1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 28 #include <trace/events/block.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 #ifdef CONFIG_PRINTK 33 /* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39 EXPORT_SYMBOL(dm_ratelimit_state); 40 #endif 41 42 /* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47 #define DM_COOKIE_LENGTH 24 48 49 static const char *_name = DM_NAME; 50 51 static unsigned int major = 0; 52 static unsigned int _major = 0; 53 54 static DEFINE_IDR(_minor_idr); 55 56 static DEFINE_SPINLOCK(_minor_lock); 57 58 static void do_deferred_remove(struct work_struct *w); 59 60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62 static struct workqueue_struct *deferred_remove_workqueue; 63 64 /* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68 struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76 }; 77 78 /* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82 struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89 }; 90 91 /* 92 * For request-based dm - the bio clones we allocate are embedded in these 93 * structs. 94 * 95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 96 * the bioset is created - this means the bio has to come at the end of the 97 * struct. 98 */ 99 struct dm_rq_clone_bio_info { 100 struct bio *orig; 101 struct dm_rq_target_io *tio; 102 struct bio clone; 103 }; 104 105 union map_info *dm_get_rq_mapinfo(struct request *rq) 106 { 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110 } 111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113 #define MINOR_ALLOCED ((void *)-1) 114 115 /* 116 * Bits for the md->flags field. 117 */ 118 #define DMF_BLOCK_IO_FOR_SUSPEND 0 119 #define DMF_SUSPENDED 1 120 #define DMF_FROZEN 2 121 #define DMF_FREEING 3 122 #define DMF_DELETING 4 123 #define DMF_NOFLUSH_SUSPENDING 5 124 #define DMF_MERGE_IS_OPTIONAL 6 125 #define DMF_DEFERRED_REMOVE 7 126 #define DMF_SUSPENDED_INTERNALLY 8 127 128 /* 129 * A dummy definition to make RCU happy. 130 * struct dm_table should never be dereferenced in this file. 131 */ 132 struct dm_table { 133 int undefined__; 134 }; 135 136 /* 137 * Work processed by per-device workqueue. 138 */ 139 struct mapped_device { 140 struct srcu_struct io_barrier; 141 struct mutex suspend_lock; 142 atomic_t holders; 143 atomic_t open_count; 144 145 /* 146 * The current mapping. 147 * Use dm_get_live_table{_fast} or take suspend_lock for 148 * dereference. 149 */ 150 struct dm_table __rcu *map; 151 152 struct list_head table_devices; 153 struct mutex table_devices_lock; 154 155 unsigned long flags; 156 157 struct request_queue *queue; 158 unsigned type; 159 /* Protect queue and type against concurrent access. */ 160 struct mutex type_lock; 161 162 struct target_type *immutable_target_type; 163 164 struct gendisk *disk; 165 char name[16]; 166 167 void *interface_ptr; 168 169 /* 170 * A list of ios that arrived while we were suspended. 171 */ 172 atomic_t pending[2]; 173 wait_queue_head_t wait; 174 struct work_struct work; 175 struct bio_list deferred; 176 spinlock_t deferred_lock; 177 178 /* 179 * Processing queue (flush) 180 */ 181 struct workqueue_struct *wq; 182 183 /* 184 * io objects are allocated from here. 185 */ 186 mempool_t *io_pool; 187 mempool_t *rq_pool; 188 189 struct bio_set *bs; 190 191 /* 192 * Event handling. 193 */ 194 atomic_t event_nr; 195 wait_queue_head_t eventq; 196 atomic_t uevent_seq; 197 struct list_head uevent_list; 198 spinlock_t uevent_lock; /* Protect access to uevent_list */ 199 200 /* 201 * freeze/thaw support require holding onto a super block 202 */ 203 struct super_block *frozen_sb; 204 struct block_device *bdev; 205 206 /* forced geometry settings */ 207 struct hd_geometry geometry; 208 209 /* kobject and completion */ 210 struct dm_kobject_holder kobj_holder; 211 212 /* zero-length flush that will be cloned and submitted to targets */ 213 struct bio flush_bio; 214 215 /* the number of internal suspends */ 216 unsigned internal_suspend_count; 217 218 struct dm_stats stats; 219 220 struct kthread_worker kworker; 221 struct task_struct *kworker_task; 222 223 /* for request-based merge heuristic in dm_request_fn() */ 224 unsigned seq_rq_merge_deadline_usecs; 225 int last_rq_rw; 226 sector_t last_rq_pos; 227 ktime_t last_rq_start_time; 228 229 /* for blk-mq request-based DM support */ 230 struct blk_mq_tag_set tag_set; 231 bool use_blk_mq; 232 }; 233 234 #ifdef CONFIG_DM_MQ_DEFAULT 235 static bool use_blk_mq = true; 236 #else 237 static bool use_blk_mq = false; 238 #endif 239 240 bool dm_use_blk_mq(struct mapped_device *md) 241 { 242 return md->use_blk_mq; 243 } 244 245 /* 246 * For mempools pre-allocation at the table loading time. 247 */ 248 struct dm_md_mempools { 249 mempool_t *io_pool; 250 mempool_t *rq_pool; 251 struct bio_set *bs; 252 }; 253 254 struct table_device { 255 struct list_head list; 256 atomic_t count; 257 struct dm_dev dm_dev; 258 }; 259 260 #define RESERVED_BIO_BASED_IOS 16 261 #define RESERVED_REQUEST_BASED_IOS 256 262 #define RESERVED_MAX_IOS 1024 263 static struct kmem_cache *_io_cache; 264 static struct kmem_cache *_rq_tio_cache; 265 static struct kmem_cache *_rq_cache; 266 267 /* 268 * Bio-based DM's mempools' reserved IOs set by the user. 269 */ 270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 271 272 /* 273 * Request-based DM's mempools' reserved IOs set by the user. 274 */ 275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 276 277 static unsigned __dm_get_module_param(unsigned *module_param, 278 unsigned def, unsigned max) 279 { 280 unsigned param = ACCESS_ONCE(*module_param); 281 unsigned modified_param = 0; 282 283 if (!param) 284 modified_param = def; 285 else if (param > max) 286 modified_param = max; 287 288 if (modified_param) { 289 (void)cmpxchg(module_param, param, modified_param); 290 param = modified_param; 291 } 292 293 return param; 294 } 295 296 unsigned dm_get_reserved_bio_based_ios(void) 297 { 298 return __dm_get_module_param(&reserved_bio_based_ios, 299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 300 } 301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 302 303 unsigned dm_get_reserved_rq_based_ios(void) 304 { 305 return __dm_get_module_param(&reserved_rq_based_ios, 306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 307 } 308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 309 310 static int __init local_init(void) 311 { 312 int r = -ENOMEM; 313 314 /* allocate a slab for the dm_ios */ 315 _io_cache = KMEM_CACHE(dm_io, 0); 316 if (!_io_cache) 317 return r; 318 319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 320 if (!_rq_tio_cache) 321 goto out_free_io_cache; 322 323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 324 __alignof__(struct request), 0, NULL); 325 if (!_rq_cache) 326 goto out_free_rq_tio_cache; 327 328 r = dm_uevent_init(); 329 if (r) 330 goto out_free_rq_cache; 331 332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 333 if (!deferred_remove_workqueue) { 334 r = -ENOMEM; 335 goto out_uevent_exit; 336 } 337 338 _major = major; 339 r = register_blkdev(_major, _name); 340 if (r < 0) 341 goto out_free_workqueue; 342 343 if (!_major) 344 _major = r; 345 346 return 0; 347 348 out_free_workqueue: 349 destroy_workqueue(deferred_remove_workqueue); 350 out_uevent_exit: 351 dm_uevent_exit(); 352 out_free_rq_cache: 353 kmem_cache_destroy(_rq_cache); 354 out_free_rq_tio_cache: 355 kmem_cache_destroy(_rq_tio_cache); 356 out_free_io_cache: 357 kmem_cache_destroy(_io_cache); 358 359 return r; 360 } 361 362 static void local_exit(void) 363 { 364 flush_scheduled_work(); 365 destroy_workqueue(deferred_remove_workqueue); 366 367 kmem_cache_destroy(_rq_cache); 368 kmem_cache_destroy(_rq_tio_cache); 369 kmem_cache_destroy(_io_cache); 370 unregister_blkdev(_major, _name); 371 dm_uevent_exit(); 372 373 _major = 0; 374 375 DMINFO("cleaned up"); 376 } 377 378 static int (*_inits[])(void) __initdata = { 379 local_init, 380 dm_target_init, 381 dm_linear_init, 382 dm_stripe_init, 383 dm_io_init, 384 dm_kcopyd_init, 385 dm_interface_init, 386 dm_statistics_init, 387 }; 388 389 static void (*_exits[])(void) = { 390 local_exit, 391 dm_target_exit, 392 dm_linear_exit, 393 dm_stripe_exit, 394 dm_io_exit, 395 dm_kcopyd_exit, 396 dm_interface_exit, 397 dm_statistics_exit, 398 }; 399 400 static int __init dm_init(void) 401 { 402 const int count = ARRAY_SIZE(_inits); 403 404 int r, i; 405 406 for (i = 0; i < count; i++) { 407 r = _inits[i](); 408 if (r) 409 goto bad; 410 } 411 412 return 0; 413 414 bad: 415 while (i--) 416 _exits[i](); 417 418 return r; 419 } 420 421 static void __exit dm_exit(void) 422 { 423 int i = ARRAY_SIZE(_exits); 424 425 while (i--) 426 _exits[i](); 427 428 /* 429 * Should be empty by this point. 430 */ 431 idr_destroy(&_minor_idr); 432 } 433 434 /* 435 * Block device functions 436 */ 437 int dm_deleting_md(struct mapped_device *md) 438 { 439 return test_bit(DMF_DELETING, &md->flags); 440 } 441 442 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 443 { 444 struct mapped_device *md; 445 446 spin_lock(&_minor_lock); 447 448 md = bdev->bd_disk->private_data; 449 if (!md) 450 goto out; 451 452 if (test_bit(DMF_FREEING, &md->flags) || 453 dm_deleting_md(md)) { 454 md = NULL; 455 goto out; 456 } 457 458 dm_get(md); 459 atomic_inc(&md->open_count); 460 out: 461 spin_unlock(&_minor_lock); 462 463 return md ? 0 : -ENXIO; 464 } 465 466 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 467 { 468 struct mapped_device *md; 469 470 spin_lock(&_minor_lock); 471 472 md = disk->private_data; 473 if (WARN_ON(!md)) 474 goto out; 475 476 if (atomic_dec_and_test(&md->open_count) && 477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 478 queue_work(deferred_remove_workqueue, &deferred_remove_work); 479 480 dm_put(md); 481 out: 482 spin_unlock(&_minor_lock); 483 } 484 485 int dm_open_count(struct mapped_device *md) 486 { 487 return atomic_read(&md->open_count); 488 } 489 490 /* 491 * Guarantees nothing is using the device before it's deleted. 492 */ 493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 494 { 495 int r = 0; 496 497 spin_lock(&_minor_lock); 498 499 if (dm_open_count(md)) { 500 r = -EBUSY; 501 if (mark_deferred) 502 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 504 r = -EEXIST; 505 else 506 set_bit(DMF_DELETING, &md->flags); 507 508 spin_unlock(&_minor_lock); 509 510 return r; 511 } 512 513 int dm_cancel_deferred_remove(struct mapped_device *md) 514 { 515 int r = 0; 516 517 spin_lock(&_minor_lock); 518 519 if (test_bit(DMF_DELETING, &md->flags)) 520 r = -EBUSY; 521 else 522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 523 524 spin_unlock(&_minor_lock); 525 526 return r; 527 } 528 529 static void do_deferred_remove(struct work_struct *w) 530 { 531 dm_deferred_remove(); 532 } 533 534 sector_t dm_get_size(struct mapped_device *md) 535 { 536 return get_capacity(md->disk); 537 } 538 539 struct request_queue *dm_get_md_queue(struct mapped_device *md) 540 { 541 return md->queue; 542 } 543 544 struct dm_stats *dm_get_stats(struct mapped_device *md) 545 { 546 return &md->stats; 547 } 548 549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 550 { 551 struct mapped_device *md = bdev->bd_disk->private_data; 552 553 return dm_get_geometry(md, geo); 554 } 555 556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 557 unsigned int cmd, unsigned long arg) 558 { 559 struct mapped_device *md = bdev->bd_disk->private_data; 560 int srcu_idx; 561 struct dm_table *map; 562 struct dm_target *tgt; 563 int r = -ENOTTY; 564 565 retry: 566 map = dm_get_live_table(md, &srcu_idx); 567 568 if (!map || !dm_table_get_size(map)) 569 goto out; 570 571 /* We only support devices that have a single target */ 572 if (dm_table_get_num_targets(map) != 1) 573 goto out; 574 575 tgt = dm_table_get_target(map, 