1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 92 { 93 return container_of(clone, struct dm_target_io, clone); 94 } 95 96 void *dm_per_bio_data(struct bio *bio, size_t data_size) 97 { 98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 100 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 101 } 102 EXPORT_SYMBOL_GPL(dm_per_bio_data); 103 104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 105 { 106 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 107 if (io->magic == DM_IO_MAGIC) 108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 109 BUG_ON(io->magic != DM_TIO_MAGIC); 110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 111 } 112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 113 114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 115 { 116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 117 } 118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 119 120 #define MINOR_ALLOCED ((void *)-1) 121 122 #define DM_NUMA_NODE NUMA_NO_NODE 123 static int dm_numa_node = DM_NUMA_NODE; 124 125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 126 static int swap_bios = DEFAULT_SWAP_BIOS; 127 static int get_swap_bios(void) 128 { 129 int latch = READ_ONCE(swap_bios); 130 if (unlikely(latch <= 0)) 131 latch = DEFAULT_SWAP_BIOS; 132 return latch; 133 } 134 135 struct table_device { 136 struct list_head list; 137 refcount_t count; 138 struct dm_dev dm_dev; 139 }; 140 141 /* 142 * Bio-based DM's mempools' reserved IOs set by the user. 143 */ 144 #define RESERVED_BIO_BASED_IOS 16 145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 146 147 static int __dm_get_module_param_int(int *module_param, int min, int max) 148 { 149 int param = READ_ONCE(*module_param); 150 int modified_param = 0; 151 bool modified = true; 152 153 if (param < min) 154 modified_param = min; 155 else if (param > max) 156 modified_param = max; 157 else 158 modified = false; 159 160 if (modified) { 161 (void)cmpxchg(module_param, param, modified_param); 162 param = modified_param; 163 } 164 165 return param; 166 } 167 168 unsigned __dm_get_module_param(unsigned *module_param, 169 unsigned def, unsigned max) 170 { 171 unsigned param = READ_ONCE(*module_param); 172 unsigned modified_param = 0; 173 174 if (!param) 175 modified_param = def; 176 else if (param > max) 177 modified_param = max; 178 179 if (modified_param) { 180 (void)cmpxchg(module_param, param, modified_param); 181 param = modified_param; 182 } 183 184 return param; 185 } 186 187 unsigned dm_get_reserved_bio_based_ios(void) 188 { 189 return __dm_get_module_param(&reserved_bio_based_ios, 190 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 191 } 192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 193 194 static unsigned dm_get_numa_node(void) 195 { 196 return __dm_get_module_param_int(&dm_numa_node, 197 DM_NUMA_NODE, num_online_nodes() - 1); 198 } 199 200 static int __init local_init(void) 201 { 202 int r; 203 204 r = dm_uevent_init(); 205 if (r) 206 return r; 207 208 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 209 if (!deferred_remove_workqueue) { 210 r = -ENOMEM; 211 goto out_uevent_exit; 212 } 213 214 _major = major; 215 r = register_blkdev(_major, _name); 216 if (r < 0) 217 goto out_free_workqueue; 218 219 if (!_major) 220 _major = r; 221 222 return 0; 223 224 out_free_workqueue: 225 destroy_workqueue(deferred_remove_workqueue); 226 out_uevent_exit: 227 dm_uevent_exit(); 228 229 return r; 230 } 231 232 static void local_exit(void) 233 { 234 flush_scheduled_work(); 235 destroy_workqueue(deferred_remove_workqueue); 236 237 unregister_blkdev(_major, _name); 238 dm_uevent_exit(); 239 240 _major = 0; 241 242 DMINFO("cleaned up"); 243 } 244 245 static int (*_inits[])(void) __initdata = { 246 local_init, 247 dm_target_init, 248 dm_linear_init, 249 dm_stripe_init, 250 dm_io_init, 251 dm_kcopyd_init, 252 dm_interface_init, 253 dm_statistics_init, 254 }; 255 256 static void (*_exits[])(void) = { 257 local_exit, 258 dm_target_exit, 259 dm_linear_exit, 260 dm_stripe_exit, 261 dm_io_exit, 262 dm_kcopyd_exit, 263 dm_interface_exit, 264 dm_statistics_exit, 265 }; 266 267 static int __init dm_init(void) 268 { 269 const int count = ARRAY_SIZE(_inits); 270 int r, i; 271 272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 273 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 274 " Duplicate IMA measurements will not be recorded in the IMA log."); 275 #endif 276 277 for (i = 0; i < count; i++) { 278 r = _inits[i](); 279 if (r) 280 goto bad; 281 } 282 283 return 0; 284 bad: 285 while (i--) 286 _exits[i](); 287 288 return r; 289 } 290 291 static void __exit dm_exit(void) 292 { 293 int i = ARRAY_SIZE(_exits); 294 295 while (i--) 296 _exits[i](); 297 298 /* 299 * Should be empty by this point. 300 */ 301 idr_destroy(&_minor_idr); 302 } 303 304 /* 305 * Block device functions 306 */ 307 int dm_deleting_md(struct mapped_device *md) 308 { 309 return test_bit(DMF_DELETING, &md->flags); 310 } 311 312 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 313 { 314 struct mapped_device *md; 315 316 spin_lock(&_minor_lock); 317 318 md = bdev->bd_disk->private_data; 319 if (!md) 320 goto out; 321 322 if (test_bit(DMF_FREEING, &md->flags) || 323 dm_deleting_md(md)) { 324 md = NULL; 325 goto out; 326 } 327 328 dm_get(md); 329 atomic_inc(&md->open_count); 330 out: 331 spin_unlock(&_minor_lock); 332 333 return md ? 0 : -ENXIO; 334 } 335 336 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 337 { 338 struct mapped_device *md; 339 340 spin_lock(&_minor_lock); 341 342 md = disk->private_data; 343 if (WARN_ON(!md)) 344 goto out; 345 346 if (atomic_dec_and_test(&md->open_count) && 347 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 348 queue_work(deferred_remove_workqueue, &deferred_remove_work); 349 350 dm_put(md); 351 out: 352 spin_unlock(&_minor_lock); 353 } 354 355 int dm_open_count(struct mapped_device *md) 356 { 357 return atomic_read(&md->open_count); 358 } 359 360 /* 361 * Guarantees nothing is using the device before it's deleted. 362 */ 363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 364 { 365 int r = 0; 366 367 spin_lock(&_minor_lock); 368 369 if (dm_open_count(md)) { 370 r = -EBUSY; 371 if (mark_deferred) 372 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 373 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 374 r = -EEXIST; 375 else 376 set_bit(DMF_DELETING, &md->flags); 377 378 spin_unlock(&_minor_lock); 379 380 return r; 381 } 382 383 int dm_cancel_deferred_remove(struct mapped_device *md) 384 { 385 int r = 0; 386 387 spin_lock(&_minor_lock); 388 389 if (test_bit(DMF_DELETING, &md->flags)) 390 r = -EBUSY; 391 else 392 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 393 394 spin_unlock(&_minor_lock); 395 396 return r; 397 } 398 399 static void do_deferred_remove(struct work_struct *w) 400 { 401 dm_deferred_remove(); 402 } 403 404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 405 { 406 struct mapped_device *md = bdev->bd_disk->private_data; 407 408 return dm_get_geometry(md, geo); 409 } 410 411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 412 struct block_device **bdev) 413 { 414 struct dm_target *ti; 415 struct dm_table *map; 416 int r; 417 418 retry: 419 r = -ENOTTY; 420 map = dm_get_live_table(md, srcu_idx); 421 if (!map || !dm_table_get_size(map)) 422 return r; 423 424 /* We only support devices that have a single target */ 425 if (map->num_targets != 1) 426 return r; 427 428 ti = dm_table_get_target(map, 0); 429 if (!ti->type->prepare_ioctl) 430 return r; 431 432 if (dm_suspended_md(md)) 433 return -EAGAIN; 434 435 r = ti->type->prepare_ioctl(ti, bdev); 436 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 437 dm_put_live_table(md, *srcu_idx); 438 msleep(10); 439 goto retry; 440 } 441 442 return r; 443 } 444 445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 446 { 447 dm_put_live_table(md, srcu_idx); 448 } 449 450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 451 unsigned int cmd, unsigned long arg) 452 { 453 struct mapped_device *md = bdev->bd_disk->private_data; 454 int r, srcu_idx; 455 456 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 457 if (r < 0) 458 goto out; 459 460 if (r > 0) { 461 /* 462 * Target determined this ioctl is being issued against a 463 * subset of the parent bdev; require extra privileges. 464 */ 465 if (!capable(CAP_SYS_RAWIO)) { 466 DMDEBUG_LIMIT( 467 "%s: sending ioctl %x to DM device without required privilege.", 468 current->comm, cmd); 469 r = -ENOIOCTLCMD; 470 goto out; 471 } 472 } 473 474 if (!bdev->bd_disk->fops->ioctl) 475 r = -ENOTTY; 476 else 477 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 478 out: 479 dm_unprepare_ioctl(md, srcu_idx); 480 return r; 481 } 482 483 u64 dm_start_time_ns_from_clone(struct bio *bio) 484 { 485 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 486 } 487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 488 489 static bool bio_is_flush_with_data(struct bio *bio) 490 { 491 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 492 } 493 494 static void dm_io_acct(struct dm_io *io, bool end) 495 { 496 struct dm_stats_aux *stats_aux = &io->stats_aux; 497 unsigned long start_time = io->start_time; 498 struct mapped_device *md = io->md; 499 struct bio *bio = io->orig_bio; 500 unsigned int sectors; 501 502 /* 503 * If REQ_PREFLUSH set, don't account payload, it will be 504 * submitted (and accounted) after this flush completes. 