xref: /openbmc/linux/drivers/md/dm.c (revision 4bce6fce)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 };
90 
91 /*
92  * For request-based dm - the bio clones we allocate are embedded in these
93  * structs.
94  *
95  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96  * the bioset is created - this means the bio has to come at the end of the
97  * struct.
98  */
99 struct dm_rq_clone_bio_info {
100 	struct bio *orig;
101 	struct dm_rq_target_io *tio;
102 	struct bio clone;
103 };
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127 
128 /*
129  * A dummy definition to make RCU happy.
130  * struct dm_table should never be dereferenced in this file.
131  */
132 struct dm_table {
133 	int undefined__;
134 };
135 
136 /*
137  * Work processed by per-device workqueue.
138  */
139 struct mapped_device {
140 	struct srcu_struct io_barrier;
141 	struct mutex suspend_lock;
142 	atomic_t holders;
143 	atomic_t open_count;
144 
145 	/*
146 	 * The current mapping.
147 	 * Use dm_get_live_table{_fast} or take suspend_lock for
148 	 * dereference.
149 	 */
150 	struct dm_table __rcu *map;
151 
152 	struct list_head table_devices;
153 	struct mutex table_devices_lock;
154 
155 	unsigned long flags;
156 
157 	struct request_queue *queue;
158 	unsigned type;
159 	/* Protect queue and type against concurrent access. */
160 	struct mutex type_lock;
161 
162 	struct target_type *immutable_target_type;
163 
164 	struct gendisk *disk;
165 	char name[16];
166 
167 	void *interface_ptr;
168 
169 	/*
170 	 * A list of ios that arrived while we were suspended.
171 	 */
172 	atomic_t pending[2];
173 	wait_queue_head_t wait;
174 	struct work_struct work;
175 	struct bio_list deferred;
176 	spinlock_t deferred_lock;
177 
178 	/*
179 	 * Processing queue (flush)
180 	 */
181 	struct workqueue_struct *wq;
182 
183 	/*
184 	 * io objects are allocated from here.
185 	 */
186 	mempool_t *io_pool;
187 	mempool_t *rq_pool;
188 
189 	struct bio_set *bs;
190 
191 	/*
192 	 * Event handling.
193 	 */
194 	atomic_t event_nr;
195 	wait_queue_head_t eventq;
196 	atomic_t uevent_seq;
197 	struct list_head uevent_list;
198 	spinlock_t uevent_lock; /* Protect access to uevent_list */
199 
200 	/*
201 	 * freeze/thaw support require holding onto a super block
202 	 */
203 	struct super_block *frozen_sb;
204 	struct block_device *bdev;
205 
206 	/* forced geometry settings */
207 	struct hd_geometry geometry;
208 
209 	/* kobject and completion */
210 	struct dm_kobject_holder kobj_holder;
211 
212 	/* zero-length flush that will be cloned and submitted to targets */
213 	struct bio flush_bio;
214 
215 	/* the number of internal suspends */
216 	unsigned internal_suspend_count;
217 
218 	struct dm_stats stats;
219 
220 	struct kthread_worker kworker;
221 	struct task_struct *kworker_task;
222 
223 	/* for request-based merge heuristic in dm_request_fn() */
224 	unsigned seq_rq_merge_deadline_usecs;
225 	int last_rq_rw;
226 	sector_t last_rq_pos;
227 	ktime_t last_rq_start_time;
228 
229 	/* for blk-mq request-based DM support */
230 	struct blk_mq_tag_set tag_set;
231 	bool use_blk_mq;
232 };
233 
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239 
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 	return md->use_blk_mq;
243 }
244 
245 /*
246  * For mempools pre-allocation at the table loading time.
247  */
248 struct dm_md_mempools {
249 	mempool_t *io_pool;
250 	mempool_t *rq_pool;
251 	struct bio_set *bs;
252 };
253 
254 struct table_device {
255 	struct list_head list;
256 	atomic_t count;
257 	struct dm_dev dm_dev;
258 };
259 
260 #define RESERVED_BIO_BASED_IOS		16
261 #define RESERVED_REQUEST_BASED_IOS	256
262 #define RESERVED_MAX_IOS		1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266 
267 /*
268  * Bio-based DM's mempools' reserved IOs set by the user.
269  */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271 
272 /*
273  * Request-based DM's mempools' reserved IOs set by the user.
274  */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276 
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 				      unsigned def, unsigned max)
279 {
280 	unsigned param = ACCESS_ONCE(*module_param);
281 	unsigned modified_param = 0;
282 
283 	if (!param)
284 		modified_param = def;
285 	else if (param > max)
286 		modified_param = max;
287 
288 	if (modified_param) {
289 		(void)cmpxchg(module_param, param, modified_param);
290 		param = modified_param;
291 	}
292 
293 	return param;
294 }
295 
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 	return __dm_get_module_param(&reserved_bio_based_ios,
299 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302 
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 	return __dm_get_module_param(&reserved_rq_based_ios,
306 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309 
310 static int __init local_init(void)
311 {
312 	int r = -ENOMEM;
313 
314 	/* allocate a slab for the dm_ios */
315 	_io_cache = KMEM_CACHE(dm_io, 0);
316 	if (!_io_cache)
317 		return r;
318 
319 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 	if (!_rq_tio_cache)
321 		goto out_free_io_cache;
322 
323 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 				      __alignof__(struct request), 0, NULL);
325 	if (!_rq_cache)
326 		goto out_free_rq_tio_cache;
327 
328 	r = dm_uevent_init();
329 	if (r)
330 		goto out_free_rq_cache;
331 
332 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 	if (!deferred_remove_workqueue) {
334 		r = -ENOMEM;
335 		goto out_uevent_exit;
336 	}
337 
338 	_major = major;
339 	r = register_blkdev(_major, _name);
340 	if (r < 0)
341 		goto out_free_workqueue;
342 
343 	if (!_major)
344 		_major = r;
345 
346 	return 0;
347 
348 out_free_workqueue:
349 	destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 	dm_uevent_exit();
352 out_free_rq_cache:
353 	kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 	kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 	kmem_cache_destroy(_io_cache);
358 
359 	return r;
360 }
361 
362 static void local_exit(void)
363 {
364 	flush_scheduled_work();
365 	destroy_workqueue(deferred_remove_workqueue);
366 
367 	kmem_cache_destroy(_rq_cache);
368 	kmem_cache_destroy(_rq_tio_cache);
369 	kmem_cache_destroy(_io_cache);
370 	unregister_blkdev(_major, _name);
371 	dm_uevent_exit();
372 
373 	_major = 0;
374 
375 	DMINFO("cleaned up");
376 }
377 
378 static int (*_inits[])(void) __initdata = {
379 	local_init,
380 	dm_target_init,
381 	dm_linear_init,
382 	dm_stripe_init,
383 	dm_io_init,
384 	dm_kcopyd_init,
385 	dm_interface_init,
386 	dm_statistics_init,
387 };
388 
389 static void (*_exits[])(void) = {
390 	local_exit,
391 	dm_target_exit,
392 	dm_linear_exit,
393 	dm_stripe_exit,
394 	dm_io_exit,
395 	dm_kcopyd_exit,
396 	dm_interface_exit,
397 	dm_statistics_exit,
398 };
399 
400 static int __init dm_init(void)
401 {
402 	const int count = ARRAY_SIZE(_inits);
403 
404 	int r, i;
405 
406 	for (i = 0; i < count; i++) {
407 		r = _inits[i]();
408 		if (r)
409 			goto bad;
410 	}
411 
412 	return 0;
413 
414       bad:
415 	while (i--)
416 		_exits[i]();
417 
418 	return r;
419 }
420 
421 static void __exit dm_exit(void)
422 {
423 	int i = ARRAY_SIZE(_exits);
424 
425 	while (i--)
426 		_exits[i]();
427 
428 	/*
429 	 * Should be empty by this point.
430 	 */
431 	idr_destroy(&_minor_idr);
432 }
433 
434 /*
435  * Block device functions
436  */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 	return test_bit(DMF_DELETING, &md->flags);
440 }
441 
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 	struct mapped_device *md;
445 
446 	spin_lock(&_minor_lock);
447 
448 	md = bdev->bd_disk->private_data;
449 	if (!md)
450 		goto out;
451 
452 	if (test_bit(DMF_FREEING, &md->flags) ||
453 	    dm_deleting_md(md)) {
454 		md = NULL;
455 		goto out;
456 	}
457 
458 	dm_get(md);
459 	atomic_inc(&md->open_count);
460 out:
461 	spin_unlock(&_minor_lock);
462 
463 	return md ? 0 : -ENXIO;
464 }
465 
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 	struct mapped_device *md;
469 
470 	spin_lock(&_minor_lock);
471 
472 	md = disk->private_data;
473 	if (WARN_ON(!md))
474 		goto out;
475 
476 	if (atomic_dec_and_test(&md->open_count) &&
477 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
479 
480 	dm_put(md);
481 out:
482 	spin_unlock(&_minor_lock);
483 }
484 
485 int dm_open_count(struct mapped_device *md)
486 {
487 	return atomic_read(&md->open_count);
488 }
489 
490 /*
491  * Guarantees nothing is using the device before it's deleted.
492  */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 	int r = 0;
496 
497 	spin_lock(&_minor_lock);
498 
499 	if (dm_open_count(md)) {
500 		r = -EBUSY;
501 		if (mark_deferred)
502 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 		r = -EEXIST;
505 	else
506 		set_bit(DMF_DELETING, &md->flags);
507 
508 	spin_unlock(&_minor_lock);
509 
510 	return r;
511 }
512 
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 	int r = 0;
516 
517 	spin_lock(&_minor_lock);
518 
519 	if (test_bit(DMF_DELETING, &md->flags))
520 		r = -EBUSY;
521 	else
522 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523 
524 	spin_unlock(&_minor_lock);
525 
526 	return r;
527 }
528 
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 	dm_deferred_remove();
532 }
533 
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 	return get_capacity(md->disk);
537 }
538 
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 	return md->queue;
542 }
543 
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 	return &md->stats;
547 }
548 
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 	struct mapped_device *md = bdev->bd_disk->private_data;
552 
553 	return dm_get_geometry(md, geo);
554 }
555 
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 			unsigned int cmd, unsigned long arg)
558 {
559 	struct mapped_device *md = bdev->bd_disk->private_data;
560 	int srcu_idx;
561 	struct dm_table *map;
562 	struct dm_target *tgt;
563 	int r = -ENOTTY;
564 
565 retry:
566 	map = dm_get_live_table(md, &srcu_idx);
567 
568 	if (!map || !dm_table_get_size(map))
569 		goto out;
570 
571 	/* We only support devices that have a single target */
572 	if (dm_table_get_num_targets(map) != 1)
573 		goto out;
574 
575 	tgt = dm_table_get_target(map, 0);
576 	if (!tgt->type->ioctl)
577 		goto out;
578 
579 	if (dm_suspended_md(md)) {
580 		r = -EAGAIN;
581 		goto out;
582 	}
583 
584 	r = tgt->type->ioctl(tgt, cmd, arg);
585 
586 out:
587 	dm_put_live_table(md, srcu_idx);
588 
589 	if (r == -ENOTCONN) {
590 		msleep(10);
591 		goto retry;
592 	}
593 
594 	return r;
595 }
596 
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 	return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601 
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 	mempool_free(io, md->io_pool);
605 }
606 
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 	bio_put(&tio->clone);
610 }
611 
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 					    gfp_t gfp_mask)
614 {
615 	return mempool_alloc(md->io_pool, gfp_mask);
616 }
617 
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 	mempool_free(tio, tio->md->io_pool);
621 }
622 
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 					   gfp_t gfp_mask)
625 {
626 	return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628 
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 	mempool_free(rq, md->rq_pool);
632 }
633 
634 static int md_in_flight(struct mapped_device *md)
635 {
636 	return atomic_read(&md->pending[READ]) +
637 	       atomic_read(&md->pending[WRITE]);
638 }
639 
640 static void start_io_acct(struct dm_io *io)
641 {
642 	struct mapped_device *md = io->md;
643 	struct bio *bio = io->bio;
644 	int cpu;
645 	int rw = bio_data_dir(bio);
646 
647 	io->start_time = jiffies;
648 
649 	cpu = part_stat_lock();
650 	part_round_stats(cpu, &dm_disk(md)->part0);
651 	part_stat_unlock();
652 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 		atomic_inc_return(&md->pending[rw]));
654 
655 	if (unlikely(dm_stats_used(&md->stats)))
656 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 				    bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659 
660 static void end_io_acct(struct dm_io *io)
661 {
662 	struct mapped_device *md = io->md;
663 	struct bio *bio = io->bio;
664 	unsigned long duration = jiffies - io->start_time;
665 	int pending;
666 	int rw = bio_data_dir(bio);
667 
668 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669 
670 	if (unlikely(dm_stats_used(&md->stats)))
671 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 				    bio_sectors(bio), true, duration, &io->stats_aux);
673 
674 	/*
675 	 * After this is decremented the bio must not be touched if it is
676 	 * a flush.