0); 576 if (!tgt->type->ioctl) 577 goto out; 578 579 if (dm_suspended_md(md)) { 580 r = -EAGAIN; 581 goto out; 582 } 583 584 r = tgt->type->ioctl(tgt, cmd, arg); 585 586 out: 587 dm_put_live_table(md, srcu_idx); 588 589 if (r == -ENOTCONN) { 590 msleep(10); 591 goto retry; 592 } 593 594 return r; 595 } 596 597 static struct dm_io *alloc_io(struct mapped_device *md) 598 { 599 return mempool_alloc(md->io_pool, GFP_NOIO); 600 } 601 602 static void free_io(struct mapped_device *md, struct dm_io *io) 603 { 604 mempool_free(io, md->io_pool); 605 } 606 607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 608 { 609 bio_put(&tio->clone); 610 } 611 612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 613 gfp_t gfp_mask) 614 { 615 return mempool_alloc(md->io_pool, gfp_mask); 616 } 617 618 static void free_rq_tio(struct dm_rq_target_io *tio) 619 { 620 mempool_free(tio, tio->md->io_pool); 621 } 622 623 static struct request *alloc_clone_request(struct mapped_device *md, 624 gfp_t gfp_mask) 625 { 626 return mempool_alloc(md->rq_pool, gfp_mask); 627 } 628 629 static void free_clone_request(struct mapped_device *md, struct request *rq) 630 { 631 mempool_free(rq, md->rq_pool); 632 } 633 634 static int md_in_flight(struct mapped_device *md) 635 { 636 return atomic_read(&md->pending[READ]) + 637 atomic_read(&md->pending[WRITE]); 638 } 639 640 static void start_io_acct(struct dm_io *io) 641 { 642 struct mapped_device *md = io->md; 643 struct bio *bio = io->bio; 644 int cpu; 645 int rw = bio_data_dir(bio); 646 647 io->start_time = jiffies; 648 649 cpu = part_stat_lock(); 650 part_round_stats(cpu, &dm_disk(md)->part0); 651 part_stat_unlock(); 652 atomic_set(&dm_disk(md)->part0.in_flight[rw], 653 atomic_inc_return(&md->pending[rw])); 654 655 if (unlikely(dm_stats_used(&md->stats))) 656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 657 bio_sectors(bio), false, 0, &io->stats_aux); 658 } 659 660 static void end_io_acct(struct dm_io *io) 661 { 662 struct mapped_device *md = io->md; 663 struct bio *bio = io->bio; 664 unsigned long duration = jiffies - io->start_time; 665 int pending; 666 int rw = bio_data_dir(bio); 667 668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 669 670 if (unlikely(dm_stats_used(&md->stats))) 671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 672 bio_sectors(bio), true, duration, &io->stats_aux); 673 674 /* 675 * After this is decremented the bio must not be touched if it is 676 * a flush. 677 */ 678 pending = atomic_dec_return(&md->pending[rw]); 679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 680 pending += atomic_read(&md->pending[rw^0x1]); 681 682 /* nudge anyone waiting on suspend queue */ 683 if (!pending) 684 wake_up(&md->wait); 685 } 686 687 /* 688 * Add the bio to the list of deferred io. 689 */ 690 static void queue_io(struct mapped_device *md, struct bio *bio) 691 { 692 unsigned long flags; 693 694 spin_lock_irqsave(&md->deferred_lock, flags); 695 bio_list_add(&md->deferred, bio); 696 spin_unlock_irqrestore(&md->deferred_lock, flags); 697 queue_work(md->wq, &md->work); 698 } 699 700 /* 701 * Everyone (including functions in this file), should use this 702 * function to access the md->map field, and make sure they call 703 * dm_put_live_table() when finished. 704 */ 705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 706 { 707 *srcu_idx = srcu_read_lock(&md->io_barrier); 708 709 return srcu_dereference(md->map, &md->io_barrier); 710 } 711 712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 713 { 714 srcu_read_unlock(&md->io_barrier, srcu_idx); 715 } 716 717 void dm_sync_table(struct mapped_device *md) 718 { 719 synchronize_srcu(&md->io_barrier); 720 synchronize_rcu_expedited(); 721 } 722 723 /* 724 * A fast alternative to dm_get_live_table/dm_put_live_table. 725 * The caller must not block between these two functions. 726 */ 727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 728 { 729 rcu_read_lock(); 730 return rcu_dereference(md->map); 731 } 732 733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 734 { 735 rcu_read_unlock(); 736 } 737 738 /* 739 * Open a table device so we can use it as a map destination. 740 */ 741 static int open_table_device(struct table_device *td, dev_t dev, 742 struct mapped_device *md) 743 { 744 static char *_claim_ptr = "I belong to device-mapper"; 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 return 0; 763 } 764 765 /* 766 * Close a table device that we've been using. 767 */ 768 static void close_table_device(struct table_device *td, struct mapped_device *md) 769 { 770 if (!td->dm_dev.bdev) 771 return; 772 773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 775 td->dm_dev.bdev = NULL; 776 } 777 778 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 779 fmode_t mode) { 780 struct table_device *td; 781 782 list_for_each_entry(td, l, list) 783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 784 return td; 785 786 return NULL; 787 } 788 789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 790 struct dm_dev **result) { 791 int r; 792 struct table_device *td; 793 794 mutex_lock(&md->table_devices_lock); 795 td = find_table_device(&md->table_devices, dev, mode); 796 if (!td) { 797 td = kmalloc(sizeof(*td), GFP_KERNEL); 798 if (!td) { 799 mutex_unlock(&md->table_devices_lock); 800 return -ENOMEM; 801 } 802 803 td->dm_dev.mode = mode; 804 td->dm_dev.bdev = NULL; 805 806 if ((r = open_table_device(td, dev, md))) { 807 mutex_unlock(&md->table_devices_lock); 808 kfree(td); 809 return r; 810 } 811 812 format_dev_t(td->dm_dev.name, dev); 813 814 atomic_set(&td->count, 0); 815 list_add(&td->list, &md->table_devices); 816 } 817 atomic_inc(&td->count); 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822 } 823 EXPORT_SYMBOL_GPL(dm_get_table_device); 824 825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 826 { 827 struct table_device *td = container_of(d, struct table_device, dm_dev); 828 829 mutex_lock(&md->table_devices_lock); 830 if (atomic_dec_and_test(&td->count)) { 831 close_table_device(td, md); 832 list_del(&td->list); 833 kfree(td); 834 } 835 mutex_unlock(&md->table_devices_lock); 836 } 837 EXPORT_SYMBOL(dm_put_table_device); 838 839 static void free_table_devices(struct list_head *devices) 840 { 841 struct list_head *tmp, *next; 842 843 list_for_each_safe(tmp, next, devices) { 844 struct table_device *td = list_entry(tmp, struct table_device, list); 845 846 DMWARN("dm_destroy: %s still exists with %d references", 847 td->dm_dev.name, atomic_read(&td->count)); 848 kfree(td); 849 } 850 } 851 852 /* 853 * Get the geometry associated with a dm device 854 */ 855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 856 { 857 *geo = md->geometry; 858 859 return 0; 860 } 861 862 /* 863 * Set the geometry of a device. 864 */ 865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 866 { 867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 868 869 if (geo->start > sz) { 870 DMWARN("Start sector is beyond the geometry limits."); 871 return -EINVAL; 872 } 873 874 md->geometry = *geo; 875 876 return 0; 877 } 878 879 /*----------------------------------------------------------------- 880 * CRUD START: 881 * A more elegant soln is in the works that uses the queue 882 * merge fn, unfortunately there are a couple of changes to 883 * the block layer that I want to make for this. So in the 884 * interests of getting something for people to use I give 885 * you this clearly demarcated crap. 886 *---------------------------------------------------------------*/ 887 888 static int __noflush_suspending(struct mapped_device *md) 889 { 890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 891 } 892 893 /* 894 * Decrements the number of outstanding ios that a bio has been 895 * cloned into, completing the original io if necc. 896 */ 897 static void dec_pending(struct dm_io *io, int error) 898 { 899 unsigned long flags; 900 int io_error; 901 struct bio *bio; 902 struct mapped_device *md = io->md; 903 904 /* Push-back supersedes any I/O errors */ 905 if (unlikely(error)) { 906 spin_lock_irqsave(&io->endio_lock, flags); 907 if (!(io->error > 0 && __noflush_suspending(md))) 908 io->error = error; 909 spin_unlock_irqrestore(&io->endio_lock, flags); 910 } 911 912 if (atomic_dec_and_test(&io->io_count)) { 913 if (io->error == DM_ENDIO_REQUEUE) { 914 /* 915 * Target requested pushing back the I/O. 916 */ 917 spin_lock_irqsave(&md->deferred_lock, flags); 918 if (__noflush_suspending(md)) 919 bio_list_add_head(&md->deferred, io->bio); 920 else 921 /* noflush suspend was interrupted. */ 922 io->error = -EIO; 923 spin_unlock_irqrestore(&md->deferred_lock, flags); 924 } 925 926 io_error = io->error; 927 bio = io->bio; 928 end_io_acct(io); 929 free_io(md, io); 930 931 if (io_error == DM_ENDIO_REQUEUE) 932 return; 933 934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 935 /* 936 * Preflush done for flush with data, reissue 937 * without REQ_FLUSH. 938 */ 939 bio->bi_rw &= ~REQ_FLUSH; 940 queue_io(md, bio); 941 } else { 942 /* done with normal IO or empty flush */ 943 trace_block_bio_complete(md->queue, bio, io_error); 944 bio_endio(bio, io_error); 945 } 946 } 947 } 948 949 static void disable_write_same(struct mapped_device *md) 950 { 951 struct queue_limits *limits = dm_get_queue_limits(md); 952 953 /* device doesn't really support WRITE SAME, disable it */ 954 limits->max_write_same_sectors = 0; 955 } 956 957 static void clone_endio(struct bio *bio, int error) 958 { 959 int r = error; 960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 961 struct dm_io *io = tio->io; 962 struct mapped_device *md = tio->io->md; 963 dm_endio_fn endio = tio->ti->type->end_io; 964 965 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 966 error = -EIO; 967 968 if (endio) { 969 r = endio(tio->ti, bio, error); 970 if (r < 0 || r == DM_ENDIO_REQUEUE) 971 /* 972 * error and requeue request are handled 973 * in dec_pending(). 974 */ 975 error = r; 976 else if (r == DM_ENDIO_INCOMPLETE) 977 /* The target will handle the io */ 978 return; 979 else if (r) { 980 DMWARN("unimplemented target endio return value: %d", r); 981 BUG(); 982 } 983 } 984 985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 987 disable_write_same(md); 988 989 free_tio(md, tio); 990 dec_pending(io, error); 991 } 992 993 /* 994 * Partial completion handling for request-based dm 995 */ 996 static void end_clone_bio(struct bio *clone, int error) 997 { 998 struct dm_rq_clone_bio_info *info = 999 container_of(clone, struct dm_rq_clone_bio_info, clone); 1000 struct dm_rq_target_io *tio = info->tio; 1001 struct bio *bio = info->orig; 1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1003 1004 bio_put(clone); 1005 1006 if (tio->error) 1007 /* 1008 * An error has already been detected on the request. 1009 * Once error occurred, just let clone->end_io() handle 1010 * the remainder. 1011 */ 1012 return; 1013 else if (error) { 1014 /* 1015 * Don't notice the error to the upper layer yet. 1016 * The error handling decision is made by the target driver, 1017 * when the request is completed. 1018 */ 1019 tio->error = error; 1020 return; 1021 } 1022 1023 /* 1024 * I/O for the bio successfully completed. 1025 * Notice the data completion to the upper layer. 1026 */ 1027 1028 /* 1029 * bios are processed from the head of the list. 1030 * So the completing bio should always be rq->bio. 1031 * If it's not, something wrong is happening. 1032 */ 1033 if (tio->orig->bio != bio) 1034 DMERR("bio completion is going in the middle of the request"); 1035 1036 /* 1037 * Update the original request. 1038 * Do not use blk_end_request() here, because it may complete 1039 * the original request before the clone, and break the ordering. 