_io(bio);
1763 	if (unlikely(is_abnormal)) {
1764 		/*
1765 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1766 		 * otherwise associated queue_limits won't be imposed.
1767 		 */
1768 		bio = bio_split_to_limits(bio);
1769 		if (!bio)
1770 			return;
1771 	}
1772 
1773 	init_clone_info(&ci, md, map, bio, is_abnormal);
1774 	io = ci.io;
1775 
1776 	if (bio->bi_opf & REQ_PREFLUSH) {
1777 		__send_empty_flush(&ci);
1778 		/* dm_io_complete submits any data associated with flush */
1779 		goto out;
1780 	}
1781 
1782 	error = __split_and_process_bio(&ci);
1783 	if (error || !ci.sector_count)
1784 		goto out;
1785 	/*
1786 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1787 	 * *after* bios already submitted have been completely processed.
1788 	 */
1789 	bio_trim(bio, io->sectors, ci.sector_count);
1790 	trace_block_split(bio, bio->bi_iter.bi_sector);
1791 	bio_inc_remaining(bio);
1792 	submit_bio_noacct(bio);
1793 out:
1794 	/*
1795 	 * Drop the extra reference count for non-POLLED bio, and hold one
1796 	 * reference for POLLED bio, which will be released in dm_poll_bio
1797 	 *
1798 	 * Add every dm_io instance into the dm_io list head which is stored
1799 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1800 	 */
1801 	if (error || !ci.submit_as_polled) {
1802 		/*
1803 		 * In case of submission failure, the extra reference for
1804 		 * submitting io isn't consumed yet
1805 		 */
1806 		if (error)
1807 			atomic_dec(&io->io_count);
1808 		dm_io_dec_pending(io, error);
1809 	} else
1810 		dm_queue_poll_io(bio, io);
1811 }
1812 
1813 static void dm_submit_bio(struct bio *bio)
1814 {
1815 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1816 	int srcu_idx;
1817 	struct dm_table *map;
1818 
1819 	map = dm_get_live_table(md, &srcu_idx);
1820 
1821 	/* If suspended, or map not yet available, queue this IO for later */
1822 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1823 	    unlikely(!map)) {
1824 		if (bio->bi_opf & REQ_NOWAIT)
1825 			bio_wouldblock_error(bio);
1826 		else if (bio->bi_opf & REQ_RAHEAD)
1827 			bio_io_error(bio);
1828 		else
1829 			queue_io(md, bio);
1830 		goto out;
1831 	}
1832 
1833 	dm_split_and_process_bio(md, map, bio);
1834 out:
1835 	dm_put_live_table(md, srcu_idx);
1836 }
1837 
1838 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1839 			  unsigned int flags)
1840 {
1841 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1842 
1843 	/* don't poll if the mapped io is done */
1844 	if (atomic_read(&io->io_count) > 1)
1845 		bio_poll(&io->tio.clone, iob, flags);
1846 
1847 	/* bio_poll holds the last reference */
1848 	return atomic_read(&io->io_count) == 1;
1849 }
1850 
1851 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1852 		       unsigned int flags)
1853 {
1854 	struct dm_io **head = dm_poll_list_head(bio);
1855 	struct dm_io *list = *head;
1856 	struct dm_io *tmp = NULL;
1857 	struct dm_io *curr, *next;
1858 
1859 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1860 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1861 		return 0;
1862 
1863 	WARN_ON_ONCE(!list);
1864 
1865 	/*
1866 	 * Restore .bi_private before possibly completing dm_io.
1867 	 *
1868 	 * bio_poll() is only possible once @bio has been completely
1869 	 * submitted via submit_bio_noacct()'s depth-first submission.
1870 	 * So there is no dm_queue_poll_io() race associated with
1871 	 * clearing REQ_DM_POLL_LIST here.
1872 	 */
1873 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1874 	bio->bi_private = list->data;
1875 
1876 	for (curr = list, next = curr->next; curr; curr = next, next =
1877 			curr ? curr->next : NULL) {
1878 		if (dm_poll_dm_io(curr, iob, flags)) {
1879 			/*
1880 			 * clone_endio() has already occurred, so no
1881 			 * error handling is needed here.
1882 			 */
1883 			__dm_io_dec_pending(curr);
1884 		} else {
1885 			curr->next = tmp;
1886 			tmp = curr;
1887 		}
1888 	}
1889 
1890 	/* Not done? */
1891 	if (tmp) {
1892 		bio->bi_opf |= REQ_DM_POLL_LIST;
1893 		/* Reset bio->bi_private to dm_io list head */
1894 		*head = tmp;
1895 		return 0;
1896 	}
1897 	return 1;
1898 }
1899 
1900 /*
1901  *---------------------------------------------------------------
1902  * An IDR is used to keep track of allocated minor numbers.
1903  *---------------------------------------------------------------
1904  */
1905 static void free_minor(int minor)
1906 {
1907 	spin_lock(&_minor_lock);
1908 	idr_remove(&_minor_idr, minor);
1909 	spin_unlock(&_minor_lock);
1910 }
1911 
1912 /*
1913  * See if the device with a specific minor # is free.
1914  */
1915 static int specific_minor(int minor)
1916 {
1917 	int r;
1918 
1919 	if (minor >= (1 << MINORBITS))
1920 		return -EINVAL;
1921 
1922 	idr_preload(GFP_KERNEL);
1923 	spin_lock(&_minor_lock);
1924 
1925 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1926 
1927 	spin_unlock(&_minor_lock);
1928 	idr_preload_end();
1929 	if (r < 0)
1930 		return r == -ENOSPC ? -EBUSY : r;
1931 	return 0;
1932 }
1933 
1934 static int next_free_minor(int *minor)
1935 {
1936 	int r;
1937 
1938 	idr_preload(GFP_KERNEL);
1939 	spin_lock(&_minor_lock);
1940 
1941 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1942 
1943 	spin_unlock(&_minor_lock);
1944 	idr_preload_end();
1945 	if (r < 0)
1946 		return r;
1947 	*minor = r;
1948 	return 0;
1949 }
1950 
1951 static const struct block_device_operations dm_blk_dops;
1952 static const struct block_device_operations dm_rq_blk_dops;
1953 static const struct dax_operations dm_dax_ops;
1954 
1955 static void dm_wq_work(struct work_struct *work);
1956 
1957 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1958 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1959 {
1960 	dm_destroy_crypto_profile(q->crypto_profile);
1961 }
1962 
1963 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1964 
1965 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1966 {
1967 }
1968 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1969 
1970 static void cleanup_mapped_device(struct mapped_device *md)
1971 {
1972 	if (md->wq)
1973 		destroy_workqueue(md->wq);
1974 	dm_free_md_mempools(md->mempools);
1975 
1976 	if (md->dax_dev) {
1977 		dax_remove_host(md->disk);
1978 		kill_dax(md->dax_dev);
1979 		put_dax(md->dax_dev);
1980 		md->dax_dev = NULL;
1981 	}
1982 
1983 	dm_cleanup_zoned_dev(md);
1984 	if (md->disk) {
1985 		spin_lock(&_minor_lock);
1986 		md->disk->private_data = NULL;
1987 		spin_unlock(&_minor_lock);
1988 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1989 			struct table_device *td;
1990 
1991 			dm_sysfs_exit(md);
1992 			list_for_each_entry(td, &md->table_devices, list) {
1993 				bd_unlink_disk_holder(td->dm_dev.bdev,
1994 						      md->disk);
1995 			}
1996 
1997 			/*
1998 			 * Hold lock to make sure del_gendisk() won't concurrent
1999 			 * with open/close_table_device().
