xref: /openbmc/linux/drivers/md/dm.c (revision 4161b450)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 
54 static void do_deferred_remove(struct work_struct *w);
55 
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 
58 static struct workqueue_struct *deferred_remove_workqueue;
59 
60 /*
61  * For bio-based dm.
62  * One of these is allocated per bio.
63  */
64 struct dm_io {
65 	struct mapped_device *md;
66 	int error;
67 	atomic_t io_count;
68 	struct bio *bio;
69 	unsigned long start_time;
70 	spinlock_t endio_lock;
71 	struct dm_stats_aux stats_aux;
72 };
73 
74 /*
75  * For request-based dm.
76  * One of these is allocated per request.
77  */
78 struct dm_rq_target_io {
79 	struct mapped_device *md;
80 	struct dm_target *ti;
81 	struct request *orig, clone;
82 	int error;
83 	union map_info info;
84 };
85 
86 /*
87  * For request-based dm - the bio clones we allocate are embedded in these
88  * structs.
89  *
90  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
91  * the bioset is created - this means the bio has to come at the end of the
92  * struct.
93  */
94 struct dm_rq_clone_bio_info {
95 	struct bio *orig;
96 	struct dm_rq_target_io *tio;
97 	struct bio clone;
98 };
99 
100 union map_info *dm_get_rq_mapinfo(struct request *rq)
101 {
102 	if (rq && rq->end_io_data)
103 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
104 	return NULL;
105 }
106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
107 
108 #define MINOR_ALLOCED ((void *)-1)
109 
110 /*
111  * Bits for the md->flags field.
112  */
113 #define DMF_BLOCK_IO_FOR_SUSPEND 0
114 #define DMF_SUSPENDED 1
115 #define DMF_FROZEN 2
116 #define DMF_FREEING 3
117 #define DMF_DELETING 4
118 #define DMF_NOFLUSH_SUSPENDING 5
119 #define DMF_MERGE_IS_OPTIONAL 6
120 #define DMF_DEFERRED_REMOVE 7
121 #define DMF_SUSPENDED_INTERNALLY 8
122 
123 /*
124  * A dummy definition to make RCU happy.
125  * struct dm_table should never be dereferenced in this file.
126  */
127 struct dm_table {
128 	int undefined__;
129 };
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct srcu_struct io_barrier;
136 	struct mutex suspend_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	/*
141 	 * The current mapping.
142 	 * Use dm_get_live_table{_fast} or take suspend_lock for
143 	 * dereference.
144 	 */
145 	struct dm_table __rcu *map;
146 
147 	struct list_head table_devices;
148 	struct mutex table_devices_lock;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	unsigned type;
154 	/* Protect queue and type against concurrent access. */
155 	struct mutex type_lock;
156 
157 	struct target_type *immutable_target_type;
158 
159 	struct gendisk *disk;
160 	char name[16];
161 
162 	void *interface_ptr;
163 
164 	/*
165 	 * A list of ios that arrived while we were suspended.
166 	 */
167 	atomic_t pending[2];
168 	wait_queue_head_t wait;
169 	struct work_struct work;
170 	struct bio_list deferred;
171 	spinlock_t deferred_lock;
172 
173 	/*
174 	 * Processing queue (flush)
175 	 */
176 	struct workqueue_struct *wq;
177 
178 	/*
179 	 * io objects are allocated from here.
180 	 */
181 	mempool_t *io_pool;
182 
183 	struct bio_set *bs;
184 
185 	/*
186 	 * Event handling.
187 	 */
188 	atomic_t event_nr;
189 	wait_queue_head_t eventq;
190 	atomic_t uevent_seq;
191 	struct list_head uevent_list;
192 	spinlock_t uevent_lock; /* Protect access to uevent_list */
193 
194 	/*
195 	 * freeze/thaw support require holding onto a super block
196 	 */
197 	struct super_block *frozen_sb;
198 	struct block_device *bdev;
199 
200 	/* forced geometry settings */
201 	struct hd_geometry geometry;
202 
203 	/* kobject and completion */
204 	struct dm_kobject_holder kobj_holder;
205 
206 	/* zero-length flush that will be cloned and submitted to targets */
207 	struct bio flush_bio;
208 
209 	/* the number of internal suspends */
210 	unsigned internal_suspend_count;
211 
212 	struct dm_stats stats;
213 };
214 
215 /*
216  * For mempools pre-allocation at the table loading time.
217  */
218 struct dm_md_mempools {
219 	mempool_t *io_pool;
220 	struct bio_set *bs;
221 };
222 
223 struct table_device {
224 	struct list_head list;
225 	atomic_t count;
226 	struct dm_dev dm_dev;
227 };
228 
229 #define RESERVED_BIO_BASED_IOS		16
230 #define RESERVED_REQUEST_BASED_IOS	256
231 #define RESERVED_MAX_IOS		1024
232 static struct kmem_cache *_io_cache;
233 static struct kmem_cache *_rq_tio_cache;
234 
235 /*
236  * Bio-based DM's mempools' reserved IOs set by the user.
237  */
238 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
239 
240 /*
241  * Request-based DM's mempools' reserved IOs set by the user.
242  */
243 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
244 
245 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
246 				      unsigned def, unsigned max)
247 {
248 	unsigned ios = ACCESS_ONCE(*reserved_ios);
249 	unsigned modified_ios = 0;
250 
251 	if (!ios)
252 		modified_ios = def;
253 	else if (ios > max)
254 		modified_ios = max;
255 
256 	if (modified_ios) {
257 		(void)cmpxchg(reserved_ios, ios, modified_ios);
258 		ios = modified_ios;
259 	}
260 
261 	return ios;
262 }
263 
264 unsigned dm_get_reserved_bio_based_ios(void)
265 {
266 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
267 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
268 }
269 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
270 
271 unsigned dm_get_reserved_rq_based_ios(void)
272 {
273 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
274 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
275 }
276 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
277 
278 static int __init local_init(void)
279 {
280 	int r = -ENOMEM;
281 
282 	/* allocate a slab for the dm_ios */
283 	_io_cache = KMEM_CACHE(dm_io, 0);
284 	if (!_io_cache)
285 		return r;
286 
287 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
288 	if (!_rq_tio_cache)
289 		goto out_free_io_cache;
290 
291 	r = dm_uevent_init();
292 	if (r)
293 		goto out_free_rq_tio_cache;
294 
295 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
296 	if (!deferred_remove_workqueue) {
297 		r = -ENOMEM;
298 		goto out_uevent_exit;
299 	}
300 
301 	_major = major;
302 	r = register_blkdev(_major, _name);
303 	if (r < 0)
304 		goto out_free_workqueue;
305 
306 	if (!_major)
307 		_major = r;
308 
309 	return 0;
310 
311 out_free_workqueue:
312 	destroy_workqueue(deferred_remove_workqueue);
313 out_uevent_exit:
314 	dm_uevent_exit();
315 out_free_rq_tio_cache:
316 	kmem_cache_destroy(_rq_tio_cache);
317 out_free_io_cache:
318 	kmem_cache_destroy(_io_cache);
319 
320 	return r;
321 }
322 
323 static void local_exit(void)
324 {
325 	flush_scheduled_work();
326 	destroy_workqueue(deferred_remove_workqueue);
327 
328 	kmem_cache_destroy(_rq_tio_cache);
329 	kmem_cache_destroy(_io_cache);
330 	unregister_blkdev(_major, _name);
331 	dm_uevent_exit();
332 
333 	_major = 0;
334 
335 	DMINFO("cleaned up");
336 }
337 
338 static int (*_inits[])(void) __initdata = {
339 	local_init,
340 	dm_target_init,
341 	dm_linear_init,
342 	dm_stripe_init,
343 	dm_io_init,
344 	dm_kcopyd_init,
345 	dm_interface_init,
346 	dm_statistics_init,
347 };
348 
349 static void (*_exits[])(void) = {
350 	local_exit,
351 	dm_target_exit,
352 	dm_linear_exit,
353 	dm_stripe_exit,
354 	dm_io_exit,
355 	dm_kcopyd_exit,
356 	dm_interface_exit,
357 	dm_statistics_exit,
358 };
359 
360 static int __init dm_init(void)
361 {
362 	const int count = ARRAY_SIZE(_inits);
363 
364 	int r, i;
365 
366 	for (i = 0; i < count; i++) {
367 		r = _inits[i]();
368 		if (r)
369 			goto bad;
370 	}
371 
372 	return 0;
373 
374       bad:
375 	while (i--)
376 		_exits[i]();
377 
378 	return r;
379 }
380 
381 static void __exit dm_exit(void)
382 {
383 	int i = ARRAY_SIZE(_exits);
384 
385 	while (i--)
386 		_exits[i]();
387 
388 	/*
389 	 * Should be empty by this point.
390 	 */
391 	idr_destroy(&_minor_idr);
392 }
393 
394 /*
395  * Block device functions
396  */
397 int dm_deleting_md(struct mapped_device *md)
398 {
399 	return test_bit(DMF_DELETING, &md->flags);
400 }
401 
402 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
403 {
404 	struct mapped_device *md;
405 
406 	spin_lock(&_minor_lock);
407 
408 	md = bdev->bd_disk->private_data;
409 	if (!md)
410 		goto out;
411 
412 	if (test_bit(DMF_FREEING, &md->flags) ||
413 	    dm_deleting_md(md)) {
414 		md = NULL;
415 		goto out;
416 	}
417 
418 	dm_get(md);
419 	atomic_inc(&md->open_count);
420 
421 out:
422 	spin_unlock(&_minor_lock);
423 
424 	return md ? 0 : -ENXIO;
425 }
426 
427 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
428 {
429 	struct mapped_device *md = disk->private_data;
430 
431 	spin_lock(&_minor_lock);
432 
433 	if (atomic_dec_and_test(&md->open_count) &&
434 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
435 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
436 
437 	dm_put(md);
438 
439 	spin_unlock(&_minor_lock);
440 }
441 
442 int dm_open_count(struct mapped_device *md)
443 {
444 	return atomic_read(&md->open_count);
445 }
446 
447 /*
448  * Guarantees nothing is using the device before it's deleted.