505 */ 506 if (bio_is_flush_with_data(bio)) 507 sectors = 0; 508 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 509 sectors = bio_sectors(bio); 510 else 511 sectors = io->sectors; 512 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 515 start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 518 519 if (static_branch_unlikely(&stats_enabled) && 520 unlikely(dm_stats_used(&md->stats))) { 521 sector_t sector; 522 523 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 524 sector = bio->bi_iter.bi_sector; 525 else 526 sector = bio_end_sector(bio) - io->sector_offset; 527 528 dm_stats_account_io(&md->stats, bio_data_dir(bio), 529 sector, sectors, 530 end, start_time, stats_aux); 531 } 532 } 533 534 static void __dm_start_io_acct(struct dm_io *io) 535 { 536 dm_io_acct(io, false); 537 } 538 539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 540 { 541 /* 542 * Ensure IO accounting is only ever started once. 543 */ 544 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 545 return; 546 547 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 548 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 549 dm_io_set_flag(io, DM_IO_ACCOUNTED); 550 } else { 551 unsigned long flags; 552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 553 spin_lock_irqsave(&io->lock, flags); 554 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 555 spin_unlock_irqrestore(&io->lock, flags); 556 return; 557 } 558 dm_io_set_flag(io, DM_IO_ACCOUNTED); 559 spin_unlock_irqrestore(&io->lock, flags); 560 } 561 562 __dm_start_io_acct(io); 563 } 564 565 static void dm_end_io_acct(struct dm_io *io) 566 { 567 dm_io_acct(io, true); 568 } 569 570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 571 { 572 struct dm_io *io; 573 struct dm_target_io *tio; 574 struct bio *clone; 575 576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 577 tio = clone_to_tio(clone); 578 tio->flags = 0; 579 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 580 tio->io = NULL; 581 582 io = container_of(tio, struct dm_io, tio); 583 io->magic = DM_IO_MAGIC; 584 io->status = BLK_STS_OK; 585 586 /* one ref is for submission, the other is for completion */ 587 atomic_set(&io->io_count, 2); 588 this_cpu_inc(*md->pending_io); 589 io->orig_bio = bio; 590 io->md = md; 591 spin_lock_init(&io->lock); 592 io->start_time = jiffies; 593 io->flags = 0; 594 595 if (static_branch_unlikely(&stats_enabled)) 596 dm_stats_record_start(&md->stats, &io->stats_aux); 597 598 return io; 599 } 600 601 static void free_io(struct dm_io *io) 602 { 603 bio_put(&io->tio.clone); 604 } 605 606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 607 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 608 { 609 struct mapped_device *md = ci->io->md; 610 struct dm_target_io *tio; 611 struct bio *clone; 612 613 if (!ci->io->tio.io) { 614 /* the dm_target_io embedded in ci->io is available */ 615 tio = &ci->io->tio; 616 /* alloc_io() already initialized embedded clone */ 617 clone = &tio->clone; 618 } else { 619 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 620 &md->mempools->bs); 621 if (!clone) 622 return NULL; 623 624 /* REQ_DM_POLL_LIST shouldn't be inherited */ 625 clone->bi_opf &= ~REQ_DM_POLL_LIST; 626 627 tio = clone_to_tio(clone); 628 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 629 } 630 631 tio->magic = DM_TIO_MAGIC; 632 tio->io = ci->io; 633 tio->ti = ti; 634 tio->target_bio_nr = target_bio_nr; 635 tio->len_ptr = len; 636 tio->old_sector = 0; 637 638 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 639 clone->bi_bdev = md->disk->part0; 640 if (unlikely(ti->needs_bio_set_dev)) 641 bio_set_dev(clone, md->disk->part0); 642 643 if (len) { 644 clone->bi_iter.bi_size = to_bytes(*len); 645 if (bio_integrity(clone)) 646 bio_integrity_trim(clone); 647 } 648 649 return clone; 650 } 651 652 static void free_tio(struct bio *clone) 653 { 654 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 655 return; 656 bio_put(clone); 657 } 658 659 /* 660 * Add the bio to the list of deferred io. 661 */ 662 static void queue_io(struct mapped_device *md, struct bio *bio) 663 { 664 unsigned long flags; 665 666 spin_lock_irqsave(&md->deferred_lock, flags); 667 bio_list_add(&md->deferred, bio); 668 spin_unlock_irqrestore(&md->deferred_lock, flags); 669 queue_work(md->wq, &md->work); 670 } 671 672 /* 673 * Everyone (including functions in this file), should use this 674 * function to access the md->map field, and make sure they call 675 * dm_put_live_table() when finished. 676 */ 677 struct dm_table *dm_get_live_table(struct mapped_device *md, 678 int *srcu_idx) __acquires(md->io_barrier) 679 { 680 *srcu_idx = srcu_read_lock(&md->io_barrier); 681 682 return srcu_dereference(md->map, &md->io_barrier); 683 } 684 685 void dm_put_live_table(struct mapped_device *md, 686 int srcu_idx) __releases(md->io_barrier) 687 { 688 srcu_read_unlock(&md->io_barrier, srcu_idx); 689 } 690 691 void dm_sync_table(struct mapped_device *md) 692 { 693 synchronize_srcu(&md->io_barrier); 694 synchronize_rcu_expedited(); 695 } 696 697 /* 698 * A fast alternative to dm_get_live_table/dm_put_live_table. 699 * The caller must not block between these two functions. 700 */ 701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 702 { 703 rcu_read_lock(); 704 return rcu_dereference(md->map); 705 } 706 707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 708 { 709 rcu_read_unlock(); 710 } 711 712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 713 int *srcu_idx, blk_opf_t bio_opf) 714 { 715 if (bio_opf & REQ_NOWAIT) 716 return dm_get_live_table_fast(md); 717 else 718 return dm_get_live_table(md, srcu_idx); 719 } 720 721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 722 blk_opf_t bio_opf) 723 { 724 if (bio_opf & REQ_NOWAIT) 725 dm_put_live_table_fast(md); 726 else 727 dm_put_live_table(md, srcu_idx); 728 } 729 730 static char *_dm_claim_ptr = "I belong to device-mapper"; 731 732 /* 733 * Open a table device so we can use it as a map destination. 734 */ 735 static int open_table_device(struct table_device *td, dev_t dev, 736 struct mapped_device *md) 737 { 738 struct block_device *bdev; 739 u64 part_off; 740 int r; 741 742 BUG_ON(td->dm_dev.bdev); 743 744 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 745 if (IS_ERR(bdev)) 746 return PTR_ERR(bdev); 747 748 r = bd_link_disk_holder(bdev, dm_disk(md)); 749 if (r) { 750 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 751 return r; 752 } 753 754 td->dm_dev.bdev = bdev; 755 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 756 return 0; 757 } 758 759 /* 760 * Close a table device that we've been using. 761 */ 762 static void close_table_device(struct table_device *td, struct mapped_device *md) 763 { 764 if (!td->dm_dev.bdev) 765 return; 766 767 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 768 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 769 put_dax(td->dm_dev.dax_dev); 770 td->dm_dev.bdev = NULL; 771 td->dm_dev.dax_dev = NULL; 772 } 773 774 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 775 fmode_t mode) 776 { 777 struct table_device *td; 778 779 list_for_each_entry(td, l, list) 780 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 781 return td; 782 783 return NULL; 784 } 785 786 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 787 struct dm_dev **result) 788 { 789 int r; 790 struct table_device *td; 791 792 mutex_lock(&md->table_devices_lock); 793 td = find_table_device(&md->table_devices, dev, mode); 794 if (!td) { 795 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 796 if (!td) { 797 mutex_unlock(&md->table_devices_lock); 798 return -ENOMEM; 799 } 800 801 td->dm_dev.mode = mode; 802 td->dm_dev.bdev = NULL; 803 804 if ((r = open_table_device(td, dev, md))) { 805 mutex_unlock(&md->table_devices_lock); 806 kfree(td); 807 return r; 808 } 809 810 format_dev_t(td->dm_dev.name, dev); 811 812 refcount_set(&td->count, 1); 813 list_add(&td->list, &md->table_devices); 814 } else { 815 refcount_inc(&td->count); 816 } 817 mutex_unlock(&md->table_devices_lock); 818 819 *result = &td->dm_dev; 820 return 0; 821 } 822 823 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 824 { 825 struct table_device *td = container_of(d, struct table_device, dm_dev); 826 827 mutex_lock(&md->table_devices_lock); 828 if (refcount_dec_and_test(&td->count)) { 829 close_table_device(td, md); 830 list_del(&td->list); 831 kfree(td); 832 } 833 mutex_unlock(&md->table_devices_lock); 834 } 835 836 static void free_table_devices(struct list_head *devices) 837 { 838 struct list_head *tmp, *next; 839 840 list_for_each_safe(tmp, next, devices) { 841 struct table_device *td = list_entry(tmp, struct table_device, list); 842 843 DMWARN("dm_destroy: %s still exists with %d references", 844 td->dm_dev.name, refcount_read(&td->count)); 845 kfree(td); 846 } 847 } 848 849 /* 850 * Get the geometry associated with a dm device 851 */ 852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 853 { 854 *geo = md->geometry; 855 856 return 0; 857 } 858 859 /* 860 * Set the geometry of a device. 861 */ 862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 863 { 864 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 865 866 if (geo->start > sz) { 867 DMWARN("Start sector is beyond the geometry limits."); 868 return -EINVAL; 869 } 870 871 md->geometry = *geo; 872 873 return 0; 874 } 875 876 static int __noflush_suspending(struct mapped_device *md) 877 { 878 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 879 } 880 881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 882 { 883 struct mapped_device *md = io->md; 884 885 if (first_stage) { 886 struct dm_io *next = md->requeue_list; 887 888 md->requeue_list = io; 889 io->next = next; 890 } else { 891 bio_list_add_head(&md->deferred, io->orig_bio); 892 } 893 } 894 895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 896 { 897 if (first_stage) 898 queue_work(md->wq, &md->requeue_work); 899 else 900 queue_work(md->wq, &md->work); 901 } 902 903 /* 904 * Return true if the dm_io's original bio is requeued. 905 * io->status is updated with error if requeue disallowed. 906 */ 907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 908 { 909 struct bio *bio = io->orig_bio; 910 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 911 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 912 (bio->bi_opf & REQ_POLLED)); 913 struct mapped_device *md = io->md; 914 bool requeued = false; 915 916 if (handle_requeue || handle_polled_eagain) { 917 unsigned long flags; 918 919 if (bio->bi_opf & REQ_POLLED) { 920 /* 921 * Upper layer won't help us poll split bio 922 * (io->orig_bio may only reflect a subset of the 923 * pre-split original) so clear REQ_POLLED. 924 */ 925 bio_clear_polled(bio); 926 } 927 928 /* 929 * Target requested pushing back the I/O or 930 * polled IO hit BLK_STS_AGAIN. 931 */ 932 spin_lock_irqsave(&md->deferred_lock, flags); 933 if ((__noflush_suspending(md) && 934 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 935 handle_polled_eagain || first_stage) { 936 dm_requeue_add_io(io, first_stage); 937 requeued = true; 938 } else { 939 /* 940 * noflush suspend was interrupted or this is 941 * a write to a zoned target. 942 */ 943 io->status = BLK_STS_IOERR; 944 } 945 spin_unlock_irqrestore(&md->deferred_lock, flags); 946 } 947 948 if (requeued) 949 dm_kick_requeue(md, first_stage); 950 951 return requeued; 952 } 953 954 static void __dm_io_complete(struct dm_io *io, bool first_stage) 955 { 956 struct bio *bio = io->orig_bio; 957 struct mapped_device *md = io->md; 958 blk_status_t io_error; 959 bool requeued; 960 961 requeued = dm_handle_requeue(io, first_stage); 962 if (requeued && first_stage) 963 return; 964 965 io_error = io->status; 966 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 967 dm_end_io_acct(io); 968 else if (!io_error) { 969 /* 970 * Must handle target that DM_MAPIO_SUBMITTED only to 971 * then bio_endio() rather than dm_submit_bio_remap() 972 */ 973 __dm_start_io_acct(io); 974 dm_end_io_acct(io); 975 } 976 free_io(io); 977 smp_wmb(); 978 this_cpu_dec(*md->pending_io); 979 980 /* nudge anyone waiting on suspend queue */ 981 if (unlikely(wq_has_sleeper(&md->wait))) 982 wake_up(&md->wait); 983 984 /* Return early if the original bio was requeued */ 985 if (requeued) 986 return; 987 988 if (bio_is_flush_with_data(bio)) { 989 /* 990 * Preflush done for flush with data, reissue 991 * without REQ_PREFLUSH. 