2000 			 */
2001 			mutex_lock(&md->table_devices_lock);
2002 			del_gendisk(md->disk);
2003 			mutex_unlock(&md->table_devices_lock);
2004 		}
2005 		dm_queue_destroy_crypto_profile(md->queue);
2006 		put_disk(md->disk);
2007 	}
2008 
2009 	if (md->pending_io) {
2010 		free_percpu(md->pending_io);
2011 		md->pending_io = NULL;
2012 	}
2013 
2014 	cleanup_srcu_struct(&md->io_barrier);
2015 
2016 	mutex_destroy(&md->suspend_lock);
2017 	mutex_destroy(&md->type_lock);
2018 	mutex_destroy(&md->table_devices_lock);
2019 	mutex_destroy(&md->swap_bios_lock);
2020 
2021 	dm_mq_cleanup_mapped_device(md);
2022 }
2023 
2024 /*
2025  * Allocate and initialise a blank device with a given minor.
2026  */
2027 static struct mapped_device *alloc_dev(int minor)
2028 {
2029 	int r, numa_node_id = dm_get_numa_node();
2030 	struct mapped_device *md;
2031 	void *old_md;
2032 
2033 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2034 	if (!md) {
2035 		DMERR("unable to allocate device, out of memory.");
2036 		return NULL;
2037 	}
2038 
2039 	if (!try_module_get(THIS_MODULE))
2040 		goto bad_module_get;
2041 
2042 	/* get a minor number for the dev */
2043 	if (minor == DM_ANY_MINOR)
2044 		r = next_free_minor(&minor);
2045 	else
2046 		r = specific_minor(minor);
2047 	if (r < 0)
2048 		goto bad_minor;
2049 
2050 	r = init_srcu_struct(&md->io_barrier);
2051 	if (r < 0)
2052 		goto bad_io_barrier;
2053 
2054 	md->numa_node_id = numa_node_id;
2055 	md->init_tio_pdu = false;
2056 	md->type = DM_TYPE_NONE;
2057 	mutex_init(&md->suspend_lock);
2058 	mutex_init(&md->type_lock);
2059 	mutex_init(&md->table_devices_lock);
2060 	spin_lock_init(&md->deferred_lock);
2061 	atomic_set(&md->holders, 1);
2062 	atomic_set(&md->open_count, 0);
2063 	atomic_set(&md->event_nr, 0);
2064 	atomic_set(&md->uevent_seq, 0);
2065 	INIT_LIST_HEAD(&md->uevent_list);
2066 	INIT_LIST_HEAD(&md->table_devices);
2067 	spin_lock_init(&md->uevent_lock);
2068 
2069 	/*
2070 	 * default to bio-based until DM table is loaded and md->type
2071 	 * established. If request-based table is loaded: blk-mq will
2072 	 * override accordingly.
2073 	 */
2074 	md->disk = blk_alloc_disk(md->numa_node_id);
2075 	if (!md->disk)
2076 		goto bad;
2077 	md->queue = md->disk->queue;
2078 
2079 	init_waitqueue_head(&md->wait);
2080 	INIT_WORK(&md->work, dm_wq_work);
2081 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2082 	init_waitqueue_head(&md->eventq);
2083 	init_completion(&md->kobj_holder.completion);
2084 
2085 	md->requeue_list = NULL;
2086 	md->swap_bios = get_swap_bios();
2087 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2088 	mutex_init(&md->swap_bios_lock);
2089 
2090 	md->disk->major = _major;
2091 	md->disk->first_minor = minor;
2092 	md->disk->minors = 1;
2093 	md->disk->flags |= GENHD_FL_NO_PART;
2094 	md->disk->fops = &dm_blk_dops;
2095 	md->disk->private_data = md;
2096 	sprintf(md->disk->disk_name, "dm-%d", minor);
2097 
2098 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2099 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2100 		if (IS_ERR(md->dax_dev)) {
2101 			md->dax_dev = NULL;
2102 			goto bad;
2103 		}
2104 		set_dax_nocache(md->dax_dev);
2105 		set_dax_nomc(md->dax_dev);
2106 		if (dax_add_host(md->dax_dev, md->disk))
2107 			goto bad;
2108 	}
2109 
2110 	format_dev_t(md->name, MKDEV(_major, minor));
2111 
2112 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2113 	if (!md->wq)
2114 		goto bad;
2115 
2116 	md->pending_io = alloc_percpu(unsigned long);
2117 	if (!md->pending_io)
2118 		goto bad;
2119 
2120 	r = dm_stats_init(&md->stats);
2121 	if (r < 0)
2122 		goto bad;
2123 
2124 	/* Populate the mapping, nobody knows we exist yet */
2125 	spin_lock(&_minor_lock);
2126 	old_md = idr_replace(&_minor_idr, md, minor);
2127 	spin_unlock(&_minor_lock);
2128 
2129 	BUG_ON(old_md != MINOR_ALLOCED);
2130 
2131 	return md;
2132 
2133 bad:
2134 	cleanup_mapped_device(md);
2135 bad_io_barrier:
2136 	free_minor(minor);
2137 bad_minor:
2138 	module_put(THIS_MODULE);
2139 bad_module_get:
2140 	kvfree(md);
2141 	return NULL;
2142 }
2143 
2144 static void unlock_fs(struct mapped_device *md);
2145 
2146 static void free_dev(struct mapped_device *md)
2147 {
2148 	int minor = MINOR(disk_devt(md->disk));
2149 
2150 	unlock_fs(md);
2151 
2152 	cleanup_mapped_device(md);
2153 
2154 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2155 	dm_stats_cleanup(&md->stats);
2156 	free_minor(minor);
2157 
2158 	module_put(THIS_MODULE);
2159 	kvfree(md);
2160 }
2161 
2162 /*
2163  * Bind a table to the device.