449  */
450 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
451 {
452 	int r = 0;
453 
454 	spin_lock(&_minor_lock);
455 
456 	if (dm_open_count(md)) {
457 		r = -EBUSY;
458 		if (mark_deferred)
459 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
460 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
461 		r = -EEXIST;
462 	else
463 		set_bit(DMF_DELETING, &md->flags);
464 
465 	spin_unlock(&_minor_lock);
466 
467 	return r;
468 }
469 
470 int dm_cancel_deferred_remove(struct mapped_device *md)
471 {
472 	int r = 0;
473 
474 	spin_lock(&_minor_lock);
475 
476 	if (test_bit(DMF_DELETING, &md->flags))
477 		r = -EBUSY;
478 	else
479 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
480 
481 	spin_unlock(&_minor_lock);
482 
483 	return r;
484 }
485 
486 static void do_deferred_remove(struct work_struct *w)
487 {
488 	dm_deferred_remove();
489 }
490 
491 sector_t dm_get_size(struct mapped_device *md)
492 {
493 	return get_capacity(md->disk);
494 }
495 
496 struct request_queue *dm_get_md_queue(struct mapped_device *md)
497 {
498 	return md->queue;
499 }
500 
501 struct dm_stats *dm_get_stats(struct mapped_device *md)
502 {
503 	return &md->stats;
504 }
505 
506 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
507 {
508 	struct mapped_device *md = bdev->bd_disk->private_data;
509 
510 	return dm_get_geometry(md, geo);
511 }
512 
513 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
514 			unsigned int cmd, unsigned long arg)
515 {
516 	struct mapped_device *md = bdev->bd_disk->private_data;
517 	int srcu_idx;
518 	struct dm_table *map;
519 	struct dm_target *tgt;
520 	int r = -ENOTTY;
521 
522 retry:
523 	map = dm_get_live_table(md, &srcu_idx);
524 
525 	if (!map || !dm_table_get_size(map))
526 		goto out;
527 
528 	/* We only support devices that have a single target */
529 	if (dm_table_get_num_targets(map) != 1)
530 		goto out;
531 
532 	tgt = dm_table_get_target(map, 0);
533 	if (!tgt->type->ioctl)
534 		goto out;
535 
536 	if (dm_suspended_md(md)) {
537 		r = -EAGAIN;
538 		goto out;
539 	}
540 
541 	r = tgt->type->ioctl(tgt, cmd, arg);
542 
543 out:
544 	dm_put_live_table(md, srcu_idx);
545 
546 	if (r == -ENOTCONN) {
547 		msleep(10);
548 		goto retry;
549 	}
550 
551 	return r;
552 }
553 
554 static struct dm_io *alloc_io(struct mapped_device *md)
555 {
556 	return mempool_alloc(md->io_pool, GFP_NOIO);
557 }
558 
559 static void free_io(struct mapped_device *md, struct dm_io *io)
560 {
561 	mempool_free(io, md->io_pool);
562 }
563 
564 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
565 {
566 	bio_put(&tio->clone);
567 }
568 
569 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
570 					    gfp_t gfp_mask)
571 {
572 	return mempool_alloc(md->io_pool, gfp_mask);
573 }
574 
575 static void free_rq_tio(struct dm_rq_target_io *tio)
576 {
577 	mempool_free(tio, tio->md->io_pool);
578 }
579 
580 static int md_in_flight(struct mapped_device *md)
581 {
582 	return atomic_read(&md->pending[READ]) +
583 	       atomic_read(&md->pending[WRITE]);
584 }
585 
586 static void start_io_acct(struct dm_io *io)
587 {
588 	struct mapped_device *md = io->md;
589 	struct bio *bio = io->bio;
590 	int cpu;
591 	int rw = bio_data_dir(bio);
592 
593 	io->start_time = jiffies;
594 
595 	cpu = part_stat_lock();
596 	part_round_stats(cpu, &dm_disk(md)->part0);
597 	part_stat_unlock();
598 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
599 		atomic_inc_return(&md->pending[rw]));
600 
601 	if (unlikely(dm_stats_used(&md->stats)))
602 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
603 				    bio_sectors(bio), false, 0, &io->stats_aux);
604 }
605 
606 static void end_io_acct(struct dm_io *io)
607 {
608 	struct mapped_device *md = io->md;
609 	struct bio *bio = io->bio;
610 	unsigned long duration = jiffies - io->start_time;
611 	int pending;
612 	int rw = bio_data_dir(bio);
613 
614 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
615 
616 	if (unlikely(dm_stats_used(&md->stats)))
617 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
618 				    bio_sectors(bio), true, duration, &io->stats_aux);
619 
620 	/*
621 	 * After this is decremented the bio must not be touched if it is
622 	 * a flush.
623 	 */
624 	pending = atomic_dec_return(&md->pending[rw]);
625 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
626 	pending += atomic_read(&md->pending[rw^0x1]);
627 
628 	/* nudge anyone waiting on suspend queue */
629 	if (!pending)
630 		wake_up(&md->wait);
631 }
632 
633 /*
634  * Add the bio to the list of deferred io.
635  */
636 static void queue_io(struct mapped_device *md, struct bio *bio)
637 {
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&md->deferred_lock, flags);
641 	bio_list_add(&md->deferred, bio);
642 	spin_unlock_irqrestore(&md->deferred_lock, flags);
643 	queue_work(md->wq, &md->work);
644 }
645 
646 /*
647  * Everyone (including functions in this file), should use this
648  * function to access the md->map field, and make sure they call
649  * dm_put_live_table() when finished.
650  */
651 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
652 {
653 	*srcu_idx = srcu_read_lock(&md->io_barrier);
654 
655 	return srcu_dereference(md->map, &md->io_barrier);
656 }
657 
658 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
659 {
660 	srcu_read_unlock(&md->io_barrier, srcu_idx);
661 }
662 
663 void dm_sync_table(struct mapped_device *md)
664 {
665 	synchronize_srcu(&md->io_barrier);
666 	synchronize_rcu_expedited();
667 }
668 
669 /*
670  * A fast alternative to dm_get_live_table/dm_put_live_table.
671  * The caller must not block between these two functions.
672  */
673 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
674 {
675 	rcu_read_lock();
676 	return rcu_dereference(md->map);
677 }
678 
679 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
680 {
681 	rcu_read_unlock();
682 }
683 
684 /*
685  * Open a table device so we can use it as a map destination.
686  */
687 static int open_table_device(struct table_device *td, dev_t dev,
688 			     struct mapped_device *md)
689 {
690 	static char *_claim_ptr = "I belong to device-mapper";
691 	struct block_device *bdev;
692 
693 	int r;
694 
695 	BUG_ON(td->dm_dev.bdev);
696 
697 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
698 	if (IS_ERR(bdev))
699 		return PTR_ERR(bdev);
700 
701 	r = bd_link_disk_holder(bdev, dm_disk(md));
702 	if (r) {
703 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
704 		return r;
705 	}
706 
707 	td->dm_dev.bdev = bdev;
708 	return 0;
709 }
710 
711 /*
712  * Close a table device that we've been using.
713  */
714 static void close_table_device(struct table_device *td, struct mapped_device *md)
715 {
716 	if (!td->dm_dev.bdev)
717 		return;
718 
719 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
720 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
721 	td->dm_dev.bdev = NULL;
722 }
723 
724 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
725 					      fmode_t mode) {
726 	struct table_device *td;
727 
728 	list_for_each_entry(td, l, list)
729 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
730 			return td;
731 
732 	return NULL;
733 }
734 
735 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
736 			struct dm_dev **result) {
737 	int r;
738 	struct table_device *td;
739 
740 	mutex_lock(&md->table_devices_lock);
741 	td = find_table_device(&md->table_devices, dev, mode);
742 	if (!td) {
743 		td = kmalloc(sizeof(*td), GFP_KERNEL);
744 		if (!td) {
745 			mutex_unlock(&md->table_devices_lock);
746 			return -ENOMEM;
747 		}
748 
749 		td->dm_dev.mode = mode;
750 		td->dm_dev.bdev = NULL;
751 
752 		if ((r = open_table_device(td, dev, md))) {
753 			mutex_unlock(&md->table_devices_lock);
754 			kfree(td);
755 			return r;
756 		}
757 
758 		format_dev_t(td->dm_dev.name, dev);
759 
760 		atomic_set(&td->count, 0);
761 		list_add(&td->list, &md->table_devices);
762 	}
763 	atomic_inc(&td->count);
764 	mutex_unlock(&md->table_devices_lock);
765 
766 	*result = &td->dm_dev;
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(dm_get_table_device);
770 
771 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
772 {
773 	struct table_device *td = container_of(d, struct table_device, dm_dev);
774 
775 	mutex_lock(&md->table_devices_lock);
776 	if (atomic_dec_and_test(&td->count)) {
777 		close_table_device(td, md);
778 		list_del(&td->list);
779 		kfree(td);
780 	}
781 	mutex_unlock(&md->table_devices_lock);
782 }
783 EXPORT_SYMBOL(dm_put_table_device);
784 
785 static void free_table_devices(struct list_head *devices)
786 {
787 	struct list_head *tmp, *next;
788 
789 	list_for_each_safe(tmp, next, devices) {
790 		struct table_device *td = list_entry(tmp, struct table_device, list);
791 
792 		DMWARN("dm_destroy: %s still exists with %d references",
793 		       td->dm_dev.name, atomic_read(&td->count));
794 		kfree(td);
795 	}
796 }
797 
798 /*
799  * Get the geometry associated with a dm device
800  */
801 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
802 {
803 	*geo = md->geometry;
804 
805 	return 0;
806 }
807 
808 /*
809  * Set the geometry of a device.
810  */
811 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
812 {
813 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
814 
815 	if (geo->start > sz) {
816 		DMWARN("Start sector is beyond the geometry limits.");
817 		return -EINVAL;
818 	}
819 
820 	md->geometry = *geo;
821 
822 	return 0;
823 }
824 
825 /*-----------------------------------------------------------------
826  * CRUD START:
827  *   A more elegant soln is in the works that uses the queue
828  *   merge fn, unfortunately there are a couple of changes to
829  *   the block layer that I want to make for this.  So in the
830  *   interests of getting something for people to use I give
831  *   you this clearly demarcated crap.
832  *---------------------------------------------------------------*/
833 
834 static int __noflush_suspending(struct mapped_device *md)
835 {
836 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
837 }
838 
839 /*
840  * Decrements the number of outstanding ios that a bio has been
841  * cloned into, completing the original io if necc.
842  */
843 static void dec_pending(struct dm_io *io, int error)
844 {
845 	unsigned long flags;
846 	int io_error;
847 	struct bio *bio;
848 	struct mapped_device *md = io->md;
849 
850 	/* Push-back supersedes any I/O errors */
851 	if (unlikely(error)) {
852 		spin_lock_irqsave(&io->endio_lock, flags);
853 		if (!(io->error > 0 && __noflush_suspending(md)))
854 			io->error = error;
855 		spin_unlock_irqrestore(&io->endio_lock, flags);
856 	}
857 
858 	if (atomic_dec_and_test(&io->io_count)) {
859 		if (io->error == DM_ENDIO_REQUEUE) {
860 			/*
861 			 * Target requested pushing back the I/O.
862 			 */
863 			spin_lock_irqsave(&md->deferred_lock, flags);
864 			if (__noflush_suspending(md))
865 				bio_list_add_head(&md->deferred, io->bio);
866 			else
867 				/* noflush suspend was interrupted. */
868 				io->error = -EIO;
869 			spin_unlock_irqrestore(&md->deferred_lock, flags);
870 		}
871 
872 		io_error = io->error;
873 		bio = io->bio;
874 		end_io_acct(io);
875 		free_io(md, io);
876 
877 		if (io_error == DM_ENDIO_REQUEUE)
878 			return;
879 
880 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
881 			/*
882 			 * Preflush done for flush with data, reissue
883 			 * without REQ_FLUSH.
884 			 */
885 			bio->bi_rw &= ~REQ_FLUSH;
886 			queue_io(md, bio);
887 		} else {
888 			/* done with normal IO or empty flush */
889 			trace_block_bio_complete(md->queue, bio, io_error);
890 			bio_endio(bio, io_error);
891 		}
892 	}
893 }
894 
895 static void disable_write_same(struct mapped_device *md)
896 {
897 	struct queue_limits *limits = dm_get_queue_limits(md);
898 
899 	/* device doesn't really support WRITE SAME, disable it */
900 	limits->max_write_same_sectors = 0;
901 }
902 
903 static void clone_endio(struct bio *bio, int error)
904 {
905 	int r = error;
906 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
907 	struct dm_io *io = tio->io;
908 	struct mapped_device *md = tio->io->md;
909 	dm_endio_fn endio = tio->ti->type->end_io;
910 
911 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
912 		error = -EIO;
913 
914 	if (endio) {
915 		r = endio(tio->ti, bio, error);
916 		if (r < 0 || r == DM_ENDIO_REQUEUE)
917 			/*
918 			 * error and requeue request are handled
919 			 * in dec_pending().
