xref: /openbmc/linux/drivers/md/dm.c (revision 384740dc)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * One of these is allocated per target within a bio.  Hopefully
47  * this will be simplified out one day.
48  */
49 struct dm_target_io {
50 	struct dm_io *io;
51 	struct dm_target *ti;
52 	union map_info info;
53 };
54 
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 	if (bio && bio->bi_private)
58 		return &((struct dm_target_io *)bio->bi_private)->info;
59 	return NULL;
60 }
61 
62 #define MINOR_ALLOCED ((void *)-1)
63 
64 /*
65  * Bits for the md->flags field.
66  */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73 
74 /*
75  * Work processed by per-device workqueue.
76  */
77 struct dm_wq_req {
78 	enum {
79 		DM_WQ_FLUSH_ALL,
80 		DM_WQ_FLUSH_DEFERRED,
81 	} type;
82 	struct work_struct work;
83 	struct mapped_device *md;
84 	void *context;
85 };
86 
87 struct mapped_device {
88 	struct rw_semaphore io_lock;
89 	struct mutex suspend_lock;
90 	spinlock_t pushback_lock;
91 	rwlock_t map_lock;
92 	atomic_t holders;
93 	atomic_t open_count;
94 
95 	unsigned long flags;
96 
97 	struct request_queue *queue;
98 	struct gendisk *disk;
99 	char name[16];
100 
101 	void *interface_ptr;
102 
103 	/*
104 	 * A list of ios that arrived while we were suspended.
105 	 */
106 	atomic_t pending;
107 	wait_queue_head_t wait;
108 	struct bio_list deferred;
109 	struct bio_list pushback;
110 
111 	/*
112 	 * Processing queue (flush/barriers)
113 	 */
114 	struct workqueue_struct *wq;
115 
116 	/*
117 	 * The current mapping.
118 	 */
119 	struct dm_table *map;
120 
121 	/*
122 	 * io objects are allocated from here.
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *tio_pool;
126 
127 	struct bio_set *bs;
128 
129 	/*
130 	 * Event handling.
131 	 */
132 	atomic_t event_nr;
133 	wait_queue_head_t eventq;
134 	atomic_t uevent_seq;
135 	struct list_head uevent_list;
136 	spinlock_t uevent_lock; /* Protect access to uevent_list */
137 
138 	/*
139 	 * freeze/thaw support require holding onto a super block
140 	 */
141 	struct super_block *frozen_sb;
142 	struct block_device *suspended_bdev;
143 
144 	/* forced geometry settings */
145 	struct hd_geometry geometry;
146 };
147 
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151 
152 static int __init local_init(void)
153 {
154 	int r;
155 
156 	/* allocate a slab for the dm_ios */
157 	_io_cache = KMEM_CACHE(dm_io, 0);
158 	if (!_io_cache)
159 		return -ENOMEM;
160 
161 	/* allocate a slab for the target ios */
162 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
163 	if (!_tio_cache) {
164 		kmem_cache_destroy(_io_cache);
165 		return -ENOMEM;
166 	}
167 
168 	r = dm_uevent_init();
169 	if (r) {
170 		kmem_cache_destroy(_tio_cache);
171 		kmem_cache_destroy(_io_cache);
172 		return r;
173 	}
174 
175 	_major = major;
176 	r = register_blkdev(_major, _name);
177 	if (r < 0) {
178 		kmem_cache_destroy(_tio_cache);
179 		kmem_cache_destroy(_io_cache);
180 		dm_uevent_exit();
181 		return r;
182 	}
183 
184 	if (!_major)
185 		_major = r;
186 
187 	return 0;
188 }
189 
190 static void local_exit(void)
191 {
192 	kmem_cache_destroy(_tio_cache);
193 	kmem_cache_destroy(_io_cache);
194 	unregister_blkdev(_major, _name);
195 	dm_uevent_exit();
196 
197 	_major = 0;
198 
199 	DMINFO("cleaned up");
200 }
201 
202 static int (*_inits[])(void) __initdata = {
203 	local_init,
204 	dm_target_init,
205 	dm_linear_init,
206 	dm_stripe_init,
207 	dm_kcopyd_init,
208 	dm_interface_init,
209 };
210 
211 static void (*_exits[])(void) = {
212 	local_exit,
213 	dm_target_exit,
214 	dm_linear_exit,
215 	dm_stripe_exit,
216 	dm_kcopyd_exit,
217 	dm_interface_exit,
218 };
219 
220 static int __init dm_init(void)
221 {
222 	const int count = ARRAY_SIZE(_inits);
223 
224 	int r, i;
225 
226 	for (i = 0; i < count; i++) {
227 		r = _inits[i]();
