1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 static struct workqueue_struct *deferred_remove_workqueue; 58 59 /* 60 * For bio-based dm. 61 * One of these is allocated per bio. 62 */ 63 struct dm_io { 64 struct mapped_device *md; 65 int error; 66 atomic_t io_count; 67 struct bio *bio; 68 unsigned long start_time; 69 spinlock_t endio_lock; 70 struct dm_stats_aux stats_aux; 71 }; 72 73 /* 74 * For request-based dm. 75 * One of these is allocated per request. 76 */ 77 struct dm_rq_target_io { 78 struct mapped_device *md; 79 struct dm_target *ti; 80 struct request *orig, clone; 81 int error; 82 union map_info info; 83 }; 84 85 /* 86 * For request-based dm - the bio clones we allocate are embedded in these 87 * structs. 88 * 89 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 90 * the bioset is created - this means the bio has to come at the end of the 91 * struct. 92 */ 93 struct dm_rq_clone_bio_info { 94 struct bio *orig; 95 struct dm_rq_target_io *tio; 96 struct bio clone; 97 }; 98 99 union map_info *dm_get_rq_mapinfo(struct request *rq) 100 { 101 if (rq && rq->end_io_data) 102 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 103 return NULL; 104 } 105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 106 107 #define MINOR_ALLOCED ((void *)-1) 108 109 /* 110 * Bits for the md->flags field. 111 */ 112 #define DMF_BLOCK_IO_FOR_SUSPEND 0 113 #define DMF_SUSPENDED 1 114 #define DMF_FROZEN 2 115 #define DMF_FREEING 3 116 #define DMF_DELETING 4 117 #define DMF_NOFLUSH_SUSPENDING 5 118 #define DMF_MERGE_IS_OPTIONAL 6 119 #define DMF_DEFERRED_REMOVE 7 120 121 /* 122 * A dummy definition to make RCU happy. 123 * struct dm_table should never be dereferenced in this file. 124 */ 125 struct dm_table { 126 int undefined__; 127 }; 128 129 /* 130 * Work processed by per-device workqueue. 131 */ 132 struct mapped_device { 133 struct srcu_struct io_barrier; 134 struct mutex suspend_lock; 135 atomic_t holders; 136 atomic_t open_count; 137 138 /* 139 * The current mapping. 140 * Use dm_get_live_table{_fast} or take suspend_lock for 141 * dereference. 142 */ 143 struct dm_table *map; 144 145 struct list_head table_devices; 146 struct mutex table_devices_lock; 147 148 unsigned long flags; 149 150 struct request_queue *queue; 151 unsigned type; 152 /* Protect queue and type against concurrent access. */ 153 struct mutex type_lock; 154 155 struct target_type *immutable_target_type; 156 157 struct gendisk *disk; 158 char name[16]; 159 160 void *interface_ptr; 161 162 /* 163 * A list of ios that arrived while we were suspended. 164 */ 165 atomic_t pending[2]; 166 wait_queue_head_t wait; 167 struct work_struct work; 168 struct bio_list deferred; 169 spinlock_t deferred_lock; 170 171 /* 172 * Processing queue (flush) 173 */ 174 struct workqueue_struct *wq; 175 176 /* 177 * io objects are allocated from here. 178 */ 179 mempool_t *io_pool; 180 181 struct bio_set *bs; 182 183 /* 184 * Event handling. 185 */ 186 atomic_t event_nr; 187 wait_queue_head_t eventq; 188 atomic_t uevent_seq; 189 struct list_head uevent_list; 190 spinlock_t uevent_lock; /* Protect access to uevent_list */ 191 192 /* 193 * freeze/thaw support require holding onto a super block 194 */ 195 struct super_block *frozen_sb; 196 struct block_device *bdev; 197 198 /* forced geometry settings */ 199 struct hd_geometry geometry; 200 201 /* kobject and completion */ 202 struct dm_kobject_holder kobj_holder; 203 204 /* zero-length flush that will be cloned and submitted to targets */ 205 struct bio flush_bio; 206 207 struct dm_stats stats; 208 }; 209 210 /* 211 * For mempools pre-allocation at the table loading time. 212 */ 213 struct dm_md_mempools { 214 mempool_t *io_pool; 215 struct bio_set *bs; 216 }; 217 218 struct table_device { 219 struct list_head list; 220 atomic_t count; 221 struct dm_dev dm_dev; 222 }; 223 224 #define RESERVED_BIO_BASED_IOS 16 225 #define RESERVED_REQUEST_BASED_IOS 256 226 #define RESERVED_MAX_IOS 1024 227 static struct kmem_cache *_io_cache; 228 static struct kmem_cache *_rq_tio_cache; 229 230 /* 231 * Bio-based DM's mempools' reserved IOs set by the user. 232 */ 233 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 234 235 /* 236 * Request-based DM's mempools' reserved IOs set by the user. 237 */ 238 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 239 240 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 241 unsigned def, unsigned max) 242 { 243 unsigned ios = ACCESS_ONCE(*reserved_ios); 244 unsigned modified_ios = 0; 245 246 if (!ios) 247 modified_ios = def; 248 else if (ios > max) 249 modified_ios = max; 250 251 if (modified_ios) { 252 (void)cmpxchg(reserved_ios, ios, modified_ios); 253 ios = modified_ios; 254 } 255 256 return ios; 257 } 258 259 unsigned dm_get_reserved_bio_based_ios(void) 260 { 261 return __dm_get_reserved_ios(&reserved_bio_based_ios, 262 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 263 } 264 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 265 266 unsigned dm_get_reserved_rq_based_ios(void) 267 { 268 return __dm_get_reserved_ios(&reserved_rq_based_ios, 269 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 270 } 271 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 272 273 static int __init local_init(void) 274 { 275 int r = -ENOMEM; 276 277 /* allocate a slab for the dm_ios */ 278 _io_cache = KMEM_CACHE(dm_io, 0); 279 if (!_io_cache) 280 return r; 281 282 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 283 if (!_rq_tio_cache) 284 goto out_free_io_cache; 285 286 r = dm_uevent_init(); 287 if (r) 288 goto out_free_rq_tio_cache; 289 290 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 291 if (!deferred_remove_workqueue) { 292 r = -ENOMEM; 293 goto out_uevent_exit; 294 } 295 296 _major = major; 297 r = register_blkdev(_major, _name); 298 if (r < 0) 299 goto out_free_workqueue; 300 301 if (!_major) 302 _major = r; 303 304 return 0; 305 306 out_free_workqueue: 307 destroy_workqueue(deferred_remove_workqueue); 308 out_uevent_exit: 309 dm_uevent_exit(); 310 out_free_rq_tio_cache: 311 kmem_cache_destroy(_rq_tio_cache); 312 out_free_io_cache: 313 kmem_cache_destroy(_io_cache); 314 315 return r; 316 } 317 318 static void local_exit(void) 319 { 320 flush_scheduled_work(); 321 destroy_workqueue(deferred_remove_workqueue); 322 323 kmem_cache_destroy(_rq_tio_cache); 324 kmem_cache_destroy(_io_cache); 325 unregister_blkdev(_major, _name); 326 dm_uevent_exit(); 327 328 _major = 0; 329 330 DMINFO("cleaned up"); 331 } 332 333 static int (*_inits[])(void) __initdata = { 334 local_init, 335 dm_target_init, 336 dm_linear_init, 337 dm_stripe_init, 338 dm_io_init, 339 dm_kcopyd_init, 340 dm_interface_init, 341 dm_statistics_init, 342 }; 343 344 static void (*_exits[])(void) = { 345 local_exit, 346 dm_target_exit, 347 dm_linear_exit, 348 dm_stripe_exit, 349 dm_io_exit, 350 dm_kcopyd_exit, 351 dm_interface_exit, 352 dm_statistics_exit, 353 }; 354 355 static int __init dm_init(void) 356 { 357 const int count = ARRAY_SIZE(_inits); 358 359 int r, i; 360 361 for (i = 0; i < count; i++) { 362 r = _inits[i](); 363 if (r) 364 goto bad; 365 } 366 367 return 0; 368 369 bad: 370 while (i--) 371 _exits[i](); 372 373 return r; 374 } 375 376 static void __exit dm_exit(void) 377 { 378 int i = ARRAY_SIZE(_exits); 379 380 while (i--) 381 _exits[i](); 382 383 /* 384 * Should be empty by this point. 385 */ 386 idr_destroy(&_minor_idr); 387 } 388 389 /* 390 * Block device functions 391 */ 392 int dm_deleting_md(struct mapped_device *md) 393 { 394 return test_bit(DMF_DELETING, &md->flags); 395 } 396 397 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 398 { 399 struct mapped_device *md; 400 401 spin_lock(&_minor_lock); 402 403 md = bdev->bd_disk->private_data; 404 if (!md) 405 goto out; 406 407 if (test_bit(DMF_FREEING, &md->flags) || 408 dm_deleting_md(md)) { 409 md = NULL; 410 goto out; 411 } 412 413 dm_get(md); 414 atomic_inc(&md->open_count); 415 416 out: 417 spin_unlock(&_minor_lock); 418 419 return md ? 0 : -ENXIO; 420 } 421 422 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 423 { 424 struct mapped_device *md = disk->private_data; 425 426 spin_lock(&_minor_lock); 427 428 if (atomic_dec_and_test(&md->open_count) && 429 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 430 queue_work(deferred_remove_workqueue, &deferred_remove_work); 431 432 dm_put(md); 433 434 spin_unlock(&_minor_lock); 435 } 436 437 int dm_open_count(struct mapped_device *md) 438 { 439 return atomic_read(&md->open_count); 440 } 441 442 /* 443 * Guarantees nothing is using the device before it's deleted. 