1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/moduleparam.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mempool.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/blktrace_api.h> 24 #include <linux/smp_lock.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 static const char *_name = DM_NAME; 29 30 static unsigned int major = 0; 31 static unsigned int _major = 0; 32 33 static DEFINE_SPINLOCK(_minor_lock); 34 /* 35 * One of these is allocated per bio. 36 */ 37 struct dm_io { 38 struct mapped_device *md; 39 int error; 40 atomic_t io_count; 41 struct bio *bio; 42 unsigned long start_time; 43 }; 44 45 /* 46 * One of these is allocated per target within a bio. Hopefully 47 * this will be simplified out one day. 48 */ 49 struct dm_target_io { 50 struct dm_io *io; 51 struct dm_target *ti; 52 union map_info info; 53 }; 54 55 union map_info *dm_get_mapinfo(struct bio *bio) 56 { 57 if (bio && bio->bi_private) 58 return &((struct dm_target_io *)bio->bi_private)->info; 59 return NULL; 60 } 61 62 #define MINOR_ALLOCED ((void *)-1) 63 64 /* 65 * Bits for the md->flags field. 66 */ 67 #define DMF_BLOCK_IO 0 68 #define DMF_SUSPENDED 1 69 #define DMF_FROZEN 2 70 #define DMF_FREEING 3 71 #define DMF_DELETING 4 72 #define DMF_NOFLUSH_SUSPENDING 5 73 74 /* 75 * Work processed by per-device workqueue. 76 */ 77 struct dm_wq_req { 78 enum { 79 DM_WQ_FLUSH_ALL, 80 DM_WQ_FLUSH_DEFERRED, 81 } type; 82 struct work_struct work; 83 struct mapped_device *md; 84 void *context; 85 }; 86 87 struct mapped_device { 88 struct rw_semaphore io_lock; 89 struct mutex suspend_lock; 90 spinlock_t pushback_lock; 91 rwlock_t map_lock; 92 atomic_t holders; 93 atomic_t open_count; 94 95 unsigned long flags; 96 97 struct request_queue *queue; 98 struct gendisk *disk; 99 char name[16]; 100 101 void *interface_ptr; 102 103 /* 104 * A list of ios that arrived while we were suspended. 105 */ 106 atomic_t pending; 107 wait_queue_head_t wait; 108 struct bio_list deferred; 109 struct bio_list pushback; 110 111 /* 112 * Processing queue (flush/barriers) 113 */ 114 struct workqueue_struct *wq; 115 116 /* 117 * The current mapping. 118 */ 119 struct dm_table *map; 120 121 /* 122 * io objects are allocated from here. 123 */ 124 mempool_t *io_pool; 125 mempool_t *tio_pool; 126 127 struct bio_set *bs; 128 129 /* 130 * Event handling. 131 */ 132 atomic_t event_nr; 133 wait_queue_head_t eventq; 134 atomic_t uevent_seq; 135 struct list_head uevent_list; 136 spinlock_t uevent_lock; /* Protect access to uevent_list */ 137 138 /* 139 * freeze/thaw support require holding onto a super block 140 */ 141 struct super_block *frozen_sb; 142 struct block_device *suspended_bdev; 143 144 /* forced geometry settings */ 145 struct hd_geometry geometry; 146 }; 147 148 #define MIN_IOS 256 149 static struct kmem_cache *_io_cache; 150 static struct kmem_cache *_tio_cache; 151 152 static int __init local_init(void) 153 { 154 int r; 155 156 /* allocate a slab for the dm_ios */ 157 _io_cache = KMEM_CACHE(dm_io, 0); 158 if (!_io_cache) 159 return -ENOMEM; 160 161 /* allocate a slab for the target ios */ 162 _tio_cache = KMEM_CACHE(dm_target_io, 0); 163 if (!_tio_cache) { 164 kmem_cache_destroy(_io_cache); 165 return -ENOMEM; 166 } 167 168 r = dm_uevent_init(); 169 if (r) { 170 kmem_cache_destroy(_tio_cache); 171 kmem_cache_destroy(_io_cache); 172 return r; 173 } 174 175 _major = major; 176 r = register_blkdev(_major, _name); 177 if (r < 0) { 178 kmem_cache_destroy(_tio_cache); 179 kmem_cache_destroy(_io_cache); 180 dm_uevent_exit(); 181 return r; 182 } 183 184 if (!_major) 185 _major = r; 186 187 return 0; 188 } 189 190 static void local_exit(void) 191 { 192 kmem_cache_destroy(_tio_cache); 193 kmem_cache_destroy(_io_cache); 194 unregister_blkdev(_major, _name); 195 dm_uevent_exit(); 196 197 _major = 0; 198 199 DMINFO("cleaned up"); 200 } 201 202 static int (*_inits[])(void) __initdata = { 203 local_init, 204 dm_target_init, 205 dm_linear_init, 206 dm_stripe_init, 207 dm_kcopyd_init, 208 dm_interface_init, 209 }; 210 211 static void (*_exits[])(void) = { 212 local_exit, 213 dm_target_exit, 214 dm_linear_exit, 215 dm_stripe_exit, 216 dm_kcopyd_exit, 217 dm_interface_exit, 218 }; 219 220 static int __init dm_init(void) 221 { 222 const int count = ARRAY_SIZE(_inits); 223 224 int r, i; 225 226 for (i = 0; i < count; i++) { 227 r = _inits[i](); 228 if (r) 229 goto bad; 230 } 231 232 return 0; 233 234 bad: 235 while (i--) 236 _exits[i](); 237 238 return r; 239 } 240 241 static void __exit dm_exit(void) 242 { 243 int i = ARRAY_SIZE(_exits); 244 245 while (i--) 246 _exits[i](); 247 } 248 249 /* 250 * Block device functions 251 */ 252 static int dm_blk_open(struct inode *inode, struct file *file) 253 { 254 struct mapped_device *md; 255 256 spin_lock(&_minor_lock); 257 258 md = inode->i_bdev->bd_disk->private_data; 259 if (!md) 260 goto out; 261 262 if (test_bit(DMF_FREEING, &md->flags) || 263 test_bit(DMF_DELETING, &md->flags)) { 264 md = NULL; 265 goto out; 266 } 267 268 dm_get(md); 269 atomic_inc(&md->open_count); 270 271 out: 272 spin_unlock(&_minor_lock); 273 274 return md ? 