1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 462 struct block_device **bdev) 463 __acquires(md->io_barrier) 464 { 465 struct dm_target *tgt; 466 struct dm_table *map; 467 int r; 468 469 retry: 470 r = -ENOTTY; 471 map = dm_get_live_table(md, srcu_idx); 472 if (!map || !dm_table_get_size(map)) 473 return r; 474 475 /* We only support devices that have a single target */ 476 if (dm_table_get_num_targets(map) != 1) 477 return r; 478 479 tgt = dm_table_get_target(map, 0); 480 if (!tgt->type->prepare_ioctl) 481 return r; 482 483 if (dm_suspended_md(md)) 484 return -EAGAIN; 485 486 r = tgt->type->prepare_ioctl(tgt, bdev); 487 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 488 dm_put_live_table(md, *srcu_idx); 489 msleep(10); 490 goto retry; 491 } 492 493 return r; 494 } 495 496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 497 __releases(md->io_barrier) 498 { 499 dm_put_live_table(md, srcu_idx); 500 } 501 502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned int cmd, unsigned long arg) 504 { 505 struct mapped_device *md = bdev->bd_disk->private_data; 506 int r, srcu_idx; 507 508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 509 if (r < 0) 510 goto out; 511 512 if (r > 0) { 513 /* 514 * Target determined this ioctl is being issued against a 515 * subset of the parent bdev; require extra privileges. 516 */ 517 if (!capable(CAP_SYS_RAWIO)) { 518 DMWARN_LIMIT( 519 "%s: sending ioctl %x to DM device without required privilege.", 520 current->comm, cmd); 521 r = -ENOIOCTLCMD; 522 goto out; 523 } 524 } 525 526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 527 out: 528 dm_unprepare_ioctl(md, srcu_idx); 529 return r; 530 } 531 532 static void start_io_acct(struct dm_io *io); 533 534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 535 { 536 struct dm_io *io; 537 struct dm_target_io *tio; 538 struct bio *clone; 539 540 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 541 if (!clone) 542 return NULL; 543 544 tio = container_of(clone, struct dm_target_io, clone); 545 tio->inside_dm_io = true; 546 tio->io = NULL; 547 548 io = container_of(tio, struct dm_io, tio); 549 io->magic = DM_IO_MAGIC; 550 io->status = 0; 551 atomic_set(&io->io_count, 1); 552 io->orig_bio = bio; 553 io->md = md; 554 spin_lock_init(&io->endio_lock); 555 556 start_io_acct(io); 557 558 return io; 559 } 560 561 static void free_io(struct mapped_device *md, struct dm_io *io) 562 { 563 bio_put(&io->tio.clone); 564 } 565 566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 567 unsigned target_bio_nr, gfp_t gfp_mask) 568 { 569 struct dm_target_io *tio; 570 571 if (!ci->io->tio.io) { 572 /* the dm_target_io embedded in ci->io is available */ 573 tio = &ci->io->tio; 574 } else { 575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 576 if (!clone) 577 return NULL; 578 579 tio = container_of(clone, struct dm_target_io, clone); 580 tio->inside_dm_io = false; 581 } 582 583 tio->magic = DM_TIO_MAGIC; 584 tio->io = ci->io; 585 tio->ti = ti; 586 tio->target_bio_nr = target_bio_nr; 587 588 return tio; 589 } 590 591 static void free_tio(struct dm_target_io *tio) 592 { 593 if (tio->inside_dm_io) 594 return; 595 bio_put(&tio->clone); 596 } 597 598 int md_in_flight(struct mapped_device *md) 599 { 600 return atomic_read(&md->pending[READ]) + 601 atomic_read(&md->pending[WRITE]); 602 } 603 604 static void start_io_acct(struct dm_io *io) 605 { 606 struct mapped_device *md = io->md; 607 struct bio *bio = io->orig_bio; 608 int rw = bio_data_dir(bio); 609 610 io->start_time = jiffies; 611 612 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0); 613 614 atomic_set(&dm_disk(md)->part0.in_flight[rw], 615 atomic_inc_return(&md->pending[rw])); 616 617 if (unlikely(dm_stats_used(&md->stats))) 618 dm_stats_account_io(&md->stats, bio_data_dir(bio), 619 bio->bi_iter.bi_sector, bio_sectors(bio), 620 false, 0, &io->stats_aux); 621 } 622 623 static void end_io_acct(struct dm_io *io) 624 { 625 struct mapped_device *md = io->md; 626 struct bio *bio = io->orig_bio; 627 unsigned long duration = jiffies - io->start_time; 628 int pending; 629 int rw = bio_data_dir(bio); 630 631 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 632 633 if (unlikely(dm_stats_used(&md->stats))) 634 dm_stats_account_io(&md->stats, bio_data_dir(bio), 635 bio->bi_iter.bi_sector, bio_sectors(bio), 636 true, duration, &io->stats_aux); 637 638 /* 639 * After this is decremented the bio must not be touched if it is 640 * a flush. 641 */ 642 pending = atomic_dec_return(&md->pending[rw]); 643 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 644 pending += atomic_read(&md->pending[rw^0x1]); 645 646 /* nudge anyone waiting on suspend queue */ 647 if (!pending) 648 wake_up(&md->wait); 649 } 650 651 /* 652 * Add the bio to the list of deferred io. 653 */ 654 static void queue_io(struct mapped_device *md, struct bio *bio) 655 { 656 unsigned long flags; 657 658 spin_lock_irqsave(&md->deferred_lock, flags); 659 bio_list_add(&md->deferred, bio); 660 spin_unlock_irqrestore(&md->deferred_lock, flags); 661 queue_work(md->wq, &md->work); 662 } 663 664 /* 665 * Everyone (including functions in this file), should use this 666 * function to access the md->map field, and make sure they call 667 * dm_put_live_table() when finished. 668 */ 669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 670 { 671 *srcu_idx = srcu_read_lock(&md->io_barrier); 672 673 return srcu_dereference(md->map, &md->io_barrier); 674 } 675 676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 677 { 678 srcu_read_unlock(&md->io_barrier, srcu_idx); 679 } 680 681 void dm_sync_table(struct mapped_device *md) 682 { 683 synchronize_srcu(&md->io_barrier); 684 synchronize_rcu_expedited(); 685 } 686 687 /* 688 * A fast alternative to dm_get_live_table/dm_put_live_table. 689 * The caller must not block between these two functions. 690 */ 691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 692 { 693 rcu_read_lock(); 694 return rcu_dereference(md->map); 695 } 696 697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 698 { 699 rcu_read_unlock(); 700 } 701 702 static char *_dm_claim_ptr = "I belong to device-mapper"; 703 704 /* 705 * Open a table device so we can use it as a map destination. 706 */ 707 static int open_table_device(struct table_device *td, dev_t dev, 708 struct mapped_device *md) 709 { 710 struct block_device *bdev; 711 712 int r; 713 714 BUG_ON(td->dm_dev.bdev); 715 716 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 717 if (IS_ERR(bdev)) 718 return PTR_ERR(bdev); 719 720 r = bd_link_disk_holder(bdev, dm_disk(md)); 721 if (r) { 722 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 723 return r; 724 } 725 726 td->dm_dev.bdev = bdev; 727 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 728 return 0; 729 } 730 731 /* 732 * Close a table device that we've been using. 733 */ 734 static void close_table_device(struct table_device *td, struct mapped_device *md) 735 { 736 if (!td->dm_dev.bdev) 737 return; 738 739 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 740 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 741 put_dax(td->dm_dev.dax_dev); 742 td->dm_dev.bdev = NULL; 743 td->dm_dev.dax_dev = NULL; 744 } 745 746 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 747 fmode_t mode) { 748 struct table_device *td; 749 750 list_for_each_entry(td, l, list) 751 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 752 return td; 753 754 return NULL; 755 } 756 757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 758 struct dm_dev **result) { 759 int r; 760 struct table_device *td; 761 762 mutex_lock(&md->table_devices_lock); 763 td = find_table_device(&md->table_devices, dev, mode); 764 if (!td) { 765 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 766 if (!td) { 767 mutex_unlock(&md->table_devices_lock); 768 return -ENOMEM; 769 } 770 771 td->dm_dev.mode = mode; 772 td->dm_dev.bdev = NULL; 773 774 if ((r = open_table_device(td, dev, md))) { 775 mutex_unlock(&md->table_devices_lock); 776 kfree(td); 777 return r; 778 } 779 780 format_dev_t(td->dm_dev.name, dev); 781 782 refcount_set(&td->count, 1); 783 list_add(&td->list, &md->table_devices); 784 } else { 785 refcount_inc(&td->count); 786 } 787 mutex_unlock(&md->table_devices_lock); 788 789 *result = &td->dm_dev; 790 return 0; 791 } 792 EXPORT_SYMBOL_GPL(dm_get_table_device); 793 794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 795 { 796 struct table_device *td = container_of(d, struct table_device, dm_dev); 797 798 mutex_lock(&md->table_devices_lock); 799 if (refcount_dec_and_test(&td->count)) { 800 close_table_device(td, md); 801 list_del(&td->list); 802 kfree(td); 803 } 804 mutex_unlock(&md->table_devices_lock); 805 } 806 EXPORT_SYMBOL(dm_put_table_device); 807 808 static void free_table_devices(struct list_head *devices) 809 { 810 struct list_head *tmp, *next; 811 812 list_for_each_safe(tmp, next, devices) { 813 struct table_device *td = list_entry(tmp, struct table_device, list); 814 815 DMWARN("dm_destroy: %s still exists with %d references", 816 td->dm_dev.name, refcount_read(&td->count)); 817 kfree(td); 818 } 819 } 820 821 /* 822 * Get the geometry associated with a dm device 823 */ 824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 825 { 826 *geo = md->geometry; 827 828 return 0; 829 } 830 831 /* 832 * Set the geometry of a device. 