677 	 */
678 	pending = atomic_dec_return(&md->pending[rw]);
679 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 	pending += atomic_read(&md->pending[rw^0x1]);
681 
682 	/* nudge anyone waiting on suspend queue */
683 	if (!pending)
684 		wake_up(&md->wait);
685 }
686 
687 /*
688  * Add the bio to the list of deferred io.
689  */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&md->deferred_lock, flags);
695 	bio_list_add(&md->deferred, bio);
696 	spin_unlock_irqrestore(&md->deferred_lock, flags);
697 	queue_work(md->wq, &md->work);
698 }
699 
700 /*
701  * Everyone (including functions in this file), should use this
702  * function to access the md->map field, and make sure they call
703  * dm_put_live_table() when finished.
704  */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 	*srcu_idx = srcu_read_lock(&md->io_barrier);
708 
709 	return srcu_dereference(md->map, &md->io_barrier);
710 }
711 
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 	srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716 
717 void dm_sync_table(struct mapped_device *md)
718 {
719 	synchronize_srcu(&md->io_barrier);
720 	synchronize_rcu_expedited();
721 }
722 
723 /*
724  * A fast alternative to dm_get_live_table/dm_put_live_table.
725  * The caller must not block between these two functions.
726  */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 	rcu_read_lock();
730 	return rcu_dereference(md->map);
731 }
732 
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 	rcu_read_unlock();
736 }
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	static char *_claim_ptr = "I belong to device-mapper";
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	td->dm_dev.bdev = NULL;
776 }
777 
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 					      fmode_t mode) {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result) {
791 	int r;
792 	struct table_device *td;
793 
794 	mutex_lock(&md->table_devices_lock);
795 	td = find_table_device(&md->table_devices, dev, mode);
796 	if (!td) {
797 		td = kmalloc(sizeof(*td), GFP_KERNEL);
798 		if (!td) {
799 			mutex_unlock(&md->table_devices_lock);
800 			return -ENOMEM;
801 		}
802 
803 		td->dm_dev.mode = mode;
804 		td->dm_dev.bdev = NULL;
805 
806 		if ((r = open_table_device(td, dev, md))) {
807 			mutex_unlock(&md->table_devices_lock);
808 			kfree(td);
809 			return r;
810 		}
811 
812 		format_dev_t(td->dm_dev.name, dev);
813 
814 		atomic_set(&td->count, 0);
815 		list_add(&td->list, &md->table_devices);
816 	}
817 	atomic_inc(&td->count);
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824 
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 	struct table_device *td = container_of(d, struct table_device, dm_dev);
828 
829 	mutex_lock(&md->table_devices_lock);
830 	if (atomic_dec_and_test(&td->count)) {
831 		close_table_device(td, md);
832 		list_del(&td->list);
833 		kfree(td);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838 
839 static void free_table_devices(struct list_head *devices)
840 {
841 	struct list_head *tmp, *next;
842 
843 	list_for_each_safe(tmp, next, devices) {
844 		struct table_device *td = list_entry(tmp, struct table_device, list);
845 
846 		DMWARN("dm_destroy: %s still exists with %d references",
847 		       td->dm_dev.name, atomic_read(&td->count));
848 		kfree(td);
849 	}
850 }
851 
852 /*
853  * Get the geometry associated with a dm device
854  */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	*geo = md->geometry;
858 
859 	return 0;
860 }
861 
862 /*
863  * Set the geometry of a device.
864  */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868 
869 	if (geo->start > sz) {
870 		DMWARN("Start sector is beyond the geometry limits.");
871 		return -EINVAL;
872 	}
873 
874 	md->geometry = *geo;
875 
876 	return 0;
877 }
878 
879 /*-----------------------------------------------------------------
880  * CRUD START:
881  *   A more elegant soln is in the works that uses the queue
882  *   merge fn, unfortunately there are a couple of changes to
883  *   the block layer that I want to make for this.  So in the
884  *   interests of getting something for people to use I give
885  *   you this clearly demarcated crap.
886  *---------------------------------------------------------------*/
887 
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892 
893 /*
894  * Decrements the number of outstanding ios that a bio has been
895  * cloned into, completing the original io if necc.
896  */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 	unsigned long flags;
900 	int io_error;
901 	struct bio *bio;
902 	struct mapped_device *md = io->md;
903 
904 	/* Push-back supersedes any I/O errors */
905 	if (unlikely(error)) {
906 		spin_lock_irqsave(&io->endio_lock, flags);
907 		if (!(io->error > 0 && __noflush_suspending(md)))
908 			io->error = error;
909 		spin_unlock_irqrestore(&io->endio_lock, flags);
910 	}
911 
912 	if (atomic_dec_and_test(&io->io_count)) {
913 		if (io->error == DM_ENDIO_REQUEUE) {
914 			/*
915 			 * Target requested pushing back the I/O.
916 			 */
917 			spin_lock_irqsave(&md->deferred_lock, flags);
918 			if (__noflush_suspending(md))
919 				bio_list_add_head(&md->deferred, io->bio);
920 			else
921 				/* noflush suspend was interrupted. */
922 				io->error = -EIO;
923 			spin_unlock_irqrestore(&md->deferred_lock, flags);
924 		}
925 
926 		io_error = io->error;
927 		bio = io->bio;
928 		end_io_acct(io);
929 		free_io(md, io);
930 
931 		if (io_error == DM_ENDIO_REQUEUE)
932 			return;
933 
934 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 			/*
936 			 * Preflush done for flush with data, reissue
937 			 * without REQ_FLUSH.
938 			 */
939 			bio->bi_rw &= ~REQ_FLUSH;
940 			queue_io(md, bio);
941 		} else {
942 			/* done with normal IO or empty flush */
943 			trace_block_bio_complete(md->queue, bio, io_error);
944 			bio_endio(bio, io_error);
945 		}
946 	}
947 }
948 
949 static void disable_write_same(struct mapped_device *md)
950 {
951 	struct queue_limits *limits = dm_get_queue_limits(md);
952 
953 	/* device doesn't really support WRITE SAME, disable it */
954 	limits->max_write_same_sectors = 0;
955 }
956 
957 static void clone_endio(struct bio *bio, int error)
958 {
959 	int r = error;
960 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 	struct dm_io *io = tio->io;
962 	struct mapped_device *md = tio->io->md;
963 	dm_endio_fn endio = tio->ti->type->end_io;
964 
965 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 		error = -EIO;
967 
968 	if (endio) {
969 		r = endio(tio->ti, bio, error);
970 		if (r < 0 || r == DM_ENDIO_REQUEUE)
971 			/*
972 			 * error and requeue request are handled
973 			 * in dec_pending().
974 			 */
975 			error = r;
976 		else if (r == DM_ENDIO_INCOMPLETE)
977 			/* The target will handle the io */
978 			return;
979 		else if (r) {
980 			DMWARN("unimplemented target endio return value: %d", r);
981 			BUG();
982 		}
983 	}
984 
985 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 		disable_write_same(md);
988 
989 	free_tio(md, tio);
990 	dec_pending(io, error);
991 }
992 
993 /*
994  * Partial completion handling for request-based dm
995  */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 	struct dm_rq_clone_bio_info *info =
999 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 	struct dm_rq_target_io *tio = info->tio;
1001 	struct bio *bio = info->orig;
1002 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003 
1004 	bio_put(clone);
1005 
1006 	if (tio->error)
1007 		/*
1008 		 * An error has already been detected on the request.
1009 		 * Once error occurred, just let clone->end_io() handle
1010 		 * the remainder.
1011 		 */
1012 		return;
1013 	else if (error) {
1014 		/*
1015 		 * Don't notice the error to the upper layer yet.
1016 		 * The error handling decision is made by the target driver,
1017 		 * when the request is completed.
1018 		 */
1019 		tio->error = error;
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * I/O for the bio successfully completed.
1025 	 * Notice the data completion to the upper layer.
1026 	 */
1027 
1028 	/*
1029 	 * bios are processed from the head of the list.
1030 	 * So the completing bio should always be rq->bio.
1031 	 * If it's not, something wrong is happening.
1032 	 */
1033 	if (tio->orig->bio != bio)
1034 		DMERR("bio completion is going in the middle of the request");
1035 
1036 	/*
1037 	 * Update the original request.
1038 	 * Do not use blk_end_request() here, because it may complete
1039 	 * the original request before the clone, and break the ordering.
1040 	 */
1041 	blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043 
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048 
1049 /*
1050  * Don't touch any member of the md after calling this function because
1051  * the md may be freed in dm_put() at the end of this function.
1052  * Or do dm_get() before calling this function and dm_put() later.
1053  */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 	int nr_requests_pending;
1057 
1058 	atomic_dec(&md->pending[rw]);
1059 
1060 	/* nudge anyone waiting on suspend queue */
1061 	nr_requests_pending = md_in_flight(md);
1062 	if (!nr_requests_pending)
1063 		wake_up(&md->wait);
1064 
1065 	/*
1066 	 * Run this off this callpath, as drivers could invoke end_io while
1067 	 * inside their request_fn (and holding the queue lock). Calling
1068 	 * back into ->request_fn() could deadlock attempting to grab the
1069 	 * queue lock again.
1070 	 */
1071 	if (run_queue) {
1072 		if (md->queue->mq_ops)
1073 			blk_mq_run_hw_queues(md->queue, true);
1074 		else if (!nr_requests_pending ||
1075 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 			blk_run_queue_async(md->queue);
1077 	}
1078 
1079 	/*
1080 	 * dm_put() must be at the end of this function. See the comment above
1081 	 */
1082 	dm_put(md);
1083 }
1084 
1085 static void free_rq_clone(struct request *clone)
1086 {
1087 	struct dm_rq_target_io *tio = clone->end_io_data;
1088 	struct mapped_device *md = tio->md;
1089 
1090 	blk_rq_unprep_clone(clone);
1091 
1092 	if (clone->q->mq_ops)
1093 		tio->ti->type->release_clone_rq(clone);
1094 	else if (!md->queue->mq_ops)
1095 		/* request_fn queue stacked on request_fn queue(s) */
1096 		free_clone_request(md, clone);
1097 
1098 	if (!md->queue->mq_ops)
1099 		free_rq_tio(tio);
1100 }
1101 
1102 /*
1103  * Complete the clone and the original request.
1104  * Must be called without clone's queue lock held,
1105  * see end_clone_request() for more details.
1106  */
1107 static void dm_end_request(struct request *clone, int error)
1108 {
1109 	int rw = rq_data_dir(clone);
1110 	struct dm_rq_target_io *tio = clone->end_io_data;
1111 	struct mapped_device *md = tio->md;
1112 	struct request *rq = tio->orig;
1113 
1114 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1115 		rq->errors = clone->errors;
1116 		rq->resid_len = clone->resid_len;
1117 
1118 		if (rq->sense)
1119 			/*
1120 			 * We are using the sense buffer of the original
1121 			 * request.
1122 			 * So setting the length of the sense data is enough.
1123 			 */
1124 			rq->sense_len = clone->sense_len;
1125 	}
1126 
1127 	free_rq_clone(clone);
1128 	if (!rq->q->mq_ops)
1129 		blk_end_request_all(rq, error);
1130 	else
1131 		blk_mq_end_request(rq, error);
1132 	rq_completed(md, rw, true);
1133 }
1134 
1135 static void dm_unprep_request(struct request *rq)
1136 {
1137 	struct dm_rq_target_io *tio = tio_from_request(rq);
1138 	struct request *clone = tio->clone;
1139 
1140 	if (!rq->q->mq_ops) {
1141 		rq->special = NULL;
1142 		rq->cmd_flags &= ~REQ_DONTPREP;
1143 	}
1144 
1145 	if (clone)
1146 		free_rq_clone(clone);
1147 }
1148 
1149 /*
1150  * Requeue the original request of a clone.
