xref: /openbmc/linux/drivers/md/dm.c (revision 4a44a19b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 static struct workqueue_struct *deferred_remove_workqueue;
58 
59 /*
60  * For bio-based dm.
61  * One of these is allocated per bio.
62  */
63 struct dm_io {
64 	struct mapped_device *md;
65 	int error;
66 	atomic_t io_count;
67 	struct bio *bio;
68 	unsigned long start_time;
69 	spinlock_t endio_lock;
70 	struct dm_stats_aux stats_aux;
71 };
72 
73 /*
74  * For request-based dm.
75  * One of these is allocated per request.
76  */
77 struct dm_rq_target_io {
78 	struct mapped_device *md;
79 	struct dm_target *ti;
80 	struct request *orig, clone;
81 	int error;
82 	union map_info info;
83 };
84 
85 /*
86  * For request-based dm - the bio clones we allocate are embedded in these
87  * structs.
88  *
89  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
90  * the bioset is created - this means the bio has to come at the end of the
91  * struct.
92  */
93 struct dm_rq_clone_bio_info {
94 	struct bio *orig;
95 	struct dm_rq_target_io *tio;
96 	struct bio clone;
97 };
98 
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 {
101 	if (rq && rq->end_io_data)
102 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 	return NULL;
104 }
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 /*
110  * Bits for the md->flags field.
111  */
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119 #define DMF_DEFERRED_REMOVE 7
120 
121 /*
122  * A dummy definition to make RCU happy.
123  * struct dm_table should never be dereferenced in this file.
124  */
125 struct dm_table {
126 	int undefined__;
127 };
128 
129 /*
130  * Work processed by per-device workqueue.
131  */
132 struct mapped_device {
133 	struct srcu_struct io_barrier;
134 	struct mutex suspend_lock;
135 	atomic_t holders;
136 	atomic_t open_count;
137 
138 	/*
139 	 * The current mapping.
140 	 * Use dm_get_live_table{_fast} or take suspend_lock for
141 	 * dereference.
142 	 */
143 	struct dm_table *map;
144 
145 	struct list_head table_devices;
146 	struct mutex table_devices_lock;
147 
148 	unsigned long flags;
149 
150 	struct request_queue *queue;
151 	unsigned type;
152 	/* Protect queue and type against concurrent access. */
153 	struct mutex type_lock;
154 
155 	struct target_type *immutable_target_type;
156 
157 	struct gendisk *disk;
158 	char name[16];
159 
160 	void *interface_ptr;
161 
162 	/*
163 	 * A list of ios that arrived while we were suspended.
164 	 */
165 	atomic_t pending[2];
166 	wait_queue_head_t wait;
167 	struct work_struct work;
168 	struct bio_list deferred;
169 	spinlock_t deferred_lock;
170 
171 	/*
172 	 * Processing queue (flush)
173 	 */
174 	struct workqueue_struct *wq;
175 
176 	/*
177 	 * io objects are allocated from here.
178 	 */
179 	mempool_t *io_pool;
180 
181 	struct bio_set *bs;
182 
183 	/*
184 	 * Event handling.
185 	 */
186 	atomic_t event_nr;
187 	wait_queue_head_t eventq;
188 	atomic_t uevent_seq;
189 	struct list_head uevent_list;
190 	spinlock_t uevent_lock; /* Protect access to uevent_list */
191 
192 	/*
193 	 * freeze/thaw support require holding onto a super block
194 	 */
195 	struct super_block *frozen_sb;
196 	struct block_device *bdev;
197 
198 	/* forced geometry settings */
199 	struct hd_geometry geometry;
200 
201 	/* kobject and completion */
202 	struct dm_kobject_holder kobj_holder;
203 
204 	/* zero-length flush that will be cloned and submitted to targets */
205 	struct bio flush_bio;
206 
207 	struct dm_stats stats;
208 };
209 
210 /*
211  * For mempools pre-allocation at the table loading time.
212  */
213 struct dm_md_mempools {
214 	mempool_t *io_pool;
215 	struct bio_set *bs;
216 };
217 
218 struct table_device {
219 	struct list_head list;
220 	atomic_t count;
221 	struct dm_dev dm_dev;
222 };
223 
224 #define RESERVED_BIO_BASED_IOS		16
225 #define RESERVED_REQUEST_BASED_IOS	256
226 #define RESERVED_MAX_IOS		1024
227 static struct kmem_cache *_io_cache;
228 static struct kmem_cache *_rq_tio_cache;
229 
230 /*
231  * Bio-based DM's mempools' reserved IOs set by the user.
232  */
233 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
234 
235 /*
236  * Request-based DM's mempools' reserved IOs set by the user.
237  */
238 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
239 
240 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
241 				      unsigned def, unsigned max)
242 {
243 	unsigned ios = ACCESS_ONCE(*reserved_ios);
244 	unsigned modified_ios = 0;
245 
246 	if (!ios)
247 		modified_ios = def;
248 	else if (ios > max)
249 		modified_ios = max;
250 
251 	if (modified_ios) {
252 		(void)cmpxchg(reserved_ios, ios, modified_ios);
253 		ios = modified_ios;
254 	}
255 
256 	return ios;
257 }
258 
259 unsigned dm_get_reserved_bio_based_ios(void)
260 {
261 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
262 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
263 }
264 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
265 
266 unsigned dm_get_reserved_rq_based_ios(void)
267 {
268 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
269 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
270 }
271 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
272 
273 static int __init local_init(void)
274 {
275 	int r = -ENOMEM;
276 
277 	/* allocate a slab for the dm_ios */
278 	_io_cache = KMEM_CACHE(dm_io, 0);
279 	if (!_io_cache)
280 		return r;
281 
282 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
283 	if (!_rq_tio_cache)
284 		goto out_free_io_cache;
285 
286 	r = dm_uevent_init();
287 	if (r)
288 		goto out_free_rq_tio_cache;
289 
290 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
291 	if (!deferred_remove_workqueue) {
292 		r = -ENOMEM;
293 		goto out_uevent_exit;
294 	}
295 
296 	_major = major;
297 	r = register_blkdev(_major, _name);
298 	if (r < 0)
299 		goto out_free_workqueue;
300 
301 	if (!_major)
302 		_major = r;
303 
304 	return 0;
305 
306 out_free_workqueue:
307 	destroy_workqueue(deferred_remove_workqueue);
308 out_uevent_exit:
309 	dm_uevent_exit();
310 out_free_rq_tio_cache:
311 	kmem_cache_destroy(_rq_tio_cache);
312 out_free_io_cache:
313 	kmem_cache_destroy(_io_cache);
314 
315 	return r;
316 }
317 
318 static void local_exit(void)
319 {
320 	flush_scheduled_work();
321 	destroy_workqueue(deferred_remove_workqueue);
322 
323 	kmem_cache_destroy(_rq_tio_cache);
324 	kmem_cache_destroy(_io_cache);
325 	unregister_blkdev(_major, _name);
326 	dm_uevent_exit();
327 
328 	_major = 0;
329 
330 	DMINFO("cleaned up");
331 }
332 
333 static int (*_inits[])(void) __initdata = {
334 	local_init,
335 	dm_target_init,
336 	dm_linear_init,
337 	dm_stripe_init,
338 	dm_io_init,
339 	dm_kcopyd_init,
340 	dm_interface_init,
341 	dm_statistics_init,
342 };
343 
344 static void (*_exits[])(void) = {
345 	local_exit,
346 	dm_target_exit,
347 	dm_linear_exit,
348 	dm_stripe_exit,
349 	dm_io_exit,
350 	dm_kcopyd_exit,
351 	dm_interface_exit,
352 	dm_statistics_exit,
353 };
354 
355 static int __init dm_init(void)
356 {
357 	const int count = ARRAY_SIZE(_inits);
358 
359 	int r, i;
360 
361 	for (i = 0; i < count; i++) {
362 		r = _inits[i]();
363 		if (r)
364 			goto bad;
365 	}
366 
367 	return 0;
368 
369       bad:
370 	while (i--)
371 		_exits[i]();
372 
373 	return r;
374 }
375 
376 static void __exit dm_exit(void)
377 {
378 	int i = ARRAY_SIZE(_exits);
379 
380 	while (i--)
381 		_exits[i]();
382 
383 	/*
384 	 * Should be empty by this point.
385 	 */
386 	idr_destroy(&_minor_idr);
387 }
388 
389 /*
390  * Block device functions
391  */
392 int dm_deleting_md(struct mapped_device *md)
393 {
394 	return test_bit(DMF_DELETING, &md->flags);
395 }
396 
397 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
398 {
399 	struct mapped_device *md;
400 
401 	spin_lock(&_minor_lock);
402 
403 	md = bdev->bd_disk->private_data;
404 	if (!md)
405 		goto out;
406 
407 	if (test_bit(DMF_FREEING, &md->flags) ||
408 	    dm_deleting_md(md)) {
409 		md = NULL;
410 		goto out;
411 	}
412 
413 	dm_get(md);
414 	atomic_inc(&md->open_count);
415 
416 out:
417 	spin_unlock(&_minor_lock);
418 
419 	return md ? 0 : -ENXIO;
420 }
421 
422 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
423 {
424 	struct mapped_device *md = disk->private_data;
425 
426 	spin_lock(&_minor_lock);
427 
428 	if (atomic_dec_and_test(&md->open_count) &&
429 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
430 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
431 
432 	dm_put(md);
433 
434 	spin_unlock(&_minor_lock);
435 }
436 
437 int dm_open_count(struct mapped_device *md)
438 {
439 	return atomic_read(&md->open_count);
440 }
441 
442 /*
443  * Guarantees nothing is using the device before it's deleted.