444 */ 445 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 446 { 447 int r = 0; 448 449 spin_lock(&_minor_lock); 450 451 if (dm_open_count(md)) { 452 r = -EBUSY; 453 if (mark_deferred) 454 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 455 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 456 r = -EEXIST; 457 else 458 set_bit(DMF_DELETING, &md->flags); 459 460 spin_unlock(&_minor_lock); 461 462 return r; 463 } 464 465 int dm_cancel_deferred_remove(struct mapped_device *md) 466 { 467 int r = 0; 468 469 spin_lock(&_minor_lock); 470 471 if (test_bit(DMF_DELETING, &md->flags)) 472 r = -EBUSY; 473 else 474 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 475 476 spin_unlock(&_minor_lock); 477 478 return r; 479 } 480 481 static void do_deferred_remove(struct work_struct *w) 482 { 483 dm_deferred_remove(); 484 } 485 486 sector_t dm_get_size(struct mapped_device *md) 487 { 488 return get_capacity(md->disk); 489 } 490 491 struct request_queue *dm_get_md_queue(struct mapped_device *md) 492 { 493 return md->queue; 494 } 495 496 struct dm_stats *dm_get_stats(struct mapped_device *md) 497 { 498 return &md->stats; 499 } 500 501 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 502 { 503 struct mapped_device *md = bdev->bd_disk->private_data; 504 505 return dm_get_geometry(md, geo); 506 } 507 508 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 509 unsigned int cmd, unsigned long arg) 510 { 511 struct mapped_device *md = bdev->bd_disk->private_data; 512 int srcu_idx; 513 struct dm_table *map; 514 struct dm_target *tgt; 515 int r = -ENOTTY; 516 517 retry: 518 map = dm_get_live_table(md, &srcu_idx); 519 520 if (!map || !dm_table_get_size(map)) 521 goto out; 522 523 /* We only support devices that have a single target */ 524 if (dm_table_get_num_targets(map) != 1) 525 goto out; 526 527 tgt = dm_table_get_target(map, 0); 528 529 if (dm_suspended_md(md)) { 530 r = -EAGAIN; 531 goto out; 532 } 533 534 if (tgt->type->ioctl) 535 r = tgt->type->ioctl(tgt, cmd, arg); 536 537 out: 538 dm_put_live_table(md, srcu_idx); 539 540 if (r == -ENOTCONN) { 541 msleep(10); 542 goto retry; 543 } 544 545 return r; 546 } 547 548 static struct dm_io *alloc_io(struct mapped_device *md) 549 { 550 return mempool_alloc(md->io_pool, GFP_NOIO); 551 } 552 553 static void free_io(struct mapped_device *md, struct dm_io *io) 554 { 555 mempool_free(io, md->io_pool); 556 } 557 558 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 559 { 560 bio_put(&tio->clone); 561 } 562 563 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 564 gfp_t gfp_mask) 565 { 566 return mempool_alloc(md->io_pool, gfp_mask); 567 } 568 569 static void free_rq_tio(struct dm_rq_target_io *tio) 570 { 571 mempool_free(tio, tio->md->io_pool); 572 } 573 574 static int md_in_flight(struct mapped_device *md) 575 { 576 return atomic_read(&md->pending[READ]) + 577 atomic_read(&md->pending[WRITE]); 578 } 579 580 static void start_io_acct(struct dm_io *io) 581 { 582 struct mapped_device *md = io->md; 583 struct bio *bio = io->bio; 584 int cpu; 585 int rw = bio_data_dir(bio); 586 587 io->start_time = jiffies; 588 589 cpu = part_stat_lock(); 590 part_round_stats(cpu, &dm_disk(md)->part0); 591 part_stat_unlock(); 592 atomic_set(&dm_disk(md)->part0.in_flight[rw], 593 atomic_inc_return(&md->pending[rw])); 594 595 if (unlikely(dm_stats_used(&md->stats))) 596 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 597 bio_sectors(bio), false, 0, &io->stats_aux); 598 } 599 600 static void end_io_acct(struct dm_io *io) 601 { 602 struct mapped_device *md = io->md; 603 struct bio *bio = io->bio; 604 unsigned long duration = jiffies - io->start_time; 605 int pending, cpu; 606 int rw = bio_data_dir(bio); 607 608 cpu = part_stat_lock(); 609 part_round_stats(cpu, &dm_disk(md)->part0); 610 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 611 part_stat_unlock(); 612 613 if (unlikely(dm_stats_used(&md->stats))) 614 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 615 bio_sectors(bio), true, duration, &io->stats_aux); 616 617 /* 618 * After this is decremented the bio must not be touched if it is 619 * a flush. 620 */ 621 pending = atomic_dec_return(&md->pending[rw]); 622 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 623 pending += atomic_read(&md->pending[rw^0x1]); 624 625 /* nudge anyone waiting on suspend queue */ 626 if (!pending) 627 wake_up(&md->wait); 628 } 629 630 /* 631 * Add the bio to the list of deferred io. 632 */ 633 static void queue_io(struct mapped_device *md, struct bio *bio) 634 { 635 unsigned long flags; 636 637 spin_lock_irqsave(&md->deferred_lock, flags); 638 bio_list_add(&md->deferred, bio); 639 spin_unlock_irqrestore(&md->deferred_lock, flags); 640 queue_work(md->wq, &md->work); 641 } 642 643 /* 644 * Everyone (including functions in this file), should use this 645 * function to access the md->map field, and make sure they call 646 * dm_put_live_table() when finished. 647 */ 648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 649 { 650 *srcu_idx = srcu_read_lock(&md->io_barrier); 651 652 return srcu_dereference(md->map, &md->io_barrier); 653 } 654 655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 656 { 657 srcu_read_unlock(&md->io_barrier, srcu_idx); 658 } 659 660 void dm_sync_table(struct mapped_device *md) 661 { 662 synchronize_srcu(&md->io_barrier); 663 synchronize_rcu_expedited(); 664 } 665 666 /* 667 * A fast alternative to dm_get_live_table/dm_put_live_table. 668 * The caller must not block between these two functions. 669 */ 670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 671 { 672 rcu_read_lock(); 673 return rcu_dereference(md->map); 674 } 675 676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 677 { 678 rcu_read_unlock(); 679 } 680 681 /* 682 * Open a table device so we can use it as a map destination. 683 */ 684 static int open_table_device(struct table_device *td, dev_t dev, 685 struct mapped_device *md) 686 { 687 static char *_claim_ptr = "I belong to device-mapper"; 688 struct block_device *bdev; 689 690 int r; 691 692 BUG_ON(td->dm_dev.bdev); 693 694 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 695 if (IS_ERR(bdev)) 696 return PTR_ERR(bdev); 697 698 r = bd_link_disk_holder(bdev, dm_disk(md)); 699 if (r) { 700 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 701 return r; 702 } 703 704 td->dm_dev.bdev = bdev; 705 return 0; 706 } 707 708 /* 709 * Close a table device that we've been using. 710 */ 711 static void close_table_device(struct table_device *td, struct mapped_device *md) 712 { 713 if (!td->dm_dev.bdev) 714 return; 715 716 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 717 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 718 td->dm_dev.bdev = NULL; 719 } 720 721 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 722 fmode_t mode) { 723 struct table_device *td; 724 725 list_for_each_entry(td, l, list) 726 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 727 return td; 728 729 return NULL; 730 } 731 732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 733 struct dm_dev **result) { 734 int r; 735 struct table_device *td; 736 737 mutex_lock(&md->table_devices_lock); 738 td = find_table_device(&md->table_devices, dev, mode); 739 if (!td) { 740 td = kmalloc(sizeof(*td), GFP_KERNEL); 741 if (!td) { 742 mutex_unlock(&md->table_devices_lock); 743 return -ENOMEM; 744 } 745 746 td->dm_dev.mode = mode; 747 td->dm_dev.bdev = NULL; 748 749 if ((r = open_table_device(td, dev, md))) { 750 mutex_unlock(&md->table_devices_lock); 751 kfree(td); 752 return r; 753 } 754 755 format_dev_t(td->dm_dev.name, dev); 756 757 atomic_set(&td->count, 0); 758 list_add(&td->list, &md->table_devices); 759 } 760 atomic_inc(&td->count); 761 mutex_unlock(&md->table_devices_lock); 762 763 *result = &td->dm_dev; 764 return 0; 765 } 766 EXPORT_SYMBOL_GPL(dm_get_table_device); 767 768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 769 { 770 struct table_device *td = container_of(d, struct table_device, dm_dev); 771 772 mutex_lock(&md->table_devices_lock); 773 if (atomic_dec_and_test(&td->count)) { 774 close_table_device(td, md); 775 list_del(&td->list); 776 kfree(td); 777 } 778 mutex_unlock(&md->table_devices_lock); 779 } 780 EXPORT_SYMBOL(dm_put_table_device); 781 782 static void free_table_devices(struct list_head *devices) 783 { 784 struct list_head *tmp, *next; 785 786 list_for_each_safe(tmp, next, devices) { 787 struct table_device *td = list_entry(tmp, struct table_device, list); 788 789 DMWARN("dm_destroy: %s still exists with %d references", 790 td->dm_dev.name, atomic_read(&td->count)); 791 kfree(td); 792 } 793 } 794 795 /* 796 * Get the geometry associated with a dm device 797 */ 798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 799 { 800 *geo = md->geometry; 801 802 return 0; 803 } 804 805 /* 806 * Set the geometry of a device. 807 */ 808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 809 { 810 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 811 812 if (geo->start > sz) { 813 DMWARN("Start sector is beyond the geometry limits."); 814 return -EINVAL; 815 } 816 817 md->geometry = *geo; 818 819 return 0; 820 } 821 822 /*----------------------------------------------------------------- 823 * CRUD START: 824 * A more elegant soln is in the works that uses the queue 825 * merge fn, unfortunately there are a couple of changes to 826 * the block layer that I want to make for this. So in the 827 * interests of getting something for people to use I give 828 * you this clearly demarcated crap. 829 *---------------------------------------------------------------*/ 830 831 static int __noflush_suspending(struct mapped_device *md) 832 { 833 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 834 } 835 836 /* 837 * Decrements the number of outstanding ios that a bio has been 838 * cloned into, completing the original io if necc. 839 */ 840 static void dec_pending(struct dm_io *io, int error) 841 { 842 unsigned long flags; 843 int io_error; 844 struct bio *bio; 845 struct mapped_device *md = io->md; 846 847 /* Push-back supersedes any I/O errors */ 848 if (unlikely(error)) { 849 spin_lock_irqsave(&io->endio_lock, flags); 850 if (!(io->error > 0 && __noflush_suspending(md))) 851 io->error = error; 852 spin_unlock_irqrestore(&io->endio_lock, flags); 853 } 854 855 if (atomic_dec_and_test(&io->io_count)) { 856 if (io->error == DM_ENDIO_REQUEUE) { 857 /* 858 * Target requested pushing back the I/O. 859 */ 860 spin_lock_irqsave(&md->deferred_lock, flags); 861 if (__noflush_suspending(md)) 862 bio_list_add_head(&md->deferred, io->bio); 863 else 864 /* noflush suspend was interrupted. */ 865 io->error = -EIO; 866 spin_unlock_irqrestore(&md->deferred_lock, flags); 867 } 868 869 io_error = io->error; 870 bio = io->bio; 871 end_io_acct(io); 872 free_io(md, io); 873 874 if (io_error == DM_ENDIO_REQUEUE) 875 return; 876 877 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 878 /* 879 * Preflush done for flush with data, reissue 880 * without REQ_FLUSH. 