833 */ 834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 835 { 836 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 837 838 if (geo->start > sz) { 839 DMWARN("Start sector is beyond the geometry limits."); 840 return -EINVAL; 841 } 842 843 md->geometry = *geo; 844 845 return 0; 846 } 847 848 static int __noflush_suspending(struct mapped_device *md) 849 { 850 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 851 } 852 853 /* 854 * Decrements the number of outstanding ios that a bio has been 855 * cloned into, completing the original io if necc. 856 */ 857 static void dec_pending(struct dm_io *io, blk_status_t error) 858 { 859 unsigned long flags; 860 blk_status_t io_error; 861 struct bio *bio; 862 struct mapped_device *md = io->md; 863 864 /* Push-back supersedes any I/O errors */ 865 if (unlikely(error)) { 866 spin_lock_irqsave(&io->endio_lock, flags); 867 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 868 io->status = error; 869 spin_unlock_irqrestore(&io->endio_lock, flags); 870 } 871 872 if (atomic_dec_and_test(&io->io_count)) { 873 if (io->status == BLK_STS_DM_REQUEUE) { 874 /* 875 * Target requested pushing back the I/O. 876 */ 877 spin_lock_irqsave(&md->deferred_lock, flags); 878 if (__noflush_suspending(md)) 879 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 880 bio_list_add_head(&md->deferred, io->orig_bio); 881 else 882 /* noflush suspend was interrupted. */ 883 io->status = BLK_STS_IOERR; 884 spin_unlock_irqrestore(&md->deferred_lock, flags); 885 } 886 887 io_error = io->status; 888 bio = io->orig_bio; 889 end_io_acct(io); 890 free_io(md, io); 891 892 if (io_error == BLK_STS_DM_REQUEUE) 893 return; 894 895 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 896 /* 897 * Preflush done for flush with data, reissue 898 * without REQ_PREFLUSH. 899 */ 900 bio->bi_opf &= ~REQ_PREFLUSH; 901 queue_io(md, bio); 902 } else { 903 /* done with normal IO or empty flush */ 904 if (io_error) 905 bio->bi_status = io_error; 906 bio_endio(bio); 907 } 908 } 909 } 910 911 void disable_write_same(struct mapped_device *md) 912 { 913 struct queue_limits *limits = dm_get_queue_limits(md); 914 915 /* device doesn't really support WRITE SAME, disable it */ 916 limits->max_write_same_sectors = 0; 917 } 918 919 void disable_write_zeroes(struct mapped_device *md) 920 { 921 struct queue_limits *limits = dm_get_queue_limits(md); 922 923 /* device doesn't really support WRITE ZEROES, disable it */ 924 limits->max_write_zeroes_sectors = 0; 925 } 926 927 static void clone_endio(struct bio *bio) 928 { 929 blk_status_t error = bio->bi_status; 930 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 931 struct dm_io *io = tio->io; 932 struct mapped_device *md = tio->io->md; 933 dm_endio_fn endio = tio->ti->type->end_io; 934 935 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 936 if (bio_op(bio) == REQ_OP_WRITE_SAME && 937 !bio->bi_disk->queue->limits.max_write_same_sectors) 938 disable_write_same(md); 939 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 940 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 941 disable_write_zeroes(md); 942 } 943 944 if (endio) { 945 int r = endio(tio->ti, bio, &error); 946 switch (r) { 947 case DM_ENDIO_REQUEUE: 948 error = BLK_STS_DM_REQUEUE; 949 /*FALLTHRU*/ 950 case DM_ENDIO_DONE: 951 break; 952 case DM_ENDIO_INCOMPLETE: 953 /* The target will handle the io */ 954 return; 955 default: 956 DMWARN("unimplemented target endio return value: %d", r); 957 BUG(); 958 } 959 } 960 961 free_tio(tio); 962 dec_pending(io, error); 963 } 964 965 /* 966 * Return maximum size of I/O possible at the supplied sector up to the current 967 * target boundary. 968 */ 969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 970 { 971 sector_t target_offset = dm_target_offset(ti, sector); 972 973 return ti->len - target_offset; 974 } 975 976 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 977 { 978 sector_t len = max_io_len_target_boundary(sector, ti); 979 sector_t offset, max_len; 980 981 /* 982 * Does the target need to split even further? 983 */ 984 if (ti->max_io_len) { 985 offset = dm_target_offset(ti, sector); 986 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 987 max_len = sector_div(offset, ti->max_io_len); 988 else 989 max_len = offset & (ti->max_io_len - 1); 990 max_len = ti->max_io_len - max_len; 991 992 if (len > max_len) 993 len = max_len; 994 } 995 996 return len; 997 } 998 999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1000 { 1001 if (len > UINT_MAX) { 1002 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1003 (unsigned long long)len, UINT_MAX); 1004 ti->error = "Maximum size of target IO is too large"; 1005 return -EINVAL; 1006 } 1007 1008 /* 1009 * BIO based queue uses its own splitting. When multipage bvecs 1010 * is switched on, size of the incoming bio may be too big to 1011 * be handled in some targets, such as crypt. 1012 * 1013 * When these targets are ready for the big bio, we can remove 1014 * the limit. 1015 */ 1016 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1017 1018 return 0; 1019 } 1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1021 1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1023 sector_t sector, int *srcu_idx) 1024 __acquires(md->io_barrier) 1025 { 1026 struct dm_table *map; 1027 struct dm_target *ti; 1028 1029 map = dm_get_live_table(md, srcu_idx); 1030 if (!map) 1031 return NULL; 1032 1033 ti = dm_table_find_target(map, sector); 1034 if (!dm_target_is_valid(ti)) 1035 return NULL; 1036 1037 return ti; 1038 } 1039 1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1041 long nr_pages, void **kaddr, pfn_t *pfn) 1042 { 1043 struct mapped_device *md = dax_get_private(dax_dev); 1044 sector_t sector = pgoff * PAGE_SECTORS; 1045 struct dm_target *ti; 1046 long len, ret = -EIO; 1047 int srcu_idx; 1048 1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1050 1051 if (!ti) 1052 goto out; 1053 if (!ti->type->direct_access) 1054 goto out; 1055 len = max_io_len(sector, ti) / PAGE_SECTORS; 1056 if (len < 1) 1057 goto out; 1058 nr_pages = min(len, nr_pages); 1059 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1060 1061 out: 1062 dm_put_live_table(md, srcu_idx); 1063 1064 return ret; 1065 } 1066 1067 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1068 void *addr, size_t bytes, struct iov_iter *i) 1069 { 1070 struct mapped_device *md = dax_get_private(dax_dev); 1071 sector_t sector = pgoff * PAGE_SECTORS; 1072 struct dm_target *ti; 1073 long ret = 0; 1074 int srcu_idx; 1075 1076 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1077 1078 if (!ti) 1079 goto out; 1080 if (!ti->type->dax_copy_from_iter) { 1081 ret = copy_from_iter(addr, bytes, i); 1082 goto out; 1083 } 1084 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1085 out: 1086 dm_put_live_table(md, srcu_idx); 1087 1088 return ret; 1089 } 1090 1091 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1092 void *addr, size_t bytes, struct iov_iter *i) 1093 { 1094 struct mapped_device *md = dax_get_private(dax_dev); 1095 sector_t sector = pgoff * PAGE_SECTORS; 1096 struct dm_target *ti; 1097 long ret = 0; 1098 int srcu_idx; 1099 1100 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1101 1102 if (!ti) 1103 goto out; 1104 if (!ti->type->dax_copy_to_iter) { 1105 ret = copy_to_iter(addr, bytes, i); 1106 goto out; 1107 } 1108 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1109 out: 1110 dm_put_live_table(md, srcu_idx); 1111 1112 return ret; 1113 } 1114 1115 /* 1116 * A target may call dm_accept_partial_bio only from the map routine. It is 1117 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1118 * 1119 * dm_accept_partial_bio informs the dm that the target only wants to process 1120 * additional n_sectors sectors of the bio and the rest of the data should be 1121 * sent in a next bio. 1122 * 1123 * A diagram that explains the arithmetics: 1124 * +--------------------+---------------+-------+ 1125 * | 1 | 2 | 3 | 1126 * +--------------------+---------------+-------+ 1127 * 1128 * <-------------- *tio->len_ptr ---------------> 1129 * <------- bi_size -------> 1130 * <-- n_sectors --> 1131 * 1132 * Region 1 was already iterated over with bio_advance or similar function. 1133 * (it may be empty if the target doesn't use bio_advance) 1134 * Region 2 is the remaining bio size that the target wants to process. 