1040 */ 1041 blk_update_request(tio->orig, 0, nr_bytes); 1042 } 1043 1044 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1045 { 1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1047 } 1048 1049 /* 1050 * Don't touch any member of the md after calling this function because 1051 * the md may be freed in dm_put() at the end of this function. 1052 * Or do dm_get() before calling this function and dm_put() later. 1053 */ 1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1055 { 1056 int nr_requests_pending; 1057 1058 atomic_dec(&md->pending[rw]); 1059 1060 /* nudge anyone waiting on suspend queue */ 1061 nr_requests_pending = md_in_flight(md); 1062 if (!nr_requests_pending) 1063 wake_up(&md->wait); 1064 1065 /* 1066 * Run this off this callpath, as drivers could invoke end_io while 1067 * inside their request_fn (and holding the queue lock). Calling 1068 * back into ->request_fn() could deadlock attempting to grab the 1069 * queue lock again. 1070 */ 1071 if (run_queue) { 1072 if (md->queue->mq_ops) 1073 blk_mq_run_hw_queues(md->queue, true); 1074 else if (!nr_requests_pending || 1075 (nr_requests_pending >= md->queue->nr_congestion_on)) 1076 blk_run_queue_async(md->queue); 1077 } 1078 1079 /* 1080 * dm_put() must be at the end of this function. See the comment above 1081 */ 1082 dm_put(md); 1083 } 1084 1085 static void free_rq_clone(struct request *clone) 1086 { 1087 struct dm_rq_target_io *tio = clone->end_io_data; 1088 struct mapped_device *md = tio->md; 1089 1090 blk_rq_unprep_clone(clone); 1091 1092 if (clone->q->mq_ops) 1093 tio->ti->type->release_clone_rq(clone); 1094 else if (!md->queue->mq_ops) 1095 /* request_fn queue stacked on request_fn queue(s) */ 1096 free_clone_request(md, clone); 1097 1098 if (!md->queue->mq_ops) 1099 free_rq_tio(tio); 1100 } 1101 1102 /* 1103 * Complete the clone and the original request. 1104 * Must be called without clone's queue lock held, 1105 * see end_clone_request() for more details. 1106 */ 1107 static void dm_end_request(struct request *clone, int error) 1108 { 1109 int rw = rq_data_dir(clone); 1110 struct dm_rq_target_io *tio = clone->end_io_data; 1111 struct mapped_device *md = tio->md; 1112 struct request *rq = tio->orig; 1113 1114 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1115 rq->errors = clone->errors; 1116 rq->resid_len = clone->resid_len; 1117 1118 if (rq->sense) 1119 /* 1120 * We are using the sense buffer of the original 1121 * request. 1122 * So setting the length of the sense data is enough. 1123 */ 1124 rq->sense_len = clone->sense_len; 1125 } 1126 1127 free_rq_clone(clone); 1128 if (!rq->q->mq_ops) 1129 blk_end_request_all(rq, error); 1130 else 1131 blk_mq_end_request(rq, error); 1132 rq_completed(md, rw, true); 1133 } 1134 1135 static void dm_unprep_request(struct request *rq) 1136 { 1137 struct dm_rq_target_io *tio = tio_from_request(rq); 1138 struct request *clone = tio->clone; 1139 1140 if (!rq->q->mq_ops) { 1141 rq->special = NULL; 1142 rq->cmd_flags &= ~REQ_DONTPREP; 1143 } 1144 1145 if (clone) 1146 free_rq_clone(clone); 1147 } 1148 1149 /* 1150 * Requeue the original request of a clone. 1151 */ 1152 static void old_requeue_request(struct request *rq) 1153 { 1154 struct request_queue *q = rq->q; 1155 unsigned long flags; 1156 1157 spin_lock_irqsave(q->queue_lock, flags); 1158 blk_requeue_request(q, rq); 1159 spin_unlock_irqrestore(q->queue_lock, flags); 1160 } 1161 1162 static void dm_requeue_unmapped_original_request(struct mapped_device *md, 1163 struct request *rq) 1164 { 1165 int rw = rq_data_dir(rq); 1166 1167 dm_unprep_request(rq); 1168 1169 if (!rq->q->mq_ops) 1170 old_requeue_request(rq); 1171 else { 1172 blk_mq_requeue_request(rq); 1173 blk_mq_kick_requeue_list(rq->q); 1174 } 1175 1176 rq_completed(md, rw, false); 1177 } 1178 1179 static void dm_requeue_unmapped_request(struct request *clone) 1180 { 1181 struct dm_rq_target_io *tio = clone->end_io_data; 1182 1183 dm_requeue_unmapped_original_request(tio->md, tio->orig); 1184 } 1185 1186 static void old_stop_queue(struct request_queue *q) 1187 { 1188 unsigned long flags; 1189 1190 if (blk_queue_stopped(q)) 1191 return; 1192 1193 spin_lock_irqsave(q->queue_lock, flags); 1194 blk_stop_queue(q); 1195 spin_unlock_irqrestore(q->queue_lock, flags); 1196 } 1197 1198 static void stop_queue(struct request_queue *q) 1199 { 1200 if (!q->mq_ops) 1201 old_stop_queue(q); 1202 else 1203 blk_mq_stop_hw_queues(q); 1204 } 1205 1206 static void old_start_queue(struct request_queue *q) 1207 { 1208 unsigned long flags; 1209 1210 spin_lock_irqsave(q->queue_lock, flags); 1211 if (blk_queue_stopped(q)) 1212 blk_start_queue(q); 1213 spin_unlock_irqrestore(q->queue_lock, flags); 1214 } 1215 1216 static void start_queue(struct request_queue *q) 1217 { 1218 if (!q->mq_ops) 1219 old_start_queue(q); 1220 else 1221 blk_mq_start_stopped_hw_queues(q, true); 1222 } 1223 1224 static void dm_done(struct request *clone, int error, bool mapped) 1225 { 1226 int r = error; 1227 struct dm_rq_target_io *tio = clone->end_io_data; 1228 dm_request_endio_fn rq_end_io = NULL; 1229 1230 if (tio->ti) { 1231 rq_end_io = tio->ti->type->rq_end_io; 1232 1233 if (mapped && rq_end_io) 1234 r = rq_end_io(tio->ti, clone, error, &tio->info); 1235 } 1236 1237 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1238 !clone->q->limits.max_write_same_sectors)) 1239 disable_write_same(tio->md); 1240 1241 if (r <= 0) 1242 /* The target wants to complete the I/O */ 1243 dm_end_request(clone, r); 1244 else if (r == DM_ENDIO_INCOMPLETE) 1245 /* The target will handle the I/O */ 1246 return; 1247 else if (r == DM_ENDIO_REQUEUE) 1248 /* The target wants to requeue the I/O */ 1249 dm_requeue_unmapped_request(clone); 1250 else { 1251 DMWARN("unimplemented target endio return value: %d", r); 1252 BUG(); 1253 } 1254 } 1255 1256 /* 1257 * Request completion handler for request-based dm 1258 */ 1259 static void dm_softirq_done(struct request *rq) 1260 { 1261 bool mapped = true; 1262 struct dm_rq_target_io *tio = tio_from_request(rq); 1263 struct request *clone = tio->clone; 1264 int rw; 1265 1266 if (!clone) { 1267 rw = rq_data_dir(rq); 1268 if (!rq->q->mq_ops) { 1269 blk_end_request_all(rq, tio->error); 1270 rq_completed(tio->md, rw, false); 1271 free_rq_tio(tio); 1272 } else { 1273 blk_mq_end_request(rq, tio->error); 1274 rq_completed(tio->md, rw, false); 1275 } 1276 return; 1277 } 1278 1279 if (rq->cmd_flags & REQ_FAILED) 1280 mapped = false; 1281 1282 dm_done(clone, tio->error, mapped); 1283 } 1284 1285 /* 1286 * Complete the clone and the original request with the error status 1287 * through softirq context. 1288 */ 1289 static void dm_complete_request(struct request *rq, int error) 1290 { 1291 struct dm_rq_target_io *tio = tio_from_request(rq); 1292 1293 tio->error = error; 1294 blk_complete_request(rq); 1295 } 1296 1297 /* 1298 * Complete the not-mapped clone and the original request with the error status 1299 * through softirq context. 1300 * Target's rq_end_io() function isn't called. 1301 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1302 */ 1303 static void dm_kill_unmapped_request(struct request *rq, int error) 1304 { 1305 rq->cmd_flags |= REQ_FAILED; 1306 dm_complete_request(rq, error); 1307 } 1308 1309 /* 1310 * Called with the clone's queue lock held (for non-blk-mq) 1311 */ 1312 static void end_clone_request(struct request *clone, int error) 1313 { 1314 struct dm_rq_target_io *tio = clone->end_io_data; 1315 1316 if (!clone->q->mq_ops) { 1317 /* 1318 * For just cleaning up the information of the queue in which 1319 * the clone was dispatched. 1320 * The clone is *NOT* freed actually here because it is alloced 1321 * from dm own mempool (REQ_ALLOCED isn't set). 1322 */ 1323 __blk_put_request(clone->q, clone); 1324 } 1325 1326 /* 1327 * Actual request completion is done in a softirq context which doesn't 1328 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1329 * - another request may be submitted by the upper level driver 1330 * of the stacking during the completion 1331 * - the submission which requires queue lock may be done 1332 * against this clone's queue 1333 */ 1334 dm_complete_request(tio->orig, error); 1335 } 1336 1337 /* 1338 * Return maximum size of I/O possible at the supplied sector up to the current 1339 * target boundary. 1340 */ 1341 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1342 { 1343 sector_t target_offset = dm_target_offset(ti, sector); 1344 1345 return ti->len - target_offset; 1346 } 1347 1348 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1349 { 1350 sector_t len = max_io_len_target_boundary(sector, ti); 1351 sector_t offset, max_len; 1352 1353 /* 1354 * Does the target need to split even further? 1355 */ 1356 if (ti->max_io_len) { 1357 offset = dm_target_offset(ti, sector); 1358 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1359 max_len = sector_div(offset, ti->max_io_len); 1360 else 1361 max_len = offset & (ti->max_io_len - 1); 1362 max_len = ti->max_io_len - max_len; 1363 1364 if (len > max_len) 1365 len = max_len; 1366 } 1367 1368 return len; 1369 } 1370 1371 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1372 { 1373 if (len > UINT_MAX) { 1374 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1375 (unsigned long long)len, UINT_MAX); 1376 ti->error = "Maximum size of target IO is too large"; 1377 return -EINVAL; 1378 } 1379 1380 ti->max_io_len = (uint32_t) len; 1381 1382 return 0; 1383 } 1384 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1385 1386 /* 1387 * A target may call dm_accept_partial_bio only from the map routine. It is 1388 * allowed for all bio types except REQ_FLUSH. 1389 * 1390 * dm_accept_partial_bio informs the dm that the target only wants to process 1391 * additional n_sectors sectors of the bio and the rest of the data should be 1392 * sent in a next bio. 1393 * 1394 * A diagram that explains the arithmetics: 1395 * +--------------------+---------------+-------+ 1396 * | 1 | 2 | 3 | 1397 * +--------------------+---------------+-------+ 1398 * 1399 * <-------------- *tio->len_ptr ---------------> 1400 * <------- bi_size -------> 1401 * <-- n_sectors --> 1402 * 1403 * Region 1 was already iterated over with bio_advance or similar function. 1404 * (it may be empty if the target doesn't use bio_advance) 1405 * Region 2 is the remaining bio size that the target wants to process. 1406 * (it may be empty if region 1 is non-empty, although there is no reason 1407 * to make it empty) 1408 * The target requires that region 3 is to be sent in the next bio. 1409 * 1410 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1411 * the partially processed part (the sum of regions 1+2) must be the same for all 1412 * copies of the bio. 1413 */ 1414 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1415 { 1416 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1417 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1418 BUG_ON(bio->bi_rw & REQ_FLUSH); 1419 BUG_ON(bi_size > *tio->len_ptr); 1420 BUG_ON(n_sectors > bi_size); 1421 *tio->len_ptr -= bi_size - n_sectors; 1422 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1423 } 1424 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1425 1426 static void __map_bio(struct dm_target_io *tio) 1427 { 1428 int r; 1429 sector_t sector; 1430 struct mapped_device *md; 1431 struct bio *clone = &tio->clone; 1432 struct dm_target *ti = tio->ti; 1433 1434 clone->bi_end_io = clone_endio; 1435 1436 /* 1437 * Map the clone. If r == 0 we don't need to do 1438 * anything, the target has assumed ownership of 1439 * this io. 1440 */ 1441 atomic_inc(&tio->io->io_count); 1442 sector = clone->bi_iter.bi_sector; 1443 r = ti->type->map(ti, clone); 1444 if (r == DM_MAPIO_REMAPPED) { 1445 /* the bio has been remapped so dispatch it */ 1446 1447 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1448 tio->io->bio->bi_bdev->bd_dev, sector); 1449 1450 generic_make_request(clone); 1451 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1452 /* error the io and bail out, or requeue it if needed */ 1453 md = tio->io->md; 1454 dec_pending(tio->io, r); 1455 free_tio(md, tio); 1456 } else if (r) { 1457 DMWARN("unimplemented target map return value: %d", r); 1458 BUG(); 1459 } 1460 } 1461 1462 struct clone_info { 1463 struct mapped_device *md; 1464 struct dm_table *map; 1465 struct bio *bio; 1466 struct dm_io *io; 1467 sector_t sector; 1468 unsigned sector_count; 1469 }; 1470 1471 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1472 { 1473 bio->bi_iter.bi_sector = sector; 1474 bio->bi_iter.bi_size = to_bytes(len); 1475 } 1476 1477 /* 1478 * Creates a bio that consists of range of complete bvecs. 