881 */ 882 bio->bi_rw &= ~REQ_FLUSH; 883 queue_io(md, bio); 884 } else { 885 /* done with normal IO or empty flush */ 886 trace_block_bio_complete(md->queue, bio, io_error); 887 bio_endio(bio, io_error); 888 } 889 } 890 } 891 892 static void disable_write_same(struct mapped_device *md) 893 { 894 struct queue_limits *limits = dm_get_queue_limits(md); 895 896 /* device doesn't really support WRITE SAME, disable it */ 897 limits->max_write_same_sectors = 0; 898 } 899 900 static void clone_endio(struct bio *bio, int error) 901 { 902 int r = 0; 903 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 904 struct dm_io *io = tio->io; 905 struct mapped_device *md = tio->io->md; 906 dm_endio_fn endio = tio->ti->type->end_io; 907 908 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 909 error = -EIO; 910 911 if (endio) { 912 r = endio(tio->ti, bio, error); 913 if (r < 0 || r == DM_ENDIO_REQUEUE) 914 /* 915 * error and requeue request are handled 916 * in dec_pending(). 917 */ 918 error = r; 919 else if (r == DM_ENDIO_INCOMPLETE) 920 /* The target will handle the io */ 921 return; 922 else if (r) { 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 929 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 930 disable_write_same(md); 931 932 free_tio(md, tio); 933 dec_pending(io, error); 934 } 935 936 /* 937 * Partial completion handling for request-based dm 938 */ 939 static void end_clone_bio(struct bio *clone, int error) 940 { 941 struct dm_rq_clone_bio_info *info = 942 container_of(clone, struct dm_rq_clone_bio_info, clone); 943 struct dm_rq_target_io *tio = info->tio; 944 struct bio *bio = info->orig; 945 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 946 947 bio_put(clone); 948 949 if (tio->error) 950 /* 951 * An error has already been detected on the request. 952 * Once error occurred, just let clone->end_io() handle 953 * the remainder. 954 */ 955 return; 956 else if (error) { 957 /* 958 * Don't notice the error to the upper layer yet. 959 * The error handling decision is made by the target driver, 960 * when the request is completed. 961 */ 962 tio->error = error; 963 return; 964 } 965 966 /* 967 * I/O for the bio successfully completed. 968 * Notice the data completion to the upper layer. 969 */ 970 971 /* 972 * bios are processed from the head of the list. 973 * So the completing bio should always be rq->bio. 974 * If it's not, something wrong is happening. 975 */ 976 if (tio->orig->bio != bio) 977 DMERR("bio completion is going in the middle of the request"); 978 979 /* 980 * Update the original request. 981 * Do not use blk_end_request() here, because it may complete 982 * the original request before the clone, and break the ordering. 983 */ 984 blk_update_request(tio->orig, 0, nr_bytes); 985 } 986 987 /* 988 * Don't touch any member of the md after calling this function because 989 * the md may be freed in dm_put() at the end of this function. 990 * Or do dm_get() before calling this function and dm_put() later. 991 */ 992 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 993 { 994 atomic_dec(&md->pending[rw]); 995 996 /* nudge anyone waiting on suspend queue */ 997 if (!md_in_flight(md)) 998 wake_up(&md->wait); 999 1000 /* 1001 * Run this off this callpath, as drivers could invoke end_io while 1002 * inside their request_fn (and holding the queue lock). Calling 1003 * back into ->request_fn() could deadlock attempting to grab the 1004 * queue lock again. 1005 */ 1006 if (run_queue) 1007 blk_run_queue_async(md->queue); 1008 1009 /* 1010 * dm_put() must be at the end of this function. See the comment above 1011 */ 1012 dm_put(md); 1013 } 1014 1015 static void free_rq_clone(struct request *clone) 1016 { 1017 struct dm_rq_target_io *tio = clone->end_io_data; 1018 1019 blk_rq_unprep_clone(clone); 1020 free_rq_tio(tio); 1021 } 1022 1023 /* 1024 * Complete the clone and the original request. 1025 * Must be called without queue lock. 1026 */ 1027 static void dm_end_request(struct request *clone, int error) 1028 { 1029 int rw = rq_data_dir(clone); 1030 struct dm_rq_target_io *tio = clone->end_io_data; 1031 struct mapped_device *md = tio->md; 1032 struct request *rq = tio->orig; 1033 1034 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1035 rq->errors = clone->errors; 1036 rq->resid_len = clone->resid_len; 1037 1038 if (rq->sense) 1039 /* 1040 * We are using the sense buffer of the original 1041 * request. 1042 * So setting the length of the sense data is enough. 1043 */ 1044 rq->sense_len = clone->sense_len; 1045 } 1046 1047 free_rq_clone(clone); 1048 blk_end_request_all(rq, error); 1049 rq_completed(md, rw, true); 1050 } 1051 1052 static void dm_unprep_request(struct request *rq) 1053 { 1054 struct request *clone = rq->special; 1055 1056 rq->special = NULL; 1057 rq->cmd_flags &= ~REQ_DONTPREP; 1058 1059 free_rq_clone(clone); 1060 } 1061 1062 /* 1063 * Requeue the original request of a clone. 1064 */ 1065 void dm_requeue_unmapped_request(struct request *clone) 1066 { 1067 int rw = rq_data_dir(clone); 1068 struct dm_rq_target_io *tio = clone->end_io_data; 1069 struct mapped_device *md = tio->md; 1070 struct request *rq = tio->orig; 1071 struct request_queue *q = rq->q; 1072 unsigned long flags; 1073 1074 dm_unprep_request(rq); 1075 1076 spin_lock_irqsave(q->queue_lock, flags); 1077 blk_requeue_request(q, rq); 1078 spin_unlock_irqrestore(q->queue_lock, flags); 1079 1080 rq_completed(md, rw, 0); 1081 } 1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 1083 1084 static void __stop_queue(struct request_queue *q) 1085 { 1086 blk_stop_queue(q); 1087 } 1088 1089 static void stop_queue(struct request_queue *q) 1090 { 1091 unsigned long flags; 1092 1093 spin_lock_irqsave(q->queue_lock, flags); 1094 __stop_queue(q); 1095 spin_unlock_irqrestore(q->queue_lock, flags); 1096 } 1097 1098 static void __start_queue(struct request_queue *q) 1099 { 1100 if (blk_queue_stopped(q)) 1101 blk_start_queue(q); 1102 } 1103 1104 static void start_queue(struct request_queue *q) 1105 { 1106 unsigned long flags; 1107 1108 spin_lock_irqsave(q->queue_lock, flags); 1109 __start_queue(q); 1110 spin_unlock_irqrestore(q->queue_lock, flags); 1111 } 1112 1113 static void dm_done(struct request *clone, int error, bool mapped) 1114 { 1115 int r = error; 1116 struct dm_rq_target_io *tio = clone->end_io_data; 1117 dm_request_endio_fn rq_end_io = NULL; 1118 1119 if (tio->ti) { 1120 rq_end_io = tio->ti->type->rq_end_io; 1121 1122 if (mapped && rq_end_io) 1123 r = rq_end_io(tio->ti, clone, error, &tio->info); 1124 } 1125 1126 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1127 !clone->q->limits.max_write_same_sectors)) 1128 disable_write_same(tio->md); 1129 1130 if (r <= 0) 1131 /* The target wants to complete the I/O */ 1132 dm_end_request(clone, r); 1133 else if (r == DM_ENDIO_INCOMPLETE) 1134 /* The target will handle the I/O */ 1135 return; 1136 else if (r == DM_ENDIO_REQUEUE) 1137 /* The target wants to requeue the I/O */ 1138 dm_requeue_unmapped_request(clone); 1139 else { 1140 DMWARN("unimplemented target endio return value: %d", r); 1141 BUG(); 1142 } 1143 } 1144 1145 /* 1146 * Request completion handler for request-based dm 1147 */ 1148 static void dm_softirq_done(struct request *rq) 1149 { 1150 bool mapped = true; 1151 struct request *clone = rq->completion_data; 1152 struct dm_rq_target_io *tio = clone->end_io_data; 1153 1154 if (rq->cmd_flags & REQ_FAILED) 1155 mapped = false; 1156 1157 dm_done(clone, tio->error, mapped); 1158 } 1159 1160 /* 1161 * Complete the clone and the original request with the error status 1162 * through softirq context. 1163 */ 1164 static void dm_complete_request(struct request *clone, int error) 1165 { 1166 struct dm_rq_target_io *tio = clone->end_io_data; 1167 struct request *rq = tio->orig; 1168 1169 tio->error = error; 1170 rq->completion_data = clone; 1171 blk_complete_request(rq); 1172 } 1173 1174 /* 1175 * Complete the not-mapped clone and the original request with the error status 1176 * through softirq context. 1177 * Target's rq_end_io() function isn't called. 1178 * This may be used when the target's map_rq() function fails. 1179 */ 1180 void dm_kill_unmapped_request(struct request *clone, int error) 1181 { 1182 struct dm_rq_target_io *tio = clone->end_io_data; 1183 struct request *rq = tio->orig; 1184 1185 rq->cmd_flags |= REQ_FAILED; 1186 dm_complete_request(clone, error); 1187 } 1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1189 1190 /* 1191 * Called with the queue lock held 1192 */ 1193 static void end_clone_request(struct request *clone, int error) 1194 { 1195 /* 1196 * For just cleaning up the information of the queue in which 1197 * the clone was dispatched. 1198 * The clone is *NOT* freed actually here because it is alloced from 1199 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1200 */ 1201 __blk_put_request(clone->q, clone); 1202 1203 /* 1204 * Actual request completion is done in a softirq context which doesn't 1205 * hold the queue lock. Otherwise, deadlock could occur because: 1206 * - another request may be submitted by the upper level driver 1207 * of the stacking during the completion 1208 * - the submission which requires queue lock may be done 1209 * against this queue 1210 */ 1211 dm_complete_request(clone, error); 1212 } 1213 1214 /* 1215 * Return maximum size of I/O possible at the supplied sector up to the current 1216 * target boundary. 1217 */ 1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1219 { 1220 sector_t target_offset = dm_target_offset(ti, sector); 1221 1222 return ti->len - target_offset; 1223 } 1224 1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1226 { 1227 sector_t len = max_io_len_target_boundary(sector, ti); 1228 sector_t offset, max_len; 1229 1230 /* 1231 * Does the target need to split even further? 