0 : -ENXIO; 275 } 276 277 static int dm_blk_close(struct inode *inode, struct file *file) 278 { 279 struct mapped_device *md; 280 281 md = inode->i_bdev->bd_disk->private_data; 282 atomic_dec(&md->open_count); 283 dm_put(md); 284 return 0; 285 } 286 287 int dm_open_count(struct mapped_device *md) 288 { 289 return atomic_read(&md->open_count); 290 } 291 292 /* 293 * Guarantees nothing is using the device before it's deleted. 294 */ 295 int dm_lock_for_deletion(struct mapped_device *md) 296 { 297 int r = 0; 298 299 spin_lock(&_minor_lock); 300 301 if (dm_open_count(md)) 302 r = -EBUSY; 303 else 304 set_bit(DMF_DELETING, &md->flags); 305 306 spin_unlock(&_minor_lock); 307 308 return r; 309 } 310 311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 312 { 313 struct mapped_device *md = bdev->bd_disk->private_data; 314 315 return dm_get_geometry(md, geo); 316 } 317 318 static int dm_blk_ioctl(struct inode *inode, struct file *file, 319 unsigned int cmd, unsigned long arg) 320 { 321 struct mapped_device *md; 322 struct dm_table *map; 323 struct dm_target *tgt; 324 int r = -ENOTTY; 325 326 /* We don't really need this lock, but we do need 'inode'. */ 327 unlock_kernel(); 328 329 md = inode->i_bdev->bd_disk->private_data; 330 331 map = dm_get_table(md); 332 333 if (!map || !dm_table_get_size(map)) 334 goto out; 335 336 /* We only support devices that have a single target */ 337 if (dm_table_get_num_targets(map) != 1) 338 goto out; 339 340 tgt = dm_table_get_target(map, 0); 341 342 if (dm_suspended(md)) { 343 r = -EAGAIN; 344 goto out; 345 } 346 347 if (tgt->type->ioctl) 348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg); 349 350 out: 351 dm_table_put(map); 352 353 lock_kernel(); 354 return r; 355 } 356 357 static struct dm_io *alloc_io(struct mapped_device *md) 358 { 359 return mempool_alloc(md->io_pool, GFP_NOIO); 360 } 361 362 static void free_io(struct mapped_device *md, struct dm_io *io) 363 { 364 mempool_free(io, md->io_pool); 365 } 366 367 static struct dm_target_io *alloc_tio(struct mapped_device *md) 368 { 369 return mempool_alloc(md->tio_pool, GFP_NOIO); 370 } 371 372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 373 { 374 mempool_free(tio, md->tio_pool); 375 } 376 377 static void start_io_acct(struct dm_io *io) 378 { 379 struct mapped_device *md = io->md; 380 int cpu; 381 382 io->start_time = jiffies; 383 384 cpu = part_stat_lock(); 385 part_round_stats(cpu, &dm_disk(md)->part0); 386 part_stat_unlock(); 387 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending); 388 } 389 390 static int end_io_acct(struct dm_io *io) 391 { 392 struct mapped_device *md = io->md; 393 struct bio *bio = io->bio; 394 unsigned long duration = jiffies - io->start_time; 395 int pending, cpu; 396 int rw = bio_data_dir(bio); 397 398 cpu = part_stat_lock(); 399 part_round_stats(cpu, &dm_disk(md)->part0); 400 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 401 part_stat_unlock(); 402 403 dm_disk(md)->part0.in_flight = pending = 404 atomic_dec_return(&md->pending); 405 406 return !pending; 407 } 408 409 /* 410 * Add the bio to the list of deferred io. 411 */ 412 static int queue_io(struct mapped_device *md, struct bio *bio) 413 { 414 down_write(&md->io_lock); 415 416 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 417 up_write(&md->io_lock); 418 return 1; 419 } 420 421 bio_list_add(&md->deferred, bio); 422 423 up_write(&md->io_lock); 424 return 0; /* deferred successfully */ 425 } 426 427 /* 428 * Everyone (including functions in this file), should use this 429 * function to access the md->map field, and make sure they call 430 * dm_table_put() when finished. 431 */ 432 struct dm_table *dm_get_table(struct mapped_device *md) 433 { 434 struct dm_table *t; 435 436 read_lock(&md->map_lock); 437 t = md->map; 438 if (t) 439 dm_table_get(t); 440 read_unlock(&md->map_lock); 441 442 return t; 443 } 444 445 /* 446 * Get the geometry associated with a dm device 447 */ 448 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 449 { 450 *geo = md->geometry; 451 452 return 0; 453 } 454 455 /* 456 * Set the geometry of a device. 457 */ 458 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 459 { 460 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 461 462 if (geo->start > sz) { 463 DMWARN("Start sector is beyond the geometry limits."); 464 return -EINVAL; 465 } 466 467 md->geometry = *geo; 468 469 return 0; 470 } 471 472 /*----------------------------------------------------------------- 473 * CRUD START: 474 * A more elegant soln is in the works that uses the queue 475 * merge fn, unfortunately there are a couple of changes to 476 * the block layer that I want to make for this. So in the 477 * interests of getting something for people to use I give 478 * you this clearly demarcated crap. 479 *---------------------------------------------------------------*/ 480 481 static int __noflush_suspending(struct mapped_device *md) 482 { 483 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 484 } 485 486 /* 487 * Decrements the number of outstanding ios that a bio has been 488 * cloned into, completing the original io if necc. 489 */ 490 static void dec_pending(struct dm_io *io, int error) 491 { 492 unsigned long flags; 493 494 /* Push-back supersedes any I/O errors */ 495 if (error && !