1479 */ 1480 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1481 sector_t sector, unsigned len) 1482 { 1483 struct bio *clone = &tio->clone; 1484 1485 __bio_clone_fast(clone, bio); 1486 1487 if (bio_integrity(bio)) 1488 bio_integrity_clone(clone, bio, GFP_NOIO); 1489 1490 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1491 clone->bi_iter.bi_size = to_bytes(len); 1492 1493 if (bio_integrity(bio)) 1494 bio_integrity_trim(clone, 0, len); 1495 } 1496 1497 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1498 struct dm_target *ti, 1499 unsigned target_bio_nr) 1500 { 1501 struct dm_target_io *tio; 1502 struct bio *clone; 1503 1504 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1505 tio = container_of(clone, struct dm_target_io, clone); 1506 1507 tio->io = ci->io; 1508 tio->ti = ti; 1509 tio->target_bio_nr = target_bio_nr; 1510 1511 return tio; 1512 } 1513 1514 static void __clone_and_map_simple_bio(struct clone_info *ci, 1515 struct dm_target *ti, 1516 unsigned target_bio_nr, unsigned *len) 1517 { 1518 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1519 struct bio *clone = &tio->clone; 1520 1521 tio->len_ptr = len; 1522 1523 __bio_clone_fast(clone, ci->bio); 1524 if (len) 1525 bio_setup_sector(clone, ci->sector, *len); 1526 1527 __map_bio(tio); 1528 } 1529 1530 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1531 unsigned num_bios, unsigned *len) 1532 { 1533 unsigned target_bio_nr; 1534 1535 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1536 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1537 } 1538 1539 static int __send_empty_flush(struct clone_info *ci) 1540 { 1541 unsigned target_nr = 0; 1542 struct dm_target *ti; 1543 1544 BUG_ON(bio_has_data(ci->bio)); 1545 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1546 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1547 1548 return 0; 1549 } 1550 1551 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1552 sector_t sector, unsigned *len) 1553 { 1554 struct bio *bio = ci->bio; 1555 struct dm_target_io *tio; 1556 unsigned target_bio_nr; 1557 unsigned num_target_bios = 1; 1558 1559 /* 1560 * Does the target want to receive duplicate copies of the bio? 1561 */ 1562 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1563 num_target_bios = ti->num_write_bios(ti, bio); 1564 1565 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1566 tio = alloc_tio(ci, ti, target_bio_nr); 1567 tio->len_ptr = len; 1568 clone_bio(tio, bio, sector, *len); 1569 __map_bio(tio); 1570 } 1571 } 1572 1573 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1574 1575 static unsigned get_num_discard_bios(struct dm_target *ti) 1576 { 1577 return ti->num_discard_bios; 1578 } 1579 1580 static unsigned get_num_write_same_bios(struct dm_target *ti) 1581 { 1582 return ti->num_write_same_bios; 1583 } 1584 1585 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1586 1587 static bool is_split_required_for_discard(struct dm_target *ti) 1588 { 1589 return ti->split_discard_bios; 1590 } 1591 1592 static int __send_changing_extent_only(struct clone_info *ci, 1593 get_num_bios_fn get_num_bios, 1594 is_split_required_fn is_split_required) 1595 { 1596 struct dm_target *ti; 1597 unsigned len; 1598 unsigned num_bios; 1599 1600 do { 1601 ti = dm_table_find_target(ci->map, ci->sector); 1602 if (!dm_target_is_valid(ti)) 1603 return -EIO; 1604 1605 /* 1606 * Even though the device advertised support for this type of 1607 * request, that does not mean every target supports it, and 1608 * reconfiguration might also have changed that since the 1609 * check was performed. 1610 */ 1611 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1612 if (!num_bios) 1613 return -EOPNOTSUPP; 1614 1615 if (is_split_required && !is_split_required(ti)) 1616 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1617 else 1618 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1619 1620 __send_duplicate_bios(ci, ti, num_bios, &len); 1621 1622 ci->sector += len; 1623 } while (ci->sector_count -= len); 1624 1625 return 0; 1626 } 1627 1628 static int __send_discard(struct clone_info *ci) 1629 { 1630 return __send_changing_extent_only(ci, get_num_discard_bios, 1631 is_split_required_for_discard); 1632 } 1633 1634 static int __send_write_same(struct clone_info *ci) 1635 { 1636 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1637 } 1638 1639 /* 1640 * Select the correct strategy for processing a non-flush bio. 1641 */ 1642 static int __split_and_process_non_flush(struct clone_info *ci) 1643 { 1644 struct bio *bio = ci->bio; 1645 struct dm_target *ti; 1646 unsigned len; 1647 1648 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1649 return __send_discard(ci); 1650 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1651 return __send_write_same(ci); 1652 1653 ti = dm_table_find_target(ci->map, ci->sector); 1654 if (!dm_target_is_valid(ti)) 1655 return -EIO; 1656 1657 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1658 1659 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1660 1661 ci->sector += len; 1662 ci->sector_count -= len; 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * Entry point to split a bio into clones and submit them to the targets. 1669 */ 1670 static void __split_and_process_bio(struct mapped_device *md, 1671 struct dm_table *map, struct bio *bio) 1672 { 1673 struct clone_info ci; 1674 int error = 0; 1675 1676 if (unlikely(!map)) { 1677 bio_io_error(bio); 1678 return; 1679 } 1680 1681 ci.map = map; 1682 ci.md = md; 1683 ci.io = alloc_io(md); 1684 ci.io->error = 0; 1685 atomic_set(&ci.io->io_count, 1); 1686 ci.io->bio = bio; 1687 ci.io->md = md; 1688 spin_lock_init(&ci.io->endio_lock); 1689 ci.sector = bio->bi_iter.bi_sector; 1690 1691 start_io_acct(ci.io); 1692 1693 if (bio->bi_rw & REQ_FLUSH) { 1694 ci.bio = &ci.md->flush_bio; 1695 ci.sector_count = 0; 1696 error = __send_empty_flush(&ci); 1697 /* dec_pending submits any data associated with flush */ 1698 } else { 1699 ci.bio = bio; 1700 ci.sector_count = bio_sectors(bio); 1701 while (ci.sector_count && !error) 1702 error = __split_and_process_non_flush(&ci); 1703 } 1704 1705 /* drop the extra reference count */ 1706 dec_pending(ci.io, error); 1707 } 1708 /*----------------------------------------------------------------- 1709 * CRUD END 1710 *---------------------------------------------------------------*/ 1711 1712 static int dm_merge_bvec(struct request_queue *q, 1713 struct bvec_merge_data *bvm, 1714 struct bio_vec *biovec) 1715 { 1716 struct mapped_device *md = q->queuedata; 1717 struct dm_table *map = dm_get_live_table_fast(md); 1718 struct dm_target *ti; 1719 sector_t max_sectors; 1720 int max_size = 0; 1721 1722 if (unlikely(!map)) 1723 goto out; 1724 1725 ti = dm_table_find_target(map, bvm->bi_sector); 1726 if (!dm_target_is_valid(ti)) 1727 goto out; 1728 1729 /* 1730 * Find maximum amount of I/O that won't need splitting 1731 */ 1732 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1733 (sector_t) queue_max_sectors(q)); 1734 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1735 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */ 1736 max_size = 0; 1737 1738 /* 1739 * merge_bvec_fn() returns number of bytes 1740 * it can accept at this offset 1741 * max is precomputed maximal io size 1742 */ 1743 if (max_size && ti->type->merge) 1744 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1745 /* 1746 * If the target doesn't support merge method and some of the devices 1747 * provided their merge_bvec method (we know this by looking for the 1748 * max_hw_sectors that dm_set_device_limits may set), then we can't 1749 * allow bios with multiple vector entries. So always set max_size 1750 * to 0, and the code below allows just one page. 1751 */ 1752 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1753 max_size = 0; 1754 1755 out: 1756 dm_put_live_table_fast(md); 1757 /* 1758 * Always allow an entire first page 1759 */ 1760 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1761 max_size = biovec->bv_len; 1762 1763 return max_size; 1764 } 1765 1766 /* 1767 * The request function that just remaps the bio built up by 1768 * dm_merge_bvec. 1769 */ 1770 static void dm_make_request(struct request_queue *q, struct bio *bio) 1771 { 1772 int rw = bio_data_dir(bio); 1773 struct mapped_device *md = q->queuedata; 1774 int srcu_idx; 1775 struct dm_table *map; 1776 1777 map = dm_get_live_table(md, &srcu_idx); 1778 1779 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1780 1781 /* if we're suspended, we have to queue this io for later */ 1782 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1783 dm_put_live_table(md, srcu_idx); 1784 1785 if (bio_rw(bio) != READA) 1786 queue_io(md, bio); 1787 else 1788 bio_io_error(bio); 1789 return; 1790 } 1791 1792 __split_and_process_bio(md, map, bio); 1793 dm_put_live_table(md, srcu_idx); 1794 return; 1795 } 1796 1797 int dm_request_based(struct mapped_device *md) 1798 { 1799 return blk_queue_stackable(md->queue); 1800 } 1801 1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1803 { 1804 int r; 1805 1806 if (blk_queue_io_stat(clone->q)) 1807 clone->cmd_flags |= REQ_IO_STAT; 1808 1809 clone->start_time = jiffies; 1810 r = blk_insert_cloned_request(clone->q, clone); 1811 if (r) 1812 /* must complete clone in terms of original request */ 1813 dm_complete_request(rq, r); 1814 } 1815 1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1817 void *data) 1818 { 1819 struct dm_rq_target_io *tio = data; 1820 struct dm_rq_clone_bio_info *info = 1821 container_of(bio, struct dm_rq_clone_bio_info, clone); 1822 1823 info->orig = bio_orig; 1824 info->tio = tio; 1825 bio->bi_end_io = end_clone_bio; 1826 1827 return 0; 1828 } 1829 1830 static int setup_clone(struct request *clone, struct request *rq, 1831 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1832 { 1833 int r; 1834 1835 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1836 dm_rq_bio_constructor, tio); 1837 if (r) 1838 return r; 1839 1840 clone->cmd = rq->cmd; 1841 clone->cmd_len = rq->cmd_len; 1842 clone->sense = rq->sense; 1843 clone->end_io = end_clone_request; 1844 clone->end_io_data = tio; 1845 1846 tio->clone = clone; 1847 1848 return 0; 1849 } 1850 1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1852 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1853 { 1854 /* 1855 * Do not allocate a clone if tio->clone was already set 1856 * (see: dm_mq_queue_rq). 