1232 */ 1233 if (ti->max_io_len) { 1234 offset = dm_target_offset(ti, sector); 1235 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1236 max_len = sector_div(offset, ti->max_io_len); 1237 else 1238 max_len = offset & (ti->max_io_len - 1); 1239 max_len = ti->max_io_len - max_len; 1240 1241 if (len > max_len) 1242 len = max_len; 1243 } 1244 1245 return len; 1246 } 1247 1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1249 { 1250 if (len > UINT_MAX) { 1251 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1252 (unsigned long long)len, UINT_MAX); 1253 ti->error = "Maximum size of target IO is too large"; 1254 return -EINVAL; 1255 } 1256 1257 ti->max_io_len = (uint32_t) len; 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1262 1263 /* 1264 * A target may call dm_accept_partial_bio only from the map routine. It is 1265 * allowed for all bio types except REQ_FLUSH. 1266 * 1267 * dm_accept_partial_bio informs the dm that the target only wants to process 1268 * additional n_sectors sectors of the bio and the rest of the data should be 1269 * sent in a next bio. 1270 * 1271 * A diagram that explains the arithmetics: 1272 * +--------------------+---------------+-------+ 1273 * | 1 | 2 | 3 | 1274 * +--------------------+---------------+-------+ 1275 * 1276 * <-------------- *tio->len_ptr ---------------> 1277 * <------- bi_size -------> 1278 * <-- n_sectors --> 1279 * 1280 * Region 1 was already iterated over with bio_advance or similar function. 1281 * (it may be empty if the target doesn't use bio_advance) 1282 * Region 2 is the remaining bio size that the target wants to process. 1283 * (it may be empty if region 1 is non-empty, although there is no reason 1284 * to make it empty) 1285 * The target requires that region 3 is to be sent in the next bio. 1286 * 1287 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1288 * the partially processed part (the sum of regions 1+2) must be the same for all 1289 * copies of the bio. 1290 */ 1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1292 { 1293 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1294 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1295 BUG_ON(bio->bi_rw & REQ_FLUSH); 1296 BUG_ON(bi_size > *tio->len_ptr); 1297 BUG_ON(n_sectors > bi_size); 1298 *tio->len_ptr -= bi_size - n_sectors; 1299 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1300 } 1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1302 1303 static void __map_bio(struct dm_target_io *tio) 1304 { 1305 int r; 1306 sector_t sector; 1307 struct mapped_device *md; 1308 struct bio *clone = &tio->clone; 1309 struct dm_target *ti = tio->ti; 1310 1311 clone->bi_end_io = clone_endio; 1312 1313 /* 1314 * Map the clone. If r == 0 we don't need to do 1315 * anything, the target has assumed ownership of 1316 * this io. 1317 */ 1318 atomic_inc(&tio->io->io_count); 1319 sector = clone->bi_iter.bi_sector; 1320 r = ti->type->map(ti, clone); 1321 if (r == DM_MAPIO_REMAPPED) { 1322 /* the bio has been remapped so dispatch it */ 1323 1324 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1325 tio->io->bio->bi_bdev->bd_dev, sector); 1326 1327 generic_make_request(clone); 1328 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1329 /* error the io and bail out, or requeue it if needed */ 1330 md = tio->io->md; 1331 dec_pending(tio->io, r); 1332 free_tio(md, tio); 1333 } else if (r) { 1334 DMWARN("unimplemented target map return value: %d", r); 1335 BUG(); 1336 } 1337 } 1338 1339 struct clone_info { 1340 struct mapped_device *md; 1341 struct dm_table *map; 1342 struct bio *bio; 1343 struct dm_io *io; 1344 sector_t sector; 1345 unsigned sector_count; 1346 }; 1347 1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1349 { 1350 bio->bi_iter.bi_sector = sector; 1351 bio->bi_iter.bi_size = to_bytes(len); 1352 } 1353 1354 /* 1355 * Creates a bio that consists of range of complete bvecs. 1356 */ 1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1358 sector_t sector, unsigned len) 1359 { 1360 struct bio *clone = &tio->clone; 1361 1362 __bio_clone_fast(clone, bio); 1363 1364 if (bio_integrity(bio)) 1365 bio_integrity_clone(clone, bio, GFP_NOIO); 1366 1367 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1368 clone->bi_iter.bi_size = to_bytes(len); 1369 1370 if (bio_integrity(bio)) 1371 bio_integrity_trim(clone, 0, len); 1372 } 1373 1374 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1375 struct dm_target *ti, 1376 unsigned target_bio_nr) 1377 { 1378 struct dm_target_io *tio; 1379 struct bio *clone; 1380 1381 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1382 tio = container_of(clone, struct dm_target_io, clone); 1383 1384 tio->io = ci->io; 1385 tio->ti = ti; 1386 tio->target_bio_nr = target_bio_nr; 1387 1388 return tio; 1389 } 1390 1391 static void __clone_and_map_simple_bio(struct clone_info *ci, 1392 struct dm_target *ti, 1393 unsigned target_bio_nr, unsigned *len) 1394 { 1395 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1396 struct bio *clone = &tio->clone; 1397 1398 tio->len_ptr = len; 1399 1400 __bio_clone_fast(clone, ci->bio); 1401 if (len) 1402 bio_setup_sector(clone, ci->sector, *len); 1403 1404 __map_bio(tio); 1405 } 1406 1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1408 unsigned num_bios, unsigned *len) 1409 { 1410 unsigned target_bio_nr; 1411 1412 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1413 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1414 } 1415 1416 static int __send_empty_flush(struct clone_info *ci) 1417 { 1418 unsigned target_nr = 0; 1419 struct dm_target *ti; 1420 1421 BUG_ON(bio_has_data(ci->bio)); 1422 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1423 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1424 1425 return 0; 1426 } 1427 1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1429 sector_t sector, unsigned *len) 1430 { 1431 struct bio *bio = ci->bio; 1432 struct dm_target_io *tio; 1433 unsigned target_bio_nr; 1434 unsigned num_target_bios = 1; 1435 1436 /* 1437 * Does the target want to receive duplicate copies of the bio? 1438 */ 1439 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1440 num_target_bios = ti->num_write_bios(ti, bio); 1441 1442 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1443 tio = alloc_tio(ci, ti, target_bio_nr); 1444 tio->len_ptr = len; 1445 clone_bio(tio, bio, sector, *len); 1446 __map_bio(tio); 1447 } 1448 } 1449 1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1451 1452 static unsigned get_num_discard_bios(struct dm_target *ti) 1453 { 1454 return ti->num_discard_bios; 1455 } 1456 1457 static unsigned get_num_write_same_bios(struct dm_target *ti) 1458 { 1459 return ti->num_write_same_bios; 1460 } 1461 1462 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1463 1464 static bool is_split_required_for_discard(struct dm_target *ti) 1465 { 1466 return ti->split_discard_bios; 1467 } 1468 1469 static int __send_changing_extent_only(struct clone_info *ci, 1470 get_num_bios_fn get_num_bios, 1471 is_split_required_fn is_split_required) 1472 { 1473 struct dm_target *ti; 1474 unsigned len; 1475 unsigned num_bios; 1476 1477 do { 1478 ti = dm_table_find_target(ci->map, ci->sector); 1479 if (!dm_target_is_valid(ti)) 1480 return -EIO; 1481 1482 /* 1483 * Even though the device advertised support for this type of 1484 * request, that does not mean every target supports it, and 1485 * reconfiguration might also have changed that since the 1486 * check was performed. 1487 */ 1488 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1489 if (!num_bios) 1490 return -EOPNOTSUPP; 1491 1492 if (is_split_required && !is_split_required(ti)) 1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1494 else 1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1496 1497 __send_duplicate_bios(ci, ti, num_bios, &len); 1498 1499 ci->sector += len; 1500 } while (ci->sector_count -= len); 1501 1502 return 0; 1503 } 1504 1505 static int __send_discard(struct clone_info *ci) 1506 { 1507 return __send_changing_extent_only(ci, get_num_discard_bios, 1508 is_split_required_for_discard); 1509 } 1510 1511 static int __send_write_same(struct clone_info *ci) 1512 { 1513 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1514 } 1515 1516 /* 1517 * Select the correct strategy for processing a non-flush bio. 1518 */ 1519 static int __split_and_process_non_flush(struct clone_info *ci) 1520 { 1521 struct bio *bio = ci->bio; 1522 struct dm_target *ti; 1523 unsigned len; 1524 1525 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1526 return __send_discard(ci); 1527 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1528 return __send_write_same(ci); 1529 1530 ti = dm_table_find_target(ci->map, ci->sector); 1531 if (!dm_target_is_valid(ti)) 1532 return -EIO; 1533 1534 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1535 1536 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1537 1538 ci->sector += len; 1539 ci->sector_count -= len; 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Entry point to split a bio into clones and submit them to the targets. 