444  */
445 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
446 {
447 	int r = 0;
448 
449 	spin_lock(&_minor_lock);
450 
451 	if (dm_open_count(md)) {
452 		r = -EBUSY;
453 		if (mark_deferred)
454 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
455 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
456 		r = -EEXIST;
457 	else
458 		set_bit(DMF_DELETING, &md->flags);
459 
460 	spin_unlock(&_minor_lock);
461 
462 	return r;
463 }
464 
465 int dm_cancel_deferred_remove(struct mapped_device *md)
466 {
467 	int r = 0;
468 
469 	spin_lock(&_minor_lock);
470 
471 	if (test_bit(DMF_DELETING, &md->flags))
472 		r = -EBUSY;
473 	else
474 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
475 
476 	spin_unlock(&_minor_lock);
477 
478 	return r;
479 }
480 
481 static void do_deferred_remove(struct work_struct *w)
482 {
483 	dm_deferred_remove();
484 }
485 
486 sector_t dm_get_size(struct mapped_device *md)
487 {
488 	return get_capacity(md->disk);
489 }
490 
491 struct request_queue *dm_get_md_queue(struct mapped_device *md)
492 {
493 	return md->queue;
494 }
495 
496 struct dm_stats *dm_get_stats(struct mapped_device *md)
497 {
498 	return &md->stats;
499 }
500 
501 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
502 {
503 	struct mapped_device *md = bdev->bd_disk->private_data;
504 
505 	return dm_get_geometry(md, geo);
506 }
507 
508 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
509 			unsigned int cmd, unsigned long arg)
510 {
511 	struct mapped_device *md = bdev->bd_disk->private_data;
512 	int srcu_idx;
513 	struct dm_table *map;
514 	struct dm_target *tgt;
515 	int r = -ENOTTY;
516 
517 retry:
518 	map = dm_get_live_table(md, &srcu_idx);
519 
520 	if (!map || !dm_table_get_size(map))
521 		goto out;
522 
523 	/* We only support devices that have a single target */
524 	if (dm_table_get_num_targets(map) != 1)
525 		goto out;
526 
527 	tgt = dm_table_get_target(map, 0);
528 
529 	if (dm_suspended_md(md)) {
530 		r = -EAGAIN;
531 		goto out;
532 	}
533 
534 	if (tgt->type->ioctl)
535 		r = tgt->type->ioctl(tgt, cmd, arg);
536 
537 out:
538 	dm_put_live_table(md, srcu_idx);
539 
540 	if (r == -ENOTCONN) {
541 		msleep(10);
542 		goto retry;
543 	}
544 
545 	return r;
546 }
547 
548 static struct dm_io *alloc_io(struct mapped_device *md)
549 {
550 	return mempool_alloc(md->io_pool, GFP_NOIO);
551 }
552 
553 static void free_io(struct mapped_device *md, struct dm_io *io)
554 {
555 	mempool_free(io, md->io_pool);
556 }
557 
558 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
559 {
560 	bio_put(&tio->clone);
561 }
562 
563 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
564 					    gfp_t gfp_mask)
565 {
566 	return mempool_alloc(md->io_pool, gfp_mask);
567 }
568 
569 static void free_rq_tio(struct dm_rq_target_io *tio)
570 {
571 	mempool_free(tio, tio->md->io_pool);
572 }
573 
574 static int md_in_flight(struct mapped_device *md)
575 {
576 	return atomic_read(&md->pending[READ]) +
577 	       atomic_read(&md->pending[WRITE]);
578 }
579 
580 static void start_io_acct(struct dm_io *io)
581 {
582 	struct mapped_device *md = io->md;
583 	struct bio *bio = io->bio;
584 	int cpu;
585 	int rw = bio_data_dir(bio);
586 
587 	io->start_time = jiffies;
588 
589 	cpu = part_stat_lock();
590 	part_round_stats(cpu, &dm_disk(md)->part0);
591 	part_stat_unlock();
592 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
593 		atomic_inc_return(&md->pending[rw]));
594 
595 	if (unlikely(dm_stats_used(&md->stats)))
596 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
597 				    bio_sectors(bio), false, 0, &io->stats_aux);
598 }
599 
600 static void end_io_acct(struct dm_io *io)
601 {
602 	struct mapped_device *md = io->md;
603 	struct bio *bio = io->bio;
604 	unsigned long duration = jiffies - io->start_time;
605 	int pending, cpu;
606 	int rw = bio_data_dir(bio);
607 
608 	cpu = part_stat_lock();
609 	part_round_stats(cpu, &dm_disk(md)->part0);
610 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
611 	part_stat_unlock();
612 
613 	if (unlikely(dm_stats_used(&md->stats)))
614 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
615 				    bio_sectors(bio), true, duration, &io->stats_aux);
616 
617 	/*
618 	 * After this is decremented the bio must not be touched if it is
619 	 * a flush.
620 	 */
621 	pending = atomic_dec_return(&md->pending[rw]);
622 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
623 	pending += atomic_read(&md->pending[rw^0x1]);
624 
625 	/* nudge anyone waiting on suspend queue */
626 	if (!pending)
627 		wake_up(&md->wait);
628 }
629 
630 /*
631  * Add the bio to the list of deferred io.
632  */
633 static void queue_io(struct mapped_device *md, struct bio *bio)
634 {
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&md->deferred_lock, flags);
638 	bio_list_add(&md->deferred, bio);
639 	spin_unlock_irqrestore(&md->deferred_lock, flags);
640 	queue_work(md->wq, &md->work);
641 }
642 
643 /*
644  * Everyone (including functions in this file), should use this
645  * function to access the md->map field, and make sure they call
646  * dm_put_live_table() when finished.
647  */
648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
649 {
650 	*srcu_idx = srcu_read_lock(&md->io_barrier);
651 
652 	return srcu_dereference(md->map, &md->io_barrier);
653 }
654 
655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
656 {
657 	srcu_read_unlock(&md->io_barrier, srcu_idx);
658 }
659 
660 void dm_sync_table(struct mapped_device *md)
661 {
662 	synchronize_srcu(&md->io_barrier);
663 	synchronize_rcu_expedited();
664 }
665 
666 /*
667  * A fast alternative to dm_get_live_table/dm_put_live_table.
668  * The caller must not block between these two functions.
669  */
670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
671 {
672 	rcu_read_lock();
673 	return rcu_dereference(md->map);
674 }
675 
676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
677 {
678 	rcu_read_unlock();
679 }
680 
681 /*
682  * Open a table device so we can use it as a map destination.
683  */
684 static int open_table_device(struct table_device *td, dev_t dev,
685 			     struct mapped_device *md)
686 {
687 	static char *_claim_ptr = "I belong to device-mapper";
688 	struct block_device *bdev;
689 
690 	int r;
691 
692 	BUG_ON(td->dm_dev.bdev);
693 
694 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
695 	if (IS_ERR(bdev))
696 		return PTR_ERR(bdev);
697 
698 	r = bd_link_disk_holder(bdev, dm_disk(md));
699 	if (r) {
700 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
701 		return r;
702 	}
703 
704 	td->dm_dev.bdev = bdev;
705 	return 0;
706 }
707 
708 /*
709  * Close a table device that we've been using.
710  */
711 static void close_table_device(struct table_device *td, struct mapped_device *md)
712 {
713 	if (!td->dm_dev.bdev)
714 		return;
715 
716 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
717 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
718 	td->dm_dev.bdev = NULL;
719 }
720 
721 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
722 					      fmode_t mode) {
723 	struct table_device *td;
724 
725 	list_for_each_entry(td, l, list)
726 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
727 			return td;
728 
729 	return NULL;
730 }
731 
732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
733 			struct dm_dev **result) {
734 	int r;
735 	struct table_device *td;
736 
737 	mutex_lock(&md->table_devices_lock);
738 	td = find_table_device(&md->table_devices, dev, mode);
739 	if (!td) {
740 		td = kmalloc(sizeof(*td), GFP_KERNEL);
741 		if (!td) {
742 			mutex_unlock(&md->table_devices_lock);
743 			return -ENOMEM;
744 		}
745 
746 		td->dm_dev.mode = mode;
747 		td->dm_dev.bdev = NULL;
748 
749 		if ((r = open_table_device(td, dev, md))) {
750 			mutex_unlock(&md->table_devices_lock);
751 			kfree(td);
752 			return r;
753 		}
754 
755 		format_dev_t(td->dm_dev.name, dev);
756 
757 		atomic_set(&td->count, 0);
758 		list_add(&td->list, &md->table_devices);
759 	}
760 	atomic_inc(&td->count);
761 	mutex_unlock(&md->table_devices_lock);
762 
763 	*result = &td->dm_dev;
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(dm_get_table_device);
767 
768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
769 {
770 	struct table_device *td = container_of(d, struct table_device, dm_dev);
771 
772 	mutex_lock(&md->table_devices_lock);
773 	if (atomic_dec_and_test(&td->count)) {
774 		close_table_device(td, md);
775 		list_del(&td->list);
776 		kfree(td);
777 	}
778 	mutex_unlock(&md->table_devices_lock);
779 }
780 EXPORT_SYMBOL(dm_put_table_device);
781 
782 static void free_table_devices(struct list_head *devices)
783 {
784 	struct list_head *tmp, *next;
785 
786 	list_for_each_safe(tmp, next, devices) {
787 		struct table_device *td = list_entry(tmp, struct table_device, list);
788 
789 		DMWARN("dm_destroy: %s still exists with %d references",
790 		       td->dm_dev.name, atomic_read(&td->count));
791 		kfree(td);
792 	}
793 }
794 
795 /*
796  * Get the geometry associated with a dm device
797  */
798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
799 {
800 	*geo = md->geometry;
801 
802 	return 0;
803 }
804 
805 /*
806  * Set the geometry of a device.
807  */
808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
809 {
810 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
811 
812 	if (geo->start > sz) {
813 		DMWARN("Start sector is beyond the geometry limits.");
814 		return -EINVAL;
815 	}
816 
817 	md->geometry = *geo;
818 
819 	return 0;
820 }
821 
822 /*-----------------------------------------------------------------
823  * CRUD START:
824  *   A more elegant soln is in the works that uses the queue
825  *   merge fn, unfortunately there are a couple of changes to
826  *   the block layer that I want to make for this.  So in the
827  *   interests of getting something for people to use I give
828  *   you this clearly demarcated crap.
829  *---------------------------------------------------------------*/
830 
831 static int __noflush_suspending(struct mapped_device *md)
832 {
833 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
834 }
835 
836 /*
837  * Decrements the number of outstanding ios that a bio has been
838  * cloned into, completing the original io if necc.
839  */
840 static void dec_pending(struct dm_io *io, int error)
841 {
842 	unsigned long flags;
843 	int io_error;
844 	struct bio *bio;
845 	struct mapped_device *md = io->md;
846 
847 	/* Push-back supersedes any I/O errors */
848 	if (unlikely(error)) {
849 		spin_lock_irqsave(&io->endio_lock, flags);
850 		if (!(io->error > 0 && __noflush_suspending(md)))
851 			io->error = error;
852 		spin_unlock_irqrestore(&io->endio_lock, flags);
853 	}
854 
855 	if (atomic_dec_and_test(&io->io_count)) {
856 		if (io->error == DM_ENDIO_REQUEUE) {
857 			/*
858 			 * Target requested pushing back the I/O.
859 			 */
860 			spin_lock_irqsave(&md->deferred_lock, flags);
861 			if (__noflush_suspending(md))
862 				bio_list_add_head(&md->deferred, io->bio);
863 			else
864 				/* noflush suspend was interrupted. */
865 				io->error = -EIO;
866 			spin_unlock_irqrestore(&md->deferred_lock, flags);
867 		}
868 
869 		io_error = io->error;
870 		bio = io->bio;
871 		end_io_acct(io);
872 		free_io(md, io);
873 
874 		if (io_error == DM_ENDIO_REQUEUE)
875 			return;
876 
877 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
878 			/*
879 			 * Preflush done for flush with data, reissue
880 			 * without REQ_FLUSH.