920 			 */
921 			error = r;
922 		else if (r == DM_ENDIO_INCOMPLETE)
923 			/* The target will handle the io */
924 			return;
925 		else if (r) {
926 			DMWARN("unimplemented target endio return value: %d", r);
927 			BUG();
928 		}
929 	}
930 
931 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
932 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
933 		disable_write_same(md);
934 
935 	free_tio(md, tio);
936 	dec_pending(io, error);
937 }
938 
939 /*
940  * Partial completion handling for request-based dm
941  */
942 static void end_clone_bio(struct bio *clone, int error)
943 {
944 	struct dm_rq_clone_bio_info *info =
945 		container_of(clone, struct dm_rq_clone_bio_info, clone);
946 	struct dm_rq_target_io *tio = info->tio;
947 	struct bio *bio = info->orig;
948 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
949 
950 	bio_put(clone);
951 
952 	if (tio->error)
953 		/*
954 		 * An error has already been detected on the request.
955 		 * Once error occurred, just let clone->end_io() handle
956 		 * the remainder.
957 		 */
958 		return;
959 	else if (error) {
960 		/*
961 		 * Don't notice the error to the upper layer yet.
962 		 * The error handling decision is made by the target driver,
963 		 * when the request is completed.
964 		 */
965 		tio->error = error;
966 		return;
967 	}
968 
969 	/*
970 	 * I/O for the bio successfully completed.
971 	 * Notice the data completion to the upper layer.
972 	 */
973 
974 	/*
975 	 * bios are processed from the head of the list.
976 	 * So the completing bio should always be rq->bio.
977 	 * If it's not, something wrong is happening.
978 	 */
979 	if (tio->orig->bio != bio)
980 		DMERR("bio completion is going in the middle of the request");
981 
982 	/*
983 	 * Update the original request.
984 	 * Do not use blk_end_request() here, because it may complete
985 	 * the original request before the clone, and break the ordering.
986 	 */
987 	blk_update_request(tio->orig, 0, nr_bytes);
988 }
989 
990 /*
991  * Don't touch any member of the md after calling this function because
992  * the md may be freed in dm_put() at the end of this function.
993  * Or do dm_get() before calling this function and dm_put() later.
994  */
995 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
996 {
997 	atomic_dec(&md->pending[rw]);
998 
999 	/* nudge anyone waiting on suspend queue */
1000 	if (!md_in_flight(md))
1001 		wake_up(&md->wait);
1002 
1003 	/*
1004 	 * Run this off this callpath, as drivers could invoke end_io while
1005 	 * inside their request_fn (and holding the queue lock). Calling
1006 	 * back into ->request_fn() could deadlock attempting to grab the
1007 	 * queue lock again.
1008 	 */
1009 	if (run_queue)
1010 		blk_run_queue_async(md->queue);
1011 
1012 	/*
1013 	 * dm_put() must be at the end of this function. See the comment above
1014 	 */
1015 	dm_put(md);
1016 }
1017 
1018 static void free_rq_clone(struct request *clone)
1019 {
1020 	struct dm_rq_target_io *tio = clone->end_io_data;
1021 
1022 	blk_rq_unprep_clone(clone);
1023 	free_rq_tio(tio);
1024 }
1025 
1026 /*
1027  * Complete the clone and the original request.
1028  * Must be called without queue lock.
1029  */
1030 static void dm_end_request(struct request *clone, int error)
1031 {
1032 	int rw = rq_data_dir(clone);
1033 	struct dm_rq_target_io *tio = clone->end_io_data;
1034 	struct mapped_device *md = tio->md;
1035 	struct request *rq = tio->orig;
1036 
1037 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1038 		rq->errors = clone->errors;
1039 		rq->resid_len = clone->resid_len;
1040 
1041 		if (rq->sense)
1042 			/*
1043 			 * We are using the sense buffer of the original
1044 			 * request.
1045 			 * So setting the length of the sense data is enough.
1046 			 */
1047 			rq->sense_len = clone->sense_len;
1048 	}
1049 
1050 	free_rq_clone(clone);
1051 	blk_end_request_all(rq, error);
1052 	rq_completed(md, rw, true);
1053 }
1054 
1055 static void dm_unprep_request(struct request *rq)
1056 {
1057 	struct request *clone = rq->special;
1058 
1059 	rq->special = NULL;
1060 	rq->cmd_flags &= ~REQ_DONTPREP;
1061 
1062 	free_rq_clone(clone);
1063 }
1064 
1065 /*
1066  * Requeue the original request of a clone.
1067  */
1068 void dm_requeue_unmapped_request(struct request *clone)
1069 {
1070 	int rw = rq_data_dir(clone);
1071 	struct dm_rq_target_io *tio = clone->end_io_data;
1072 	struct mapped_device *md = tio->md;
1073 	struct request *rq = tio->orig;
1074 	struct request_queue *q = rq->q;
1075 	unsigned long flags;
1076 
1077 	dm_unprep_request(rq);
1078 
1079 	spin_lock_irqsave(q->queue_lock, flags);
1080 	blk_requeue_request(q, rq);
1081 	spin_unlock_irqrestore(q->queue_lock, flags);
1082 
1083 	rq_completed(md, rw, 0);
1084 }
1085 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1086 
1087 static void __stop_queue(struct request_queue *q)
1088 {
1089 	blk_stop_queue(q);
1090 }
1091 
1092 static void stop_queue(struct request_queue *q)
1093 {
1094 	unsigned long flags;
1095 
1096 	spin_lock_irqsave(q->queue_lock, flags);
1097 	__stop_queue(q);
1098 	spin_unlock_irqrestore(q->queue_lock, flags);
1099 }
1100 
1101 static void __start_queue(struct request_queue *q)
1102 {
1103 	if (blk_queue_stopped(q))
1104 		blk_start_queue(q);
1105 }
1106 
1107 static void start_queue(struct request_queue *q)
1108 {
1109 	unsigned long flags;
1110 
1111 	spin_lock_irqsave(q->queue_lock, flags);
1112 	__start_queue(q);
1113 	spin_unlock_irqrestore(q->queue_lock, flags);
1114 }
1115 
1116 static void dm_done(struct request *clone, int error, bool mapped)
1117 {
1118 	int r = error;
1119 	struct dm_rq_target_io *tio = clone->end_io_data;
1120 	dm_request_endio_fn rq_end_io = NULL;
1121 
1122 	if (tio->ti) {
1123 		rq_end_io = tio->ti->type->rq_end_io;
1124 
1125 		if (mapped && rq_end_io)
1126 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1127 	}
1128 
1129 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1130 		     !clone->q->limits.max_write_same_sectors))
1131 		disable_write_same(tio->md);
1132 
1133 	if (r <= 0)
1134 		/* The target wants to complete the I/O */
1135 		dm_end_request(clone, r);
1136 	else if (r == DM_ENDIO_INCOMPLETE)
1137 		/* The target will handle the I/O */
1138 		return;
1139 	else if (r == DM_ENDIO_REQUEUE)
1140 		/* The target wants to requeue the I/O */
1141 		dm_requeue_unmapped_request(clone);
1142 	else {
1143 		DMWARN("unimplemented target endio return value: %d", r);
1144 		BUG();
1145 	}
1146 }
1147 
1148 /*
1149  * Request completion handler for request-based dm
1150  */
1151 static void dm_softirq_done(struct request *rq)
1152 {
1153 	bool mapped = true;
1154 	struct request *clone = rq->completion_data;
1155 	struct dm_rq_target_io *tio = clone->end_io_data;
1156 
1157 	if (rq->cmd_flags & REQ_FAILED)
1158 		mapped = false;
1159 
1160 	dm_done(clone, tio->error, mapped);
1161 }
1162 
1163 /*
1164  * Complete the clone and the original request with the error status
1165  * through softirq context.
1166  */
1167 static void dm_complete_request(struct request *clone, int error)
1168 {
1169 	struct dm_rq_target_io *tio = clone->end_io_data;
1170 	struct request *rq = tio->orig;
1171 
1172 	tio->error = error;
1173 	rq->completion_data = clone;
1174 	blk_complete_request(rq);
1175 }
1176 
1177 /*
1178  * Complete the not-mapped clone and the original request with the error status
1179  * through softirq context.
1180  * Target's rq_end_io() function isn't called.
1181  * This may be used when the target's map_rq() function fails.
1182  */
1183 void dm_kill_unmapped_request(struct request *clone, int error)
1184 {
1185 	struct dm_rq_target_io *tio = clone->end_io_data;
1186 	struct request *rq = tio->orig;
1187 
1188 	rq->cmd_flags |= REQ_FAILED;
1189 	dm_complete_request(clone, error);
1190 }
1191 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1192 
1193 /*
1194  * Called with the queue lock held
1195  */
1196 static void end_clone_request(struct request *clone, int error)
1197 {
1198 	/*
1199 	 * For just cleaning up the information of the queue in which
1200 	 * the clone was dispatched.
1201 	 * The clone is *NOT* freed actually here because it is alloced from
1202 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1203 	 */
1204 	__blk_put_request(clone->q, clone);
1205 
1206 	/*
1207 	 * Actual request completion is done in a softirq context which doesn't
1208 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1209 	 *     - another request may be submitted by the upper level driver
1210 	 *       of the stacking during the completion
1211 	 *     - the submission which requires queue lock may be done
1212 	 *       against this queue
1213 	 */
1214 	dm_complete_request(clone, error);
1215 }
1216 
1217 /*
1218  * Return maximum size of I/O possible at the supplied sector up to the current
1219  * target boundary.
1220  */
1221 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1222 {
1223 	sector_t target_offset = dm_target_offset(ti, sector);
1224 
1225 	return ti->len - target_offset;
1226 }
1227 
1228 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1229 {
1230 	sector_t len = max_io_len_target_boundary(sector, ti);
1231 	sector_t offset, max_len;
1232 
1233 	/*
1234 	 * Does the target need to split even further?
1235 	 */
1236 	if (ti->max_io_len) {
1237 		offset = dm_target_offset(ti, sector);
1238 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1239 			max_len = sector_div(offset, ti->max_io_len);
1240 		else
1241 			max_len = offset & (ti->max_io_len - 1);
1242 		max_len = ti->max_io_len - max_len;
1243 
1244 		if (len > max_len)
1245 			len = max_len;
1246 	}
1247 
1248 	return len;
1249 }
1250 
1251 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1252 {
1253 	if (len > UINT_MAX) {
1254 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1255 		      (unsigned long long)len, UINT_MAX);
1256 		ti->error = "Maximum size of target IO is too large";
1257 		return -EINVAL;
1258 	}
1259 
1260 	ti->max_io_len = (uint32_t) len;
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1265 
1266 /*
1267  * A target may call dm_accept_partial_bio only from the map routine.  It is
1268  * allowed for all bio types except REQ_FLUSH.
1269  *
1270  * dm_accept_partial_bio informs the dm that the target only wants to process
1271  * additional n_sectors sectors of the bio and the rest of the data should be
1272  * sent in a next bio.