992 */ 993 bio->bi_opf &= ~REQ_PREFLUSH; 994 queue_io(md, bio); 995 } else { 996 /* done with normal IO or empty flush */ 997 if (io_error) 998 bio->bi_status = io_error; 999 bio_endio(bio); 1000 } 1001 } 1002 1003 static void dm_wq_requeue_work(struct work_struct *work) 1004 { 1005 struct mapped_device *md = container_of(work, struct mapped_device, 1006 requeue_work); 1007 unsigned long flags; 1008 struct dm_io *io; 1009 1010 /* reuse deferred lock to simplify dm_handle_requeue */ 1011 spin_lock_irqsave(&md->deferred_lock, flags); 1012 io = md->requeue_list; 1013 md->requeue_list = NULL; 1014 spin_unlock_irqrestore(&md->deferred_lock, flags); 1015 1016 while (io) { 1017 struct dm_io *next = io->next; 1018 1019 dm_io_rewind(io, &md->disk->bio_split); 1020 1021 io->next = NULL; 1022 __dm_io_complete(io, false); 1023 io = next; 1024 } 1025 } 1026 1027 /* 1028 * Two staged requeue: 1029 * 1030 * 1) io->orig_bio points to the real original bio, and the part mapped to 1031 * this io must be requeued, instead of other parts of the original bio. 1032 * 1033 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1034 */ 1035 static void dm_io_complete(struct dm_io *io) 1036 { 1037 bool first_requeue; 1038 1039 /* 1040 * Only dm_io that has been split needs two stage requeue, otherwise 1041 * we may run into long bio clone chain during suspend and OOM could 1042 * be triggered. 1043 * 1044 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1045 * also aren't handled via the first stage requeue. 1046 */ 1047 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1048 first_requeue = true; 1049 else 1050 first_requeue = false; 1051 1052 __dm_io_complete(io, first_requeue); 1053 } 1054 1055 /* 1056 * Decrements the number of outstanding ios that a bio has been 1057 * cloned into, completing the original io if necc. 1058 */ 1059 static inline void __dm_io_dec_pending(struct dm_io *io) 1060 { 1061 if (atomic_dec_and_test(&io->io_count)) 1062 dm_io_complete(io); 1063 } 1064 1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1066 { 1067 unsigned long flags; 1068 1069 /* Push-back supersedes any I/O errors */ 1070 spin_lock_irqsave(&io->lock, flags); 1071 if (!(io->status == BLK_STS_DM_REQUEUE && 1072 __noflush_suspending(io->md))) { 1073 io->status = error; 1074 } 1075 spin_unlock_irqrestore(&io->lock, flags); 1076 } 1077 1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1079 { 1080 if (unlikely(error)) 1081 dm_io_set_error(io, error); 1082 1083 __dm_io_dec_pending(io); 1084 } 1085 1086 void disable_discard(struct mapped_device *md) 1087 { 1088 struct queue_limits *limits = dm_get_queue_limits(md); 1089 1090 /* device doesn't really support DISCARD, disable it */ 1091 limits->max_discard_sectors = 0; 1092 } 1093 1094 void disable_write_zeroes(struct mapped_device *md) 1095 { 1096 struct queue_limits *limits = dm_get_queue_limits(md); 1097 1098 /* device doesn't really support WRITE ZEROES, disable it */ 1099 limits->max_write_zeroes_sectors = 0; 1100 } 1101 1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1103 { 1104 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1105 } 1106 1107 static void clone_endio(struct bio *bio) 1108 { 1109 blk_status_t error = bio->bi_status; 1110 struct dm_target_io *tio = clone_to_tio(bio); 1111 struct dm_target *ti = tio->ti; 1112 dm_endio_fn endio = ti->type->end_io; 1113 struct dm_io *io = tio->io; 1114 struct mapped_device *md = io->md; 1115 1116 if (unlikely(error == BLK_STS_TARGET)) { 1117 if (bio_op(bio) == REQ_OP_DISCARD && 1118 !bdev_max_discard_sectors(bio->bi_bdev)) 1119 disable_discard(md); 1120 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1121 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1122 disable_write_zeroes(md); 1123 } 1124 1125 if (static_branch_unlikely(&zoned_enabled) && 1126 unlikely(bdev_is_zoned(bio->bi_bdev))) 1127 dm_zone_endio(io, bio); 1128 1129 if (endio) { 1130 int r = endio(ti, bio, &error); 1131 switch (r) { 1132 case DM_ENDIO_REQUEUE: 1133 if (static_branch_unlikely(&zoned_enabled)) { 1134 /* 1135 * Requeuing writes to a sequential zone of a zoned 1136 * target will break the sequential write pattern: 1137 * fail such IO. 1138 */ 1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1140 error = BLK_STS_IOERR; 1141 else 1142 error = BLK_STS_DM_REQUEUE; 1143 } else 1144 error = BLK_STS_DM_REQUEUE; 1145 fallthrough; 1146 case DM_ENDIO_DONE: 1147 break; 1148 case DM_ENDIO_INCOMPLETE: 1149 /* The target will handle the io */ 1150 return; 1151 default: 1152 DMWARN("unimplemented target endio return value: %d", r); 1153 BUG(); 1154 } 1155 } 1156 1157 if (static_branch_unlikely(&swap_bios_enabled) && 1158 unlikely(swap_bios_limit(ti, bio))) 1159 up(&md->swap_bios_semaphore); 1160 1161 free_tio(bio); 1162 dm_io_dec_pending(io, error); 1163 } 1164 1165 /* 1166 * Return maximum size of I/O possible at the supplied sector up to the current 1167 * target boundary. 1168 */ 1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1170 sector_t target_offset) 1171 { 1172 return ti->len - target_offset; 1173 } 1174 1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1176 { 1177 sector_t target_offset = dm_target_offset(ti, sector); 1178 sector_t len = max_io_len_target_boundary(ti, target_offset); 1179 1180 /* 1181 * Does the target need to split IO even further? 1182 * - varied (per target) IO splitting is a tenet of DM; this 1183 * explains why stacked chunk_sectors based splitting via 1184 * bio_split_to_limits() isn't possible here. 1185 */ 1186 if (!ti->max_io_len) 1187 return len; 1188 return min_t(sector_t, len, 1189 min(queue_max_sectors(ti->table->md->queue), 1190 blk_chunk_sectors_left(target_offset, ti->max_io_len))); 1191 } 1192 1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1194 { 1195 if (len > UINT_MAX) { 1196 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1197 (unsigned long long)len, UINT_MAX); 1198 ti->error = "Maximum size of target IO is too large"; 1199 return -EINVAL; 1200 } 1201 1202 ti->max_io_len = (uint32_t) len; 1203 1204 return 0; 1205 } 1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1207 1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1209 sector_t sector, int *srcu_idx) 1210 __acquires(md->io_barrier) 1211 { 1212 struct dm_table *map; 1213 struct dm_target *ti; 1214 1215 map = dm_get_live_table(md, srcu_idx); 1216 if (!map) 1217 return NULL; 1218 1219 ti = dm_table_find_target(map, sector); 1220 if (!ti) 1221 return NULL; 1222 1223 return ti; 1224 } 1225 1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1227 long nr_pages, enum dax_access_mode mode, void **kaddr, 1228 pfn_t *pfn) 1229 { 1230 struct mapped_device *md = dax_get_private(dax_dev); 1231 sector_t sector = pgoff * PAGE_SECTORS; 1232 struct dm_target *ti; 1233 long len, ret = -EIO; 1234 int srcu_idx; 1235 1236 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1237 1238 if (!ti) 1239 goto out; 1240 if (!ti->type->direct_access) 1241 goto out; 1242 len = max_io_len(ti, sector) / PAGE_SECTORS; 1243 if (len < 1) 1244 goto out; 1245 nr_pages = min(len, nr_pages); 1246 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1247 1248 out: 1249 dm_put_live_table(md, srcu_idx); 1250 1251 return ret; 1252 } 1253 1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1255 size_t nr_pages) 1256 { 1257 struct mapped_device *md = dax_get_private(dax_dev); 1258 sector_t sector = pgoff * PAGE_SECTORS; 1259 struct dm_target *ti; 1260 int ret = -EIO; 1261 int srcu_idx; 1262 1263 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1264 1265 if (!ti) 1266 goto out; 1267 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1268 /* 1269 * ->zero_page_range() is mandatory dax operation. If we are 1270 * here, something is wrong. 1271 */ 1272 goto out; 1273 } 1274 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1275 out: 1276 dm_put_live_table(md, srcu_idx); 1277 1278 return ret; 1279 } 1280 1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1282 void *addr, size_t bytes, struct iov_iter *i) 1283 { 1284 struct mapped_device *md = dax_get_private(dax_dev); 1285 sector_t sector = pgoff * PAGE_SECTORS; 1286 struct dm_target *ti; 1287 int srcu_idx; 1288 long ret = 0; 1289 1290 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1291 if (!ti || !ti->type->dax_recovery_write) 1292 goto out; 1293 1294 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1295 out: 1296 dm_put_live_table(md, srcu_idx); 1297 return ret; 1298 } 1299 1300 /* 1301 * A target may call dm_accept_partial_bio only from the map routine. It is 1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1304 * __send_duplicate_bios(). 1305 * 1306 * dm_accept_partial_bio informs the dm that the target only wants to process 1307 * additional n_sectors sectors of the bio and the rest of the data should be 1308 * sent in a next bio. 1309 * 1310 * A diagram that explains the arithmetics: 1311 * +--------------------+---------------+-------+ 1312 * | 1 | 2 | 3 | 1313 * +--------------------+---------------+-------+ 1314 * 1315 * <-------------- *tio->len_ptr ---------------> 1316 * <----- bio_sectors -----> 1317 * <-- n_sectors --> 1318 * 1319 * Region 1 was already iterated over with bio_advance or similar function. 1320 * (it may be empty if the target doesn't use bio_advance) 1321 * Region 2 is the remaining bio size that the target wants to process. 1322 * (it may be empty if region 1 is non-empty, although there is no reason 1323 * to make it empty) 1324 * The target requires that region 3 is to be sent in the next bio. 1325 * 1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1327 * the partially processed part (the sum of regions 1+2) must be the same for all 1328 * copies of the bio. 1329 */ 1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1331 { 1332 struct dm_target_io *tio = clone_to_tio(bio); 1333 struct dm_io *io = tio->io; 1334 unsigned bio_sectors = bio_sectors(bio); 1335 1336 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1337 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1338 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1339 BUG_ON(bio_sectors > *tio->len_ptr); 1340 BUG_ON(n_sectors > bio_sectors); 1341 1342 *tio->len_ptr -= bio_sectors - n_sectors; 1343 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1344 1345 /* 1346 * __split_and_process_bio() may have already saved mapped part 1347 * for accounting but it is being reduced so update accordingly. 