1546 */ 1547 static void __split_and_process_bio(struct mapped_device *md, 1548 struct dm_table *map, struct bio *bio) 1549 { 1550 struct clone_info ci; 1551 int error = 0; 1552 1553 if (unlikely(!map)) { 1554 bio_io_error(bio); 1555 return; 1556 } 1557 1558 ci.map = map; 1559 ci.md = md; 1560 ci.io = alloc_io(md); 1561 ci.io->error = 0; 1562 atomic_set(&ci.io->io_count, 1); 1563 ci.io->bio = bio; 1564 ci.io->md = md; 1565 spin_lock_init(&ci.io->endio_lock); 1566 ci.sector = bio->bi_iter.bi_sector; 1567 1568 start_io_acct(ci.io); 1569 1570 if (bio->bi_rw & REQ_FLUSH) { 1571 ci.bio = &ci.md->flush_bio; 1572 ci.sector_count = 0; 1573 error = __send_empty_flush(&ci); 1574 /* dec_pending submits any data associated with flush */ 1575 } else { 1576 ci.bio = bio; 1577 ci.sector_count = bio_sectors(bio); 1578 while (ci.sector_count && !error) 1579 error = __split_and_process_non_flush(&ci); 1580 } 1581 1582 /* drop the extra reference count */ 1583 dec_pending(ci.io, error); 1584 } 1585 /*----------------------------------------------------------------- 1586 * CRUD END 1587 *---------------------------------------------------------------*/ 1588 1589 static int dm_merge_bvec(struct request_queue *q, 1590 struct bvec_merge_data *bvm, 1591 struct bio_vec *biovec) 1592 { 1593 struct mapped_device *md = q->queuedata; 1594 struct dm_table *map = dm_get_live_table_fast(md); 1595 struct dm_target *ti; 1596 sector_t max_sectors; 1597 int max_size = 0; 1598 1599 if (unlikely(!map)) 1600 goto out; 1601 1602 ti = dm_table_find_target(map, bvm->bi_sector); 1603 if (!dm_target_is_valid(ti)) 1604 goto out; 1605 1606 /* 1607 * Find maximum amount of I/O that won't need splitting 1608 */ 1609 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1610 (sector_t) BIO_MAX_SECTORS); 1611 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1612 if (max_size < 0) 1613 max_size = 0; 1614 1615 /* 1616 * merge_bvec_fn() returns number of bytes 1617 * it can accept at this offset 1618 * max is precomputed maximal io size 1619 */ 1620 if (max_size && ti->type->merge) 1621 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1622 /* 1623 * If the target doesn't support merge method and some of the devices 1624 * provided their merge_bvec method (we know this by looking at 1625 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1626 * entries. So always set max_size to 0, and the code below allows 1627 * just one page. 1628 */ 1629 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1630 max_size = 0; 1631 1632 out: 1633 dm_put_live_table_fast(md); 1634 /* 1635 * Always allow an entire first page 1636 */ 1637 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1638 max_size = biovec->bv_len; 1639 1640 return max_size; 1641 } 1642 1643 /* 1644 * The request function that just remaps the bio built up by 1645 * dm_merge_bvec. 1646 */ 1647 static void _dm_request(struct request_queue *q, struct bio *bio) 1648 { 1649 int rw = bio_data_dir(bio); 1650 struct mapped_device *md = q->queuedata; 1651 int cpu; 1652 int srcu_idx; 1653 struct dm_table *map; 1654 1655 map = dm_get_live_table(md, &srcu_idx); 1656 1657 cpu = part_stat_lock(); 1658 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1659 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1660 part_stat_unlock(); 1661 1662 /* if we're suspended, we have to queue this io for later */ 1663 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1664 dm_put_live_table(md, srcu_idx); 1665 1666 if (bio_rw(bio) != READA) 1667 queue_io(md, bio); 1668 else 1669 bio_io_error(bio); 1670 return; 1671 } 1672 1673 __split_and_process_bio(md, map, bio); 1674 dm_put_live_table(md, srcu_idx); 1675 return; 1676 } 1677 1678 int dm_request_based(struct mapped_device *md) 1679 { 1680 return blk_queue_stackable(md->queue); 1681 } 1682 1683 static void dm_request(struct request_queue *q, struct bio *bio) 1684 { 1685 struct mapped_device *md = q->queuedata; 1686 1687 if (dm_request_based(md)) 1688 blk_queue_bio(q, bio); 1689 else 1690 _dm_request(q, bio); 1691 } 1692 1693 void dm_dispatch_request(struct request *rq) 1694 { 1695 int r; 1696 1697 if (blk_queue_io_stat(rq->q)) 1698 rq->cmd_flags |= REQ_IO_STAT; 1699 1700 rq->start_time = jiffies; 1701 r = blk_insert_cloned_request(rq->q, rq); 1702 if (r) 1703 dm_complete_request(rq, r); 1704 } 1705 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1706 1707 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1708 void *data) 1709 { 1710 struct dm_rq_target_io *tio = data; 1711 struct dm_rq_clone_bio_info *info = 1712 container_of(bio, struct dm_rq_clone_bio_info, clone); 1713 1714 info->orig = bio_orig; 1715 info->tio = tio; 1716 bio->bi_end_io = end_clone_bio; 1717 1718 return 0; 1719 } 1720 1721 static int setup_clone(struct request *clone, struct request *rq, 1722 struct dm_rq_target_io *tio) 1723 { 1724 int r; 1725 1726 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1727 dm_rq_bio_constructor, tio); 1728 if (r) 1729 return r; 1730 1731 clone->cmd = rq->cmd; 1732 clone->cmd_len = rq->cmd_len; 1733 clone->sense = rq->sense; 1734 clone->end_io = end_clone_request; 1735 clone->end_io_data = tio; 1736 1737 return 0; 1738 } 1739 1740 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1741 gfp_t gfp_mask) 1742 { 1743 struct request *clone; 1744 struct dm_rq_target_io *tio; 1745 1746 tio = alloc_rq_tio(md, gfp_mask); 1747 if (!tio) 1748 return NULL; 1749 1750 tio->md = md; 1751 tio->ti = NULL; 1752 tio->orig = rq; 1753 tio->error = 0; 1754 memset(&tio->info, 0, sizeof(tio->info)); 1755 1756 clone = &tio->clone; 1757 if (setup_clone(clone, rq, tio)) { 1758 /* -ENOMEM */ 1759 free_rq_tio(tio); 1760 return NULL; 1761 } 1762 1763 return clone; 1764 } 1765 1766 /* 1767 * Called with the queue lock held. 1768 */ 1769 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1770 { 1771 struct mapped_device *md = q->queuedata; 1772 struct request *clone; 1773 1774 if (unlikely(rq->special)) { 1775 DMWARN("Already has something in rq->special."); 1776 return BLKPREP_KILL; 1777 } 1778 1779 clone = clone_rq(rq, md, GFP_ATOMIC); 1780 if (!clone) 1781 return BLKPREP_DEFER; 1782 1783 rq->special = clone; 1784 rq->cmd_flags |= REQ_DONTPREP; 1785 1786 return BLKPREP_OK; 1787 } 1788 1789 /* 1790 * Returns: 1791 * 0 : the request has been processed (not requeued) 1792 * !0 : the request has been requeued 1793 */ 1794 static int map_request(struct dm_target *ti, struct request *clone, 1795 struct mapped_device *md) 1796 { 1797 int r, requeued = 0; 1798 struct dm_rq_target_io *tio = clone->end_io_data; 1799 1800 tio->ti = ti; 1801 r = ti->type->map_rq(ti, clone, &tio->info); 1802 switch (r) { 1803 case DM_MAPIO_SUBMITTED: 1804 /* The target has taken the I/O to submit by itself later */ 1805 break; 1806 case DM_MAPIO_REMAPPED: 1807 /* The target has remapped the I/O so dispatch it */ 1808 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1809 blk_rq_pos(tio->orig)); 1810 dm_dispatch_request(clone); 1811 break; 1812 case DM_MAPIO_REQUEUE: 1813 /* The target wants to requeue the I/O */ 1814 dm_requeue_unmapped_request(clone); 1815 requeued = 1; 1816 break; 1817 default: 1818 if (r > 0) { 1819 DMWARN("unimplemented target map return value: %d", r); 1820 BUG(); 1821 } 1822 1823 /* The target wants to complete the I/O */ 1824 dm_kill_unmapped_request(clone, r); 1825 break; 1826 } 1827 1828 return requeued; 1829 } 1830 1831 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1832 { 1833 struct request *clone; 1834 1835 blk_start_request(orig); 1836 clone = orig->special; 1837 atomic_inc(&md->pending[rq_data_dir(clone)]); 1838 1839 /* 1840 * Hold the md reference here for the in-flight I/O. 1841 * We can't rely on the reference count by device opener, 1842 * because the device may be closed during the request completion 1843 * when all bios are completed. 1844 * See the comment in rq_completed() too. 1845 */ 1846 dm_get(md); 1847 1848 return clone; 1849 } 1850 1851 /* 1852 * q->request_fn for request-based dm. 1853 * Called with the queue lock held. 1854 */ 1855 static void dm_request_fn(struct request_queue *q) 1856 { 1857 struct mapped_device *md = q->queuedata; 1858 int srcu_idx; 1859 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1860 struct dm_target *ti; 1861 struct request *rq, *clone; 1862 sector_t pos; 1863 1864 /* 1865 * For suspend, check blk_queue_stopped() and increment 1866 * ->pending within a single queue_lock not to increment the 1867 * number of in-flight I/Os after the queue is stopped in 1868 * dm_suspend(). 1869 */ 1870 while (!blk_queue_stopped(q)) { 1871 rq = blk_peek_request(q); 1872 if (!rq) 1873 goto delay_and_out; 1874 1875 /* always use block 0 to find the target for flushes for now */ 1876 pos = 0; 1877 if (!(rq->cmd_flags & REQ_FLUSH)) 1878 pos = blk_rq_pos(rq); 1879 1880 ti = dm_table_find_target(map, pos); 1881 if (!dm_target_is_valid(ti)) { 1882 /* 1883 * Must perform setup, that dm_done() requires, 1884 * before calling dm_kill_unmapped_request 1885 */ 1886 DMERR_LIMIT("request attempted access beyond the end of device"); 1887 clone = dm_start_request(md, rq); 1888 dm_kill_unmapped_request(clone, -EIO); 1889 continue; 1890 } 1891 1892 if (ti->type->busy && ti->type->busy(ti)) 1893 goto delay_and_out; 1894 1895 clone = dm_start_request(md, rq); 1896 1897 spin_unlock(q->queue_lock); 1898 if (map_request(ti, clone, md)) 1899 goto requeued; 1900 1901 BUG_ON(!irqs_disabled()); 1902 spin_lock(q->queue_lock); 1903 } 1904 1905 goto out; 1906 1907 requeued: 1908 BUG_ON(!irqs_disabled()); 1909 spin_lock(q->queue_lock); 1910 1911 delay_and_out: 1912 blk_delay_queue(q, HZ / 10); 1913 out: 1914 dm_put_live_table(md, srcu_idx); 1915 } 1916 1917 int dm_underlying_device_busy(struct request_queue *q) 1918 { 1919 return blk_lld_busy(q); 1920 } 1921 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1922 1923 static int dm_lld_busy(struct request_queue *q) 1924 { 1925 int r; 1926 struct mapped_device *md = q->queuedata; 1927 struct dm_table *map = dm_get_live_table_fast(md); 1928 1929 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1930 r = 1; 1931 else 1932 r = dm_table_any_busy_target(map); 1933 1934 dm_put_live_table_fast(md); 1935 1936 return r; 1937 } 1938 1939 static int dm_any_congested(void *congested_data, int bdi_bits) 1940 { 1941 int r = bdi_bits; 1942 struct mapped_device *md = congested_data; 1943 struct dm_table *map; 1944 1945 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1946 map = dm_get_live_table_fast(md); 1947 if (map) { 1948 /* 1949 * Request-based dm cares about only own queue for 1950 * the query about congestion status of request_queue 1951 */ 1952 if (dm_request_based(md)) 1953 r = md->queue->backing_dev_info.state & 1954 bdi_bits; 1955 else 1956 r = dm_table_any_congested(map, bdi_bits); 1957 } 1958 dm_put_live_table_fast(md); 1959 } 1960 1961 return r; 1962 } 1963 1964 /*----------------------------------------------------------------- 1965 * An IDR is used to keep track of allocated minor numbers. 