1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 void *dm_per_bio_data(struct bio *bio, size_t data_size) 83 { 84 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 85 if (!tio->inside_dm_io) 86 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 87 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 88 } 89 EXPORT_SYMBOL_GPL(dm_per_bio_data); 90 91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 92 { 93 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 94 if (io->magic == DM_IO_MAGIC) 95 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 96 BUG_ON(io->magic != DM_TIO_MAGIC); 97 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 98 } 99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 100 101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 102 { 103 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 104 } 105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 106 107 #define MINOR_ALLOCED ((void *)-1) 108 109 #define DM_NUMA_NODE NUMA_NO_NODE 110 static int dm_numa_node = DM_NUMA_NODE; 111 112 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 113 static int swap_bios = DEFAULT_SWAP_BIOS; 114 static int get_swap_bios(void) 115 { 116 int latch = READ_ONCE(swap_bios); 117 if (unlikely(latch <= 0)) 118 latch = DEFAULT_SWAP_BIOS; 119 return latch; 120 } 121 122 /* 123 * For mempools pre-allocation at the table loading time. 124 */ 125 struct dm_md_mempools { 126 struct bio_set bs; 127 struct bio_set io_bs; 128 }; 129 130 struct table_device { 131 struct list_head list; 132 refcount_t count; 133 struct dm_dev dm_dev; 134 }; 135 136 /* 137 * Bio-based DM's mempools' reserved IOs set by the user. 138 */ 139 #define RESERVED_BIO_BASED_IOS 16 140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 141 142 static int __dm_get_module_param_int(int *module_param, int min, int max) 143 { 144 int param = READ_ONCE(*module_param); 145 int modified_param = 0; 146 bool modified = true; 147 148 if (param < min) 149 modified_param = min; 150 else if (param > max) 151 modified_param = max; 152 else 153 modified = false; 154 155 if (modified) { 156 (void)cmpxchg(module_param, param, modified_param); 157 param = modified_param; 158 } 159 160 return param; 161 } 162 163 unsigned __dm_get_module_param(unsigned *module_param, 164 unsigned def, unsigned max) 165 { 166 unsigned param = READ_ONCE(*module_param); 167 unsigned modified_param = 0; 168 169 if (!param) 170 modified_param = def; 171 else if (param > max) 172 modified_param = max; 173 174 if (modified_param) { 175 (void)cmpxchg(module_param, param, modified_param); 176 param = modified_param; 177 } 178 179 return param; 180 } 181 182 unsigned dm_get_reserved_bio_based_ios(void) 183 { 184 return __dm_get_module_param(&reserved_bio_based_ios, 185 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 186 } 187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 188 189 static unsigned dm_get_numa_node(void) 190 { 191 return __dm_get_module_param_int(&dm_numa_node, 192 DM_NUMA_NODE, num_online_nodes() - 1); 193 } 194 195 static int __init local_init(void) 196 { 197 int r; 198 199 r = dm_uevent_init(); 200 if (r) 201 return r; 202 203 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 204 if (!deferred_remove_workqueue) { 205 r = -ENOMEM; 206 goto out_uevent_exit; 207 } 208 209 _major = major; 210 r = register_blkdev(_major, _name); 211 if (r < 0) 212 goto out_free_workqueue; 213 214 if (!_major) 215 _major = r; 216 217 return 0; 218 219 out_free_workqueue: 220 destroy_workqueue(deferred_remove_workqueue); 221 out_uevent_exit: 222 dm_uevent_exit(); 223 224 return r; 225 } 226 227 static void local_exit(void) 228 { 229 flush_scheduled_work(); 230 destroy_workqueue(deferred_remove_workqueue); 231 232 unregister_blkdev(_major, _name); 233 dm_uevent_exit(); 234 235 _major = 0; 236 237 DMINFO("cleaned up"); 238 } 239 240 static int (*_inits[])(void) __initdata = { 241 local_init, 242 dm_target_init, 243 dm_linear_init, 244 dm_stripe_init, 245 dm_io_init, 246 dm_kcopyd_init, 247 dm_interface_init, 248 dm_statistics_init, 249 }; 250 251 static void (*_exits[])(void) = { 252 local_exit, 253 dm_target_exit, 254 dm_linear_exit, 255 dm_stripe_exit, 256 dm_io_exit, 257 dm_kcopyd_exit, 258 dm_interface_exit, 259 dm_statistics_exit, 260 }; 261 262 static int __init dm_init(void) 263 { 264 const int count = ARRAY_SIZE(_inits); 265 int r, i; 266 267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 268 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 269 " Duplicate IMA measurements will not be recorded in the IMA log."); 270 #endif 271 272 for (i = 0; i < count; i++) { 273 r = _inits[i](); 274 if (r) 275 goto bad; 276 } 277 278 return 0; 279 bad: 280 while (i--) 281 _exits[i](); 282 283 return r; 284 } 285 286 static void __exit dm_exit(void) 287 { 288 int i = ARRAY_SIZE(_exits); 289 290 while (i--) 291 _exits[i](); 292 293 /* 294 * Should be empty by this point. 295 */ 296 idr_destroy(&_minor_idr); 297 } 298 299 /* 300 * Block device functions 301 */ 302 int dm_deleting_md(struct mapped_device *md) 303 { 304 return test_bit(DMF_DELETING, &md->flags); 305 } 306 307 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 308 { 309 struct mapped_device *md; 310 311 spin_lock(&_minor_lock); 312 313 md = bdev->bd_disk->private_data; 314 if (!md) 315 goto out; 316 317 if (test_bit(DMF_FREEING, &md->flags) || 318 dm_deleting_md(md)) { 319 md = NULL; 320 goto out; 321 } 322 323 dm_get(md); 324 atomic_inc(&md->open_count); 325 out: 326 spin_unlock(&_minor_lock); 327 328 return md ? 0 : -ENXIO; 329 } 330 331 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = disk->private_data; 338 if (WARN_ON(!md)) 339 goto out; 340 341 if (atomic_dec_and_test(&md->open_count) && 342 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 343 queue_work(deferred_remove_workqueue, &deferred_remove_work); 344 345 dm_put(md); 346 out: 347 spin_unlock(&_minor_lock); 348 } 349 350 int dm_open_count(struct mapped_device *md) 351 { 352 return atomic_read(&md->open_count); 353 } 354 355 /* 356 * Guarantees nothing is using the device before it's deleted. 357 */ 358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 359 { 360 int r = 0; 361 362 spin_lock(&_minor_lock); 363 364 if (dm_open_count(md)) { 365 r = -EBUSY; 366 if (mark_deferred) 367 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 368 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 369 r = -EEXIST; 370 else 371 set_bit(DMF_DELETING, &md->flags); 372 373 spin_unlock(&_minor_lock); 374 375 return r; 376 } 377 378 int dm_cancel_deferred_remove(struct mapped_device *md) 379 { 380 int r = 0; 381 382 spin_lock(&_minor_lock); 383 384 if (test_bit(DMF_DELETING, &md->flags)) 385 r = -EBUSY; 386 else 387 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 388 389 spin_unlock(&_minor_lock); 390 391 return r; 392 } 393 394 static void do_deferred_remove(struct work_struct *w) 395 { 396 dm_deferred_remove(); 397 } 398 399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 400 { 401 struct mapped_device *md = bdev->bd_disk->private_data; 402 403 return dm_get_geometry(md, geo); 404 } 405 406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 407 struct block_device **bdev) 408 { 409 struct dm_target *tgt; 410 struct dm_table *map; 411 int r; 412 413 retry: 414 r = -ENOTTY; 415 map = dm_get_live_table(md, srcu_idx); 416 if (!map || !dm_table_get_size(map)) 417 return r; 418 419 /* We only support devices that have a single target */ 420 if (dm_table_get_num_targets(map) != 1) 421 return r; 422 423 tgt = dm_table_get_target(map, 0); 424 if (!tgt->type->prepare_ioctl) 425 return r; 426 427 if (dm_suspended_md(md)) 428 return -EAGAIN; 429 430 r = tgt->type->prepare_ioctl(tgt, bdev); 431 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 432 dm_put_live_table(md, *srcu_idx); 433 msleep(10); 434 goto retry; 435 } 436 437 return r; 438 } 439 440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 441 { 442 dm_put_live_table(md, srcu_idx); 443 } 444 445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 446 unsigned int cmd, unsigned long arg) 447 { 448 struct mapped_device *md = bdev->bd_disk->private_data; 449 int r, srcu_idx; 450 451 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 452 if (r < 0) 453 goto out; 454 455 if (r > 0) { 456 /* 457 * Target determined this ioctl is being issued against a 458 * subset of the parent bdev; require extra privileges. 