2164  */
2165 static void event_callback(void *context)
2166 {
2167 	unsigned long flags;
2168 	LIST_HEAD(uevents);
2169 	struct mapped_device *md = context;
2170 
2171 	spin_lock_irqsave(&md->uevent_lock, flags);
2172 	list_splice_init(&md->uevent_list, &uevents);
2173 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2174 
2175 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2176 
2177 	atomic_inc(&md->event_nr);
2178 	wake_up(&md->eventq);
2179 	dm_issue_global_event();
2180 }
2181 
2182 /*
2183  * Returns old map, which caller must destroy.
2184  */
2185 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2186 			       struct queue_limits *limits)
2187 {
2188 	struct dm_table *old_map;
2189 	sector_t size;
2190 	int ret;
2191 
2192 	lockdep_assert_held(&md->suspend_lock);
2193 
2194 	size = dm_table_get_size(t);
2195 
2196 	/*
2197 	 * Wipe any geometry if the size of the table changed.
2198 	 */
2199 	if (size != dm_get_size(md))
2200 		memset(&md->geometry, 0, sizeof(md->geometry));
2201 
2202 	set_capacity(md->disk, size);
2203 
2204 	dm_table_event_callback(t, event_callback, md);
2205 
2206 	if (dm_table_request_based(t)) {
2207 		/*
2208 		 * Leverage the fact that request-based DM targets are
2209 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2210 		 */
2211 		md->immutable_target = dm_table_get_immutable_target(t);
2212 
2213 		/*
2214 		 * There is no need to reload with request-based dm because the
2215 		 * size of front_pad doesn't change.
2216 		 *
2217 		 * Note for future: If you are to reload bioset, prep-ed
2218 		 * requests in the queue may refer to bio from the old bioset,
2219 		 * so you must walk through the queue to unprep.
2220 		 */
2221 		if (!md->mempools) {
2222 			md->mempools = t->mempools;
2223 			t->mempools = NULL;
2224 		}
2225 	} else {
2226 		/*
2227 		 * The md may already have mempools that need changing.
2228 		 * If so, reload bioset because front_pad may have changed
2229 		 * because a different table was loaded.
2230 		 */
2231 		dm_free_md_mempools(md->mempools);
2232 		md->mempools = t->mempools;
2233 		t->mempools = NULL;
2234 	}
2235 
2236 	ret = dm_table_set_restrictions(t, md->queue, limits);
2237 	if (ret) {
2238 		old_map = ERR_PTR(ret);
2239 		goto out;
2240 	}
2241 
2242 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2243 	rcu_assign_pointer(md->map, (void *)t);
2244 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2245 
2246 	if (old_map)
2247 		dm_sync_table(md);
2248 out:
2249 	return old_map;
2250 }
2251 
2252 /*
2253  * Returns unbound table for the caller to free.
2254  */
2255 static struct dm_table *__unbind(struct mapped_device *md)
2256 {
2257 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2258 
2259 	if (!map)
2260 		return NULL;
2261 
2262 	dm_table_event_callback(map, NULL, NULL);
2263 	RCU_INIT_POINTER(md->map, NULL);
2264 	dm_sync_table(md);
2265 
2266 	return map;
2267 }
2268 
2269 /*
2270  * Constructor for a new device.
2271  */
2272 int dm_create(int minor, struct mapped_device **result)
2273 {
2274 	struct mapped_device *md;
2275 
2276 	md = alloc_dev(minor);
2277 	if (!md)
2278 		return -ENXIO;
2279 
2280 	dm_ima_reset_data(md);
2281 
2282 	*result = md;
2283 	return 0;
2284 }
2285 
2286 /*
2287  * Functions to manage md->type.
2288  * All are required to hold md->type_lock.
2289  */
2290 void dm_lock_md_type(struct mapped_device *md)
2291 {
2292 	mutex_lock(&md->type_lock);
2293 }
2294 
2295 void dm_unlock_md_type(struct mapped_device *md)
2296 {
2297 	mutex_unlock(&md->type_lock);
2298 }
2299 
2300 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2301 {
2302 	BUG_ON(!mutex_is_locked(&md->type_lock));
2303 	md->type = type;
2304 }
2305 
2306 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2307 {
2308 	return md->type;
2309 }
2310 
2311 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2312 {
2313 	return md->immutable_target_type;
2314 }
2315 
2316 /*
2317  * Setup the DM device's queue based on md's type
2318  */
2319 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2320 {
2321 	enum dm_queue_mode type = dm_table_get_type(t);
2322 	struct queue_limits limits;
2323 	struct table_device *td;
2324 	int r;
2325 
2326 	switch (type) {
2327 	case DM_TYPE_REQUEST_BASED:
2328 		md->disk->fops = &dm_rq_blk_dops;
2329 		r = dm_mq_init_request_queue(md, t);
2330 		if (r) {
2331 			DMERR("Cannot initialize queue for request-based dm mapped device");
2332 			return r;
2333 		}
2334 		break;
2335 	case DM_TYPE_BIO_BASED:
2336 	case DM_TYPE_DAX_BIO_BASED:
2337 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2338 		break;
2339 	case DM_TYPE_NONE:
2340 		WARN_ON_ONCE(true);
2341 		break;
2342 	}
2343 
2344 	r = dm_calculate_queue_limits(t, &limits);
2345 	if (r) {
2346 		DMERR("Cannot calculate initial queue limits");
2347 		return r;
2348 	}
2349 	r = dm_table_set_restrictions(t, md->queue, &limits);
2350 	if (r)
2351 		return r;
2352 
2353 	/*
2354 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2355 	 * with open_table_device() and close_table_device().