(io->error > 0 && __noflush_suspending(io->md))) 496 io->error = error; 497 498 if (atomic_dec_and_test(&io->io_count)) { 499 if (io->error == DM_ENDIO_REQUEUE) { 500 /* 501 * Target requested pushing back the I/O. 502 * This must be handled before the sleeper on 503 * suspend queue merges the pushback list. 504 */ 505 spin_lock_irqsave(&io->md->pushback_lock, flags); 506 if (__noflush_suspending(io->md)) 507 bio_list_add(&io->md->pushback, io->bio); 508 else 509 /* noflush suspend was interrupted. */ 510 io->error = -EIO; 511 spin_unlock_irqrestore(&io->md->pushback_lock, flags); 512 } 513 514 if (end_io_acct(io)) 515 /* nudge anyone waiting on suspend queue */ 516 wake_up(&io->md->wait); 517 518 if (io->error != DM_ENDIO_REQUEUE) { 519 blk_add_trace_bio(io->md->queue, io->bio, 520 BLK_TA_COMPLETE); 521 522 bio_endio(io->bio, io->error); 523 } 524 525 free_io(io->md, io); 526 } 527 } 528 529 static void clone_endio(struct bio *bio, int error) 530 { 531 int r = 0; 532 struct dm_target_io *tio = bio->bi_private; 533 struct mapped_device *md = tio->io->md; 534 dm_endio_fn endio = tio->ti->type->end_io; 535 536 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 537 error = -EIO; 538 539 if (endio) { 540 r = endio(tio->ti, bio, error, &tio->info); 541 if (r < 0 || r == DM_ENDIO_REQUEUE) 542 /* 543 * error and requeue request are handled 544 * in dec_pending(). 545 */ 546 error = r; 547 else if (r == DM_ENDIO_INCOMPLETE) 548 /* The target will handle the io */ 549 return; 550 else if (r) { 551 DMWARN("unimplemented target endio return value: %d", r); 552 BUG(); 553 } 554 } 555 556 dec_pending(tio->io, error); 557 558 /* 559 * Store md for cleanup instead of tio which is about to get freed. 560 */ 561 bio->bi_private = md->bs; 562 563 bio_put(bio); 564 free_tio(md, tio); 565 } 566 567 static sector_t max_io_len(struct mapped_device *md, 568 sector_t sector, struct dm_target *ti) 569 { 570 sector_t offset = sector - ti->begin; 571 sector_t len = ti->len - offset; 572 573 /* 574 * Does the target need to split even further ? 575 */ 576 if (ti->split_io) { 577 sector_t boundary; 578 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 579 - offset; 580 if (len > boundary) 581 len = boundary; 582 } 583 584 return len; 585 } 586 587 static void __map_bio(struct dm_target *ti, struct bio *clone, 588 struct dm_target_io *tio) 589 { 590 int r; 591 sector_t sector; 592 struct mapped_device *md; 593 594 /* 595 * Sanity checks. 596 */ 597 BUG_ON(!clone->bi_size); 598 599 clone->bi_end_io = clone_endio; 600 clone->bi_private = tio; 601 602 /* 603 * Map the clone. If r == 0 we don't need to do 604 * anything, the target has assumed ownership of 605 * this io. 606 */ 607 atomic_inc(&tio->io->io_count); 608 sector = clone->bi_sector; 609 r = ti->type->map(ti, clone, &tio->info); 610 if (r == DM_MAPIO_REMAPPED) { 611 /* the bio has been remapped so dispatch it */ 612 613 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone, 614 tio->io->bio->bi_bdev->bd_dev, 615 clone->bi_sector, sector); 616 617 generic_make_request(clone); 618 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 619 /* error the io and bail out, or requeue it if needed */ 620 md = tio->io->md; 621 dec_pending(tio->io, r); 622 /* 623 * Store bio_set for cleanup. 624 */ 625 clone->bi_private = md->bs; 626 bio_put(clone); 627 free_tio(md, tio); 628 } else if (r) { 629 DMWARN("unimplemented target map return value: %d", r); 630 BUG(); 631 } 632 } 633 634 struct clone_info { 635 struct mapped_device *md; 636 struct dm_table *map; 637 struct bio *bio; 638 struct dm_io *io; 639 sector_t sector; 640 sector_t sector_count; 641 unsigned short idx; 642 }; 643 644 static void dm_bio_destructor(struct bio *bio) 645 { 646 struct bio_set *bs = bio->bi_private; 647 648 bio_free(bio, bs); 649 } 650 651 /* 652 * Creates a little bio that is just does part of a bvec. 653 */ 654 static struct bio *split_bvec(struct bio *bio, sector_t sector, 655 unsigned short idx, unsigned int offset, 656 unsigned int len, struct bio_set *bs) 657 { 658 struct bio *clone; 659 struct bio_vec *bv = bio->bi_io_vec + idx; 660 661 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 662 clone->bi_destructor = dm_bio_destructor; 663 *clone->bi_io_vec = *bv; 664 665 clone->bi_sector = sector; 666 clone->bi_bdev = bio->bi_bdev; 667 clone->bi_rw = bio->bi_rw; 668 clone->bi_vcnt = 1; 669 clone->bi_size = to_bytes(len); 670 clone->bi_io_vec->bv_offset = offset; 671 clone->bi_io_vec->bv_len = clone->bi_size; 672 673 return clone; 674 } 675 676 /* 677 * Creates a bio that consists of range of complete bvecs. 