1135 * (it may be empty if region 1 is non-empty, although there is no reason 1136 * to make it empty) 1137 * The target requires that region 3 is to be sent in the next bio. 1138 * 1139 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1140 * the partially processed part (the sum of regions 1+2) must be the same for all 1141 * copies of the bio. 1142 */ 1143 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1144 { 1145 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1146 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1147 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1148 BUG_ON(bi_size > *tio->len_ptr); 1149 BUG_ON(n_sectors > bi_size); 1150 *tio->len_ptr -= bi_size - n_sectors; 1151 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1152 } 1153 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1154 1155 /* 1156 * The zone descriptors obtained with a zone report indicate 1157 * zone positions within the target device. The zone descriptors 1158 * must be remapped to match their position within the dm device. 1159 * A target may call dm_remap_zone_report after completion of a 1160 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1161 * from the target device mapping to the dm device. 1162 */ 1163 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1164 { 1165 #ifdef CONFIG_BLK_DEV_ZONED 1166 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1167 struct bio *report_bio = tio->io->orig_bio; 1168 struct blk_zone_report_hdr *hdr = NULL; 1169 struct blk_zone *zone; 1170 unsigned int nr_rep = 0; 1171 unsigned int ofst; 1172 struct bio_vec bvec; 1173 struct bvec_iter iter; 1174 void *addr; 1175 1176 if (bio->bi_status) 1177 return; 1178 1179 /* 1180 * Remap the start sector of the reported zones. For sequential zones, 1181 * also remap the write pointer position. 1182 */ 1183 bio_for_each_segment(bvec, report_bio, iter) { 1184 addr = kmap_atomic(bvec.bv_page); 1185 1186 /* Remember the report header in the first page */ 1187 if (!hdr) { 1188 hdr = addr; 1189 ofst = sizeof(struct blk_zone_report_hdr); 1190 } else 1191 ofst = 0; 1192 1193 /* Set zones start sector */ 1194 while (hdr->nr_zones && ofst < bvec.bv_len) { 1195 zone = addr + ofst; 1196 if (zone->start >= start + ti->len) { 1197 hdr->nr_zones = 0; 1198 break; 1199 } 1200 zone->start = zone->start + ti->begin - start; 1201 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1202 if (zone->cond == BLK_ZONE_COND_FULL) 1203 zone->wp = zone->start + zone->len; 1204 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1205 zone->wp = zone->start; 1206 else 1207 zone->wp = zone->wp + ti->begin - start; 1208 } 1209 ofst += sizeof(struct blk_zone); 1210 hdr->nr_zones--; 1211 nr_rep++; 1212 } 1213 1214 if (addr != hdr) 1215 kunmap_atomic(addr); 1216 1217 if (!hdr->nr_zones) 1218 break; 1219 } 1220 1221 if (hdr) { 1222 hdr->nr_zones = nr_rep; 1223 kunmap_atomic(hdr); 1224 } 1225 1226 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1227 1228 #else /* !CONFIG_BLK_DEV_ZONED */ 1229 bio->bi_status = BLK_STS_NOTSUPP; 1230 #endif 1231 } 1232 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1233 1234 static blk_qc_t __map_bio(struct dm_target_io *tio) 1235 { 1236 int r; 1237 sector_t sector; 1238 struct bio *clone = &tio->clone; 1239 struct dm_io *io = tio->io; 1240 struct mapped_device *md = io->md; 1241 struct dm_target *ti = tio->ti; 1242 blk_qc_t ret = BLK_QC_T_NONE; 1243 1244 clone->bi_end_io = clone_endio; 1245 1246 /* 1247 * Map the clone. If r == 0 we don't need to do 1248 * anything, the target has assumed ownership of 1249 * this io. 1250 */ 1251 atomic_inc(&io->io_count); 1252 sector = clone->bi_iter.bi_sector; 1253 1254 r = ti->type->map(ti, clone); 1255 switch (r) { 1256 case DM_MAPIO_SUBMITTED: 1257 break; 1258 case DM_MAPIO_REMAPPED: 1259 /* the bio has been remapped so dispatch it */ 1260 trace_block_bio_remap(clone->bi_disk->queue, clone, 1261 bio_dev(io->orig_bio), sector); 1262 if (md->type == DM_TYPE_NVME_BIO_BASED) 1263 ret = direct_make_request(clone); 1264 else 1265 ret = generic_make_request(clone); 1266 break; 1267 case DM_MAPIO_KILL: 1268 free_tio(tio); 1269 dec_pending(io, BLK_STS_IOERR); 1270 break; 1271 case DM_MAPIO_REQUEUE: 1272 free_tio(tio); 1273 dec_pending(io, BLK_STS_DM_REQUEUE); 1274 break; 1275 default: 1276 DMWARN("unimplemented target map return value: %d", r); 1277 BUG(); 1278 } 1279 1280 return ret; 1281 } 1282 1283 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1284 { 1285 bio->bi_iter.bi_sector = sector; 1286 bio->bi_iter.bi_size = to_bytes(len); 1287 } 1288 1289 /* 1290 * Creates a bio that consists of range of complete bvecs. 1291 */ 1292 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1293 sector_t sector, unsigned len) 1294 { 1295 struct bio *clone = &tio->clone; 1296 1297 __bio_clone_fast(clone, bio); 1298 1299 if (unlikely(bio_integrity(bio) != NULL)) { 1300 int r; 1301 1302 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1303 !dm_target_passes_integrity(tio->ti->type))) { 1304 DMWARN("%s: the target %s doesn't support integrity data.", 1305 dm_device_name(tio->io->md), 1306 tio->ti->type->name); 1307 return -EIO; 1308 } 1309 1310 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1311 if (r < 0) 1312 return r; 1313 } 1314 1315 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1316 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1317 clone->bi_iter.bi_size = to_bytes(len); 1318 1319 if (unlikely(bio_integrity(bio) != NULL)) 1320 bio_integrity_trim(clone); 1321 1322 return 0; 1323 } 1324 1325 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1326 struct dm_target *ti, unsigned num_bios) 1327 { 1328 struct dm_target_io *tio; 1329 int try; 1330 1331 if (!num_bios) 1332 return; 1333 1334 if (num_bios == 1) { 1335 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1336 bio_list_add(blist, &tio->clone); 1337 return; 1338 } 1339 1340 for (try = 0; try < 2; try++) { 1341 int bio_nr; 1342 struct bio *bio; 1343 1344 if (try) 1345 mutex_lock(&ci->io->md->table_devices_lock); 1346 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1347 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1348 if (!tio) 1349 break; 1350 1351 bio_list_add(blist, &tio->clone); 1352 } 1353 if (try) 1354 mutex_unlock(&ci->io->md->table_devices_lock); 1355 if (bio_nr == num_bios) 1356 return; 1357 1358 while ((bio = bio_list_pop(blist))) { 1359 tio = container_of(bio, struct dm_target_io, clone); 1360 free_tio(tio); 1361 } 1362 } 1363 } 1364 1365 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1366 struct dm_target_io *tio, unsigned *len) 1367 { 1368 struct bio *clone = &tio->clone; 1369 1370 tio->len_ptr = len; 1371 1372 __bio_clone_fast(clone, ci->bio); 1373 if (len) 1374 bio_setup_sector(clone, ci->sector, *len); 1375 1376 return __map_bio(tio); 1377 } 1378 1379 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1380 unsigned num_bios, unsigned *len) 1381 { 1382 struct bio_list blist = BIO_EMPTY_LIST; 1383 struct bio *bio; 1384 struct dm_target_io *tio; 1385 1386 alloc_multiple_bios(&blist, ci, ti, num_bios); 1387 1388 while ((bio = bio_list_pop(&blist))) { 1389 tio = container_of(bio, struct dm_target_io, clone); 1390 (void) __clone_and_map_simple_bio(ci, tio, len); 1391 } 1392 } 1393 1394 static int __send_empty_flush(struct clone_info *ci) 1395 { 1396 unsigned target_nr = 0; 1397 struct dm_target *ti; 1398 1399 BUG_ON(bio_has_data(ci->bio)); 1400 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1401 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1402 1403 return 0; 1404 } 1405 1406 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1407 sector_t sector, unsigned *len) 1408 { 1409 struct bio *bio = ci->bio; 1410 struct dm_target_io *tio; 1411 int r; 1412 1413 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1414 tio->len_ptr = len; 1415 r = clone_bio(tio, bio, sector, *len); 1416 if (r < 0) { 1417 free_tio(tio); 1418 return r; 1419 } 1420 (void) __map_bio(tio); 1421 1422 return 0; 1423 } 1424 1425 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1426 1427 static unsigned get_num_discard_bios(struct dm_target *ti) 1428 { 1429 return ti->num_discard_bios; 1430 } 1431 1432 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1433 { 1434 return ti->num_secure_erase_bios; 1435 } 1436 1437 static unsigned get_num_write_same_bios(struct dm_target *ti) 1438 { 1439 return ti->num_write_same_bios; 1440 } 1441 1442 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1443 { 1444 return ti->num_write_zeroes_bios; 1445 } 1446 1447 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1448 1449 static bool is_split_required_for_discard(struct dm_target *ti) 1450 { 1451 return ti->split_discard_bios; 1452 } 1453 1454 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1455 get_num_bios_fn get_num_bios, 1456 is_split_required_fn is_split_required) 1457 { 1458 unsigned len; 1459 unsigned num_bios; 1460 1461 /* 1462 * Even though the device advertised support for this type of 1463 * request, that does not mean every target supports it, and 1464 * reconfiguration might also have changed that since the 1465 * check was performed. 