228 		if (r)
229 			goto bad;
230 	}
231 
232 	return 0;
233 
234       bad:
235 	while (i--)
236 		_exits[i]();
237 
238 	return r;
239 }
240 
241 static void __exit dm_exit(void)
242 {
243 	int i = ARRAY_SIZE(_exits);
244 
245 	while (i--)
246 		_exits[i]();
247 }
248 
249 /*
250  * Block device functions
251  */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 	struct mapped_device *md;
255 
256 	spin_lock(&_minor_lock);
257 
258 	md = inode->i_bdev->bd_disk->private_data;
259 	if (!md)
260 		goto out;
261 
262 	if (test_bit(DMF_FREEING, &md->flags) ||
263 	    test_bit(DMF_DELETING, &md->flags)) {
264 		md = NULL;
265 		goto out;
266 	}
267 
268 	dm_get(md);
269 	atomic_inc(&md->open_count);
270 
271 out:
272 	spin_unlock(&_minor_lock);
273 
274 	return md ? 0 : -ENXIO;
275 }
276 
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 	struct mapped_device *md;
280 
281 	md = inode->i_bdev->bd_disk->private_data;
282 	atomic_dec(&md->open_count);
283 	dm_put(md);
284 	return 0;
285 }
286 
287 int dm_open_count(struct mapped_device *md)
288 {
289 	return atomic_read(&md->open_count);
290 }
291 
292 /*
293  * Guarantees nothing is using the device before it's deleted.
294  */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 	int r = 0;
298 
299 	spin_lock(&_minor_lock);
300 
301 	if (dm_open_count(md))
302 		r = -EBUSY;
303 	else
304 		set_bit(DMF_DELETING, &md->flags);
305 
306 	spin_unlock(&_minor_lock);
307 
308 	return r;
309 }
310 
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 	struct mapped_device *md = bdev->bd_disk->private_data;
314 
315 	return dm_get_geometry(md, geo);
316 }
317 
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 			unsigned int cmd, unsigned long arg)
320 {
321 	struct mapped_device *md;
322 	struct dm_table *map;
323 	struct dm_target *tgt;
324 	int r = -ENOTTY;
325 
326 	/* We don't really need this lock, but we do need 'inode'. */
327 	unlock_kernel();
328 
329 	md = inode->i_bdev->bd_disk->private_data;
330 
331 	map = dm_get_table(md);
332 
333 	if (!map || !dm_table_get_size(map))
334 		goto out;
335 
336 	/* We only support devices that have a single target */
337 	if (dm_table_get_num_targets(map) != 1)
338 		goto out;
339 
340 	tgt = dm_table_get_target(map, 0);
341 
342 	if (dm_suspended(md)) {
343 		r = -EAGAIN;
344 		goto out;
345 	}
346 
347 	if (tgt->type->ioctl)
348 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349 
350 out:
351 	dm_table_put(map);
352 
353 	lock_kernel();
354 	return r;
355 }
356 
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 	return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361 
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 	mempool_free(io, md->io_pool);
365 }
366 
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 	return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371 
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 	mempool_free(tio, md->tio_pool);
375 }
376 
377 static void start_io_acct(struct dm_io *io)
378 {
379 	struct mapped_device *md = io->md;
380 	int cpu;
381 
382 	io->start_time = jiffies;
383 
384 	cpu = part_stat_lock();
385 	part_round_stats(cpu, &dm_disk(md)->part0);
386 	part_stat_unlock();
387 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
388 }
389 
390 static int end_io_acct(struct dm_io *io)
391 {
392 	struct mapped_device *md = io->md;
393 	struct bio *bio = io->bio;
394 	unsigned long duration = jiffies - io->start_time;
395 	int pending, cpu;
396 	int rw = bio_data_dir(bio);
397 
398 	cpu = part_stat_lock();
399 	part_round_stats(cpu, &dm_disk(md)->part0);
400 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
401 	part_stat_unlock();
402 
403 	dm_disk(md)->part0.in_flight = pending =
404 		atomic_dec_return(&md->pending);
405 
406 	return !pending;
407 }
408 
409 /*
410  * Add the bio to the list of deferred io.