459 */ 460 if (!capable(CAP_SYS_RAWIO)) { 461 DMDEBUG_LIMIT( 462 "%s: sending ioctl %x to DM device without required privilege.", 463 current->comm, cmd); 464 r = -ENOIOCTLCMD; 465 goto out; 466 } 467 } 468 469 if (!bdev->bd_disk->fops->ioctl) 470 r = -ENOTTY; 471 else 472 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 473 out: 474 dm_unprepare_ioctl(md, srcu_idx); 475 return r; 476 } 477 478 u64 dm_start_time_ns_from_clone(struct bio *bio) 479 { 480 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 481 struct dm_io *io = tio->io; 482 483 return jiffies_to_nsecs(io->start_time); 484 } 485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 486 487 static void start_io_acct(struct dm_io *io) 488 { 489 struct mapped_device *md = io->md; 490 struct bio *bio = io->orig_bio; 491 492 bio_start_io_acct_time(bio, io->start_time); 493 if (unlikely(dm_stats_used(&md->stats))) 494 dm_stats_account_io(&md->stats, bio_data_dir(bio), 495 bio->bi_iter.bi_sector, bio_sectors(bio), 496 false, 0, &io->stats_aux); 497 } 498 499 static void end_io_acct(struct mapped_device *md, struct bio *bio, 500 unsigned long start_time, struct dm_stats_aux *stats_aux) 501 { 502 unsigned long duration = jiffies - start_time; 503 504 bio_end_io_acct(bio, start_time); 505 506 if (unlikely(dm_stats_used(&md->stats))) 507 dm_stats_account_io(&md->stats, bio_data_dir(bio), 508 bio->bi_iter.bi_sector, bio_sectors(bio), 509 true, duration, stats_aux); 510 511 /* nudge anyone waiting on suspend queue */ 512 if (unlikely(wq_has_sleeper(&md->wait))) 513 wake_up(&md->wait); 514 } 515 516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 517 { 518 struct dm_io *io; 519 struct dm_target_io *tio; 520 struct bio *clone; 521 522 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 523 if (!clone) 524 return NULL; 525 526 tio = container_of(clone, struct dm_target_io, clone); 527 tio->inside_dm_io = true; 528 tio->io = NULL; 529 530 io = container_of(tio, struct dm_io, tio); 531 io->magic = DM_IO_MAGIC; 532 io->status = 0; 533 atomic_set(&io->io_count, 1); 534 io->orig_bio = bio; 535 io->md = md; 536 spin_lock_init(&io->endio_lock); 537 538 io->start_time = jiffies; 539 540 return io; 541 } 542 543 static void free_io(struct mapped_device *md, struct dm_io *io) 544 { 545 bio_put(&io->tio.clone); 546 } 547 548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 549 unsigned target_bio_nr, gfp_t gfp_mask) 550 { 551 struct dm_target_io *tio; 552 553 if (!ci->io->tio.io) { 554 /* the dm_target_io embedded in ci->io is available */ 555 tio = &ci->io->tio; 556 } else { 557 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = container_of(clone, struct dm_target_io, clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 570 return tio; 571 } 572 573 static void free_tio(struct dm_target_io *tio) 574 { 575 if (tio->inside_dm_io) 576 return; 577 bio_put(&tio->clone); 578 } 579 580 /* 581 * Add the bio to the list of deferred io. 582 */ 583 static void queue_io(struct mapped_device *md, struct bio *bio) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 bio_list_add(&md->deferred, bio); 589 spin_unlock_irqrestore(&md->deferred_lock, flags); 590 queue_work(md->wq, &md->work); 591 } 592 593 /* 594 * Everyone (including functions in this file), should use this 595 * function to access the md->map field, and make sure they call 596 * dm_put_live_table() when finished. 597 */ 598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 599 { 600 *srcu_idx = srcu_read_lock(&md->io_barrier); 601 602 return srcu_dereference(md->map, &md->io_barrier); 603 } 604 605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 606 { 607 srcu_read_unlock(&md->io_barrier, srcu_idx); 608 } 609 610 void dm_sync_table(struct mapped_device *md) 611 { 612 synchronize_srcu(&md->io_barrier); 613 synchronize_rcu_expedited(); 614 } 615 616 /* 617 * A fast alternative to dm_get_live_table/dm_put_live_table. 618 * The caller must not block between these two functions. 619 */ 620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 621 { 622 rcu_read_lock(); 623 return rcu_dereference(md->map); 624 } 625 626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 627 { 628 rcu_read_unlock(); 629 } 630 631 static char *_dm_claim_ptr = "I belong to device-mapper"; 632 633 /* 634 * Open a table device so we can use it as a map destination. 635 */ 636 static int open_table_device(struct table_device *td, dev_t dev, 637 struct mapped_device *md) 638 { 639 struct block_device *bdev; 640 u64 part_off; 641 int r; 642 643 BUG_ON(td->dm_dev.bdev); 644 645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 646 if (IS_ERR(bdev)) 647 return PTR_ERR(bdev); 648 649 r = bd_link_disk_holder(bdev, dm_disk(md)); 650 if (r) { 651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 652 return r; 653 } 654 655 td->dm_dev.bdev = bdev; 656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 657 return 0; 658 } 659 660 /* 661 * Close a table device that we've been using. 662 */ 663 static void close_table_device(struct table_device *td, struct mapped_device *md) 664 { 665 if (!td->dm_dev.bdev) 666 return; 667 668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 670 put_dax(td->dm_dev.dax_dev); 671 td->dm_dev.bdev = NULL; 672 td->dm_dev.dax_dev = NULL; 673 } 674 675 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 676 fmode_t mode) 677 { 678 struct table_device *td; 679 680 list_for_each_entry(td, l, list) 681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 682 return td; 683 684 return NULL; 685 } 686 687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 688 struct dm_dev **result) 689 { 690 int r; 691 struct table_device *td; 692 693 mutex_lock(&md->table_devices_lock); 694 td = find_table_device(&md->table_devices, dev, mode); 695 if (!td) { 696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 697 if (!td) { 698 mutex_unlock(&md->table_devices_lock); 699 return -ENOMEM; 700 } 701 702 td->dm_dev.mode = mode; 703 td->dm_dev.bdev = NULL; 704 705 if ((r = open_table_device(td, dev, md))) { 706 mutex_unlock(&md->table_devices_lock); 707 kfree(td); 708 return r; 709 } 710 711 format_dev_t(td->dm_dev.name, dev); 712 713 refcount_set(&td->count, 1); 714 list_add(&td->list, &md->table_devices); 715 } else { 716 refcount_inc(&td->count); 717 } 718 mutex_unlock(&md->table_devices_lock); 719 720 *result = &td->dm_dev; 721 return 0; 722 } 723 724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 725 { 726 struct table_device *td = container_of(d, struct table_device, dm_dev); 727 728 mutex_lock(&md->table_devices_lock); 729 if (refcount_dec_and_test(&td->count)) { 730 close_table_device(td, md); 731 list_del(&td->list); 732 kfree(td); 733 } 734 mutex_unlock(&md->table_devices_lock); 735 } 736 737 static void free_table_devices(struct list_head *devices) 738 { 739 struct list_head *tmp, *next; 740 741 list_for_each_safe(tmp, next, devices) { 742 struct table_device *td = list_entry(tmp, struct table_device, list); 743 744 DMWARN("dm_destroy: %s still exists with %d references", 745 td->dm_dev.name, refcount_read(&td->count)); 746 kfree(td); 747 } 748 } 749 750 /* 751 * Get the geometry associated with a dm device 752 */ 753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 754 { 755 *geo = md->geometry; 756 757 return 0; 758 } 759 760 /* 761 * Set the geometry of a device. 762 */ 763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 764 { 765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 766 767 if (geo->start > sz) { 768 DMWARN("Start sector is beyond the geometry limits."); 769 return -EINVAL; 770 } 771 772 md->geometry = *geo; 773 774 return 0; 775 } 776 777 static int __noflush_suspending(struct mapped_device *md) 778 { 779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 780 } 781 782 /* 783 * Decrements the number of outstanding ios that a bio has been 784 * cloned into, completing the original io if necc. 785 */ 786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 787 { 788 unsigned long flags; 789 blk_status_t io_error; 790 struct bio *bio; 791 struct mapped_device *md = io->md; 792 unsigned long start_time = 0; 793 struct dm_stats_aux stats_aux; 794 795 /* Push-back supersedes any I/O errors */ 796 if (unlikely(error)) { 797 spin_lock_irqsave(&io->endio_lock, flags); 798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 799 io->status = error; 800 spin_unlock_irqrestore(&io->endio_lock, flags); 801 } 802 803 if (atomic_dec_and_test(&io->io_count)) { 804 bio = io->orig_bio; 805 if (io->status == BLK_STS_DM_REQUEUE) { 806 /* 807 * Target requested pushing back the I/O. 808 */ 809 spin_lock_irqsave(&md->deferred_lock, flags); 810 if (__noflush_suspending(md) && 811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 813 bio_list_add_head(&md->deferred, bio); 814 } else { 815 /* 816 * noflush suspend was interrupted or this is 817 * a write to a zoned target. 818 */ 819 io->status = BLK_STS_IOERR; 820 } 821 spin_unlock_irqrestore(&md->deferred_lock, flags); 822 } 823 824 io_error = io->status; 825 start_time = io->start_time; 826 stats_aux = io->stats_aux; 827 free_io(md, io); 828 end_io_acct(md, bio, start_time, &stats_aux); 829 830 if (io_error == BLK_STS_DM_REQUEUE) 831 return; 832 833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 834 /* 835 * Preflush done for flush with data, reissue 836 * without REQ_PREFLUSH. 