1151  */
1152 static void old_requeue_request(struct request *rq)
1153 {
1154 	struct request_queue *q = rq->q;
1155 	unsigned long flags;
1156 
1157 	spin_lock_irqsave(q->queue_lock, flags);
1158 	blk_requeue_request(q, rq);
1159 	spin_unlock_irqrestore(q->queue_lock, flags);
1160 }
1161 
1162 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1163 						 struct request *rq)
1164 {
1165 	int rw = rq_data_dir(rq);
1166 
1167 	dm_unprep_request(rq);
1168 
1169 	if (!rq->q->mq_ops)
1170 		old_requeue_request(rq);
1171 	else {
1172 		blk_mq_requeue_request(rq);
1173 		blk_mq_kick_requeue_list(rq->q);
1174 	}
1175 
1176 	rq_completed(md, rw, false);
1177 }
1178 
1179 static void dm_requeue_unmapped_request(struct request *clone)
1180 {
1181 	struct dm_rq_target_io *tio = clone->end_io_data;
1182 
1183 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1184 }
1185 
1186 static void old_stop_queue(struct request_queue *q)
1187 {
1188 	unsigned long flags;
1189 
1190 	if (blk_queue_stopped(q))
1191 		return;
1192 
1193 	spin_lock_irqsave(q->queue_lock, flags);
1194 	blk_stop_queue(q);
1195 	spin_unlock_irqrestore(q->queue_lock, flags);
1196 }
1197 
1198 static void stop_queue(struct request_queue *q)
1199 {
1200 	if (!q->mq_ops)
1201 		old_stop_queue(q);
1202 	else
1203 		blk_mq_stop_hw_queues(q);
1204 }
1205 
1206 static void old_start_queue(struct request_queue *q)
1207 {
1208 	unsigned long flags;
1209 
1210 	spin_lock_irqsave(q->queue_lock, flags);
1211 	if (blk_queue_stopped(q))
1212 		blk_start_queue(q);
1213 	spin_unlock_irqrestore(q->queue_lock, flags);
1214 }
1215 
1216 static void start_queue(struct request_queue *q)
1217 {
1218 	if (!q->mq_ops)
1219 		old_start_queue(q);
1220 	else
1221 		blk_mq_start_stopped_hw_queues(q, true);
1222 }
1223 
1224 static void dm_done(struct request *clone, int error, bool mapped)
1225 {
1226 	int r = error;
1227 	struct dm_rq_target_io *tio = clone->end_io_data;
1228 	dm_request_endio_fn rq_end_io = NULL;
1229 
1230 	if (tio->ti) {
1231 		rq_end_io = tio->ti->type->rq_end_io;
1232 
1233 		if (mapped && rq_end_io)
1234 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1235 	}
1236 
1237 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1238 		     !clone->q->limits.max_write_same_sectors))
1239 		disable_write_same(tio->md);
1240 
1241 	if (r <= 0)
1242 		/* The target wants to complete the I/O */
1243 		dm_end_request(clone, r);
1244 	else if (r == DM_ENDIO_INCOMPLETE)
1245 		/* The target will handle the I/O */
1246 		return;
1247 	else if (r == DM_ENDIO_REQUEUE)
1248 		/* The target wants to requeue the I/O */
1249 		dm_requeue_unmapped_request(clone);
1250 	else {
1251 		DMWARN("unimplemented target endio return value: %d", r);
1252 		BUG();
1253 	}
1254 }
1255 
1256 /*
1257  * Request completion handler for request-based dm
1258  */
1259 static void dm_softirq_done(struct request *rq)
1260 {
1261 	bool mapped = true;
1262 	struct dm_rq_target_io *tio = tio_from_request(rq);
1263 	struct request *clone = tio->clone;
1264 	int rw;
1265 
1266 	if (!clone) {
1267 		rw = rq_data_dir(rq);
1268 		if (!rq->q->mq_ops) {
1269 			blk_end_request_all(rq, tio->error);
1270 			rq_completed(tio->md, rw, false);
1271 			free_rq_tio(tio);
1272 		} else {
1273 			blk_mq_end_request(rq, tio->error);
1274 			rq_completed(tio->md, rw, false);
1275 		}
1276 		return;
1277 	}
1278 
1279 	if (rq->cmd_flags & REQ_FAILED)
1280 		mapped = false;
1281 
1282 	dm_done(clone, tio->error, mapped);
1283 }
1284 
1285 /*
1286  * Complete the clone and the original request with the error status
1287  * through softirq context.
1288  */
1289 static void dm_complete_request(struct request *rq, int error)
1290 {
1291 	struct dm_rq_target_io *tio = tio_from_request(rq);
1292 
1293 	tio->error = error;
1294 	blk_complete_request(rq);
1295 }
1296 
1297 /*
1298  * Complete the not-mapped clone and the original request with the error status
1299  * through softirq context.
1300  * Target's rq_end_io() function isn't called.
1301  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1302  */
1303 static void dm_kill_unmapped_request(struct request *rq, int error)
1304 {
1305 	rq->cmd_flags |= REQ_FAILED;
1306 	dm_complete_request(rq, error);
1307 }
1308 
1309 /*
1310  * Called with the clone's queue lock held (for non-blk-mq)
1311  */
1312 static void end_clone_request(struct request *clone, int error)
1313 {
1314 	struct dm_rq_target_io *tio = clone->end_io_data;
1315 
1316 	if (!clone->q->mq_ops) {
1317 		/*
1318 		 * For just cleaning up the information of the queue in which
1319 		 * the clone was dispatched.
1320 		 * The clone is *NOT* freed actually here because it is alloced
1321 		 * from dm own mempool (REQ_ALLOCED isn't set).
1322 		 */
1323 		__blk_put_request(clone->q, clone);
1324 	}
1325 
1326 	/*
1327 	 * Actual request completion is done in a softirq context which doesn't
1328 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1329 	 *     - another request may be submitted by the upper level driver
1330 	 *       of the stacking during the completion
1331 	 *     - the submission which requires queue lock may be done
1332 	 *       against this clone's queue
1333 	 */
1334 	dm_complete_request(tio->orig, error);
1335 }
1336 
1337 /*
1338  * Return maximum size of I/O possible at the supplied sector up to the current
1339  * target boundary.
1340  */
1341 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1342 {
1343 	sector_t target_offset = dm_target_offset(ti, sector);
1344 
1345 	return ti->len - target_offset;
1346 }
1347 
1348 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1349 {
1350 	sector_t len = max_io_len_target_boundary(sector, ti);
1351 	sector_t offset, max_len;
1352 
1353 	/*
1354 	 * Does the target need to split even further?
1355 	 */
1356 	if (ti->max_io_len) {
1357 		offset = dm_target_offset(ti, sector);
1358 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1359 			max_len = sector_div(offset, ti->max_io_len);
1360 		else
1361 			max_len = offset & (ti->max_io_len - 1);
1362 		max_len = ti->max_io_len - max_len;
1363 
1364 		if (len > max_len)
1365 			len = max_len;
1366 	}
1367 
1368 	return len;
1369 }
1370 
1371 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1372 {
1373 	if (len > UINT_MAX) {
1374 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1375 		      (unsigned long long)len, UINT_MAX);
1376 		ti->error = "Maximum size of target IO is too large";
1377 		return -EINVAL;
1378 	}
1379 
1380 	ti->max_io_len = (uint32_t) len;
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1385 
1386 /*
1387  * A target may call dm_accept_partial_bio only from the map routine.  It is
1388  * allowed for all bio types except REQ_FLUSH.
1389  *
1390  * dm_accept_partial_bio informs the dm that the target only wants to process
1391  * additional n_sectors sectors of the bio and the rest of the data should be
1392  * sent in a next bio.
1393  *
1394  * A diagram that explains the arithmetics:
1395  * +--------------------+---------------+-------+
1396  * |         1          |       2       |   3   |
1397  * +--------------------+---------------+-------+
1398  *
1399  * <-------------- *tio->len_ptr --------------->
1400  *                      <------- bi_size ------->
1401  *                      <-- n_sectors -->
1402  *
1403  * Region 1 was already iterated over with bio_advance or similar function.
1404  *	(it may be empty if the target doesn't use bio_advance)
1405  * Region 2 is the remaining bio size that the target wants to process.
1406  *	(it may be empty if region 1 is non-empty, although there is no reason
1407  *	 to make it empty)
1408  * The target requires that region 3 is to be sent in the next bio.
1409  *
1410  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1411  * the partially processed part (the sum of regions 1+2) must be the same for all
1412  * copies of the bio.
1413  */
1414 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1415 {
1416 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1417 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1418 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1419 	BUG_ON(bi_size > *tio->len_ptr);
1420 	BUG_ON(n_sectors > bi_size);
1421 	*tio->len_ptr -= bi_size - n_sectors;
1422 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1423 }
1424 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1425 
1426 static void __map_bio(struct dm_target_io *tio)
1427 {
1428 	int r;
1429 	sector_t sector;
1430 	struct mapped_device *md;
1431 	struct bio *clone = &tio->clone;
1432 	struct dm_target *ti = tio->ti;
1433 
1434 	clone->bi_end_io = clone_endio;
1435 
1436 	/*
1437 	 * Map the clone.  If r == 0 we don't need to do
1438 	 * anything, the target has assumed ownership of
1439 	 * this io.
1440 	 */
1441 	atomic_inc(&tio->io->io_count);
1442 	sector = clone->bi_iter.bi_sector;
1443 	r = ti->type->map(ti, clone);
1444 	if (r == DM_MAPIO_REMAPPED) {
1445 		/* the bio has been remapped so dispatch it */
1446 
1447 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1448 				      tio->io->bio->bi_bdev->bd_dev, sector);
1449 
1450 		generic_make_request(clone);
1451 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1452 		/* error the io and bail out, or requeue it if needed */
1453 		md = tio->io->md;
1454 		dec_pending(tio->io, r);
1455 		free_tio(md, tio);
1456 	} else if (r) {
1457 		DMWARN("unimplemented target map return value: %d", r);
1458 		BUG();
1459 	}
1460 }
1461 
1462 struct clone_info {
1463 	struct mapped_device *md;
1464 	struct dm_table *map;
1465 	struct bio *bio;
1466 	struct dm_io *io;
1467 	sector_t sector;
1468 	unsigned sector_count;
1469 };
1470 
1471 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1472 {
1473 	bio->bi_iter.bi_sector = sector;
1474 	bio->bi_iter.bi_size = to_bytes(len);
1475 }
1476 
1477 /*
1478  * Creates a bio that consists of range of complete bvecs.
1479  */
1480 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1481 		      sector_t sector, unsigned len)
1482 {
1483 	struct bio *clone = &tio->clone;
1484 
1485 	__bio_clone_fast(clone, bio);
1486 
1487 	if (bio_integrity(bio))
1488 		bio_integrity_clone(clone, bio, GFP_NOIO);
1489 
1490 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1491 	clone->bi_iter.bi_size = to_bytes(len);
1492 
1493 	if (bio_integrity(bio))
1494 		bio_integrity_trim(clone, 0, len);
1495 }
1496 
1497 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1498 				      struct dm_target *ti,
1499 				      unsigned target_bio_nr)
1500 {
1501 	struct dm_target_io *tio;
1502 	struct bio *clone;
1503 
1504 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1505 	tio = container_of(clone, struct dm_target_io, clone);
1506 
1507 	tio->io = ci->io;
1508 	tio->ti = ti;
1509 	tio->target_bio_nr = target_bio_nr;
1510 
1511 	return tio;
1512 }
1513 
1514 static void __clone_and_map_simple_bio(struct clone_info *ci,
1515 				       struct dm_target *ti,
1516 				       unsigned target_bio_nr, unsigned *len)
1517 {
1518 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1519 	struct bio *clone = &tio->clone;
1520 
1521 	tio->len_ptr = len;
1522 
1523 	__bio_clone_fast(clone, ci->bio);
1524 	if (len)
1525 		bio_setup_sector(clone, ci->sector, *len);
1526 
1527 	__map_bio(tio);
1528 }
1529 
1530 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1531 				  unsigned num_bios, unsigned *len)
1532 {
1533 	unsigned target_bio_nr;
1534 
1535 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1536 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1537 }
1538 
1539 static int __send_empty_flush(struct clone_info *ci)
1540 {
1541 	unsigned target_nr = 0;
1542 	struct dm_target *ti;
1543 
1544 	BUG_ON(bio_has_data(ci->bio));
1545 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1546 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1547 
1548 	return 0;
1549 }
1550 
1551 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1552 				     sector_t sector, unsigned *len)
1553 {
1554 	struct bio *bio = ci->bio;
1555 	struct dm_target_io *tio;
1556 	unsigned target_bio_nr;
1557 	unsigned num_target_bios = 1;
1558 
1559 	/*
1560 	 * Does the target want to receive duplicate copies of the bio?