678 */ 679 static struct bio *clone_bio(struct bio *bio, sector_t sector, 680 unsigned short idx, unsigned short bv_count, 681 unsigned int len, struct bio_set *bs) 682 { 683 struct bio *clone; 684 685 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 686 __bio_clone(clone, bio); 687 clone->bi_destructor = dm_bio_destructor; 688 clone->bi_sector = sector; 689 clone->bi_idx = idx; 690 clone->bi_vcnt = idx + bv_count; 691 clone->bi_size = to_bytes(len); 692 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 693 694 return clone; 695 } 696 697 static int __clone_and_map(struct clone_info *ci) 698 { 699 struct bio *clone, *bio = ci->bio; 700 struct dm_target *ti; 701 sector_t len = 0, max; 702 struct dm_target_io *tio; 703 704 ti = dm_table_find_target(ci->map, ci->sector); 705 if (!dm_target_is_valid(ti)) 706 return -EIO; 707 708 max = max_io_len(ci->md, ci->sector, ti); 709 710 /* 711 * Allocate a target io object. 712 */ 713 tio = alloc_tio(ci->md); 714 tio->io = ci->io; 715 tio->ti = ti; 716 memset(&tio->info, 0, sizeof(tio->info)); 717 718 if (ci->sector_count <= max) { 719 /* 720 * Optimise for the simple case where we can do all of 721 * the remaining io with a single clone. 722 */ 723 clone = clone_bio(bio, ci->sector, ci->idx, 724 bio->bi_vcnt - ci->idx, ci->sector_count, 725 ci->md->bs); 726 __map_bio(ti, clone, tio); 727 ci->sector_count = 0; 728 729 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 730 /* 731 * There are some bvecs that don't span targets. 732 * Do as many of these as possible. 733 */ 734 int i; 735 sector_t remaining = max; 736 sector_t bv_len; 737 738 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 739 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 740 741 if (bv_len > remaining) 742 break; 743 744 remaining -= bv_len; 745 len += bv_len; 746 } 747 748 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 749 ci->md->bs); 750 __map_bio(ti, clone, tio); 751 752 ci->sector += len; 753 ci->sector_count -= len; 754 ci->idx = i; 755 756 } else { 757 /* 758 * Handle a bvec that must be split between two or more targets. 759 */ 760 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 761 sector_t remaining = to_sector(bv->bv_len); 762 unsigned int offset = 0; 763 764 do { 765 if (offset) { 766 ti = dm_table_find_target(ci->map, ci->sector); 767 if (!dm_target_is_valid(ti)) 768 return -EIO; 769 770 max = max_io_len(ci->md, ci->sector, ti); 771 772 tio = alloc_tio(ci->md); 773 tio->io = ci->io; 774 tio->ti = ti; 775 memset(&tio->info, 0, sizeof(tio->info)); 776 } 777 778 len = min(remaining, max); 779 780 clone = split_bvec(bio, ci->sector, ci->idx, 781 bv->bv_offset + offset, len, 782 ci->md->bs); 783 784 __map_bio(ti, clone, tio); 785 786 ci->sector += len; 787 ci->sector_count -= len; 788 offset += to_bytes(len); 789 } while (remaining -= len); 790 791 ci->idx++; 792 } 793 794 return 0; 795 } 796 797 /* 798 * Split the bio into several clones. 799 */ 800 static int __split_bio(struct mapped_device *md, struct bio *bio) 801 { 802 struct clone_info ci; 803 int error = 0; 804 805 ci.map = dm_get_table(md); 806 if (unlikely(!ci.map)) 807 return -EIO; 808 809 ci.md = md; 810 ci.bio = bio; 811 ci.io = alloc_io(md); 812 ci.io->error = 0; 813 atomic_set(&ci.io->io_count, 1); 814 ci.io->bio = bio; 815 ci.io->md = md; 816 ci.sector = bio->bi_sector; 817 ci.sector_count = bio_sectors(bio); 818 ci.idx = bio->bi_idx; 819 820 start_io_acct(ci.io); 821 while (ci.sector_count && !error) 822 error = __clone_and_map(&ci); 823 824 /* drop the extra reference count */ 825 dec_pending(ci.io, error); 826 dm_table_put(ci.map); 827 828 return 0; 829 } 830 /*----------------------------------------------------------------- 831 * CRUD END 832 *---------------------------------------------------------------*/ 833 834 static int dm_merge_bvec(struct request_queue *q, 835 struct bvec_merge_data *bvm, 836 struct bio_vec *biovec) 837 { 838 struct mapped_device *md = q->queuedata; 839 struct dm_table *map = dm_get_table(md); 840 struct dm_target *ti; 841 sector_t max_sectors; 842 int max_size = 0; 843 844 if (unlikely(!map)) 845 goto out; 846 847 ti = dm_table_find_target(map, bvm->bi_sector); 848 if (!dm_target_is_valid(ti)) 849 goto out_table; 850 851 /* 852 * Find maximum amount of I/O that won't need splitting 853 */ 854 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 855 (sector_t) BIO_MAX_SECTORS); 856 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 857 if (max_size < 0) 858 max_size = 0; 859 860 /* 861 * merge_bvec_fn() returns number of bytes 862 * it can accept at this offset 863 * max is precomputed maximal io size 864 */ 865 if (max_size && ti->type->merge) 866 max_size = ti->type->merge(ti, bvm, biovec, max_size); 867 868 out_table: 869 dm_table_put(map); 870 871 out: 872 /* 873 * Always allow an entire first page 874 */ 875 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 876 max_size = biovec->bv_len; 877 878 return max_size; 879 } 880 881 /* 882 * The request function that just remaps the bio built up by 883 * dm_merge_bvec. 884 */ 885 static int dm_request(struct request_queue *q, struct bio *bio) 886 { 887 int r = -EIO; 888 int rw = bio_data_dir(bio); 889 struct mapped_device *md = q->queuedata; 890 int cpu; 891 892 /* 893 * There is no use in forwarding any barrier request since we can't 894 * guarantee it is (or can be) handled by the targets correctly. 