881 			 */
882 			bio->bi_rw &= ~REQ_FLUSH;
883 			queue_io(md, bio);
884 		} else {
885 			/* done with normal IO or empty flush */
886 			trace_block_bio_complete(md->queue, bio, io_error);
887 			bio_endio(bio, io_error);
888 		}
889 	}
890 }
891 
892 static void disable_write_same(struct mapped_device *md)
893 {
894 	struct queue_limits *limits = dm_get_queue_limits(md);
895 
896 	/* device doesn't really support WRITE SAME, disable it */
897 	limits->max_write_same_sectors = 0;
898 }
899 
900 static void clone_endio(struct bio *bio, int error)
901 {
902 	int r = 0;
903 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
904 	struct dm_io *io = tio->io;
905 	struct mapped_device *md = tio->io->md;
906 	dm_endio_fn endio = tio->ti->type->end_io;
907 
908 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
909 		error = -EIO;
910 
911 	if (endio) {
912 		r = endio(tio->ti, bio, error);
913 		if (r < 0 || r == DM_ENDIO_REQUEUE)
914 			/*
915 			 * error and requeue request are handled
916 			 * in dec_pending().
917 			 */
918 			error = r;
919 		else if (r == DM_ENDIO_INCOMPLETE)
920 			/* The target will handle the io */
921 			return;
922 		else if (r) {
923 			DMWARN("unimplemented target endio return value: %d", r);
924 			BUG();
925 		}
926 	}
927 
928 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
929 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
930 		disable_write_same(md);
931 
932 	free_tio(md, tio);
933 	dec_pending(io, error);
934 }
935 
936 /*
937  * Partial completion handling for request-based dm
938  */
939 static void end_clone_bio(struct bio *clone, int error)
940 {
941 	struct dm_rq_clone_bio_info *info =
942 		container_of(clone, struct dm_rq_clone_bio_info, clone);
943 	struct dm_rq_target_io *tio = info->tio;
944 	struct bio *bio = info->orig;
945 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
946 
947 	bio_put(clone);
948 
949 	if (tio->error)
950 		/*
951 		 * An error has already been detected on the request.
952 		 * Once error occurred, just let clone->end_io() handle
953 		 * the remainder.
954 		 */
955 		return;
956 	else if (error) {
957 		/*
958 		 * Don't notice the error to the upper layer yet.
959 		 * The error handling decision is made by the target driver,
960 		 * when the request is completed.
961 		 */
962 		tio->error = error;
963 		return;
964 	}
965 
966 	/*
967 	 * I/O for the bio successfully completed.
968 	 * Notice the data completion to the upper layer.
969 	 */
970 
971 	/*
972 	 * bios are processed from the head of the list.
973 	 * So the completing bio should always be rq->bio.
974 	 * If it's not, something wrong is happening.
975 	 */
976 	if (tio->orig->bio != bio)
977 		DMERR("bio completion is going in the middle of the request");
978 
979 	/*
980 	 * Update the original request.
981 	 * Do not use blk_end_request() here, because it may complete
982 	 * the original request before the clone, and break the ordering.
983 	 */
984 	blk_update_request(tio->orig, 0, nr_bytes);
985 }
986 
987 /*
988  * Don't touch any member of the md after calling this function because
989  * the md may be freed in dm_put() at the end of this function.
990  * Or do dm_get() before calling this function and dm_put() later.
991  */
992 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
993 {
994 	atomic_dec(&md->pending[rw]);
995 
996 	/* nudge anyone waiting on suspend queue */
997 	if (!md_in_flight(md))
998 		wake_up(&md->wait);
999 
1000 	/*
1001 	 * Run this off this callpath, as drivers could invoke end_io while
1002 	 * inside their request_fn (and holding the queue lock). Calling
1003 	 * back into ->request_fn() could deadlock attempting to grab the
1004 	 * queue lock again.
1005 	 */
1006 	if (run_queue)
1007 		blk_run_queue_async(md->queue);
1008 
1009 	/*
1010 	 * dm_put() must be at the end of this function. See the comment above
1011 	 */
1012 	dm_put(md);
1013 }
1014 
1015 static void free_rq_clone(struct request *clone)
1016 {
1017 	struct dm_rq_target_io *tio = clone->end_io_data;
1018 
1019 	blk_rq_unprep_clone(clone);
1020 	free_rq_tio(tio);
1021 }
1022 
1023 /*
1024  * Complete the clone and the original request.
1025  * Must be called without queue lock.
1026  */
1027 static void dm_end_request(struct request *clone, int error)
1028 {
1029 	int rw = rq_data_dir(clone);
1030 	struct dm_rq_target_io *tio = clone->end_io_data;
1031 	struct mapped_device *md = tio->md;
1032 	struct request *rq = tio->orig;
1033 
1034 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1035 		rq->errors = clone->errors;
1036 		rq->resid_len = clone->resid_len;
1037 
1038 		if (rq->sense)
1039 			/*
1040 			 * We are using the sense buffer of the original
1041 			 * request.
1042 			 * So setting the length of the sense data is enough.
1043 			 */
1044 			rq->sense_len = clone->sense_len;
1045 	}
1046 
1047 	free_rq_clone(clone);
1048 	blk_end_request_all(rq, error);
1049 	rq_completed(md, rw, true);
1050 }
1051 
1052 static void dm_unprep_request(struct request *rq)
1053 {
1054 	struct request *clone = rq->special;
1055 
1056 	rq->special = NULL;
1057 	rq->cmd_flags &= ~REQ_DONTPREP;
1058 
1059 	free_rq_clone(clone);
1060 }
1061 
1062 /*
1063  * Requeue the original request of a clone.
1064  */
1065 void dm_requeue_unmapped_request(struct request *clone)
1066 {
1067 	int rw = rq_data_dir(clone);
1068 	struct dm_rq_target_io *tio = clone->end_io_data;
1069 	struct mapped_device *md = tio->md;
1070 	struct request *rq = tio->orig;
1071 	struct request_queue *q = rq->q;
1072 	unsigned long flags;
1073 
1074 	dm_unprep_request(rq);
1075 
1076 	spin_lock_irqsave(q->queue_lock, flags);
1077 	blk_requeue_request(q, rq);
1078 	spin_unlock_irqrestore(q->queue_lock, flags);
1079 
1080 	rq_completed(md, rw, 0);
1081 }
1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1083 
1084 static void __stop_queue(struct request_queue *q)
1085 {
1086 	blk_stop_queue(q);
1087 }
1088 
1089 static void stop_queue(struct request_queue *q)
1090 {
1091 	unsigned long flags;
1092 
1093 	spin_lock_irqsave(q->queue_lock, flags);
1094 	__stop_queue(q);
1095 	spin_unlock_irqrestore(q->queue_lock, flags);
1096 }
1097 
1098 static void __start_queue(struct request_queue *q)
1099 {
1100 	if (blk_queue_stopped(q))
1101 		blk_start_queue(q);
1102 }
1103 
1104 static void start_queue(struct request_queue *q)
1105 {
1106 	unsigned long flags;
1107 
1108 	spin_lock_irqsave(q->queue_lock, flags);
1109 	__start_queue(q);
1110 	spin_unlock_irqrestore(q->queue_lock, flags);
1111 }
1112 
1113 static void dm_done(struct request *clone, int error, bool mapped)
1114 {
1115 	int r = error;
1116 	struct dm_rq_target_io *tio = clone->end_io_data;
1117 	dm_request_endio_fn rq_end_io = NULL;
1118 
1119 	if (tio->ti) {
1120 		rq_end_io = tio->ti->type->rq_end_io;
1121 
1122 		if (mapped && rq_end_io)
1123 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1124 	}
1125 
1126 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1127 		     !clone->q->limits.max_write_same_sectors))
1128 		disable_write_same(tio->md);
1129 
1130 	if (r <= 0)
1131 		/* The target wants to complete the I/O */
1132 		dm_end_request(clone, r);
1133 	else if (r == DM_ENDIO_INCOMPLETE)
1134 		/* The target will handle the I/O */
1135 		return;
1136 	else if (r == DM_ENDIO_REQUEUE)
1137 		/* The target wants to requeue the I/O */
1138 		dm_requeue_unmapped_request(clone);
1139 	else {
1140 		DMWARN("unimplemented target endio return value: %d", r);
1141 		BUG();
1142 	}
1143 }
1144 
1145 /*
1146  * Request completion handler for request-based dm
1147  */
1148 static void dm_softirq_done(struct request *rq)
1149 {
1150 	bool mapped = true;
1151 	struct request *clone = rq->completion_data;
1152 	struct dm_rq_target_io *tio = clone->end_io_data;
1153 
1154 	if (rq->cmd_flags & REQ_FAILED)
1155 		mapped = false;
1156 
1157 	dm_done(clone, tio->error, mapped);
1158 }
1159 
1160 /*
1161  * Complete the clone and the original request with the error status
1162  * through softirq context.
1163  */
1164 static void dm_complete_request(struct request *clone, int error)
1165 {
1166 	struct dm_rq_target_io *tio = clone->end_io_data;
1167 	struct request *rq = tio->orig;
1168 
1169 	tio->error = error;
1170 	rq->completion_data = clone;
1171 	blk_complete_request(rq);
1172 }
1173 
1174 /*
1175  * Complete the not-mapped clone and the original request with the error status
1176  * through softirq context.
1177  * Target's rq_end_io() function isn't called.
1178  * This may be used when the target's map_rq() function fails.
1179  */
1180 void dm_kill_unmapped_request(struct request *clone, int error)
1181 {
1182 	struct dm_rq_target_io *tio = clone->end_io_data;
1183 	struct request *rq = tio->orig;
1184 
1185 	rq->cmd_flags |= REQ_FAILED;
1186 	dm_complete_request(clone, error);
1187 }
1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1189 
1190 /*
1191  * Called with the queue lock held
1192  */
1193 static void end_clone_request(struct request *clone, int error)
1194 {
1195 	/*
1196 	 * For just cleaning up the information of the queue in which
1197 	 * the clone was dispatched.
1198 	 * The clone is *NOT* freed actually here because it is alloced from
1199 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1200 	 */
1201 	__blk_put_request(clone->q, clone);
1202 
1203 	/*
1204 	 * Actual request completion is done in a softirq context which doesn't
1205 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1206 	 *     - another request may be submitted by the upper level driver
1207 	 *       of the stacking during the completion
1208 	 *     - the submission which requires queue lock may be done
1209 	 *       against this queue
1210 	 */
1211 	dm_complete_request(clone, error);
1212 }
1213 
1214 /*
1215  * Return maximum size of I/O possible at the supplied sector up to the current
1216  * target boundary.
1217  */
1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1219 {
1220 	sector_t target_offset = dm_target_offset(ti, sector);
1221 
1222 	return ti->len - target_offset;
1223 }
1224 
1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1226 {
1227 	sector_t len = max_io_len_target_boundary(sector, ti);
1228 	sector_t offset, max_len;
1229 
1230 	/*
1231 	 * Does the target need to split even further?