1966 *---------------------------------------------------------------*/ 1967 static void free_minor(int minor) 1968 { 1969 spin_lock(&_minor_lock); 1970 idr_remove(&_minor_idr, minor); 1971 spin_unlock(&_minor_lock); 1972 } 1973 1974 /* 1975 * See if the device with a specific minor # is free. 1976 */ 1977 static int specific_minor(int minor) 1978 { 1979 int r; 1980 1981 if (minor >= (1 << MINORBITS)) 1982 return -EINVAL; 1983 1984 idr_preload(GFP_KERNEL); 1985 spin_lock(&_minor_lock); 1986 1987 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1988 1989 spin_unlock(&_minor_lock); 1990 idr_preload_end(); 1991 if (r < 0) 1992 return r == -ENOSPC ? -EBUSY : r; 1993 return 0; 1994 } 1995 1996 static int next_free_minor(int *minor) 1997 { 1998 int r; 1999 2000 idr_preload(GFP_KERNEL); 2001 spin_lock(&_minor_lock); 2002 2003 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2004 2005 spin_unlock(&_minor_lock); 2006 idr_preload_end(); 2007 if (r < 0) 2008 return r; 2009 *minor = r; 2010 return 0; 2011 } 2012 2013 static const struct block_device_operations dm_blk_dops; 2014 2015 static void dm_wq_work(struct work_struct *work); 2016 2017 static void dm_init_md_queue(struct mapped_device *md) 2018 { 2019 /* 2020 * Request-based dm devices cannot be stacked on top of bio-based dm 2021 * devices. The type of this dm device has not been decided yet. 2022 * The type is decided at the first table loading time. 2023 * To prevent problematic device stacking, clear the queue flag 2024 * for request stacking support until then. 2025 * 2026 * This queue is new, so no concurrency on the queue_flags. 2027 */ 2028 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2029 2030 md->queue->queuedata = md; 2031 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2032 md->queue->backing_dev_info.congested_data = md; 2033 blk_queue_make_request(md->queue, dm_request); 2034 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2035 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2036 } 2037 2038 /* 2039 * Allocate and initialise a blank device with a given minor. 2040 */ 2041 static struct mapped_device *alloc_dev(int minor) 2042 { 2043 int r; 2044 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2045 void *old_md; 2046 2047 if (!md) { 2048 DMWARN("unable to allocate device, out of memory."); 2049 return NULL; 2050 } 2051 2052 if (!try_module_get(THIS_MODULE)) 2053 goto bad_module_get; 2054 2055 /* get a minor number for the dev */ 2056 if (minor == DM_ANY_MINOR) 2057 r = next_free_minor(&minor); 2058 else 2059 r = specific_minor(minor); 2060 if (r < 0) 2061 goto bad_minor; 2062 2063 r = init_srcu_struct(&md->io_barrier); 2064 if (r < 0) 2065 goto bad_io_barrier; 2066 2067 md->type = DM_TYPE_NONE; 2068 mutex_init(&md->suspend_lock); 2069 mutex_init(&md->type_lock); 2070 mutex_init(&md->table_devices_lock); 2071 spin_lock_init(&md->deferred_lock); 2072 atomic_set(&md->holders, 1); 2073 atomic_set(&md->open_count, 0); 2074 atomic_set(&md->event_nr, 0); 2075 atomic_set(&md->uevent_seq, 0); 2076 INIT_LIST_HEAD(&md->uevent_list); 2077 INIT_LIST_HEAD(&md->table_devices); 2078 spin_lock_init(&md->uevent_lock); 2079 2080 md->queue = blk_alloc_queue(GFP_KERNEL); 2081 if (!md->queue) 2082 goto bad_queue; 2083 2084 dm_init_md_queue(md); 2085 2086 md->disk = alloc_disk(1); 2087 if (!md->disk) 2088 goto bad_disk; 2089 2090 atomic_set(&md->pending[0], 0); 2091 atomic_set(&md->pending[1], 0); 2092 init_waitqueue_head(&md->wait); 2093 INIT_WORK(&md->work, dm_wq_work); 2094 init_waitqueue_head(&md->eventq); 2095 init_completion(&md->kobj_holder.completion); 2096 2097 md->disk->major = _major; 2098 md->disk->first_minor = minor; 2099 md->disk->fops = &dm_blk_dops; 2100 md->disk->queue = md->queue; 2101 md->disk->private_data = md; 2102 sprintf(md->disk->disk_name, "dm-%d", minor); 2103 add_disk(md->disk); 2104 format_dev_t(md->name, MKDEV(_major, minor)); 2105 2106 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2107 if (!md->wq) 2108 goto bad_thread; 2109 2110 md->bdev = bdget_disk(md->disk, 0); 2111 if (!md->bdev) 2112 goto bad_bdev; 2113 2114 bio_init(&md->flush_bio); 2115 md->flush_bio.bi_bdev = md->bdev; 2116 md->flush_bio.bi_rw = WRITE_FLUSH; 2117 2118 dm_stats_init(&md->stats); 2119 2120 /* Populate the mapping, nobody knows we exist yet */ 2121 spin_lock(&_minor_lock); 2122 old_md = idr_replace(&_minor_idr, md, minor); 2123 spin_unlock(&_minor_lock); 2124 2125 BUG_ON(old_md != MINOR_ALLOCED); 2126 2127 return md; 2128 2129 bad_bdev: 2130 destroy_workqueue(md->wq); 2131 bad_thread: 2132 del_gendisk(md->disk); 2133 put_disk(md->disk); 2134 bad_disk: 2135 blk_cleanup_queue(md->queue); 2136 bad_queue: 2137 cleanup_srcu_struct(&md->io_barrier); 2138 bad_io_barrier: 2139 free_minor(minor); 2140 bad_minor: 2141 module_put(THIS_MODULE); 2142 bad_module_get: 2143 kfree(md); 2144 return NULL; 2145 } 2146 2147 static void unlock_fs(struct mapped_device *md); 2148 2149 static void free_dev(struct mapped_device *md) 2150 { 2151 int minor = MINOR(disk_devt(md->disk)); 2152 2153 unlock_fs(md); 2154 bdput(md->bdev); 2155 destroy_workqueue(md->wq); 2156 if (md->io_pool) 2157 mempool_destroy(md->io_pool); 2158 if (md->bs) 2159 bioset_free(md->bs); 2160 blk_integrity_unregister(md->disk); 2161 del_gendisk(md->disk); 2162 cleanup_srcu_struct(&md->io_barrier); 2163 free_table_devices(&md->table_devices); 2164 free_minor(minor); 2165 2166 spin_lock(&_minor_lock); 2167 md->disk->private_data = NULL; 2168 spin_unlock(&_minor_lock); 2169 2170 put_disk(md->disk); 2171 blk_cleanup_queue(md->queue); 2172 dm_stats_cleanup(&md->stats); 2173 module_put(THIS_MODULE); 2174 kfree(md); 2175 } 2176 2177 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2178 { 2179 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2180 2181 if (md->io_pool && md->bs) { 2182 /* The md already has necessary mempools. */ 2183 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2184 /* 2185 * Reload bioset because front_pad may have changed 2186 * because a different table was loaded. 2187 */ 2188 bioset_free(md->bs); 2189 md->bs = p->bs; 2190 p->bs = NULL; 2191 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2192 /* 2193 * There's no need to reload with request-based dm 2194 * because the size of front_pad doesn't change. 2195 * Note for future: If you are to reload bioset, 2196 * prep-ed requests in the queue may refer 2197 * to bio from the old bioset, so you must walk 2198 * through the queue to unprep. 2199 */ 2200 } 2201 goto out; 2202 } 2203 2204 BUG_ON(!p || md->io_pool || md->bs); 2205 2206 md->io_pool = p->io_pool; 2207 p->io_pool = NULL; 2208 md->bs = p->bs; 2209 p->bs = NULL; 2210 2211 out: 2212 /* mempool bind completed, now no need any mempools in the table */ 2213 dm_table_free_md_mempools(t); 2214 } 2215 2216 /* 2217 * Bind a table to the device. 2218 */ 2219 static void event_callback(void *context) 2220 { 2221 unsigned long flags; 2222 LIST_HEAD(uevents); 2223 struct mapped_device *md = (struct mapped_device *) context; 2224 2225 spin_lock_irqsave(&md->uevent_lock, flags); 2226 list_splice_init(&md->uevent_list, &uevents); 2227 spin_unlock_irqrestore(&md->uevent_lock, flags); 2228 2229 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2230 2231 atomic_inc(&md->event_nr); 2232 wake_up(&md->eventq); 2233 } 2234 2235 /* 2236 * Protected by md->suspend_lock obtained by dm_swap_table(). 2237 */ 2238 static void __set_size(struct mapped_device *md, sector_t size) 2239 { 2240 set_capacity(md->disk, size); 2241 2242 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2243 } 2244 2245 /* 2246 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2247 * 2248 * If this function returns 0, then the device is either a non-dm 2249 * device without a merge_bvec_fn, or it is a dm device that is 2250 * able to split any bios it receives that are too big. 2251 */ 2252 int dm_queue_merge_is_compulsory(struct request_queue *q) 2253 { 2254 struct mapped_device *dev_md; 2255 2256 if (!q->merge_bvec_fn) 2257 return 0; 2258 2259 if (q->make_request_fn == dm_request) { 2260 dev_md = q->queuedata; 2261 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2262 return 0; 2263 } 2264 2265 return 1; 2266 } 2267 2268 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2269 struct dm_dev *dev, sector_t start, 2270 sector_t len, void *data) 2271 { 2272 struct block_device *bdev = dev->bdev; 2273 struct request_queue *q = bdev_get_queue(bdev); 2274 2275 return dm_queue_merge_is_compulsory(q); 2276 } 2277 2278 /* 2279 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2280 * on the properties of the underlying devices. 2281 */ 2282 static int dm_table_merge_is_optional(struct dm_table *table) 2283 { 2284 unsigned i = 0; 2285 struct dm_target *ti; 2286 2287 while (i < dm_table_get_num_targets(table)) { 2288 ti = dm_table_get_target(table, i++); 2289 2290 if (ti->type->iterate_devices && 2291 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2292 return 0; 2293 } 2294 2295 return 1; 2296 } 2297 2298 /* 2299 * Returns old map, which caller must destroy. 2300 */ 2301 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2302 struct queue_limits *limits) 2303 { 2304 struct dm_table *old_map; 2305 struct request_queue *q = md->queue; 2306 sector_t size; 2307 int merge_is_optional; 2308 2309 size = dm_table_get_size(t); 2310 2311 /* 2312 * Wipe any geometry if the size of the table changed. 