1466 */ 1467 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1468 if (!num_bios) 1469 return -EOPNOTSUPP; 1470 1471 if (is_split_required && !is_split_required(ti)) 1472 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1473 else 1474 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1475 1476 __send_duplicate_bios(ci, ti, num_bios, &len); 1477 1478 ci->sector += len; 1479 ci->sector_count -= len; 1480 1481 return 0; 1482 } 1483 1484 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1485 { 1486 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1487 is_split_required_for_discard); 1488 } 1489 1490 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1491 { 1492 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL); 1493 } 1494 1495 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1496 { 1497 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1498 } 1499 1500 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1501 { 1502 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1503 } 1504 1505 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1506 int *result) 1507 { 1508 struct bio *bio = ci->bio; 1509 1510 if (bio_op(bio) == REQ_OP_DISCARD) 1511 *result = __send_discard(ci, ti); 1512 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1513 *result = __send_secure_erase(ci, ti); 1514 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1515 *result = __send_write_same(ci, ti); 1516 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1517 *result = __send_write_zeroes(ci, ti); 1518 else 1519 return false; 1520 1521 return true; 1522 } 1523 1524 /* 1525 * Select the correct strategy for processing a non-flush bio. 1526 */ 1527 static int __split_and_process_non_flush(struct clone_info *ci) 1528 { 1529 struct bio *bio = ci->bio; 1530 struct dm_target *ti; 1531 unsigned len; 1532 int r; 1533 1534 ti = dm_table_find_target(ci->map, ci->sector); 1535 if (!dm_target_is_valid(ti)) 1536 return -EIO; 1537 1538 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1539 return r; 1540 1541 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1542 len = ci->sector_count; 1543 else 1544 len = min_t(sector_t, max_io_len(ci->sector, ti), 1545 ci->sector_count); 1546 1547 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1548 if (r < 0) 1549 return r; 1550 1551 ci->sector += len; 1552 ci->sector_count -= len; 1553 1554 return 0; 1555 } 1556 1557 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1558 struct dm_table *map, struct bio *bio) 1559 { 1560 ci->map = map; 1561 ci->io = alloc_io(md, bio); 1562 ci->sector = bio->bi_iter.bi_sector; 1563 } 1564 1565 /* 1566 * Entry point to split a bio into clones and submit them to the targets. 1567 */ 1568 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1569 struct dm_table *map, struct bio *bio) 1570 { 1571 struct clone_info ci; 1572 blk_qc_t ret = BLK_QC_T_NONE; 1573 int error = 0; 1574 1575 if (unlikely(!map)) { 1576 bio_io_error(bio); 1577 return ret; 1578 } 1579 1580 init_clone_info(&ci, md, map, bio); 1581 1582 if (bio->bi_opf & REQ_PREFLUSH) { 1583 ci.bio = &ci.io->md->flush_bio; 1584 ci.sector_count = 0; 1585 error = __send_empty_flush(&ci); 1586 /* dec_pending submits any data associated with flush */ 1587 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1588 ci.bio = bio; 1589 ci.sector_count = 0; 1590 error = __split_and_process_non_flush(&ci); 1591 } else { 1592 ci.bio = bio; 1593 ci.sector_count = bio_sectors(bio); 1594 while (ci.sector_count && !error) { 1595 error = __split_and_process_non_flush(&ci); 1596 if (current->bio_list && ci.sector_count && !error) { 1597 /* 1598 * Remainder must be passed to generic_make_request() 1599 * so that it gets handled *after* bios already submitted 1600 * have been completely processed. 1601 * We take a clone of the original to store in 1602 * ci.io->orig_bio to be used by end_io_acct() and 1603 * for dec_pending to use for completion handling. 1604 * As this path is not used for REQ_OP_ZONE_REPORT, 1605 * the usage of io->orig_bio in dm_remap_zone_report() 1606 * won't be affected by this reassignment. 1607 */ 1608 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1609 GFP_NOIO, &md->queue->bio_split); 1610 ci.io->orig_bio = b; 1611 bio_chain(b, bio); 1612 ret = generic_make_request(bio); 1613 break; 1614 } 1615 } 1616 } 1617 1618 /* drop the extra reference count */ 1619 dec_pending(ci.io, errno_to_blk_status(error)); 1620 return ret; 1621 } 1622 1623 /* 1624 * Optimized variant of __split_and_process_bio that leverages the 1625 * fact that targets that use it do _not_ have a need to split bios. 1626 */ 1627 static blk_qc_t __process_bio(struct mapped_device *md, 1628 struct dm_table *map, struct bio *bio) 1629 { 1630 struct clone_info ci; 1631 blk_qc_t ret = BLK_QC_T_NONE; 1632 int error = 0; 1633 1634 if (unlikely(!map)) { 1635 bio_io_error(bio); 1636 return ret; 1637 } 1638 1639 init_clone_info(&ci, md, map, bio); 1640 1641 if (bio->bi_opf & REQ_PREFLUSH) { 1642 ci.bio = &ci.io->md->flush_bio; 1643 ci.sector_count = 0; 1644 error = __send_empty_flush(&ci); 1645 /* dec_pending submits any data associated with flush */ 1646 } else { 1647 struct dm_target *ti = md->immutable_target; 1648 struct dm_target_io *tio; 1649 1650 /* 1651 * Defend against IO still getting in during teardown 1652 * - as was seen for a time with nvme-fcloop 1653 */ 1654 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1655 error = -EIO; 1656 goto out; 1657 } 1658 1659 ci.bio = bio; 1660 ci.sector_count = bio_sectors(bio); 1661 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1662 goto out; 1663 1664 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1665 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1666 } 1667 out: 1668 /* drop the extra reference count */ 1669 dec_pending(ci.io, errno_to_blk_status(error)); 1670 return ret; 1671 } 1672 1673 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1674 1675 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1676 process_bio_fn process_bio) 1677 { 1678 struct mapped_device *md = q->queuedata; 1679 blk_qc_t ret = BLK_QC_T_NONE; 1680 int srcu_idx; 1681 struct dm_table *map; 1682 1683 map = dm_get_live_table(md, &srcu_idx); 1684 1685 /* if we're suspended, we have to queue this io for later */ 1686 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1687 dm_put_live_table(md, srcu_idx); 1688 1689 if (!(bio->bi_opf & REQ_RAHEAD)) 1690 queue_io(md, bio); 1691 else 1692 bio_io_error(bio); 1693 return ret; 1694 } 1695 1696 ret = process_bio(md, map, bio); 1697 1698 dm_put_live_table(md, srcu_idx); 1699 return ret; 1700 } 1701 1702 /* 1703 * The request function that remaps the bio to one target and 1704 * splits off any remainder. 1705 */ 1706 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1707 { 1708 return __dm_make_request(q, bio, __split_and_process_bio); 1709 } 1710 1711 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1712 { 1713 return __dm_make_request(q, bio, __process_bio); 1714 } 1715 1716 static int dm_any_congested(void *congested_data, int bdi_bits) 1717 { 1718 int r = bdi_bits; 1719 struct mapped_device *md = congested_data; 1720 struct dm_table *map; 1721 1722 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1723 if (dm_request_based(md)) { 1724 /* 1725 * With request-based DM we only need to check the 1726 * top-level queue for congestion. 1727 */ 1728 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1729 } else { 1730 map = dm_get_live_table_fast(md); 1731 if (map) 1732 r = dm_table_any_congested(map, bdi_bits); 1733 dm_put_live_table_fast(md); 1734 } 1735 } 1736 1737 return r; 1738 } 1739 1740 /*----------------------------------------------------------------- 1741 * An IDR is used to keep track of allocated minor numbers. 1742 *---------------------------------------------------------------*/ 1743 static void free_minor(int minor) 1744 { 1745 spin_lock(&_minor_lock); 1746 idr_remove(&_minor_idr, minor); 1747 spin_unlock(&_minor_lock); 1748 } 1749 1750 /* 1751 * See if the device with a specific minor # is free. 1752 */ 1753 static int specific_minor(int minor) 1754 { 1755 int r; 1756 1757 if (minor >= (1 << MINORBITS)) 1758 return -EINVAL; 1759 1760 idr_preload(GFP_KERNEL); 1761 spin_lock(&_minor_lock); 1762 1763 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1764 1765 spin_unlock(&_minor_lock); 1766 idr_preload_end(); 1767 if (r < 0) 1768 return r == -ENOSPC ? -EBUSY : r; 1769 return 0; 1770 } 1771 1772 static int next_free_minor(int *minor) 1773 { 1774 int r; 1775 1776 idr_preload(GFP_KERNEL); 1777 spin_lock(&_minor_lock); 1778 1779 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1780 1781 spin_unlock(&_minor_lock); 1782 idr_preload_end(); 1783 if (r < 0) 1784 return r; 1785 *minor = r; 1786 return 0; 1787 } 1788 1789 static const struct block_device_operations dm_blk_dops; 1790 static const struct dax_operations dm_dax_ops; 1791 1792 static void dm_wq_work(struct work_struct *work); 1793 1794 static void dm_init_normal_md_queue(struct mapped_device *md) 1795 { 1796 md->use_blk_mq = false; 1797 1798 /* 1799 * Initialize aspects of queue that aren't relevant for blk-mq 1800 */ 1801 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1802 } 1803 1804 static void cleanup_mapped_device(struct mapped_device *md) 1805 { 1806 if (md->wq) 1807 destroy_workqueue(md->wq); 1808 if (md->kworker_task) 1809 kthread_stop(md->kworker_task); 1810 bioset_exit(&md->bs); 1811 bioset_exit(&md->io_bs); 1812 1813 if (md->dax_dev) { 1814 kill_dax(md->dax_dev); 1815 put_dax(md->dax_dev); 1816 md->dax_dev = NULL; 1817 } 1818 1819 if (md->disk) { 1820 spin_lock(&_minor_lock); 1821 md->disk->private_data = NULL; 1822 spin_unlock(&_minor_lock); 1823 del_gendisk(md->disk); 1824 put_disk(md->disk); 1825 } 1826 1827 if (md->queue) 1828 blk_cleanup_queue(md->queue); 1829 1830 cleanup_srcu_struct(&md->io_barrier); 1831 1832 if (md->bdev) { 1833 bdput(md->bdev); 1834 md->bdev = NULL; 1835 } 1836 1837 mutex_destroy(&md->suspend_lock); 1838 mutex_destroy(&md->type_lock); 1839 mutex_destroy(&md->table_devices_lock); 1840 1841 dm_mq_cleanup_mapped_device(md); 1842 } 1843 1844 /* 1845 * Allocate and initialise a blank device with a given minor. 