895 */ 896 if (unlikely(bio_barrier(bio))) { 897 bio_endio(bio, -EOPNOTSUPP); 898 return 0; 899 } 900 901 down_read(&md->io_lock); 902 903 cpu = part_stat_lock(); 904 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 905 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 906 part_stat_unlock(); 907 908 /* 909 * If we're suspended we have to queue 910 * this io for later. 911 */ 912 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 913 up_read(&md->io_lock); 914 915 if (bio_rw(bio) != READA) 916 r = queue_io(md, bio); 917 918 if (r <= 0) 919 goto out_req; 920 921 /* 922 * We're in a while loop, because someone could suspend 923 * before we get to the following read lock. 924 */ 925 down_read(&md->io_lock); 926 } 927 928 r = __split_bio(md, bio); 929 up_read(&md->io_lock); 930 931 out_req: 932 if (r < 0) 933 bio_io_error(bio); 934 935 return 0; 936 } 937 938 static void dm_unplug_all(struct request_queue *q) 939 { 940 struct mapped_device *md = q->queuedata; 941 struct dm_table *map = dm_get_table(md); 942 943 if (map) { 944 dm_table_unplug_all(map); 945 dm_table_put(map); 946 } 947 } 948 949 static int dm_any_congested(void *congested_data, int bdi_bits) 950 { 951 int r; 952 struct mapped_device *md = (struct mapped_device *) congested_data; 953 struct dm_table *map = dm_get_table(md); 954 955 if (!map || test_bit(DMF_BLOCK_IO, &md->flags)) 956 r = bdi_bits; 957 else 958 r = dm_table_any_congested(map, bdi_bits); 959 960 dm_table_put(map); 961 return r; 962 } 963 964 /*----------------------------------------------------------------- 965 * An IDR is used to keep track of allocated minor numbers. 966 *---------------------------------------------------------------*/ 967 static DEFINE_IDR(_minor_idr); 968 969 static void free_minor(int minor) 970 { 971 spin_lock(&_minor_lock); 972 idr_remove(&_minor_idr, minor); 973 spin_unlock(&_minor_lock); 974 } 975 976 /* 977 * See if the device with a specific minor # is free. 978 */ 979 static int specific_minor(int minor) 980 { 981 int r, m; 982 983 if (minor >= (1 << MINORBITS)) 984 return -EINVAL; 985 986 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 987 if (!r) 988 return -ENOMEM; 989 990 spin_lock(&_minor_lock); 991 992 if (idr_find(&_minor_idr, minor)) { 993 r = -EBUSY; 994 goto out; 995 } 996 997 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 998 if (r) 999 goto out; 1000 1001 if (m != minor) { 1002 idr_remove(&_minor_idr, m); 1003 r = -EBUSY; 1004 goto out; 1005 } 1006 1007 out: 1008 spin_unlock(&_minor_lock); 1009 return r; 1010 } 1011 1012 static int next_free_minor(int *minor) 1013 { 1014 int r, m; 1015 1016 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1017 if (!r) 1018 return -ENOMEM; 1019 1020 spin_lock(&_minor_lock); 1021 1022 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1023 if (r) 1024 goto out; 1025 1026 if (m >= (1 << MINORBITS)) { 1027 idr_remove(&_minor_idr, m); 1028 r = -ENOSPC; 1029 goto out; 1030 } 1031 1032 *minor = m; 1033 1034 out: 1035 spin_unlock(&_minor_lock); 1036 return r; 1037 } 1038 1039 static struct block_device_operations dm_blk_dops; 1040 1041 /* 1042 * Allocate and initialise a blank device with a given minor. 1043 */ 1044 static struct mapped_device *alloc_dev(int minor) 1045 { 1046 int r; 1047 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1048 void *old_md; 1049 1050 if (!md) { 1051 DMWARN("unable to allocate device, out of memory."); 1052 return NULL; 1053 } 1054 1055 if (!try_module_get(THIS_MODULE)) 1056 goto bad_module_get; 1057 1058 /* get a minor number for the dev */ 1059 if (minor == DM_ANY_MINOR) 1060 r = next_free_minor(&minor); 1061 else 1062 r = specific_minor(minor); 1063 if (r < 0) 1064 goto bad_minor; 1065 1066 init_rwsem(&md->io_lock); 1067 mutex_init(&md->suspend_lock); 1068 spin_lock_init(&md->pushback_lock); 1069 rwlock_init(&md->map_lock); 1070 atomic_set(&md->holders, 1); 1071 atomic_set(&md->open_count, 0); 1072 atomic_set(&md->event_nr, 0); 1073 atomic_set(&md->uevent_seq, 0); 1074 INIT_LIST_HEAD(&md->uevent_list); 1075 spin_lock_init(&md->uevent_lock); 1076 1077 md->queue = blk_alloc_queue(GFP_KERNEL); 1078 if (!md->queue) 1079 goto bad_queue; 1080 1081 md->queue->queuedata = md; 1082 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1083 md->queue->backing_dev_info.congested_data = md; 1084 blk_queue_make_request(md->queue, dm_request); 1085 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1086 md->queue->unplug_fn = dm_unplug_all; 1087 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1088 1089 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1090 if (!md->io_pool) 1091 goto bad_io_pool; 1092 1093 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1094 if (!md->tio_pool) 1095 goto bad_tio_pool; 1096 1097 md->bs = bioset_create(16, 16); 1098 