1232 	 */
1233 	if (ti->max_io_len) {
1234 		offset = dm_target_offset(ti, sector);
1235 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1236 			max_len = sector_div(offset, ti->max_io_len);
1237 		else
1238 			max_len = offset & (ti->max_io_len - 1);
1239 		max_len = ti->max_io_len - max_len;
1240 
1241 		if (len > max_len)
1242 			len = max_len;
1243 	}
1244 
1245 	return len;
1246 }
1247 
1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1249 {
1250 	if (len > UINT_MAX) {
1251 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1252 		      (unsigned long long)len, UINT_MAX);
1253 		ti->error = "Maximum size of target IO is too large";
1254 		return -EINVAL;
1255 	}
1256 
1257 	ti->max_io_len = (uint32_t) len;
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1262 
1263 /*
1264  * A target may call dm_accept_partial_bio only from the map routine.  It is
1265  * allowed for all bio types except REQ_FLUSH.
1266  *
1267  * dm_accept_partial_bio informs the dm that the target only wants to process
1268  * additional n_sectors sectors of the bio and the rest of the data should be
1269  * sent in a next bio.
1270  *
1271  * A diagram that explains the arithmetics:
1272  * +--------------------+---------------+-------+
1273  * |         1          |       2       |   3   |
1274  * +--------------------+---------------+-------+
1275  *
1276  * <-------------- *tio->len_ptr --------------->
1277  *                      <------- bi_size ------->
1278  *                      <-- n_sectors -->
1279  *
1280  * Region 1 was already iterated over with bio_advance or similar function.
1281  *	(it may be empty if the target doesn't use bio_advance)
1282  * Region 2 is the remaining bio size that the target wants to process.
1283  *	(it may be empty if region 1 is non-empty, although there is no reason
1284  *	 to make it empty)
1285  * The target requires that region 3 is to be sent in the next bio.
1286  *
1287  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1288  * the partially processed part (the sum of regions 1+2) must be the same for all
1289  * copies of the bio.
1290  */
1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1292 {
1293 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1294 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1295 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1296 	BUG_ON(bi_size > *tio->len_ptr);
1297 	BUG_ON(n_sectors > bi_size);
1298 	*tio->len_ptr -= bi_size - n_sectors;
1299 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1300 }
1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1302 
1303 static void __map_bio(struct dm_target_io *tio)
1304 {
1305 	int r;
1306 	sector_t sector;
1307 	struct mapped_device *md;
1308 	struct bio *clone = &tio->clone;
1309 	struct dm_target *ti = tio->ti;
1310 
1311 	clone->bi_end_io = clone_endio;
1312 
1313 	/*
1314 	 * Map the clone.  If r == 0 we don't need to do
1315 	 * anything, the target has assumed ownership of
1316 	 * this io.
1317 	 */
1318 	atomic_inc(&tio->io->io_count);
1319 	sector = clone->bi_iter.bi_sector;
1320 	r = ti->type->map(ti, clone);
1321 	if (r == DM_MAPIO_REMAPPED) {
1322 		/* the bio has been remapped so dispatch it */
1323 
1324 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1325 				      tio->io->bio->bi_bdev->bd_dev, sector);
1326 
1327 		generic_make_request(clone);
1328 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1329 		/* error the io and bail out, or requeue it if needed */
1330 		md = tio->io->md;
1331 		dec_pending(tio->io, r);
1332 		free_tio(md, tio);
1333 	} else if (r) {
1334 		DMWARN("unimplemented target map return value: %d", r);
1335 		BUG();
1336 	}
1337 }
1338 
1339 struct clone_info {
1340 	struct mapped_device *md;
1341 	struct dm_table *map;
1342 	struct bio *bio;
1343 	struct dm_io *io;
1344 	sector_t sector;
1345 	unsigned sector_count;
1346 };
1347 
1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1349 {
1350 	bio->bi_iter.bi_sector = sector;
1351 	bio->bi_iter.bi_size = to_bytes(len);
1352 }
1353 
1354 /*
1355  * Creates a bio that consists of range of complete bvecs.
1356  */
1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1358 		      sector_t sector, unsigned len)
1359 {
1360 	struct bio *clone = &tio->clone;
1361 
1362 	__bio_clone_fast(clone, bio);
1363 
1364 	if (bio_integrity(bio))
1365 		bio_integrity_clone(clone, bio, GFP_NOIO);
1366 
1367 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1368 	clone->bi_iter.bi_size = to_bytes(len);
1369 
1370 	if (bio_integrity(bio))
1371 		bio_integrity_trim(clone, 0, len);
1372 }
1373 
1374 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1375 				      struct dm_target *ti,
1376 				      unsigned target_bio_nr)
1377 {
1378 	struct dm_target_io *tio;
1379 	struct bio *clone;
1380 
1381 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1382 	tio = container_of(clone, struct dm_target_io, clone);
1383 
1384 	tio->io = ci->io;
1385 	tio->ti = ti;
1386 	tio->target_bio_nr = target_bio_nr;
1387 
1388 	return tio;
1389 }
1390 
1391 static void __clone_and_map_simple_bio(struct clone_info *ci,
1392 				       struct dm_target *ti,
1393 				       unsigned target_bio_nr, unsigned *len)
1394 {
1395 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1396 	struct bio *clone = &tio->clone;
1397 
1398 	tio->len_ptr = len;
1399 
1400 	__bio_clone_fast(clone, ci->bio);
1401 	if (len)
1402 		bio_setup_sector(clone, ci->sector, *len);
1403 
1404 	__map_bio(tio);
1405 }
1406 
1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 				  unsigned num_bios, unsigned *len)
1409 {
1410 	unsigned target_bio_nr;
1411 
1412 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1413 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1414 }
1415 
1416 static int __send_empty_flush(struct clone_info *ci)
1417 {
1418 	unsigned target_nr = 0;
1419 	struct dm_target *ti;
1420 
1421 	BUG_ON(bio_has_data(ci->bio));
1422 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1423 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1424 
1425 	return 0;
1426 }
1427 
1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1429 				     sector_t sector, unsigned *len)
1430 {
1431 	struct bio *bio = ci->bio;
1432 	struct dm_target_io *tio;
1433 	unsigned target_bio_nr;
1434 	unsigned num_target_bios = 1;
1435 
1436 	/*
1437 	 * Does the target want to receive duplicate copies of the bio?
1438 	 */
1439 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1440 		num_target_bios = ti->num_write_bios(ti, bio);
1441 
1442 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1443 		tio = alloc_tio(ci, ti, target_bio_nr);
1444 		tio->len_ptr = len;
1445 		clone_bio(tio, bio, sector, *len);
1446 		__map_bio(tio);
1447 	}
1448 }
1449 
1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1451 
1452 static unsigned get_num_discard_bios(struct dm_target *ti)
1453 {
1454 	return ti->num_discard_bios;
1455 }
1456 
1457 static unsigned get_num_write_same_bios(struct dm_target *ti)
1458 {
1459 	return ti->num_write_same_bios;
1460 }
1461 
1462 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1463 
1464 static bool is_split_required_for_discard(struct dm_target *ti)
1465 {
1466 	return ti->split_discard_bios;
1467 }
1468 
1469 static int __send_changing_extent_only(struct clone_info *ci,
1470 				       get_num_bios_fn get_num_bios,
1471 				       is_split_required_fn is_split_required)
1472 {
1473 	struct dm_target *ti;
1474 	unsigned len;
1475 	unsigned num_bios;
1476 
1477 	do {
1478 		ti = dm_table_find_target(ci->map, ci->sector);
1479 		if (!dm_target_is_valid(ti))
1480 			return -EIO;
1481 
1482 		/*
1483 		 * Even though the device advertised support for this type of
1484 		 * request, that does not mean every target supports it, and
1485 		 * reconfiguration might also have changed that since the
1486 		 * check was performed.
1487 		 */
1488 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 		if (!num_bios)
1490 			return -EOPNOTSUPP;
1491 
1492 		if (is_split_required && !is_split_required(ti))
1493 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 		else
1495 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1496 
1497 		__send_duplicate_bios(ci, ti, num_bios, &len);
1498 
1499 		ci->sector += len;
1500 	} while (ci->sector_count -= len);
1501 
1502 	return 0;
1503 }
1504 
1505 static int __send_discard(struct clone_info *ci)
1506 {
1507 	return __send_changing_extent_only(ci, get_num_discard_bios,
1508 					   is_split_required_for_discard);
1509 }
1510 
1511 static int __send_write_same(struct clone_info *ci)
1512 {
1513 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1514 }
1515 
1516 /*
1517  * Select the correct strategy for processing a non-flush bio.
1518  */
1519 static int __split_and_process_non_flush(struct clone_info *ci)
1520 {
1521 	struct bio *bio = ci->bio;
1522 	struct dm_target *ti;
1523 	unsigned len;
1524 
1525 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1526 		return __send_discard(ci);
1527 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1528 		return __send_write_same(ci);
1529 
1530 	ti = dm_table_find_target(ci->map, ci->sector);
1531 	if (!dm_target_is_valid(ti))
1532 		return -EIO;
1533 
1534 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1535 
1536 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1537 
1538 	ci->sector += len;
1539 	ci->sector_count -= len;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Entry point to split a bio into clones and submit them to the targets.
1546  */
1547 static void __split_and_process_bio(struct mapped_device *md,
1548 				    struct dm_table *map, struct bio *bio)
1549 {
1550 	struct clone_info ci;
1551 	int error = 0;
1552 
1553 	if (unlikely(!map)) {
1554 		bio_io_error(bio);
1555 		return;
1556 	}
1557 
1558 	ci.map = map;
1559 	ci.md = md;
1560 	ci.io = alloc_io(md);
1561 	ci.io->error = 0;
1562 	atomic_set(&ci.io->io_count, 1);
1563 	ci.io->bio = bio;
1564 	ci.io->md = md;
1565 	spin_lock_init(&ci.io->endio_lock);
1566 	ci.sector = bio->bi_iter.bi_sector;
1567 
1568 	start_io_acct(ci.io);
1569 
1570 	if (bio->bi_rw & REQ_FLUSH) {
1571 		ci.bio = &ci.md->flush_bio;
1572 		ci.sector_count = 0;
1573 		error = __send_empty_flush(&ci);
1574 		/* dec_pending submits any data associated with flush */
1575 	} else {
1576 		ci.bio = bio;
1577 		ci.sector_count = bio_sectors(bio);
1578 		while (ci.sector_count && !error)
1579 			error = __split_and_process_non_flush(&ci);
1580 	}
1581 
1582 	/* drop the extra reference count */
1583 	dec_pending(ci.io, error);
1584 }
1585 /*-----------------------------------------------------------------
1586  * CRUD END
1587  *---------------------------------------------------------------*/
1588 
1589 static int dm_merge_bvec(struct request_queue *q,
1590 			 struct bvec_merge_data *bvm,
1591 			 struct bio_vec *biovec)
1592 {
1593 	struct mapped_device *md = q->queuedata;
1594 	struct dm_table *map = dm_get_live_table_fast(md);
1595 	struct dm_target *ti;
1596 	sector_t max_sectors;
1597 	int max_size = 0;
1598 
1599 	if (unlikely(!map))
1600 		goto out;
1601 
1602 	ti = dm_table_find_target(map, bvm->bi_sector);
1603 	if (!dm_target_is_valid(ti))
1604 		goto out;
1605 
1606 	/*
1607 	 * Find maximum amount of I/O that won't need splitting
1608 	 */
1609 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1610 			  (sector_t) BIO_MAX_SECTORS);
1611 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1612 	if (max_size < 0)
1613 		max_size = 0;
1614 
1615 	/*
1616 	 * merge_bvec_fn() returns number of bytes
1617 	 * it can accept at this offset
1618 	 * max is precomputed maximal io size
1619 	 */
1620 	if (max_size && ti->type->merge)
1621 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1622 	/*
1623 	 * If the target doesn't support merge method and some of the devices
1624 	 * provided their merge_bvec method (we know this by looking at
1625 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1626 	 * entries.  So always set max_size to 0, and the code below allows
1627 	 * just one page.