1348 */ 1349 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1350 io->sectors = n_sectors; 1351 io->sector_offset = bio_sectors(io->orig_bio); 1352 } 1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1354 1355 /* 1356 * @clone: clone bio that DM core passed to target's .map function 1357 * @tgt_clone: clone of @clone bio that target needs submitted 1358 * 1359 * Targets should use this interface to submit bios they take 1360 * ownership of when returning DM_MAPIO_SUBMITTED. 1361 * 1362 * Target should also enable ti->accounts_remapped_io 1363 */ 1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1365 { 1366 struct dm_target_io *tio = clone_to_tio(clone); 1367 struct dm_io *io = tio->io; 1368 1369 /* establish bio that will get submitted */ 1370 if (!tgt_clone) 1371 tgt_clone = clone; 1372 1373 /* 1374 * Account io->origin_bio to DM dev on behalf of target 1375 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1376 */ 1377 dm_start_io_acct(io, clone); 1378 1379 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1380 tio->old_sector); 1381 submit_bio_noacct(tgt_clone); 1382 } 1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1384 1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1386 { 1387 mutex_lock(&md->swap_bios_lock); 1388 while (latch < md->swap_bios) { 1389 cond_resched(); 1390 down(&md->swap_bios_semaphore); 1391 md->swap_bios--; 1392 } 1393 while (latch > md->swap_bios) { 1394 cond_resched(); 1395 up(&md->swap_bios_semaphore); 1396 md->swap_bios++; 1397 } 1398 mutex_unlock(&md->swap_bios_lock); 1399 } 1400 1401 static void __map_bio(struct bio *clone) 1402 { 1403 struct dm_target_io *tio = clone_to_tio(clone); 1404 struct dm_target *ti = tio->ti; 1405 struct dm_io *io = tio->io; 1406 struct mapped_device *md = io->md; 1407 int r; 1408 1409 clone->bi_end_io = clone_endio; 1410 1411 /* 1412 * Map the clone. 1413 */ 1414 tio->old_sector = clone->bi_iter.bi_sector; 1415 1416 if (static_branch_unlikely(&swap_bios_enabled) && 1417 unlikely(swap_bios_limit(ti, clone))) { 1418 int latch = get_swap_bios(); 1419 if (unlikely(latch != md->swap_bios)) 1420 __set_swap_bios_limit(md, latch); 1421 down(&md->swap_bios_semaphore); 1422 } 1423 1424 if (static_branch_unlikely(&zoned_enabled)) { 1425 /* 1426 * Check if the IO needs a special mapping due to zone append 1427 * emulation on zoned target. In this case, dm_zone_map_bio() 1428 * calls the target map operation. 1429 */ 1430 if (unlikely(dm_emulate_zone_append(md))) 1431 r = dm_zone_map_bio(tio); 1432 else 1433 r = ti->type->map(ti, clone); 1434 } else 1435 r = ti->type->map(ti, clone); 1436 1437 switch (r) { 1438 case DM_MAPIO_SUBMITTED: 1439 /* target has assumed ownership of this io */ 1440 if (!ti->accounts_remapped_io) 1441 dm_start_io_acct(io, clone); 1442 break; 1443 case DM_MAPIO_REMAPPED: 1444 dm_submit_bio_remap(clone, NULL); 1445 break; 1446 case DM_MAPIO_KILL: 1447 case DM_MAPIO_REQUEUE: 1448 if (static_branch_unlikely(&swap_bios_enabled) && 1449 unlikely(swap_bios_limit(ti, clone))) 1450 up(&md->swap_bios_semaphore); 1451 free_tio(clone); 1452 if (r == DM_MAPIO_KILL) 1453 dm_io_dec_pending(io, BLK_STS_IOERR); 1454 else 1455 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1456 break; 1457 default: 1458 DMWARN("unimplemented target map return value: %d", r); 1459 BUG(); 1460 } 1461 } 1462 1463 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1464 { 1465 struct dm_io *io = ci->io; 1466 1467 if (ci->sector_count > len) { 1468 /* 1469 * Split needed, save the mapped part for accounting. 1470 * NOTE: dm_accept_partial_bio() will update accordingly. 1471 */ 1472 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1473 io->sectors = len; 1474 io->sector_offset = bio_sectors(ci->bio); 1475 } 1476 } 1477 1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1479 struct dm_target *ti, unsigned num_bios) 1480 { 1481 struct bio *bio; 1482 int try; 1483 1484 for (try = 0; try < 2; try++) { 1485 int bio_nr; 1486 1487 if (try) 1488 mutex_lock(&ci->io->md->table_devices_lock); 1489 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1490 bio = alloc_tio(ci, ti, bio_nr, NULL, 1491 try ? GFP_NOIO : GFP_NOWAIT); 1492 if (!bio) 1493 break; 1494 1495 bio_list_add(blist, bio); 1496 } 1497 if (try) 1498 mutex_unlock(&ci->io->md->table_devices_lock); 1499 if (bio_nr == num_bios) 1500 return; 1501 1502 while ((bio = bio_list_pop(blist))) 1503 free_tio(bio); 1504 } 1505 } 1506 1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1508 unsigned int num_bios, unsigned *len) 1509 { 1510 struct bio_list blist = BIO_EMPTY_LIST; 1511 struct bio *clone; 1512 unsigned int ret = 0; 1513 1514 switch (num_bios) { 1515 case 0: 1516 break; 1517 case 1: 1518 if (len) 1519 setup_split_accounting(ci, *len); 1520 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1521 __map_bio(clone); 1522 ret = 1; 1523 break; 1524 default: 1525 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1526 alloc_multiple_bios(&blist, ci, ti, num_bios); 1527 while ((clone = bio_list_pop(&blist))) { 1528 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1529 __map_bio(clone); 1530 ret += 1; 1531 } 1532 break; 1533 } 1534 1535 return ret; 1536 } 1537 1538 static void __send_empty_flush(struct clone_info *ci) 1539 { 1540 struct dm_table *t = ci->map; 1541 struct bio flush_bio; 1542 1543 /* 1544 * Use an on-stack bio for this, it's safe since we don't 1545 * need to reference it after submit. It's just used as 1546 * the basis for the clone(s). 1547 */ 1548 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1549 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1550 1551 ci->bio = &flush_bio; 1552 ci->sector_count = 0; 1553 ci->io->tio.clone.bi_iter.bi_size = 0; 1554 1555 for (unsigned int i = 0; i < t->num_targets; i++) { 1556 unsigned int bios; 1557 struct dm_target *ti = dm_table_get_target(t, i); 1558 1559 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1560 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1561 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1562 } 1563 1564 /* 1565 * alloc_io() takes one extra reference for submission, so the 1566 * reference won't reach 0 without the following subtraction 1567 */ 1568 atomic_sub(1, &ci->io->io_count); 1569 1570 bio_uninit(ci->bio); 1571 } 1572 1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1574 unsigned num_bios) 1575 { 1576 unsigned len; 1577 unsigned int bios; 1578 1579 len = min_t(sector_t, ci->sector_count, 1580 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1581 1582 atomic_add(num_bios, &ci->io->io_count); 1583 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1584 /* 1585 * alloc_io() takes one extra reference for submission, so the 1586 * reference won't reach 0 without the following (+1) subtraction 1587 */ 1588 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1589 1590 ci->sector += len; 1591 ci->sector_count -= len; 1592 } 1593 1594 static bool is_abnormal_io(struct bio *bio) 1595 { 1596 enum req_op op = bio_op(bio); 1597 1598 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1599 switch (op) { 1600 case REQ_OP_DISCARD: 1601 case REQ_OP_SECURE_ERASE: 1602 case REQ_OP_WRITE_ZEROES: 1603 return true; 1604 default: 1605 break; 1606 } 1607 } 1608 1609 return false; 1610 } 1611 1612 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1613 struct dm_target *ti) 1614 { 1615 unsigned num_bios = 0; 1616 1617 switch (bio_op(ci->bio)) { 1618 case REQ_OP_DISCARD: 1619 num_bios = ti->num_discard_bios; 1620 break; 1621 case REQ_OP_SECURE_ERASE: 1622 num_bios = ti->num_secure_erase_bios; 1623 break; 1624 case REQ_OP_WRITE_ZEROES: 1625 num_bios = ti->num_write_zeroes_bios; 1626 break; 1627 default: 1628 break; 1629 } 1630 1631 /* 1632 * Even though the device advertised support for this type of 1633 * request, that does not mean every target supports it, and 1634 * reconfiguration might also have changed that since the 1635 * check was performed. 1636 */ 1637 if (unlikely(!num_bios)) 1638 return BLK_STS_NOTSUPP; 1639 1640 __send_changing_extent_only(ci, ti, num_bios); 1641 return BLK_STS_OK; 1642 } 1643 1644 /* 1645 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1646 * associated with this bio, and this bio's bi_private needs to be 1647 * stored in dm_io->data before the reuse. 1648 * 1649 * bio->bi_private is owned by fs or upper layer, so block layer won't 1650 * touch it after splitting. Meantime it won't be changed by anyone after 1651 * bio is submitted. So this reuse is safe. 1652 */ 1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1654 { 1655 return (struct dm_io **)&bio->bi_private; 1656 } 1657 1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1659 { 1660 struct dm_io **head = dm_poll_list_head(bio); 1661 1662 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1663 bio->bi_opf |= REQ_DM_POLL_LIST; 1664 /* 1665 * Save .bi_private into dm_io, so that we can reuse 1666 * .bi_private as dm_io list head for storing dm_io list 1667 */ 1668 io->data = bio->bi_private; 1669 1670 /* tell block layer to poll for completion */ 1671 bio->bi_cookie = ~BLK_QC_T_NONE; 1672 1673 io->next = NULL; 1674 } else { 1675 /* 1676 * bio recursed due to split, reuse original poll list, 1677 * and save bio->bi_private too. 1678 */ 1679 io->data = (*head)->data; 1680 io->next = *head; 1681 } 1682 1683 *head = io; 1684 } 1685 1686 /* 1687 * Select the correct strategy for processing a non-flush bio. 1688 */ 1689 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1690 { 1691 struct bio *clone; 1692 struct dm_target *ti; 1693 unsigned len; 1694 1695 ti = dm_table_find_target(ci->map, ci->sector); 1696 if (unlikely(!ti)) 1697 return BLK_STS_IOERR; 1698 1699 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1700 unlikely(!dm_target_supports_nowait(ti->type))) 1701 return BLK_STS_NOTSUPP; 1702 1703 if (unlikely(ci->is_abnormal_io)) 1704 return __process_abnormal_io(ci, ti); 1705 1706 /* 1707 * Only support bio polling for normal IO, and the target io is 1708 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1709 */ 1710 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1711 1712 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1713 setup_split_accounting(ci, len); 1714 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1715 __map_bio(clone); 1716 1717 ci->sector += len; 1718 ci->sector_count -= len; 1719 1720 return BLK_STS_OK; 1721 } 1722 1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1724 struct dm_table *map, struct bio *bio, bool is_abnormal) 1725 { 1726 ci->map = map; 1727 ci->io = alloc_io(md, bio); 1728 ci->bio = bio; 1729 ci->is_abnormal_io = is_abnormal; 1730 ci->submit_as_polled = false; 1731 ci->sector = bio->bi_iter.bi_sector; 1732 ci->sector_count = bio_sectors(bio); 1733 1734 /* Shouldn't happen but sector_count was being set to 0 so... */ 1735 if (static_branch_unlikely(&zoned_enabled) && 1736 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1737 ci->sector_count = 0; 1738 } 1739 1740 /* 1741 * Entry point to split a bio into clones and submit them to the targets. 