1857 */ 1858 bool alloc_clone = !tio->clone; 1859 struct request *clone; 1860 1861 if (alloc_clone) { 1862 clone = alloc_clone_request(md, gfp_mask); 1863 if (!clone) 1864 return NULL; 1865 } else 1866 clone = tio->clone; 1867 1868 blk_rq_init(NULL, clone); 1869 if (setup_clone(clone, rq, tio, gfp_mask)) { 1870 /* -ENOMEM */ 1871 if (alloc_clone) 1872 free_clone_request(md, clone); 1873 return NULL; 1874 } 1875 1876 return clone; 1877 } 1878 1879 static void map_tio_request(struct kthread_work *work); 1880 1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1882 struct mapped_device *md) 1883 { 1884 tio->md = md; 1885 tio->ti = NULL; 1886 tio->clone = NULL; 1887 tio->orig = rq; 1888 tio->error = 0; 1889 memset(&tio->info, 0, sizeof(tio->info)); 1890 if (md->kworker_task) 1891 init_kthread_work(&tio->work, map_tio_request); 1892 } 1893 1894 static struct dm_rq_target_io *prep_tio(struct request *rq, 1895 struct mapped_device *md, gfp_t gfp_mask) 1896 { 1897 struct dm_rq_target_io *tio; 1898 int srcu_idx; 1899 struct dm_table *table; 1900 1901 tio = alloc_rq_tio(md, gfp_mask); 1902 if (!tio) 1903 return NULL; 1904 1905 init_tio(tio, rq, md); 1906 1907 table = dm_get_live_table(md, &srcu_idx); 1908 if (!dm_table_mq_request_based(table)) { 1909 if (!clone_rq(rq, md, tio, gfp_mask)) { 1910 dm_put_live_table(md, srcu_idx); 1911 free_rq_tio(tio); 1912 return NULL; 1913 } 1914 } 1915 dm_put_live_table(md, srcu_idx); 1916 1917 return tio; 1918 } 1919 1920 /* 1921 * Called with the queue lock held. 1922 */ 1923 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1924 { 1925 struct mapped_device *md = q->queuedata; 1926 struct dm_rq_target_io *tio; 1927 1928 if (unlikely(rq->special)) { 1929 DMWARN("Already has something in rq->special."); 1930 return BLKPREP_KILL; 1931 } 1932 1933 tio = prep_tio(rq, md, GFP_ATOMIC); 1934 if (!tio) 1935 return BLKPREP_DEFER; 1936 1937 rq->special = tio; 1938 rq->cmd_flags |= REQ_DONTPREP; 1939 1940 return BLKPREP_OK; 1941 } 1942 1943 /* 1944 * Returns: 1945 * 0 : the request has been processed 1946 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1947 * < 0 : the request was completed due to failure 1948 */ 1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1950 struct mapped_device *md) 1951 { 1952 int r; 1953 struct dm_target *ti = tio->ti; 1954 struct request *clone = NULL; 1955 1956 if (tio->clone) { 1957 clone = tio->clone; 1958 r = ti->type->map_rq(ti, clone, &tio->info); 1959 } else { 1960 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1961 if (r < 0) { 1962 /* The target wants to complete the I/O */ 1963 dm_kill_unmapped_request(rq, r); 1964 return r; 1965 } 1966 if (IS_ERR(clone)) 1967 return DM_MAPIO_REQUEUE; 1968 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1969 /* -ENOMEM */ 1970 ti->type->release_clone_rq(clone); 1971 return DM_MAPIO_REQUEUE; 1972 } 1973 } 1974 1975 switch (r) { 1976 case DM_MAPIO_SUBMITTED: 1977 /* The target has taken the I/O to submit by itself later */ 1978 break; 1979 case DM_MAPIO_REMAPPED: 1980 /* The target has remapped the I/O so dispatch it */ 1981 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1982 blk_rq_pos(rq)); 1983 dm_dispatch_clone_request(clone, rq); 1984 break; 1985 case DM_MAPIO_REQUEUE: 1986 /* The target wants to requeue the I/O */ 1987 dm_requeue_unmapped_request(clone); 1988 break; 1989 default: 1990 if (r > 0) { 1991 DMWARN("unimplemented target map return value: %d", r); 1992 BUG(); 1993 } 1994 1995 /* The target wants to complete the I/O */ 1996 dm_kill_unmapped_request(rq, r); 1997 return r; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static void map_tio_request(struct kthread_work *work) 2004 { 2005 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2006 struct request *rq = tio->orig; 2007 struct mapped_device *md = tio->md; 2008 2009 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2010 dm_requeue_unmapped_original_request(md, rq); 2011 } 2012 2013 static void dm_start_request(struct mapped_device *md, struct request *orig) 2014 { 2015 if (!orig->q->mq_ops) 2016 blk_start_request(orig); 2017 else 2018 blk_mq_start_request(orig); 2019 atomic_inc(&md->pending[rq_data_dir(orig)]); 2020 2021 if (md->seq_rq_merge_deadline_usecs) { 2022 md->last_rq_pos = rq_end_sector(orig); 2023 md->last_rq_rw = rq_data_dir(orig); 2024 md->last_rq_start_time = ktime_get(); 2025 } 2026 2027 /* 2028 * Hold the md reference here for the in-flight I/O. 2029 * We can't rely on the reference count by device opener, 2030 * because the device may be closed during the request completion 2031 * when all bios are completed. 2032 * See the comment in rq_completed() too. 2033 */ 2034 dm_get(md); 2035 } 2036 2037 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2038 2039 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2040 { 2041 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2042 } 2043 2044 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2045 const char *buf, size_t count) 2046 { 2047 unsigned deadline; 2048 2049 if (!dm_request_based(md) || md->use_blk_mq) 2050 return count; 2051 2052 if (kstrtouint(buf, 10, &deadline)) 2053 return -EINVAL; 2054 2055 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2056 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2057 2058 md->seq_rq_merge_deadline_usecs = deadline; 2059 2060 return count; 2061 } 2062 2063 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2064 { 2065 ktime_t kt_deadline; 2066 2067 if (!md->seq_rq_merge_deadline_usecs) 2068 return false; 2069 2070 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2071 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2072 2073 return !ktime_after(ktime_get(), kt_deadline); 2074 } 2075 2076 /* 2077 * q->request_fn for request-based dm. 2078 * Called with the queue lock held. 2079 */ 2080 static void dm_request_fn(struct request_queue *q) 2081 { 2082 struct mapped_device *md = q->queuedata; 2083 int srcu_idx; 2084 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2085 struct dm_target *ti; 2086 struct request *rq; 2087 struct dm_rq_target_io *tio; 2088 sector_t pos; 2089 2090 /* 2091 * For suspend, check blk_queue_stopped() and increment 2092 * ->pending within a single queue_lock not to increment the 2093 * number of in-flight I/Os after the queue is stopped in 2094 * dm_suspend(). 2095 */ 2096 while (!blk_queue_stopped(q)) { 2097 rq = blk_peek_request(q); 2098 if (!rq) 2099 goto out; 2100 2101 /* always use block 0 to find the target for flushes for now */ 2102 pos = 0; 2103 if (!(rq->cmd_flags & REQ_FLUSH)) 2104 pos = blk_rq_pos(rq); 2105 2106 ti = dm_table_find_target(map, pos); 2107 if (!dm_target_is_valid(ti)) { 2108 /* 2109 * Must perform setup, that rq_completed() requires, 2110 * before calling dm_kill_unmapped_request 2111 */ 2112 DMERR_LIMIT("request attempted access beyond the end of device"); 2113 dm_start_request(md, rq); 2114 dm_kill_unmapped_request(rq, -EIO); 2115 continue; 2116 } 2117 2118 if (dm_request_peeked_before_merge_deadline(md) && 2119 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2120 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2121 goto delay_and_out; 2122 2123 if (ti->type->busy && ti->type->busy(ti)) 2124 goto delay_and_out; 2125 2126 dm_start_request(md, rq); 2127 2128 tio = tio_from_request(rq); 2129 /* Establish tio->ti before queuing work (map_tio_request) */ 2130 tio->ti = ti; 2131 queue_kthread_work(&md->kworker, &tio->work); 2132 BUG_ON(!irqs_disabled()); 2133 } 2134 2135 goto out; 2136 2137 delay_and_out: 2138 blk_delay_queue(q, HZ / 100); 2139 out: 2140 dm_put_live_table(md, srcu_idx); 2141 } 2142 2143 static int dm_any_congested(void *congested_data, int bdi_bits) 2144 { 2145 int r = bdi_bits; 2146 struct mapped_device *md = congested_data; 2147 struct dm_table *map; 2148 2149 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2150 map = dm_get_live_table_fast(md); 2151 if (map) { 2152 /* 2153 * Request-based dm cares about only own queue for 2154 * the query about congestion status of request_queue 2155 */ 2156 if (dm_request_based(md)) 2157 r = md->queue->backing_dev_info.state & 2158 bdi_bits; 2159 else 2160 r = dm_table_any_congested(map, bdi_bits); 2161 } 2162 dm_put_live_table_fast(md); 2163 } 2164 2165 return r; 2166 } 2167 2168 /*----------------------------------------------------------------- 2169 * An IDR is used to keep track of allocated minor numbers. 2170 *---------------------------------------------------------------*/ 2171 static void free_minor(int minor) 2172 { 2173 spin_lock(&_minor_lock); 2174 idr_remove(&_minor_idr, minor); 2175 spin_unlock(&_minor_lock); 2176 } 2177 2178 /* 2179 * See if the device with a specific minor # is free. 2180 */ 2181 static int specific_minor(int minor) 2182 { 2183 int r; 2184 2185 if (minor >= (1 << MINORBITS)) 2186 return -EINVAL; 2187 2188 idr_preload(GFP_KERNEL); 2189 spin_lock(&_minor_lock); 2190 2191 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2192 2193 spin_unlock(&_minor_lock); 2194 idr_preload_end(); 2195 if (r < 0) 2196 return r == -ENOSPC ? -EBUSY : r; 2197 return 0; 2198 } 2199 2200 static int next_free_minor(int *minor) 2201 { 2202 int r; 2203 2204 idr_preload(GFP_KERNEL); 2205 spin_lock(&_minor_lock); 2206 2207 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2208 2209 spin_unlock(&_minor_lock); 2210 idr_preload_end(); 2211 if (r < 0) 2212 return r; 2213 *minor = r; 2214 return 0; 2215 } 2216 2217 static const struct block_device_operations dm_blk_dops; 2218 2219 static void dm_wq_work(struct work_struct *work); 2220 2221 static void dm_init_md_queue(struct mapped_device *md) 2222 { 2223 /* 2224 * Request-based dm devices cannot be stacked on top of bio-based dm 2225 * devices. The type of this dm device may not have been decided yet. 2226 * The type is decided at the first table loading time. 2227 * To prevent problematic device stacking, clear the queue flag 2228 * for request stacking support until then. 2229 * 2230 * This queue is new, so no concurrency on the queue_flags. 2231 */ 2232 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2233 } 2234 2235 static void dm_init_old_md_queue(struct mapped_device *md) 2236 { 2237 md->use_blk_mq = false; 2238 dm_init_md_queue(md); 2239 2240 /* 2241 * Initialize aspects of queue that aren't relevant for blk-mq 2242 */ 2243 md->queue->queuedata = md; 2244 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2245 md->queue->backing_dev_info.congested_data = md; 2246 2247 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2248 } 2249 2250 /* 2251 * Allocate and initialise a blank device with a given minor. 2252 */ 2253 static struct mapped_device *alloc_dev(int minor) 2254 { 2255 int r; 2256 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2257 void *old_md; 2258 2259 if (!md) { 2260 DMWARN("unable to allocate device, out of memory."); 2261 return NULL; 2262 } 2263 2264 if (!try_module_get(THIS_MODULE)) 2265 goto bad_module_get; 2266 2267 /* get a minor number for the dev */ 2268 if (minor == DM_ANY_MINOR) 2269 r = next_free_minor(&minor); 2270 else 2271 r = specific_minor(minor); 2272 if (r < 0) 2273 goto bad_minor; 2274 2275 r = init_srcu_struct(&md->io_barrier); 2276 if (r < 0) 2277 goto bad_io_barrier; 2278 2279 md->use_blk_mq = use_blk_mq; 2280 md->type = DM_TYPE_NONE; 2281 mutex_init(&md->suspend_lock); 2282 mutex_init(&md->type_lock); 2283 mutex_init(&md->table_devices_lock); 2284 spin_lock_init(&md->deferred_lock); 2285 atomic_set(&md->holders, 1); 2286 atomic_set(&md->open_count, 0); 2287 atomic_set(&md->event_nr, 0); 2288 atomic_set(&md->uevent_seq, 0); 2289 INIT_LIST_HEAD(&md->uevent_list); 2290 INIT_LIST_HEAD(&md->table_devices); 2291 spin_lock_init(&md->uevent_lock); 2292 2293 md->queue = blk_alloc_queue(GFP_KERNEL); 2294 if (!md->queue) 2295 goto bad_queue; 2296 2297 dm_init_md_queue(md); 2298 2299 md->disk = alloc_disk(1); 2300 if (!md->disk) 2301 goto bad_disk; 2302 2303 atomic_set(&md->pending[0], 0); 2304 atomic_set(&md->pending[1], 0); 2305 init_waitqueue_head(&md->wait); 2306 INIT_WORK(&md->work, dm_wq_work); 2307 init_waitqueue_head(&md->eventq); 2308 init_completion(&md->kobj_holder.completion); 2309 md->kworker_task = NULL; 2310 2311 md->disk->major = _major; 2312 md->disk->first_minor = minor; 2313 md->disk->fops = &dm_blk_dops; 2314 md->disk->queue = md->queue; 2315 md->disk->private_data = md; 2316 sprintf(md->disk->disk_name, "dm-%d", minor); 2317 add_disk(md->disk); 