837 */ 838 bio->bi_opf &= ~REQ_PREFLUSH; 839 queue_io(md, bio); 840 } else { 841 /* done with normal IO or empty flush */ 842 if (io_error) 843 bio->bi_status = io_error; 844 bio_endio(bio); 845 } 846 } 847 } 848 849 void disable_discard(struct mapped_device *md) 850 { 851 struct queue_limits *limits = dm_get_queue_limits(md); 852 853 /* device doesn't really support DISCARD, disable it */ 854 limits->max_discard_sectors = 0; 855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 856 } 857 858 void disable_write_same(struct mapped_device *md) 859 { 860 struct queue_limits *limits = dm_get_queue_limits(md); 861 862 /* device doesn't really support WRITE SAME, disable it */ 863 limits->max_write_same_sectors = 0; 864 } 865 866 void disable_write_zeroes(struct mapped_device *md) 867 { 868 struct queue_limits *limits = dm_get_queue_limits(md); 869 870 /* device doesn't really support WRITE ZEROES, disable it */ 871 limits->max_write_zeroes_sectors = 0; 872 } 873 874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 875 { 876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 877 } 878 879 static void clone_endio(struct bio *bio) 880 { 881 blk_status_t error = bio->bi_status; 882 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 883 struct dm_io *io = tio->io; 884 struct mapped_device *md = tio->io->md; 885 dm_endio_fn endio = tio->ti->type->end_io; 886 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 887 888 if (unlikely(error == BLK_STS_TARGET)) { 889 if (bio_op(bio) == REQ_OP_DISCARD && 890 !q->limits.max_discard_sectors) 891 disable_discard(md); 892 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 893 !q->limits.max_write_same_sectors) 894 disable_write_same(md); 895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 896 !q->limits.max_write_zeroes_sectors) 897 disable_write_zeroes(md); 898 } 899 900 if (blk_queue_is_zoned(q)) 901 dm_zone_endio(io, bio); 902 903 if (endio) { 904 int r = endio(tio->ti, bio, &error); 905 switch (r) { 906 case DM_ENDIO_REQUEUE: 907 /* 908 * Requeuing writes to a sequential zone of a zoned 909 * target will break the sequential write pattern: 910 * fail such IO. 911 */ 912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 913 error = BLK_STS_IOERR; 914 else 915 error = BLK_STS_DM_REQUEUE; 916 fallthrough; 917 case DM_ENDIO_DONE: 918 break; 919 case DM_ENDIO_INCOMPLETE: 920 /* The target will handle the io */ 921 return; 922 default: 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(swap_bios_limit(tio->ti, bio))) { 929 struct mapped_device *md = io->md; 930 up(&md->swap_bios_semaphore); 931 } 932 933 free_tio(tio); 934 dm_io_dec_pending(io, error); 935 } 936 937 /* 938 * Return maximum size of I/O possible at the supplied sector up to the current 939 * target boundary. 940 */ 941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 942 sector_t target_offset) 943 { 944 return ti->len - target_offset; 945 } 946 947 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 948 { 949 sector_t target_offset = dm_target_offset(ti, sector); 950 sector_t len = max_io_len_target_boundary(ti, target_offset); 951 sector_t max_len; 952 953 /* 954 * Does the target need to split IO even further? 955 * - varied (per target) IO splitting is a tenet of DM; this 956 * explains why stacked chunk_sectors based splitting via 957 * blk_max_size_offset() isn't possible here. So pass in 958 * ti->max_io_len to override stacked chunk_sectors. 959 */ 960 if (ti->max_io_len) { 961 max_len = blk_max_size_offset(ti->table->md->queue, 962 target_offset, ti->max_io_len); 963 if (len > max_len) 964 len = max_len; 965 } 966 967 return len; 968 } 969 970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 971 { 972 if (len > UINT_MAX) { 973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 974 (unsigned long long)len, UINT_MAX); 975 ti->error = "Maximum size of target IO is too large"; 976 return -EINVAL; 977 } 978 979 ti->max_io_len = (uint32_t) len; 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 984 985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 986 sector_t sector, int *srcu_idx) 987 __acquires(md->io_barrier) 988 { 989 struct dm_table *map; 990 struct dm_target *ti; 991 992 map = dm_get_live_table(md, srcu_idx); 993 if (!map) 994 return NULL; 995 996 ti = dm_table_find_target(map, sector); 997 if (!ti) 998 return NULL; 999 1000 return ti; 1001 } 1002 1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1004 long nr_pages, void **kaddr, pfn_t *pfn) 1005 { 1006 struct mapped_device *md = dax_get_private(dax_dev); 1007 sector_t sector = pgoff * PAGE_SECTORS; 1008 struct dm_target *ti; 1009 long len, ret = -EIO; 1010 int srcu_idx; 1011 1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1013 1014 if (!ti) 1015 goto out; 1016 if (!ti->type->direct_access) 1017 goto out; 1018 len = max_io_len(ti, sector) / PAGE_SECTORS; 1019 if (len < 1) 1020 goto out; 1021 nr_pages = min(len, nr_pages); 1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1023 1024 out: 1025 dm_put_live_table(md, srcu_idx); 1026 1027 return ret; 1028 } 1029 1030 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1031 size_t nr_pages) 1032 { 1033 struct mapped_device *md = dax_get_private(dax_dev); 1034 sector_t sector = pgoff * PAGE_SECTORS; 1035 struct dm_target *ti; 1036 int ret = -EIO; 1037 int srcu_idx; 1038 1039 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1040 1041 if (!ti) 1042 goto out; 1043 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1044 /* 1045 * ->zero_page_range() is mandatory dax operation. If we are 1046 * here, something is wrong. 1047 */ 1048 goto out; 1049 } 1050 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1051 out: 1052 dm_put_live_table(md, srcu_idx); 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * A target may call dm_accept_partial_bio only from the map routine. It is 1059 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1060 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1061 * 1062 * dm_accept_partial_bio informs the dm that the target only wants to process 1063 * additional n_sectors sectors of the bio and the rest of the data should be 1064 * sent in a next bio. 1065 * 1066 * A diagram that explains the arithmetics: 1067 * +--------------------+---------------+-------+ 1068 * | 1 | 2 | 3 | 1069 * +--------------------+---------------+-------+ 1070 * 1071 * <-------------- *tio->len_ptr ---------------> 1072 * <------- bi_size -------> 1073 * <-- n_sectors --> 1074 * 1075 * Region 1 was already iterated over with bio_advance or similar function. 1076 * (it may be empty if the target doesn't use bio_advance) 1077 * Region 2 is the remaining bio size that the target wants to process. 1078 * (it may be empty if region 1 is non-empty, although there is no reason 1079 * to make it empty) 1080 * The target requires that region 3 is to be sent in the next bio. 1081 * 1082 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1083 * the partially processed part (the sum of regions 1+2) must be the same for all 1084 * copies of the bio. 1085 */ 1086 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1087 { 1088 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1089 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1090 1091 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1092 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1093 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1094 BUG_ON(bi_size > *tio->len_ptr); 1095 BUG_ON(n_sectors > bi_size); 1096 1097 *tio->len_ptr -= bi_size - n_sectors; 1098 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1099 } 1100 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1101 1102 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1103 { 1104 mutex_lock(&md->swap_bios_lock); 1105 while (latch < md->swap_bios) { 1106 cond_resched(); 1107 down(&md->swap_bios_semaphore); 1108 md->swap_bios--; 1109 } 1110 while (latch > md->swap_bios) { 1111 cond_resched(); 1112 up(&md->swap_bios_semaphore); 1113 md->swap_bios++; 1114 } 1115 mutex_unlock(&md->swap_bios_lock); 1116 } 1117 1118 static void __map_bio(struct dm_target_io *tio) 1119 { 1120 int r; 1121 sector_t sector; 1122 struct bio *clone = &tio->clone; 1123 struct dm_io *io = tio->io; 1124 struct dm_target *ti = tio->ti; 1125 1126 clone->bi_end_io = clone_endio; 1127 1128 /* 1129 * Map the clone. If r == 0 we don't need to do 1130 * anything, the target has assumed ownership of 1131 * this io. 1132 */ 1133 dm_io_inc_pending(io); 1134 sector = clone->bi_iter.bi_sector; 1135 1136 if (unlikely(swap_bios_limit(ti, clone))) { 1137 struct mapped_device *md = io->md; 1138 int latch = get_swap_bios(); 1139 if (unlikely(latch != md->swap_bios)) 1140 __set_swap_bios_limit(md, latch); 1141 down(&md->swap_bios_semaphore); 1142 } 1143 1144 /* 1145 * Check if the IO needs a special mapping due to zone append emulation 1146 * on zoned target. In this case, dm_zone_map_bio() calls the target 1147 * map operation. 1148 */ 1149 if (dm_emulate_zone_append(io->md)) 1150 r = dm_zone_map_bio(tio); 1151 else 1152 r = ti->type->map(ti, clone); 1153 1154 switch (r) { 1155 case DM_MAPIO_SUBMITTED: 1156 break; 1157 case DM_MAPIO_REMAPPED: 1158 /* the bio has been remapped so dispatch it */ 1159 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1160 submit_bio_noacct(clone); 1161 break; 1162 case DM_MAPIO_KILL: 1163 if (unlikely(swap_bios_limit(ti, clone))) { 1164 struct mapped_device *md = io->md; 1165 up(&md->swap_bios_semaphore); 1166 } 1167 free_tio(tio); 1168 dm_io_dec_pending(io, BLK_STS_IOERR); 1169 break; 1170 case DM_MAPIO_REQUEUE: 1171 if (unlikely(swap_bios_limit(ti, clone))) { 1172 struct mapped_device *md = io->md; 1173 up(&md->swap_bios_semaphore); 1174 } 1175 free_tio(tio); 1176 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1177 break; 1178 default: 1179 DMWARN("unimplemented target map return value: %d", r); 1180 BUG(); 1181 } 1182 } 1183 1184 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1185 { 1186 bio->bi_iter.bi_sector = sector; 1187 bio->bi_iter.bi_size = to_bytes(len); 1188 } 1189 1190 /* 1191 * Creates a bio that consists of range of complete bvecs. 