1628 	 */
1629 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1630 		max_size = 0;
1631 
1632 out:
1633 	dm_put_live_table_fast(md);
1634 	/*
1635 	 * Always allow an entire first page
1636 	 */
1637 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1638 		max_size = biovec->bv_len;
1639 
1640 	return max_size;
1641 }
1642 
1643 /*
1644  * The request function that just remaps the bio built up by
1645  * dm_merge_bvec.
1646  */
1647 static void _dm_request(struct request_queue *q, struct bio *bio)
1648 {
1649 	int rw = bio_data_dir(bio);
1650 	struct mapped_device *md = q->queuedata;
1651 	int cpu;
1652 	int srcu_idx;
1653 	struct dm_table *map;
1654 
1655 	map = dm_get_live_table(md, &srcu_idx);
1656 
1657 	cpu = part_stat_lock();
1658 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1659 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1660 	part_stat_unlock();
1661 
1662 	/* if we're suspended, we have to queue this io for later */
1663 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1664 		dm_put_live_table(md, srcu_idx);
1665 
1666 		if (bio_rw(bio) != READA)
1667 			queue_io(md, bio);
1668 		else
1669 			bio_io_error(bio);
1670 		return;
1671 	}
1672 
1673 	__split_and_process_bio(md, map, bio);
1674 	dm_put_live_table(md, srcu_idx);
1675 	return;
1676 }
1677 
1678 int dm_request_based(struct mapped_device *md)
1679 {
1680 	return blk_queue_stackable(md->queue);
1681 }
1682 
1683 static void dm_request(struct request_queue *q, struct bio *bio)
1684 {
1685 	struct mapped_device *md = q->queuedata;
1686 
1687 	if (dm_request_based(md))
1688 		blk_queue_bio(q, bio);
1689 	else
1690 		_dm_request(q, bio);
1691 }
1692 
1693 void dm_dispatch_request(struct request *rq)
1694 {
1695 	int r;
1696 
1697 	if (blk_queue_io_stat(rq->q))
1698 		rq->cmd_flags |= REQ_IO_STAT;
1699 
1700 	rq->start_time = jiffies;
1701 	r = blk_insert_cloned_request(rq->q, rq);
1702 	if (r)
1703 		dm_complete_request(rq, r);
1704 }
1705 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1706 
1707 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1708 				 void *data)
1709 {
1710 	struct dm_rq_target_io *tio = data;
1711 	struct dm_rq_clone_bio_info *info =
1712 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1713 
1714 	info->orig = bio_orig;
1715 	info->tio = tio;
1716 	bio->bi_end_io = end_clone_bio;
1717 
1718 	return 0;
1719 }
1720 
1721 static int setup_clone(struct request *clone, struct request *rq,
1722 		       struct dm_rq_target_io *tio)
1723 {
1724 	int r;
1725 
1726 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1727 			      dm_rq_bio_constructor, tio);
1728 	if (r)
1729 		return r;
1730 
1731 	clone->cmd = rq->cmd;
1732 	clone->cmd_len = rq->cmd_len;
1733 	clone->sense = rq->sense;
1734 	clone->end_io = end_clone_request;
1735 	clone->end_io_data = tio;
1736 
1737 	return 0;
1738 }
1739 
1740 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1741 				gfp_t gfp_mask)
1742 {
1743 	struct request *clone;
1744 	struct dm_rq_target_io *tio;
1745 
1746 	tio = alloc_rq_tio(md, gfp_mask);
1747 	if (!tio)
1748 		return NULL;
1749 
1750 	tio->md = md;
1751 	tio->ti = NULL;
1752 	tio->orig = rq;
1753 	tio->error = 0;
1754 	memset(&tio->info, 0, sizeof(tio->info));
1755 
1756 	clone = &tio->clone;
1757 	if (setup_clone(clone, rq, tio)) {
1758 		/* -ENOMEM */
1759 		free_rq_tio(tio);
1760 		return NULL;
1761 	}
1762 
1763 	return clone;
1764 }
1765 
1766 /*
1767  * Called with the queue lock held.
1768  */
1769 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1770 {
1771 	struct mapped_device *md = q->queuedata;
1772 	struct request *clone;
1773 
1774 	if (unlikely(rq->special)) {
1775 		DMWARN("Already has something in rq->special.");
1776 		return BLKPREP_KILL;
1777 	}
1778 
1779 	clone = clone_rq(rq, md, GFP_ATOMIC);
1780 	if (!clone)
1781 		return BLKPREP_DEFER;
1782 
1783 	rq->special = clone;
1784 	rq->cmd_flags |= REQ_DONTPREP;
1785 
1786 	return BLKPREP_OK;
1787 }
1788 
1789 /*
1790  * Returns:
1791  * 0  : the request has been processed (not requeued)
1792  * !0 : the request has been requeued
1793  */
1794 static int map_request(struct dm_target *ti, struct request *clone,
1795 		       struct mapped_device *md)
1796 {
1797 	int r, requeued = 0;
1798 	struct dm_rq_target_io *tio = clone->end_io_data;
1799 
1800 	tio->ti = ti;
1801 	r = ti->type->map_rq(ti, clone, &tio->info);
1802 	switch (r) {
1803 	case DM_MAPIO_SUBMITTED:
1804 		/* The target has taken the I/O to submit by itself later */
1805 		break;
1806 	case DM_MAPIO_REMAPPED:
1807 		/* The target has remapped the I/O so dispatch it */
1808 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1809 				     blk_rq_pos(tio->orig));
1810 		dm_dispatch_request(clone);
1811 		break;
1812 	case DM_MAPIO_REQUEUE:
1813 		/* The target wants to requeue the I/O */
1814 		dm_requeue_unmapped_request(clone);
1815 		requeued = 1;
1816 		break;
1817 	default:
1818 		if (r > 0) {
1819 			DMWARN("unimplemented target map return value: %d", r);
1820 			BUG();
1821 		}
1822 
1823 		/* The target wants to complete the I/O */
1824 		dm_kill_unmapped_request(clone, r);
1825 		break;
1826 	}
1827 
1828 	return requeued;
1829 }
1830 
1831 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1832 {
1833 	struct request *clone;
1834 
1835 	blk_start_request(orig);
1836 	clone = orig->special;
1837 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1838 
1839 	/*
1840 	 * Hold the md reference here for the in-flight I/O.
1841 	 * We can't rely on the reference count by device opener,
1842 	 * because the device may be closed during the request completion
1843 	 * when all bios are completed.
1844 	 * See the comment in rq_completed() too.
1845 	 */
1846 	dm_get(md);
1847 
1848 	return clone;
1849 }
1850 
1851 /*
1852  * q->request_fn for request-based dm.
1853  * Called with the queue lock held.
1854  */
1855 static void dm_request_fn(struct request_queue *q)
1856 {
1857 	struct mapped_device *md = q->queuedata;
1858 	int srcu_idx;
1859 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1860 	struct dm_target *ti;
1861 	struct request *rq, *clone;
1862 	sector_t pos;
1863 
1864 	/*
1865 	 * For suspend, check blk_queue_stopped() and increment
1866 	 * ->pending within a single queue_lock not to increment the
1867 	 * number of in-flight I/Os after the queue is stopped in
1868 	 * dm_suspend().
1869 	 */
1870 	while (!blk_queue_stopped(q)) {
1871 		rq = blk_peek_request(q);
1872 		if (!rq)
1873 			goto delay_and_out;
1874 
1875 		/* always use block 0 to find the target for flushes for now */
1876 		pos = 0;
1877 		if (!(rq->cmd_flags & REQ_FLUSH))
1878 			pos = blk_rq_pos(rq);
1879 
1880 		ti = dm_table_find_target(map, pos);
1881 		if (!dm_target_is_valid(ti)) {
1882 			/*
1883 			 * Must perform setup, that dm_done() requires,
1884 			 * before calling dm_kill_unmapped_request
1885 			 */
1886 			DMERR_LIMIT("request attempted access beyond the end of device");
1887 			clone = dm_start_request(md, rq);
1888 			dm_kill_unmapped_request(clone, -EIO);
1889 			continue;
1890 		}
1891 
1892 		if (ti->type->busy && ti->type->busy(ti))
1893 			goto delay_and_out;
1894 
1895 		clone = dm_start_request(md, rq);
1896 
1897 		spin_unlock(q->queue_lock);
1898 		if (map_request(ti, clone, md))
1899 			goto requeued;
1900 
1901 		BUG_ON(!irqs_disabled());
1902 		spin_lock(q->queue_lock);
1903 	}
1904 
1905 	goto out;
1906 
1907 requeued:
1908 	BUG_ON(!irqs_disabled());
1909 	spin_lock(q->queue_lock);
1910 
1911 delay_and_out:
1912 	blk_delay_queue(q, HZ / 10);
1913 out:
1914 	dm_put_live_table(md, srcu_idx);
1915 }
1916 
1917 int dm_underlying_device_busy(struct request_queue *q)
1918 {
1919 	return blk_lld_busy(q);
1920 }
1921 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1922 
1923 static int dm_lld_busy(struct request_queue *q)
1924 {
1925 	int r;
1926 	struct mapped_device *md = q->queuedata;
1927 	struct dm_table *map = dm_get_live_table_fast(md);
1928 
1929 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1930 		r = 1;
1931 	else
1932 		r = dm_table_any_busy_target(map);
1933 
1934 	dm_put_live_table_fast(md);
1935 
1936 	return r;
1937 }
1938 
1939 static int dm_any_congested(void *congested_data, int bdi_bits)
1940 {
1941 	int r = bdi_bits;
1942 	struct mapped_device *md = congested_data;
1943 	struct dm_table *map;
1944 
1945 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1946 		map = dm_get_live_table_fast(md);
1947 		if (map) {
1948 			/*
1949 			 * Request-based dm cares about only own queue for
1950 			 * the query about congestion status of request_queue
1951 			 */
1952 			if (dm_request_based(md))
1953 				r = md->queue->backing_dev_info.state &
1954 				    bdi_bits;
1955 			else
1956 				r = dm_table_any_congested(map, bdi_bits);
1957 		}
1958 		dm_put_live_table_fast(md);
1959 	}
1960 
1961 	return r;
1962 }
1963 
1964 /*-----------------------------------------------------------------
1965  * An IDR is used to keep track of allocated minor numbers.