1846 */ 1847 static struct mapped_device *alloc_dev(int minor) 1848 { 1849 int r, numa_node_id = dm_get_numa_node(); 1850 struct dax_device *dax_dev = NULL; 1851 struct mapped_device *md; 1852 void *old_md; 1853 1854 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1855 if (!md) { 1856 DMWARN("unable to allocate device, out of memory."); 1857 return NULL; 1858 } 1859 1860 if (!try_module_get(THIS_MODULE)) 1861 goto bad_module_get; 1862 1863 /* get a minor number for the dev */ 1864 if (minor == DM_ANY_MINOR) 1865 r = next_free_minor(&minor); 1866 else 1867 r = specific_minor(minor); 1868 if (r < 0) 1869 goto bad_minor; 1870 1871 r = init_srcu_struct(&md->io_barrier); 1872 if (r < 0) 1873 goto bad_io_barrier; 1874 1875 md->numa_node_id = numa_node_id; 1876 md->use_blk_mq = dm_use_blk_mq_default(); 1877 md->init_tio_pdu = false; 1878 md->type = DM_TYPE_NONE; 1879 mutex_init(&md->suspend_lock); 1880 mutex_init(&md->type_lock); 1881 mutex_init(&md->table_devices_lock); 1882 spin_lock_init(&md->deferred_lock); 1883 atomic_set(&md->holders, 1); 1884 atomic_set(&md->open_count, 0); 1885 atomic_set(&md->event_nr, 0); 1886 atomic_set(&md->uevent_seq, 0); 1887 INIT_LIST_HEAD(&md->uevent_list); 1888 INIT_LIST_HEAD(&md->table_devices); 1889 spin_lock_init(&md->uevent_lock); 1890 1891 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL); 1892 if (!md->queue) 1893 goto bad; 1894 md->queue->queuedata = md; 1895 md->queue->backing_dev_info->congested_data = md; 1896 1897 md->disk = alloc_disk_node(1, md->numa_node_id); 1898 if (!md->disk) 1899 goto bad; 1900 1901 atomic_set(&md->pending[0], 0); 1902 atomic_set(&md->pending[1], 0); 1903 init_waitqueue_head(&md->wait); 1904 INIT_WORK(&md->work, dm_wq_work); 1905 init_waitqueue_head(&md->eventq); 1906 init_completion(&md->kobj_holder.completion); 1907 md->kworker_task = NULL; 1908 1909 md->disk->major = _major; 1910 md->disk->first_minor = minor; 1911 md->disk->fops = &dm_blk_dops; 1912 md->disk->queue = md->queue; 1913 md->disk->private_data = md; 1914 sprintf(md->disk->disk_name, "dm-%d", minor); 1915 1916 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1917 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1918 if (!dax_dev) 1919 goto bad; 1920 } 1921 md->dax_dev = dax_dev; 1922 1923 add_disk_no_queue_reg(md->disk); 1924 format_dev_t(md->name, MKDEV(_major, minor)); 1925 1926 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1927 if (!md->wq) 1928 goto bad; 1929 1930 md->bdev = bdget_disk(md->disk, 0); 1931 if (!md->bdev) 1932 goto bad; 1933 1934 bio_init(&md->flush_bio, NULL, 0); 1935 bio_set_dev(&md->flush_bio, md->bdev); 1936 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1937 1938 dm_stats_init(&md->stats); 1939 1940 /* Populate the mapping, nobody knows we exist yet */ 1941 spin_lock(&_minor_lock); 1942 old_md = idr_replace(&_minor_idr, md, minor); 1943 spin_unlock(&_minor_lock); 1944 1945 BUG_ON(old_md != MINOR_ALLOCED); 1946 1947 return md; 1948 1949 bad: 1950 cleanup_mapped_device(md); 1951 bad_io_barrier: 1952 free_minor(minor); 1953 bad_minor: 1954 module_put(THIS_MODULE); 1955 bad_module_get: 1956 kvfree(md); 1957 return NULL; 1958 } 1959 1960 static void unlock_fs(struct mapped_device *md); 1961 1962 static void free_dev(struct mapped_device *md) 1963 { 1964 int minor = MINOR(disk_devt(md->disk)); 1965 1966 unlock_fs(md); 1967 1968 cleanup_mapped_device(md); 1969 1970 free_table_devices(&md->table_devices); 1971 dm_stats_cleanup(&md->stats); 1972 free_minor(minor); 1973 1974 module_put(THIS_MODULE); 1975 kvfree(md); 1976 } 1977 1978 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1979 { 1980 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1981 int ret = 0; 1982 1983 if (dm_table_bio_based(t)) { 1984 /* 1985 * The md may already have mempools that need changing. 1986 * If so, reload bioset because front_pad may have changed 1987 * because a different table was loaded. 1988 */ 1989 bioset_exit(&md->bs); 1990 bioset_exit(&md->io_bs); 1991 1992 } else if (bioset_initialized(&md->bs)) { 1993 /* 1994 * There's no need to reload with request-based dm 1995 * because the size of front_pad doesn't change. 1996 * Note for future: If you are to reload bioset, 1997 * prep-ed requests in the queue may refer 1998 * to bio from the old bioset, so you must walk 1999 * through the queue to unprep. 2000 */ 2001 goto out; 2002 } 2003 2004 BUG_ON(!p || 2005 bioset_initialized(&md->bs) || 2006 bioset_initialized(&md->io_bs)); 2007 2008 ret = bioset_init_from_src(&md->bs, &p->bs); 2009 if (ret) 2010 goto out; 2011 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2012 if (ret) 2013 bioset_exit(&md->bs); 2014 out: 2015 /* mempool bind completed, no longer need any mempools in the table */ 2016 dm_table_free_md_mempools(t); 2017 return ret; 2018 } 2019 2020 /* 2021 * Bind a table to the device. 2022 */ 2023 static void event_callback(void *context) 2024 { 2025 unsigned long flags; 2026 LIST_HEAD(uevents); 2027 struct mapped_device *md = (struct mapped_device *) context; 2028 2029 spin_lock_irqsave(&md->uevent_lock, flags); 2030 list_splice_init(&md->uevent_list, &uevents); 2031 spin_unlock_irqrestore(&md->uevent_lock, flags); 2032 2033 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2034 2035 atomic_inc(&md->event_nr); 2036 wake_up(&md->eventq); 2037 dm_issue_global_event(); 2038 } 2039 2040 /* 2041 * Protected by md->suspend_lock obtained by dm_swap_table(). 2042 */ 2043 static void __set_size(struct mapped_device *md, sector_t size) 2044 { 2045 lockdep_assert_held(&md->suspend_lock); 2046 2047 set_capacity(md->disk, size); 2048 2049 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2050 } 2051 2052 /* 2053 * Returns old map, which caller must destroy. 2054 */ 2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2056 struct queue_limits *limits) 2057 { 2058 struct dm_table *old_map; 2059 struct request_queue *q = md->queue; 2060 bool request_based = dm_table_request_based(t); 2061 sector_t size; 2062 int ret; 2063 2064 lockdep_assert_held(&md->suspend_lock); 2065 2066 size = dm_table_get_size(t); 2067 2068 /* 2069 * Wipe any geometry if the size of the table changed. 2070 */ 2071 if (size != dm_get_size(md)) 2072 memset(&md->geometry, 0, sizeof(md->geometry)); 2073 2074 __set_size(md, size); 2075 2076 dm_table_event_callback(t, event_callback, md); 2077 2078 /* 2079 * The queue hasn't been stopped yet, if the old table type wasn't 2080 * for request-based during suspension. So stop it to prevent 2081 * I/O mapping before resume. 2082 * This must be done before setting the queue restrictions, 2083 * because request-based dm may be run just after the setting. 2084 */ 2085 if (request_based) 2086 dm_stop_queue(q); 2087 2088 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2089 /* 2090 * Leverage the fact that request-based DM targets and 2091 * NVMe bio based targets are immutable singletons 2092 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2093 * and __process_bio. 2094 */ 2095 md->immutable_target = dm_table_get_immutable_target(t); 2096 } 2097 2098 ret = __bind_mempools(md, t); 2099 if (ret) { 2100 old_map = ERR_PTR(ret); 2101 goto out; 2102 } 2103 2104 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2105 rcu_assign_pointer(md->map, (void *)t); 2106 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2107 2108 dm_table_set_restrictions(t, q, limits); 2109 if (old_map) 2110 dm_sync_table(md); 2111 2112 out: 2113 return old_map; 2114 } 2115 2116 /* 2117 * Returns unbound table for the caller to free. 2118 */ 2119 static struct dm_table *__unbind(struct mapped_device *md) 2120 { 2121 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2122 2123 if (!map) 2124 return NULL; 2125 2126 dm_table_event_callback(map, NULL, NULL); 2127 RCU_INIT_POINTER(md->map, NULL); 2128 dm_sync_table(md); 2129 2130 return map; 2131 } 2132 2133 /* 2134 * Constructor for a new device. 