1273  *
1274  * A diagram that explains the arithmetics:
1275  * +--------------------+---------------+-------+
1276  * |         1          |       2       |   3   |
1277  * +--------------------+---------------+-------+
1278  *
1279  * <-------------- *tio->len_ptr --------------->
1280  *                      <------- bi_size ------->
1281  *                      <-- n_sectors -->
1282  *
1283  * Region 1 was already iterated over with bio_advance or similar function.
1284  *	(it may be empty if the target doesn't use bio_advance)
1285  * Region 2 is the remaining bio size that the target wants to process.
1286  *	(it may be empty if region 1 is non-empty, although there is no reason
1287  *	 to make it empty)
1288  * The target requires that region 3 is to be sent in the next bio.
1289  *
1290  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1291  * the partially processed part (the sum of regions 1+2) must be the same for all
1292  * copies of the bio.
1293  */
1294 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1295 {
1296 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1297 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1298 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1299 	BUG_ON(bi_size > *tio->len_ptr);
1300 	BUG_ON(n_sectors > bi_size);
1301 	*tio->len_ptr -= bi_size - n_sectors;
1302 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1303 }
1304 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1305 
1306 static void __map_bio(struct dm_target_io *tio)
1307 {
1308 	int r;
1309 	sector_t sector;
1310 	struct mapped_device *md;
1311 	struct bio *clone = &tio->clone;
1312 	struct dm_target *ti = tio->ti;
1313 
1314 	clone->bi_end_io = clone_endio;
1315 
1316 	/*
1317 	 * Map the clone.  If r == 0 we don't need to do
1318 	 * anything, the target has assumed ownership of
1319 	 * this io.
1320 	 */
1321 	atomic_inc(&tio->io->io_count);
1322 	sector = clone->bi_iter.bi_sector;
1323 	r = ti->type->map(ti, clone);
1324 	if (r == DM_MAPIO_REMAPPED) {
1325 		/* the bio has been remapped so dispatch it */
1326 
1327 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1328 				      tio->io->bio->bi_bdev->bd_dev, sector);
1329 
1330 		generic_make_request(clone);
1331 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1332 		/* error the io and bail out, or requeue it if needed */
1333 		md = tio->io->md;
1334 		dec_pending(tio->io, r);
1335 		free_tio(md, tio);
1336 	} else if (r) {
1337 		DMWARN("unimplemented target map return value: %d", r);
1338 		BUG();
1339 	}
1340 }
1341 
1342 struct clone_info {
1343 	struct mapped_device *md;
1344 	struct dm_table *map;
1345 	struct bio *bio;
1346 	struct dm_io *io;
1347 	sector_t sector;
1348 	unsigned sector_count;
1349 };
1350 
1351 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1352 {
1353 	bio->bi_iter.bi_sector = sector;
1354 	bio->bi_iter.bi_size = to_bytes(len);
1355 }
1356 
1357 /*
1358  * Creates a bio that consists of range of complete bvecs.
1359  */
1360 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1361 		      sector_t sector, unsigned len)
1362 {
1363 	struct bio *clone = &tio->clone;
1364 
1365 	__bio_clone_fast(clone, bio);
1366 
1367 	if (bio_integrity(bio))
1368 		bio_integrity_clone(clone, bio, GFP_NOIO);
1369 
1370 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1371 	clone->bi_iter.bi_size = to_bytes(len);
1372 
1373 	if (bio_integrity(bio))
1374 		bio_integrity_trim(clone, 0, len);
1375 }
1376 
1377 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1378 				      struct dm_target *ti,
1379 				      unsigned target_bio_nr)
1380 {
1381 	struct dm_target_io *tio;
1382 	struct bio *clone;
1383 
1384 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1385 	tio = container_of(clone, struct dm_target_io, clone);
1386 
1387 	tio->io = ci->io;
1388 	tio->ti = ti;
1389 	tio->target_bio_nr = target_bio_nr;
1390 
1391 	return tio;
1392 }
1393 
1394 static void __clone_and_map_simple_bio(struct clone_info *ci,
1395 				       struct dm_target *ti,
1396 				       unsigned target_bio_nr, unsigned *len)
1397 {
1398 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1399 	struct bio *clone = &tio->clone;
1400 
1401 	tio->len_ptr = len;
1402 
1403 	__bio_clone_fast(clone, ci->bio);
1404 	if (len)
1405 		bio_setup_sector(clone, ci->sector, *len);
1406 
1407 	__map_bio(tio);
1408 }
1409 
1410 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1411 				  unsigned num_bios, unsigned *len)
1412 {
1413 	unsigned target_bio_nr;
1414 
1415 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1416 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1417 }
1418 
1419 static int __send_empty_flush(struct clone_info *ci)
1420 {
1421 	unsigned target_nr = 0;
1422 	struct dm_target *ti;
1423 
1424 	BUG_ON(bio_has_data(ci->bio));
1425 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1426 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1427 
1428 	return 0;
1429 }
1430 
1431 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1432 				     sector_t sector, unsigned *len)
1433 {
1434 	struct bio *bio = ci->bio;
1435 	struct dm_target_io *tio;
1436 	unsigned target_bio_nr;
1437 	unsigned num_target_bios = 1;
1438 
1439 	/*
1440 	 * Does the target want to receive duplicate copies of the bio?
1441 	 */
1442 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1443 		num_target_bios = ti->num_write_bios(ti, bio);
1444 
1445 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1446 		tio = alloc_tio(ci, ti, target_bio_nr);
1447 		tio->len_ptr = len;
1448 		clone_bio(tio, bio, sector, *len);
1449 		__map_bio(tio);
1450 	}
1451 }
1452 
1453 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1454 
1455 static unsigned get_num_discard_bios(struct dm_target *ti)
1456 {
1457 	return ti->num_discard_bios;
1458 }
1459 
1460 static unsigned get_num_write_same_bios(struct dm_target *ti)
1461 {
1462 	return ti->num_write_same_bios;
1463 }
1464 
1465 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1466 
1467 static bool is_split_required_for_discard(struct dm_target *ti)
1468 {
1469 	return ti->split_discard_bios;
1470 }
1471 
1472 static int __send_changing_extent_only(struct clone_info *ci,
1473 				       get_num_bios_fn get_num_bios,
1474 				       is_split_required_fn is_split_required)
1475 {
1476 	struct dm_target *ti;
1477 	unsigned len;
1478 	unsigned num_bios;
1479 
1480 	do {
1481 		ti = dm_table_find_target(ci->map, ci->sector);
1482 		if (!dm_target_is_valid(ti))
1483 			return -EIO;
1484 
1485 		/*
1486 		 * Even though the device advertised support for this type of
1487 		 * request, that does not mean every target supports it, and
1488 		 * reconfiguration might also have changed that since the
1489 		 * check was performed.
1490 		 */
1491 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1492 		if (!num_bios)
1493 			return -EOPNOTSUPP;
1494 
1495 		if (is_split_required && !is_split_required(ti))
1496 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1497 		else
1498 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1499 
1500 		__send_duplicate_bios(ci, ti, num_bios, &len);
1501 
1502 		ci->sector += len;
1503 	} while (ci->sector_count -= len);
1504 
1505 	return 0;
1506 }
1507 
1508 static int __send_discard(struct clone_info *ci)
1509 {
1510 	return __send_changing_extent_only(ci, get_num_discard_bios,
1511 					   is_split_required_for_discard);
1512 }
1513 
1514 static int __send_write_same(struct clone_info *ci)
1515 {
1516 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1517 }
1518 
1519 /*
1520  * Select the correct strategy for processing a non-flush bio.
1521  */
1522 static int __split_and_process_non_flush(struct clone_info *ci)
1523 {
1524 	struct bio *bio = ci->bio;
1525 	struct dm_target *ti;
1526 	unsigned len;
1527 
1528 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1529 		return __send_discard(ci);
1530 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1531 		return __send_write_same(ci);
1532 
1533 	ti = dm_table_find_target(ci->map, ci->sector);
1534 	if (!dm_target_is_valid(ti))
1535 		return -EIO;
1536 
1537 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1538 
1539 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1540 
1541 	ci->sector += len;
1542 	ci->sector_count -= len;
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Entry point to split a bio into clones and submit them to the targets.
1549  */
1550 static void __split_and_process_bio(struct mapped_device *md,
1551 				    struct dm_table *map, struct bio *bio)
1552 {
1553 	struct clone_info ci;
1554 	int error = 0;
1555 
1556 	if (unlikely(!map)) {
1557 		bio_io_error(bio);
1558 		return;
1559 	}
1560 
1561 	ci.map = map;
1562 	ci.md = md;
1563 	ci.io = alloc_io(md);
1564 	ci.io->error = 0;
1565 	atomic_set(&ci.io->io_count, 1);
1566 	ci.io->bio = bio;
1567 	ci.io->md = md;
1568 	spin_lock_init(&ci.io->endio_lock);
1569 	ci.sector = bio->bi_iter.bi_sector;
1570 
1571 	start_io_acct(ci.io);
1572 
1573 	if (bio->bi_rw & REQ_FLUSH) {
1574 		ci.bio = &ci.md->flush_bio;
1575 		ci.sector_count = 0;
1576 		error = __send_empty_flush(&ci);
1577 		/* dec_pending submits any data associated with flush */
1578 	} else {
1579 		ci.bio = bio;
1580 		ci.sector_count = bio_sectors(bio);
1581 		while (ci.sector_count && !error)
1582 			error = __split_and_process_non_flush(&ci);
1583 	}
1584 
1585 	/* drop the extra reference count */
1586 	dec_pending(ci.io, error);
1587 }
1588 /*-----------------------------------------------------------------
1589  * CRUD END
1590  *---------------------------------------------------------------*/
1591 
1592 static int dm_merge_bvec(struct request_queue *q,
1593 			 struct bvec_merge_data *bvm,
1594 			 struct bio_vec *biovec)
1595 {
1596 	struct mapped_device *md = q->queuedata;
1597 	struct dm_table *map = dm_get_live_table_fast(md);
1598 	struct dm_target *ti;
1599 	sector_t max_sectors;
1600 	int max_size = 0;
1601 
1602 	if (unlikely(!map))
1603 		goto out;
1604 
1605 	ti = dm_table_find_target(map, bvm->bi_sector);
1606 	if (!dm_target_is_valid(ti))
1607 		goto out;
1608 
1609 	/*
1610 	 * Find maximum amount of I/O that won't need splitting
1611 	 */
1612 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1613 			  (sector_t) queue_max_sectors(q));
1614 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1615 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1616 		max_size = 0;
1617 
1618 	/*
1619 	 * merge_bvec_fn() returns number of bytes
1620 	 * it can accept at this offset
1621 	 * max is precomputed maximal io size
1622 	 */
1623 	if (max_size && ti->type->merge)
1624 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1625 	/*
1626 	 * If the target doesn't support merge method and some of the devices
1627 	 * provided their merge_bvec method (we know this by looking for the
1628 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1629 	 * allow bios with multiple vector entries.  So always set max_size
1630 	 * to 0, and the code below allows just one page.
1631 	 */
1632 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1633 		max_size = 0;
1634 
1635 out:
1636 	dm_put_live_table_fast(md);
1637 	/*
1638 	 * Always allow an entire first page
1639 	 */
1640 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1641 		max_size = biovec->bv_len;
1642 
1643 	return max_size;
1644 }
1645 
1646 /*
1647  * The request function that just remaps the bio built up by
1648  * dm_merge_bvec.