2318 format_dev_t(md->name, MKDEV(_major, minor)); 2319 2320 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2321 if (!md->wq) 2322 goto bad_thread; 2323 2324 md->bdev = bdget_disk(md->disk, 0); 2325 if (!md->bdev) 2326 goto bad_bdev; 2327 2328 bio_init(&md->flush_bio); 2329 md->flush_bio.bi_bdev = md->bdev; 2330 md->flush_bio.bi_rw = WRITE_FLUSH; 2331 2332 dm_stats_init(&md->stats); 2333 2334 /* Populate the mapping, nobody knows we exist yet */ 2335 spin_lock(&_minor_lock); 2336 old_md = idr_replace(&_minor_idr, md, minor); 2337 spin_unlock(&_minor_lock); 2338 2339 BUG_ON(old_md != MINOR_ALLOCED); 2340 2341 return md; 2342 2343 bad_bdev: 2344 destroy_workqueue(md->wq); 2345 bad_thread: 2346 del_gendisk(md->disk); 2347 put_disk(md->disk); 2348 bad_disk: 2349 blk_cleanup_queue(md->queue); 2350 bad_queue: 2351 cleanup_srcu_struct(&md->io_barrier); 2352 bad_io_barrier: 2353 free_minor(minor); 2354 bad_minor: 2355 module_put(THIS_MODULE); 2356 bad_module_get: 2357 kfree(md); 2358 return NULL; 2359 } 2360 2361 static void unlock_fs(struct mapped_device *md); 2362 2363 static void free_dev(struct mapped_device *md) 2364 { 2365 int minor = MINOR(disk_devt(md->disk)); 2366 2367 unlock_fs(md); 2368 destroy_workqueue(md->wq); 2369 2370 if (md->kworker_task) 2371 kthread_stop(md->kworker_task); 2372 if (md->io_pool) 2373 mempool_destroy(md->io_pool); 2374 if (md->rq_pool) 2375 mempool_destroy(md->rq_pool); 2376 if (md->bs) 2377 bioset_free(md->bs); 2378 2379 cleanup_srcu_struct(&md->io_barrier); 2380 free_table_devices(&md->table_devices); 2381 dm_stats_cleanup(&md->stats); 2382 2383 spin_lock(&_minor_lock); 2384 md->disk->private_data = NULL; 2385 spin_unlock(&_minor_lock); 2386 if (blk_get_integrity(md->disk)) 2387 blk_integrity_unregister(md->disk); 2388 del_gendisk(md->disk); 2389 put_disk(md->disk); 2390 blk_cleanup_queue(md->queue); 2391 if (md->use_blk_mq) 2392 blk_mq_free_tag_set(&md->tag_set); 2393 bdput(md->bdev); 2394 free_minor(minor); 2395 2396 module_put(THIS_MODULE); 2397 kfree(md); 2398 } 2399 2400 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2401 { 2402 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2403 2404 if (md->bs) { 2405 /* The md already has necessary mempools. */ 2406 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2407 /* 2408 * Reload bioset because front_pad may have changed 2409 * because a different table was loaded. 2410 */ 2411 bioset_free(md->bs); 2412 md->bs = p->bs; 2413 p->bs = NULL; 2414 } 2415 /* 2416 * There's no need to reload with request-based dm 2417 * because the size of front_pad doesn't change. 2418 * Note for future: If you are to reload bioset, 2419 * prep-ed requests in the queue may refer 2420 * to bio from the old bioset, so you must walk 2421 * through the queue to unprep. 2422 */ 2423 goto out; 2424 } 2425 2426 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2427 2428 md->io_pool = p->io_pool; 2429 p->io_pool = NULL; 2430 md->rq_pool = p->rq_pool; 2431 p->rq_pool = NULL; 2432 md->bs = p->bs; 2433 p->bs = NULL; 2434 2435 out: 2436 /* mempool bind completed, no longer need any mempools in the table */ 2437 dm_table_free_md_mempools(t); 2438 } 2439 2440 /* 2441 * Bind a table to the device. 2442 */ 2443 static void event_callback(void *context) 2444 { 2445 unsigned long flags; 2446 LIST_HEAD(uevents); 2447 struct mapped_device *md = (struct mapped_device *) context; 2448 2449 spin_lock_irqsave(&md->uevent_lock, flags); 2450 list_splice_init(&md->uevent_list, &uevents); 2451 spin_unlock_irqrestore(&md->uevent_lock, flags); 2452 2453 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2454 2455 atomic_inc(&md->event_nr); 2456 wake_up(&md->eventq); 2457 } 2458 2459 /* 2460 * Protected by md->suspend_lock obtained by dm_swap_table(). 2461 */ 2462 static void __set_size(struct mapped_device *md, sector_t size) 2463 { 2464 set_capacity(md->disk, size); 2465 2466 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2467 } 2468 2469 /* 2470 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2471 * 2472 * If this function returns 0, then the device is either a non-dm 2473 * device without a merge_bvec_fn, or it is a dm device that is 2474 * able to split any bios it receives that are too big. 2475 */ 2476 int dm_queue_merge_is_compulsory(struct request_queue *q) 2477 { 2478 struct mapped_device *dev_md; 2479 2480 if (!q->merge_bvec_fn) 2481 return 0; 2482 2483 if (q->make_request_fn == dm_make_request) { 2484 dev_md = q->queuedata; 2485 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2486 return 0; 2487 } 2488 2489 return 1; 2490 } 2491 2492 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2493 struct dm_dev *dev, sector_t start, 2494 sector_t len, void *data) 2495 { 2496 struct block_device *bdev = dev->bdev; 2497 struct request_queue *q = bdev_get_queue(bdev); 2498 2499 return dm_queue_merge_is_compulsory(q); 2500 } 2501 2502 /* 2503 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2504 * on the properties of the underlying devices. 2505 */ 2506 static int dm_table_merge_is_optional(struct dm_table *table) 2507 { 2508 unsigned i = 0; 2509 struct dm_target *ti; 2510 2511 while (i < dm_table_get_num_targets(table)) { 2512 ti = dm_table_get_target(table, i++); 2513 2514 if (ti->type->iterate_devices && 2515 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2516 return 0; 2517 } 2518 2519 return 1; 2520 } 2521 2522 /* 2523 * Returns old map, which caller must destroy. 2524 */ 2525 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2526 struct queue_limits *limits) 2527 { 2528 struct dm_table *old_map; 2529 struct request_queue *q = md->queue; 2530 sector_t size; 2531 int merge_is_optional; 2532 2533 size = dm_table_get_size(t); 2534 2535 /* 2536 * Wipe any geometry if the size of the table changed. 2537 */ 2538 if (size != dm_get_size(md)) 2539 memset(&md->geometry, 0, sizeof(md->geometry)); 2540 2541 __set_size(md, size); 2542 2543 dm_table_event_callback(t, event_callback, md); 2544 2545 /* 2546 * The queue hasn't been stopped yet, if the old table type wasn't 2547 * for request-based during suspension. So stop it to prevent 2548 * I/O mapping before resume. 2549 * This must be done before setting the queue restrictions, 2550 * because request-based dm may be run just after the setting. 2551 */ 2552 if (dm_table_request_based(t)) 2553 stop_queue(q); 2554 2555 __bind_mempools(md, t); 2556 2557 merge_is_optional = dm_table_merge_is_optional(t); 2558 2559 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2560 rcu_assign_pointer(md->map, t); 2561 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2562 2563 dm_table_set_restrictions(t, q, limits); 2564 if (merge_is_optional) 2565 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2566 else 2567 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2568 if (old_map) 2569 dm_sync_table(md); 2570 2571 return old_map; 2572 } 2573 2574 /* 2575 * Returns unbound table for the caller to free. 2576 */ 2577 static struct dm_table *__unbind(struct mapped_device *md) 2578 { 2579 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2580 2581 if (!map) 2582 return NULL; 2583 2584 dm_table_event_callback(map, NULL, NULL); 2585 RCU_INIT_POINTER(md->map, NULL); 2586 dm_sync_table(md); 2587 2588 return map; 2589 } 2590 2591 /* 2592 * Constructor for a new device. 2593 */ 2594 int dm_create(int minor, struct mapped_device **result) 2595 { 2596 struct mapped_device *md; 2597 2598 md = alloc_dev(minor); 2599 if (!md) 2600 return -ENXIO; 2601 2602 dm_sysfs_init(md); 2603 2604 *result = md; 2605 return 0; 2606 } 2607 2608 /* 2609 * Functions to manage md->type. 2610 * All are required to hold md->type_lock. 2611 */ 2612 void dm_lock_md_type(struct mapped_device *md) 2613 { 2614 mutex_lock(&md->type_lock); 2615 } 2616 2617 void dm_unlock_md_type(struct mapped_device *md) 2618 { 2619 mutex_unlock(&md->type_lock); 2620 } 2621 2622 void dm_set_md_type(struct mapped_device *md, unsigned type) 2623 { 2624 BUG_ON(!mutex_is_locked(&md->type_lock)); 2625 md->type = type; 2626 } 2627 2628 unsigned dm_get_md_type(struct mapped_device *md) 2629 { 2630 BUG_ON(!mutex_is_locked(&md->type_lock)); 2631 return md->type; 2632 } 2633 2634 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2635 { 2636 return md->immutable_target_type; 2637 } 2638 2639 /* 2640 * The queue_limits are only valid as long as you have a reference 2641 * count on 'md'. 2642 */ 2643 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2644 { 2645 BUG_ON(!atomic_read(&md->holders)); 2646 return &md->queue->limits; 2647 } 2648 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2649 2650 static void init_rq_based_worker_thread(struct mapped_device *md) 2651 { 2652 /* Initialize the request-based DM worker thread */ 2653 init_kthread_worker(&md->kworker); 2654 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2655 "kdmwork-%s", dm_device_name(md)); 2656 } 2657 2658 /* 2659 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2660 */ 2661 static int dm_init_request_based_queue(struct mapped_device *md) 2662 { 2663 struct request_queue *q = NULL; 2664 2665 if (md->queue->elevator) 2666 return 0; 2667 2668 /* Fully initialize the queue */ 2669 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2670 if (!q) 2671 return -EINVAL; 2672 2673 /* disable dm_request_fn's merge heuristic by default */ 2674 md->seq_rq_merge_deadline_usecs = 0; 2675 2676 md->queue = q; 2677 dm_init_old_md_queue(md); 2678 blk_queue_softirq_done(md->queue, dm_softirq_done); 2679 blk_queue_prep_rq(md->queue, dm_prep_fn); 2680 2681 init_rq_based_worker_thread(md); 2682 2683 elv_register_queue(md->queue); 2684 2685 return 0; 2686 } 2687 2688 static int dm_mq_init_request(void *data, struct request *rq, 2689 unsigned int hctx_idx, unsigned int request_idx, 2690 unsigned int numa_node) 2691 { 2692 struct mapped_device *md = data; 2693 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2694 2695 /* 2696 * Must initialize md member of tio, otherwise it won't 2697 * be available in dm_mq_queue_rq. 2698 */ 2699 tio->md = md; 2700 2701 return 0; 2702 } 2703 2704 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2705 const struct blk_mq_queue_data *bd) 2706 { 2707 struct request *rq = bd->rq; 2708 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2709 struct mapped_device *md = tio->md; 2710 int srcu_idx; 2711 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2712 struct dm_target *ti; 2713 sector_t pos; 2714 2715 /* always use block 0 to find the target for flushes for now */ 2716 pos = 0; 2717 if (!(rq->cmd_flags & REQ_FLUSH)) 2718 pos = blk_rq_pos(rq); 2719 2720 ti = dm_table_find_target(map, pos); 2721 if (!dm_target_is_valid(ti)) { 2722 dm_put_live_table(md, srcu_idx); 2723 DMERR_LIMIT("request attempted access beyond the end of device"); 2724 /* 2725 * Must perform setup, that rq_completed() requires, 2726 * before returning BLK_MQ_RQ_QUEUE_ERROR 2727 */ 2728 dm_start_request(md, rq); 2729 return BLK_MQ_RQ_QUEUE_ERROR; 2730 } 2731 dm_put_live_table(md, srcu_idx); 2732 2733 if (ti->type->busy && ti->type->busy(ti)) 2734 return BLK_MQ_RQ_QUEUE_BUSY; 2735 2736 dm_start_request(md, rq); 2737 2738 /* Init tio using md established in .init_request */ 2739 init_tio(tio, rq, md); 2740 2741 /* 2742 * Establish tio->ti before queuing work (map_tio_request) 2743 * or making direct call to map_request(). 