2356 	 */
2357 	mutex_lock(&md->table_devices_lock);
2358 	r = add_disk(md->disk);
2359 	mutex_unlock(&md->table_devices_lock);
2360 	if (r)
2361 		return r;
2362 
2363 	/*
2364 	 * Register the holder relationship for devices added before the disk
2365 	 * was live.
2366 	 */
2367 	list_for_each_entry(td, &md->table_devices, list) {
2368 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2369 		if (r)
2370 			goto out_undo_holders;
2371 	}
2372 
2373 	r = dm_sysfs_init(md);
2374 	if (r)
2375 		goto out_undo_holders;
2376 
2377 	md->type = type;
2378 	return 0;
2379 
2380 out_undo_holders:
2381 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2382 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2383 	mutex_lock(&md->table_devices_lock);
2384 	del_gendisk(md->disk);
2385 	mutex_unlock(&md->table_devices_lock);
2386 	return r;
2387 }
2388 
2389 struct mapped_device *dm_get_md(dev_t dev)
2390 {
2391 	struct mapped_device *md;
2392 	unsigned int minor = MINOR(dev);
2393 
2394 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2395 		return NULL;
2396 
2397 	spin_lock(&_minor_lock);
2398 
2399 	md = idr_find(&_minor_idr, minor);
2400 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2401 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2402 		md = NULL;
2403 		goto out;
2404 	}
2405 	dm_get(md);
2406 out:
2407 	spin_unlock(&_minor_lock);
2408 
2409 	return md;
2410 }
2411 EXPORT_SYMBOL_GPL(dm_get_md);
2412 
2413 void *dm_get_mdptr(struct mapped_device *md)
2414 {
2415 	return md->interface_ptr;
2416 }
2417 
2418 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2419 {
2420 	md->interface_ptr = ptr;
2421 }
2422 
2423 void dm_get(struct mapped_device *md)
2424 {
2425 	atomic_inc(&md->holders);
2426 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2427 }
2428 
2429 int dm_hold(struct mapped_device *md)
2430 {
2431 	spin_lock(&_minor_lock);
2432 	if (test_bit(DMF_FREEING, &md->flags)) {
2433 		spin_unlock(&_minor_lock);
2434 		return -EBUSY;
2435 	}
2436 	dm_get(md);
2437 	spin_unlock(&_minor_lock);
2438 	return 0;
2439 }
2440 EXPORT_SYMBOL_GPL(dm_hold);
2441 
2442 const char *dm_device_name(struct mapped_device *md)
2443 {
2444 	return md->name;
2445 }
2446 EXPORT_SYMBOL_GPL(dm_device_name);
2447 
2448 static void __dm_destroy(struct mapped_device *md, bool wait)
2449 {
2450 	struct dm_table *map;
2451 	int srcu_idx;
2452 
2453 	might_sleep();
2454 
2455 	spin_lock(&_minor_lock);
2456 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2457 	set_bit(DMF_FREEING, &md->flags);
2458 	spin_unlock(&_minor_lock);
2459 
2460 	blk_mark_disk_dead(md->disk);
2461 
2462 	/*
2463 	 * Take suspend_lock so that presuspend and postsuspend methods
2464 	 * do not race with internal suspend.
2465 	 */
2466 	mutex_lock(&md->suspend_lock);
2467 	map = dm_get_live_table(md, &srcu_idx);
2468 	if (!dm_suspended_md(md)) {
2469 		dm_table_presuspend_targets(map);
2470 		set_bit(DMF_SUSPENDED, &md->flags);
2471 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2472 		dm_table_postsuspend_targets(map);
2473 	}
2474 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2475 	dm_put_live_table(md, srcu_idx);
2476 	mutex_unlock(&md->suspend_lock);
2477 
2478 	/*
2479 	 * Rare, but there may be I/O requests still going to complete,
2480 	 * for example.  Wait for all references to disappear.
2481 	 * No one should increment the reference count of the mapped_device,
2482 	 * after the mapped_device state becomes DMF_FREEING.
2483 	 */
2484 	if (wait)
2485 		while (atomic_read(&md->holders))
2486 			fsleep(1000);
2487 	else if (atomic_read(&md->holders))
2488 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2489 		       dm_device_name(md), atomic_read(&md->holders));
2490 
2491 	dm_table_destroy(__unbind(md));
2492 	free_dev(md);
2493 }
2494 
2495 void dm_destroy(struct mapped_device *md)
2496 {
2497 	__dm_destroy(md, true);
2498 }
2499 
2500 void dm_destroy_immediate(struct mapped_device *md)
2501 {
2502 	__dm_destroy(md, false);
2503 }
2504 
2505 void dm_put(struct mapped_device *md)
2506 {
2507 	atomic_dec(&md->holders);
2508 }
2509 EXPORT_SYMBOL_GPL(dm_put);
2510 
2511 static bool dm_in_flight_bios(struct mapped_device *md)
2512 {
2513 	int cpu;
2514 	unsigned long sum = 0;
2515 
2516 	for_each_possible_cpu(cpu)
2517 		sum += *per_cpu_ptr(md->pending_io, cpu);
2518 
2519 	return sum != 0;
2520 }
2521 
2522 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2523 {
2524 	int r = 0;
2525 	DEFINE_WAIT(wait);
2526 
2527 	while (true) {
2528 		prepare_to_wait(&md->wait, &wait, task_state);
2529 
2530 		if (!dm_in_flight_bios(md))
2531 			break;
2532 
2533 		if (signal_pending_state(task_state, current)) {
2534 			r = -EINTR;
2535 			break;
2536 		}
2537 
2538 		io_schedule();
2539 	}
2540 	finish_wait(&md->wait, &wait);
2541 
2542 	smp_rmb();
2543 
2544 	return r;
2545 }
2546 
2547 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2548 {
2549 	int r = 0;
2550 
2551 	if (!queue_is_mq(md->queue))
2552 		return dm_wait_for_bios_completion(md, task_state);
2553 
2554 	while (true) {
2555 		if (!blk_mq_queue_inflight(md->queue))
2556 			break;
2557 
2558 		if (signal_pending_state(task_state, current)) {
2559 			r = -EINTR;
2560 			break;
2561 		}
2562 
2563 		fsleep(5000);
2564 	}
2565 
2566 	return r;
2567 }
2568 
2569 /*
2570  * Process the deferred bios
2571  */
2572 static void dm_wq_work(struct work_struct *work)
2573 {
2574 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2575 	struct bio *bio;
2576 
2577 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2578 		spin_lock_irq(&md->deferred_lock);
2579 		bio = bio_list_pop(&md->deferred);
2580 		spin_unlock_irq(&md->deferred_lock);
2581 
2582 		if (!bio)
2583 			break;
2584 
2585 		submit_bio_noacct(bio);
2586 		cond_resched();
2587 	}
2588 }
2589 
2590 static void dm_queue_flush(struct mapped_device *md)
2591 {
2592 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2593 	smp_mb__after_atomic();
2594 	queue_work(md->wq, &md->work);
2595 }
2596 
2597 /*
2598  * Swap in a new table, returning the old one for the caller to destroy.