1649  */
1650 static void _dm_request(struct request_queue *q, struct bio *bio)
1651 {
1652 	int rw = bio_data_dir(bio);
1653 	struct mapped_device *md = q->queuedata;
1654 	int srcu_idx;
1655 	struct dm_table *map;
1656 
1657 	map = dm_get_live_table(md, &srcu_idx);
1658 
1659 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1660 
1661 	/* if we're suspended, we have to queue this io for later */
1662 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1663 		dm_put_live_table(md, srcu_idx);
1664 
1665 		if (bio_rw(bio) != READA)
1666 			queue_io(md, bio);
1667 		else
1668 			bio_io_error(bio);
1669 		return;
1670 	}
1671 
1672 	__split_and_process_bio(md, map, bio);
1673 	dm_put_live_table(md, srcu_idx);
1674 	return;
1675 }
1676 
1677 int dm_request_based(struct mapped_device *md)
1678 {
1679 	return blk_queue_stackable(md->queue);
1680 }
1681 
1682 static void dm_request(struct request_queue *q, struct bio *bio)
1683 {
1684 	struct mapped_device *md = q->queuedata;
1685 
1686 	if (dm_request_based(md))
1687 		blk_queue_bio(q, bio);
1688 	else
1689 		_dm_request(q, bio);
1690 }
1691 
1692 void dm_dispatch_request(struct request *rq)
1693 {
1694 	int r;
1695 
1696 	if (blk_queue_io_stat(rq->q))
1697 		rq->cmd_flags |= REQ_IO_STAT;
1698 
1699 	rq->start_time = jiffies;
1700 	r = blk_insert_cloned_request(rq->q, rq);
1701 	if (r)
1702 		dm_complete_request(rq, r);
1703 }
1704 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1705 
1706 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1707 				 void *data)
1708 {
1709 	struct dm_rq_target_io *tio = data;
1710 	struct dm_rq_clone_bio_info *info =
1711 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1712 
1713 	info->orig = bio_orig;
1714 	info->tio = tio;
1715 	bio->bi_end_io = end_clone_bio;
1716 
1717 	return 0;
1718 }
1719 
1720 static int setup_clone(struct request *clone, struct request *rq,
1721 		       struct dm_rq_target_io *tio)
1722 {
1723 	int r;
1724 
1725 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1726 			      dm_rq_bio_constructor, tio);
1727 	if (r)
1728 		return r;
1729 
1730 	clone->cmd = rq->cmd;
1731 	clone->cmd_len = rq->cmd_len;
1732 	clone->sense = rq->sense;
1733 	clone->end_io = end_clone_request;
1734 	clone->end_io_data = tio;
1735 
1736 	return 0;
1737 }
1738 
1739 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1740 				gfp_t gfp_mask)
1741 {
1742 	struct request *clone;
1743 	struct dm_rq_target_io *tio;
1744 
1745 	tio = alloc_rq_tio(md, gfp_mask);
1746 	if (!tio)
1747 		return NULL;
1748 
1749 	tio->md = md;
1750 	tio->ti = NULL;
1751 	tio->orig = rq;
1752 	tio->error = 0;
1753 	memset(&tio->info, 0, sizeof(tio->info));
1754 
1755 	clone = &tio->clone;
1756 	if (setup_clone(clone, rq, tio)) {
1757 		/* -ENOMEM */
1758 		free_rq_tio(tio);
1759 		return NULL;
1760 	}
1761 
1762 	return clone;
1763 }
1764 
1765 /*
1766  * Called with the queue lock held.
1767  */
1768 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1769 {
1770 	struct mapped_device *md = q->queuedata;
1771 	struct request *clone;
1772 
1773 	if (unlikely(rq->special)) {
1774 		DMWARN("Already has something in rq->special.");
1775 		return BLKPREP_KILL;
1776 	}
1777 
1778 	clone = clone_rq(rq, md, GFP_ATOMIC);
1779 	if (!clone)
1780 		return BLKPREP_DEFER;
1781 
1782 	rq->special = clone;
1783 	rq->cmd_flags |= REQ_DONTPREP;
1784 
1785 	return BLKPREP_OK;
1786 }
1787 
1788 /*
1789  * Returns:
1790  * 0  : the request has been processed (not requeued)
1791  * !0 : the request has been requeued
1792  */
1793 static int map_request(struct dm_target *ti, struct request *clone,
1794 		       struct mapped_device *md)
1795 {
1796 	int r, requeued = 0;
1797 	struct dm_rq_target_io *tio = clone->end_io_data;
1798 
1799 	tio->ti = ti;
1800 	r = ti->type->map_rq(ti, clone, &tio->info);
1801 	switch (r) {
1802 	case DM_MAPIO_SUBMITTED:
1803 		/* The target has taken the I/O to submit by itself later */
1804 		break;
1805 	case DM_MAPIO_REMAPPED:
1806 		/* The target has remapped the I/O so dispatch it */
1807 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1808 				     blk_rq_pos(tio->orig));
1809 		dm_dispatch_request(clone);
1810 		break;
1811 	case DM_MAPIO_REQUEUE:
1812 		/* The target wants to requeue the I/O */
1813 		dm_requeue_unmapped_request(clone);
1814 		requeued = 1;
1815 		break;
1816 	default:
1817 		if (r > 0) {
1818 			DMWARN("unimplemented target map return value: %d", r);
1819 			BUG();
1820 		}
1821 
1822 		/* The target wants to complete the I/O */
1823 		dm_kill_unmapped_request(clone, r);
1824 		break;
1825 	}
1826 
1827 	return requeued;
1828 }
1829 
1830 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1831 {
1832 	struct request *clone;
1833 
1834 	blk_start_request(orig);
1835 	clone = orig->special;
1836 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1837 
1838 	/*
1839 	 * Hold the md reference here for the in-flight I/O.
1840 	 * We can't rely on the reference count by device opener,
1841 	 * because the device may be closed during the request completion
1842 	 * when all bios are completed.
1843 	 * See the comment in rq_completed() too.
1844 	 */
1845 	dm_get(md);
1846 
1847 	return clone;
1848 }
1849 
1850 /*
1851  * q->request_fn for request-based dm.
1852  * Called with the queue lock held.
1853  */
1854 static void dm_request_fn(struct request_queue *q)
1855 {
1856 	struct mapped_device *md = q->queuedata;
1857 	int srcu_idx;
1858 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1859 	struct dm_target *ti;
1860 	struct request *rq, *clone;
1861 	sector_t pos;
1862 
1863 	/*
1864 	 * For suspend, check blk_queue_stopped() and increment
1865 	 * ->pending within a single queue_lock not to increment the
1866 	 * number of in-flight I/Os after the queue is stopped in
1867 	 * dm_suspend().
1868 	 */
1869 	while (!blk_queue_stopped(q)) {
1870 		rq = blk_peek_request(q);
1871 		if (!rq)
1872 			goto delay_and_out;
1873 
1874 		/* always use block 0 to find the target for flushes for now */
1875 		pos = 0;
1876 		if (!(rq->cmd_flags & REQ_FLUSH))
1877 			pos = blk_rq_pos(rq);
1878 
1879 		ti = dm_table_find_target(map, pos);
1880 		if (!dm_target_is_valid(ti)) {
1881 			/*
1882 			 * Must perform setup, that dm_done() requires,
1883 			 * before calling dm_kill_unmapped_request
1884 			 */
1885 			DMERR_LIMIT("request attempted access beyond the end of device");
1886 			clone = dm_start_request(md, rq);
1887 			dm_kill_unmapped_request(clone, -EIO);
1888 			continue;
1889 		}
1890 
1891 		if (ti->type->busy && ti->type->busy(ti))
1892 			goto delay_and_out;
1893 
1894 		clone = dm_start_request(md, rq);
1895 
1896 		spin_unlock(q->queue_lock);
1897 		if (map_request(ti, clone, md))
1898 			goto requeued;
1899 
1900 		BUG_ON(!irqs_disabled());
1901 		spin_lock(q->queue_lock);
1902 	}
1903 
1904 	goto out;
1905 
1906 requeued:
1907 	BUG_ON(!irqs_disabled());
1908 	spin_lock(q->queue_lock);
1909 
1910 delay_and_out:
1911 	blk_delay_queue(q, HZ / 10);
1912 out:
1913 	dm_put_live_table(md, srcu_idx);
1914 }
1915 
1916 int dm_underlying_device_busy(struct request_queue *q)
1917 {
1918 	return blk_lld_busy(q);
1919 }
1920 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1921 
1922 static int dm_lld_busy(struct request_queue *q)
1923 {
1924 	int r;
1925 	struct mapped_device *md = q->queuedata;
1926 	struct dm_table *map = dm_get_live_table_fast(md);
1927 
1928 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1929 		r = 1;
1930 	else
1931 		r = dm_table_any_busy_target(map);
1932 
1933 	dm_put_live_table_fast(md);
1934 
1935 	return r;
1936 }
1937 
1938 static int dm_any_congested(void *congested_data, int bdi_bits)
1939 {
1940 	int r = bdi_bits;
1941 	struct mapped_device *md = congested_data;
1942 	struct dm_table *map;
1943 
1944 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1945 		map = dm_get_live_table_fast(md);
1946 		if (map) {
1947 			/*
1948 			 * Request-based dm cares about only own queue for
1949 			 * the query about congestion status of request_queue
1950 			 */
1951 			if (dm_request_based(md))
1952 				r = md->queue->backing_dev_info.state &
1953 				    bdi_bits;
1954 			else
1955 				r = dm_table_any_congested(map, bdi_bits);
1956 		}
1957 		dm_put_live_table_fast(md);
1958 	}
1959 
1960 	return r;
1961 }
1962 
1963 /*-----------------------------------------------------------------
1964  * An IDR is used to keep track of allocated minor numbers.
1965  *---------------------------------------------------------------*/
1966 static void free_minor(int minor)
1967 {
1968 	spin_lock(&_minor_lock);
1969 	idr_remove(&_minor_idr, minor);
1970 	spin_unlock(&_minor_lock);
1971 }
1972 
1973 /*
1974  * See if the device with a specific minor # is free.
1975  */
1976 static int specific_minor(int minor)
1977 {
1978 	int r;
1979 
1980 	if (minor >= (1 << MINORBITS))
1981 		return -EINVAL;
1982 
1983 	idr_preload(GFP_KERNEL);
1984 	spin_lock(&_minor_lock);
1985 
1986 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1987 
1988 	spin_unlock(&_minor_lock);
1989 	idr_preload_end();
1990 	if (r < 0)
1991 		return r == -ENOSPC ? -EBUSY : r;
1992 	return 0;
1993 }
1994 
1995 static int next_free_minor(int *minor)
1996 {
1997 	int r;
1998 
1999 	idr_preload(GFP_KERNEL);
2000 	spin_lock(&_minor_lock);
2001 
2002 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2003 
2004 	spin_unlock(&_minor_lock);
2005 	idr_preload_end();
2006 	if (r < 0)
2007 		return r;
2008 	*minor = r;
2009 	return 0;
2010 }
2011 
2012 static const struct block_device_operations dm_blk_dops;
2013 
2014 static void dm_wq_work(struct work_struct *work);
2015 
2016 static void dm_init_md_queue(struct mapped_device *md)
2017 {
2018 	/*
2019 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2020 	 * devices.  The type of this dm device has not been decided yet.
2021 	 * The type is decided at the first table loading time.
2022 	 * To prevent problematic device stacking, clear the queue flag
2023 	 * for request stacking support until then.
2024 	 *
2025 	 * This queue is new, so no concurrency on the queue_flags.