2744 */ 2745 tio->ti = ti; 2746 2747 /* Clone the request if underlying devices aren't blk-mq */ 2748 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2749 /* clone request is allocated at the end of the pdu */ 2750 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2751 if (!clone_rq(rq, md, tio, GFP_ATOMIC)) 2752 return BLK_MQ_RQ_QUEUE_BUSY; 2753 queue_kthread_work(&md->kworker, &tio->work); 2754 } else { 2755 /* Direct call is fine since .queue_rq allows allocations */ 2756 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2757 dm_requeue_unmapped_original_request(md, rq); 2758 } 2759 2760 return BLK_MQ_RQ_QUEUE_OK; 2761 } 2762 2763 static struct blk_mq_ops dm_mq_ops = { 2764 .queue_rq = dm_mq_queue_rq, 2765 .map_queue = blk_mq_map_queue, 2766 .complete = dm_softirq_done, 2767 .init_request = dm_mq_init_request, 2768 }; 2769 2770 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2771 { 2772 unsigned md_type = dm_get_md_type(md); 2773 struct request_queue *q; 2774 int err; 2775 2776 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2777 md->tag_set.ops = &dm_mq_ops; 2778 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2779 md->tag_set.numa_node = NUMA_NO_NODE; 2780 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2781 md->tag_set.nr_hw_queues = 1; 2782 if (md_type == DM_TYPE_REQUEST_BASED) { 2783 /* make the memory for non-blk-mq clone part of the pdu */ 2784 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2785 } else 2786 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2787 md->tag_set.driver_data = md; 2788 2789 err = blk_mq_alloc_tag_set(&md->tag_set); 2790 if (err) 2791 return err; 2792 2793 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2794 if (IS_ERR(q)) { 2795 err = PTR_ERR(q); 2796 goto out_tag_set; 2797 } 2798 md->queue = q; 2799 dm_init_md_queue(md); 2800 2801 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2802 blk_mq_register_disk(md->disk); 2803 2804 if (md_type == DM_TYPE_REQUEST_BASED) 2805 init_rq_based_worker_thread(md); 2806 2807 return 0; 2808 2809 out_tag_set: 2810 blk_mq_free_tag_set(&md->tag_set); 2811 return err; 2812 } 2813 2814 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2815 { 2816 if (type == DM_TYPE_BIO_BASED) 2817 return type; 2818 2819 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2820 } 2821 2822 /* 2823 * Setup the DM device's queue based on md's type 2824 */ 2825 int dm_setup_md_queue(struct mapped_device *md) 2826 { 2827 int r; 2828 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2829 2830 switch (md_type) { 2831 case DM_TYPE_REQUEST_BASED: 2832 r = dm_init_request_based_queue(md); 2833 if (r) { 2834 DMWARN("Cannot initialize queue for request-based mapped device"); 2835 return r; 2836 } 2837 break; 2838 case DM_TYPE_MQ_REQUEST_BASED: 2839 r = dm_init_request_based_blk_mq_queue(md); 2840 if (r) { 2841 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2842 return r; 2843 } 2844 break; 2845 case DM_TYPE_BIO_BASED: 2846 dm_init_old_md_queue(md); 2847 blk_queue_make_request(md->queue, dm_make_request); 2848 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2849 break; 2850 } 2851 2852 return 0; 2853 } 2854 2855 struct mapped_device *dm_get_md(dev_t dev) 2856 { 2857 struct mapped_device *md; 2858 unsigned minor = MINOR(dev); 2859 2860 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2861 return NULL; 2862 2863 spin_lock(&_minor_lock); 2864 2865 md = idr_find(&_minor_idr, minor); 2866 if (md) { 2867 if ((md == MINOR_ALLOCED || 2868 (MINOR(disk_devt(dm_disk(md))) != minor) || 2869 dm_deleting_md(md) || 2870 test_bit(DMF_FREEING, &md->flags))) { 2871 md = NULL; 2872 goto out; 2873 } 2874 dm_get(md); 2875 } 2876 2877 out: 2878 spin_unlock(&_minor_lock); 2879 2880 return md; 2881 } 2882 EXPORT_SYMBOL_GPL(dm_get_md); 2883 2884 void *dm_get_mdptr(struct mapped_device *md) 2885 { 2886 return md->interface_ptr; 2887 } 2888 2889 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2890 { 2891 md->interface_ptr = ptr; 2892 } 2893 2894 void dm_get(struct mapped_device *md) 2895 { 2896 atomic_inc(&md->holders); 2897 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2898 } 2899 2900 int dm_hold(struct mapped_device *md) 2901 { 2902 spin_lock(&_minor_lock); 2903 if (test_bit(DMF_FREEING, &md->flags)) { 2904 spin_unlock(&_minor_lock); 2905 return -EBUSY; 2906 } 2907 dm_get(md); 2908 spin_unlock(&_minor_lock); 2909 return 0; 2910 } 2911 EXPORT_SYMBOL_GPL(dm_hold); 2912 2913 const char *dm_device_name(struct mapped_device *md) 2914 { 2915 return md->name; 2916 } 2917 EXPORT_SYMBOL_GPL(dm_device_name); 2918 2919 static void __dm_destroy(struct mapped_device *md, bool wait) 2920 { 2921 struct dm_table *map; 2922 int srcu_idx; 2923 2924 might_sleep(); 2925 2926 map = dm_get_live_table(md, &srcu_idx); 2927 2928 spin_lock(&_minor_lock); 2929 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2930 set_bit(DMF_FREEING, &md->flags); 2931 spin_unlock(&_minor_lock); 2932 2933 if (dm_request_based(md) && md->kworker_task) 2934 flush_kthread_worker(&md->kworker); 2935 2936 /* 2937 * Take suspend_lock so that presuspend and postsuspend methods 2938 * do not race with internal suspend. 2939 */ 2940 mutex_lock(&md->suspend_lock); 2941 if (!dm_suspended_md(md)) { 2942 dm_table_presuspend_targets(map); 2943 dm_table_postsuspend_targets(map); 2944 } 2945 mutex_unlock(&md->suspend_lock); 2946 2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2948 dm_put_live_table(md, srcu_idx); 2949 2950 /* 2951 * Rare, but there may be I/O requests still going to complete, 2952 * for example. Wait for all references to disappear. 2953 * No one should increment the reference count of the mapped_device, 2954 * after the mapped_device state becomes DMF_FREEING. 2955 */ 2956 if (wait) 2957 while (atomic_read(&md->holders)) 2958 msleep(1); 2959 else if (atomic_read(&md->holders)) 2960 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2961 dm_device_name(md), atomic_read(&md->holders)); 2962 2963 dm_sysfs_exit(md); 2964 dm_table_destroy(__unbind(md)); 2965 free_dev(md); 2966 } 2967 2968 void dm_destroy(struct mapped_device *md) 2969 { 2970 __dm_destroy(md, true); 2971 } 2972 2973 void dm_destroy_immediate(struct mapped_device *md) 2974 { 2975 __dm_destroy(md, false); 2976 } 2977 2978 void dm_put(struct mapped_device *md) 2979 { 2980 atomic_dec(&md->holders); 2981 } 2982 EXPORT_SYMBOL_GPL(dm_put); 2983 2984 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2985 { 2986 int r = 0; 2987 DECLARE_WAITQUEUE(wait, current); 2988 2989 add_wait_queue(&md->wait, &wait); 2990 2991 while (1) { 2992 set_current_state(interruptible); 2993 2994 if (!md_in_flight(md)) 2995 break; 2996 2997 if (interruptible == TASK_INTERRUPTIBLE && 2998 signal_pending(current)) { 2999 r = -EINTR; 3000 break; 3001 } 3002 3003 io_schedule(); 3004 } 3005 set_current_state(TASK_RUNNING); 3006 3007 remove_wait_queue(&md->wait, &wait); 3008 3009 return r; 3010 } 3011 3012 /* 3013 * Process the deferred bios 3014 */ 3015 static void dm_wq_work(struct work_struct *work) 3016 { 3017 struct mapped_device *md = container_of(work, struct mapped_device, 3018 work); 3019 struct bio *c; 3020 int srcu_idx; 3021 struct dm_table *map; 3022 3023 map = dm_get_live_table(md, &srcu_idx); 3024 3025 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 3026 spin_lock_irq(&md->deferred_lock); 3027 c = bio_list_pop(&md->deferred); 3028 spin_unlock_irq(&md->deferred_lock); 3029 3030 if (!c) 3031 break; 3032 3033 if (dm_request_based(md)) 3034 generic_make_request(c); 3035 else 3036 __split_and_process_bio(md, map, c); 3037 } 3038 3039 dm_put_live_table(md, srcu_idx); 3040 } 3041 3042 static void dm_queue_flush(struct mapped_device *md) 3043 { 3044 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3045 smp_mb__after_atomic(); 3046 queue_work(md->wq, &md->work); 3047 } 3048 3049 /* 3050 * Swap in a new table, returning the old one for the caller to destroy. 3051 */ 3052 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3053 { 3054 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3055 struct queue_limits limits; 3056 int r; 3057 3058 mutex_lock(&md->suspend_lock); 3059 3060 /* device must be suspended */ 3061 if (!dm_suspended_md(md)) 3062 goto out; 3063 3064 /* 3065 * If the new table has no data devices, retain the existing limits. 3066 * This helps multipath with queue_if_no_path if all paths disappear, 3067 * then new I/O is queued based on these limits, and then some paths 3068 * reappear. 3069 */ 3070 if (dm_table_has_no_data_devices(table)) { 3071 live_map = dm_get_live_table_fast(md); 3072 if (live_map) 3073 limits = md->queue->limits; 3074 dm_put_live_table_fast(md); 3075 } 3076 3077 if (!live_map) { 3078 r = dm_calculate_queue_limits(table, &limits); 3079 if (r) { 3080 map = ERR_PTR(r); 3081 goto out; 3082 } 3083 } 3084 3085 map = __bind(md, table, &limits); 3086 3087 out: 3088 mutex_unlock(&md->suspend_lock); 3089 return map; 3090 } 3091 3092 /* 3093 * Functions to lock and unlock any filesystem running on the 3094 * device. 3095 */ 3096 static int lock_fs(struct mapped_device *md) 3097 { 3098 int r; 3099 3100 WARN_ON(md->frozen_sb); 3101 3102 md->frozen_sb = freeze_bdev(md->bdev); 3103 if (IS_ERR(md->frozen_sb)) { 3104 r = PTR_ERR(md->frozen_sb); 3105 md->frozen_sb = NULL; 3106 return r; 3107 } 3108 3109 set_bit(DMF_FROZEN, &md->flags); 3110 3111 return 0; 3112 } 3113 3114 static void unlock_fs(struct mapped_device *md) 3115 { 3116 if (!test_bit(DMF_FROZEN, &md->flags)) 3117 return; 3118 3119 thaw_bdev(md->bdev, md->frozen_sb); 3120 md->frozen_sb = NULL; 3121 clear_bit(DMF_FROZEN, &md->flags); 3122 } 3123 3124 /* 3125 * If __dm_suspend returns 0, the device is completely quiescent 3126 * now. There is no request-processing activity. All new requests 3127 * are being added to md->deferred list. 3128 * 3129 * Caller must hold md->suspend_lock 3130 */ 3131 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3132 unsigned suspend_flags, int interruptible) 3133 { 3134 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3135 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3136 int r; 3137 3138 /* 3139 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3140 * This flag is cleared before dm_suspend returns. 3141 */ 3142 if (noflush) 3143 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3144 3145 /* 3146 * This gets reverted if there's an error later and the targets 3147 * provide the .presuspend_undo hook. 3148 */ 3149 dm_table_presuspend_targets(map); 3150 3151 /* 3152 * Flush I/O to the device. 3153 * Any I/O submitted after lock_fs() may not be flushed. 3154 * noflush takes precedence over do_lockfs. 3155 * (lock_fs() flushes I/Os and waits for them to complete.) 3156 */ 3157 if (!noflush && do_lockfs) { 3158 r = lock_fs(md); 3159 if (r) { 3160 dm_table_presuspend_undo_targets(map); 3161 return r; 3162 } 3163 } 3164 3165 /* 3166 * Here we must make sure that no processes are submitting requests 3167 * to target drivers i.e. no one may be executing 3168 * __split_and_process_bio. This is called from dm_request and 3169 * dm_wq_work. 3170 * 3171 * To get all processes out of __split_and_process_bio in dm_request, 3172 * we take the write lock. To prevent any process from reentering 3173 * __split_and_process_bio from dm_request and quiesce the thread 3174 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3175 * flush_workqueue(md->wq). 3176 */ 3177 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3178 if (map) 3179 synchronize_srcu(&md->io_barrier); 3180 3181 /* 3182 * Stop md->queue before flushing md->wq in case request-based 3183 * dm defers requests to md->wq from md->queue. 3184 */ 3185 if (dm_request_based(md)) { 3186 stop_queue(md->queue); 3187 if (md->kworker_task) 3188 flush_kthread_worker(&md->kworker); 3189 } 3190 3191 flush_workqueue(md->wq); 3192 3193 /* 3194 * At this point no more requests are entering target request routines. 3195 * We call dm_wait_for_completion to wait for all existing requests 3196 * to finish. 