if (!md->bs) 1099 goto bad_no_bioset; 1100 1101 md->disk = alloc_disk(1); 1102 if (!md->disk) 1103 goto bad_disk; 1104 1105 atomic_set(&md->pending, 0); 1106 init_waitqueue_head(&md->wait); 1107 init_waitqueue_head(&md->eventq); 1108 1109 md->disk->major = _major; 1110 md->disk->first_minor = minor; 1111 md->disk->fops = &dm_blk_dops; 1112 md->disk->queue = md->queue; 1113 md->disk->private_data = md; 1114 sprintf(md->disk->disk_name, "dm-%d", minor); 1115 add_disk(md->disk); 1116 format_dev_t(md->name, MKDEV(_major, minor)); 1117 1118 md->wq = create_singlethread_workqueue("kdmflush"); 1119 if (!md->wq) 1120 goto bad_thread; 1121 1122 /* Populate the mapping, nobody knows we exist yet */ 1123 spin_lock(&_minor_lock); 1124 old_md = idr_replace(&_minor_idr, md, minor); 1125 spin_unlock(&_minor_lock); 1126 1127 BUG_ON(old_md != MINOR_ALLOCED); 1128 1129 return md; 1130 1131 bad_thread: 1132 put_disk(md->disk); 1133 bad_disk: 1134 bioset_free(md->bs); 1135 bad_no_bioset: 1136 mempool_destroy(md->tio_pool); 1137 bad_tio_pool: 1138 mempool_destroy(md->io_pool); 1139 bad_io_pool: 1140 blk_cleanup_queue(md->queue); 1141 bad_queue: 1142 free_minor(minor); 1143 bad_minor: 1144 module_put(THIS_MODULE); 1145 bad_module_get: 1146 kfree(md); 1147 return NULL; 1148 } 1149 1150 static void unlock_fs(struct mapped_device *md); 1151 1152 static void free_dev(struct mapped_device *md) 1153 { 1154 int minor = MINOR(disk_devt(md->disk)); 1155 1156 if (md->suspended_bdev) { 1157 unlock_fs(md); 1158 bdput(md->suspended_bdev); 1159 } 1160 destroy_workqueue(md->wq); 1161 mempool_destroy(md->tio_pool); 1162 mempool_destroy(md->io_pool); 1163 bioset_free(md->bs); 1164 del_gendisk(md->disk); 1165 free_minor(minor); 1166 1167 spin_lock(&_minor_lock); 1168 md->disk->private_data = NULL; 1169 spin_unlock(&_minor_lock); 1170 1171 put_disk(md->disk); 1172 blk_cleanup_queue(md->queue); 1173 module_put(THIS_MODULE); 1174 kfree(md); 1175 } 1176 1177 /* 1178 * Bind a table to the device. 1179 */ 1180 static void event_callback(void *context) 1181 { 1182 unsigned long flags; 1183 LIST_HEAD(uevents); 1184 struct mapped_device *md = (struct mapped_device *) context; 1185 1186 spin_lock_irqsave(&md->uevent_lock, flags); 1187 list_splice_init(&md->uevent_list, &uevents); 1188 spin_unlock_irqrestore(&md->uevent_lock, flags); 1189 1190 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1191 1192 atomic_inc(&md->event_nr); 1193 wake_up(&md->eventq); 1194 } 1195 1196 static void __set_size(struct mapped_device *md, sector_t size) 1197 { 1198 set_capacity(md->disk, size); 1199 1200 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 1201 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1202 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 1203 } 1204 1205 static int __bind(struct mapped_device *md, struct dm_table *t) 1206 { 1207 struct request_queue *q = md->queue; 1208 sector_t size; 1209 1210 size = dm_table_get_size(t); 1211 1212 /* 1213 * Wipe any geometry if the size of the table changed. 1214 */ 1215 if (size != get_capacity(md->disk)) 1216 memset(&md->geometry, 0, sizeof(md->geometry)); 1217 1218 if (md->suspended_bdev) 1219 __set_size(md, size); 1220 if (size == 0) 1221 return 0; 1222 1223 dm_table_get(t); 1224 dm_table_event_callback(t, event_callback, md); 1225 1226 write_lock(&md->map_lock); 1227 md->map = t; 1228 dm_table_set_restrictions(t, q); 1229 write_unlock(&md->map_lock); 1230 1231 return 0; 1232 } 1233 1234 static void __unbind(struct mapped_device *md) 1235 { 1236 struct dm_table *map = md->map; 1237 1238 if (!map) 1239 return; 1240 1241 dm_table_event_callback(map, NULL, NULL); 1242 write_lock(&md->map_lock); 1243 md->map = NULL; 1244 write_unlock(&md->map_lock); 1245 dm_table_put(map); 1246 } 1247 1248 /* 1249 * Constructor for a new device. 1250 */ 1251 int dm_create(int minor, struct mapped_device **result) 1252 { 1253 struct mapped_device *md; 1254 1255 md = alloc_dev(minor); 1256 if (!md) 1257 return -ENXIO; 1258 1259 *result = md; 1260 return 0; 1261 } 1262 1263 static struct mapped_device *dm_find_md(dev_t dev) 1264 { 1265 struct mapped_device *md; 1266 unsigned minor = MINOR(dev); 1267 1268 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1269 return NULL; 1270 1271 spin_lock(&_minor_lock); 1272 1273 md = idr_find(&_minor_idr, minor); 1274 if (md && (md == MINOR_ALLOCED || 1275 (MINOR(disk_devt(dm_disk(md))) != minor) || 1276 test_bit(DMF_FREEING, &md->flags))) { 1277 md = NULL; 1278 goto out; 1279 } 1280 1281 out: 1282 spin_unlock(&_minor_lock); 1283 1284 return md; 1285 } 1286 1287 struct mapped_device *dm_get_md(dev_t dev) 1288 { 1289 struct mapped_device *md = dm_find_md(dev); 1290 1291 if (md) 1292 dm_get(md); 1293 1294 return md; 1295 } 1296 1297 void *dm_get_mdptr(struct mapped_device *md) 1298 { 1299 return md->interface_ptr; 1300 } 1301 1302 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1303 { 1304 md->interface_ptr = ptr; 1305 } 1306 1307 void dm_get(struct mapped_device *md) 1308 { 1309 atomic_inc(&md->holders); 1310 } 1311 