1966  *---------------------------------------------------------------*/
1967 static void free_minor(int minor)
1968 {
1969 	spin_lock(&_minor_lock);
1970 	idr_remove(&_minor_idr, minor);
1971 	spin_unlock(&_minor_lock);
1972 }
1973 
1974 /*
1975  * See if the device with a specific minor # is free.
1976  */
1977 static int specific_minor(int minor)
1978 {
1979 	int r;
1980 
1981 	if (minor >= (1 << MINORBITS))
1982 		return -EINVAL;
1983 
1984 	idr_preload(GFP_KERNEL);
1985 	spin_lock(&_minor_lock);
1986 
1987 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1988 
1989 	spin_unlock(&_minor_lock);
1990 	idr_preload_end();
1991 	if (r < 0)
1992 		return r == -ENOSPC ? -EBUSY : r;
1993 	return 0;
1994 }
1995 
1996 static int next_free_minor(int *minor)
1997 {
1998 	int r;
1999 
2000 	idr_preload(GFP_KERNEL);
2001 	spin_lock(&_minor_lock);
2002 
2003 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2004 
2005 	spin_unlock(&_minor_lock);
2006 	idr_preload_end();
2007 	if (r < 0)
2008 		return r;
2009 	*minor = r;
2010 	return 0;
2011 }
2012 
2013 static const struct block_device_operations dm_blk_dops;
2014 
2015 static void dm_wq_work(struct work_struct *work);
2016 
2017 static void dm_init_md_queue(struct mapped_device *md)
2018 {
2019 	/*
2020 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2021 	 * devices.  The type of this dm device has not been decided yet.
2022 	 * The type is decided at the first table loading time.
2023 	 * To prevent problematic device stacking, clear the queue flag
2024 	 * for request stacking support until then.
2025 	 *
2026 	 * This queue is new, so no concurrency on the queue_flags.
2027 	 */
2028 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2029 
2030 	md->queue->queuedata = md;
2031 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2032 	md->queue->backing_dev_info.congested_data = md;
2033 	blk_queue_make_request(md->queue, dm_request);
2034 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2035 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2036 }
2037 
2038 /*
2039  * Allocate and initialise a blank device with a given minor.
2040  */
2041 static struct mapped_device *alloc_dev(int minor)
2042 {
2043 	int r;
2044 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2045 	void *old_md;
2046 
2047 	if (!md) {
2048 		DMWARN("unable to allocate device, out of memory.");
2049 		return NULL;
2050 	}
2051 
2052 	if (!try_module_get(THIS_MODULE))
2053 		goto bad_module_get;
2054 
2055 	/* get a minor number for the dev */
2056 	if (minor == DM_ANY_MINOR)
2057 		r = next_free_minor(&minor);
2058 	else
2059 		r = specific_minor(minor);
2060 	if (r < 0)
2061 		goto bad_minor;
2062 
2063 	r = init_srcu_struct(&md->io_barrier);
2064 	if (r < 0)
2065 		goto bad_io_barrier;
2066 
2067 	md->type = DM_TYPE_NONE;
2068 	mutex_init(&md->suspend_lock);
2069 	mutex_init(&md->type_lock);
2070 	mutex_init(&md->table_devices_lock);
2071 	spin_lock_init(&md->deferred_lock);
2072 	atomic_set(&md->holders, 1);
2073 	atomic_set(&md->open_count, 0);
2074 	atomic_set(&md->event_nr, 0);
2075 	atomic_set(&md->uevent_seq, 0);
2076 	INIT_LIST_HEAD(&md->uevent_list);
2077 	INIT_LIST_HEAD(&md->table_devices);
2078 	spin_lock_init(&md->uevent_lock);
2079 
2080 	md->queue = blk_alloc_queue(GFP_KERNEL);
2081 	if (!md->queue)
2082 		goto bad_queue;
2083 
2084 	dm_init_md_queue(md);
2085 
2086 	md->disk = alloc_disk(1);
2087 	if (!md->disk)
2088 		goto bad_disk;
2089 
2090 	atomic_set(&md->pending[0], 0);
2091 	atomic_set(&md->pending[1], 0);
2092 	init_waitqueue_head(&md->wait);
2093 	INIT_WORK(&md->work, dm_wq_work);
2094 	init_waitqueue_head(&md->eventq);
2095 	init_completion(&md->kobj_holder.completion);
2096 
2097 	md->disk->major = _major;
2098 	md->disk->first_minor = minor;
2099 	md->disk->fops = &dm_blk_dops;
2100 	md->disk->queue = md->queue;
2101 	md->disk->private_data = md;
2102 	sprintf(md->disk->disk_name, "dm-%d", minor);
2103 	add_disk(md->disk);
2104 	format_dev_t(md->name, MKDEV(_major, minor));
2105 
2106 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2107 	if (!md->wq)
2108 		goto bad_thread;
2109 
2110 	md->bdev = bdget_disk(md->disk, 0);
2111 	if (!md->bdev)
2112 		goto bad_bdev;
2113 
2114 	bio_init(&md->flush_bio);
2115 	md->flush_bio.bi_bdev = md->bdev;
2116 	md->flush_bio.bi_rw = WRITE_FLUSH;
2117 
2118 	dm_stats_init(&md->stats);
2119 
2120 	/* Populate the mapping, nobody knows we exist yet */
2121 	spin_lock(&_minor_lock);
2122 	old_md = idr_replace(&_minor_idr, md, minor);
2123 	spin_unlock(&_minor_lock);
2124 
2125 	BUG_ON(old_md != MINOR_ALLOCED);
2126 
2127 	return md;
2128 
2129 bad_bdev:
2130 	destroy_workqueue(md->wq);
2131 bad_thread:
2132 	del_gendisk(md->disk);
2133 	put_disk(md->disk);
2134 bad_disk:
2135 	blk_cleanup_queue(md->queue);
2136 bad_queue:
2137 	cleanup_srcu_struct(&md->io_barrier);
2138 bad_io_barrier:
2139 	free_minor(minor);
2140 bad_minor:
2141 	module_put(THIS_MODULE);
2142 bad_module_get:
2143 	kfree(md);
2144 	return NULL;
2145 }
2146 
2147 static void unlock_fs(struct mapped_device *md);
2148 
2149 static void free_dev(struct mapped_device *md)
2150 {
2151 	int minor = MINOR(disk_devt(md->disk));
2152 
2153 	unlock_fs(md);
2154 	bdput(md->bdev);
2155 	destroy_workqueue(md->wq);
2156 	if (md->io_pool)
2157 		mempool_destroy(md->io_pool);
2158 	if (md->bs)
2159 		bioset_free(md->bs);
2160 	blk_integrity_unregister(md->disk);
2161 	del_gendisk(md->disk);
2162 	cleanup_srcu_struct(&md->io_barrier);
2163 	free_table_devices(&md->table_devices);
2164 	free_minor(minor);
2165 
2166 	spin_lock(&_minor_lock);
2167 	md->disk->private_data = NULL;
2168 	spin_unlock(&_minor_lock);
2169 
2170 	put_disk(md->disk);
2171 	blk_cleanup_queue(md->queue);
2172 	dm_stats_cleanup(&md->stats);
2173 	module_put(THIS_MODULE);
2174 	kfree(md);
2175 }
2176 
2177 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2178 {
2179 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2180 
2181 	if (md->io_pool && md->bs) {
2182 		/* The md already has necessary mempools. */
2183 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2184 			/*
2185 			 * Reload bioset because front_pad may have changed
2186 			 * because a different table was loaded.
2187 			 */
2188 			bioset_free(md->bs);
2189 			md->bs = p->bs;
2190 			p->bs = NULL;
2191 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2192 			/*
2193 			 * There's no need to reload with request-based dm
2194 			 * because the size of front_pad doesn't change.
2195 			 * Note for future: If you are to reload bioset,
2196 			 * prep-ed requests in the queue may refer
2197 			 * to bio from the old bioset, so you must walk
2198 			 * through the queue to unprep.
2199 			 */
2200 		}
2201 		goto out;
2202 	}
2203 
2204 	BUG_ON(!p || md->io_pool || md->bs);
2205 
2206 	md->io_pool = p->io_pool;
2207 	p->io_pool = NULL;
2208 	md->bs = p->bs;
2209 	p->bs = NULL;
2210 
2211 out:
2212 	/* mempool bind completed, now no need any mempools in the table */
2213 	dm_table_free_md_mempools(t);
2214 }
2215 
2216 /*
2217  * Bind a table to the device.
2218  */
2219 static void event_callback(void *context)
2220 {
2221 	unsigned long flags;
2222 	LIST_HEAD(uevents);
2223 	struct mapped_device *md = (struct mapped_device *) context;
2224 
2225 	spin_lock_irqsave(&md->uevent_lock, flags);
2226 	list_splice_init(&md->uevent_list, &uevents);
2227 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2228 
2229 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2230 
2231 	atomic_inc(&md->event_nr);
2232 	wake_up(&md->eventq);
2233 }
2234 
2235 /*
2236  * Protected by md->suspend_lock obtained by dm_swap_table().
2237  */
2238 static void __set_size(struct mapped_device *md, sector_t size)
2239 {
2240 	set_capacity(md->disk, size);
2241 
2242 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2243 }
2244 
2245 /*
2246  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2247  *
2248  * If this function returns 0, then the device is either a non-dm
2249  * device without a merge_bvec_fn, or it is a dm device that is
2250  * able to split any bios it receives that are too big.
2251  */
2252 int dm_queue_merge_is_compulsory(struct request_queue *q)
2253 {
2254 	struct mapped_device *dev_md;
2255 
2256 	if (!q->merge_bvec_fn)
2257 		return 0;
2258 
2259 	if (q->make_request_fn == dm_request) {
2260 		dev_md = q->queuedata;
2261 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2262 			return 0;
2263 	}
2264 
2265 	return 1;
2266 }
2267 
2268 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2269 					 struct dm_dev *dev, sector_t start,
2270 					 sector_t len, void *data)
2271 {
2272 	struct block_device *bdev = dev->bdev;
2273 	struct request_queue *q = bdev_get_queue(bdev);
2274 
2275 	return dm_queue_merge_is_compulsory(q);
2276 }
2277 
2278 /*
2279  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2280  * on the properties of the underlying devices.
2281  */
2282 static int dm_table_merge_is_optional(struct dm_table *table)
2283 {
2284 	unsigned i = 0;
2285 	struct dm_target *ti;
2286 
2287 	while (i < dm_table_get_num_targets(table)) {
2288 		ti = dm_table_get_target(table, i++);
2289 
2290 		if (ti->type->iterate_devices &&
2291 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2292 			return 0;
2293 	}
2294 
2295 	return 1;
2296 }
2297 
2298 /*
2299  * Returns old map, which caller must destroy.
2300  */
2301 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2302 			       struct queue_limits *limits)
2303 {
2304 	struct dm_table *old_map;
2305 	struct request_queue *q = md->queue;
2306 	sector_t size;
2307 	int merge_is_optional;
2308 
2309 	size = dm_table_get_size(t);
2310 
2311 	/*
2312 	 * Wipe any geometry if the size of the table changed.