2135 */ 2136 int dm_create(int minor, struct mapped_device **result) 2137 { 2138 int r; 2139 struct mapped_device *md; 2140 2141 md = alloc_dev(minor); 2142 if (!md) 2143 return -ENXIO; 2144 2145 r = dm_sysfs_init(md); 2146 if (r) { 2147 free_dev(md); 2148 return r; 2149 } 2150 2151 *result = md; 2152 return 0; 2153 } 2154 2155 /* 2156 * Functions to manage md->type. 2157 * All are required to hold md->type_lock. 2158 */ 2159 void dm_lock_md_type(struct mapped_device *md) 2160 { 2161 mutex_lock(&md->type_lock); 2162 } 2163 2164 void dm_unlock_md_type(struct mapped_device *md) 2165 { 2166 mutex_unlock(&md->type_lock); 2167 } 2168 2169 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2170 { 2171 BUG_ON(!mutex_is_locked(&md->type_lock)); 2172 md->type = type; 2173 } 2174 2175 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2176 { 2177 return md->type; 2178 } 2179 2180 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2181 { 2182 return md->immutable_target_type; 2183 } 2184 2185 /* 2186 * The queue_limits are only valid as long as you have a reference 2187 * count on 'md'. 2188 */ 2189 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2190 { 2191 BUG_ON(!atomic_read(&md->holders)); 2192 return &md->queue->limits; 2193 } 2194 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2195 2196 /* 2197 * Setup the DM device's queue based on md's type 2198 */ 2199 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2200 { 2201 int r; 2202 struct queue_limits limits; 2203 enum dm_queue_mode type = dm_get_md_type(md); 2204 2205 switch (type) { 2206 case DM_TYPE_REQUEST_BASED: 2207 dm_init_normal_md_queue(md); 2208 r = dm_old_init_request_queue(md, t); 2209 if (r) { 2210 DMERR("Cannot initialize queue for request-based mapped device"); 2211 return r; 2212 } 2213 break; 2214 case DM_TYPE_MQ_REQUEST_BASED: 2215 r = dm_mq_init_request_queue(md, t); 2216 if (r) { 2217 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2218 return r; 2219 } 2220 break; 2221 case DM_TYPE_BIO_BASED: 2222 case DM_TYPE_DAX_BIO_BASED: 2223 dm_init_normal_md_queue(md); 2224 blk_queue_make_request(md->queue, dm_make_request); 2225 break; 2226 case DM_TYPE_NVME_BIO_BASED: 2227 dm_init_normal_md_queue(md); 2228 blk_queue_make_request(md->queue, dm_make_request_nvme); 2229 break; 2230 case DM_TYPE_NONE: 2231 WARN_ON_ONCE(true); 2232 break; 2233 } 2234 2235 r = dm_calculate_queue_limits(t, &limits); 2236 if (r) { 2237 DMERR("Cannot calculate initial queue limits"); 2238 return r; 2239 } 2240 dm_table_set_restrictions(t, md->queue, &limits); 2241 blk_register_queue(md->disk); 2242 2243 return 0; 2244 } 2245 2246 struct mapped_device *dm_get_md(dev_t dev) 2247 { 2248 struct mapped_device *md; 2249 unsigned minor = MINOR(dev); 2250 2251 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2252 return NULL; 2253 2254 spin_lock(&_minor_lock); 2255 2256 md = idr_find(&_minor_idr, minor); 2257 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2258 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2259 md = NULL; 2260 goto out; 2261 } 2262 dm_get(md); 2263 out: 2264 spin_unlock(&_minor_lock); 2265 2266 return md; 2267 } 2268 EXPORT_SYMBOL_GPL(dm_get_md); 2269 2270 void *dm_get_mdptr(struct mapped_device *md) 2271 { 2272 return md->interface_ptr; 2273 } 2274 2275 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2276 { 2277 md->interface_ptr = ptr; 2278 } 2279 2280 void dm_get(struct mapped_device *md) 2281 { 2282 atomic_inc(&md->holders); 2283 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2284 } 2285 2286 int dm_hold(struct mapped_device *md) 2287 { 2288 spin_lock(&_minor_lock); 2289 if (test_bit(DMF_FREEING, &md->flags)) { 2290 spin_unlock(&_minor_lock); 2291 return -EBUSY; 2292 } 2293 dm_get(md); 2294 spin_unlock(&_minor_lock); 2295 return 0; 2296 } 2297 EXPORT_SYMBOL_GPL(dm_hold); 2298 2299 const char *dm_device_name(struct mapped_device *md) 2300 { 2301 return md->name; 2302 } 2303 EXPORT_SYMBOL_GPL(dm_device_name); 2304 2305 static void __dm_destroy(struct mapped_device *md, bool wait) 2306 { 2307 struct dm_table *map; 2308 int srcu_idx; 2309 2310 might_sleep(); 2311 2312 spin_lock(&_minor_lock); 2313 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2314 set_bit(DMF_FREEING, &md->flags); 2315 spin_unlock(&_minor_lock); 2316 2317 blk_set_queue_dying(md->queue); 2318 2319 if (dm_request_based(md) && md->kworker_task) 2320 kthread_flush_worker(&md->kworker); 2321 2322 /* 2323 * Take suspend_lock so that presuspend and postsuspend methods 2324 * do not race with internal suspend. 2325 */ 2326 mutex_lock(&md->suspend_lock); 2327 map = dm_get_live_table(md, &srcu_idx); 2328 if (!dm_suspended_md(md)) { 2329 dm_table_presuspend_targets(map); 2330 dm_table_postsuspend_targets(map); 2331 } 2332 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2333 dm_put_live_table(md, srcu_idx); 2334 mutex_unlock(&md->suspend_lock); 2335 2336 /* 2337 * Rare, but there may be I/O requests still going to complete, 2338 * for example. Wait for all references to disappear. 2339 * No one should increment the reference count of the mapped_device, 2340 * after the mapped_device state becomes DMF_FREEING. 2341 */ 2342 if (wait) 2343 while (atomic_read(&md->holders)) 2344 msleep(1); 2345 else if (atomic_read(&md->holders)) 2346 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2347 dm_device_name(md), atomic_read(&md->holders)); 2348 2349 dm_sysfs_exit(md); 2350 dm_table_destroy(__unbind(md)); 2351 free_dev(md); 2352 } 2353 2354 void dm_destroy(struct mapped_device *md) 2355 { 2356 __dm_destroy(md, true); 2357 } 2358 2359 void dm_destroy_immediate(struct mapped_device *md) 2360 { 2361 __dm_destroy(md, false); 2362 } 2363 2364 void dm_put(struct mapped_device *md) 2365 { 2366 atomic_dec(&md->holders); 2367 } 2368 EXPORT_SYMBOL_GPL(dm_put); 2369 2370 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2371 { 2372 int r = 0; 2373 DEFINE_WAIT(wait); 2374 2375 while (1) { 2376 prepare_to_wait(&md->wait, &wait, task_state); 2377 2378 if (!md_in_flight(md)) 2379 break; 2380 2381 if (signal_pending_state(task_state, current)) { 2382 r = -EINTR; 2383 break; 2384 } 2385 2386 io_schedule(); 2387 } 2388 finish_wait(&md->wait, &wait); 2389 2390 return r; 2391 } 2392 2393 /* 2394 * Process the deferred bios 2395 */ 2396 static void dm_wq_work(struct work_struct *work) 2397 { 2398 struct mapped_device *md = container_of(work, struct mapped_device, 2399 work); 2400 struct bio *c; 2401 int srcu_idx; 2402 struct dm_table *map; 2403 2404 map = dm_get_live_table(md, &srcu_idx); 2405 2406 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2407 spin_lock_irq(&md->deferred_lock); 2408 c = bio_list_pop(&md->deferred); 2409 spin_unlock_irq(&md->deferred_lock); 2410 2411 if (!c) 2412 break; 2413 2414 if (dm_request_based(md)) 2415 generic_make_request(c); 2416 else 2417 __split_and_process_bio(md, map, c); 2418 } 2419 2420 dm_put_live_table(md, srcu_idx); 2421 } 2422 2423 static void dm_queue_flush(struct mapped_device *md) 2424 { 2425 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2426 smp_mb__after_atomic(); 2427 queue_work(md->wq, &md->work); 2428 } 2429 2430 /* 2431 * Swap in a new table, returning the old one for the caller to destroy. 2432 */ 2433 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2434 { 2435 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2436 struct queue_limits limits; 2437 int r; 2438 2439 mutex_lock(&md->suspend_lock); 2440 2441 /* device must be suspended */ 2442 if (!dm_suspended_md(md)) 2443 goto out; 2444 2445 /* 2446 * If the new table has no data devices, retain the existing limits. 2447 * This helps multipath with queue_if_no_path if all paths disappear, 2448 * then new I/O is queued based on these limits, and then some paths 2449 * reappear. 2450 */ 2451 if (dm_table_has_no_data_devices(table)) { 2452 live_map = dm_get_live_table_fast(md); 2453 if (live_map) 2454 limits = md->queue->limits; 2455 dm_put_live_table_fast(md); 2456 } 2457 2458 if (!live_map) { 2459 r = dm_calculate_queue_limits(table, &limits); 2460 if (r) { 2461 map = ERR_PTR(r); 2462 goto out; 2463 } 2464 } 2465 2466 map = __bind(md, table, &limits); 2467 dm_issue_global_event(); 2468 2469 out: 2470 mutex_unlock(&md->suspend_lock); 2471 return map; 2472 } 2473 2474 /* 2475 * Functions to lock and unlock any filesystem running on the 2476 * device. 2477 */ 2478 static int lock_fs(struct mapped_device *md) 2479 { 2480 int r; 2481 2482 WARN_ON(md->frozen_sb); 2483 2484 md->frozen_sb = freeze_bdev(md->bdev); 2485 if (IS_ERR(md->frozen_sb)) { 2486 r = PTR_ERR(md->frozen_sb); 2487 md->frozen_sb = NULL; 2488 return r; 2489 } 2490 2491 set_bit(DMF_FROZEN, &md->flags); 2492 2493 return 0; 2494 } 2495 2496 static void unlock_fs(struct mapped_device *md) 2497 { 2498 if (!test_bit(DMF_FROZEN, &md->flags)) 2499 return; 2500 2501 thaw_bdev(md->bdev, md->frozen_sb); 2502 md->frozen_sb = NULL; 2503 clear_bit(DMF_FROZEN, &md->flags); 2504 } 2505 2506 /* 2507 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2508 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2509 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2510 * 2511 * If __dm_suspend returns 0, the device is completely quiescent 2512 * now. There is no request-processing activity. All new requests 2513 * are being added to md->deferred list. 2514 */ 2515 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2516 unsigned suspend_flags, long task_state, 2517 int dmf_suspended_flag) 2518 { 2519 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2520 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2521 int r; 2522 2523 lockdep_assert_held(&md->suspend_lock); 2524 2525 /* 2526 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2527 * This flag is cleared before dm_suspend returns. 