1561 	 */
1562 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1563 		num_target_bios = ti->num_write_bios(ti, bio);
1564 
1565 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1566 		tio = alloc_tio(ci, ti, target_bio_nr);
1567 		tio->len_ptr = len;
1568 		clone_bio(tio, bio, sector, *len);
1569 		__map_bio(tio);
1570 	}
1571 }
1572 
1573 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1574 
1575 static unsigned get_num_discard_bios(struct dm_target *ti)
1576 {
1577 	return ti->num_discard_bios;
1578 }
1579 
1580 static unsigned get_num_write_same_bios(struct dm_target *ti)
1581 {
1582 	return ti->num_write_same_bios;
1583 }
1584 
1585 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1586 
1587 static bool is_split_required_for_discard(struct dm_target *ti)
1588 {
1589 	return ti->split_discard_bios;
1590 }
1591 
1592 static int __send_changing_extent_only(struct clone_info *ci,
1593 				       get_num_bios_fn get_num_bios,
1594 				       is_split_required_fn is_split_required)
1595 {
1596 	struct dm_target *ti;
1597 	unsigned len;
1598 	unsigned num_bios;
1599 
1600 	do {
1601 		ti = dm_table_find_target(ci->map, ci->sector);
1602 		if (!dm_target_is_valid(ti))
1603 			return -EIO;
1604 
1605 		/*
1606 		 * Even though the device advertised support for this type of
1607 		 * request, that does not mean every target supports it, and
1608 		 * reconfiguration might also have changed that since the
1609 		 * check was performed.
1610 		 */
1611 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1612 		if (!num_bios)
1613 			return -EOPNOTSUPP;
1614 
1615 		if (is_split_required && !is_split_required(ti))
1616 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1617 		else
1618 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1619 
1620 		__send_duplicate_bios(ci, ti, num_bios, &len);
1621 
1622 		ci->sector += len;
1623 	} while (ci->sector_count -= len);
1624 
1625 	return 0;
1626 }
1627 
1628 static int __send_discard(struct clone_info *ci)
1629 {
1630 	return __send_changing_extent_only(ci, get_num_discard_bios,
1631 					   is_split_required_for_discard);
1632 }
1633 
1634 static int __send_write_same(struct clone_info *ci)
1635 {
1636 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1637 }
1638 
1639 /*
1640  * Select the correct strategy for processing a non-flush bio.
1641  */
1642 static int __split_and_process_non_flush(struct clone_info *ci)
1643 {
1644 	struct bio *bio = ci->bio;
1645 	struct dm_target *ti;
1646 	unsigned len;
1647 
1648 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1649 		return __send_discard(ci);
1650 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1651 		return __send_write_same(ci);
1652 
1653 	ti = dm_table_find_target(ci->map, ci->sector);
1654 	if (!dm_target_is_valid(ti))
1655 		return -EIO;
1656 
1657 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1658 
1659 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1660 
1661 	ci->sector += len;
1662 	ci->sector_count -= len;
1663 
1664 	return 0;
1665 }
1666 
1667 /*
1668  * Entry point to split a bio into clones and submit them to the targets.
1669  */
1670 static void __split_and_process_bio(struct mapped_device *md,
1671 				    struct dm_table *map, struct bio *bio)
1672 {
1673 	struct clone_info ci;
1674 	int error = 0;
1675 
1676 	if (unlikely(!map)) {
1677 		bio_io_error(bio);
1678 		return;
1679 	}
1680 
1681 	ci.map = map;
1682 	ci.md = md;
1683 	ci.io = alloc_io(md);
1684 	ci.io->error = 0;
1685 	atomic_set(&ci.io->io_count, 1);
1686 	ci.io->bio = bio;
1687 	ci.io->md = md;
1688 	spin_lock_init(&ci.io->endio_lock);
1689 	ci.sector = bio->bi_iter.bi_sector;
1690 
1691 	start_io_acct(ci.io);
1692 
1693 	if (bio->bi_rw & REQ_FLUSH) {
1694 		ci.bio = &ci.md->flush_bio;
1695 		ci.sector_count = 0;
1696 		error = __send_empty_flush(&ci);
1697 		/* dec_pending submits any data associated with flush */
1698 	} else {
1699 		ci.bio = bio;
1700 		ci.sector_count = bio_sectors(bio);
1701 		while (ci.sector_count && !error)
1702 			error = __split_and_process_non_flush(&ci);
1703 	}
1704 
1705 	/* drop the extra reference count */
1706 	dec_pending(ci.io, error);
1707 }
1708 /*-----------------------------------------------------------------
1709  * CRUD END
1710  *---------------------------------------------------------------*/
1711 
1712 static int dm_merge_bvec(struct request_queue *q,
1713 			 struct bvec_merge_data *bvm,
1714 			 struct bio_vec *biovec)
1715 {
1716 	struct mapped_device *md = q->queuedata;
1717 	struct dm_table *map = dm_get_live_table_fast(md);
1718 	struct dm_target *ti;
1719 	sector_t max_sectors;
1720 	int max_size = 0;
1721 
1722 	if (unlikely(!map))
1723 		goto out;
1724 
1725 	ti = dm_table_find_target(map, bvm->bi_sector);
1726 	if (!dm_target_is_valid(ti))
1727 		goto out;
1728 
1729 	/*
1730 	 * Find maximum amount of I/O that won't need splitting
1731 	 */
1732 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1733 			  (sector_t) queue_max_sectors(q));
1734 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1735 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1736 		max_size = 0;
1737 
1738 	/*
1739 	 * merge_bvec_fn() returns number of bytes
1740 	 * it can accept at this offset
1741 	 * max is precomputed maximal io size
1742 	 */
1743 	if (max_size && ti->type->merge)
1744 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1745 	/*
1746 	 * If the target doesn't support merge method and some of the devices
1747 	 * provided their merge_bvec method (we know this by looking for the
1748 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1749 	 * allow bios with multiple vector entries.  So always set max_size
1750 	 * to 0, and the code below allows just one page.
1751 	 */
1752 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1753 		max_size = 0;
1754 
1755 out:
1756 	dm_put_live_table_fast(md);
1757 	/*
1758 	 * Always allow an entire first page
1759 	 */
1760 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1761 		max_size = biovec->bv_len;
1762 
1763 	return max_size;
1764 }
1765 
1766 /*
1767  * The request function that just remaps the bio built up by
1768  * dm_merge_bvec.
1769  */
1770 static void dm_make_request(struct request_queue *q, struct bio *bio)
1771 {
1772 	int rw = bio_data_dir(bio);
1773 	struct mapped_device *md = q->queuedata;
1774 	int srcu_idx;
1775 	struct dm_table *map;
1776 
1777 	map = dm_get_live_table(md, &srcu_idx);
1778 
1779 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1780 
1781 	/* if we're suspended, we have to queue this io for later */
1782 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1783 		dm_put_live_table(md, srcu_idx);
1784 
1785 		if (bio_rw(bio) != READA)
1786 			queue_io(md, bio);
1787 		else
1788 			bio_io_error(bio);
1789 		return;
1790 	}
1791 
1792 	__split_and_process_bio(md, map, bio);
1793 	dm_put_live_table(md, srcu_idx);
1794 	return;
1795 }
1796 
1797 int dm_request_based(struct mapped_device *md)
1798 {
1799 	return blk_queue_stackable(md->queue);
1800 }
1801 
1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1803 {
1804 	int r;
1805 
1806 	if (blk_queue_io_stat(clone->q))
1807 		clone->cmd_flags |= REQ_IO_STAT;
1808 
1809 	clone->start_time = jiffies;
1810 	r = blk_insert_cloned_request(clone->q, clone);
1811 	if (r)
1812 		/* must complete clone in terms of original request */
1813 		dm_complete_request(rq, r);
1814 }
1815 
1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1817 				 void *data)
1818 {
1819 	struct dm_rq_target_io *tio = data;
1820 	struct dm_rq_clone_bio_info *info =
1821 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1822 
1823 	info->orig = bio_orig;
1824 	info->tio = tio;
1825 	bio->bi_end_io = end_clone_bio;
1826 
1827 	return 0;
1828 }
1829 
1830 static int setup_clone(struct request *clone, struct request *rq,
1831 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1832 {
1833 	int r;
1834 
1835 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1836 			      dm_rq_bio_constructor, tio);
1837 	if (r)
1838 		return r;
1839 
1840 	clone->cmd = rq->cmd;
1841 	clone->cmd_len = rq->cmd_len;
1842 	clone->sense = rq->sense;
1843 	clone->end_io = end_clone_request;
1844 	clone->end_io_data = tio;
1845 
1846 	tio->clone = clone;
1847 
1848 	return 0;
1849 }
1850 
1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1852 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1853 {
1854 	/*
1855 	 * Do not allocate a clone if tio->clone was already set
1856 	 * (see: dm_mq_queue_rq).
1857 	 */
1858 	bool alloc_clone = !tio->clone;
1859 	struct request *clone;
1860 
1861 	if (alloc_clone) {
1862 		clone = alloc_clone_request(md, gfp_mask);
1863 		if (!clone)
1864 			return NULL;
1865 	} else
1866 		clone = tio->clone;
1867 
1868 	blk_rq_init(NULL, clone);
1869 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1870 		/* -ENOMEM */
1871 		if (alloc_clone)
1872 			free_clone_request(md, clone);
1873 		return NULL;
1874 	}
1875 
1876 	return clone;
1877 }
1878 
1879 static void map_tio_request(struct kthread_work *work);
1880 
1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1882 		     struct mapped_device *md)
1883 {
1884 	tio->md = md;
1885 	tio->ti = NULL;
1886 	tio->clone = NULL;
1887 	tio->orig = rq;
1888 	tio->error = 0;
1889 	memset(&tio->info, 0, sizeof(tio->info));
1890 	if (md->kworker_task)
1891 		init_kthread_work(&tio->work, map_tio_request);
1892 }
1893 
1894 static struct dm_rq_target_io *prep_tio(struct request *rq,
1895 					struct mapped_device *md, gfp_t gfp_mask)
1896 {
1897 	struct dm_rq_target_io *tio;
1898 	int srcu_idx;
1899 	struct dm_table *table;
1900 
1901 	tio = alloc_rq_tio(md, gfp_mask);
1902 	if (!tio)
1903 		return NULL;
1904 
1905 	init_tio(tio, rq, md);
1906 
1907 	table = dm_get_live_table(md, &srcu_idx);
1908 	if (!dm_table_mq_request_based(table)) {
1909 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1910 			dm_put_live_table(md, srcu_idx);
1911 			free_rq_tio(tio);
1912 			return NULL;
1913 		}
1914 	}
1915 	dm_put_live_table(md, srcu_idx);
1916 
1917 	return tio;
1918 }
1919 
1920 /*
1921  * Called with the queue lock held.