2026 	 */
2027 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2028 
2029 	md->queue->queuedata = md;
2030 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2031 	md->queue->backing_dev_info.congested_data = md;
2032 	blk_queue_make_request(md->queue, dm_request);
2033 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2034 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2035 }
2036 
2037 /*
2038  * Allocate and initialise a blank device with a given minor.
2039  */
2040 static struct mapped_device *alloc_dev(int minor)
2041 {
2042 	int r;
2043 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2044 	void *old_md;
2045 
2046 	if (!md) {
2047 		DMWARN("unable to allocate device, out of memory.");
2048 		return NULL;
2049 	}
2050 
2051 	if (!try_module_get(THIS_MODULE))
2052 		goto bad_module_get;
2053 
2054 	/* get a minor number for the dev */
2055 	if (minor == DM_ANY_MINOR)
2056 		r = next_free_minor(&minor);
2057 	else
2058 		r = specific_minor(minor);
2059 	if (r < 0)
2060 		goto bad_minor;
2061 
2062 	r = init_srcu_struct(&md->io_barrier);
2063 	if (r < 0)
2064 		goto bad_io_barrier;
2065 
2066 	md->type = DM_TYPE_NONE;
2067 	mutex_init(&md->suspend_lock);
2068 	mutex_init(&md->type_lock);
2069 	mutex_init(&md->table_devices_lock);
2070 	spin_lock_init(&md->deferred_lock);
2071 	atomic_set(&md->holders, 1);
2072 	atomic_set(&md->open_count, 0);
2073 	atomic_set(&md->event_nr, 0);
2074 	atomic_set(&md->uevent_seq, 0);
2075 	INIT_LIST_HEAD(&md->uevent_list);
2076 	INIT_LIST_HEAD(&md->table_devices);
2077 	spin_lock_init(&md->uevent_lock);
2078 
2079 	md->queue = blk_alloc_queue(GFP_KERNEL);
2080 	if (!md->queue)
2081 		goto bad_queue;
2082 
2083 	dm_init_md_queue(md);
2084 
2085 	md->disk = alloc_disk(1);
2086 	if (!md->disk)
2087 		goto bad_disk;
2088 
2089 	atomic_set(&md->pending[0], 0);
2090 	atomic_set(&md->pending[1], 0);
2091 	init_waitqueue_head(&md->wait);
2092 	INIT_WORK(&md->work, dm_wq_work);
2093 	init_waitqueue_head(&md->eventq);
2094 	init_completion(&md->kobj_holder.completion);
2095 
2096 	md->disk->major = _major;
2097 	md->disk->first_minor = minor;
2098 	md->disk->fops = &dm_blk_dops;
2099 	md->disk->queue = md->queue;
2100 	md->disk->private_data = md;
2101 	sprintf(md->disk->disk_name, "dm-%d", minor);
2102 	add_disk(md->disk);
2103 	format_dev_t(md->name, MKDEV(_major, minor));
2104 
2105 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2106 	if (!md->wq)
2107 		goto bad_thread;
2108 
2109 	md->bdev = bdget_disk(md->disk, 0);
2110 	if (!md->bdev)
2111 		goto bad_bdev;
2112 
2113 	bio_init(&md->flush_bio);
2114 	md->flush_bio.bi_bdev = md->bdev;
2115 	md->flush_bio.bi_rw = WRITE_FLUSH;
2116 
2117 	dm_stats_init(&md->stats);
2118 
2119 	/* Populate the mapping, nobody knows we exist yet */
2120 	spin_lock(&_minor_lock);
2121 	old_md = idr_replace(&_minor_idr, md, minor);
2122 	spin_unlock(&_minor_lock);
2123 
2124 	BUG_ON(old_md != MINOR_ALLOCED);
2125 
2126 	return md;
2127 
2128 bad_bdev:
2129 	destroy_workqueue(md->wq);
2130 bad_thread:
2131 	del_gendisk(md->disk);
2132 	put_disk(md->disk);
2133 bad_disk:
2134 	blk_cleanup_queue(md->queue);
2135 bad_queue:
2136 	cleanup_srcu_struct(&md->io_barrier);
2137 bad_io_barrier:
2138 	free_minor(minor);
2139 bad_minor:
2140 	module_put(THIS_MODULE);
2141 bad_module_get:
2142 	kfree(md);
2143 	return NULL;
2144 }
2145 
2146 static void unlock_fs(struct mapped_device *md);
2147 
2148 static void free_dev(struct mapped_device *md)
2149 {
2150 	int minor = MINOR(disk_devt(md->disk));
2151 
2152 	unlock_fs(md);
2153 	bdput(md->bdev);
2154 	destroy_workqueue(md->wq);
2155 	if (md->io_pool)
2156 		mempool_destroy(md->io_pool);
2157 	if (md->bs)
2158 		bioset_free(md->bs);
2159 	blk_integrity_unregister(md->disk);
2160 	del_gendisk(md->disk);
2161 	cleanup_srcu_struct(&md->io_barrier);
2162 	free_table_devices(&md->table_devices);
2163 	free_minor(minor);
2164 
2165 	spin_lock(&_minor_lock);
2166 	md->disk->private_data = NULL;
2167 	spin_unlock(&_minor_lock);
2168 
2169 	put_disk(md->disk);
2170 	blk_cleanup_queue(md->queue);
2171 	dm_stats_cleanup(&md->stats);
2172 	module_put(THIS_MODULE);
2173 	kfree(md);
2174 }
2175 
2176 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2177 {
2178 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2179 
2180 	if (md->io_pool && md->bs) {
2181 		/* The md already has necessary mempools. */
2182 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2183 			/*
2184 			 * Reload bioset because front_pad may have changed
2185 			 * because a different table was loaded.
2186 			 */
2187 			bioset_free(md->bs);
2188 			md->bs = p->bs;
2189 			p->bs = NULL;
2190 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2191 			/*
2192 			 * There's no need to reload with request-based dm
2193 			 * because the size of front_pad doesn't change.
2194 			 * Note for future: If you are to reload bioset,
2195 			 * prep-ed requests in the queue may refer
2196 			 * to bio from the old bioset, so you must walk
2197 			 * through the queue to unprep.
2198 			 */
2199 		}
2200 		goto out;
2201 	}
2202 
2203 	BUG_ON(!p || md->io_pool || md->bs);
2204 
2205 	md->io_pool = p->io_pool;
2206 	p->io_pool = NULL;
2207 	md->bs = p->bs;
2208 	p->bs = NULL;
2209 
2210 out:
2211 	/* mempool bind completed, now no need any mempools in the table */
2212 	dm_table_free_md_mempools(t);
2213 }
2214 
2215 /*
2216  * Bind a table to the device.
2217  */
2218 static void event_callback(void *context)
2219 {
2220 	unsigned long flags;
2221 	LIST_HEAD(uevents);
2222 	struct mapped_device *md = (struct mapped_device *) context;
2223 
2224 	spin_lock_irqsave(&md->uevent_lock, flags);
2225 	list_splice_init(&md->uevent_list, &uevents);
2226 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2227 
2228 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2229 
2230 	atomic_inc(&md->event_nr);
2231 	wake_up(&md->eventq);
2232 }
2233 
2234 /*
2235  * Protected by md->suspend_lock obtained by dm_swap_table().
2236  */
2237 static void __set_size(struct mapped_device *md, sector_t size)
2238 {
2239 	set_capacity(md->disk, size);
2240 
2241 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2242 }
2243 
2244 /*
2245  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2246  *
2247  * If this function returns 0, then the device is either a non-dm
2248  * device without a merge_bvec_fn, or it is a dm device that is
2249  * able to split any bios it receives that are too big.
2250  */
2251 int dm_queue_merge_is_compulsory(struct request_queue *q)
2252 {
2253 	struct mapped_device *dev_md;
2254 
2255 	if (!q->merge_bvec_fn)
2256 		return 0;
2257 
2258 	if (q->make_request_fn == dm_request) {
2259 		dev_md = q->queuedata;
2260 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2261 			return 0;
2262 	}
2263 
2264 	return 1;
2265 }
2266 
2267 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2268 					 struct dm_dev *dev, sector_t start,
2269 					 sector_t len, void *data)
2270 {
2271 	struct block_device *bdev = dev->bdev;
2272 	struct request_queue *q = bdev_get_queue(bdev);
2273 
2274 	return dm_queue_merge_is_compulsory(q);
2275 }
2276 
2277 /*
2278  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2279  * on the properties of the underlying devices.
2280  */
2281 static int dm_table_merge_is_optional(struct dm_table *table)
2282 {
2283 	unsigned i = 0;
2284 	struct dm_target *ti;
2285 
2286 	while (i < dm_table_get_num_targets(table)) {
2287 		ti = dm_table_get_target(table, i++);
2288 
2289 		if (ti->type->iterate_devices &&
2290 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2291 			return 0;
2292 	}
2293 
2294 	return 1;
2295 }
2296 
2297 /*
2298  * Returns old map, which caller must destroy.
2299  */
2300 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2301 			       struct queue_limits *limits)
2302 {
2303 	struct dm_table *old_map;
2304 	struct request_queue *q = md->queue;
2305 	sector_t size;
2306 	int merge_is_optional;
2307 
2308 	size = dm_table_get_size(t);
2309 
2310 	/*
2311 	 * Wipe any geometry if the size of the table changed.
2312 	 */
2313 	if (size != dm_get_size(md))
2314 		memset(&md->geometry, 0, sizeof(md->geometry));
2315 
2316 	__set_size(md, size);
2317 
2318 	dm_table_event_callback(t, event_callback, md);
2319 
2320 	/*
2321 	 * The queue hasn't been stopped yet, if the old table type wasn't
2322 	 * for request-based during suspension.  So stop it to prevent
2323 	 * I/O mapping before resume.
2324 	 * This must be done before setting the queue restrictions,
2325 	 * because request-based dm may be run just after the setting.
2326 	 */
2327 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2328 		stop_queue(q);
2329 
2330 	__bind_mempools(md, t);
2331 
2332 	merge_is_optional = dm_table_merge_is_optional(t);
2333 
2334 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2335 	rcu_assign_pointer(md->map, t);
2336 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2337 
2338 	dm_table_set_restrictions(t, q, limits);
2339 	if (merge_is_optional)
2340 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2341 	else
2342 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2343 	if (old_map)
2344 		dm_sync_table(md);
2345 
2346 	return old_map;
2347 }
2348 
2349 /*
2350  * Returns unbound table for the caller to free.
2351  */
2352 static struct dm_table *__unbind(struct mapped_device *md)
2353 {
2354 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2355 
2356 	if (!map)
2357 		return NULL;
2358 
2359 	dm_table_event_callback(map, NULL, NULL);
2360 	RCU_INIT_POINTER(md->map, NULL);
2361 	dm_sync_table(md);
2362 
2363 	return map;
2364 }
2365 
2366 /*
2367  * Constructor for a new device.
2368  */
2369 int dm_create(int minor, struct mapped_device **result)
2370 {
2371 	struct mapped_device *md;
2372 
2373 	md = alloc_dev(minor);
2374 	if (!md)
2375 		return -ENXIO;
2376 
2377 	dm_sysfs_init(md);
2378 
2379 	*result = md;
2380 	return 0;
2381 }
2382 
2383 /*
2384  * Functions to manage md->type.
2385  * All are required to hold md->type_lock.