1312 const char *dm_device_name(struct mapped_device *md) 1313 { 1314 return md->name; 1315 } 1316 EXPORT_SYMBOL_GPL(dm_device_name); 1317 1318 void dm_put(struct mapped_device *md) 1319 { 1320 struct dm_table *map; 1321 1322 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1323 1324 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1325 map = dm_get_table(md); 1326 idr_replace(&_minor_idr, MINOR_ALLOCED, 1327 MINOR(disk_devt(dm_disk(md)))); 1328 set_bit(DMF_FREEING, &md->flags); 1329 spin_unlock(&_minor_lock); 1330 if (!dm_suspended(md)) { 1331 dm_table_presuspend_targets(map); 1332 dm_table_postsuspend_targets(map); 1333 } 1334 __unbind(md); 1335 dm_table_put(map); 1336 free_dev(md); 1337 } 1338 } 1339 EXPORT_SYMBOL_GPL(dm_put); 1340 1341 static int dm_wait_for_completion(struct mapped_device *md) 1342 { 1343 int r = 0; 1344 1345 while (1) { 1346 set_current_state(TASK_INTERRUPTIBLE); 1347 1348 smp_mb(); 1349 if (!atomic_read(&md->pending)) 1350 break; 1351 1352 if (signal_pending(current)) { 1353 r = -EINTR; 1354 break; 1355 } 1356 1357 io_schedule(); 1358 } 1359 set_current_state(TASK_RUNNING); 1360 1361 return r; 1362 } 1363 1364 /* 1365 * Process the deferred bios 1366 */ 1367 static void __flush_deferred_io(struct mapped_device *md) 1368 { 1369 struct bio *c; 1370 1371 while ((c = bio_list_pop(&md->deferred))) { 1372 if (__split_bio(md, c)) 1373 bio_io_error(c); 1374 } 1375 1376 clear_bit(DMF_BLOCK_IO, &md->flags); 1377 } 1378 1379 static void __merge_pushback_list(struct mapped_device *md) 1380 { 1381 unsigned long flags; 1382 1383 spin_lock_irqsave(&md->pushback_lock, flags); 1384 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1385 bio_list_merge_head(&md->deferred, &md->pushback); 1386 bio_list_init(&md->pushback); 1387 spin_unlock_irqrestore(&md->pushback_lock, flags); 1388 } 1389 1390 static void dm_wq_work(struct work_struct *work) 1391 { 1392 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work); 1393 struct mapped_device *md = req->md; 1394 1395 down_write(&md->io_lock); 1396 switch (req->type) { 1397 case DM_WQ_FLUSH_ALL: 1398 __merge_pushback_list(md); 1399 /* pass through */ 1400 case DM_WQ_FLUSH_DEFERRED: 1401 __flush_deferred_io(md); 1402 break; 1403 default: 1404 DMERR("dm_wq_work: unrecognised work type %d", req->type); 1405 BUG(); 1406 } 1407 up_write(&md->io_lock); 1408 } 1409 1410 static void dm_wq_queue(struct mapped_device *md, int type, void *context, 1411 struct dm_wq_req *req) 1412 { 1413 req->type = type; 1414 req->md = md; 1415 req->context = context; 1416 INIT_WORK(&req->work, dm_wq_work); 1417 queue_work(md->wq, &req->work); 1418 } 1419 1420 static void dm_queue_flush(struct mapped_device *md, int type, void *context) 1421 { 1422 struct dm_wq_req req; 1423 1424 dm_wq_queue(md, type, context, &req); 1425 flush_workqueue(md->wq); 1426 } 1427 1428 /* 1429 * Swap in a new table (destroying old one). 1430 */ 1431 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1432 { 1433 int r = -EINVAL; 1434 1435 mutex_lock(&md->suspend_lock); 1436 1437 /* device must be suspended */ 1438 if (!dm_suspended(md)) 1439 goto out; 1440 1441 /* without bdev, the device size cannot be changed */ 1442 if (!md->suspended_bdev) 1443 if (get_capacity(md->disk) != dm_table_get_size(table)) 1444 goto out; 1445 1446 __unbind(md); 1447 r = __bind(md, table); 1448 1449 out: 1450 mutex_unlock(&md->suspend_lock); 1451 return r; 1452 } 1453 1454 /* 1455 * Functions to lock and unlock any filesystem running on the 1456 * device. 1457 */ 1458 static int lock_fs(struct mapped_device *md) 1459 { 1460 int r; 1461 1462 WARN_ON(md->frozen_sb); 1463 1464 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1465 if (IS_ERR(md->frozen_sb)) { 1466 r = PTR_ERR(md->frozen_sb); 1467 md->frozen_sb = NULL; 1468 return r; 1469 } 1470 1471 set_bit(DMF_FROZEN, &md->flags); 1472 1473 /* don't bdput right now, we don't want the bdev 1474 * to go away while it is locked. 1475 */ 1476 return 0; 1477 } 1478 1479 static void unlock_fs(struct mapped_device *md) 1480 { 1481 if (!test_bit(DMF_FROZEN, &md->flags)) 1482 return; 1483 1484 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1485 md->frozen_sb = NULL; 1486 clear_bit(DMF_FROZEN, &md->flags); 1487 } 1488 1489 /* 1490 * We need to be able to change a mapping table under a mounted 1491 * filesystem. For example we might want to move some data in 1492 * the background. Before the table can be swapped with 1493 * dm_bind_table, dm_suspend must be called to flush any in 1494 * flight bios and ensure that any further io gets deferred. 1495 */ 1496 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1497 { 1498 struct dm_table *map = NULL; 1499 DECLARE_WAITQUEUE(wait, current); 1500 int r = 0; 1501 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1502 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1503 1504 mutex_lock(&md->suspend_lock); 1505 1506 if (dm_suspended(md)) { 1507 r = -EINVAL; 1508 goto out_unlock; 1509 } 1510 1511 map = dm_get_table(md); 1512 1513 /* 1514 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1515 * This flag is cleared before dm_suspend returns. 