1742 */ 1743 static void dm_split_and_process_bio(struct mapped_device *md, 1744 struct dm_table *map, struct bio *bio) 1745 { 1746 struct clone_info ci; 1747 struct dm_io *io; 1748 blk_status_t error = BLK_STS_OK; 1749 bool is_abnormal; 1750 1751 is_abnormal = is_abnormal_io(bio); 1752 if (unlikely(is_abnormal)) { 1753 /* 1754 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1755 * otherwise associated queue_limits won't be imposed. 1756 */ 1757 bio = bio_split_to_limits(bio); 1758 } 1759 1760 init_clone_info(&ci, md, map, bio, is_abnormal); 1761 io = ci.io; 1762 1763 if (bio->bi_opf & REQ_PREFLUSH) { 1764 __send_empty_flush(&ci); 1765 /* dm_io_complete submits any data associated with flush */ 1766 goto out; 1767 } 1768 1769 error = __split_and_process_bio(&ci); 1770 if (error || !ci.sector_count) 1771 goto out; 1772 /* 1773 * Remainder must be passed to submit_bio_noacct() so it gets handled 1774 * *after* bios already submitted have been completely processed. 1775 */ 1776 bio_trim(bio, io->sectors, ci.sector_count); 1777 trace_block_split(bio, bio->bi_iter.bi_sector); 1778 bio_inc_remaining(bio); 1779 submit_bio_noacct(bio); 1780 out: 1781 /* 1782 * Drop the extra reference count for non-POLLED bio, and hold one 1783 * reference for POLLED bio, which will be released in dm_poll_bio 1784 * 1785 * Add every dm_io instance into the dm_io list head which is stored 1786 * in bio->bi_private, so that dm_poll_bio can poll them all. 1787 */ 1788 if (error || !ci.submit_as_polled) { 1789 /* 1790 * In case of submission failure, the extra reference for 1791 * submitting io isn't consumed yet 1792 */ 1793 if (error) 1794 atomic_dec(&io->io_count); 1795 dm_io_dec_pending(io, error); 1796 } else 1797 dm_queue_poll_io(bio, io); 1798 } 1799 1800 static void dm_submit_bio(struct bio *bio) 1801 { 1802 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1803 int srcu_idx; 1804 struct dm_table *map; 1805 blk_opf_t bio_opf = bio->bi_opf; 1806 1807 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1808 1809 /* If suspended, or map not yet available, queue this IO for later */ 1810 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1811 unlikely(!map)) { 1812 if (bio->bi_opf & REQ_NOWAIT) 1813 bio_wouldblock_error(bio); 1814 else if (bio->bi_opf & REQ_RAHEAD) 1815 bio_io_error(bio); 1816 else 1817 queue_io(md, bio); 1818 goto out; 1819 } 1820 1821 dm_split_and_process_bio(md, map, bio); 1822 out: 1823 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1824 } 1825 1826 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1827 unsigned int flags) 1828 { 1829 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1830 1831 /* don't poll if the mapped io is done */ 1832 if (atomic_read(&io->io_count) > 1) 1833 bio_poll(&io->tio.clone, iob, flags); 1834 1835 /* bio_poll holds the last reference */ 1836 return atomic_read(&io->io_count) == 1; 1837 } 1838 1839 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1840 unsigned int flags) 1841 { 1842 struct dm_io **head = dm_poll_list_head(bio); 1843 struct dm_io *list = *head; 1844 struct dm_io *tmp = NULL; 1845 struct dm_io *curr, *next; 1846 1847 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1848 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1849 return 0; 1850 1851 WARN_ON_ONCE(!list); 1852 1853 /* 1854 * Restore .bi_private before possibly completing dm_io. 1855 * 1856 * bio_poll() is only possible once @bio has been completely 1857 * submitted via submit_bio_noacct()'s depth-first submission. 1858 * So there is no dm_queue_poll_io() race associated with 1859 * clearing REQ_DM_POLL_LIST here. 1860 */ 1861 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1862 bio->bi_private = list->data; 1863 1864 for (curr = list, next = curr->next; curr; curr = next, next = 1865 curr ? curr->next : NULL) { 1866 if (dm_poll_dm_io(curr, iob, flags)) { 1867 /* 1868 * clone_endio() has already occurred, so no 1869 * error handling is needed here. 1870 */ 1871 __dm_io_dec_pending(curr); 1872 } else { 1873 curr->next = tmp; 1874 tmp = curr; 1875 } 1876 } 1877 1878 /* Not done? */ 1879 if (tmp) { 1880 bio->bi_opf |= REQ_DM_POLL_LIST; 1881 /* Reset bio->bi_private to dm_io list head */ 1882 *head = tmp; 1883 return 0; 1884 } 1885 return 1; 1886 } 1887 1888 /*----------------------------------------------------------------- 1889 * An IDR is used to keep track of allocated minor numbers. 1890 *---------------------------------------------------------------*/ 1891 static void free_minor(int minor) 1892 { 1893 spin_lock(&_minor_lock); 1894 idr_remove(&_minor_idr, minor); 1895 spin_unlock(&_minor_lock); 1896 } 1897 1898 /* 1899 * See if the device with a specific minor # is free. 1900 */ 1901 static int specific_minor(int minor) 1902 { 1903 int r; 1904 1905 if (minor >= (1 << MINORBITS)) 1906 return -EINVAL; 1907 1908 idr_preload(GFP_KERNEL); 1909 spin_lock(&_minor_lock); 1910 1911 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1912 1913 spin_unlock(&_minor_lock); 1914 idr_preload_end(); 1915 if (r < 0) 1916 return r == -ENOSPC ? -EBUSY : r; 1917 return 0; 1918 } 1919 1920 static int next_free_minor(int *minor) 1921 { 1922 int r; 1923 1924 idr_preload(GFP_KERNEL); 1925 spin_lock(&_minor_lock); 1926 1927 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1928 1929 spin_unlock(&_minor_lock); 1930 idr_preload_end(); 1931 if (r < 0) 1932 return r; 1933 *minor = r; 1934 return 0; 1935 } 1936 1937 static const struct block_device_operations dm_blk_dops; 1938 static const struct block_device_operations dm_rq_blk_dops; 1939 static const struct dax_operations dm_dax_ops; 1940 1941 static void dm_wq_work(struct work_struct *work); 1942 1943 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1944 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1945 { 1946 dm_destroy_crypto_profile(q->crypto_profile); 1947 } 1948 1949 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1950 1951 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1952 { 1953 } 1954 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1955 1956 static void cleanup_mapped_device(struct mapped_device *md) 1957 { 1958 if (md->wq) 1959 destroy_workqueue(md->wq); 1960 dm_free_md_mempools(md->mempools); 1961 1962 if (md->dax_dev) { 1963 dax_remove_host(md->disk); 1964 kill_dax(md->dax_dev); 1965 put_dax(md->dax_dev); 1966 md->dax_dev = NULL; 1967 } 1968 1969 dm_cleanup_zoned_dev(md); 1970 if (md->disk) { 1971 spin_lock(&_minor_lock); 1972 md->disk->private_data = NULL; 1973 spin_unlock(&_minor_lock); 1974 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1975 dm_sysfs_exit(md); 1976 del_gendisk(md->disk); 1977 } 1978 dm_queue_destroy_crypto_profile(md->queue); 1979 put_disk(md->disk); 1980 } 1981 1982 if (md->pending_io) { 1983 free_percpu(md->pending_io); 1984 md->pending_io = NULL; 1985 } 1986 1987 cleanup_srcu_struct(&md->io_barrier); 1988 1989 mutex_destroy(&md->suspend_lock); 1990 mutex_destroy(&md->type_lock); 1991 mutex_destroy(&md->table_devices_lock); 1992 mutex_destroy(&md->swap_bios_lock); 1993 1994 dm_mq_cleanup_mapped_device(md); 1995 } 1996 1997 /* 1998 * Allocate and initialise a blank device with a given minor. 1999 */ 2000 static struct mapped_device *alloc_dev(int minor) 2001 { 2002 int r, numa_node_id = dm_get_numa_node(); 2003 struct mapped_device *md; 2004 void *old_md; 2005 2006 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2007 if (!md) { 2008 DMWARN("unable to allocate device, out of memory."); 2009 return NULL; 2010 } 2011 2012 if (!try_module_get(THIS_MODULE)) 2013 goto bad_module_get; 2014 2015 /* get a minor number for the dev */ 2016 if (minor == DM_ANY_MINOR) 2017 r = next_free_minor(&minor); 2018 else 2019 r = specific_minor(minor); 2020 if (r < 0) 2021 goto bad_minor; 2022 2023 r = init_srcu_struct(&md->io_barrier); 2024 if (r < 0) 2025 goto bad_io_barrier; 2026 2027 md->numa_node_id = numa_node_id; 2028 md->init_tio_pdu = false; 2029 md->type = DM_TYPE_NONE; 2030 mutex_init(&md->suspend_lock); 2031 mutex_init(&md->type_lock); 2032 mutex_init(&md->table_devices_lock); 2033 spin_lock_init(&md->deferred_lock); 2034 atomic_set(&md->holders, 1); 2035 atomic_set(&md->open_count, 0); 2036 atomic_set(&md->event_nr, 0); 2037 atomic_set(&md->uevent_seq, 0); 2038 INIT_LIST_HEAD(&md->uevent_list); 2039 INIT_LIST_HEAD(&md->table_devices); 2040 spin_lock_init(&md->uevent_lock); 2041 2042 /* 2043 * default to bio-based until DM table is loaded and md->type 2044 * established. If request-based table is loaded: blk-mq will 2045 * override accordingly. 2046 */ 2047 md->disk = blk_alloc_disk(md->numa_node_id); 2048 if (!md->disk) 2049 goto bad; 2050 md->queue = md->disk->queue; 2051 2052 init_waitqueue_head(&md->wait); 2053 INIT_WORK(&md->work, dm_wq_work); 2054 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2055 init_waitqueue_head(&md->eventq); 2056 init_completion(&md->kobj_holder.completion); 2057 2058 md->requeue_list = NULL; 2059 md->swap_bios = get_swap_bios(); 2060 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2061 mutex_init(&md->swap_bios_lock); 2062 2063 md->disk->major = _major; 2064 md->disk->first_minor = minor; 2065 md->disk->minors = 1; 2066 md->disk->flags |= GENHD_FL_NO_PART; 2067 md->disk->fops = &dm_blk_dops; 2068 md->disk->queue = md->queue; 2069 md->disk->private_data = md; 2070 sprintf(md->disk->disk_name, "dm-%d", minor); 2071 2072 if (IS_ENABLED(CONFIG_FS_DAX)) { 2073 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2074 if (IS_ERR(md->dax_dev)) { 2075 md->dax_dev = NULL; 2076 goto bad; 2077 } 2078 set_dax_nocache(md->dax_dev); 2079 set_dax_nomc(md->dax_dev); 2080 if (dax_add_host(md->dax_dev, md->disk)) 2081 goto bad; 2082 } 2083 2084 format_dev_t(md->name, MKDEV(_major, minor)); 2085 2086 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2087 if (!md->wq) 2088 goto bad; 2089 2090 md->pending_io = alloc_percpu(unsigned long); 2091 if (!md->pending_io) 2092 goto bad; 2093 2094 dm_stats_init(&md->stats); 2095 2096 /* Populate the mapping, nobody knows we exist yet */ 2097 spin_lock(&_minor_lock); 2098 old_md = idr_replace(&_minor_idr, md, minor); 2099 spin_unlock(&_minor_lock); 2100 2101 BUG_ON(old_md != MINOR_ALLOCED); 2102 2103 return md; 2104 2105 bad: 2106 cleanup_mapped_device(md); 2107 bad_io_barrier: 2108 free_minor(minor); 2109 bad_minor: 2110 module_put(THIS_MODULE); 2111 bad_module_get: 2112 kvfree(md); 2113 return NULL; 2114 } 2115 2116 static void unlock_fs(struct mapped_device *md); 2117 2118 static void free_dev(struct mapped_device *md) 2119 { 2120 int minor = MINOR(disk_devt(md->disk)); 2121 2122 unlock_fs(md); 2123 2124 cleanup_mapped_device(md); 2125 2126 free_table_devices(&md->table_devices); 2127 dm_stats_cleanup(&md->stats); 2128 free_minor(minor); 2129 2130 module_put(THIS_MODULE); 2131 kvfree(md); 2132 } 2133 2134 /* 2135 * Bind a table to the device. 