1922  */
1923 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1924 {
1925 	struct mapped_device *md = q->queuedata;
1926 	struct dm_rq_target_io *tio;
1927 
1928 	if (unlikely(rq->special)) {
1929 		DMWARN("Already has something in rq->special.");
1930 		return BLKPREP_KILL;
1931 	}
1932 
1933 	tio = prep_tio(rq, md, GFP_ATOMIC);
1934 	if (!tio)
1935 		return BLKPREP_DEFER;
1936 
1937 	rq->special = tio;
1938 	rq->cmd_flags |= REQ_DONTPREP;
1939 
1940 	return BLKPREP_OK;
1941 }
1942 
1943 /*
1944  * Returns:
1945  * 0                : the request has been processed
1946  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1947  * < 0              : the request was completed due to failure
1948  */
1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1950 		       struct mapped_device *md)
1951 {
1952 	int r;
1953 	struct dm_target *ti = tio->ti;
1954 	struct request *clone = NULL;
1955 
1956 	if (tio->clone) {
1957 		clone = tio->clone;
1958 		r = ti->type->map_rq(ti, clone, &tio->info);
1959 	} else {
1960 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1961 		if (r < 0) {
1962 			/* The target wants to complete the I/O */
1963 			dm_kill_unmapped_request(rq, r);
1964 			return r;
1965 		}
1966 		if (IS_ERR(clone))
1967 			return DM_MAPIO_REQUEUE;
1968 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1969 			/* -ENOMEM */
1970 			ti->type->release_clone_rq(clone);
1971 			return DM_MAPIO_REQUEUE;
1972 		}
1973 	}
1974 
1975 	switch (r) {
1976 	case DM_MAPIO_SUBMITTED:
1977 		/* The target has taken the I/O to submit by itself later */
1978 		break;
1979 	case DM_MAPIO_REMAPPED:
1980 		/* The target has remapped the I/O so dispatch it */
1981 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1982 				     blk_rq_pos(rq));
1983 		dm_dispatch_clone_request(clone, rq);
1984 		break;
1985 	case DM_MAPIO_REQUEUE:
1986 		/* The target wants to requeue the I/O */
1987 		dm_requeue_unmapped_request(clone);
1988 		break;
1989 	default:
1990 		if (r > 0) {
1991 			DMWARN("unimplemented target map return value: %d", r);
1992 			BUG();
1993 		}
1994 
1995 		/* The target wants to complete the I/O */
1996 		dm_kill_unmapped_request(rq, r);
1997 		return r;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static void map_tio_request(struct kthread_work *work)
2004 {
2005 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2006 	struct request *rq = tio->orig;
2007 	struct mapped_device *md = tio->md;
2008 
2009 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2010 		dm_requeue_unmapped_original_request(md, rq);
2011 }
2012 
2013 static void dm_start_request(struct mapped_device *md, struct request *orig)
2014 {
2015 	if (!orig->q->mq_ops)
2016 		blk_start_request(orig);
2017 	else
2018 		blk_mq_start_request(orig);
2019 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2020 
2021 	if (md->seq_rq_merge_deadline_usecs) {
2022 		md->last_rq_pos = rq_end_sector(orig);
2023 		md->last_rq_rw = rq_data_dir(orig);
2024 		md->last_rq_start_time = ktime_get();
2025 	}
2026 
2027 	/*
2028 	 * Hold the md reference here for the in-flight I/O.
2029 	 * We can't rely on the reference count by device opener,
2030 	 * because the device may be closed during the request completion
2031 	 * when all bios are completed.
2032 	 * See the comment in rq_completed() too.
2033 	 */
2034 	dm_get(md);
2035 }
2036 
2037 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2038 
2039 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2040 {
2041 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2042 }
2043 
2044 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2045 						     const char *buf, size_t count)
2046 {
2047 	unsigned deadline;
2048 
2049 	if (!dm_request_based(md) || md->use_blk_mq)
2050 		return count;
2051 
2052 	if (kstrtouint(buf, 10, &deadline))
2053 		return -EINVAL;
2054 
2055 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2056 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2057 
2058 	md->seq_rq_merge_deadline_usecs = deadline;
2059 
2060 	return count;
2061 }
2062 
2063 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2064 {
2065 	ktime_t kt_deadline;
2066 
2067 	if (!md->seq_rq_merge_deadline_usecs)
2068 		return false;
2069 
2070 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2071 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2072 
2073 	return !ktime_after(ktime_get(), kt_deadline);
2074 }
2075 
2076 /*
2077  * q->request_fn for request-based dm.
2078  * Called with the queue lock held.
2079  */
2080 static void dm_request_fn(struct request_queue *q)
2081 {
2082 	struct mapped_device *md = q->queuedata;
2083 	int srcu_idx;
2084 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2085 	struct dm_target *ti;
2086 	struct request *rq;
2087 	struct dm_rq_target_io *tio;
2088 	sector_t pos;
2089 
2090 	/*
2091 	 * For suspend, check blk_queue_stopped() and increment
2092 	 * ->pending within a single queue_lock not to increment the
2093 	 * number of in-flight I/Os after the queue is stopped in
2094 	 * dm_suspend().
2095 	 */
2096 	while (!blk_queue_stopped(q)) {
2097 		rq = blk_peek_request(q);
2098 		if (!rq)
2099 			goto out;
2100 
2101 		/* always use block 0 to find the target for flushes for now */
2102 		pos = 0;
2103 		if (!(rq->cmd_flags & REQ_FLUSH))
2104 			pos = blk_rq_pos(rq);
2105 
2106 		ti = dm_table_find_target(map, pos);
2107 		if (!dm_target_is_valid(ti)) {
2108 			/*
2109 			 * Must perform setup, that rq_completed() requires,
2110 			 * before calling dm_kill_unmapped_request
2111 			 */
2112 			DMERR_LIMIT("request attempted access beyond the end of device");
2113 			dm_start_request(md, rq);
2114 			dm_kill_unmapped_request(rq, -EIO);
2115 			continue;
2116 		}
2117 
2118 		if (dm_request_peeked_before_merge_deadline(md) &&
2119 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2120 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2121 			goto delay_and_out;
2122 
2123 		if (ti->type->busy && ti->type->busy(ti))
2124 			goto delay_and_out;
2125 
2126 		dm_start_request(md, rq);
2127 
2128 		tio = tio_from_request(rq);
2129 		/* Establish tio->ti before queuing work (map_tio_request) */
2130 		tio->ti = ti;
2131 		queue_kthread_work(&md->kworker, &tio->work);
2132 		BUG_ON(!irqs_disabled());
2133 	}
2134 
2135 	goto out;
2136 
2137 delay_and_out:
2138 	blk_delay_queue(q, HZ / 100);
2139 out:
2140 	dm_put_live_table(md, srcu_idx);
2141 }
2142 
2143 static int dm_any_congested(void *congested_data, int bdi_bits)
2144 {
2145 	int r = bdi_bits;
2146 	struct mapped_device *md = congested_data;
2147 	struct dm_table *map;
2148 
2149 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2150 		map = dm_get_live_table_fast(md);
2151 		if (map) {
2152 			/*
2153 			 * Request-based dm cares about only own queue for
2154 			 * the query about congestion status of request_queue
2155 			 */
2156 			if (dm_request_based(md))
2157 				r = md->queue->backing_dev_info.state &
2158 				    bdi_bits;
2159 			else
2160 				r = dm_table_any_congested(map, bdi_bits);
2161 		}
2162 		dm_put_live_table_fast(md);
2163 	}
2164 
2165 	return r;
2166 }
2167 
2168 /*-----------------------------------------------------------------
2169  * An IDR is used to keep track of allocated minor numbers.
2170  *---------------------------------------------------------------*/
2171 static void free_minor(int minor)
2172 {
2173 	spin_lock(&_minor_lock);
2174 	idr_remove(&_minor_idr, minor);
2175 	spin_unlock(&_minor_lock);
2176 }
2177 
2178 /*
2179  * See if the device with a specific minor # is free.
2180  */
2181 static int specific_minor(int minor)
2182 {
2183 	int r;
2184 
2185 	if (minor >= (1 << MINORBITS))
2186 		return -EINVAL;
2187 
2188 	idr_preload(GFP_KERNEL);
2189 	spin_lock(&_minor_lock);
2190 
2191 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2192 
2193 	spin_unlock(&_minor_lock);
2194 	idr_preload_end();
2195 	if (r < 0)
2196 		return r == -ENOSPC ? -EBUSY : r;
2197 	return 0;
2198 }
2199 
2200 static int next_free_minor(int *minor)
2201 {
2202 	int r;
2203 
2204 	idr_preload(GFP_KERNEL);
2205 	spin_lock(&_minor_lock);
2206 
2207 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2208 
2209 	spin_unlock(&_minor_lock);
2210 	idr_preload_end();
2211 	if (r < 0)
2212 		return r;
2213 	*minor = r;
2214 	return 0;
2215 }
2216 
2217 static const struct block_device_operations dm_blk_dops;
2218 
2219 static void dm_wq_work(struct work_struct *work);
2220 
2221 static void dm_init_md_queue(struct mapped_device *md)
2222 {
2223 	/*
2224 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2225 	 * devices.  The type of this dm device may not have been decided yet.
2226 	 * The type is decided at the first table loading time.
2227 	 * To prevent problematic device stacking, clear the queue flag
2228 	 * for request stacking support until then.
2229 	 *
2230 	 * This queue is new, so no concurrency on the queue_flags.
2231 	 */
2232 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2233 }
2234 
2235 static void dm_init_old_md_queue(struct mapped_device *md)
2236 {
2237 	md->use_blk_mq = false;
2238 	dm_init_md_queue(md);
2239 
2240 	/*
2241 	 * Initialize aspects of queue that aren't relevant for blk-mq
2242 	 */
2243 	md->queue->queuedata = md;
2244 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2245 	md->queue->backing_dev_info.congested_data = md;
2246 
2247 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2248 }
2249 
2250 /*
2251  * Allocate and initialise a blank device with a given minor.
2252  */
2253 static struct mapped_device *alloc_dev(int minor)
2254 {
2255 	int r;
2256 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2257 	void *old_md;
2258 
2259 	if (!md) {
2260 		DMWARN("unable to allocate device, out of memory.");
2261 		return NULL;
2262 	}
2263 
2264 	if (!try_module_get(THIS_MODULE))
2265 		goto bad_module_get;
2266 
2267 	/* get a minor number for the dev */
2268 	if (minor == DM_ANY_MINOR)
2269 		r = next_free_minor(&minor);
2270 	else
2271 		r = specific_minor(minor);
2272 	if (r < 0)
2273 		goto bad_minor;
2274 
2275 	r = init_srcu_struct(&md->io_barrier);
2276 	if (r < 0)
2277 		goto bad_io_barrier;
2278 
2279 	md->use_blk_mq = use_blk_mq;
2280 	md->type = DM_TYPE_NONE;
2281 	mutex_init(&md->suspend_lock);
2282 	mutex_init(&md->type_lock);
2283 	mutex_init(&md->table_devices_lock);
2284 	spin_lock_init(&md->deferred_lock);
2285 	atomic_set(&md->holders, 1);
2286 	atomic_set(&md->open_count, 0);
2287 	atomic_set(&md->event_nr, 0);
2288 	atomic_set(&md->uevent_seq, 0);
2289 	INIT_LIST_HEAD(&md->uevent_list);
2290 	INIT_LIST_HEAD(&md->table_devices);
2291 	spin_lock_init(&md->uevent_lock);
2292 
2293 	md->queue = blk_alloc_queue(GFP_KERNEL);
2294 	if (!md->queue)
2295 		goto bad_queue;
2296 
2297 	dm_init_md_queue(md);
2298 
2299 	md->disk = alloc_disk(1);
2300 	if (!md->disk)
2301 		goto bad_disk;
2302 
2303 	atomic_set(&md->pending[0], 0);
2304 	atomic_set(&md->pending[1], 0);
2305 	init_waitqueue_head(&md->wait);
2306 	INIT_WORK(&md->work, dm_wq_work);
2307 	init_waitqueue_head(&md->eventq);
2308 	init_completion(&md->kobj_holder.completion);
2309 	md->kworker_task = NULL;
2310 
2311 	md->disk->major = _major;
2312 	md->disk->first_minor = minor;
2313 	md->disk->fops = &dm_blk_dops;
2314 	md->disk->queue = md->queue;
2315 	md->disk->private_data = md;
2316 	sprintf(md->disk->disk_name, "dm-%d", minor);
2317 	add_disk(md->disk);
2318 	format_dev_t(md->name, MKDEV(_major, minor));
2319 
2320 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2321 	if (!md->wq)
2322 		goto bad_thread;
2323 
2324 	md->bdev = bdget_disk(md->disk, 0);
2325 	if (!md->bdev)
2326 		goto bad_bdev;
2327 
2328 	bio_init(&md->flush_bio);
2329 	md->flush_bio.bi_bdev = md->bdev;
2330 	md->flush_bio.bi_rw = WRITE_FLUSH;
2331 
2332 	dm_stats_init(&md->stats);
2333 
2334 	/* Populate the mapping, nobody knows we exist yet */
2335 	spin_lock(&_minor_lock);
2336 	old_md = idr_replace(&_minor_idr, md, minor);
2337 	spin_unlock(&_minor_lock);
2338 
2339 	BUG_ON(old_md != MINOR_ALLOCED);
2340 
2341 	return md;
2342 
2343 bad_bdev:
2344 	destroy_workqueue(md->wq);
2345 bad_thread:
2346 	del_gendisk(md->disk);
2347 	put_disk(md->disk);
2348 bad_disk:
2349 	blk_cleanup_queue(md->queue);
2350 bad_queue:
2351 	cleanup_srcu_struct(&md->io_barrier);
2352 bad_io_barrier:
2353 	free_minor(minor);
2354 bad_minor:
2355 	module_put(THIS_MODULE);
2356 bad_module_get:
2357 	kfree(md);
2358 	return NULL;
2359 }
2360 
2361 static void unlock_fs(struct mapped_device *md);
2362 
2363 static void free_dev(struct mapped_device *md)
2364 {
2365 	int minor = MINOR(disk_devt(md->disk));
2366 
2367 	unlock_fs(md);
2368 	destroy_workqueue(md->wq);
2369 
2370 	if (md->kworker_task)
2371 		kthread_stop(md->kworker_task);
2372 	if (md->io_pool)
2373 		mempool_destroy(md->io_pool);
2374 	if (md->rq_pool)
2375 		mempool_destroy(md->rq_pool);
2376 	if (md->bs)
2377 		bioset_free(md->bs);
2378 
2379 	cleanup_srcu_struct(&md->io_barrier);
2380 	free_table_devices(&md->table_devices);
2381 	dm_stats_cleanup(&md->stats);
2382 
2383 	spin_lock(&_minor_lock);
2384 	md->disk->private_data = NULL;
2385 	spin_unlock(&_minor_lock);
2386 	if (blk_get_integrity(md->disk))
2387 		blk_integrity_unregister(md->disk);
2388 	del_gendisk(md->disk);
2389 	put_disk(md->disk);
2390 	blk_cleanup_queue(md->queue);
2391 	if (md->use_blk_mq)
2392 		blk_mq_free_tag_set(&md->tag_set);
2393 	bdput(md->bdev);
2394 	free_minor(minor);
2395 
2396 	module_put(THIS_MODULE);
2397 	kfree(md);
2398 }
2399 
2400 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2401 {
2402 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2403 
2404 	if (md->bs) {
2405 		/* The md already has necessary mempools. */
2406 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2407 			/*
2408 			 * Reload bioset because front_pad may have changed
2409 			 * because a different table was loaded.