2313 	 */
2314 	if (size != dm_get_size(md))
2315 		memset(&md->geometry, 0, sizeof(md->geometry));
2316 
2317 	__set_size(md, size);
2318 
2319 	dm_table_event_callback(t, event_callback, md);
2320 
2321 	/*
2322 	 * The queue hasn't been stopped yet, if the old table type wasn't
2323 	 * for request-based during suspension.  So stop it to prevent
2324 	 * I/O mapping before resume.
2325 	 * This must be done before setting the queue restrictions,
2326 	 * because request-based dm may be run just after the setting.
2327 	 */
2328 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2329 		stop_queue(q);
2330 
2331 	__bind_mempools(md, t);
2332 
2333 	merge_is_optional = dm_table_merge_is_optional(t);
2334 
2335 	old_map = md->map;
2336 	rcu_assign_pointer(md->map, t);
2337 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2338 
2339 	dm_table_set_restrictions(t, q, limits);
2340 	if (merge_is_optional)
2341 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2342 	else
2343 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2344 	dm_sync_table(md);
2345 
2346 	return old_map;
2347 }
2348 
2349 /*
2350  * Returns unbound table for the caller to free.
2351  */
2352 static struct dm_table *__unbind(struct mapped_device *md)
2353 {
2354 	struct dm_table *map = md->map;
2355 
2356 	if (!map)
2357 		return NULL;
2358 
2359 	dm_table_event_callback(map, NULL, NULL);
2360 	RCU_INIT_POINTER(md->map, NULL);
2361 	dm_sync_table(md);
2362 
2363 	return map;
2364 }
2365 
2366 /*
2367  * Constructor for a new device.
2368  */
2369 int dm_create(int minor, struct mapped_device **result)
2370 {
2371 	struct mapped_device *md;
2372 
2373 	md = alloc_dev(minor);
2374 	if (!md)
2375 		return -ENXIO;
2376 
2377 	dm_sysfs_init(md);
2378 
2379 	*result = md;
2380 	return 0;
2381 }
2382 
2383 /*
2384  * Functions to manage md->type.
2385  * All are required to hold md->type_lock.
2386  */
2387 void dm_lock_md_type(struct mapped_device *md)
2388 {
2389 	mutex_lock(&md->type_lock);
2390 }
2391 
2392 void dm_unlock_md_type(struct mapped_device *md)
2393 {
2394 	mutex_unlock(&md->type_lock);
2395 }
2396 
2397 void dm_set_md_type(struct mapped_device *md, unsigned type)
2398 {
2399 	BUG_ON(!mutex_is_locked(&md->type_lock));
2400 	md->type = type;
2401 }
2402 
2403 unsigned dm_get_md_type(struct mapped_device *md)
2404 {
2405 	BUG_ON(!mutex_is_locked(&md->type_lock));
2406 	return md->type;
2407 }
2408 
2409 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2410 {
2411 	return md->immutable_target_type;
2412 }
2413 
2414 /*
2415  * The queue_limits are only valid as long as you have a reference
2416  * count on 'md'.
2417  */
2418 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2419 {
2420 	BUG_ON(!atomic_read(&md->holders));
2421 	return &md->queue->limits;
2422 }
2423 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2424 
2425 /*
2426  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2427  */
2428 static int dm_init_request_based_queue(struct mapped_device *md)
2429 {
2430 	struct request_queue *q = NULL;
2431 
2432 	if (md->queue->elevator)
2433 		return 1;
2434 
2435 	/* Fully initialize the queue */
2436 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2437 	if (!q)
2438 		return 0;
2439 
2440 	md->queue = q;
2441 	dm_init_md_queue(md);
2442 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2443 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2444 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2445 
2446 	elv_register_queue(md->queue);
2447 
2448 	return 1;
2449 }
2450 
2451 /*
2452  * Setup the DM device's queue based on md's type
2453  */
2454 int dm_setup_md_queue(struct mapped_device *md)
2455 {
2456 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2457 	    !dm_init_request_based_queue(md)) {
2458 		DMWARN("Cannot initialize queue for request-based mapped device");
2459 		return -EINVAL;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static struct mapped_device *dm_find_md(dev_t dev)
2466 {
2467 	struct mapped_device *md;
2468 	unsigned minor = MINOR(dev);
2469 
2470 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2471 		return NULL;
2472 
2473 	spin_lock(&_minor_lock);
2474 
2475 	md = idr_find(&_minor_idr, minor);
2476 	if (md && (md == MINOR_ALLOCED ||
2477 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2478 		   dm_deleting_md(md) ||
2479 		   test_bit(DMF_FREEING, &md->flags))) {
2480 		md = NULL;
2481 		goto out;
2482 	}
2483 
2484 out:
2485 	spin_unlock(&_minor_lock);
2486 
2487 	return md;
2488 }
2489 
2490 struct mapped_device *dm_get_md(dev_t dev)
2491 {
2492 	struct mapped_device *md = dm_find_md(dev);
2493 
2494 	if (md)
2495 		dm_get(md);
2496 
2497 	return md;
2498 }
2499 EXPORT_SYMBOL_GPL(dm_get_md);
2500 
2501 void *dm_get_mdptr(struct mapped_device *md)
2502 {
2503 	return md->interface_ptr;
2504 }
2505 
2506 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2507 {
2508 	md->interface_ptr = ptr;
2509 }
2510 
2511 void dm_get(struct mapped_device *md)
2512 {
2513 	atomic_inc(&md->holders);
2514 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2515 }
2516 
2517 const char *dm_device_name(struct mapped_device *md)
2518 {
2519 	return md->name;
2520 }
2521 EXPORT_SYMBOL_GPL(dm_device_name);
2522 
2523 static void __dm_destroy(struct mapped_device *md, bool wait)
2524 {
2525 	struct dm_table *map;
2526 	int srcu_idx;
2527 
2528 	might_sleep();
2529 
2530 	spin_lock(&_minor_lock);
2531 	map = dm_get_live_table(md, &srcu_idx);
2532 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2533 	set_bit(DMF_FREEING, &md->flags);
2534 	spin_unlock(&_minor_lock);
2535 
2536 	if (!dm_suspended_md(md)) {
2537 		dm_table_presuspend_targets(map);
2538 		dm_table_postsuspend_targets(map);
2539 	}
2540 
2541 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2542 	dm_put_live_table(md, srcu_idx);
2543 
2544 	/*
2545 	 * Rare, but there may be I/O requests still going to complete,
2546 	 * for example.  Wait for all references to disappear.
2547 	 * No one should increment the reference count of the mapped_device,
2548 	 * after the mapped_device state becomes DMF_FREEING.
2549 	 */
2550 	if (wait)
2551 		while (atomic_read(&md->holders))
2552 			msleep(1);
2553 	else if (atomic_read(&md->holders))
2554 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2555 		       dm_device_name(md), atomic_read(&md->holders));
2556 
2557 	dm_sysfs_exit(md);
2558 	dm_table_destroy(__unbind(md));
2559 	free_dev(md);
2560 }
2561 
2562 void dm_destroy(struct mapped_device *md)
2563 {
2564 	__dm_destroy(md, true);
2565 }
2566 
2567 void dm_destroy_immediate(struct mapped_device *md)
2568 {
2569 	__dm_destroy(md, false);
2570 }
2571 
2572 void dm_put(struct mapped_device *md)
2573 {
2574 	atomic_dec(&md->holders);
2575 }
2576 EXPORT_SYMBOL_GPL(dm_put);
2577 
2578 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2579 {
2580 	int r = 0;
2581 	DECLARE_WAITQUEUE(wait, current);
2582 
2583 	add_wait_queue(&md->wait, &wait);
2584 
2585 	while (1) {
2586 		set_current_state(interruptible);
2587 
2588 		if (!md_in_flight(md))
2589 			break;
2590 
2591 		if (interruptible == TASK_INTERRUPTIBLE &&
2592 		    signal_pending(current)) {
2593 			r = -EINTR;
2594 			break;
2595 		}
2596 
2597 		io_schedule();
2598 	}
2599 	set_current_state(TASK_RUNNING);
2600 
2601 	remove_wait_queue(&md->wait, &wait);
2602 
2603 	return r;
2604 }
2605 
2606 /*
2607  * Process the deferred bios
2608  */
2609 static void dm_wq_work(struct work_struct *work)
2610 {
2611 	struct mapped_device *md = container_of(work, struct mapped_device,
2612 						work);
2613 	struct bio *c;
2614 	int srcu_idx;
2615 	struct dm_table *map;
2616 
2617 	map = dm_get_live_table(md, &srcu_idx);
2618 
2619 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2620 		spin_lock_irq(&md->deferred_lock);
2621 		c = bio_list_pop(&md->deferred);
2622 		spin_unlock_irq(&md->deferred_lock);
2623 
2624 		if (!c)
2625 			break;
2626 
2627 		if (dm_request_based(md))
2628 			generic_make_request(c);
2629 		else
2630 			__split_and_process_bio(md, map, c);
2631 	}
2632 
2633 	dm_put_live_table(md, srcu_idx);
2634 }
2635 
2636 static void dm_queue_flush(struct mapped_device *md)
2637 {
2638 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2639 	smp_mb__after_atomic();
2640 	queue_work(md->wq, &md->work);
2641 }
2642 
2643 /*
2644  * Swap in a new table, returning the old one for the caller to destroy.
2645  */
2646 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2647 {
2648 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2649 	struct queue_limits limits;
2650 	int r;
2651 
2652 	mutex_lock(&md->suspend_lock);
2653 
2654 	/* device must be suspended */
2655 	if (!dm_suspended_md(md))
2656 		goto out;
2657 
2658 	/*
2659 	 * If the new table has no data devices, retain the existing limits.
2660 	 * This helps multipath with queue_if_no_path if all paths disappear,
2661 	 * then new I/O is queued based on these limits, and then some paths
2662 	 * reappear.
2663 	 */
2664 	if (dm_table_has_no_data_devices(table)) {
2665 		live_map = dm_get_live_table_fast(md);
2666 		if (live_map)
2667 			limits = md->queue->limits;
2668 		dm_put_live_table_fast(md);
2669 	}
2670 
2671 	if (!live_map) {
2672 		r = dm_calculate_queue_limits(table, &limits);
2673 		if (r) {
2674 			map = ERR_PTR(r);
2675 			goto out;
2676 		}
2677 	}
2678 
2679 	map = __bind(md, table, &limits);
2680 
2681 out:
2682 	mutex_unlock(&md->suspend_lock);
2683 	return map;
2684 }
2685 
2686 /*
2687  * Functions to lock and unlock any filesystem running on the
2688  * device.