1192 */ 1193 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1194 sector_t sector, unsigned len) 1195 { 1196 struct bio *clone = &tio->clone; 1197 int r; 1198 1199 __bio_clone_fast(clone, bio); 1200 1201 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1202 if (r < 0) 1203 return r; 1204 1205 if (bio_integrity(bio)) { 1206 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1207 !dm_target_passes_integrity(tio->ti->type))) { 1208 DMWARN("%s: the target %s doesn't support integrity data.", 1209 dm_device_name(tio->io->md), 1210 tio->ti->type->name); 1211 return -EIO; 1212 } 1213 1214 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1215 if (r < 0) 1216 return r; 1217 } 1218 1219 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1220 clone->bi_iter.bi_size = to_bytes(len); 1221 1222 if (bio_integrity(bio)) 1223 bio_integrity_trim(clone); 1224 1225 return 0; 1226 } 1227 1228 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1229 struct dm_target *ti, unsigned num_bios) 1230 { 1231 struct dm_target_io *tio; 1232 int try; 1233 1234 if (!num_bios) 1235 return; 1236 1237 if (num_bios == 1) { 1238 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1239 bio_list_add(blist, &tio->clone); 1240 return; 1241 } 1242 1243 for (try = 0; try < 2; try++) { 1244 int bio_nr; 1245 struct bio *bio; 1246 1247 if (try) 1248 mutex_lock(&ci->io->md->table_devices_lock); 1249 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1250 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1251 if (!tio) 1252 break; 1253 1254 bio_list_add(blist, &tio->clone); 1255 } 1256 if (try) 1257 mutex_unlock(&ci->io->md->table_devices_lock); 1258 if (bio_nr == num_bios) 1259 return; 1260 1261 while ((bio = bio_list_pop(blist))) { 1262 tio = container_of(bio, struct dm_target_io, clone); 1263 free_tio(tio); 1264 } 1265 } 1266 } 1267 1268 static void __clone_and_map_simple_bio(struct clone_info *ci, 1269 struct dm_target_io *tio, unsigned *len) 1270 { 1271 struct bio *clone = &tio->clone; 1272 1273 tio->len_ptr = len; 1274 1275 __bio_clone_fast(clone, ci->bio); 1276 if (len) 1277 bio_setup_sector(clone, ci->sector, *len); 1278 __map_bio(tio); 1279 } 1280 1281 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1282 unsigned num_bios, unsigned *len) 1283 { 1284 struct bio_list blist = BIO_EMPTY_LIST; 1285 struct bio *bio; 1286 struct dm_target_io *tio; 1287 1288 alloc_multiple_bios(&blist, ci, ti, num_bios); 1289 1290 while ((bio = bio_list_pop(&blist))) { 1291 tio = container_of(bio, struct dm_target_io, clone); 1292 __clone_and_map_simple_bio(ci, tio, len); 1293 } 1294 } 1295 1296 static int __send_empty_flush(struct clone_info *ci) 1297 { 1298 unsigned target_nr = 0; 1299 struct dm_target *ti; 1300 struct bio flush_bio; 1301 1302 /* 1303 * Use an on-stack bio for this, it's safe since we don't 1304 * need to reference it after submit. It's just used as 1305 * the basis for the clone(s). 1306 */ 1307 bio_init(&flush_bio, NULL, 0); 1308 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1309 bio_set_dev(&flush_bio, ci->io->md->disk->part0); 1310 1311 ci->bio = &flush_bio; 1312 ci->sector_count = 0; 1313 1314 BUG_ON(bio_has_data(ci->bio)); 1315 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1316 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1317 1318 bio_uninit(ci->bio); 1319 return 0; 1320 } 1321 1322 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1323 sector_t sector, unsigned *len) 1324 { 1325 struct bio *bio = ci->bio; 1326 struct dm_target_io *tio; 1327 int r; 1328 1329 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1330 tio->len_ptr = len; 1331 r = clone_bio(tio, bio, sector, *len); 1332 if (r < 0) { 1333 free_tio(tio); 1334 return r; 1335 } 1336 __map_bio(tio); 1337 1338 return 0; 1339 } 1340 1341 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1342 unsigned num_bios) 1343 { 1344 unsigned len; 1345 1346 /* 1347 * Even though the device advertised support for this type of 1348 * request, that does not mean every target supports it, and 1349 * reconfiguration might also have changed that since the 1350 * check was performed. 1351 */ 1352 if (!num_bios) 1353 return -EOPNOTSUPP; 1354 1355 len = min_t(sector_t, ci->sector_count, 1356 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1357 1358 __send_duplicate_bios(ci, ti, num_bios, &len); 1359 1360 ci->sector += len; 1361 ci->sector_count -= len; 1362 1363 return 0; 1364 } 1365 1366 static bool is_abnormal_io(struct bio *bio) 1367 { 1368 bool r = false; 1369 1370 switch (bio_op(bio)) { 1371 case REQ_OP_DISCARD: 1372 case REQ_OP_SECURE_ERASE: 1373 case REQ_OP_WRITE_SAME: 1374 case REQ_OP_WRITE_ZEROES: 1375 r = true; 1376 break; 1377 } 1378 1379 return r; 1380 } 1381 1382 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1383 int *result) 1384 { 1385 struct bio *bio = ci->bio; 1386 unsigned num_bios = 0; 1387 1388 switch (bio_op(bio)) { 1389 case REQ_OP_DISCARD: 1390 num_bios = ti->num_discard_bios; 1391 break; 1392 case REQ_OP_SECURE_ERASE: 1393 num_bios = ti->num_secure_erase_bios; 1394 break; 1395 case REQ_OP_WRITE_SAME: 1396 num_bios = ti->num_write_same_bios; 1397 break; 1398 case REQ_OP_WRITE_ZEROES: 1399 num_bios = ti->num_write_zeroes_bios; 1400 break; 1401 default: 1402 return false; 1403 } 1404 1405 *result = __send_changing_extent_only(ci, ti, num_bios); 1406 return true; 1407 } 1408 1409 /* 1410 * Select the correct strategy for processing a non-flush bio. 1411 */ 1412 static int __split_and_process_non_flush(struct clone_info *ci) 1413 { 1414 struct dm_target *ti; 1415 unsigned len; 1416 int r; 1417 1418 ti = dm_table_find_target(ci->map, ci->sector); 1419 if (!ti) 1420 return -EIO; 1421 1422 if (__process_abnormal_io(ci, ti, &r)) 1423 return r; 1424 1425 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1426 1427 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1428 if (r < 0) 1429 return r; 1430 1431 ci->sector += len; 1432 ci->sector_count -= len; 1433 1434 return 0; 1435 } 1436 1437 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1438 struct dm_table *map, struct bio *bio) 1439 { 1440 ci->map = map; 1441 ci->io = alloc_io(md, bio); 1442 ci->sector = bio->bi_iter.bi_sector; 1443 } 1444 1445 /* 1446 * Entry point to split a bio into clones and submit them to the targets. 1447 */ 1448 static void __split_and_process_bio(struct mapped_device *md, 1449 struct dm_table *map, struct bio *bio) 1450 { 1451 struct clone_info ci; 1452 int error = 0; 1453 1454 init_clone_info(&ci, md, map, bio); 1455 1456 if (bio->bi_opf & REQ_PREFLUSH) { 1457 error = __send_empty_flush(&ci); 1458 /* dm_io_dec_pending submits any data associated with flush */ 1459 } else if (op_is_zone_mgmt(bio_op(bio))) { 1460 ci.bio = bio; 1461 ci.sector_count = 0; 1462 error = __split_and_process_non_flush(&ci); 1463 } else { 1464 ci.bio = bio; 1465 ci.sector_count = bio_sectors(bio); 1466 error = __split_and_process_non_flush(&ci); 1467 if (ci.sector_count && !error) { 1468 /* 1469 * Remainder must be passed to submit_bio_noacct() 1470 * so that it gets handled *after* bios already submitted 1471 * have been completely processed. 1472 * We take a clone of the original to store in 1473 * ci.io->orig_bio to be used by end_io_acct() and 1474 * for dec_pending to use for completion handling. 1475 */ 1476 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1477 GFP_NOIO, &md->queue->bio_split); 1478 ci.io->orig_bio = b; 1479 1480 bio_chain(b, bio); 1481 trace_block_split(b, bio->bi_iter.bi_sector); 1482 submit_bio_noacct(bio); 1483 } 1484 } 1485 start_io_acct(ci.io); 1486 1487 /* drop the extra reference count */ 1488 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1489 } 1490 1491 static void dm_submit_bio(struct bio *bio) 1492 { 1493 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1494 int srcu_idx; 1495 struct dm_table *map; 1496 1497 map = dm_get_live_table(md, &srcu_idx); 1498 if (unlikely(!map)) { 1499 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1500 dm_device_name(md)); 1501 bio_io_error(bio); 1502 goto out; 1503 } 1504 1505 /* If suspended, queue this IO for later */ 1506 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1507 if (bio->bi_opf & REQ_NOWAIT) 1508 bio_wouldblock_error(bio); 1509 else if (bio->bi_opf & REQ_RAHEAD) 1510 bio_io_error(bio); 1511 else 1512 queue_io(md, bio); 1513 goto out; 1514 } 1515 1516 /* 1517 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1518 * otherwise associated queue_limits won't be imposed. 1519 */ 1520 if (is_abnormal_io(bio)) 1521 blk_queue_split(&bio); 1522 1523 __split_and_process_bio(md, map, bio); 1524 out: 1525 dm_put_live_table(md, srcu_idx); 1526 } 1527 1528 /*----------------------------------------------------------------- 1529 * An IDR is used to keep track of allocated minor numbers. 