2410 			 */
2411 			bioset_free(md->bs);
2412 			md->bs = p->bs;
2413 			p->bs = NULL;
2414 		}
2415 		/*
2416 		 * There's no need to reload with request-based dm
2417 		 * because the size of front_pad doesn't change.
2418 		 * Note for future: If you are to reload bioset,
2419 		 * prep-ed requests in the queue may refer
2420 		 * to bio from the old bioset, so you must walk
2421 		 * through the queue to unprep.
2422 		 */
2423 		goto out;
2424 	}
2425 
2426 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2427 
2428 	md->io_pool = p->io_pool;
2429 	p->io_pool = NULL;
2430 	md->rq_pool = p->rq_pool;
2431 	p->rq_pool = NULL;
2432 	md->bs = p->bs;
2433 	p->bs = NULL;
2434 
2435 out:
2436 	/* mempool bind completed, no longer need any mempools in the table */
2437 	dm_table_free_md_mempools(t);
2438 }
2439 
2440 /*
2441  * Bind a table to the device.
2442  */
2443 static void event_callback(void *context)
2444 {
2445 	unsigned long flags;
2446 	LIST_HEAD(uevents);
2447 	struct mapped_device *md = (struct mapped_device *) context;
2448 
2449 	spin_lock_irqsave(&md->uevent_lock, flags);
2450 	list_splice_init(&md->uevent_list, &uevents);
2451 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2452 
2453 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2454 
2455 	atomic_inc(&md->event_nr);
2456 	wake_up(&md->eventq);
2457 }
2458 
2459 /*
2460  * Protected by md->suspend_lock obtained by dm_swap_table().
2461  */
2462 static void __set_size(struct mapped_device *md, sector_t size)
2463 {
2464 	set_capacity(md->disk, size);
2465 
2466 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2467 }
2468 
2469 /*
2470  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2471  *
2472  * If this function returns 0, then the device is either a non-dm
2473  * device without a merge_bvec_fn, or it is a dm device that is
2474  * able to split any bios it receives that are too big.
2475  */
2476 int dm_queue_merge_is_compulsory(struct request_queue *q)
2477 {
2478 	struct mapped_device *dev_md;
2479 
2480 	if (!q->merge_bvec_fn)
2481 		return 0;
2482 
2483 	if (q->make_request_fn == dm_make_request) {
2484 		dev_md = q->queuedata;
2485 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2486 			return 0;
2487 	}
2488 
2489 	return 1;
2490 }
2491 
2492 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2493 					 struct dm_dev *dev, sector_t start,
2494 					 sector_t len, void *data)
2495 {
2496 	struct block_device *bdev = dev->bdev;
2497 	struct request_queue *q = bdev_get_queue(bdev);
2498 
2499 	return dm_queue_merge_is_compulsory(q);
2500 }
2501 
2502 /*
2503  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2504  * on the properties of the underlying devices.
2505  */
2506 static int dm_table_merge_is_optional(struct dm_table *table)
2507 {
2508 	unsigned i = 0;
2509 	struct dm_target *ti;
2510 
2511 	while (i < dm_table_get_num_targets(table)) {
2512 		ti = dm_table_get_target(table, i++);
2513 
2514 		if (ti->type->iterate_devices &&
2515 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2516 			return 0;
2517 	}
2518 
2519 	return 1;
2520 }
2521 
2522 /*
2523  * Returns old map, which caller must destroy.
2524  */
2525 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2526 			       struct queue_limits *limits)
2527 {
2528 	struct dm_table *old_map;
2529 	struct request_queue *q = md->queue;
2530 	sector_t size;
2531 	int merge_is_optional;
2532 
2533 	size = dm_table_get_size(t);
2534 
2535 	/*
2536 	 * Wipe any geometry if the size of the table changed.
2537 	 */
2538 	if (size != dm_get_size(md))
2539 		memset(&md->geometry, 0, sizeof(md->geometry));
2540 
2541 	__set_size(md, size);
2542 
2543 	dm_table_event_callback(t, event_callback, md);
2544 
2545 	/*
2546 	 * The queue hasn't been stopped yet, if the old table type wasn't
2547 	 * for request-based during suspension.  So stop it to prevent
2548 	 * I/O mapping before resume.
2549 	 * This must be done before setting the queue restrictions,
2550 	 * because request-based dm may be run just after the setting.
2551 	 */
2552 	if (dm_table_request_based(t))
2553 		stop_queue(q);
2554 
2555 	__bind_mempools(md, t);
2556 
2557 	merge_is_optional = dm_table_merge_is_optional(t);
2558 
2559 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2560 	rcu_assign_pointer(md->map, t);
2561 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2562 
2563 	dm_table_set_restrictions(t, q, limits);
2564 	if (merge_is_optional)
2565 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2566 	else
2567 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2568 	if (old_map)
2569 		dm_sync_table(md);
2570 
2571 	return old_map;
2572 }
2573 
2574 /*
2575  * Returns unbound table for the caller to free.
2576  */
2577 static struct dm_table *__unbind(struct mapped_device *md)
2578 {
2579 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2580 
2581 	if (!map)
2582 		return NULL;
2583 
2584 	dm_table_event_callback(map, NULL, NULL);
2585 	RCU_INIT_POINTER(md->map, NULL);
2586 	dm_sync_table(md);
2587 
2588 	return map;
2589 }
2590 
2591 /*
2592  * Constructor for a new device.
2593  */
2594 int dm_create(int minor, struct mapped_device **result)
2595 {
2596 	struct mapped_device *md;
2597 
2598 	md = alloc_dev(minor);
2599 	if (!md)
2600 		return -ENXIO;
2601 
2602 	dm_sysfs_init(md);
2603 
2604 	*result = md;
2605 	return 0;
2606 }
2607 
2608 /*
2609  * Functions to manage md->type.
2610  * All are required to hold md->type_lock.
2611  */
2612 void dm_lock_md_type(struct mapped_device *md)
2613 {
2614 	mutex_lock(&md->type_lock);
2615 }
2616 
2617 void dm_unlock_md_type(struct mapped_device *md)
2618 {
2619 	mutex_unlock(&md->type_lock);
2620 }
2621 
2622 void dm_set_md_type(struct mapped_device *md, unsigned type)
2623 {
2624 	BUG_ON(!mutex_is_locked(&md->type_lock));
2625 	md->type = type;
2626 }
2627 
2628 unsigned dm_get_md_type(struct mapped_device *md)
2629 {
2630 	BUG_ON(!mutex_is_locked(&md->type_lock));
2631 	return md->type;
2632 }
2633 
2634 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2635 {
2636 	return md->immutable_target_type;
2637 }
2638 
2639 /*
2640  * The queue_limits are only valid as long as you have a reference
2641  * count on 'md'.
2642  */
2643 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2644 {
2645 	BUG_ON(!atomic_read(&md->holders));
2646 	return &md->queue->limits;
2647 }
2648 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2649 
2650 static void init_rq_based_worker_thread(struct mapped_device *md)
2651 {
2652 	/* Initialize the request-based DM worker thread */
2653 	init_kthread_worker(&md->kworker);
2654 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2655 				       "kdmwork-%s", dm_device_name(md));
2656 }
2657 
2658 /*
2659  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2660  */
2661 static int dm_init_request_based_queue(struct mapped_device *md)
2662 {
2663 	struct request_queue *q = NULL;
2664 
2665 	if (md->queue->elevator)
2666 		return 0;
2667 
2668 	/* Fully initialize the queue */
2669 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2670 	if (!q)
2671 		return -EINVAL;
2672 
2673 	/* disable dm_request_fn's merge heuristic by default */
2674 	md->seq_rq_merge_deadline_usecs = 0;
2675 
2676 	md->queue = q;
2677 	dm_init_old_md_queue(md);
2678 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2679 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2680 
2681 	init_rq_based_worker_thread(md);
2682 
2683 	elv_register_queue(md->queue);
2684 
2685 	return 0;
2686 }
2687 
2688 static int dm_mq_init_request(void *data, struct request *rq,
2689 			      unsigned int hctx_idx, unsigned int request_idx,
2690 			      unsigned int numa_node)
2691 {
2692 	struct mapped_device *md = data;
2693 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2694 
2695 	/*
2696 	 * Must initialize md member of tio, otherwise it won't
2697 	 * be available in dm_mq_queue_rq.
2698 	 */
2699 	tio->md = md;
2700 
2701 	return 0;
2702 }
2703 
2704 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2705 			  const struct blk_mq_queue_data *bd)
2706 {
2707 	struct request *rq = bd->rq;
2708 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2709 	struct mapped_device *md = tio->md;
2710 	int srcu_idx;
2711 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2712 	struct dm_target *ti;
2713 	sector_t pos;
2714 
2715 	/* always use block 0 to find the target for flushes for now */
2716 	pos = 0;
2717 	if (!(rq->cmd_flags & REQ_FLUSH))
2718 		pos = blk_rq_pos(rq);
2719 
2720 	ti = dm_table_find_target(map, pos);
2721 	if (!dm_target_is_valid(ti)) {
2722 		dm_put_live_table(md, srcu_idx);
2723 		DMERR_LIMIT("request attempted access beyond the end of device");
2724 		/*
2725 		 * Must perform setup, that rq_completed() requires,
2726 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2727 		 */
2728 		dm_start_request(md, rq);
2729 		return BLK_MQ_RQ_QUEUE_ERROR;
2730 	}
2731 	dm_put_live_table(md, srcu_idx);
2732 
2733 	if (ti->type->busy && ti->type->busy(ti))
2734 		return BLK_MQ_RQ_QUEUE_BUSY;
2735 
2736 	dm_start_request(md, rq);
2737 
2738 	/* Init tio using md established in .init_request */
2739 	init_tio(tio, rq, md);
2740 
2741 	/*
2742 	 * Establish tio->ti before queuing work (map_tio_request)
2743 	 * or making direct call to map_request().