2386  */
2387 void dm_lock_md_type(struct mapped_device *md)
2388 {
2389 	mutex_lock(&md->type_lock);
2390 }
2391 
2392 void dm_unlock_md_type(struct mapped_device *md)
2393 {
2394 	mutex_unlock(&md->type_lock);
2395 }
2396 
2397 void dm_set_md_type(struct mapped_device *md, unsigned type)
2398 {
2399 	BUG_ON(!mutex_is_locked(&md->type_lock));
2400 	md->type = type;
2401 }
2402 
2403 unsigned dm_get_md_type(struct mapped_device *md)
2404 {
2405 	BUG_ON(!mutex_is_locked(&md->type_lock));
2406 	return md->type;
2407 }
2408 
2409 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2410 {
2411 	return md->immutable_target_type;
2412 }
2413 
2414 /*
2415  * The queue_limits are only valid as long as you have a reference
2416  * count on 'md'.
2417  */
2418 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2419 {
2420 	BUG_ON(!atomic_read(&md->holders));
2421 	return &md->queue->limits;
2422 }
2423 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2424 
2425 /*
2426  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2427  */
2428 static int dm_init_request_based_queue(struct mapped_device *md)
2429 {
2430 	struct request_queue *q = NULL;
2431 
2432 	if (md->queue->elevator)
2433 		return 1;
2434 
2435 	/* Fully initialize the queue */
2436 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2437 	if (!q)
2438 		return 0;
2439 
2440 	md->queue = q;
2441 	dm_init_md_queue(md);
2442 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2443 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2444 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2445 
2446 	elv_register_queue(md->queue);
2447 
2448 	return 1;
2449 }
2450 
2451 /*
2452  * Setup the DM device's queue based on md's type
2453  */
2454 int dm_setup_md_queue(struct mapped_device *md)
2455 {
2456 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2457 	    !dm_init_request_based_queue(md)) {
2458 		DMWARN("Cannot initialize queue for request-based mapped device");
2459 		return -EINVAL;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static struct mapped_device *dm_find_md(dev_t dev)
2466 {
2467 	struct mapped_device *md;
2468 	unsigned minor = MINOR(dev);
2469 
2470 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2471 		return NULL;
2472 
2473 	spin_lock(&_minor_lock);
2474 
2475 	md = idr_find(&_minor_idr, minor);
2476 	if (md && (md == MINOR_ALLOCED ||
2477 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2478 		   dm_deleting_md(md) ||
2479 		   test_bit(DMF_FREEING, &md->flags))) {
2480 		md = NULL;
2481 		goto out;
2482 	}
2483 
2484 out:
2485 	spin_unlock(&_minor_lock);
2486 
2487 	return md;
2488 }
2489 
2490 struct mapped_device *dm_get_md(dev_t dev)
2491 {
2492 	struct mapped_device *md = dm_find_md(dev);
2493 
2494 	if (md)
2495 		dm_get(md);
2496 
2497 	return md;
2498 }
2499 EXPORT_SYMBOL_GPL(dm_get_md);
2500 
2501 void *dm_get_mdptr(struct mapped_device *md)
2502 {
2503 	return md->interface_ptr;
2504 }
2505 
2506 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2507 {
2508 	md->interface_ptr = ptr;
2509 }
2510 
2511 void dm_get(struct mapped_device *md)
2512 {
2513 	atomic_inc(&md->holders);
2514 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2515 }
2516 
2517 const char *dm_device_name(struct mapped_device *md)
2518 {
2519 	return md->name;
2520 }
2521 EXPORT_SYMBOL_GPL(dm_device_name);
2522 
2523 static void __dm_destroy(struct mapped_device *md, bool wait)
2524 {
2525 	struct dm_table *map;
2526 	int srcu_idx;
2527 
2528 	might_sleep();
2529 
2530 	spin_lock(&_minor_lock);
2531 	map = dm_get_live_table(md, &srcu_idx);
2532 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2533 	set_bit(DMF_FREEING, &md->flags);
2534 	spin_unlock(&_minor_lock);
2535 
2536 	if (!dm_suspended_md(md)) {
2537 		dm_table_presuspend_targets(map);
2538 		dm_table_postsuspend_targets(map);
2539 	}
2540 
2541 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2542 	dm_put_live_table(md, srcu_idx);
2543 
2544 	/*
2545 	 * Rare, but there may be I/O requests still going to complete,
2546 	 * for example.  Wait for all references to disappear.
2547 	 * No one should increment the reference count of the mapped_device,
2548 	 * after the mapped_device state becomes DMF_FREEING.
2549 	 */
2550 	if (wait)
2551 		while (atomic_read(&md->holders))
2552 			msleep(1);
2553 	else if (atomic_read(&md->holders))
2554 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2555 		       dm_device_name(md), atomic_read(&md->holders));
2556 
2557 	dm_sysfs_exit(md);
2558 	dm_table_destroy(__unbind(md));
2559 	free_dev(md);
2560 }
2561 
2562 void dm_destroy(struct mapped_device *md)
2563 {
2564 	__dm_destroy(md, true);
2565 }
2566 
2567 void dm_destroy_immediate(struct mapped_device *md)
2568 {
2569 	__dm_destroy(md, false);
2570 }
2571 
2572 void dm_put(struct mapped_device *md)
2573 {
2574 	atomic_dec(&md->holders);
2575 }
2576 EXPORT_SYMBOL_GPL(dm_put);
2577 
2578 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2579 {
2580 	int r = 0;
2581 	DECLARE_WAITQUEUE(wait, current);
2582 
2583 	add_wait_queue(&md->wait, &wait);
2584 
2585 	while (1) {
2586 		set_current_state(interruptible);
2587 
2588 		if (!md_in_flight(md))
2589 			break;
2590 
2591 		if (interruptible == TASK_INTERRUPTIBLE &&
2592 		    signal_pending(current)) {
2593 			r = -EINTR;
2594 			break;
2595 		}
2596 
2597 		io_schedule();
2598 	}
2599 	set_current_state(TASK_RUNNING);
2600 
2601 	remove_wait_queue(&md->wait, &wait);
2602 
2603 	return r;
2604 }
2605 
2606 /*
2607  * Process the deferred bios
2608  */
2609 static void dm_wq_work(struct work_struct *work)
2610 {
2611 	struct mapped_device *md = container_of(work, struct mapped_device,
2612 						work);
2613 	struct bio *c;
2614 	int srcu_idx;
2615 	struct dm_table *map;
2616 
2617 	map = dm_get_live_table(md, &srcu_idx);
2618 
2619 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2620 		spin_lock_irq(&md->deferred_lock);
2621 		c = bio_list_pop(&md->deferred);
2622 		spin_unlock_irq(&md->deferred_lock);
2623 
2624 		if (!c)
2625 			break;
2626 
2627 		if (dm_request_based(md))
2628 			generic_make_request(c);
2629 		else
2630 			__split_and_process_bio(md, map, c);
2631 	}
2632 
2633 	dm_put_live_table(md, srcu_idx);
2634 }
2635 
2636 static void dm_queue_flush(struct mapped_device *md)
2637 {
2638 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2639 	smp_mb__after_atomic();
2640 	queue_work(md->wq, &md->work);
2641 }
2642 
2643 /*
2644  * Swap in a new table, returning the old one for the caller to destroy.
2645  */
2646 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2647 {
2648 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2649 	struct queue_limits limits;
2650 	int r;
2651 
2652 	mutex_lock(&md->suspend_lock);
2653 
2654 	/* device must be suspended */
2655 	if (!dm_suspended_md(md))
2656 		goto out;
2657 
2658 	/*
2659 	 * If the new table has no data devices, retain the existing limits.
2660 	 * This helps multipath with queue_if_no_path if all paths disappear,
2661 	 * then new I/O is queued based on these limits, and then some paths
2662 	 * reappear.
2663 	 */
2664 	if (dm_table_has_no_data_devices(table)) {
2665 		live_map = dm_get_live_table_fast(md);
2666 		if (live_map)
2667 			limits = md->queue->limits;
2668 		dm_put_live_table_fast(md);
2669 	}
2670 
2671 	if (!live_map) {
2672 		r = dm_calculate_queue_limits(table, &limits);
2673 		if (r) {
2674 			map = ERR_PTR(r);
2675 			goto out;
2676 		}
2677 	}
2678 
2679 	map = __bind(md, table, &limits);
2680 
2681 out:
2682 	mutex_unlock(&md->suspend_lock);
2683 	return map;
2684 }
2685 
2686 /*
2687  * Functions to lock and unlock any filesystem running on the
2688  * device.
2689  */
2690 static int lock_fs(struct mapped_device *md)
2691 {
2692 	int r;
2693 
2694 	WARN_ON(md->frozen_sb);
2695 
2696 	md->frozen_sb = freeze_bdev(md->bdev);
2697 	if (IS_ERR(md->frozen_sb)) {
2698 		r = PTR_ERR(md->frozen_sb);
2699 		md->frozen_sb = NULL;
2700 		return r;
2701 	}
2702 
2703 	set_bit(DMF_FROZEN, &md->flags);
2704 
2705 	return 0;
2706 }
2707 
2708 static void unlock_fs(struct mapped_device *md)
2709 {
2710 	if (!test_bit(DMF_FROZEN, &md->flags))
2711 		return;
2712 
2713 	thaw_bdev(md->bdev, md->frozen_sb);
2714 	md->frozen_sb = NULL;
2715 	clear_bit(DMF_FROZEN, &md->flags);
2716 }
2717 
2718 /*
2719  * If __dm_suspend returns 0, the device is completely quiescent
2720  * now. There is no request-processing activity. All new requests
2721  * are being added to md->deferred list.
2722  *
2723  * Caller must hold md->suspend_lock
2724  */
2725 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2726 			unsigned suspend_flags, int interruptible)
2727 {
2728 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2729 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2730 	int r;
2731 
2732 	/*
2733 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2734 	 * This flag is cleared before dm_suspend returns.
2735 	 */
2736 	if (noflush)
2737 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2738 
2739 	/*
2740 	 * This gets reverted if there's an error later and the targets
2741 	 * provide the .presuspend_undo hook.
2742 	 */
2743 	dm_table_presuspend_targets(map);
2744 
2745 	/*
2746 	 * Flush I/O to the device.
2747 	 * Any I/O submitted after lock_fs() may not be flushed.
2748 	 * noflush takes precedence over do_lockfs.
2749 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2750 	 */
2751 	if (!noflush && do_lockfs) {
2752 		r = lock_fs(md);
2753 		if (r) {
2754 			dm_table_presuspend_undo_targets(map);
2755 			return r;
2756 		}
2757 	}
2758 
2759 	/*
2760 	 * Here we must make sure that no processes are submitting requests
2761 	 * to target drivers i.e. no one may be executing
2762 	 * __split_and_process_bio. This is called from dm_request and
2763 	 * dm_wq_work.
2764 	 *
2765 	 * To get all processes out of __split_and_process_bio in dm_request,
2766 	 * we take the write lock. To prevent any process from reentering
2767 	 * __split_and_process_bio from dm_request and quiesce the thread
2768 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2769 	 * flush_workqueue(md->wq).
2770 	 */
2771 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2772 	if (map)
2773 		synchronize_srcu(&md->io_barrier);
2774 
2775 	/*
2776 	 * Stop md->queue before flushing md->wq in case request-based
2777 	 * dm defers requests to md->wq from md->queue.
2778 	 */
2779 	if (dm_request_based(md))
2780 		stop_queue(md->queue);
2781 
2782 	flush_workqueue(md->wq);
2783 
2784 	/*
2785 	 * At this point no more requests are entering target request routines.