2528 */ 2529 if (noflush) 2530 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2531 else 2532 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2533 2534 /* 2535 * This gets reverted if there's an error later and the targets 2536 * provide the .presuspend_undo hook. 2537 */ 2538 dm_table_presuspend_targets(map); 2539 2540 /* 2541 * Flush I/O to the device. 2542 * Any I/O submitted after lock_fs() may not be flushed. 2543 * noflush takes precedence over do_lockfs. 2544 * (lock_fs() flushes I/Os and waits for them to complete.) 2545 */ 2546 if (!noflush && do_lockfs) { 2547 r = lock_fs(md); 2548 if (r) { 2549 dm_table_presuspend_undo_targets(map); 2550 return r; 2551 } 2552 } 2553 2554 /* 2555 * Here we must make sure that no processes are submitting requests 2556 * to target drivers i.e. no one may be executing 2557 * __split_and_process_bio. This is called from dm_request and 2558 * dm_wq_work. 2559 * 2560 * To get all processes out of __split_and_process_bio in dm_request, 2561 * we take the write lock. To prevent any process from reentering 2562 * __split_and_process_bio from dm_request and quiesce the thread 2563 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2564 * flush_workqueue(md->wq). 2565 */ 2566 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2567 if (map) 2568 synchronize_srcu(&md->io_barrier); 2569 2570 /* 2571 * Stop md->queue before flushing md->wq in case request-based 2572 * dm defers requests to md->wq from md->queue. 2573 */ 2574 if (dm_request_based(md)) { 2575 dm_stop_queue(md->queue); 2576 if (md->kworker_task) 2577 kthread_flush_worker(&md->kworker); 2578 } 2579 2580 flush_workqueue(md->wq); 2581 2582 /* 2583 * At this point no more requests are entering target request routines. 2584 * We call dm_wait_for_completion to wait for all existing requests 2585 * to finish. 2586 */ 2587 r = dm_wait_for_completion(md, task_state); 2588 if (!r) 2589 set_bit(dmf_suspended_flag, &md->flags); 2590 2591 if (noflush) 2592 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2593 if (map) 2594 synchronize_srcu(&md->io_barrier); 2595 2596 /* were we interrupted ? */ 2597 if (r < 0) { 2598 dm_queue_flush(md); 2599 2600 if (dm_request_based(md)) 2601 dm_start_queue(md->queue); 2602 2603 unlock_fs(md); 2604 dm_table_presuspend_undo_targets(map); 2605 /* pushback list is already flushed, so skip flush */ 2606 } 2607 2608 return r; 2609 } 2610 2611 /* 2612 * We need to be able to change a mapping table under a mounted 2613 * filesystem. For example we might want to move some data in 2614 * the background. Before the table can be swapped with 2615 * dm_bind_table, dm_suspend must be called to flush any in 2616 * flight bios and ensure that any further io gets deferred. 2617 */ 2618 /* 2619 * Suspend mechanism in request-based dm. 2620 * 2621 * 1. Flush all I/Os by lock_fs() if needed. 2622 * 2. Stop dispatching any I/O by stopping the request_queue. 2623 * 3. Wait for all in-flight I/Os to be completed or requeued. 2624 * 2625 * To abort suspend, start the request_queue. 2626 */ 2627 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2628 { 2629 struct dm_table *map = NULL; 2630 int r = 0; 2631 2632 retry: 2633 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2634 2635 if (dm_suspended_md(md)) { 2636 r = -EINVAL; 2637 goto out_unlock; 2638 } 2639 2640 if (dm_suspended_internally_md(md)) { 2641 /* already internally suspended, wait for internal resume */ 2642 mutex_unlock(&md->suspend_lock); 2643 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2644 if (r) 2645 return r; 2646 goto retry; 2647 } 2648 2649 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2650 2651 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2652 if (r) 2653 goto out_unlock; 2654 2655 dm_table_postsuspend_targets(map); 2656 2657 out_unlock: 2658 mutex_unlock(&md->suspend_lock); 2659 return r; 2660 } 2661 2662 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2663 { 2664 if (map) { 2665 int r = dm_table_resume_targets(map); 2666 if (r) 2667 return r; 2668 } 2669 2670 dm_queue_flush(md); 2671 2672 /* 2673 * Flushing deferred I/Os must be done after targets are resumed 2674 * so that mapping of targets can work correctly. 2675 * Request-based dm is queueing the deferred I/Os in its request_queue. 2676 */ 2677 if (dm_request_based(md)) 2678 dm_start_queue(md->queue); 2679 2680 unlock_fs(md); 2681 2682 return 0; 2683 } 2684 2685 int dm_resume(struct mapped_device *md) 2686 { 2687 int r; 2688 struct dm_table *map = NULL; 2689 2690 retry: 2691 r = -EINVAL; 2692 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2693 2694 if (!dm_suspended_md(md)) 2695 goto out; 2696 2697 if (dm_suspended_internally_md(md)) { 2698 /* already internally suspended, wait for internal resume */ 2699 mutex_unlock(&md->suspend_lock); 2700 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2701 if (r) 2702 return r; 2703 goto retry; 2704 } 2705 2706 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2707 if (!map || !dm_table_get_size(map)) 2708 goto out; 2709 2710 r = __dm_resume(md, map); 2711 if (r) 2712 goto out; 2713 2714 clear_bit(DMF_SUSPENDED, &md->flags); 2715 out: 2716 mutex_unlock(&md->suspend_lock); 2717 2718 return r; 2719 } 2720 2721 /* 2722 * Internal suspend/resume works like userspace-driven suspend. It waits 2723 * until all bios finish and prevents issuing new bios to the target drivers. 2724 * It may be used only from the kernel. 2725 */ 2726 2727 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2728 { 2729 struct dm_table *map = NULL; 2730 2731 lockdep_assert_held(&md->suspend_lock); 2732 2733 if (md->internal_suspend_count++) 2734 return; /* nested internal suspend */ 2735 2736 if (dm_suspended_md(md)) { 2737 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2738 return; /* nest suspend */ 2739 } 2740 2741 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2742 2743 /* 2744 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2745 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2746 * would require changing .presuspend to return an error -- avoid this 2747 * until there is a need for more elaborate variants of internal suspend. 2748 */ 2749 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2750 DMF_SUSPENDED_INTERNALLY); 2751 2752 dm_table_postsuspend_targets(map); 2753 } 2754 2755 static void __dm_internal_resume(struct mapped_device *md) 2756 { 2757 BUG_ON(!md->internal_suspend_count); 2758 2759 if (--md->internal_suspend_count) 2760 return; /* resume from nested internal suspend */ 2761 2762 if (dm_suspended_md(md)) 2763 goto done; /* resume from nested suspend */ 2764 2765 /* 2766 * NOTE: existing callers don't need to call dm_table_resume_targets 2767 * (which may fail -- so best to avoid it for now by passing NULL map) 2768 */ 2769 (void) __dm_resume(md, NULL); 2770 2771 done: 2772 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2773 smp_mb__after_atomic(); 2774 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2775 } 2776 2777 void dm_internal_suspend_noflush(struct mapped_device *md) 2778 { 2779 mutex_lock(&md->suspend_lock); 2780 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2781 mutex_unlock(&md->suspend_lock); 2782 } 2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2784 2785 void dm_internal_resume(struct mapped_device *md) 2786 { 2787 mutex_lock(&md->suspend_lock); 2788 __dm_internal_resume(md); 2789 mutex_unlock(&md->suspend_lock); 2790 } 2791 EXPORT_SYMBOL_GPL(dm_internal_resume); 2792 2793 /* 2794 * Fast variants of internal suspend/resume hold md->suspend_lock, 2795 * which prevents interaction with userspace-driven suspend. 2796 */ 2797 2798 void dm_internal_suspend_fast(struct mapped_device *md) 2799 { 2800 mutex_lock(&md->suspend_lock); 2801 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2802 return; 2803 2804 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2805 synchronize_srcu(&md->io_barrier); 2806 flush_workqueue(md->wq); 2807 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2808 } 2809 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2810 2811 void dm_internal_resume_fast(struct mapped_device *md) 2812 { 2813 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2814 goto done; 2815 2816 dm_queue_flush(md); 2817 2818 done: 2819 mutex_unlock(&md->suspend_lock); 2820 } 2821 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2822 2823 /*----------------------------------------------------------------- 2824 * Event notification. 