2744 	 */
2745 	tio->ti = ti;
2746 
2747 	/* Clone the request if underlying devices aren't blk-mq */
2748 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2749 		/* clone request is allocated at the end of the pdu */
2750 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2751 		if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2752 			return BLK_MQ_RQ_QUEUE_BUSY;
2753 		queue_kthread_work(&md->kworker, &tio->work);
2754 	} else {
2755 		/* Direct call is fine since .queue_rq allows allocations */
2756 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2757 			dm_requeue_unmapped_original_request(md, rq);
2758 	}
2759 
2760 	return BLK_MQ_RQ_QUEUE_OK;
2761 }
2762 
2763 static struct blk_mq_ops dm_mq_ops = {
2764 	.queue_rq = dm_mq_queue_rq,
2765 	.map_queue = blk_mq_map_queue,
2766 	.complete = dm_softirq_done,
2767 	.init_request = dm_mq_init_request,
2768 };
2769 
2770 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2771 {
2772 	unsigned md_type = dm_get_md_type(md);
2773 	struct request_queue *q;
2774 	int err;
2775 
2776 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2777 	md->tag_set.ops = &dm_mq_ops;
2778 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2779 	md->tag_set.numa_node = NUMA_NO_NODE;
2780 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2781 	md->tag_set.nr_hw_queues = 1;
2782 	if (md_type == DM_TYPE_REQUEST_BASED) {
2783 		/* make the memory for non-blk-mq clone part of the pdu */
2784 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2785 	} else
2786 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2787 	md->tag_set.driver_data = md;
2788 
2789 	err = blk_mq_alloc_tag_set(&md->tag_set);
2790 	if (err)
2791 		return err;
2792 
2793 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2794 	if (IS_ERR(q)) {
2795 		err = PTR_ERR(q);
2796 		goto out_tag_set;
2797 	}
2798 	md->queue = q;
2799 	dm_init_md_queue(md);
2800 
2801 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2802 	blk_mq_register_disk(md->disk);
2803 
2804 	if (md_type == DM_TYPE_REQUEST_BASED)
2805 		init_rq_based_worker_thread(md);
2806 
2807 	return 0;
2808 
2809 out_tag_set:
2810 	blk_mq_free_tag_set(&md->tag_set);
2811 	return err;
2812 }
2813 
2814 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2815 {
2816 	if (type == DM_TYPE_BIO_BASED)
2817 		return type;
2818 
2819 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2820 }
2821 
2822 /*
2823  * Setup the DM device's queue based on md's type
2824  */
2825 int dm_setup_md_queue(struct mapped_device *md)
2826 {
2827 	int r;
2828 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2829 
2830 	switch (md_type) {
2831 	case DM_TYPE_REQUEST_BASED:
2832 		r = dm_init_request_based_queue(md);
2833 		if (r) {
2834 			DMWARN("Cannot initialize queue for request-based mapped device");
2835 			return r;
2836 		}
2837 		break;
2838 	case DM_TYPE_MQ_REQUEST_BASED:
2839 		r = dm_init_request_based_blk_mq_queue(md);
2840 		if (r) {
2841 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2842 			return r;
2843 		}
2844 		break;
2845 	case DM_TYPE_BIO_BASED:
2846 		dm_init_old_md_queue(md);
2847 		blk_queue_make_request(md->queue, dm_make_request);
2848 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2849 		break;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 struct mapped_device *dm_get_md(dev_t dev)
2856 {
2857 	struct mapped_device *md;
2858 	unsigned minor = MINOR(dev);
2859 
2860 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2861 		return NULL;
2862 
2863 	spin_lock(&_minor_lock);
2864 
2865 	md = idr_find(&_minor_idr, minor);
2866 	if (md) {
2867 		if ((md == MINOR_ALLOCED ||
2868 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2869 		     dm_deleting_md(md) ||
2870 		     test_bit(DMF_FREEING, &md->flags))) {
2871 			md = NULL;
2872 			goto out;
2873 		}
2874 		dm_get(md);
2875 	}
2876 
2877 out:
2878 	spin_unlock(&_minor_lock);
2879 
2880 	return md;
2881 }
2882 EXPORT_SYMBOL_GPL(dm_get_md);
2883 
2884 void *dm_get_mdptr(struct mapped_device *md)
2885 {
2886 	return md->interface_ptr;
2887 }
2888 
2889 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2890 {
2891 	md->interface_ptr = ptr;
2892 }
2893 
2894 void dm_get(struct mapped_device *md)
2895 {
2896 	atomic_inc(&md->holders);
2897 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2898 }
2899 
2900 int dm_hold(struct mapped_device *md)
2901 {
2902 	spin_lock(&_minor_lock);
2903 	if (test_bit(DMF_FREEING, &md->flags)) {
2904 		spin_unlock(&_minor_lock);
2905 		return -EBUSY;
2906 	}
2907 	dm_get(md);
2908 	spin_unlock(&_minor_lock);
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(dm_hold);
2912 
2913 const char *dm_device_name(struct mapped_device *md)
2914 {
2915 	return md->name;
2916 }
2917 EXPORT_SYMBOL_GPL(dm_device_name);
2918 
2919 static void __dm_destroy(struct mapped_device *md, bool wait)
2920 {
2921 	struct dm_table *map;
2922 	int srcu_idx;
2923 
2924 	might_sleep();
2925 
2926 	map = dm_get_live_table(md, &srcu_idx);
2927 
2928 	spin_lock(&_minor_lock);
2929 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2930 	set_bit(DMF_FREEING, &md->flags);
2931 	spin_unlock(&_minor_lock);
2932 
2933 	if (dm_request_based(md) && md->kworker_task)
2934 		flush_kthread_worker(&md->kworker);
2935 
2936 	/*
2937 	 * Take suspend_lock so that presuspend and postsuspend methods
2938 	 * do not race with internal suspend.
2939 	 */
2940 	mutex_lock(&md->suspend_lock);
2941 	if (!dm_suspended_md(md)) {
2942 		dm_table_presuspend_targets(map);
2943 		dm_table_postsuspend_targets(map);
2944 	}
2945 	mutex_unlock(&md->suspend_lock);
2946 
2947 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948 	dm_put_live_table(md, srcu_idx);
2949 
2950 	/*
2951 	 * Rare, but there may be I/O requests still going to complete,
2952 	 * for example.  Wait for all references to disappear.
2953 	 * No one should increment the reference count of the mapped_device,
2954 	 * after the mapped_device state becomes DMF_FREEING.
2955 	 */
2956 	if (wait)
2957 		while (atomic_read(&md->holders))
2958 			msleep(1);
2959 	else if (atomic_read(&md->holders))
2960 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2961 		       dm_device_name(md), atomic_read(&md->holders));
2962 
2963 	dm_sysfs_exit(md);
2964 	dm_table_destroy(__unbind(md));
2965 	free_dev(md);
2966 }
2967 
2968 void dm_destroy(struct mapped_device *md)
2969 {
2970 	__dm_destroy(md, true);
2971 }
2972 
2973 void dm_destroy_immediate(struct mapped_device *md)
2974 {
2975 	__dm_destroy(md, false);
2976 }
2977 
2978 void dm_put(struct mapped_device *md)
2979 {
2980 	atomic_dec(&md->holders);
2981 }
2982 EXPORT_SYMBOL_GPL(dm_put);
2983 
2984 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2985 {
2986 	int r = 0;
2987 	DECLARE_WAITQUEUE(wait, current);
2988 
2989 	add_wait_queue(&md->wait, &wait);
2990 
2991 	while (1) {
2992 		set_current_state(interruptible);
2993 
2994 		if (!md_in_flight(md))
2995 			break;
2996 
2997 		if (interruptible == TASK_INTERRUPTIBLE &&
2998 		    signal_pending(current)) {
2999 			r = -EINTR;
3000 			break;
3001 		}
3002 
3003 		io_schedule();
3004 	}
3005 	set_current_state(TASK_RUNNING);
3006 
3007 	remove_wait_queue(&md->wait, &wait);
3008 
3009 	return r;
3010 }
3011 
3012 /*
3013  * Process the deferred bios
3014  */
3015 static void dm_wq_work(struct work_struct *work)
3016 {
3017 	struct mapped_device *md = container_of(work, struct mapped_device,
3018 						work);
3019 	struct bio *c;
3020 	int srcu_idx;
3021 	struct dm_table *map;
3022 
3023 	map = dm_get_live_table(md, &srcu_idx);
3024 
3025 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3026 		spin_lock_irq(&md->deferred_lock);
3027 		c = bio_list_pop(&md->deferred);
3028 		spin_unlock_irq(&md->deferred_lock);
3029 
3030 		if (!c)
3031 			break;
3032 
3033 		if (dm_request_based(md))
3034 			generic_make_request(c);
3035 		else
3036 			__split_and_process_bio(md, map, c);
3037 	}
3038 
3039 	dm_put_live_table(md, srcu_idx);
3040 }
3041 
3042 static void dm_queue_flush(struct mapped_device *md)
3043 {
3044 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3045 	smp_mb__after_atomic();
3046 	queue_work(md->wq, &md->work);
3047 }
3048 
3049 /*
3050  * Swap in a new table, returning the old one for the caller to destroy.
3051  */
3052 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3053 {
3054 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3055 	struct queue_limits limits;
3056 	int r;
3057 
3058 	mutex_lock(&md->suspend_lock);
3059 
3060 	/* device must be suspended */
3061 	if (!dm_suspended_md(md))
3062 		goto out;
3063 
3064 	/*
3065 	 * If the new table has no data devices, retain the existing limits.
3066 	 * This helps multipath with queue_if_no_path if all paths disappear,
3067 	 * then new I/O is queued based on these limits, and then some paths
3068 	 * reappear.
3069 	 */
3070 	if (dm_table_has_no_data_devices(table)) {
3071 		live_map = dm_get_live_table_fast(md);
3072 		if (live_map)
3073 			limits = md->queue->limits;
3074 		dm_put_live_table_fast(md);
3075 	}
3076 
3077 	if (!live_map) {
3078 		r = dm_calculate_queue_limits(table, &limits);
3079 		if (r) {
3080 			map = ERR_PTR(r);
3081 			goto out;
3082 		}
3083 	}
3084 
3085 	map = __bind(md, table, &limits);
3086 
3087 out:
3088 	mutex_unlock(&md->suspend_lock);
3089 	return map;
3090 }
3091 
3092 /*
3093  * Functions to lock and unlock any filesystem running on the
3094  * device.
3095  */
3096 static int lock_fs(struct mapped_device *md)
3097 {
3098 	int r;
3099 
3100 	WARN_ON(md->frozen_sb);
3101 
3102 	md->frozen_sb = freeze_bdev(md->bdev);
3103 	if (IS_ERR(md->frozen_sb)) {
3104 		r = PTR_ERR(md->frozen_sb);
3105 		md->frozen_sb = NULL;
3106 		return r;
3107 	}
3108 
3109 	set_bit(DMF_FROZEN, &md->flags);
3110 
3111 	return 0;
3112 }
3113 
3114 static void unlock_fs(struct mapped_device *md)
3115 {
3116 	if (!test_bit(DMF_FROZEN, &md->flags))
3117 		return;
3118 
3119 	thaw_bdev(md->bdev, md->frozen_sb);
3120 	md->frozen_sb = NULL;
3121 	clear_bit(DMF_FROZEN, &md->flags);
3122 }
3123 
3124 /*
3125  * If __dm_suspend returns 0, the device is completely quiescent
3126  * now. There is no request-processing activity. All new requests
3127  * are being added to md->deferred list.
3128  *
3129  * Caller must hold md->suspend_lock
3130  */
3131 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3132 			unsigned suspend_flags, int interruptible)
3133 {
3134 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3135 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3136 	int r;
3137 
3138 	/*
3139 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3140 	 * This flag is cleared before dm_suspend returns.
3141 	 */
3142 	if (noflush)
3143 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3144 
3145 	/*
3146 	 * This gets reverted if there's an error later and the targets
3147 	 * provide the .presuspend_undo hook.
3148 	 */
3149 	dm_table_presuspend_targets(map);
3150 
3151 	/*
3152 	 * Flush I/O to the device.
3153 	 * Any I/O submitted after lock_fs() may not be flushed.
3154 	 * noflush takes precedence over do_lockfs.
3155 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3156 	 */
3157 	if (!noflush && do_lockfs) {
3158 		r = lock_fs(md);
3159 		if (r) {
3160 			dm_table_presuspend_undo_targets(map);
3161 			return r;
3162 		}
3163 	}
3164 
3165 	/*
3166 	 * Here we must make sure that no processes are submitting requests
3167 	 * to target drivers i.e. no one may be executing
3168 	 * __split_and_process_bio. This is called from dm_request and
3169 	 * dm_wq_work.
3170 	 *
3171 	 * To get all processes out of __split_and_process_bio in dm_request,
3172 	 * we take the write lock. To prevent any process from reentering
3173 	 * __split_and_process_bio from dm_request and quiesce the thread
3174 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3175 	 * flush_workqueue(md->wq).
3176 	 */
3177 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3178 	if (map)
3179 		synchronize_srcu(&md->io_barrier);
3180 
3181 	/*
3182 	 * Stop md->queue before flushing md->wq in case request-based
3183 	 * dm defers requests to md->wq from md->queue.