2599  */
2600 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2601 {
2602 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2603 	struct queue_limits limits;
2604 	int r;
2605 
2606 	mutex_lock(&md->suspend_lock);
2607 
2608 	/* device must be suspended */
2609 	if (!dm_suspended_md(md))
2610 		goto out;
2611 
2612 	/*
2613 	 * If the new table has no data devices, retain the existing limits.
2614 	 * This helps multipath with queue_if_no_path if all paths disappear,
2615 	 * then new I/O is queued based on these limits, and then some paths
2616 	 * reappear.
2617 	 */
2618 	if (dm_table_has_no_data_devices(table)) {
2619 		live_map = dm_get_live_table_fast(md);
2620 		if (live_map)
2621 			limits = md->queue->limits;
2622 		dm_put_live_table_fast(md);
2623 	}
2624 
2625 	if (!live_map) {
2626 		r = dm_calculate_queue_limits(table, &limits);
2627 		if (r) {
2628 			map = ERR_PTR(r);
2629 			goto out;
2630 		}
2631 	}
2632 
2633 	map = __bind(md, table, &limits);
2634 	dm_issue_global_event();
2635 
2636 out:
2637 	mutex_unlock(&md->suspend_lock);
2638 	return map;
2639 }
2640 
2641 /*
2642  * Functions to lock and unlock any filesystem running on the
2643  * device.
2644  */
2645 static int lock_fs(struct mapped_device *md)
2646 {
2647 	int r;
2648 
2649 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2650 
2651 	r = freeze_bdev(md->disk->part0);
2652 	if (!r)
2653 		set_bit(DMF_FROZEN, &md->flags);
2654 	return r;
2655 }
2656 
2657 static void unlock_fs(struct mapped_device *md)
2658 {
2659 	if (!test_bit(DMF_FROZEN, &md->flags))
2660 		return;
2661 	thaw_bdev(md->disk->part0);
2662 	clear_bit(DMF_FROZEN, &md->flags);
2663 }
2664 
2665 /*
2666  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2667  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2668  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2669  *
2670  * If __dm_suspend returns 0, the device is completely quiescent
2671  * now. There is no request-processing activity. All new requests
2672  * are being added to md->deferred list.
2673  */
2674 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2675 			unsigned int suspend_flags, unsigned int task_state,
2676 			int dmf_suspended_flag)
2677 {
2678 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2679 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2680 	int r;
2681 
2682 	lockdep_assert_held(&md->suspend_lock);
2683 
2684 	/*
2685 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2686 	 * This flag is cleared before dm_suspend returns.
2687 	 */
2688 	if (noflush)
2689 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2690 	else
2691 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2692 
2693 	/*
2694 	 * This gets reverted if there's an error later and the targets
2695 	 * provide the .presuspend_undo hook.
2696 	 */
2697 	dm_table_presuspend_targets(map);
2698 
2699 	/*
2700 	 * Flush I/O to the device.
2701 	 * Any I/O submitted after lock_fs() may not be flushed.
2702 	 * noflush takes precedence over do_lockfs.
2703 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2704 	 */
2705 	if (!noflush && do_lockfs) {
2706 		r = lock_fs(md);
2707 		if (r) {
2708 			dm_table_presuspend_undo_targets(map);
2709 			return r;
2710 		}
2711 	}
2712 
2713 	/*
2714 	 * Here we must make sure that no processes are submitting requests
2715 	 * to target drivers i.e. no one may be executing
2716 	 * dm_split_and_process_bio from dm_submit_bio.
2717 	 *
2718 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2719 	 * we take the write lock. To prevent any process from reentering
2720 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2721 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2722 	 * flush_workqueue(md->wq).
2723 	 */
2724 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2725 	if (map)
2726 		synchronize_srcu(&md->io_barrier);
2727 
2728 	/*
2729 	 * Stop md->queue before flushing md->wq in case request-based
2730 	 * dm defers requests to md->wq from md->queue.
2731 	 */
2732 	if (dm_request_based(md))
2733 		dm_stop_queue(md->queue);
2734 
2735 	flush_workqueue(md->wq);
2736 
2737 	/*
2738 	 * At this point no more requests are entering target request routines.
2739 	 * We call dm_wait_for_completion to wait for all existing requests
2740 	 * to finish.
2741 	 */
2742 	r = dm_wait_for_completion(md, task_state);
2743 	if (!r)
2744 		set_bit(dmf_suspended_flag, &md->flags);
2745 
2746 	if (noflush)
2747 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2748 	if (map)
2749 		synchronize_srcu(&md->io_barrier);
2750 
2751 	/* were we interrupted ? */
2752 	if (r < 0) {
2753 		dm_queue_flush(md);
2754 
2755 		if (dm_request_based(md))
2756 			dm_start_queue(md->queue);
2757 
2758 		unlock_fs(md);
2759 		dm_table_presuspend_undo_targets(map);
2760 		/* pushback list is already flushed, so skip flush */
2761 	}
2762 
2763 	return r;
2764 }
2765 
2766 /*
2767  * We need to be able to change a mapping table under a mounted
2768  * filesystem.  For example we might want to move some data in
2769  * the background.  Before the table can be swapped with
2770  * dm_bind_table, dm_suspend must be called to flush any in
2771  * flight bios and ensure that any further io gets deferred.
2772  */
2773 /*
2774  * Suspend mechanism in request-based dm.
2775  *
2776  * 1. Flush all I/Os by lock_fs() if needed.
2777  * 2. Stop dispatching any I/O by stopping the request_queue.
2778  * 3. Wait for all in-flight I/Os to be completed or requeued.
2779  *
2780  * To abort suspend, start the request_queue.