1530 *---------------------------------------------------------------*/ 1531 static void free_minor(int minor) 1532 { 1533 spin_lock(&_minor_lock); 1534 idr_remove(&_minor_idr, minor); 1535 spin_unlock(&_minor_lock); 1536 } 1537 1538 /* 1539 * See if the device with a specific minor # is free. 1540 */ 1541 static int specific_minor(int minor) 1542 { 1543 int r; 1544 1545 if (minor >= (1 << MINORBITS)) 1546 return -EINVAL; 1547 1548 idr_preload(GFP_KERNEL); 1549 spin_lock(&_minor_lock); 1550 1551 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1552 1553 spin_unlock(&_minor_lock); 1554 idr_preload_end(); 1555 if (r < 0) 1556 return r == -ENOSPC ? -EBUSY : r; 1557 return 0; 1558 } 1559 1560 static int next_free_minor(int *minor) 1561 { 1562 int r; 1563 1564 idr_preload(GFP_KERNEL); 1565 spin_lock(&_minor_lock); 1566 1567 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1568 1569 spin_unlock(&_minor_lock); 1570 idr_preload_end(); 1571 if (r < 0) 1572 return r; 1573 *minor = r; 1574 return 0; 1575 } 1576 1577 static const struct block_device_operations dm_blk_dops; 1578 static const struct block_device_operations dm_rq_blk_dops; 1579 static const struct dax_operations dm_dax_ops; 1580 1581 static void dm_wq_work(struct work_struct *work); 1582 1583 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1584 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1585 { 1586 dm_destroy_crypto_profile(q->crypto_profile); 1587 } 1588 1589 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1590 1591 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1592 { 1593 } 1594 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1595 1596 static void cleanup_mapped_device(struct mapped_device *md) 1597 { 1598 if (md->wq) 1599 destroy_workqueue(md->wq); 1600 bioset_exit(&md->bs); 1601 bioset_exit(&md->io_bs); 1602 1603 if (md->dax_dev) { 1604 dax_remove_host(md->disk); 1605 kill_dax(md->dax_dev); 1606 put_dax(md->dax_dev); 1607 md->dax_dev = NULL; 1608 } 1609 1610 if (md->disk) { 1611 spin_lock(&_minor_lock); 1612 md->disk->private_data = NULL; 1613 spin_unlock(&_minor_lock); 1614 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1615 dm_sysfs_exit(md); 1616 del_gendisk(md->disk); 1617 } 1618 dm_queue_destroy_crypto_profile(md->queue); 1619 blk_cleanup_disk(md->disk); 1620 } 1621 1622 cleanup_srcu_struct(&md->io_barrier); 1623 1624 mutex_destroy(&md->suspend_lock); 1625 mutex_destroy(&md->type_lock); 1626 mutex_destroy(&md->table_devices_lock); 1627 mutex_destroy(&md->swap_bios_lock); 1628 1629 dm_mq_cleanup_mapped_device(md); 1630 dm_cleanup_zoned_dev(md); 1631 } 1632 1633 /* 1634 * Allocate and initialise a blank device with a given minor. 1635 */ 1636 static struct mapped_device *alloc_dev(int minor) 1637 { 1638 int r, numa_node_id = dm_get_numa_node(); 1639 struct mapped_device *md; 1640 void *old_md; 1641 1642 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1643 if (!md) { 1644 DMWARN("unable to allocate device, out of memory."); 1645 return NULL; 1646 } 1647 1648 if (!try_module_get(THIS_MODULE)) 1649 goto bad_module_get; 1650 1651 /* get a minor number for the dev */ 1652 if (minor == DM_ANY_MINOR) 1653 r = next_free_minor(&minor); 1654 else 1655 r = specific_minor(minor); 1656 if (r < 0) 1657 goto bad_minor; 1658 1659 r = init_srcu_struct(&md->io_barrier); 1660 if (r < 0) 1661 goto bad_io_barrier; 1662 1663 md->numa_node_id = numa_node_id; 1664 md->init_tio_pdu = false; 1665 md->type = DM_TYPE_NONE; 1666 mutex_init(&md->suspend_lock); 1667 mutex_init(&md->type_lock); 1668 mutex_init(&md->table_devices_lock); 1669 spin_lock_init(&md->deferred_lock); 1670 atomic_set(&md->holders, 1); 1671 atomic_set(&md->open_count, 0); 1672 atomic_set(&md->event_nr, 0); 1673 atomic_set(&md->uevent_seq, 0); 1674 INIT_LIST_HEAD(&md->uevent_list); 1675 INIT_LIST_HEAD(&md->table_devices); 1676 spin_lock_init(&md->uevent_lock); 1677 1678 /* 1679 * default to bio-based until DM table is loaded and md->type 1680 * established. If request-based table is loaded: blk-mq will 1681 * override accordingly. 1682 */ 1683 md->disk = blk_alloc_disk(md->numa_node_id); 1684 if (!md->disk) 1685 goto bad; 1686 md->queue = md->disk->queue; 1687 1688 init_waitqueue_head(&md->wait); 1689 INIT_WORK(&md->work, dm_wq_work); 1690 init_waitqueue_head(&md->eventq); 1691 init_completion(&md->kobj_holder.completion); 1692 1693 md->swap_bios = get_swap_bios(); 1694 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1695 mutex_init(&md->swap_bios_lock); 1696 1697 md->disk->major = _major; 1698 md->disk->first_minor = minor; 1699 md->disk->minors = 1; 1700 md->disk->flags |= GENHD_FL_NO_PART; 1701 md->disk->fops = &dm_blk_dops; 1702 md->disk->queue = md->queue; 1703 md->disk->private_data = md; 1704 sprintf(md->disk->disk_name, "dm-%d", minor); 1705 1706 if (IS_ENABLED(CONFIG_FS_DAX)) { 1707 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1708 if (IS_ERR(md->dax_dev)) { 1709 md->dax_dev = NULL; 1710 goto bad; 1711 } 1712 set_dax_nocache(md->dax_dev); 1713 set_dax_nomc(md->dax_dev); 1714 if (dax_add_host(md->dax_dev, md->disk)) 1715 goto bad; 1716 } 1717 1718 format_dev_t(md->name, MKDEV(_major, minor)); 1719 1720 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1721 if (!md->wq) 1722 goto bad; 1723 1724 dm_stats_init(&md->stats); 1725 1726 /* Populate the mapping, nobody knows we exist yet */ 1727 spin_lock(&_minor_lock); 1728 old_md = idr_replace(&_minor_idr, md, minor); 1729 spin_unlock(&_minor_lock); 1730 1731 BUG_ON(old_md != MINOR_ALLOCED); 1732 1733 return md; 1734 1735 bad: 1736 cleanup_mapped_device(md); 1737 bad_io_barrier: 1738 free_minor(minor); 1739 bad_minor: 1740 module_put(THIS_MODULE); 1741 bad_module_get: 1742 kvfree(md); 1743 return NULL; 1744 } 1745 1746 static void unlock_fs(struct mapped_device *md); 1747 1748 static void free_dev(struct mapped_device *md) 1749 { 1750 int minor = MINOR(disk_devt(md->disk)); 1751 1752 unlock_fs(md); 1753 1754 cleanup_mapped_device(md); 1755 1756 free_table_devices(&md->table_devices); 1757 dm_stats_cleanup(&md->stats); 1758 free_minor(minor); 1759 1760 module_put(THIS_MODULE); 1761 kvfree(md); 1762 } 1763 1764 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1765 { 1766 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1767 int ret = 0; 1768 1769 if (dm_table_bio_based(t)) { 1770 /* 1771 * The md may already have mempools that need changing. 1772 * If so, reload bioset because front_pad may have changed 1773 * because a different table was loaded. 1774 */ 1775 bioset_exit(&md->bs); 1776 bioset_exit(&md->io_bs); 1777 1778 } else if (bioset_initialized(&md->bs)) { 1779 /* 1780 * There's no need to reload with request-based dm 1781 * because the size of front_pad doesn't change. 1782 * Note for future: If you are to reload bioset, 1783 * prep-ed requests in the queue may refer 1784 * to bio from the old bioset, so you must walk 1785 * through the queue to unprep. 1786 */ 1787 goto out; 1788 } 1789 1790 BUG_ON(!p || 1791 bioset_initialized(&md->bs) || 1792 bioset_initialized(&md->io_bs)); 1793 1794 ret = bioset_init_from_src(&md->bs, &p->bs); 1795 if (ret) 1796 goto out; 1797 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1798 if (ret) 1799 bioset_exit(&md->bs); 1800 out: 1801 /* mempool bind completed, no longer need any mempools in the table */ 1802 dm_table_free_md_mempools(t); 1803 return ret; 1804 } 1805 1806 /* 1807 * Bind a table to the device. 1808 */ 1809 static void event_callback(void *context) 1810 { 1811 unsigned long flags; 1812 LIST_HEAD(uevents); 1813 struct mapped_device *md = (struct mapped_device *) context; 1814 1815 spin_lock_irqsave(&md->uevent_lock, flags); 1816 list_splice_init(&md->uevent_list, &uevents); 1817 spin_unlock_irqrestore(&md->uevent_lock, flags); 1818 1819 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1820 1821 atomic_inc(&md->event_nr); 1822 wake_up(&md->eventq); 1823 dm_issue_global_event(); 1824 } 1825 1826 /* 1827 * Returns old map, which caller must destroy. 1828 */ 1829 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1830 struct queue_limits *limits) 1831 { 1832 struct dm_table *old_map; 1833 struct request_queue *q = md->queue; 1834 bool request_based = dm_table_request_based(t); 1835 sector_t size; 1836 int ret; 1837 1838 lockdep_assert_held(&md->suspend_lock); 1839 1840 size = dm_table_get_size(t); 1841 1842 /* 1843 * Wipe any geometry if the size of the table changed. 1844 */ 1845 if (size != dm_get_size(md)) 1846 memset(&md->geometry, 0, sizeof(md->geometry)); 1847 1848 if (!get_capacity(md->disk)) 1849 set_capacity(md->disk, size); 1850 else 1851 set_capacity_and_notify(md->disk, size); 1852 1853 dm_table_event_callback(t, event_callback, md); 1854 1855 if (request_based) { 1856 /* 1857 * Leverage the fact that request-based DM targets are 1858 * immutable singletons - used to optimize dm_mq_queue_rq. 1859 */ 1860 md->immutable_target = dm_table_get_immutable_target(t); 1861 } 1862 1863 ret = __bind_mempools(md, t); 1864 if (ret) { 1865 old_map = ERR_PTR(ret); 1866 goto out; 1867 } 1868 1869 ret = dm_table_set_restrictions(t, q, limits); 1870 if (ret) { 1871 old_map = ERR_PTR(ret); 1872 goto out; 1873 } 1874 1875 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1876 rcu_assign_pointer(md->map, (void *)t); 1877 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1878 1879 if (old_map) 1880 dm_sync_table(md); 1881 1882 out: 1883 return old_map; 1884 } 1885 1886 /* 1887 * Returns unbound table for the caller to free. 1888 */ 1889 static struct dm_table *__unbind(struct mapped_device *md) 1890 { 1891 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1892 1893 if (!map) 1894 return NULL; 1895 1896 dm_table_event_callback(map, NULL, NULL); 1897 RCU_INIT_POINTER(md->map, NULL); 1898 dm_sync_table(md); 1899 1900 return map; 1901 } 1902 1903 /* 1904 * Constructor for a new device. 