3184 	 */
3185 	if (dm_request_based(md)) {
3186 		stop_queue(md->queue);
3187 		if (md->kworker_task)
3188 			flush_kthread_worker(&md->kworker);
3189 	}
3190 
3191 	flush_workqueue(md->wq);
3192 
3193 	/*
3194 	 * At this point no more requests are entering target request routines.
3195 	 * We call dm_wait_for_completion to wait for all existing requests
3196 	 * to finish.
3197 	 */
3198 	r = dm_wait_for_completion(md, interruptible);
3199 
3200 	if (noflush)
3201 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3202 	if (map)
3203 		synchronize_srcu(&md->io_barrier);
3204 
3205 	/* were we interrupted ? */
3206 	if (r < 0) {
3207 		dm_queue_flush(md);
3208 
3209 		if (dm_request_based(md))
3210 			start_queue(md->queue);
3211 
3212 		unlock_fs(md);
3213 		dm_table_presuspend_undo_targets(map);
3214 		/* pushback list is already flushed, so skip flush */
3215 	}
3216 
3217 	return r;
3218 }
3219 
3220 /*
3221  * We need to be able to change a mapping table under a mounted
3222  * filesystem.  For example we might want to move some data in
3223  * the background.  Before the table can be swapped with
3224  * dm_bind_table, dm_suspend must be called to flush any in
3225  * flight bios and ensure that any further io gets deferred.
3226  */
3227 /*
3228  * Suspend mechanism in request-based dm.
3229  *
3230  * 1. Flush all I/Os by lock_fs() if needed.
3231  * 2. Stop dispatching any I/O by stopping the request_queue.
3232  * 3. Wait for all in-flight I/Os to be completed or requeued.
3233  *
3234  * To abort suspend, start the request_queue.
3235  */
3236 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3237 {
3238 	struct dm_table *map = NULL;
3239 	int r = 0;
3240 
3241 retry:
3242 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3243 
3244 	if (dm_suspended_md(md)) {
3245 		r = -EINVAL;
3246 		goto out_unlock;
3247 	}
3248 
3249 	if (dm_suspended_internally_md(md)) {
3250 		/* already internally suspended, wait for internal resume */
3251 		mutex_unlock(&md->suspend_lock);
3252 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3253 		if (r)
3254 			return r;
3255 		goto retry;
3256 	}
3257 
3258 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3259 
3260 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3261 	if (r)
3262 		goto out_unlock;
3263 
3264 	set_bit(DMF_SUSPENDED, &md->flags);
3265 
3266 	dm_table_postsuspend_targets(map);
3267 
3268 out_unlock:
3269 	mutex_unlock(&md->suspend_lock);
3270 	return r;
3271 }
3272 
3273 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3274 {
3275 	if (map) {
3276 		int r = dm_table_resume_targets(map);
3277 		if (r)
3278 			return r;
3279 	}
3280 
3281 	dm_queue_flush(md);
3282 
3283 	/*
3284 	 * Flushing deferred I/Os must be done after targets are resumed
3285 	 * so that mapping of targets can work correctly.
3286 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3287 	 */
3288 	if (dm_request_based(md))
3289 		start_queue(md->queue);
3290 
3291 	unlock_fs(md);
3292 
3293 	return 0;
3294 }
3295 
3296 int dm_resume(struct mapped_device *md)
3297 {
3298 	int r = -EINVAL;
3299 	struct dm_table *map = NULL;
3300 
3301 retry:
3302 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3303 
3304 	if (!dm_suspended_md(md))
3305 		goto out;
3306 
3307 	if (dm_suspended_internally_md(md)) {
3308 		/* already internally suspended, wait for internal resume */
3309 		mutex_unlock(&md->suspend_lock);
3310 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3311 		if (r)
3312 			return r;
3313 		goto retry;
3314 	}
3315 
3316 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3317 	if (!map || !dm_table_get_size(map))
3318 		goto out;
3319 
3320 	r = __dm_resume(md, map);
3321 	if (r)
3322 		goto out;
3323 
3324 	clear_bit(DMF_SUSPENDED, &md->flags);
3325 
3326 	r = 0;
3327 out:
3328 	mutex_unlock(&md->suspend_lock);
3329 
3330 	return r;
3331 }
3332 
3333 /*
3334  * Internal suspend/resume works like userspace-driven suspend. It waits
3335  * until all bios finish and prevents issuing new bios to the target drivers.
3336  * It may be used only from the kernel.
3337  */
3338 
3339 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3340 {
3341 	struct dm_table *map = NULL;
3342 
3343 	if (md->internal_suspend_count++)
3344 		return; /* nested internal suspend */
3345 
3346 	if (dm_suspended_md(md)) {
3347 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3348 		return; /* nest suspend */
3349 	}
3350 
3351 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3352 
3353 	/*
3354 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3355 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3356 	 * would require changing .presuspend to return an error -- avoid this
3357 	 * until there is a need for more elaborate variants of internal suspend.
3358 	 */
3359 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3360 
3361 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3362 
3363 	dm_table_postsuspend_targets(map);
3364 }
3365 
3366 static void __dm_internal_resume(struct mapped_device *md)
3367 {
3368 	BUG_ON(!md->internal_suspend_count);
3369 
3370 	if (--md->internal_suspend_count)
3371 		return; /* resume from nested internal suspend */
3372 
3373 	if (dm_suspended_md(md))
3374 		goto done; /* resume from nested suspend */
3375 
3376 	/*
3377 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3378 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3379 	 */
3380 	(void) __dm_resume(md, NULL);
3381 
3382 done:
3383 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3384 	smp_mb__after_atomic();
3385 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3386 }
3387 
3388 void dm_internal_suspend_noflush(struct mapped_device *md)
3389 {
3390 	mutex_lock(&md->suspend_lock);
3391 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3392 	mutex_unlock(&md->suspend_lock);
3393 }
3394 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3395 
3396 void dm_internal_resume(struct mapped_device *md)
3397 {
3398 	mutex_lock(&md->suspend_lock);
3399 	__dm_internal_resume(md);
3400 	mutex_unlock(&md->suspend_lock);
3401 }
3402 EXPORT_SYMBOL_GPL(dm_internal_resume);
3403 
3404 /*
3405  * Fast variants of internal suspend/resume hold md->suspend_lock,
3406  * which prevents interaction with userspace-driven suspend.
3407  */
3408 
3409 void dm_internal_suspend_fast(struct mapped_device *md)
3410 {
3411 	mutex_lock(&md->suspend_lock);
3412 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3413 		return;
3414 
3415 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3416 	synchronize_srcu(&md->io_barrier);
3417 	flush_workqueue(md->wq);
3418 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3419 }
3420 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3421 
3422 void dm_internal_resume_fast(struct mapped_device *md)
3423 {
3424 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3425 		goto done;
3426 
3427 	dm_queue_flush(md);
3428 
3429 done:
3430 	mutex_unlock(&md->suspend_lock);
3431 }
3432 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3433 
3434 /*-----------------------------------------------------------------
3435  * Event notification.
3436  *---------------------------------------------------------------*/
3437 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3438 		       unsigned cookie)
3439 {
3440 	char udev_cookie[DM_COOKIE_LENGTH];
3441 	char *envp[] = { udev_cookie, NULL };
3442 
3443 	if (!cookie)
3444 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3445 	else {
3446 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3447 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3448 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3449 					  action, envp);
3450 	}
3451 }
3452 
3453 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3454 {
3455 	return atomic_add_return(1, &md->uevent_seq);
3456 }
3457 
3458 uint32_t dm_get_event_nr(struct mapped_device *md)
3459 {
3460 	return atomic_read(&md->event_nr);
3461 }
3462 
3463 int dm_wait_event(struct mapped_device *md, int event_nr)
3464 {
3465 	return wait_event_interruptible(md->eventq,
3466 			(event_nr != atomic_read(&md->event_nr)));
3467 }
3468 
3469 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3470 {
3471 	unsigned long flags;
3472 
3473 	spin_lock_irqsave(&md->uevent_lock, flags);
3474 	list_add(elist, &md->uevent_list);
3475 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3476 }
3477 
3478 /*
3479  * The gendisk is only valid as long as you have a reference
3480  * count on 'md'.
3481  */
3482 struct gendisk *dm_disk(struct mapped_device *md)
3483 {
3484 	return md->disk;
3485 }
3486 EXPORT_SYMBOL_GPL(dm_disk);
3487 
3488 struct kobject *dm_kobject(struct mapped_device *md)
3489 {
3490 	return &md->kobj_holder.kobj;
3491 }
3492 
3493 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3494 {
3495 	struct mapped_device *md;
3496 
3497 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3498 
3499 	if (test_bit(DMF_FREEING, &md->flags) ||
3500 	    dm_deleting_md(md))
3501 		return NULL;
3502 
3503 	dm_get(md);
3504 	return md;
3505 }
3506 
3507 int dm_suspended_md(struct mapped_device *md)
3508 {
3509 	return test_bit(DMF_SUSPENDED, &md->flags);
3510 }
3511 
3512 int dm_suspended_internally_md(struct mapped_device *md)
3513 {
3514 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3515 }
3516 
3517 int dm_test_deferred_remove_flag(struct mapped_device *md)
3518 {
3519 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3520 }
3521 
3522 int dm_suspended(struct dm_target *ti)
3523 {
3524 	return dm_suspended_md(dm_table_get_md(ti->table));
3525 }
3526 EXPORT_SYMBOL_GPL(dm_suspended);
3527 
3528 int dm_noflush_suspending(struct dm_target *ti)
3529 {
3530 	return __noflush_suspending(dm_table_get_md(ti->table));
3531 }
3532 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3533 
3534 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3535 					    unsigned integrity, unsigned per_bio_data_size)
3536 {
3537 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3538 	struct kmem_cache *cachep = NULL;
3539 	unsigned int pool_size = 0;
3540 	unsigned int front_pad;
3541 
3542 	if (!pools)
3543 		return NULL;
3544 
3545 	type = filter_md_type(type, md);
3546 
3547 	switch (type) {
3548 	case DM_TYPE_BIO_BASED:
3549 		cachep = _io_cache;
3550 		pool_size = dm_get_reserved_bio_based_ios();
3551 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3552 		break;
3553 	case DM_TYPE_REQUEST_BASED:
3554 		cachep = _rq_tio_cache;
3555 		pool_size = dm_get_reserved_rq_based_ios();
3556 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3557 		if (!pools->rq_pool)
3558 			goto out;
3559 		/* fall through to setup remaining rq-based pools */
3560 	case DM_TYPE_MQ_REQUEST_BASED:
3561 		if (!pool_size)
3562 			pool_size = dm_get_reserved_rq_based_ios();
3563 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3564 		/* per_bio_data_size is not used. See __bind_mempools(). */
3565 		WARN_ON(per_bio_data_size != 0);
3566 		break;
3567 	default:
3568 		BUG();
3569 	}
3570 
3571 	if (cachep) {
3572 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573 		if (!pools->io_pool)
3574 			goto out;
3575 	}
3576 
3577 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578 	if (!pools->bs)
3579 		goto out;
3580 
3581 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3582 		goto out;
3583 
3584 	return pools;
3585 
3586 out:
3587 	dm_free_md_mempools(pools);
3588 
3589 	return NULL;
3590 }
3591 
3592 void dm_free_md_mempools(struct dm_md_mempools *pools)
3593 {
3594 	if (!pools)
3595 		return;
3596 
3597 	if (pools->io_pool)
3598 		mempool_destroy(pools->io_pool);
3599 
3600 	if (pools->rq_pool)
3601 		mempool_destroy(pools->rq_pool);
3602 
3603 	if (pools->bs)
3604 		bioset_free(pools->bs);
3605 
3606 	kfree(pools);
3607 }
3608 
3609 static const struct block_device_operations dm_blk_dops = {
3610 	.open = dm_blk_open,
3611 	.release = dm_blk_close,
3612 	.ioctl = dm_blk_ioctl,
3613 	.getgeo = dm_blk_getgeo,
3614 	.owner = THIS_MODULE
3615 };
3616 
3617 /*
3618  * module hooks
3619  */
3620 module_init(dm_init);
3621 module_exit(dm_exit);
3622 
3623 module_param(major, uint, 0);
3624 MODULE_PARM_DESC(major, "The major number of the device mapper");
3625 
3626 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3627 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3628 
3629 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3630 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3631 
3632 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3633 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3634 
3635 MODULE_DESCRIPTION(DM_NAME " driver");
3636 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3637 MODULE_LICENSE("GPL");
3638