1516 */ 1517 if (noflush) 1518 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1519 1520 /* This does not get reverted if there's an error later. */ 1521 dm_table_presuspend_targets(map); 1522 1523 /* bdget() can stall if the pending I/Os are not flushed */ 1524 if (!noflush) { 1525 md->suspended_bdev = bdget_disk(md->disk, 0); 1526 if (!md->suspended_bdev) { 1527 DMWARN("bdget failed in dm_suspend"); 1528 r = -ENOMEM; 1529 goto flush_and_out; 1530 } 1531 1532 /* 1533 * Flush I/O to the device. noflush supersedes do_lockfs, 1534 * because lock_fs() needs to flush I/Os. 1535 */ 1536 if (do_lockfs) { 1537 r = lock_fs(md); 1538 if (r) 1539 goto out; 1540 } 1541 } 1542 1543 /* 1544 * First we set the BLOCK_IO flag so no more ios will be mapped. 1545 */ 1546 down_write(&md->io_lock); 1547 set_bit(DMF_BLOCK_IO, &md->flags); 1548 1549 add_wait_queue(&md->wait, &wait); 1550 up_write(&md->io_lock); 1551 1552 /* unplug */ 1553 if (map) 1554 dm_table_unplug_all(map); 1555 1556 /* 1557 * Wait for the already-mapped ios to complete. 1558 */ 1559 r = dm_wait_for_completion(md); 1560 1561 down_write(&md->io_lock); 1562 remove_wait_queue(&md->wait, &wait); 1563 1564 if (noflush) 1565 __merge_pushback_list(md); 1566 up_write(&md->io_lock); 1567 1568 /* were we interrupted ? */ 1569 if (r < 0) { 1570 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1571 1572 unlock_fs(md); 1573 goto out; /* pushback list is already flushed, so skip flush */ 1574 } 1575 1576 dm_table_postsuspend_targets(map); 1577 1578 set_bit(DMF_SUSPENDED, &md->flags); 1579 1580 flush_and_out: 1581 if (r && noflush) 1582 /* 1583 * Because there may be already I/Os in the pushback list, 1584 * flush them before return. 1585 */ 1586 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL); 1587 1588 out: 1589 if (r && md->suspended_bdev) { 1590 bdput(md->suspended_bdev); 1591 md->suspended_bdev = NULL; 1592 } 1593 1594 dm_table_put(map); 1595 1596 out_unlock: 1597 mutex_unlock(&md->suspend_lock); 1598 return r; 1599 } 1600 1601 int dm_resume(struct mapped_device *md) 1602 { 1603 int r = -EINVAL; 1604 struct dm_table *map = NULL; 1605 1606 mutex_lock(&md->suspend_lock); 1607 if (!dm_suspended(md)) 1608 goto out; 1609 1610 map = dm_get_table(md); 1611 if (!map || !dm_table_get_size(map)) 1612 goto out; 1613 1614 r = dm_table_resume_targets(map); 1615 if (r) 1616 goto out; 1617 1618 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1619 1620 unlock_fs(md); 1621 1622 if (md->suspended_bdev) { 1623 bdput(md->suspended_bdev); 1624 md->suspended_bdev = NULL; 1625 } 1626 1627 clear_bit(DMF_SUSPENDED, &md->flags); 1628 1629 dm_table_unplug_all(map); 1630 1631 dm_kobject_uevent(md); 1632 1633 r = 0; 1634 1635 out: 1636 dm_table_put(map); 1637 mutex_unlock(&md->suspend_lock); 1638 1639 return r; 1640 } 1641 1642 /*----------------------------------------------------------------- 1643 * Event notification. 1644 *---------------------------------------------------------------*/ 1645 void dm_kobject_uevent(struct mapped_device *md) 1646 { 1647 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE); 1648 } 1649 1650 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1651 { 1652 return atomic_add_return(1, &md->uevent_seq); 1653 } 1654 1655 uint32_t dm_get_event_nr(struct mapped_device *md) 1656 { 1657 return atomic_read(&md->event_nr); 1658 } 1659 1660 int dm_wait_event(struct mapped_device *md, int event_nr) 1661 { 1662 return wait_event_interruptible(md->eventq, 1663 (event_nr != atomic_read(&md->event_nr))); 1664 } 1665 1666 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1667 { 1668 unsigned long flags; 1669 1670 spin_lock_irqsave(&md->uevent_lock, flags); 1671 list_add(elist, &md->uevent_list); 1672 spin_unlock_irqrestore(&md->uevent_lock, flags); 1673 } 1674 1675 /* 1676 * The gendisk is only valid as long as you have a reference 1677 * count on 'md'. 1678 */ 1679 struct gendisk *dm_disk(struct mapped_device *md) 1680 { 1681 return md->disk; 1682 } 1683 1684 int dm_suspended(struct mapped_device *md) 1685 { 1686 return test_bit(DMF_SUSPENDED, &md->flags); 1687 } 1688 1689 int dm_noflush_suspending(struct dm_target *ti) 1690 { 1691 struct mapped_device *md = dm_table_get_md(ti->table); 1692 int r = __noflush_suspending(md); 1693 1694 dm_put(md); 1695 1696 return r; 1697 } 1698 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1699 1700 static struct block_device_operations dm_blk_dops = { 1701 .open = dm_blk_open, 1702 .release = dm_blk_close, 1703 .ioctl = dm_blk_ioctl, 1704 .getgeo = dm_blk_getgeo, 1705 .owner = THIS_MODULE 1706 }; 1707 1708 EXPORT_SYMBOL(dm_get_mapinfo); 1709 1710 /* 1711 * module hooks 1712 */ 1713 module_init(dm_init); 1714 module_exit(dm_exit); 1715 1716 module_param(major, uint, 0); 1717 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1718 MODULE_DESCRIPTION(DM_NAME " driver"); 1719 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1720 MODULE_LICENSE("GPL"); 1721