2136 */ 2137 static void event_callback(void *context) 2138 { 2139 unsigned long flags; 2140 LIST_HEAD(uevents); 2141 struct mapped_device *md = (struct mapped_device *) context; 2142 2143 spin_lock_irqsave(&md->uevent_lock, flags); 2144 list_splice_init(&md->uevent_list, &uevents); 2145 spin_unlock_irqrestore(&md->uevent_lock, flags); 2146 2147 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2148 2149 atomic_inc(&md->event_nr); 2150 wake_up(&md->eventq); 2151 dm_issue_global_event(); 2152 } 2153 2154 /* 2155 * Returns old map, which caller must destroy. 2156 */ 2157 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2158 struct queue_limits *limits) 2159 { 2160 struct dm_table *old_map; 2161 sector_t size; 2162 int ret; 2163 2164 lockdep_assert_held(&md->suspend_lock); 2165 2166 size = dm_table_get_size(t); 2167 2168 /* 2169 * Wipe any geometry if the size of the table changed. 2170 */ 2171 if (size != dm_get_size(md)) 2172 memset(&md->geometry, 0, sizeof(md->geometry)); 2173 2174 if (!get_capacity(md->disk)) 2175 set_capacity(md->disk, size); 2176 else 2177 set_capacity_and_notify(md->disk, size); 2178 2179 dm_table_event_callback(t, event_callback, md); 2180 2181 if (dm_table_request_based(t)) { 2182 /* 2183 * Leverage the fact that request-based DM targets are 2184 * immutable singletons - used to optimize dm_mq_queue_rq. 2185 */ 2186 md->immutable_target = dm_table_get_immutable_target(t); 2187 2188 /* 2189 * There is no need to reload with request-based dm because the 2190 * size of front_pad doesn't change. 2191 * 2192 * Note for future: If you are to reload bioset, prep-ed 2193 * requests in the queue may refer to bio from the old bioset, 2194 * so you must walk through the queue to unprep. 2195 */ 2196 if (!md->mempools) { 2197 md->mempools = t->mempools; 2198 t->mempools = NULL; 2199 } 2200 } else { 2201 /* 2202 * The md may already have mempools that need changing. 2203 * If so, reload bioset because front_pad may have changed 2204 * because a different table was loaded. 2205 */ 2206 dm_free_md_mempools(md->mempools); 2207 md->mempools = t->mempools; 2208 t->mempools = NULL; 2209 } 2210 2211 ret = dm_table_set_restrictions(t, md->queue, limits); 2212 if (ret) { 2213 old_map = ERR_PTR(ret); 2214 goto out; 2215 } 2216 2217 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2218 rcu_assign_pointer(md->map, (void *)t); 2219 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2220 2221 if (old_map) 2222 dm_sync_table(md); 2223 out: 2224 return old_map; 2225 } 2226 2227 /* 2228 * Returns unbound table for the caller to free. 2229 */ 2230 static struct dm_table *__unbind(struct mapped_device *md) 2231 { 2232 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2233 2234 if (!map) 2235 return NULL; 2236 2237 dm_table_event_callback(map, NULL, NULL); 2238 RCU_INIT_POINTER(md->map, NULL); 2239 dm_sync_table(md); 2240 2241 return map; 2242 } 2243 2244 /* 2245 * Constructor for a new device. 2246 */ 2247 int dm_create(int minor, struct mapped_device **result) 2248 { 2249 struct mapped_device *md; 2250 2251 md = alloc_dev(minor); 2252 if (!md) 2253 return -ENXIO; 2254 2255 dm_ima_reset_data(md); 2256 2257 *result = md; 2258 return 0; 2259 } 2260 2261 /* 2262 * Functions to manage md->type. 2263 * All are required to hold md->type_lock. 2264 */ 2265 void dm_lock_md_type(struct mapped_device *md) 2266 { 2267 mutex_lock(&md->type_lock); 2268 } 2269 2270 void dm_unlock_md_type(struct mapped_device *md) 2271 { 2272 mutex_unlock(&md->type_lock); 2273 } 2274 2275 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2276 { 2277 BUG_ON(!mutex_is_locked(&md->type_lock)); 2278 md->type = type; 2279 } 2280 2281 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2282 { 2283 return md->type; 2284 } 2285 2286 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2287 { 2288 return md->immutable_target_type; 2289 } 2290 2291 /* 2292 * The queue_limits are only valid as long as you have a reference 2293 * count on 'md'. 2294 */ 2295 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2296 { 2297 BUG_ON(!atomic_read(&md->holders)); 2298 return &md->queue->limits; 2299 } 2300 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2301 2302 /* 2303 * Setup the DM device's queue based on md's type 2304 */ 2305 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2306 { 2307 enum dm_queue_mode type = dm_table_get_type(t); 2308 struct queue_limits limits; 2309 int r; 2310 2311 switch (type) { 2312 case DM_TYPE_REQUEST_BASED: 2313 md->disk->fops = &dm_rq_blk_dops; 2314 r = dm_mq_init_request_queue(md, t); 2315 if (r) { 2316 DMERR("Cannot initialize queue for request-based dm mapped device"); 2317 return r; 2318 } 2319 break; 2320 case DM_TYPE_BIO_BASED: 2321 case DM_TYPE_DAX_BIO_BASED: 2322 break; 2323 case DM_TYPE_NONE: 2324 WARN_ON_ONCE(true); 2325 break; 2326 } 2327 2328 r = dm_calculate_queue_limits(t, &limits); 2329 if (r) { 2330 DMERR("Cannot calculate initial queue limits"); 2331 return r; 2332 } 2333 r = dm_table_set_restrictions(t, md->queue, &limits); 2334 if (r) 2335 return r; 2336 2337 r = add_disk(md->disk); 2338 if (r) 2339 return r; 2340 2341 r = dm_sysfs_init(md); 2342 if (r) { 2343 del_gendisk(md->disk); 2344 return r; 2345 } 2346 md->type = type; 2347 return 0; 2348 } 2349 2350 struct mapped_device *dm_get_md(dev_t dev) 2351 { 2352 struct mapped_device *md; 2353 unsigned minor = MINOR(dev); 2354 2355 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2356 return NULL; 2357 2358 spin_lock(&_minor_lock); 2359 2360 md = idr_find(&_minor_idr, minor); 2361 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2362 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2363 md = NULL; 2364 goto out; 2365 } 2366 dm_get(md); 2367 out: 2368 spin_unlock(&_minor_lock); 2369 2370 return md; 2371 } 2372 EXPORT_SYMBOL_GPL(dm_get_md); 2373 2374 void *dm_get_mdptr(struct mapped_device *md) 2375 { 2376 return md->interface_ptr; 2377 } 2378 2379 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2380 { 2381 md->interface_ptr = ptr; 2382 } 2383 2384 void dm_get(struct mapped_device *md) 2385 { 2386 atomic_inc(&md->holders); 2387 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2388 } 2389 2390 int dm_hold(struct mapped_device *md) 2391 { 2392 spin_lock(&_minor_lock); 2393 if (test_bit(DMF_FREEING, &md->flags)) { 2394 spin_unlock(&_minor_lock); 2395 return -EBUSY; 2396 } 2397 dm_get(md); 2398 spin_unlock(&_minor_lock); 2399 return 0; 2400 } 2401 EXPORT_SYMBOL_GPL(dm_hold); 2402 2403 const char *dm_device_name(struct mapped_device *md) 2404 { 2405 return md->name; 2406 } 2407 EXPORT_SYMBOL_GPL(dm_device_name); 2408 2409 static void __dm_destroy(struct mapped_device *md, bool wait) 2410 { 2411 struct dm_table *map; 2412 int srcu_idx; 2413 2414 might_sleep(); 2415 2416 spin_lock(&_minor_lock); 2417 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2418 set_bit(DMF_FREEING, &md->flags); 2419 spin_unlock(&_minor_lock); 2420 2421 blk_mark_disk_dead(md->disk); 2422 2423 /* 2424 * Take suspend_lock so that presuspend and postsuspend methods 2425 * do not race with internal suspend. 2426 */ 2427 mutex_lock(&md->suspend_lock); 2428 map = dm_get_live_table(md, &srcu_idx); 2429 if (!dm_suspended_md(md)) { 2430 dm_table_presuspend_targets(map); 2431 set_bit(DMF_SUSPENDED, &md->flags); 2432 set_bit(DMF_POST_SUSPENDING, &md->flags); 2433 dm_table_postsuspend_targets(map); 2434 } 2435 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2436 dm_put_live_table(md, srcu_idx); 2437 mutex_unlock(&md->suspend_lock); 2438 2439 /* 2440 * Rare, but there may be I/O requests still going to complete, 2441 * for example. Wait for all references to disappear. 2442 * No one should increment the reference count of the mapped_device, 2443 * after the mapped_device state becomes DMF_FREEING. 2444 */ 2445 if (wait) 2446 while (atomic_read(&md->holders)) 2447 msleep(1); 2448 else if (atomic_read(&md->holders)) 2449 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2450 dm_device_name(md), atomic_read(&md->holders)); 2451 2452 dm_table_destroy(__unbind(md)); 2453 free_dev(md); 2454 } 2455 2456 void dm_destroy(struct mapped_device *md) 2457 { 2458 __dm_destroy(md, true); 2459 } 2460 2461 void dm_destroy_immediate(struct mapped_device *md) 2462 { 2463 __dm_destroy(md, false); 2464 } 2465 2466 void dm_put(struct mapped_device *md) 2467 { 2468 atomic_dec(&md->holders); 2469 } 2470 EXPORT_SYMBOL_GPL(dm_put); 2471 2472 static bool dm_in_flight_bios(struct mapped_device *md) 2473 { 2474 int cpu; 2475 unsigned long sum = 0; 2476 2477 for_each_possible_cpu(cpu) 2478 sum += *per_cpu_ptr(md->pending_io, cpu); 2479 2480 return sum != 0; 2481 } 2482 2483 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2484 { 2485 int r = 0; 2486 DEFINE_WAIT(wait); 2487 2488 while (true) { 2489 prepare_to_wait(&md->wait, &wait, task_state); 2490 2491 if (!dm_in_flight_bios(md)) 2492 break; 2493 2494 if (signal_pending_state(task_state, current)) { 2495 r = -EINTR; 2496 break; 2497 } 2498 2499 io_schedule(); 2500 } 2501 finish_wait(&md->wait, &wait); 2502 2503 smp_rmb(); 2504 2505 return r; 2506 } 2507 2508 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2509 { 2510 int r = 0; 2511 2512 if (!queue_is_mq(md->queue)) 2513 return dm_wait_for_bios_completion(md, task_state); 2514 2515 while (true) { 2516 if (!blk_mq_queue_inflight(md->queue)) 2517 break; 2518 2519 if (signal_pending_state(task_state, current)) { 2520 r = -EINTR; 2521 break; 2522 } 2523 2524 msleep(5); 2525 } 2526 2527 return r; 2528 } 2529 2530 /* 2531 * Process the deferred bios 2532 */ 2533 static void dm_wq_work(struct work_struct *work) 2534 { 2535 struct mapped_device *md = container_of(work, struct mapped_device, work); 2536 struct bio *bio; 2537 2538 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2539 spin_lock_irq(&md->deferred_lock); 2540 bio = bio_list_pop(&md->deferred); 2541 spin_unlock_irq(&md->deferred_lock); 2542 2543 if (!bio) 2544 break; 2545 2546 submit_bio_noacct(bio); 2547 } 2548 } 2549 2550 static void dm_queue_flush(struct mapped_device *md) 2551 { 2552 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2553 smp_mb__after_atomic(); 2554 queue_work(md->wq, &md->work); 2555 } 2556 2557 /* 2558 * Swap in a new table, returning the old one for the caller to destroy. 