3197 */ 3198 r = dm_wait_for_completion(md, interruptible); 3199 3200 if (noflush) 3201 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3202 if (map) 3203 synchronize_srcu(&md->io_barrier); 3204 3205 /* were we interrupted ? */ 3206 if (r < 0) { 3207 dm_queue_flush(md); 3208 3209 if (dm_request_based(md)) 3210 start_queue(md->queue); 3211 3212 unlock_fs(md); 3213 dm_table_presuspend_undo_targets(map); 3214 /* pushback list is already flushed, so skip flush */ 3215 } 3216 3217 return r; 3218 } 3219 3220 /* 3221 * We need to be able to change a mapping table under a mounted 3222 * filesystem. For example we might want to move some data in 3223 * the background. Before the table can be swapped with 3224 * dm_bind_table, dm_suspend must be called to flush any in 3225 * flight bios and ensure that any further io gets deferred. 3226 */ 3227 /* 3228 * Suspend mechanism in request-based dm. 3229 * 3230 * 1. Flush all I/Os by lock_fs() if needed. 3231 * 2. Stop dispatching any I/O by stopping the request_queue. 3232 * 3. Wait for all in-flight I/Os to be completed or requeued. 3233 * 3234 * To abort suspend, start the request_queue. 3235 */ 3236 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3237 { 3238 struct dm_table *map = NULL; 3239 int r = 0; 3240 3241 retry: 3242 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3243 3244 if (dm_suspended_md(md)) { 3245 r = -EINVAL; 3246 goto out_unlock; 3247 } 3248 3249 if (dm_suspended_internally_md(md)) { 3250 /* already internally suspended, wait for internal resume */ 3251 mutex_unlock(&md->suspend_lock); 3252 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3253 if (r) 3254 return r; 3255 goto retry; 3256 } 3257 3258 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3259 3260 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3261 if (r) 3262 goto out_unlock; 3263 3264 set_bit(DMF_SUSPENDED, &md->flags); 3265 3266 dm_table_postsuspend_targets(map); 3267 3268 out_unlock: 3269 mutex_unlock(&md->suspend_lock); 3270 return r; 3271 } 3272 3273 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3274 { 3275 if (map) { 3276 int r = dm_table_resume_targets(map); 3277 if (r) 3278 return r; 3279 } 3280 3281 dm_queue_flush(md); 3282 3283 /* 3284 * Flushing deferred I/Os must be done after targets are resumed 3285 * so that mapping of targets can work correctly. 3286 * Request-based dm is queueing the deferred I/Os in its request_queue. 3287 */ 3288 if (dm_request_based(md)) 3289 start_queue(md->queue); 3290 3291 unlock_fs(md); 3292 3293 return 0; 3294 } 3295 3296 int dm_resume(struct mapped_device *md) 3297 { 3298 int r = -EINVAL; 3299 struct dm_table *map = NULL; 3300 3301 retry: 3302 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3303 3304 if (!dm_suspended_md(md)) 3305 goto out; 3306 3307 if (dm_suspended_internally_md(md)) { 3308 /* already internally suspended, wait for internal resume */ 3309 mutex_unlock(&md->suspend_lock); 3310 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3311 if (r) 3312 return r; 3313 goto retry; 3314 } 3315 3316 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3317 if (!map || !dm_table_get_size(map)) 3318 goto out; 3319 3320 r = __dm_resume(md, map); 3321 if (r) 3322 goto out; 3323 3324 clear_bit(DMF_SUSPENDED, &md->flags); 3325 3326 r = 0; 3327 out: 3328 mutex_unlock(&md->suspend_lock); 3329 3330 return r; 3331 } 3332 3333 /* 3334 * Internal suspend/resume works like userspace-driven suspend. It waits 3335 * until all bios finish and prevents issuing new bios to the target drivers. 3336 * It may be used only from the kernel. 3337 */ 3338 3339 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3340 { 3341 struct dm_table *map = NULL; 3342 3343 if (md->internal_suspend_count++) 3344 return; /* nested internal suspend */ 3345 3346 if (dm_suspended_md(md)) { 3347 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3348 return; /* nest suspend */ 3349 } 3350 3351 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3352 3353 /* 3354 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3355 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3356 * would require changing .presuspend to return an error -- avoid this 3357 * until there is a need for more elaborate variants of internal suspend. 3358 */ 3359 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3360 3361 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3362 3363 dm_table_postsuspend_targets(map); 3364 } 3365 3366 static void __dm_internal_resume(struct mapped_device *md) 3367 { 3368 BUG_ON(!md->internal_suspend_count); 3369 3370 if (--md->internal_suspend_count) 3371 return; /* resume from nested internal suspend */ 3372 3373 if (dm_suspended_md(md)) 3374 goto done; /* resume from nested suspend */ 3375 3376 /* 3377 * NOTE: existing callers don't need to call dm_table_resume_targets 3378 * (which may fail -- so best to avoid it for now by passing NULL map) 3379 */ 3380 (void) __dm_resume(md, NULL); 3381 3382 done: 3383 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3384 smp_mb__after_atomic(); 3385 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3386 } 3387 3388 void dm_internal_suspend_noflush(struct mapped_device *md) 3389 { 3390 mutex_lock(&md->suspend_lock); 3391 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3392 mutex_unlock(&md->suspend_lock); 3393 } 3394 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3395 3396 void dm_internal_resume(struct mapped_device *md) 3397 { 3398 mutex_lock(&md->suspend_lock); 3399 __dm_internal_resume(md); 3400 mutex_unlock(&md->suspend_lock); 3401 } 3402 EXPORT_SYMBOL_GPL(dm_internal_resume); 3403 3404 /* 3405 * Fast variants of internal suspend/resume hold md->suspend_lock, 3406 * which prevents interaction with userspace-driven suspend. 3407 */ 3408 3409 void dm_internal_suspend_fast(struct mapped_device *md) 3410 { 3411 mutex_lock(&md->suspend_lock); 3412 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3413 return; 3414 3415 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3416 synchronize_srcu(&md->io_barrier); 3417 flush_workqueue(md->wq); 3418 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3419 } 3420 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3421 3422 void dm_internal_resume_fast(struct mapped_device *md) 3423 { 3424 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3425 goto done; 3426 3427 dm_queue_flush(md); 3428 3429 done: 3430 mutex_unlock(&md->suspend_lock); 3431 } 3432 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3433 3434 /*----------------------------------------------------------------- 3435 * Event notification. 3436 *---------------------------------------------------------------*/ 3437 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3438 unsigned cookie) 3439 { 3440 char udev_cookie[DM_COOKIE_LENGTH]; 3441 char *envp[] = { udev_cookie, NULL }; 3442 3443 if (!cookie) 3444 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3445 else { 3446 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3447 DM_COOKIE_ENV_VAR_NAME, cookie); 3448 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3449 action, envp); 3450 } 3451 } 3452 3453 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3454 { 3455 return atomic_add_return(1, &md->uevent_seq); 3456 } 3457 3458 uint32_t dm_get_event_nr(struct mapped_device *md) 3459 { 3460 return atomic_read(&md->event_nr); 3461 } 3462 3463 int dm_wait_event(struct mapped_device *md, int event_nr) 3464 { 3465 return wait_event_interruptible(md->eventq, 3466 (event_nr != atomic_read(&md->event_nr))); 3467 } 3468 3469 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3470 { 3471 unsigned long flags; 3472 3473 spin_lock_irqsave(&md->uevent_lock, flags); 3474 list_add(elist, &md->uevent_list); 3475 spin_unlock_irqrestore(&md->uevent_lock, flags); 3476 } 3477 3478 /* 3479 * The gendisk is only valid as long as you have a reference 3480 * count on 'md'. 3481 */ 3482 struct gendisk *dm_disk(struct mapped_device *md) 3483 { 3484 return md->disk; 3485 } 3486 EXPORT_SYMBOL_GPL(dm_disk); 3487 3488 struct kobject *dm_kobject(struct mapped_device *md) 3489 { 3490 return &md->kobj_holder.kobj; 3491 } 3492 3493 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3494 { 3495 struct mapped_device *md; 3496 3497 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3498 3499 if (test_bit(DMF_FREEING, &md->flags) || 3500 dm_deleting_md(md)) 3501 return NULL; 3502 3503 dm_get(md); 3504 return md; 3505 } 3506 3507 int dm_suspended_md(struct mapped_device *md) 3508 { 3509 return test_bit(DMF_SUSPENDED, &md->flags); 3510 } 3511 3512 int dm_suspended_internally_md(struct mapped_device *md) 3513 { 3514 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3515 } 3516 3517 int dm_test_deferred_remove_flag(struct mapped_device *md) 3518 { 3519 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3520 } 3521 3522 int dm_suspended(struct dm_target *ti) 3523 { 3524 return dm_suspended_md(dm_table_get_md(ti->table)); 3525 } 3526 EXPORT_SYMBOL_GPL(dm_suspended); 3527 3528 int dm_noflush_suspending(struct dm_target *ti) 3529 { 3530 return __noflush_suspending(dm_table_get_md(ti->table)); 3531 } 3532 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3533 3534 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3535 unsigned integrity, unsigned per_bio_data_size) 3536 { 3537 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3538 struct kmem_cache *cachep = NULL; 3539 unsigned int pool_size = 0; 3540 unsigned int front_pad; 3541 3542 if (!pools) 3543 return NULL; 3544 3545 type = filter_md_type(type, md); 3546 3547 switch (type) { 3548 case DM_TYPE_BIO_BASED: 3549 cachep = _io_cache; 3550 pool_size = dm_get_reserved_bio_based_ios(); 3551 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3552 break; 3553 case DM_TYPE_REQUEST_BASED: 3554 cachep = _rq_tio_cache; 3555 pool_size = dm_get_reserved_rq_based_ios(); 3556 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3557 if (!pools->rq_pool) 3558 goto out; 3559 /* fall through to setup remaining rq-based pools */ 3560 case DM_TYPE_MQ_REQUEST_BASED: 3561 if (!pool_size) 3562 pool_size = dm_get_reserved_rq_based_ios(); 3563 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3564 /* per_bio_data_size is not used. See __bind_mempools(). */ 3565 WARN_ON(per_bio_data_size != 0); 3566 break; 3567 default: 3568 BUG(); 3569 } 3570 3571 if (cachep) { 3572 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3573 if (!pools->io_pool) 3574 goto out; 3575 } 3576 3577 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3578 if (!pools->bs) 3579 goto out; 3580 3581 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3582 goto out; 3583 3584 return pools; 3585 3586 out: 3587 dm_free_md_mempools(pools); 3588 3589 return NULL; 3590 } 3591 3592 void dm_free_md_mempools(struct dm_md_mempools *pools) 3593 { 3594 if (!pools) 3595 return; 3596 3597 if (pools->io_pool) 3598 mempool_destroy(pools->io_pool); 3599 3600 if (pools->rq_pool) 3601 mempool_destroy(pools->rq_pool); 3602 3603 if (pools->bs) 3604 bioset_free(pools->bs); 3605 3606 kfree(pools); 3607 } 3608 3609 static const struct block_device_operations dm_blk_dops = { 3610 .open = dm_blk_open, 3611 .release = dm_blk_close, 3612 .ioctl = dm_blk_ioctl, 3613 .getgeo = dm_blk_getgeo, 3614 .owner = THIS_MODULE 3615 }; 3616 3617 /* 3618 * module hooks 3619 */ 3620 module_init(dm_init); 3621 module_exit(dm_exit); 3622 3623 module_param(major, uint, 0); 3624 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3625 3626 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3627 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3628 3629 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3630 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3631 3632 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3633 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3634 3635 MODULE_DESCRIPTION(DM_NAME " driver"); 3636 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3637 MODULE_LICENSE("GPL"); 3638