2781  */
2782 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2783 {
2784 	struct dm_table *map = NULL;
2785 	int r = 0;
2786 
2787 retry:
2788 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2789 
2790 	if (dm_suspended_md(md)) {
2791 		r = -EINVAL;
2792 		goto out_unlock;
2793 	}
2794 
2795 	if (dm_suspended_internally_md(md)) {
2796 		/* already internally suspended, wait for internal resume */
2797 		mutex_unlock(&md->suspend_lock);
2798 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2799 		if (r)
2800 			return r;
2801 		goto retry;
2802 	}
2803 
2804 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2805 	if (!map) {
2806 		/* avoid deadlock with fs/namespace.c:do_mount() */
2807 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2808 	}
2809 
2810 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2811 	if (r)
2812 		goto out_unlock;
2813 
2814 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2815 	dm_table_postsuspend_targets(map);
2816 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2817 
2818 out_unlock:
2819 	mutex_unlock(&md->suspend_lock);
2820 	return r;
2821 }
2822 
2823 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2824 {
2825 	if (map) {
2826 		int r = dm_table_resume_targets(map);
2827 
2828 		if (r)
2829 			return r;
2830 	}
2831 
2832 	dm_queue_flush(md);
2833 
2834 	/*
2835 	 * Flushing deferred I/Os must be done after targets are resumed
2836 	 * so that mapping of targets can work correctly.
2837 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2838 	 */
2839 	if (dm_request_based(md))
2840 		dm_start_queue(md->queue);
2841 
2842 	unlock_fs(md);
2843 
2844 	return 0;
2845 }
2846 
2847 int dm_resume(struct mapped_device *md)
2848 {
2849 	int r;
2850 	struct dm_table *map = NULL;
2851 
2852 retry:
2853 	r = -EINVAL;
2854 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2855 
2856 	if (!dm_suspended_md(md))
2857 		goto out;
2858 
2859 	if (dm_suspended_internally_md(md)) {
2860 		/* already internally suspended, wait for internal resume */
2861 		mutex_unlock(&md->suspend_lock);
2862 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2863 		if (r)
2864 			return r;
2865 		goto retry;
2866 	}
2867 
2868 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2869 	if (!map || !dm_table_get_size(map))
2870 		goto out;
2871 
2872 	r = __dm_resume(md, map);
2873 	if (r)
2874 		goto out;
2875 
2876 	clear_bit(DMF_SUSPENDED, &md->flags);
2877 out:
2878 	mutex_unlock(&md->suspend_lock);
2879 
2880 	return r;
2881 }
2882 
2883 /*
2884  * Internal suspend/resume works like userspace-driven suspend. It waits
2885  * until all bios finish and prevents issuing new bios to the target drivers.
2886  * It may be used only from the kernel.
2887  */
2888 
2889 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2890 {
2891 	struct dm_table *map = NULL;
2892 
2893 	lockdep_assert_held(&md->suspend_lock);
2894 
2895 	if (md->internal_suspend_count++)
2896 		return; /* nested internal suspend */
2897 
2898 	if (dm_suspended_md(md)) {
2899 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2900 		return; /* nest suspend */
2901 	}
2902 
2903 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2904 
2905 	/*
2906 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2907 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2908 	 * would require changing .presuspend to return an error -- avoid this
2909 	 * until there is a need for more elaborate variants of internal suspend.
2910 	 */
2911 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2912 			    DMF_SUSPENDED_INTERNALLY);
2913 
2914 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2915 	dm_table_postsuspend_targets(map);
2916 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2917 }
2918 
2919 static void __dm_internal_resume(struct mapped_device *md)
2920 {
2921 	BUG_ON(!md->internal_suspend_count);
2922 
2923 	if (--md->internal_suspend_count)
2924 		return; /* resume from nested internal suspend */
2925 
2926 	if (dm_suspended_md(md))
2927 		goto done; /* resume from nested suspend */
2928 
2929 	/*
2930 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2931 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2932 	 */
2933 	(void) __dm_resume(md, NULL);
2934 
2935 done:
2936 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2937 	smp_mb__after_atomic();
2938 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2939 }
2940 
2941 void dm_internal_suspend_noflush(struct mapped_device *md)
2942 {
2943 	mutex_lock(&md->suspend_lock);
2944 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2945 	mutex_unlock(&md->suspend_lock);
2946 }
2947 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2948 
2949 void dm_internal_resume(struct mapped_device *md)
2950 {
2951 	mutex_lock(&md->suspend_lock);
2952 	__dm_internal_resume(md);
2953 	mutex_unlock(&md->suspend_lock);
2954 }
2955 EXPORT_SYMBOL_GPL(dm_internal_resume);
2956 
2957 /*
2958  * Fast variants of internal suspend/resume hold md->suspend_lock,
2959  * which prevents interaction with userspace-driven suspend.
2960  */
2961 
2962 void dm_internal_suspend_fast(struct mapped_device *md)
2963 {
2964 	mutex_lock(&md->suspend_lock);
2965 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2966 		return;
2967 
2968 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2969 	synchronize_srcu(&md->io_barrier);
2970 	flush_workqueue(md->wq);
2971 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2972 }
2973 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2974 
2975 void dm_internal_resume_fast(struct mapped_device *md)
2976 {
2977 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2978 		goto done;
2979 
2980 	dm_queue_flush(md);
2981 
2982 done:
2983 	mutex_unlock(&md->suspend_lock);
2984 }
2985 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2986 
2987 /*
2988  *---------------------------------------------------------------
2989  * Event notification.
2990  *---------------------------------------------------------------
2991  */
2992 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2993 		      unsigned int cookie, bool need_resize_uevent)
2994 {
2995 	int r;
2996 	unsigned int noio_flag;
2997 	char udev_cookie[DM_COOKIE_LENGTH];
2998 	char *envp[3] = { NULL, NULL, NULL };
2999 	char **envpp = envp;
3000 	if (cookie) {
3001 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3002 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3003 		*envpp++ = udev_cookie;
3004 	}
3005 	if (need_resize_uevent) {
3006 		*envpp++ = "RESIZE=1";
3007 	}
3008 
3009 	noio_flag = memalloc_noio_save();
3010 
3011 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3012 
3013 	memalloc_noio_restore(noio_flag);
3014 
3015 	return r;
3016 }
3017 
3018 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3019 {
3020 	return atomic_add_return(1, &md->uevent_seq);
3021 }
3022 
3023 uint32_t dm_get_event_nr(struct mapped_device *md)
3024 {
3025 	return atomic_read(&md->event_nr);
3026 }
3027 
3028 int dm_wait_event(struct mapped_device *md, int event_nr)
3029 {
3030 	return wait_event_interruptible(md->eventq,
3031 			(event_nr != atomic_read(&md->event_nr)));
3032 }
3033 
3034 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3035 {
3036 	unsigned long flags;
3037 
3038 	spin_lock_irqsave(&md->uevent_lock, flags);
3039 	list_add(elist, &md->uevent_list);
3040 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3041 }
3042 
3043 /*
3044  * The gendisk is only valid as long as you have a reference
3045  * count on 'md'.