2559 */ 2560 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2561 { 2562 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2563 struct queue_limits limits; 2564 int r; 2565 2566 mutex_lock(&md->suspend_lock); 2567 2568 /* device must be suspended */ 2569 if (!dm_suspended_md(md)) 2570 goto out; 2571 2572 /* 2573 * If the new table has no data devices, retain the existing limits. 2574 * This helps multipath with queue_if_no_path if all paths disappear, 2575 * then new I/O is queued based on these limits, and then some paths 2576 * reappear. 2577 */ 2578 if (dm_table_has_no_data_devices(table)) { 2579 live_map = dm_get_live_table_fast(md); 2580 if (live_map) 2581 limits = md->queue->limits; 2582 dm_put_live_table_fast(md); 2583 } 2584 2585 if (!live_map) { 2586 r = dm_calculate_queue_limits(table, &limits); 2587 if (r) { 2588 map = ERR_PTR(r); 2589 goto out; 2590 } 2591 } 2592 2593 map = __bind(md, table, &limits); 2594 dm_issue_global_event(); 2595 2596 out: 2597 mutex_unlock(&md->suspend_lock); 2598 return map; 2599 } 2600 2601 /* 2602 * Functions to lock and unlock any filesystem running on the 2603 * device. 2604 */ 2605 static int lock_fs(struct mapped_device *md) 2606 { 2607 int r; 2608 2609 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2610 2611 r = freeze_bdev(md->disk->part0); 2612 if (!r) 2613 set_bit(DMF_FROZEN, &md->flags); 2614 return r; 2615 } 2616 2617 static void unlock_fs(struct mapped_device *md) 2618 { 2619 if (!test_bit(DMF_FROZEN, &md->flags)) 2620 return; 2621 thaw_bdev(md->disk->part0); 2622 clear_bit(DMF_FROZEN, &md->flags); 2623 } 2624 2625 /* 2626 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2627 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2628 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2629 * 2630 * If __dm_suspend returns 0, the device is completely quiescent 2631 * now. There is no request-processing activity. All new requests 2632 * are being added to md->deferred list. 2633 */ 2634 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2635 unsigned suspend_flags, unsigned int task_state, 2636 int dmf_suspended_flag) 2637 { 2638 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2639 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2640 int r; 2641 2642 lockdep_assert_held(&md->suspend_lock); 2643 2644 /* 2645 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2646 * This flag is cleared before dm_suspend returns. 2647 */ 2648 if (noflush) 2649 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2650 else 2651 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2652 2653 /* 2654 * This gets reverted if there's an error later and the targets 2655 * provide the .presuspend_undo hook. 2656 */ 2657 dm_table_presuspend_targets(map); 2658 2659 /* 2660 * Flush I/O to the device. 2661 * Any I/O submitted after lock_fs() may not be flushed. 2662 * noflush takes precedence over do_lockfs. 2663 * (lock_fs() flushes I/Os and waits for them to complete.) 2664 */ 2665 if (!noflush && do_lockfs) { 2666 r = lock_fs(md); 2667 if (r) { 2668 dm_table_presuspend_undo_targets(map); 2669 return r; 2670 } 2671 } 2672 2673 /* 2674 * Here we must make sure that no processes are submitting requests 2675 * to target drivers i.e. no one may be executing 2676 * dm_split_and_process_bio from dm_submit_bio. 2677 * 2678 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2679 * we take the write lock. To prevent any process from reentering 2680 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2681 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2682 * flush_workqueue(md->wq). 2683 */ 2684 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2685 if (map) 2686 synchronize_srcu(&md->io_barrier); 2687 2688 /* 2689 * Stop md->queue before flushing md->wq in case request-based 2690 * dm defers requests to md->wq from md->queue. 2691 */ 2692 if (dm_request_based(md)) 2693 dm_stop_queue(md->queue); 2694 2695 flush_workqueue(md->wq); 2696 2697 /* 2698 * At this point no more requests are entering target request routines. 2699 * We call dm_wait_for_completion to wait for all existing requests 2700 * to finish. 2701 */ 2702 r = dm_wait_for_completion(md, task_state); 2703 if (!r) 2704 set_bit(dmf_suspended_flag, &md->flags); 2705 2706 if (noflush) 2707 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2708 if (map) 2709 synchronize_srcu(&md->io_barrier); 2710 2711 /* were we interrupted ? */ 2712 if (r < 0) { 2713 dm_queue_flush(md); 2714 2715 if (dm_request_based(md)) 2716 dm_start_queue(md->queue); 2717 2718 unlock_fs(md); 2719 dm_table_presuspend_undo_targets(map); 2720 /* pushback list is already flushed, so skip flush */ 2721 } 2722 2723 return r; 2724 } 2725 2726 /* 2727 * We need to be able to change a mapping table under a mounted 2728 * filesystem. For example we might want to move some data in 2729 * the background. Before the table can be swapped with 2730 * dm_bind_table, dm_suspend must be called to flush any in 2731 * flight bios and ensure that any further io gets deferred. 2732 */ 2733 /* 2734 * Suspend mechanism in request-based dm. 2735 * 2736 * 1. Flush all I/Os by lock_fs() if needed. 2737 * 2. Stop dispatching any I/O by stopping the request_queue. 2738 * 3. Wait for all in-flight I/Os to be completed or requeued. 2739 * 2740 * To abort suspend, start the request_queue. 2741 */ 2742 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2743 { 2744 struct dm_table *map = NULL; 2745 int r = 0; 2746 2747 retry: 2748 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2749 2750 if (dm_suspended_md(md)) { 2751 r = -EINVAL; 2752 goto out_unlock; 2753 } 2754 2755 if (dm_suspended_internally_md(md)) { 2756 /* already internally suspended, wait for internal resume */ 2757 mutex_unlock(&md->suspend_lock); 2758 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2759 if (r) 2760 return r; 2761 goto retry; 2762 } 2763 2764 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2765 2766 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2767 if (r) 2768 goto out_unlock; 2769 2770 set_bit(DMF_POST_SUSPENDING, &md->flags); 2771 dm_table_postsuspend_targets(map); 2772 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2773 2774 out_unlock: 2775 mutex_unlock(&md->suspend_lock); 2776 return r; 2777 } 2778 2779 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2780 { 2781 if (map) { 2782 int r = dm_table_resume_targets(map); 2783 if (r) 2784 return r; 2785 } 2786 2787 dm_queue_flush(md); 2788 2789 /* 2790 * Flushing deferred I/Os must be done after targets are resumed 2791 * so that mapping of targets can work correctly. 2792 * Request-based dm is queueing the deferred I/Os in its request_queue. 2793 */ 2794 if (dm_request_based(md)) 2795 dm_start_queue(md->queue); 2796 2797 unlock_fs(md); 2798 2799 return 0; 2800 } 2801 2802 int dm_resume(struct mapped_device *md) 2803 { 2804 int r; 2805 struct dm_table *map = NULL; 2806 2807 retry: 2808 r = -EINVAL; 2809 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2810 2811 if (!dm_suspended_md(md)) 2812 goto out; 2813 2814 if (dm_suspended_internally_md(md)) { 2815 /* already internally suspended, wait for internal resume */ 2816 mutex_unlock(&md->suspend_lock); 2817 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2818 if (r) 2819 return r; 2820 goto retry; 2821 } 2822 2823 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2824 if (!map || !dm_table_get_size(map)) 2825 goto out; 2826 2827 r = __dm_resume(md, map); 2828 if (r) 2829 goto out; 2830 2831 clear_bit(DMF_SUSPENDED, &md->flags); 2832 out: 2833 mutex_unlock(&md->suspend_lock); 2834 2835 return r; 2836 } 2837 2838 /* 2839 * Internal suspend/resume works like userspace-driven suspend. It waits 2840 * until all bios finish and prevents issuing new bios to the target drivers. 2841 * It may be used only from the kernel. 2842 */ 2843 2844 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2845 { 2846 struct dm_table *map = NULL; 2847 2848 lockdep_assert_held(&md->suspend_lock); 2849 2850 if (md->internal_suspend_count++) 2851 return; /* nested internal suspend */ 2852 2853 if (dm_suspended_md(md)) { 2854 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2855 return; /* nest suspend */ 2856 } 2857 2858 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2859 2860 /* 2861 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2862 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2863 * would require changing .presuspend to return an error -- avoid this 2864 * until there is a need for more elaborate variants of internal suspend. 2865 */ 2866 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2867 DMF_SUSPENDED_INTERNALLY); 2868 2869 set_bit(DMF_POST_SUSPENDING, &md->flags); 2870 dm_table_postsuspend_targets(map); 2871 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2872 } 2873 2874 static void __dm_internal_resume(struct mapped_device *md) 2875 { 2876 BUG_ON(!md->internal_suspend_count); 2877 2878 if (--md->internal_suspend_count) 2879 return; /* resume from nested internal suspend */ 2880 2881 if (dm_suspended_md(md)) 2882 goto done; /* resume from nested suspend */ 2883 2884 /* 2885 * NOTE: existing callers don't need to call dm_table_resume_targets 2886 * (which may fail -- so best to avoid it for now by passing NULL map) 2887 */ 2888 (void) __dm_resume(md, NULL); 2889 2890 done: 2891 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2892 smp_mb__after_atomic(); 2893 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2894 } 2895 2896 void dm_internal_suspend_noflush(struct mapped_device *md) 2897 { 2898 mutex_lock(&md->suspend_lock); 2899 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2900 mutex_unlock(&md->suspend_lock); 2901 } 2902 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2903 2904 void dm_internal_resume(struct mapped_device *md) 2905 { 2906 mutex_lock(&md->suspend_lock); 2907 __dm_internal_resume(md); 2908 mutex_unlock(&md->suspend_lock); 2909 } 2910 EXPORT_SYMBOL_GPL(dm_internal_resume); 2911 2912 /* 2913 * Fast variants of internal suspend/resume hold md->suspend_lock, 2914 * which prevents interaction with userspace-driven suspend. 2915 */ 2916 2917 void dm_internal_suspend_fast(struct mapped_device *md) 2918 { 2919 mutex_lock(&md->suspend_lock); 2920 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2921 return; 2922 2923 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2924 synchronize_srcu(&md->io_barrier); 2925 flush_workqueue(md->wq); 2926 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2927 } 2928 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2929 2930 void dm_internal_resume_fast(struct mapped_device *md) 2931 { 2932 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2933 goto done; 2934 2935 dm_queue_flush(md); 2936 2937 done: 2938 mutex_unlock(&md->suspend_lock); 2939 } 2940 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2941 2942 /*----------------------------------------------------------------- 2943 * Event notification. 