2689  */
2690 static int lock_fs(struct mapped_device *md)
2691 {
2692 	int r;
2693 
2694 	WARN_ON(md->frozen_sb);
2695 
2696 	md->frozen_sb = freeze_bdev(md->bdev);
2697 	if (IS_ERR(md->frozen_sb)) {
2698 		r = PTR_ERR(md->frozen_sb);
2699 		md->frozen_sb = NULL;
2700 		return r;
2701 	}
2702 
2703 	set_bit(DMF_FROZEN, &md->flags);
2704 
2705 	return 0;
2706 }
2707 
2708 static void unlock_fs(struct mapped_device *md)
2709 {
2710 	if (!test_bit(DMF_FROZEN, &md->flags))
2711 		return;
2712 
2713 	thaw_bdev(md->bdev, md->frozen_sb);
2714 	md->frozen_sb = NULL;
2715 	clear_bit(DMF_FROZEN, &md->flags);
2716 }
2717 
2718 /*
2719  * We need to be able to change a mapping table under a mounted
2720  * filesystem.  For example we might want to move some data in
2721  * the background.  Before the table can be swapped with
2722  * dm_bind_table, dm_suspend must be called to flush any in
2723  * flight bios and ensure that any further io gets deferred.
2724  */
2725 /*
2726  * Suspend mechanism in request-based dm.
2727  *
2728  * 1. Flush all I/Os by lock_fs() if needed.
2729  * 2. Stop dispatching any I/O by stopping the request_queue.
2730  * 3. Wait for all in-flight I/Os to be completed or requeued.
2731  *
2732  * To abort suspend, start the request_queue.
2733  */
2734 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2735 {
2736 	struct dm_table *map = NULL;
2737 	int r = 0;
2738 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2739 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2740 
2741 	mutex_lock(&md->suspend_lock);
2742 
2743 	if (dm_suspended_md(md)) {
2744 		r = -EINVAL;
2745 		goto out_unlock;
2746 	}
2747 
2748 	map = md->map;
2749 
2750 	/*
2751 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2752 	 * This flag is cleared before dm_suspend returns.
2753 	 */
2754 	if (noflush)
2755 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2756 
2757 	/* This does not get reverted if there's an error later. */
2758 	dm_table_presuspend_targets(map);
2759 
2760 	/*
2761 	 * Flush I/O to the device.
2762 	 * Any I/O submitted after lock_fs() may not be flushed.
2763 	 * noflush takes precedence over do_lockfs.
2764 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2765 	 */
2766 	if (!noflush && do_lockfs) {
2767 		r = lock_fs(md);
2768 		if (r)
2769 			goto out_unlock;
2770 	}
2771 
2772 	/*
2773 	 * Here we must make sure that no processes are submitting requests
2774 	 * to target drivers i.e. no one may be executing
2775 	 * __split_and_process_bio. This is called from dm_request and
2776 	 * dm_wq_work.
2777 	 *
2778 	 * To get all processes out of __split_and_process_bio in dm_request,
2779 	 * we take the write lock. To prevent any process from reentering
2780 	 * __split_and_process_bio from dm_request and quiesce the thread
2781 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2782 	 * flush_workqueue(md->wq).
2783 	 */
2784 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2785 	synchronize_srcu(&md->io_barrier);
2786 
2787 	/*
2788 	 * Stop md->queue before flushing md->wq in case request-based
2789 	 * dm defers requests to md->wq from md->queue.
2790 	 */
2791 	if (dm_request_based(md))
2792 		stop_queue(md->queue);
2793 
2794 	flush_workqueue(md->wq);
2795 
2796 	/*
2797 	 * At this point no more requests are entering target request routines.
2798 	 * We call dm_wait_for_completion to wait for all existing requests
2799 	 * to finish.
2800 	 */
2801 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2802 
2803 	if (noflush)
2804 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2805 	synchronize_srcu(&md->io_barrier);
2806 
2807 	/* were we interrupted ? */
2808 	if (r < 0) {
2809 		dm_queue_flush(md);
2810 
2811 		if (dm_request_based(md))
2812 			start_queue(md->queue);
2813 
2814 		unlock_fs(md);
2815 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2816 	}
2817 
2818 	/*
2819 	 * If dm_wait_for_completion returned 0, the device is completely
2820 	 * quiescent now. There is no request-processing activity. All new
2821 	 * requests are being added to md->deferred list.
2822 	 */
2823 
2824 	set_bit(DMF_SUSPENDED, &md->flags);
2825 
2826 	dm_table_postsuspend_targets(map);
2827 
2828 out_unlock:
2829 	mutex_unlock(&md->suspend_lock);
2830 	return r;
2831 }
2832 
2833 int dm_resume(struct mapped_device *md)
2834 {
2835 	int r = -EINVAL;
2836 	struct dm_table *map = NULL;
2837 
2838 	mutex_lock(&md->suspend_lock);
2839 	if (!dm_suspended_md(md))
2840 		goto out;
2841 
2842 	map = md->map;
2843 	if (!map || !dm_table_get_size(map))
2844 		goto out;
2845 
2846 	r = dm_table_resume_targets(map);
2847 	if (r)
2848 		goto out;
2849 
2850 	dm_queue_flush(md);
2851 
2852 	/*
2853 	 * Flushing deferred I/Os must be done after targets are resumed
2854 	 * so that mapping of targets can work correctly.
2855 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2856 	 */
2857 	if (dm_request_based(md))
2858 		start_queue(md->queue);
2859 
2860 	unlock_fs(md);
2861 
2862 	clear_bit(DMF_SUSPENDED, &md->flags);
2863 
2864 	r = 0;
2865 out:
2866 	mutex_unlock(&md->suspend_lock);
2867 
2868 	return r;
2869 }
2870 
2871 /*
2872  * Internal suspend/resume works like userspace-driven suspend. It waits
2873  * until all bios finish and prevents issuing new bios to the target drivers.
2874  * It may be used only from the kernel.
2875  *
2876  * Internal suspend holds md->suspend_lock, which prevents interaction with
2877  * userspace-driven suspend.
2878  */
2879 
2880 void dm_internal_suspend(struct mapped_device *md)
2881 {
2882 	mutex_lock(&md->suspend_lock);
2883 	if (dm_suspended_md(md))
2884 		return;
2885 
2886 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2887 	synchronize_srcu(&md->io_barrier);
2888 	flush_workqueue(md->wq);
2889 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2890 }
2891 
2892 void dm_internal_resume(struct mapped_device *md)
2893 {
2894 	if (dm_suspended_md(md))
2895 		goto done;
2896 
2897 	dm_queue_flush(md);
2898 
2899 done:
2900 	mutex_unlock(&md->suspend_lock);
2901 }
2902 
2903 /*-----------------------------------------------------------------
2904  * Event notification.
2905  *---------------------------------------------------------------*/
2906 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2907 		       unsigned cookie)
2908 {
2909 	char udev_cookie[DM_COOKIE_LENGTH];
2910 	char *envp[] = { udev_cookie, NULL };
2911 
2912 	if (!cookie)
2913 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2914 	else {
2915 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2916 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2917 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2918 					  action, envp);
2919 	}
2920 }
2921 
2922 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2923 {
2924 	return atomic_add_return(1, &md->uevent_seq);
2925 }
2926 
2927 uint32_t dm_get_event_nr(struct mapped_device *md)
2928 {
2929 	return atomic_read(&md->event_nr);
2930 }
2931 
2932 int dm_wait_event(struct mapped_device *md, int event_nr)
2933 {
2934 	return wait_event_interruptible(md->eventq,
2935 			(event_nr != atomic_read(&md->event_nr)));
2936 }
2937 
2938 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2939 {
2940 	unsigned long flags;
2941 
2942 	spin_lock_irqsave(&md->uevent_lock, flags);
2943 	list_add(elist, &md->uevent_list);
2944 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2945 }
2946 
2947 /*
2948  * The gendisk is only valid as long as you have a reference
2949  * count on 'md'.
2950  */
2951 struct gendisk *dm_disk(struct mapped_device *md)
2952 {
2953 	return md->disk;
2954 }
2955 
2956 struct kobject *dm_kobject(struct mapped_device *md)
2957 {
2958 	return &md->kobj_holder.kobj;
2959 }
2960 
2961 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2962 {
2963 	struct mapped_device *md;
2964 
2965 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2966 
2967 	if (test_bit(DMF_FREEING, &md->flags) ||
2968 	    dm_deleting_md(md))
2969 		return NULL;
2970 
2971 	dm_get(md);
2972 	return md;
2973 }
2974 
2975 int dm_suspended_md(struct mapped_device *md)
2976 {
2977 	return test_bit(DMF_SUSPENDED, &md->flags);
2978 }
2979 
2980 int dm_test_deferred_remove_flag(struct mapped_device *md)
2981 {
2982 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2983 }
2984 
2985 int dm_suspended(struct dm_target *ti)
2986 {
2987 	return dm_suspended_md(dm_table_get_md(ti->table));
2988 }
2989 EXPORT_SYMBOL_GPL(dm_suspended);
2990 
2991 int dm_noflush_suspending(struct dm_target *ti)
2992 {
2993 	return __noflush_suspending(dm_table_get_md(ti->table));
2994 }
2995 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2996 
2997 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2998 {
2999 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3000 	struct kmem_cache *cachep;
3001 	unsigned int pool_size;
3002 	unsigned int front_pad;
3003 
3004 	if (!pools)
3005 		return NULL;
3006 
3007 	if (type == DM_TYPE_BIO_BASED) {
3008 		cachep = _io_cache;
3009 		pool_size = dm_get_reserved_bio_based_ios();
3010 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3011 	} else if (type == DM_TYPE_REQUEST_BASED) {
3012 		cachep = _rq_tio_cache;
3013 		pool_size = dm_get_reserved_rq_based_ios();
3014 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3015 		/* per_bio_data_size is not used. See __bind_mempools(). */
3016 		WARN_ON(per_bio_data_size != 0);
3017 	} else
3018 		goto out;
3019 
3020 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3021 	if (!pools->io_pool)
3022 		goto out;
3023 
3024 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3025 	if (!pools->bs)
3026 		goto out;
3027 
3028 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3029 		goto out;
3030 
3031 	return pools;
3032 
3033 out:
3034 	dm_free_md_mempools(pools);
3035 
3036 	return NULL;
3037 }
3038 
3039 void dm_free_md_mempools(struct dm_md_mempools *pools)
3040 {
3041 	if (!pools)
3042 		return;
3043 
3044 	if (pools->io_pool)
3045 		mempool_destroy(pools->io_pool);
3046 
3047 	if (pools->bs)
3048 		bioset_free(pools->bs);
3049 
3050 	kfree(pools);
3051 }
3052 
3053 static const struct block_device_operations dm_blk_dops = {
3054 	.open = dm_blk_open,
3055 	.release = dm_blk_close,
3056 	.ioctl = dm_blk_ioctl,
3057 	.getgeo = dm_blk_getgeo,
3058 	.owner = THIS_MODULE
3059 };
3060 
3061 /*
3062  * module hooks
3063  */
3064 module_init(dm_init);
3065 module_exit(dm_exit);
3066 
3067 module_param(major, uint, 0);
3068 MODULE_PARM_DESC(major, "The major number of the device mapper");
3069 
3070 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3071 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3072 
3073 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3074 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3075 
3076 MODULE_DESCRIPTION(DM_NAME " driver");
3077 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3078 MODULE_LICENSE("GPL");
3079