1905 */ 1906 int dm_create(int minor, struct mapped_device **result) 1907 { 1908 struct mapped_device *md; 1909 1910 md = alloc_dev(minor); 1911 if (!md) 1912 return -ENXIO; 1913 1914 dm_ima_reset_data(md); 1915 1916 *result = md; 1917 return 0; 1918 } 1919 1920 /* 1921 * Functions to manage md->type. 1922 * All are required to hold md->type_lock. 1923 */ 1924 void dm_lock_md_type(struct mapped_device *md) 1925 { 1926 mutex_lock(&md->type_lock); 1927 } 1928 1929 void dm_unlock_md_type(struct mapped_device *md) 1930 { 1931 mutex_unlock(&md->type_lock); 1932 } 1933 1934 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1935 { 1936 BUG_ON(!mutex_is_locked(&md->type_lock)); 1937 md->type = type; 1938 } 1939 1940 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1941 { 1942 return md->type; 1943 } 1944 1945 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1946 { 1947 return md->immutable_target_type; 1948 } 1949 1950 /* 1951 * The queue_limits are only valid as long as you have a reference 1952 * count on 'md'. 1953 */ 1954 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1955 { 1956 BUG_ON(!atomic_read(&md->holders)); 1957 return &md->queue->limits; 1958 } 1959 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1960 1961 /* 1962 * Setup the DM device's queue based on md's type 1963 */ 1964 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1965 { 1966 enum dm_queue_mode type = dm_table_get_type(t); 1967 struct queue_limits limits; 1968 int r; 1969 1970 switch (type) { 1971 case DM_TYPE_REQUEST_BASED: 1972 md->disk->fops = &dm_rq_blk_dops; 1973 r = dm_mq_init_request_queue(md, t); 1974 if (r) { 1975 DMERR("Cannot initialize queue for request-based dm mapped device"); 1976 return r; 1977 } 1978 break; 1979 case DM_TYPE_BIO_BASED: 1980 case DM_TYPE_DAX_BIO_BASED: 1981 break; 1982 case DM_TYPE_NONE: 1983 WARN_ON_ONCE(true); 1984 break; 1985 } 1986 1987 r = dm_calculate_queue_limits(t, &limits); 1988 if (r) { 1989 DMERR("Cannot calculate initial queue limits"); 1990 return r; 1991 } 1992 r = dm_table_set_restrictions(t, md->queue, &limits); 1993 if (r) 1994 return r; 1995 1996 r = add_disk(md->disk); 1997 if (r) 1998 return r; 1999 2000 r = dm_sysfs_init(md); 2001 if (r) { 2002 del_gendisk(md->disk); 2003 return r; 2004 } 2005 md->type = type; 2006 return 0; 2007 } 2008 2009 struct mapped_device *dm_get_md(dev_t dev) 2010 { 2011 struct mapped_device *md; 2012 unsigned minor = MINOR(dev); 2013 2014 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2015 return NULL; 2016 2017 spin_lock(&_minor_lock); 2018 2019 md = idr_find(&_minor_idr, minor); 2020 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2021 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2022 md = NULL; 2023 goto out; 2024 } 2025 dm_get(md); 2026 out: 2027 spin_unlock(&_minor_lock); 2028 2029 return md; 2030 } 2031 EXPORT_SYMBOL_GPL(dm_get_md); 2032 2033 void *dm_get_mdptr(struct mapped_device *md) 2034 { 2035 return md->interface_ptr; 2036 } 2037 2038 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2039 { 2040 md->interface_ptr = ptr; 2041 } 2042 2043 void dm_get(struct mapped_device *md) 2044 { 2045 atomic_inc(&md->holders); 2046 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2047 } 2048 2049 int dm_hold(struct mapped_device *md) 2050 { 2051 spin_lock(&_minor_lock); 2052 if (test_bit(DMF_FREEING, &md->flags)) { 2053 spin_unlock(&_minor_lock); 2054 return -EBUSY; 2055 } 2056 dm_get(md); 2057 spin_unlock(&_minor_lock); 2058 return 0; 2059 } 2060 EXPORT_SYMBOL_GPL(dm_hold); 2061 2062 const char *dm_device_name(struct mapped_device *md) 2063 { 2064 return md->name; 2065 } 2066 EXPORT_SYMBOL_GPL(dm_device_name); 2067 2068 static void __dm_destroy(struct mapped_device *md, bool wait) 2069 { 2070 struct dm_table *map; 2071 int srcu_idx; 2072 2073 might_sleep(); 2074 2075 spin_lock(&_minor_lock); 2076 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2077 set_bit(DMF_FREEING, &md->flags); 2078 spin_unlock(&_minor_lock); 2079 2080 blk_mark_disk_dead(md->disk); 2081 2082 /* 2083 * Take suspend_lock so that presuspend and postsuspend methods 2084 * do not race with internal suspend. 2085 */ 2086 mutex_lock(&md->suspend_lock); 2087 map = dm_get_live_table(md, &srcu_idx); 2088 if (!dm_suspended_md(md)) { 2089 dm_table_presuspend_targets(map); 2090 set_bit(DMF_SUSPENDED, &md->flags); 2091 set_bit(DMF_POST_SUSPENDING, &md->flags); 2092 dm_table_postsuspend_targets(map); 2093 } 2094 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2095 dm_put_live_table(md, srcu_idx); 2096 mutex_unlock(&md->suspend_lock); 2097 2098 /* 2099 * Rare, but there may be I/O requests still going to complete, 2100 * for example. Wait for all references to disappear. 2101 * No one should increment the reference count of the mapped_device, 2102 * after the mapped_device state becomes DMF_FREEING. 2103 */ 2104 if (wait) 2105 while (atomic_read(&md->holders)) 2106 msleep(1); 2107 else if (atomic_read(&md->holders)) 2108 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2109 dm_device_name(md), atomic_read(&md->holders)); 2110 2111 dm_table_destroy(__unbind(md)); 2112 free_dev(md); 2113 } 2114 2115 void dm_destroy(struct mapped_device *md) 2116 { 2117 __dm_destroy(md, true); 2118 } 2119 2120 void dm_destroy_immediate(struct mapped_device *md) 2121 { 2122 __dm_destroy(md, false); 2123 } 2124 2125 void dm_put(struct mapped_device *md) 2126 { 2127 atomic_dec(&md->holders); 2128 } 2129 EXPORT_SYMBOL_GPL(dm_put); 2130 2131 static bool md_in_flight_bios(struct mapped_device *md) 2132 { 2133 int cpu; 2134 struct block_device *part = dm_disk(md)->part0; 2135 long sum = 0; 2136 2137 for_each_possible_cpu(cpu) { 2138 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2139 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2140 } 2141 2142 return sum != 0; 2143 } 2144 2145 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2146 { 2147 int r = 0; 2148 DEFINE_WAIT(wait); 2149 2150 while (true) { 2151 prepare_to_wait(&md->wait, &wait, task_state); 2152 2153 if (!md_in_flight_bios(md)) 2154 break; 2155 2156 if (signal_pending_state(task_state, current)) { 2157 r = -EINTR; 2158 break; 2159 } 2160 2161 io_schedule(); 2162 } 2163 finish_wait(&md->wait, &wait); 2164 2165 return r; 2166 } 2167 2168 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2169 { 2170 int r = 0; 2171 2172 if (!queue_is_mq(md->queue)) 2173 return dm_wait_for_bios_completion(md, task_state); 2174 2175 while (true) { 2176 if (!blk_mq_queue_inflight(md->queue)) 2177 break; 2178 2179 if (signal_pending_state(task_state, current)) { 2180 r = -EINTR; 2181 break; 2182 } 2183 2184 msleep(5); 2185 } 2186 2187 return r; 2188 } 2189 2190 /* 2191 * Process the deferred bios 2192 */ 2193 static void dm_wq_work(struct work_struct *work) 2194 { 2195 struct mapped_device *md = container_of(work, struct mapped_device, work); 2196 struct bio *bio; 2197 2198 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2199 spin_lock_irq(&md->deferred_lock); 2200 bio = bio_list_pop(&md->deferred); 2201 spin_unlock_irq(&md->deferred_lock); 2202 2203 if (!bio) 2204 break; 2205 2206 submit_bio_noacct(bio); 2207 } 2208 } 2209 2210 static void dm_queue_flush(struct mapped_device *md) 2211 { 2212 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2213 smp_mb__after_atomic(); 2214 queue_work(md->wq, &md->work); 2215 } 2216 2217 /* 2218 * Swap in a new table, returning the old one for the caller to destroy. 2219 */ 2220 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2221 { 2222 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2223 struct queue_limits limits; 2224 int r; 2225 2226 mutex_lock(&md->suspend_lock); 2227 2228 /* device must be suspended */ 2229 if (!dm_suspended_md(md)) 2230 goto out; 2231 2232 /* 2233 * If the new table has no data devices, retain the existing limits. 2234 * This helps multipath with queue_if_no_path if all paths disappear, 2235 * then new I/O is queued based on these limits, and then some paths 2236 * reappear. 2237 */ 2238 if (dm_table_has_no_data_devices(table)) { 2239 live_map = dm_get_live_table_fast(md); 2240 if (live_map) 2241 limits = md->queue->limits; 2242 dm_put_live_table_fast(md); 2243 } 2244 2245 if (!live_map) { 2246 r = dm_calculate_queue_limits(table, &limits); 2247 if (r) { 2248 map = ERR_PTR(r); 2249 goto out; 2250 } 2251 } 2252 2253 map = __bind(md, table, &limits); 2254 dm_issue_global_event(); 2255 2256 out: 2257 mutex_unlock(&md->suspend_lock); 2258 return map; 2259 } 2260 2261 /* 2262 * Functions to lock and unlock any filesystem running on the 2263 * device. 2264 */ 2265 static int lock_fs(struct mapped_device *md) 2266 { 2267 int r; 2268 2269 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2270 2271 r = freeze_bdev(md->disk->part0); 2272 if (!r) 2273 set_bit(DMF_FROZEN, &md->flags); 2274 return r; 2275 } 2276 2277 static void unlock_fs(struct mapped_device *md) 2278 { 2279 if (!test_bit(DMF_FROZEN, &md->flags)) 2280 return; 2281 thaw_bdev(md->disk->part0); 2282 clear_bit(DMF_FROZEN, &md->flags); 2283 } 2284 2285 /* 2286 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2287 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2288 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2289 * 2290 * If __dm_suspend returns 0, the device is completely quiescent 2291 * now. There is no request-processing activity. All new requests 2292 * are being added to md->deferred list. 2293 */ 2294 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2295 unsigned suspend_flags, unsigned int task_state, 2296 int dmf_suspended_flag) 2297 { 2298 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2299 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2300 int r; 2301 2302 lockdep_assert_held(&md->suspend_lock); 2303 2304 /* 2305 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2306 * This flag is cleared before dm_suspend returns. 