2944 *---------------------------------------------------------------*/ 2945 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2946 unsigned cookie) 2947 { 2948 int r; 2949 unsigned noio_flag; 2950 char udev_cookie[DM_COOKIE_LENGTH]; 2951 char *envp[] = { udev_cookie, NULL }; 2952 2953 noio_flag = memalloc_noio_save(); 2954 2955 if (!cookie) 2956 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2957 else { 2958 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2959 DM_COOKIE_ENV_VAR_NAME, cookie); 2960 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2961 action, envp); 2962 } 2963 2964 memalloc_noio_restore(noio_flag); 2965 2966 return r; 2967 } 2968 2969 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2970 { 2971 return atomic_add_return(1, &md->uevent_seq); 2972 } 2973 2974 uint32_t dm_get_event_nr(struct mapped_device *md) 2975 { 2976 return atomic_read(&md->event_nr); 2977 } 2978 2979 int dm_wait_event(struct mapped_device *md, int event_nr) 2980 { 2981 return wait_event_interruptible(md->eventq, 2982 (event_nr != atomic_read(&md->event_nr))); 2983 } 2984 2985 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2986 { 2987 unsigned long flags; 2988 2989 spin_lock_irqsave(&md->uevent_lock, flags); 2990 list_add(elist, &md->uevent_list); 2991 spin_unlock_irqrestore(&md->uevent_lock, flags); 2992 } 2993 2994 /* 2995 * The gendisk is only valid as long as you have a reference 2996 * count on 'md'. 2997 */ 2998 struct gendisk *dm_disk(struct mapped_device *md) 2999 { 3000 return md->disk; 3001 } 3002 EXPORT_SYMBOL_GPL(dm_disk); 3003 3004 struct kobject *dm_kobject(struct mapped_device *md) 3005 { 3006 return &md->kobj_holder.kobj; 3007 } 3008 3009 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3010 { 3011 struct mapped_device *md; 3012 3013 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3014 3015 spin_lock(&_minor_lock); 3016 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3017 md = NULL; 3018 goto out; 3019 } 3020 dm_get(md); 3021 out: 3022 spin_unlock(&_minor_lock); 3023 3024 return md; 3025 } 3026 3027 int dm_suspended_md(struct mapped_device *md) 3028 { 3029 return test_bit(DMF_SUSPENDED, &md->flags); 3030 } 3031 3032 static int dm_post_suspending_md(struct mapped_device *md) 3033 { 3034 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3035 } 3036 3037 int dm_suspended_internally_md(struct mapped_device *md) 3038 { 3039 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3040 } 3041 3042 int dm_test_deferred_remove_flag(struct mapped_device *md) 3043 { 3044 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3045 } 3046 3047 int dm_suspended(struct dm_target *ti) 3048 { 3049 return dm_suspended_md(ti->table->md); 3050 } 3051 EXPORT_SYMBOL_GPL(dm_suspended); 3052 3053 int dm_post_suspending(struct dm_target *ti) 3054 { 3055 return dm_post_suspending_md(ti->table->md); 3056 } 3057 EXPORT_SYMBOL_GPL(dm_post_suspending); 3058 3059 int dm_noflush_suspending(struct dm_target *ti) 3060 { 3061 return __noflush_suspending(ti->table->md); 3062 } 3063 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3064 3065 void dm_free_md_mempools(struct dm_md_mempools *pools) 3066 { 3067 if (!pools) 3068 return; 3069 3070 bioset_exit(&pools->bs); 3071 bioset_exit(&pools->io_bs); 3072 3073 kfree(pools); 3074 } 3075 3076 struct dm_pr { 3077 u64 old_key; 3078 u64 new_key; 3079 u32 flags; 3080 bool abort; 3081 bool fail_early; 3082 int ret; 3083 enum pr_type type; 3084 }; 3085 3086 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3087 struct dm_pr *pr) 3088 { 3089 struct mapped_device *md = bdev->bd_disk->private_data; 3090 struct dm_table *table; 3091 struct dm_target *ti; 3092 int ret = -ENOTTY, srcu_idx; 3093 3094 table = dm_get_live_table(md, &srcu_idx); 3095 if (!table || !dm_table_get_size(table)) 3096 goto out; 3097 3098 /* We only support devices that have a single target */ 3099 if (table->num_targets != 1) 3100 goto out; 3101 ti = dm_table_get_target(table, 0); 3102 3103 if (dm_suspended_md(md)) { 3104 ret = -EAGAIN; 3105 goto out; 3106 } 3107 3108 ret = -EINVAL; 3109 if (!ti->type->iterate_devices) 3110 goto out; 3111 3112 ti->type->iterate_devices(ti, fn, pr); 3113 ret = 0; 3114 out: 3115 dm_put_live_table(md, srcu_idx); 3116 return ret; 3117 } 3118 3119 /* 3120 * For register / unregister we need to manually call out to every path. 3121 */ 3122 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3123 sector_t start, sector_t len, void *data) 3124 { 3125 struct dm_pr *pr = data; 3126 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3127 int ret; 3128 3129 if (!ops || !ops->pr_register) { 3130 pr->ret = -EOPNOTSUPP; 3131 return -1; 3132 } 3133 3134 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3135 if (!ret) 3136 return 0; 3137 3138 if (!pr->ret) 3139 pr->ret = ret; 3140 3141 if (pr->fail_early) 3142 return -1; 3143 3144 return 0; 3145 } 3146 3147 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3148 u32 flags) 3149 { 3150 struct dm_pr pr = { 3151 .old_key = old_key, 3152 .new_key = new_key, 3153 .flags = flags, 3154 .fail_early = true, 3155 .ret = 0, 3156 }; 3157 int ret; 3158 3159 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3160 if (ret) { 3161 /* Didn't even get to register a path */ 3162 return ret; 3163 } 3164 3165 if (!pr.ret) 3166 return 0; 3167 ret = pr.ret; 3168 3169 if (!new_key) 3170 return ret; 3171 3172 /* unregister all paths if we failed to register any path */ 3173 pr.old_key = new_key; 3174 pr.new_key = 0; 3175 pr.flags = 0; 3176 pr.fail_early = false; 3177 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3178 return ret; 3179 } 3180 3181 3182 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3183 sector_t start, sector_t len, void *data) 3184 { 3185 struct dm_pr *pr = data; 3186 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3187 3188 if (!ops || !ops->pr_reserve) { 3189 pr->ret = -EOPNOTSUPP; 3190 return -1; 3191 } 3192 3193 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3194 if (!pr->ret) 3195 return -1; 3196 3197 return 0; 3198 } 3199 3200 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3201 u32 flags) 3202 { 3203 struct dm_pr pr = { 3204 .old_key = key, 3205 .flags = flags, 3206 .type = type, 3207 .fail_early = false, 3208 .ret = 0, 3209 }; 3210 int ret; 3211 3212 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3213 if (ret) 3214 return ret; 3215 3216 return pr.ret; 3217 } 3218 3219 /* 3220 * If there is a non-All Registrants type of reservation, the release must be 3221 * sent down the holding path. For the cases where there is no reservation or 3222 * the path is not the holder the device will also return success, so we must 3223 * try each path to make sure we got the correct path. 3224 */ 3225 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3226 sector_t start, sector_t len, void *data) 3227 { 3228 struct dm_pr *pr = data; 3229 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3230 3231 if (!ops || !ops->pr_release) { 3232 pr->ret = -EOPNOTSUPP; 3233 return -1; 3234 } 3235 3236 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3237 if (pr->ret) 3238 return -1; 3239 3240 return 0; 3241 } 3242 3243 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3244 { 3245 struct dm_pr pr = { 3246 .old_key = key, 3247 .type = type, 3248 .fail_early = false, 3249 }; 3250 int ret; 3251 3252 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3253 if (ret) 3254 return ret; 3255 3256 return pr.ret; 3257 } 3258 3259 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3260 sector_t start, sector_t len, void *data) 3261 { 3262 struct dm_pr *pr = data; 3263 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3264 3265 if (!ops || !ops->pr_preempt) { 3266 pr->ret = -EOPNOTSUPP; 3267 return -1; 3268 } 3269 3270 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3271 pr->abort); 3272 if (!pr->ret) 3273 return -1; 3274 3275 return 0; 3276 } 3277 3278 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3279 enum pr_type type, bool abort) 3280 { 3281 struct dm_pr pr = { 3282 .new_key = new_key, 3283 .old_key = old_key, 3284 .type = type, 3285 .fail_early = false, 3286 }; 3287 int ret; 3288 3289 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3290 if (ret) 3291 return ret; 3292 3293 return pr.ret; 3294 } 3295 3296 static int dm_pr_clear(struct block_device *bdev, u64 key) 3297 { 3298 struct mapped_device *md = bdev->bd_disk->private_data; 3299 const struct pr_ops *ops; 3300 int r, srcu_idx; 3301 3302 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3303 if (r < 0) 3304 goto out; 3305 3306 ops = bdev->bd_disk->fops->pr_ops; 3307 if (ops && ops->pr_clear) 3308 r = ops->pr_clear(bdev, key); 3309 else 3310 r = -EOPNOTSUPP; 3311 out: 3312 dm_unprepare_ioctl(md, srcu_idx); 3313 return r; 3314 } 3315 3316 static const struct pr_ops dm_pr_ops = { 3317 .pr_register = dm_pr_register, 3318 .pr_reserve = dm_pr_reserve, 3319 .pr_release = dm_pr_release, 3320 .pr_preempt = dm_pr_preempt, 3321 .pr_clear = dm_pr_clear, 3322 }; 3323 3324 static const struct block_device_operations dm_blk_dops = { 3325 .submit_bio = dm_submit_bio, 3326 .poll_bio = dm_poll_bio, 3327 .open = dm_blk_open, 3328 .release = dm_blk_close, 3329 .ioctl = dm_blk_ioctl, 3330 .getgeo = dm_blk_getgeo, 3331 .report_zones = dm_blk_report_zones, 3332 .pr_ops = &dm_pr_ops, 3333 .owner = THIS_MODULE 3334 }; 3335 3336 static const struct block_device_operations dm_rq_blk_dops = { 3337 .open = dm_blk_open, 3338 .release = dm_blk_close, 3339 .ioctl = dm_blk_ioctl, 3340 .getgeo = dm_blk_getgeo, 3341 .pr_ops = &dm_pr_ops, 3342 .owner = THIS_MODULE 3343 }; 3344 3345 static const struct dax_operations dm_dax_ops = { 3346 .direct_access = dm_dax_direct_access, 3347 .zero_page_range = dm_dax_zero_page_range, 3348 .recovery_write = dm_dax_recovery_write, 3349 }; 3350 3351 /* 3352 * module hooks 3353 */ 3354 module_init(dm_init); 3355 module_exit(dm_exit); 3356 3357 module_param(major, uint, 0); 3358 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3359 3360 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3361 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3362 3363 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3364 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3365 3366 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3367 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3368 3369 MODULE_DESCRIPTION(DM_NAME " driver"); 3370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3371 MODULE_LICENSE("GPL"); 3372