2786 	 * We call dm_wait_for_completion to wait for all existing requests
2787 	 * to finish.
2788 	 */
2789 	r = dm_wait_for_completion(md, interruptible);
2790 
2791 	if (noflush)
2792 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2793 	if (map)
2794 		synchronize_srcu(&md->io_barrier);
2795 
2796 	/* were we interrupted ? */
2797 	if (r < 0) {
2798 		dm_queue_flush(md);
2799 
2800 		if (dm_request_based(md))
2801 			start_queue(md->queue);
2802 
2803 		unlock_fs(md);
2804 		dm_table_presuspend_undo_targets(map);
2805 		/* pushback list is already flushed, so skip flush */
2806 	}
2807 
2808 	return r;
2809 }
2810 
2811 /*
2812  * We need to be able to change a mapping table under a mounted
2813  * filesystem.  For example we might want to move some data in
2814  * the background.  Before the table can be swapped with
2815  * dm_bind_table, dm_suspend must be called to flush any in
2816  * flight bios and ensure that any further io gets deferred.
2817  */
2818 /*
2819  * Suspend mechanism in request-based dm.
2820  *
2821  * 1. Flush all I/Os by lock_fs() if needed.
2822  * 2. Stop dispatching any I/O by stopping the request_queue.
2823  * 3. Wait for all in-flight I/Os to be completed or requeued.
2824  *
2825  * To abort suspend, start the request_queue.
2826  */
2827 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2828 {
2829 	struct dm_table *map = NULL;
2830 	int r = 0;
2831 
2832 retry:
2833 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2834 
2835 	if (dm_suspended_md(md)) {
2836 		r = -EINVAL;
2837 		goto out_unlock;
2838 	}
2839 
2840 	if (dm_suspended_internally_md(md)) {
2841 		/* already internally suspended, wait for internal resume */
2842 		mutex_unlock(&md->suspend_lock);
2843 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2844 		if (r)
2845 			return r;
2846 		goto retry;
2847 	}
2848 
2849 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2850 
2851 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2852 	if (r)
2853 		goto out_unlock;
2854 
2855 	set_bit(DMF_SUSPENDED, &md->flags);
2856 
2857 	dm_table_postsuspend_targets(map);
2858 
2859 out_unlock:
2860 	mutex_unlock(&md->suspend_lock);
2861 	return r;
2862 }
2863 
2864 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2865 {
2866 	if (map) {
2867 		int r = dm_table_resume_targets(map);
2868 		if (r)
2869 			return r;
2870 	}
2871 
2872 	dm_queue_flush(md);
2873 
2874 	/*
2875 	 * Flushing deferred I/Os must be done after targets are resumed
2876 	 * so that mapping of targets can work correctly.
2877 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2878 	 */
2879 	if (dm_request_based(md))
2880 		start_queue(md->queue);
2881 
2882 	unlock_fs(md);
2883 
2884 	return 0;
2885 }
2886 
2887 int dm_resume(struct mapped_device *md)
2888 {
2889 	int r = -EINVAL;
2890 	struct dm_table *map = NULL;
2891 
2892 retry:
2893 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2894 
2895 	if (!dm_suspended_md(md))
2896 		goto out;
2897 
2898 	if (dm_suspended_internally_md(md)) {
2899 		/* already internally suspended, wait for internal resume */
2900 		mutex_unlock(&md->suspend_lock);
2901 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2902 		if (r)
2903 			return r;
2904 		goto retry;
2905 	}
2906 
2907 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2908 	if (!map || !dm_table_get_size(map))
2909 		goto out;
2910 
2911 	r = __dm_resume(md, map);
2912 	if (r)
2913 		goto out;
2914 
2915 	clear_bit(DMF_SUSPENDED, &md->flags);
2916 
2917 	r = 0;
2918 out:
2919 	mutex_unlock(&md->suspend_lock);
2920 
2921 	return r;
2922 }
2923 
2924 /*
2925  * Internal suspend/resume works like userspace-driven suspend. It waits
2926  * until all bios finish and prevents issuing new bios to the target drivers.
2927  * It may be used only from the kernel.
2928  */
2929 
2930 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2931 {
2932 	struct dm_table *map = NULL;
2933 
2934 	if (md->internal_suspend_count++)
2935 		return; /* nested internal suspend */
2936 
2937 	if (dm_suspended_md(md)) {
2938 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2939 		return; /* nest suspend */
2940 	}
2941 
2942 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2943 
2944 	/*
2945 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2946 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2947 	 * would require changing .presuspend to return an error -- avoid this
2948 	 * until there is a need for more elaborate variants of internal suspend.
2949 	 */
2950 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2951 
2952 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2953 
2954 	dm_table_postsuspend_targets(map);
2955 }
2956 
2957 static void __dm_internal_resume(struct mapped_device *md)
2958 {
2959 	BUG_ON(!md->internal_suspend_count);
2960 
2961 	if (--md->internal_suspend_count)
2962 		return; /* resume from nested internal suspend */
2963 
2964 	if (dm_suspended_md(md))
2965 		goto done; /* resume from nested suspend */
2966 
2967 	/*
2968 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2969 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2970 	 */
2971 	(void) __dm_resume(md, NULL);
2972 
2973 done:
2974 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2975 	smp_mb__after_atomic();
2976 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2977 }
2978 
2979 void dm_internal_suspend_noflush(struct mapped_device *md)
2980 {
2981 	mutex_lock(&md->suspend_lock);
2982 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2983 	mutex_unlock(&md->suspend_lock);
2984 }
2985 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2986 
2987 void dm_internal_resume(struct mapped_device *md)
2988 {
2989 	mutex_lock(&md->suspend_lock);
2990 	__dm_internal_resume(md);
2991 	mutex_unlock(&md->suspend_lock);
2992 }
2993 EXPORT_SYMBOL_GPL(dm_internal_resume);
2994 
2995 /*
2996  * Fast variants of internal suspend/resume hold md->suspend_lock,
2997  * which prevents interaction with userspace-driven suspend.
2998  */
2999 
3000 void dm_internal_suspend_fast(struct mapped_device *md)
3001 {
3002 	mutex_lock(&md->suspend_lock);
3003 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3004 		return;
3005 
3006 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3007 	synchronize_srcu(&md->io_barrier);
3008 	flush_workqueue(md->wq);
3009 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3010 }
3011 
3012 void dm_internal_resume_fast(struct mapped_device *md)
3013 {
3014 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3015 		goto done;
3016 
3017 	dm_queue_flush(md);
3018 
3019 done:
3020 	mutex_unlock(&md->suspend_lock);
3021 }
3022 
3023 /*-----------------------------------------------------------------
3024  * Event notification.
3025  *---------------------------------------------------------------*/
3026 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3027 		       unsigned cookie)
3028 {
3029 	char udev_cookie[DM_COOKIE_LENGTH];
3030 	char *envp[] = { udev_cookie, NULL };
3031 
3032 	if (!cookie)
3033 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3034 	else {
3035 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3036 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3037 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3038 					  action, envp);
3039 	}
3040 }
3041 
3042 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3043 {
3044 	return atomic_add_return(1, &md->uevent_seq);
3045 }
3046 
3047 uint32_t dm_get_event_nr(struct mapped_device *md)
3048 {
3049 	return atomic_read(&md->event_nr);
3050 }
3051 
3052 int dm_wait_event(struct mapped_device *md, int event_nr)
3053 {
3054 	return wait_event_interruptible(md->eventq,
3055 			(event_nr != atomic_read(&md->event_nr)));
3056 }
3057 
3058 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3059 {
3060 	unsigned long flags;
3061 
3062 	spin_lock_irqsave(&md->uevent_lock, flags);
3063 	list_add(elist, &md->uevent_list);
3064 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3065 }
3066 
3067 /*
3068  * The gendisk is only valid as long as you have a reference
3069  * count on 'md'.
3070  */
3071 struct gendisk *dm_disk(struct mapped_device *md)
3072 {
3073 	return md->disk;
3074 }
3075 
3076 struct kobject *dm_kobject(struct mapped_device *md)
3077 {
3078 	return &md->kobj_holder.kobj;
3079 }
3080 
3081 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3082 {
3083 	struct mapped_device *md;
3084 
3085 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3086 
3087 	if (test_bit(DMF_FREEING, &md->flags) ||
3088 	    dm_deleting_md(md))
3089 		return NULL;
3090 
3091 	dm_get(md);
3092 	return md;
3093 }
3094 
3095 int dm_suspended_md(struct mapped_device *md)
3096 {
3097 	return test_bit(DMF_SUSPENDED, &md->flags);
3098 }
3099 
3100 int dm_suspended_internally_md(struct mapped_device *md)
3101 {
3102 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3103 }
3104 
3105 int dm_test_deferred_remove_flag(struct mapped_device *md)
3106 {
3107 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3108 }
3109 
3110 int dm_suspended(struct dm_target *ti)
3111 {
3112 	return dm_suspended_md(dm_table_get_md(ti->table));
3113 }
3114 EXPORT_SYMBOL_GPL(dm_suspended);
3115 
3116 int dm_noflush_suspending(struct dm_target *ti)
3117 {
3118 	return __noflush_suspending(dm_table_get_md(ti->table));
3119 }
3120 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3121 
3122 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3123 {
3124 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3125 	struct kmem_cache *cachep;
3126 	unsigned int pool_size;
3127 	unsigned int front_pad;
3128 
3129 	if (!pools)
3130 		return NULL;
3131 
3132 	if (type == DM_TYPE_BIO_BASED) {
3133 		cachep = _io_cache;
3134 		pool_size = dm_get_reserved_bio_based_ios();
3135 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3136 	} else if (type == DM_TYPE_REQUEST_BASED) {
3137 		cachep = _rq_tio_cache;
3138 		pool_size = dm_get_reserved_rq_based_ios();
3139 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3140 		/* per_bio_data_size is not used. See __bind_mempools(). */
3141 		WARN_ON(per_bio_data_size != 0);
3142 	} else
3143 		goto out;
3144 
3145 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3146 	if (!pools->io_pool)
3147 		goto out;
3148 
3149 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3150 	if (!pools->bs)
3151 		goto out;
3152 
3153 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3154 		goto out;
3155 
3156 	return pools;
3157 
3158 out:
3159 	dm_free_md_mempools(pools);
3160 
3161 	return NULL;
3162 }
3163 
3164 void dm_free_md_mempools(struct dm_md_mempools *pools)
3165 {
3166 	if (!pools)
3167 		return;
3168 
3169 	if (pools->io_pool)
3170 		mempool_destroy(pools->io_pool);
3171 
3172 	if (pools->bs)
3173 		bioset_free(pools->bs);
3174 
3175 	kfree(pools);
3176 }
3177 
3178 static const struct block_device_operations dm_blk_dops = {
3179 	.open = dm_blk_open,
3180 	.release = dm_blk_close,
3181 	.ioctl = dm_blk_ioctl,
3182 	.getgeo = dm_blk_getgeo,
3183 	.owner = THIS_MODULE
3184 };
3185 
3186 /*
3187  * module hooks
3188  */
3189 module_init(dm_init);
3190 module_exit(dm_exit);
3191 
3192 module_param(major, uint, 0);
3193 MODULE_PARM_DESC(major, "The major number of the device mapper");
3194 
3195 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3196 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3197 
3198 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3199 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3200 
3201 MODULE_DESCRIPTION(DM_NAME " driver");
3202 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3203 MODULE_LICENSE("GPL");
3204