3046  */
3047 struct gendisk *dm_disk(struct mapped_device *md)
3048 {
3049 	return md->disk;
3050 }
3051 EXPORT_SYMBOL_GPL(dm_disk);
3052 
3053 struct kobject *dm_kobject(struct mapped_device *md)
3054 {
3055 	return &md->kobj_holder.kobj;
3056 }
3057 
3058 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3059 {
3060 	struct mapped_device *md;
3061 
3062 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3063 
3064 	spin_lock(&_minor_lock);
3065 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3066 		md = NULL;
3067 		goto out;
3068 	}
3069 	dm_get(md);
3070 out:
3071 	spin_unlock(&_minor_lock);
3072 
3073 	return md;
3074 }
3075 
3076 int dm_suspended_md(struct mapped_device *md)
3077 {
3078 	return test_bit(DMF_SUSPENDED, &md->flags);
3079 }
3080 
3081 static int dm_post_suspending_md(struct mapped_device *md)
3082 {
3083 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3084 }
3085 
3086 int dm_suspended_internally_md(struct mapped_device *md)
3087 {
3088 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3089 }
3090 
3091 int dm_test_deferred_remove_flag(struct mapped_device *md)
3092 {
3093 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3094 }
3095 
3096 int dm_suspended(struct dm_target *ti)
3097 {
3098 	return dm_suspended_md(ti->table->md);
3099 }
3100 EXPORT_SYMBOL_GPL(dm_suspended);
3101 
3102 int dm_post_suspending(struct dm_target *ti)
3103 {
3104 	return dm_post_suspending_md(ti->table->md);
3105 }
3106 EXPORT_SYMBOL_GPL(dm_post_suspending);
3107 
3108 int dm_noflush_suspending(struct dm_target *ti)
3109 {
3110 	return __noflush_suspending(ti->table->md);
3111 }
3112 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3113 
3114 void dm_free_md_mempools(struct dm_md_mempools *pools)
3115 {
3116 	if (!pools)
3117 		return;
3118 
3119 	bioset_exit(&pools->bs);
3120 	bioset_exit(&pools->io_bs);
3121 
3122 	kfree(pools);
3123 }
3124 
3125 struct dm_pr {
3126 	u64	old_key;
3127 	u64	new_key;
3128 	u32	flags;
3129 	bool	abort;
3130 	bool	fail_early;
3131 	int	ret;
3132 	enum pr_type type;
3133 	struct pr_keys *read_keys;
3134 	struct pr_held_reservation *rsv;
3135 };
3136 
3137 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3138 		      struct dm_pr *pr)
3139 {
3140 	struct mapped_device *md = bdev->bd_disk->private_data;
3141 	struct dm_table *table;
3142 	struct dm_target *ti;
3143 	int ret = -ENOTTY, srcu_idx;
3144 
3145 	table = dm_get_live_table(md, &srcu_idx);
3146 	if (!table || !dm_table_get_size(table))
3147 		goto out;
3148 
3149 	/* We only support devices that have a single target */
3150 	if (table->num_targets != 1)
3151 		goto out;
3152 	ti = dm_table_get_target(table, 0);
3153 
3154 	if (dm_suspended_md(md)) {
3155 		ret = -EAGAIN;
3156 		goto out;
3157 	}
3158 
3159 	ret = -EINVAL;
3160 	if (!ti->type->iterate_devices)
3161 		goto out;
3162 
3163 	ti->type->iterate_devices(ti, fn, pr);
3164 	ret = 0;
3165 out:
3166 	dm_put_live_table(md, srcu_idx);
3167 	return ret;
3168 }
3169 
3170 /*
3171  * For register / unregister we need to manually call out to every path.
3172  */
3173 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3174 			    sector_t start, sector_t len, void *data)
3175 {
3176 	struct dm_pr *pr = data;
3177 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3178 	int ret;
3179 
3180 	if (!ops || !ops->pr_register) {
3181 		pr->ret = -EOPNOTSUPP;
3182 		return -1;
3183 	}
3184 
3185 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3186 	if (!ret)
3187 		return 0;
3188 
3189 	if (!pr->ret)
3190 		pr->ret = ret;
3191 
3192 	if (pr->fail_early)
3193 		return -1;
3194 
3195 	return 0;
3196 }
3197 
3198 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3199 			  u32 flags)
3200 {
3201 	struct dm_pr pr = {
3202 		.old_key	= old_key,
3203 		.new_key	= new_key,
3204 		.flags		= flags,
3205 		.fail_early	= true,
3206 		.ret		= 0,
3207 	};
3208 	int ret;
3209 
3210 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3211 	if (ret) {
3212 		/* Didn't even get to register a path */
3213 		return ret;
3214 	}
3215 
3216 	if (!pr.ret)
3217 		return 0;
3218 	ret = pr.ret;
3219 
3220 	if (!new_key)
3221 		return ret;
3222 
3223 	/* unregister all paths if we failed to register any path */
3224 	pr.old_key = new_key;
3225 	pr.new_key = 0;
3226 	pr.flags = 0;
3227 	pr.fail_early = false;
3228 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3229 	return ret;
3230 }
3231 
3232 
3233 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3234 			   sector_t start, sector_t len, void *data)
3235 {
3236 	struct dm_pr *pr = data;
3237 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3238 
3239 	if (!ops || !ops->pr_reserve) {
3240 		pr->ret = -EOPNOTSUPP;
3241 		return -1;
3242 	}
3243 
3244 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3245 	if (!pr->ret)
3246 		return -1;
3247 
3248 	return 0;
3249 }
3250 
3251 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3252 			 u32 flags)
3253 {
3254 	struct dm_pr pr = {
3255 		.old_key	= key,
3256 		.flags		= flags,
3257 		.type		= type,
3258 		.fail_early	= false,
3259 		.ret		= 0,
3260 	};
3261 	int ret;
3262 
3263 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3264 	if (ret)
3265 		return ret;
3266 
3267 	return pr.ret;
3268 }
3269 
3270 /*
3271  * If there is a non-All Registrants type of reservation, the release must be
3272  * sent down the holding path. For the cases where there is no reservation or
3273  * the path is not the holder the device will also return success, so we must
3274  * try each path to make sure we got the correct path.