2313 */ 2314 if (size != dm_get_size(md)) 2315 memset(&md->geometry, 0, sizeof(md->geometry)); 2316 2317 __set_size(md, size); 2318 2319 dm_table_event_callback(t, event_callback, md); 2320 2321 /* 2322 * The queue hasn't been stopped yet, if the old table type wasn't 2323 * for request-based during suspension. So stop it to prevent 2324 * I/O mapping before resume. 2325 * This must be done before setting the queue restrictions, 2326 * because request-based dm may be run just after the setting. 2327 */ 2328 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2329 stop_queue(q); 2330 2331 __bind_mempools(md, t); 2332 2333 merge_is_optional = dm_table_merge_is_optional(t); 2334 2335 old_map = md->map; 2336 rcu_assign_pointer(md->map, t); 2337 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2338 2339 dm_table_set_restrictions(t, q, limits); 2340 if (merge_is_optional) 2341 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2342 else 2343 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2344 dm_sync_table(md); 2345 2346 return old_map; 2347 } 2348 2349 /* 2350 * Returns unbound table for the caller to free. 2351 */ 2352 static struct dm_table *__unbind(struct mapped_device *md) 2353 { 2354 struct dm_table *map = md->map; 2355 2356 if (!map) 2357 return NULL; 2358 2359 dm_table_event_callback(map, NULL, NULL); 2360 RCU_INIT_POINTER(md->map, NULL); 2361 dm_sync_table(md); 2362 2363 return map; 2364 } 2365 2366 /* 2367 * Constructor for a new device. 2368 */ 2369 int dm_create(int minor, struct mapped_device **result) 2370 { 2371 struct mapped_device *md; 2372 2373 md = alloc_dev(minor); 2374 if (!md) 2375 return -ENXIO; 2376 2377 dm_sysfs_init(md); 2378 2379 *result = md; 2380 return 0; 2381 } 2382 2383 /* 2384 * Functions to manage md->type. 2385 * All are required to hold md->type_lock. 2386 */ 2387 void dm_lock_md_type(struct mapped_device *md) 2388 { 2389 mutex_lock(&md->type_lock); 2390 } 2391 2392 void dm_unlock_md_type(struct mapped_device *md) 2393 { 2394 mutex_unlock(&md->type_lock); 2395 } 2396 2397 void dm_set_md_type(struct mapped_device *md, unsigned type) 2398 { 2399 BUG_ON(!mutex_is_locked(&md->type_lock)); 2400 md->type = type; 2401 } 2402 2403 unsigned dm_get_md_type(struct mapped_device *md) 2404 { 2405 BUG_ON(!mutex_is_locked(&md->type_lock)); 2406 return md->type; 2407 } 2408 2409 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2410 { 2411 return md->immutable_target_type; 2412 } 2413 2414 /* 2415 * The queue_limits are only valid as long as you have a reference 2416 * count on 'md'. 2417 */ 2418 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2419 { 2420 BUG_ON(!atomic_read(&md->holders)); 2421 return &md->queue->limits; 2422 } 2423 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2424 2425 /* 2426 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2427 */ 2428 static int dm_init_request_based_queue(struct mapped_device *md) 2429 { 2430 struct request_queue *q = NULL; 2431 2432 if (md->queue->elevator) 2433 return 1; 2434 2435 /* Fully initialize the queue */ 2436 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2437 if (!q) 2438 return 0; 2439 2440 md->queue = q; 2441 dm_init_md_queue(md); 2442 blk_queue_softirq_done(md->queue, dm_softirq_done); 2443 blk_queue_prep_rq(md->queue, dm_prep_fn); 2444 blk_queue_lld_busy(md->queue, dm_lld_busy); 2445 2446 elv_register_queue(md->queue); 2447 2448 return 1; 2449 } 2450 2451 /* 2452 * Setup the DM device's queue based on md's type 2453 */ 2454 int dm_setup_md_queue(struct mapped_device *md) 2455 { 2456 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2457 !dm_init_request_based_queue(md)) { 2458 DMWARN("Cannot initialize queue for request-based mapped device"); 2459 return -EINVAL; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static struct mapped_device *dm_find_md(dev_t dev) 2466 { 2467 struct mapped_device *md; 2468 unsigned minor = MINOR(dev); 2469 2470 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2471 return NULL; 2472 2473 spin_lock(&_minor_lock); 2474 2475 md = idr_find(&_minor_idr, minor); 2476 if (md && (md == MINOR_ALLOCED || 2477 (MINOR(disk_devt(dm_disk(md))) != minor) || 2478 dm_deleting_md(md) || 2479 test_bit(DMF_FREEING, &md->flags))) { 2480 md = NULL; 2481 goto out; 2482 } 2483 2484 out: 2485 spin_unlock(&_minor_lock); 2486 2487 return md; 2488 } 2489 2490 struct mapped_device *dm_get_md(dev_t dev) 2491 { 2492 struct mapped_device *md = dm_find_md(dev); 2493 2494 if (md) 2495 dm_get(md); 2496 2497 return md; 2498 } 2499 EXPORT_SYMBOL_GPL(dm_get_md); 2500 2501 void *dm_get_mdptr(struct mapped_device *md) 2502 { 2503 return md->interface_ptr; 2504 } 2505 2506 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2507 { 2508 md->interface_ptr = ptr; 2509 } 2510 2511 void dm_get(struct mapped_device *md) 2512 { 2513 atomic_inc(&md->holders); 2514 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2515 } 2516 2517 const char *dm_device_name(struct mapped_device *md) 2518 { 2519 return md->name; 2520 } 2521 EXPORT_SYMBOL_GPL(dm_device_name); 2522 2523 static void __dm_destroy(struct mapped_device *md, bool wait) 2524 { 2525 struct dm_table *map; 2526 int srcu_idx; 2527 2528 might_sleep(); 2529 2530 spin_lock(&_minor_lock); 2531 map = dm_get_live_table(md, &srcu_idx); 2532 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2533 set_bit(DMF_FREEING, &md->flags); 2534 spin_unlock(&_minor_lock); 2535 2536 if (!dm_suspended_md(md)) { 2537 dm_table_presuspend_targets(map); 2538 dm_table_postsuspend_targets(map); 2539 } 2540 2541 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2542 dm_put_live_table(md, srcu_idx); 2543 2544 /* 2545 * Rare, but there may be I/O requests still going to complete, 2546 * for example. Wait for all references to disappear. 2547 * No one should increment the reference count of the mapped_device, 2548 * after the mapped_device state becomes DMF_FREEING. 2549 */ 2550 if (wait) 2551 while (atomic_read(&md->holders)) 2552 msleep(1); 2553 else if (atomic_read(&md->holders)) 2554 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2555 dm_device_name(md), atomic_read(&md->holders)); 2556 2557 dm_sysfs_exit(md); 2558 dm_table_destroy(__unbind(md)); 2559 free_dev(md); 2560 } 2561 2562 void dm_destroy(struct mapped_device *md) 2563 { 2564 __dm_destroy(md, true); 2565 } 2566 2567 void dm_destroy_immediate(struct mapped_device *md) 2568 { 2569 __dm_destroy(md, false); 2570 } 2571 2572 void dm_put(struct mapped_device *md) 2573 { 2574 atomic_dec(&md->holders); 2575 } 2576 EXPORT_SYMBOL_GPL(dm_put); 2577 2578 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2579 { 2580 int r = 0; 2581 DECLARE_WAITQUEUE(wait, current); 2582 2583 add_wait_queue(&md->wait, &wait); 2584 2585 while (1) { 2586 set_current_state(interruptible); 2587 2588 if (!md_in_flight(md)) 2589 break; 2590 2591 if (interruptible == TASK_INTERRUPTIBLE && 2592 signal_pending(current)) { 2593 r = -EINTR; 2594 break; 2595 } 2596 2597 io_schedule(); 2598 } 2599 set_current_state(TASK_RUNNING); 2600 2601 remove_wait_queue(&md->wait, &wait); 2602 2603 return r; 2604 } 2605 2606 /* 2607 * Process the deferred bios 2608 */ 2609 static void dm_wq_work(struct work_struct *work) 2610 { 2611 struct mapped_device *md = container_of(work, struct mapped_device, 2612 work); 2613 struct bio *c; 2614 int srcu_idx; 2615 struct dm_table *map; 2616 2617 map = dm_get_live_table(md, &srcu_idx); 2618 2619 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2620 spin_lock_irq(&md->deferred_lock); 2621 c = bio_list_pop(&md->deferred); 2622 spin_unlock_irq(&md->deferred_lock); 2623 2624 if (!c) 2625 break; 2626 2627 if (dm_request_based(md)) 2628 generic_make_request(c); 2629 else 2630 __split_and_process_bio(md, map, c); 2631 } 2632 2633 dm_put_live_table(md, srcu_idx); 2634 } 2635 2636 static void dm_queue_flush(struct mapped_device *md) 2637 { 2638 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2639 smp_mb__after_atomic(); 2640 queue_work(md->wq, &md->work); 2641 } 2642 2643 /* 2644 * Swap in a new table, returning the old one for the caller to destroy. 2645 */ 2646 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2647 { 2648 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2649 struct queue_limits limits; 2650 int r; 2651 2652 mutex_lock(&md->suspend_lock); 2653 2654 /* device must be suspended */ 2655 if (!dm_suspended_md(md)) 2656 goto out; 2657 2658 /* 2659 * If the new table has no data devices, retain the existing limits. 2660 * This helps multipath with queue_if_no_path if all paths disappear, 2661 * then new I/O is queued based on these limits, and then some paths 2662 * reappear. 2663 */ 2664 if (dm_table_has_no_data_devices(table)) { 2665 live_map = dm_get_live_table_fast(md); 2666 if (live_map) 2667 limits = md->queue->limits; 2668 dm_put_live_table_fast(md); 2669 } 2670 2671 if (!live_map) { 2672 r = dm_calculate_queue_limits(table, &limits); 2673 if (r) { 2674 map = ERR_PTR(r); 2675 goto out; 2676 } 2677 } 2678 2679 map = __bind(md, table, &limits); 2680 2681 out: 2682 mutex_unlock(&md->suspend_lock); 2683 return map; 2684 } 2685 2686 /* 2687 * Functions to lock and unlock any filesystem running on the 2688 * device. 2689 */ 2690 static int lock_fs(struct mapped_device *md) 2691 { 2692 int r; 2693 2694 WARN_ON(md->frozen_sb); 2695 2696 md->frozen_sb = freeze_bdev(md->bdev); 2697 if (IS_ERR(md->frozen_sb)) { 2698 r = PTR_ERR(md->frozen_sb); 2699 md->frozen_sb = NULL; 2700 return r; 2701 } 2702 2703 set_bit(DMF_FROZEN, &md->flags); 2704 2705 return 0; 2706 } 2707 2708 static void unlock_fs(struct mapped_device *md) 2709 { 2710 if (!test_bit(DMF_FROZEN, &md->flags)) 2711 return; 2712 2713 thaw_bdev(md->bdev, md->frozen_sb); 2714 md->frozen_sb = NULL; 2715 clear_bit(DMF_FROZEN, &md->flags); 2716 } 2717 2718 /* 2719 * We need to be able to change a mapping table under a mounted 2720 * filesystem. For example we might want to move some data in 2721 * the background. Before the table can be swapped with 2722 * dm_bind_table, dm_suspend must be called to flush any in 2723 * flight bios and ensure that any further io gets deferred. 