2307 */ 2308 if (noflush) 2309 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2310 else 2311 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2312 2313 /* 2314 * This gets reverted if there's an error later and the targets 2315 * provide the .presuspend_undo hook. 2316 */ 2317 dm_table_presuspend_targets(map); 2318 2319 /* 2320 * Flush I/O to the device. 2321 * Any I/O submitted after lock_fs() may not be flushed. 2322 * noflush takes precedence over do_lockfs. 2323 * (lock_fs() flushes I/Os and waits for them to complete.) 2324 */ 2325 if (!noflush && do_lockfs) { 2326 r = lock_fs(md); 2327 if (r) { 2328 dm_table_presuspend_undo_targets(map); 2329 return r; 2330 } 2331 } 2332 2333 /* 2334 * Here we must make sure that no processes are submitting requests 2335 * to target drivers i.e. no one may be executing 2336 * __split_and_process_bio from dm_submit_bio. 2337 * 2338 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2339 * we take the write lock. To prevent any process from reentering 2340 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2341 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2342 * flush_workqueue(md->wq). 2343 */ 2344 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2345 if (map) 2346 synchronize_srcu(&md->io_barrier); 2347 2348 /* 2349 * Stop md->queue before flushing md->wq in case request-based 2350 * dm defers requests to md->wq from md->queue. 2351 */ 2352 if (dm_request_based(md)) 2353 dm_stop_queue(md->queue); 2354 2355 flush_workqueue(md->wq); 2356 2357 /* 2358 * At this point no more requests are entering target request routines. 2359 * We call dm_wait_for_completion to wait for all existing requests 2360 * to finish. 2361 */ 2362 r = dm_wait_for_completion(md, task_state); 2363 if (!r) 2364 set_bit(dmf_suspended_flag, &md->flags); 2365 2366 if (noflush) 2367 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2368 if (map) 2369 synchronize_srcu(&md->io_barrier); 2370 2371 /* were we interrupted ? */ 2372 if (r < 0) { 2373 dm_queue_flush(md); 2374 2375 if (dm_request_based(md)) 2376 dm_start_queue(md->queue); 2377 2378 unlock_fs(md); 2379 dm_table_presuspend_undo_targets(map); 2380 /* pushback list is already flushed, so skip flush */ 2381 } 2382 2383 return r; 2384 } 2385 2386 /* 2387 * We need to be able to change a mapping table under a mounted 2388 * filesystem. For example we might want to move some data in 2389 * the background. Before the table can be swapped with 2390 * dm_bind_table, dm_suspend must be called to flush any in 2391 * flight bios and ensure that any further io gets deferred. 2392 */ 2393 /* 2394 * Suspend mechanism in request-based dm. 2395 * 2396 * 1. Flush all I/Os by lock_fs() if needed. 2397 * 2. Stop dispatching any I/O by stopping the request_queue. 2398 * 3. Wait for all in-flight I/Os to be completed or requeued. 2399 * 2400 * To abort suspend, start the request_queue. 2401 */ 2402 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2403 { 2404 struct dm_table *map = NULL; 2405 int r = 0; 2406 2407 retry: 2408 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2409 2410 if (dm_suspended_md(md)) { 2411 r = -EINVAL; 2412 goto out_unlock; 2413 } 2414 2415 if (dm_suspended_internally_md(md)) { 2416 /* already internally suspended, wait for internal resume */ 2417 mutex_unlock(&md->suspend_lock); 2418 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2419 if (r) 2420 return r; 2421 goto retry; 2422 } 2423 2424 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2425 2426 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2427 if (r) 2428 goto out_unlock; 2429 2430 set_bit(DMF_POST_SUSPENDING, &md->flags); 2431 dm_table_postsuspend_targets(map); 2432 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2433 2434 out_unlock: 2435 mutex_unlock(&md->suspend_lock); 2436 return r; 2437 } 2438 2439 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2440 { 2441 if (map) { 2442 int r = dm_table_resume_targets(map); 2443 if (r) 2444 return r; 2445 } 2446 2447 dm_queue_flush(md); 2448 2449 /* 2450 * Flushing deferred I/Os must be done after targets are resumed 2451 * so that mapping of targets can work correctly. 2452 * Request-based dm is queueing the deferred I/Os in its request_queue. 2453 */ 2454 if (dm_request_based(md)) 2455 dm_start_queue(md->queue); 2456 2457 unlock_fs(md); 2458 2459 return 0; 2460 } 2461 2462 int dm_resume(struct mapped_device *md) 2463 { 2464 int r; 2465 struct dm_table *map = NULL; 2466 2467 retry: 2468 r = -EINVAL; 2469 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2470 2471 if (!dm_suspended_md(md)) 2472 goto out; 2473 2474 if (dm_suspended_internally_md(md)) { 2475 /* already internally suspended, wait for internal resume */ 2476 mutex_unlock(&md->suspend_lock); 2477 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2478 if (r) 2479 return r; 2480 goto retry; 2481 } 2482 2483 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2484 if (!map || !dm_table_get_size(map)) 2485 goto out; 2486 2487 r = __dm_resume(md, map); 2488 if (r) 2489 goto out; 2490 2491 clear_bit(DMF_SUSPENDED, &md->flags); 2492 out: 2493 mutex_unlock(&md->suspend_lock); 2494 2495 return r; 2496 } 2497 2498 /* 2499 * Internal suspend/resume works like userspace-driven suspend. It waits 2500 * until all bios finish and prevents issuing new bios to the target drivers. 2501 * It may be used only from the kernel. 2502 */ 2503 2504 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2505 { 2506 struct dm_table *map = NULL; 2507 2508 lockdep_assert_held(&md->suspend_lock); 2509 2510 if (md->internal_suspend_count++) 2511 return; /* nested internal suspend */ 2512 2513 if (dm_suspended_md(md)) { 2514 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2515 return; /* nest suspend */ 2516 } 2517 2518 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2519 2520 /* 2521 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2522 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2523 * would require changing .presuspend to return an error -- avoid this 2524 * until there is a need for more elaborate variants of internal suspend. 2525 */ 2526 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2527 DMF_SUSPENDED_INTERNALLY); 2528 2529 set_bit(DMF_POST_SUSPENDING, &md->flags); 2530 dm_table_postsuspend_targets(map); 2531 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2532 } 2533 2534 static void __dm_internal_resume(struct mapped_device *md) 2535 { 2536 BUG_ON(!md->internal_suspend_count); 2537 2538 if (--md->internal_suspend_count) 2539 return; /* resume from nested internal suspend */ 2540 2541 if (dm_suspended_md(md)) 2542 goto done; /* resume from nested suspend */ 2543 2544 /* 2545 * NOTE: existing callers don't need to call dm_table_resume_targets 2546 * (which may fail -- so best to avoid it for now by passing NULL map) 2547 */ 2548 (void) __dm_resume(md, NULL); 2549 2550 done: 2551 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2552 smp_mb__after_atomic(); 2553 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2554 } 2555 2556 void dm_internal_suspend_noflush(struct mapped_device *md) 2557 { 2558 mutex_lock(&md->suspend_lock); 2559 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2560 mutex_unlock(&md->suspend_lock); 2561 } 2562 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2563 2564 void dm_internal_resume(struct mapped_device *md) 2565 { 2566 mutex_lock(&md->suspend_lock); 2567 __dm_internal_resume(md); 2568 mutex_unlock(&md->suspend_lock); 2569 } 2570 EXPORT_SYMBOL_GPL(dm_internal_resume); 2571 2572 /* 2573 * Fast variants of internal suspend/resume hold md->suspend_lock, 2574 * which prevents interaction with userspace-driven suspend. 2575 */ 2576 2577 void dm_internal_suspend_fast(struct mapped_device *md) 2578 { 2579 mutex_lock(&md->suspend_lock); 2580 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2581 return; 2582 2583 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2584 synchronize_srcu(&md->io_barrier); 2585 flush_workqueue(md->wq); 2586 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2587 } 2588 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2589 2590 void dm_internal_resume_fast(struct mapped_device *md) 2591 { 2592 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2593 goto done; 2594 2595 dm_queue_flush(md); 2596 2597 done: 2598 mutex_unlock(&md->suspend_lock); 2599 } 2600 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2601 2602 /*----------------------------------------------------------------- 2603 * Event notification. 2604 *---------------------------------------------------------------*/ 2605 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2606 unsigned cookie) 2607 { 2608 int r; 2609 unsigned noio_flag; 2610 char udev_cookie[DM_COOKIE_LENGTH]; 2611 char *envp[] = { udev_cookie, NULL }; 2612 2613 noio_flag = memalloc_noio_save(); 2614 2615 if (!cookie) 2616 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2617 else { 2618 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2619 DM_COOKIE_ENV_VAR_NAME, cookie); 2620 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2621 action, envp); 2622 } 2623 2624 memalloc_noio_restore(noio_flag); 2625 2626 return r; 2627 } 2628 2629 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2630 { 2631 return atomic_add_return(1, &md->uevent_seq); 2632 } 2633 2634 uint32_t dm_get_event_nr(struct mapped_device *md) 2635 { 2636 return atomic_read(&md->event_nr); 2637 } 2638 2639 int dm_wait_event(struct mapped_device *md, int event_nr) 2640 { 2641 return wait_event_interruptible(md->eventq, 2642 (event_nr != atomic_read(&md->event_nr))); 2643 } 2644 2645 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2646 { 2647 unsigned long flags; 2648 2649 spin_lock_irqsave(&md->uevent_lock, flags); 2650 list_add(elist, &md->uevent_list); 2651 spin_unlock_irqrestore(&md->uevent_lock, flags); 2652 } 2653 2654 /* 2655 * The gendisk is only valid as long as you have a reference 2656 * count on 'md'. 