3275  */
3276 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3277 			   sector_t start, sector_t len, void *data)
3278 {
3279 	struct dm_pr *pr = data;
3280 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3281 
3282 	if (!ops || !ops->pr_release) {
3283 		pr->ret = -EOPNOTSUPP;
3284 		return -1;
3285 	}
3286 
3287 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3288 	if (pr->ret)
3289 		return -1;
3290 
3291 	return 0;
3292 }
3293 
3294 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3295 {
3296 	struct dm_pr pr = {
3297 		.old_key	= key,
3298 		.type		= type,
3299 		.fail_early	= false,
3300 	};
3301 	int ret;
3302 
3303 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3304 	if (ret)
3305 		return ret;
3306 
3307 	return pr.ret;
3308 }
3309 
3310 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3311 			   sector_t start, sector_t len, void *data)
3312 {
3313 	struct dm_pr *pr = data;
3314 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3315 
3316 	if (!ops || !ops->pr_preempt) {
3317 		pr->ret = -EOPNOTSUPP;
3318 		return -1;
3319 	}
3320 
3321 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3322 				  pr->abort);
3323 	if (!pr->ret)
3324 		return -1;
3325 
3326 	return 0;
3327 }
3328 
3329 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3330 			 enum pr_type type, bool abort)
3331 {
3332 	struct dm_pr pr = {
3333 		.new_key	= new_key,
3334 		.old_key	= old_key,
3335 		.type		= type,
3336 		.fail_early	= false,
3337 	};
3338 	int ret;
3339 
3340 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3341 	if (ret)
3342 		return ret;
3343 
3344 	return pr.ret;
3345 }
3346 
3347 static int dm_pr_clear(struct block_device *bdev, u64 key)
3348 {
3349 	struct mapped_device *md = bdev->bd_disk->private_data;
3350 	const struct pr_ops *ops;
3351 	int r, srcu_idx;
3352 
3353 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3354 	if (r < 0)
3355 		goto out;
3356 
3357 	ops = bdev->bd_disk->fops->pr_ops;
3358 	if (ops && ops->pr_clear)
3359 		r = ops->pr_clear(bdev, key);
3360 	else
3361 		r = -EOPNOTSUPP;
3362 out:
3363 	dm_unprepare_ioctl(md, srcu_idx);
3364 	return r;
3365 }
3366 
3367 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3368 			     sector_t start, sector_t len, void *data)
3369 {
3370 	struct dm_pr *pr = data;
3371 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3372 
3373 	if (!ops || !ops->pr_read_keys) {
3374 		pr->ret = -EOPNOTSUPP;
3375 		return -1;
3376 	}
3377 
3378 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3379 	if (!pr->ret)
3380 		return -1;
3381 
3382 	return 0;
3383 }
3384 
3385 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3386 {
3387 	struct dm_pr pr = {
3388 		.read_keys = keys,
3389 	};
3390 	int ret;
3391 
3392 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3393 	if (ret)
3394 		return ret;
3395 
3396 	return pr.ret;
3397 }
3398 
3399 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3400 				    sector_t start, sector_t len, void *data)
3401 {
3402 	struct dm_pr *pr = data;
3403 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3404 
3405 	if (!ops || !ops->pr_read_reservation) {
3406 		pr->ret = -EOPNOTSUPP;
3407 		return -1;
3408 	}
3409 
3410 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3411 	if (!pr->ret)
3412 		return -1;
3413 
3414 	return 0;
3415 }
3416 
3417 static int dm_pr_read_reservation(struct block_device *bdev,
3418 				  struct pr_held_reservation *rsv)
3419 {
3420 	struct dm_pr pr = {
3421 		.rsv = rsv,
3422 	};
3423 	int ret;
3424 
3425 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3426 	if (ret)
3427 		return ret;
3428 
3429 	return pr.ret;
3430 }
3431 
3432 static const struct pr_ops dm_pr_ops = {
3433 	.pr_register	= dm_pr_register,
3434 	.pr_reserve	= dm_pr_reserve,
3435 	.pr_release	= dm_pr_release,
3436 	.pr_preempt	= dm_pr_preempt,
3437 	.pr_clear	= dm_pr_clear,
3438 	.pr_read_keys	= dm_pr_read_keys,
3439 	.pr_read_reservation = dm_pr_read_reservation,
3440 };
3441 
3442 static const struct block_device_operations dm_blk_dops = {
3443 	.submit_bio = dm_submit_bio,
3444 	.poll_bio = dm_poll_bio,
3445 	.open = dm_blk_open,
3446 	.release = dm_blk_close,
3447 	.ioctl = dm_blk_ioctl,
3448 	.getgeo = dm_blk_getgeo,
3449 	.report_zones = dm_blk_report_zones,
3450 	.pr_ops = &dm_pr_ops,
3451 	.owner = THIS_MODULE
3452 };
3453 
3454 static const struct block_device_operations dm_rq_blk_dops = {
3455 	.open = dm_blk_open,
3456 	.release = dm_blk_close,
3457 	.ioctl = dm_blk_ioctl,
3458 	.getgeo = dm_blk_getgeo,
3459 	.pr_ops = &dm_pr_ops,
3460 	.owner = THIS_MODULE
3461 };
3462 
3463 static const struct dax_operations dm_dax_ops = {
3464 	.direct_access = dm_dax_direct_access,
3465 	.zero_page_range = dm_dax_zero_page_range,
3466 	.recovery_write = dm_dax_recovery_write,
3467 };
3468 
3469 /*
3470  * module hooks
3471  */
3472 module_init(dm_init);
3473 module_exit(dm_exit);
3474 
3475 module_param(major, uint, 0);
3476 MODULE_PARM_DESC(major, "The major number of the device mapper");
3477 
3478 module_param(reserved_bio_based_ios, uint, 0644);
3479 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3480 
3481 module_param(dm_numa_node, int, 0644);
3482 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3483 
3484 module_param(swap_bios, int, 0644);
3485 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3486 
3487 MODULE_DESCRIPTION(DM_NAME " driver");
3488 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3489 MODULE_LICENSE("GPL");
3490