2724 */ 2725 /* 2726 * Suspend mechanism in request-based dm. 2727 * 2728 * 1. Flush all I/Os by lock_fs() if needed. 2729 * 2. Stop dispatching any I/O by stopping the request_queue. 2730 * 3. Wait for all in-flight I/Os to be completed or requeued. 2731 * 2732 * To abort suspend, start the request_queue. 2733 */ 2734 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2735 { 2736 struct dm_table *map = NULL; 2737 int r = 0; 2738 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2739 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2740 2741 mutex_lock(&md->suspend_lock); 2742 2743 if (dm_suspended_md(md)) { 2744 r = -EINVAL; 2745 goto out_unlock; 2746 } 2747 2748 map = md->map; 2749 2750 /* 2751 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2752 * This flag is cleared before dm_suspend returns. 2753 */ 2754 if (noflush) 2755 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2756 2757 /* This does not get reverted if there's an error later. */ 2758 dm_table_presuspend_targets(map); 2759 2760 /* 2761 * Flush I/O to the device. 2762 * Any I/O submitted after lock_fs() may not be flushed. 2763 * noflush takes precedence over do_lockfs. 2764 * (lock_fs() flushes I/Os and waits for them to complete.) 2765 */ 2766 if (!noflush && do_lockfs) { 2767 r = lock_fs(md); 2768 if (r) 2769 goto out_unlock; 2770 } 2771 2772 /* 2773 * Here we must make sure that no processes are submitting requests 2774 * to target drivers i.e. no one may be executing 2775 * __split_and_process_bio. This is called from dm_request and 2776 * dm_wq_work. 2777 * 2778 * To get all processes out of __split_and_process_bio in dm_request, 2779 * we take the write lock. To prevent any process from reentering 2780 * __split_and_process_bio from dm_request and quiesce the thread 2781 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2782 * flush_workqueue(md->wq). 2783 */ 2784 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2785 synchronize_srcu(&md->io_barrier); 2786 2787 /* 2788 * Stop md->queue before flushing md->wq in case request-based 2789 * dm defers requests to md->wq from md->queue. 2790 */ 2791 if (dm_request_based(md)) 2792 stop_queue(md->queue); 2793 2794 flush_workqueue(md->wq); 2795 2796 /* 2797 * At this point no more requests are entering target request routines. 2798 * We call dm_wait_for_completion to wait for all existing requests 2799 * to finish. 2800 */ 2801 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2802 2803 if (noflush) 2804 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2805 synchronize_srcu(&md->io_barrier); 2806 2807 /* were we interrupted ? */ 2808 if (r < 0) { 2809 dm_queue_flush(md); 2810 2811 if (dm_request_based(md)) 2812 start_queue(md->queue); 2813 2814 unlock_fs(md); 2815 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2816 } 2817 2818 /* 2819 * If dm_wait_for_completion returned 0, the device is completely 2820 * quiescent now. There is no request-processing activity. All new 2821 * requests are being added to md->deferred list. 2822 */ 2823 2824 set_bit(DMF_SUSPENDED, &md->flags); 2825 2826 dm_table_postsuspend_targets(map); 2827 2828 out_unlock: 2829 mutex_unlock(&md->suspend_lock); 2830 return r; 2831 } 2832 2833 int dm_resume(struct mapped_device *md) 2834 { 2835 int r = -EINVAL; 2836 struct dm_table *map = NULL; 2837 2838 mutex_lock(&md->suspend_lock); 2839 if (!dm_suspended_md(md)) 2840 goto out; 2841 2842 map = md->map; 2843 if (!map || !dm_table_get_size(map)) 2844 goto out; 2845 2846 r = dm_table_resume_targets(map); 2847 if (r) 2848 goto out; 2849 2850 dm_queue_flush(md); 2851 2852 /* 2853 * Flushing deferred I/Os must be done after targets are resumed 2854 * so that mapping of targets can work correctly. 2855 * Request-based dm is queueing the deferred I/Os in its request_queue. 2856 */ 2857 if (dm_request_based(md)) 2858 start_queue(md->queue); 2859 2860 unlock_fs(md); 2861 2862 clear_bit(DMF_SUSPENDED, &md->flags); 2863 2864 r = 0; 2865 out: 2866 mutex_unlock(&md->suspend_lock); 2867 2868 return r; 2869 } 2870 2871 /* 2872 * Internal suspend/resume works like userspace-driven suspend. It waits 2873 * until all bios finish and prevents issuing new bios to the target drivers. 2874 * It may be used only from the kernel. 2875 * 2876 * Internal suspend holds md->suspend_lock, which prevents interaction with 2877 * userspace-driven suspend. 2878 */ 2879 2880 void dm_internal_suspend(struct mapped_device *md) 2881 { 2882 mutex_lock(&md->suspend_lock); 2883 if (dm_suspended_md(md)) 2884 return; 2885 2886 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2887 synchronize_srcu(&md->io_barrier); 2888 flush_workqueue(md->wq); 2889 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2890 } 2891 2892 void dm_internal_resume(struct mapped_device *md) 2893 { 2894 if (dm_suspended_md(md)) 2895 goto done; 2896 2897 dm_queue_flush(md); 2898 2899 done: 2900 mutex_unlock(&md->suspend_lock); 2901 } 2902 2903 /*----------------------------------------------------------------- 2904 * Event notification. 2905 *---------------------------------------------------------------*/ 2906 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2907 unsigned cookie) 2908 { 2909 char udev_cookie[DM_COOKIE_LENGTH]; 2910 char *envp[] = { udev_cookie, NULL }; 2911 2912 if (!cookie) 2913 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2914 else { 2915 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2916 DM_COOKIE_ENV_VAR_NAME, cookie); 2917 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2918 action, envp); 2919 } 2920 } 2921 2922 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2923 { 2924 return atomic_add_return(1, &md->uevent_seq); 2925 } 2926 2927 uint32_t dm_get_event_nr(struct mapped_device *md) 2928 { 2929 return atomic_read(&md->event_nr); 2930 } 2931 2932 int dm_wait_event(struct mapped_device *md, int event_nr) 2933 { 2934 return wait_event_interruptible(md->eventq, 2935 (event_nr != atomic_read(&md->event_nr))); 2936 } 2937 2938 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2939 { 2940 unsigned long flags; 2941 2942 spin_lock_irqsave(&md->uevent_lock, flags); 2943 list_add(elist, &md->uevent_list); 2944 spin_unlock_irqrestore(&md->uevent_lock, flags); 2945 } 2946 2947 /* 2948 * The gendisk is only valid as long as you have a reference 2949 * count on 'md'. 2950 */ 2951 struct gendisk *dm_disk(struct mapped_device *md) 2952 { 2953 return md->disk; 2954 } 2955 2956 struct kobject *dm_kobject(struct mapped_device *md) 2957 { 2958 return &md->kobj_holder.kobj; 2959 } 2960 2961 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2962 { 2963 struct mapped_device *md; 2964 2965 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2966 2967 if (test_bit(DMF_FREEING, &md->flags) || 2968 dm_deleting_md(md)) 2969 return NULL; 2970 2971 dm_get(md); 2972 return md; 2973 } 2974 2975 int dm_suspended_md(struct mapped_device *md) 2976 { 2977 return test_bit(DMF_SUSPENDED, &md->flags); 2978 } 2979 2980 int dm_test_deferred_remove_flag(struct mapped_device *md) 2981 { 2982 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2983 } 2984 2985 int dm_suspended(struct dm_target *ti) 2986 { 2987 return dm_suspended_md(dm_table_get_md(ti->table)); 2988 } 2989 EXPORT_SYMBOL_GPL(dm_suspended); 2990 2991 int dm_noflush_suspending(struct dm_target *ti) 2992 { 2993 return __noflush_suspending(dm_table_get_md(ti->table)); 2994 } 2995 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2996 2997 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2998 { 2999 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3000 struct kmem_cache *cachep; 3001 unsigned int pool_size; 3002 unsigned int front_pad; 3003 3004 if (!pools) 3005 return NULL; 3006 3007 if (type == DM_TYPE_BIO_BASED) { 3008 cachep = _io_cache; 3009 pool_size = dm_get_reserved_bio_based_ios(); 3010 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3011 } else if (type == DM_TYPE_REQUEST_BASED) { 3012 cachep = _rq_tio_cache; 3013 pool_size = dm_get_reserved_rq_based_ios(); 3014 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3015 /* per_bio_data_size is not used. See __bind_mempools(). */ 3016 WARN_ON(per_bio_data_size != 0); 3017 } else 3018 goto out; 3019 3020 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3021 if (!pools->io_pool) 3022 goto out; 3023 3024 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3025 if (!pools->bs) 3026 goto out; 3027 3028 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3029 goto out; 3030 3031 return pools; 3032 3033 out: 3034 dm_free_md_mempools(pools); 3035 3036 return NULL; 3037 } 3038 3039 void dm_free_md_mempools(struct dm_md_mempools *pools) 3040 { 3041 if (!pools) 3042 return; 3043 3044 if (pools->io_pool) 3045 mempool_destroy(pools->io_pool); 3046 3047 if (pools->bs) 3048 bioset_free(pools->bs); 3049 3050 kfree(pools); 3051 } 3052 3053 static const struct block_device_operations dm_blk_dops = { 3054 .open = dm_blk_open, 3055 .release = dm_blk_close, 3056 .ioctl = dm_blk_ioctl, 3057 .getgeo = dm_blk_getgeo, 3058 .owner = THIS_MODULE 3059 }; 3060 3061 /* 3062 * module hooks 3063 */ 3064 module_init(dm_init); 3065 module_exit(dm_exit); 3066 3067 module_param(major, uint, 0); 3068 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3069 3070 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3071 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3072 3073 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3074 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3075 3076 MODULE_DESCRIPTION(DM_NAME " driver"); 3077 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3078 MODULE_LICENSE("GPL"); 3079