2657 */ 2658 struct gendisk *dm_disk(struct mapped_device *md) 2659 { 2660 return md->disk; 2661 } 2662 EXPORT_SYMBOL_GPL(dm_disk); 2663 2664 struct kobject *dm_kobject(struct mapped_device *md) 2665 { 2666 return &md->kobj_holder.kobj; 2667 } 2668 2669 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2670 { 2671 struct mapped_device *md; 2672 2673 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2674 2675 spin_lock(&_minor_lock); 2676 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2677 md = NULL; 2678 goto out; 2679 } 2680 dm_get(md); 2681 out: 2682 spin_unlock(&_minor_lock); 2683 2684 return md; 2685 } 2686 2687 int dm_suspended_md(struct mapped_device *md) 2688 { 2689 return test_bit(DMF_SUSPENDED, &md->flags); 2690 } 2691 2692 static int dm_post_suspending_md(struct mapped_device *md) 2693 { 2694 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2695 } 2696 2697 int dm_suspended_internally_md(struct mapped_device *md) 2698 { 2699 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2700 } 2701 2702 int dm_test_deferred_remove_flag(struct mapped_device *md) 2703 { 2704 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2705 } 2706 2707 int dm_suspended(struct dm_target *ti) 2708 { 2709 return dm_suspended_md(ti->table->md); 2710 } 2711 EXPORT_SYMBOL_GPL(dm_suspended); 2712 2713 int dm_post_suspending(struct dm_target *ti) 2714 { 2715 return dm_post_suspending_md(ti->table->md); 2716 } 2717 EXPORT_SYMBOL_GPL(dm_post_suspending); 2718 2719 int dm_noflush_suspending(struct dm_target *ti) 2720 { 2721 return __noflush_suspending(ti->table->md); 2722 } 2723 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2724 2725 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2726 unsigned integrity, unsigned per_io_data_size, 2727 unsigned min_pool_size) 2728 { 2729 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2730 unsigned int pool_size = 0; 2731 unsigned int front_pad, io_front_pad; 2732 int ret; 2733 2734 if (!pools) 2735 return NULL; 2736 2737 switch (type) { 2738 case DM_TYPE_BIO_BASED: 2739 case DM_TYPE_DAX_BIO_BASED: 2740 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2741 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2742 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2743 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2744 if (ret) 2745 goto out; 2746 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2747 goto out; 2748 break; 2749 case DM_TYPE_REQUEST_BASED: 2750 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2751 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2752 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2753 break; 2754 default: 2755 BUG(); 2756 } 2757 2758 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2759 if (ret) 2760 goto out; 2761 2762 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2763 goto out; 2764 2765 return pools; 2766 2767 out: 2768 dm_free_md_mempools(pools); 2769 2770 return NULL; 2771 } 2772 2773 void dm_free_md_mempools(struct dm_md_mempools *pools) 2774 { 2775 if (!pools) 2776 return; 2777 2778 bioset_exit(&pools->bs); 2779 bioset_exit(&pools->io_bs); 2780 2781 kfree(pools); 2782 } 2783 2784 struct dm_pr { 2785 u64 old_key; 2786 u64 new_key; 2787 u32 flags; 2788 bool fail_early; 2789 }; 2790 2791 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2792 void *data) 2793 { 2794 struct mapped_device *md = bdev->bd_disk->private_data; 2795 struct dm_table *table; 2796 struct dm_target *ti; 2797 int ret = -ENOTTY, srcu_idx; 2798 2799 table = dm_get_live_table(md, &srcu_idx); 2800 if (!table || !dm_table_get_size(table)) 2801 goto out; 2802 2803 /* We only support devices that have a single target */ 2804 if (dm_table_get_num_targets(table) != 1) 2805 goto out; 2806 ti = dm_table_get_target(table, 0); 2807 2808 ret = -EINVAL; 2809 if (!ti->type->iterate_devices) 2810 goto out; 2811 2812 ret = ti->type->iterate_devices(ti, fn, data); 2813 out: 2814 dm_put_live_table(md, srcu_idx); 2815 return ret; 2816 } 2817 2818 /* 2819 * For register / unregister we need to manually call out to every path. 2820 */ 2821 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2822 sector_t start, sector_t len, void *data) 2823 { 2824 struct dm_pr *pr = data; 2825 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2826 2827 if (!ops || !ops->pr_register) 2828 return -EOPNOTSUPP; 2829 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2830 } 2831 2832 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2833 u32 flags) 2834 { 2835 struct dm_pr pr = { 2836 .old_key = old_key, 2837 .new_key = new_key, 2838 .flags = flags, 2839 .fail_early = true, 2840 }; 2841 int ret; 2842 2843 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2844 if (ret && new_key) { 2845 /* unregister all paths if we failed to register any path */ 2846 pr.old_key = new_key; 2847 pr.new_key = 0; 2848 pr.flags = 0; 2849 pr.fail_early = false; 2850 dm_call_pr(bdev, __dm_pr_register, &pr); 2851 } 2852 2853 return ret; 2854 } 2855 2856 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2857 u32 flags) 2858 { 2859 struct mapped_device *md = bdev->bd_disk->private_data; 2860 const struct pr_ops *ops; 2861 int r, srcu_idx; 2862 2863 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2864 if (r < 0) 2865 goto out; 2866 2867 ops = bdev->bd_disk->fops->pr_ops; 2868 if (ops && ops->pr_reserve) 2869 r = ops->pr_reserve(bdev, key, type, flags); 2870 else 2871 r = -EOPNOTSUPP; 2872 out: 2873 dm_unprepare_ioctl(md, srcu_idx); 2874 return r; 2875 } 2876 2877 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2878 { 2879 struct mapped_device *md = bdev->bd_disk->private_data; 2880 const struct pr_ops *ops; 2881 int r, srcu_idx; 2882 2883 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2884 if (r < 0) 2885 goto out; 2886 2887 ops = bdev->bd_disk->fops->pr_ops; 2888 if (ops && ops->pr_release) 2889 r = ops->pr_release(bdev, key, type); 2890 else 2891 r = -EOPNOTSUPP; 2892 out: 2893 dm_unprepare_ioctl(md, srcu_idx); 2894 return r; 2895 } 2896 2897 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2898 enum pr_type type, bool abort) 2899 { 2900 struct mapped_device *md = bdev->bd_disk->private_data; 2901 const struct pr_ops *ops; 2902 int r, srcu_idx; 2903 2904 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2905 if (r < 0) 2906 goto out; 2907 2908 ops = bdev->bd_disk->fops->pr_ops; 2909 if (ops && ops->pr_preempt) 2910 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2911 else 2912 r = -EOPNOTSUPP; 2913 out: 2914 dm_unprepare_ioctl(md, srcu_idx); 2915 return r; 2916 } 2917 2918 static int dm_pr_clear(struct block_device *bdev, u64 key) 2919 { 2920 struct mapped_device *md = bdev->bd_disk->private_data; 2921 const struct pr_ops *ops; 2922 int r, srcu_idx; 2923 2924 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2925 if (r < 0) 2926 goto out; 2927 2928 ops = bdev->bd_disk->fops->pr_ops; 2929 if (ops && ops->pr_clear) 2930 r = ops->pr_clear(bdev, key); 2931 else 2932 r = -EOPNOTSUPP; 2933 out: 2934 dm_unprepare_ioctl(md, srcu_idx); 2935 return r; 2936 } 2937 2938 static const struct pr_ops dm_pr_ops = { 2939 .pr_register = dm_pr_register, 2940 .pr_reserve = dm_pr_reserve, 2941 .pr_release = dm_pr_release, 2942 .pr_preempt = dm_pr_preempt, 2943 .pr_clear = dm_pr_clear, 2944 }; 2945 2946 static const struct block_device_operations dm_blk_dops = { 2947 .submit_bio = dm_submit_bio, 2948 .open = dm_blk_open, 2949 .release = dm_blk_close, 2950 .ioctl = dm_blk_ioctl, 2951 .getgeo = dm_blk_getgeo, 2952 .report_zones = dm_blk_report_zones, 2953 .pr_ops = &dm_pr_ops, 2954 .owner = THIS_MODULE 2955 }; 2956 2957 static const struct block_device_operations dm_rq_blk_dops = { 2958 .open = dm_blk_open, 2959 .release = dm_blk_close, 2960 .ioctl = dm_blk_ioctl, 2961 .getgeo = dm_blk_getgeo, 2962 .pr_ops = &dm_pr_ops, 2963 .owner = THIS_MODULE 2964 }; 2965 2966 static const struct dax_operations dm_dax_ops = { 2967 .direct_access = dm_dax_direct_access, 2968 .zero_page_range = dm_dax_zero_page_range, 2969 }; 2970 2971 /* 2972 * module hooks 2973 */ 2974 module_init(dm_init); 2975 module_exit(dm_exit); 2976 2977 module_param(major, uint, 0); 2978 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2979 2980 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2981 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2982 2983 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2984 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2985 2986 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2987 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2988 2989 MODULE_DESCRIPTION(DM_NAME " driver"); 2990 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2991 MODULE_LICENSE("GPL"); 2992