2825 *---------------------------------------------------------------*/ 2826 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2827 unsigned cookie) 2828 { 2829 char udev_cookie[DM_COOKIE_LENGTH]; 2830 char *envp[] = { udev_cookie, NULL }; 2831 2832 if (!cookie) 2833 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2834 else { 2835 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2836 DM_COOKIE_ENV_VAR_NAME, cookie); 2837 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2838 action, envp); 2839 } 2840 } 2841 2842 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2843 { 2844 return atomic_add_return(1, &md->uevent_seq); 2845 } 2846 2847 uint32_t dm_get_event_nr(struct mapped_device *md) 2848 { 2849 return atomic_read(&md->event_nr); 2850 } 2851 2852 int dm_wait_event(struct mapped_device *md, int event_nr) 2853 { 2854 return wait_event_interruptible(md->eventq, 2855 (event_nr != atomic_read(&md->event_nr))); 2856 } 2857 2858 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2859 { 2860 unsigned long flags; 2861 2862 spin_lock_irqsave(&md->uevent_lock, flags); 2863 list_add(elist, &md->uevent_list); 2864 spin_unlock_irqrestore(&md->uevent_lock, flags); 2865 } 2866 2867 /* 2868 * The gendisk is only valid as long as you have a reference 2869 * count on 'md'. 2870 */ 2871 struct gendisk *dm_disk(struct mapped_device *md) 2872 { 2873 return md->disk; 2874 } 2875 EXPORT_SYMBOL_GPL(dm_disk); 2876 2877 struct kobject *dm_kobject(struct mapped_device *md) 2878 { 2879 return &md->kobj_holder.kobj; 2880 } 2881 2882 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2883 { 2884 struct mapped_device *md; 2885 2886 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2887 2888 spin_lock(&_minor_lock); 2889 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2890 md = NULL; 2891 goto out; 2892 } 2893 dm_get(md); 2894 out: 2895 spin_unlock(&_minor_lock); 2896 2897 return md; 2898 } 2899 2900 int dm_suspended_md(struct mapped_device *md) 2901 { 2902 return test_bit(DMF_SUSPENDED, &md->flags); 2903 } 2904 2905 int dm_suspended_internally_md(struct mapped_device *md) 2906 { 2907 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2908 } 2909 2910 int dm_test_deferred_remove_flag(struct mapped_device *md) 2911 { 2912 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2913 } 2914 2915 int dm_suspended(struct dm_target *ti) 2916 { 2917 return dm_suspended_md(dm_table_get_md(ti->table)); 2918 } 2919 EXPORT_SYMBOL_GPL(dm_suspended); 2920 2921 int dm_noflush_suspending(struct dm_target *ti) 2922 { 2923 return __noflush_suspending(dm_table_get_md(ti->table)); 2924 } 2925 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2926 2927 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2928 unsigned integrity, unsigned per_io_data_size, 2929 unsigned min_pool_size) 2930 { 2931 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2932 unsigned int pool_size = 0; 2933 unsigned int front_pad, io_front_pad; 2934 int ret; 2935 2936 if (!pools) 2937 return NULL; 2938 2939 switch (type) { 2940 case DM_TYPE_BIO_BASED: 2941 case DM_TYPE_DAX_BIO_BASED: 2942 case DM_TYPE_NVME_BIO_BASED: 2943 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2944 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2945 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2946 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2947 if (ret) 2948 goto out; 2949 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2950 goto out; 2951 break; 2952 case DM_TYPE_REQUEST_BASED: 2953 case DM_TYPE_MQ_REQUEST_BASED: 2954 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2955 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2956 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2957 break; 2958 default: 2959 BUG(); 2960 } 2961 2962 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2963 if (ret) 2964 goto out; 2965 2966 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2967 goto out; 2968 2969 return pools; 2970 2971 out: 2972 dm_free_md_mempools(pools); 2973 2974 return NULL; 2975 } 2976 2977 void dm_free_md_mempools(struct dm_md_mempools *pools) 2978 { 2979 if (!pools) 2980 return; 2981 2982 bioset_exit(&pools->bs); 2983 bioset_exit(&pools->io_bs); 2984 2985 kfree(pools); 2986 } 2987 2988 struct dm_pr { 2989 u64 old_key; 2990 u64 new_key; 2991 u32 flags; 2992 bool fail_early; 2993 }; 2994 2995 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2996 void *data) 2997 { 2998 struct mapped_device *md = bdev->bd_disk->private_data; 2999 struct dm_table *table; 3000 struct dm_target *ti; 3001 int ret = -ENOTTY, srcu_idx; 3002 3003 table = dm_get_live_table(md, &srcu_idx); 3004 if (!table || !dm_table_get_size(table)) 3005 goto out; 3006 3007 /* We only support devices that have a single target */ 3008 if (dm_table_get_num_targets(table) != 1) 3009 goto out; 3010 ti = dm_table_get_target(table, 0); 3011 3012 ret = -EINVAL; 3013 if (!ti->type->iterate_devices) 3014 goto out; 3015 3016 ret = ti->type->iterate_devices(ti, fn, data); 3017 out: 3018 dm_put_live_table(md, srcu_idx); 3019 return ret; 3020 } 3021 3022 /* 3023 * For register / unregister we need to manually call out to every path. 3024 */ 3025 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3026 sector_t start, sector_t len, void *data) 3027 { 3028 struct dm_pr *pr = data; 3029 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3030 3031 if (!ops || !ops->pr_register) 3032 return -EOPNOTSUPP; 3033 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3034 } 3035 3036 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3037 u32 flags) 3038 { 3039 struct dm_pr pr = { 3040 .old_key = old_key, 3041 .new_key = new_key, 3042 .flags = flags, 3043 .fail_early = true, 3044 }; 3045 int ret; 3046 3047 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3048 if (ret && new_key) { 3049 /* unregister all paths if we failed to register any path */ 3050 pr.old_key = new_key; 3051 pr.new_key = 0; 3052 pr.flags = 0; 3053 pr.fail_early = false; 3054 dm_call_pr(bdev, __dm_pr_register, &pr); 3055 } 3056 3057 return ret; 3058 } 3059 3060 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3061 u32 flags) 3062 { 3063 struct mapped_device *md = bdev->bd_disk->private_data; 3064 const struct pr_ops *ops; 3065 int r, srcu_idx; 3066 3067 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3068 if (r < 0) 3069 goto out; 3070 3071 ops = bdev->bd_disk->fops->pr_ops; 3072 if (ops && ops->pr_reserve) 3073 r = ops->pr_reserve(bdev, key, type, flags); 3074 else 3075 r = -EOPNOTSUPP; 3076 out: 3077 dm_unprepare_ioctl(md, srcu_idx); 3078 return r; 3079 } 3080 3081 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3082 { 3083 struct mapped_device *md = bdev->bd_disk->private_data; 3084 const struct pr_ops *ops; 3085 int r, srcu_idx; 3086 3087 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3088 if (r < 0) 3089 goto out; 3090 3091 ops = bdev->bd_disk->fops->pr_ops; 3092 if (ops && ops->pr_release) 3093 r = ops->pr_release(bdev, key, type); 3094 else 3095 r = -EOPNOTSUPP; 3096 out: 3097 dm_unprepare_ioctl(md, srcu_idx); 3098 return r; 3099 } 3100 3101 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3102 enum pr_type type, bool abort) 3103 { 3104 struct mapped_device *md = bdev->bd_disk->private_data; 3105 const struct pr_ops *ops; 3106 int r, srcu_idx; 3107 3108 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3109 if (r < 0) 3110 goto out; 3111 3112 ops = bdev->bd_disk->fops->pr_ops; 3113 if (ops && ops->pr_preempt) 3114 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3115 else 3116 r = -EOPNOTSUPP; 3117 out: 3118 dm_unprepare_ioctl(md, srcu_idx); 3119 return r; 3120 } 3121 3122 static int dm_pr_clear(struct block_device *bdev, u64 key) 3123 { 3124 struct mapped_device *md = bdev->bd_disk->private_data; 3125 const struct pr_ops *ops; 3126 int r, srcu_idx; 3127 3128 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3129 if (r < 0) 3130 goto out; 3131 3132 ops = bdev->bd_disk->fops->pr_ops; 3133 if (ops && ops->pr_clear) 3134 r = ops->pr_clear(bdev, key); 3135 else 3136 r = -EOPNOTSUPP; 3137 out: 3138 dm_unprepare_ioctl(md, srcu_idx); 3139 return r; 3140 } 3141 3142 static const struct pr_ops dm_pr_ops = { 3143 .pr_register = dm_pr_register, 3144 .pr_reserve = dm_pr_reserve, 3145 .pr_release = dm_pr_release, 3146 .pr_preempt = dm_pr_preempt, 3147 .pr_clear = dm_pr_clear, 3148 }; 3149 3150 static const struct block_device_operations dm_blk_dops = { 3151 .open = dm_blk_open, 3152 .release = dm_blk_close, 3153 .ioctl = dm_blk_ioctl, 3154 .getgeo = dm_blk_getgeo, 3155 .pr_ops = &dm_pr_ops, 3156 .owner = THIS_MODULE 3157 }; 3158 3159 static const struct dax_operations dm_dax_ops = { 3160 .direct_access = dm_dax_direct_access, 3161 .copy_from_iter = dm_dax_copy_from_iter, 3162 .copy_to_iter = dm_dax_copy_to_iter, 3163 }; 3164 3165 /* 3166 * module hooks 3167 */ 3168 module_init(dm_init); 3169 module_exit(dm_exit); 3170 3171 module_param(major, uint, 0); 3172 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3173 3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3176 3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3179 3180 MODULE_DESCRIPTION(DM_NAME " driver"); 3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3182 MODULE_LICENSE("GPL"); 3183