411  */
412 static int queue_io(struct mapped_device *md, struct bio *bio)
413 {
414 	down_write(&md->io_lock);
415 
416 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
417 		up_write(&md->io_lock);
418 		return 1;
419 	}
420 
421 	bio_list_add(&md->deferred, bio);
422 
423 	up_write(&md->io_lock);
424 	return 0;		/* deferred successfully */
425 }
426 
427 /*
428  * Everyone (including functions in this file), should use this
429  * function to access the md->map field, and make sure they call
430  * dm_table_put() when finished.
431  */
432 struct dm_table *dm_get_table(struct mapped_device *md)
433 {
434 	struct dm_table *t;
435 
436 	read_lock(&md->map_lock);
437 	t = md->map;
438 	if (t)
439 		dm_table_get(t);
440 	read_unlock(&md->map_lock);
441 
442 	return t;
443 }
444 
445 /*
446  * Get the geometry associated with a dm device
447  */
448 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
449 {
450 	*geo = md->geometry;
451 
452 	return 0;
453 }
454 
455 /*
456  * Set the geometry of a device.
457  */
458 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
459 {
460 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
461 
462 	if (geo->start > sz) {
463 		DMWARN("Start sector is beyond the geometry limits.");
464 		return -EINVAL;
465 	}
466 
467 	md->geometry = *geo;
468 
469 	return 0;
470 }
471 
472 /*-----------------------------------------------------------------
473  * CRUD START:
474  *   A more elegant soln is in the works that uses the queue
475  *   merge fn, unfortunately there are a couple of changes to
476  *   the block layer that I want to make for this.  So in the
477  *   interests of getting something for people to use I give
478  *   you this clearly demarcated crap.
479  *---------------------------------------------------------------*/
480 
481 static int __noflush_suspending(struct mapped_device *md)
482 {
483 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
484 }
485 
486 /*
487  * Decrements the number of outstanding ios that a bio has been
488  * cloned into, completing the original io if necc.
489  */
490 static void dec_pending(struct dm_io *io, int error)
491 {
492 	unsigned long flags;
493 
494 	/* Push-back supersedes any I/O errors */
495 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
496 		io->error = error;
497 
498 	if (atomic_dec_and_test(&io->io_count)) {
499 		if (io->error == DM_ENDIO_REQUEUE) {
500 			/*
501 			 * Target requested pushing back the I/O.
502 			 * This must be handled before the sleeper on
503 			 * suspend queue merges the pushback list.
504 			 */
505 			spin_lock_irqsave(&io->md->pushback_lock, flags);
506 			if (__noflush_suspending(io->md))
507 				bio_list_add(&io->md->pushback, io->bio);
508 			else
509 				/* noflush suspend was interrupted. */
510 				io->error = -EIO;
511 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
512 		}
513 
514 		if (end_io_acct(io))
515 			/* nudge anyone waiting on suspend queue */
516 			wake_up(&io->md->wait);
517 
518 		if (io->error != DM_ENDIO_REQUEUE) {
519 			blk_add_trace_bio(io->md->queue, io->bio,
520 					  BLK_TA_COMPLETE);
521 
522 			bio_endio(io->bio, io->error);
523 		}
524 
525 		free_io(io->md, io);
526 	}
527 }
528 
529 static void clone_endio(struct bio *bio, int error)
530 {
531 	int r = 0;
532 	struct dm_target_io *tio = bio->bi_private;
533 	struct mapped_device *md = tio->io->md;
534 	dm_endio_fn endio = tio->ti->type->end_io;
535 
536 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
537 		error = -EIO;
538 
539 	if (endio) {
540 		r = endio(tio->ti, bio, error, &tio->info);
541 		if (r < 0 || r == DM_ENDIO_REQUEUE)
542 			/*
543 			 * error and requeue request are handled
544 			 * in dec_pending().
545 			 */
546 			error = r;
547 		else if (r == DM_ENDIO_INCOMPLETE)
548 			/* The target will handle the io */
549 			return;
550 		else if (r) {
551 			DMWARN("unimplemented target endio return value: %d", r);
552 			BUG();
553 		}
554 	}
555 
556 	dec_pending(tio->io, error);
557 
558 	/*
559 	 * Store md for cleanup instead of tio which is about to get freed.
560 	 */
561 	bio->bi_private = md->bs;
562 
563 	bio_put(bio);
564 	free_tio(md, tio);
565 }
566 
567 static sector_t max_io_len(struct mapped_device *md,
568 			   sector_t sector, struct dm_target *ti)
569 {
570 	sector_t offset = sector - ti->begin;
571 	sector_t len = ti->len - offset;
572 
573 	/*
574 	 * Does the target need to split even further ?
575 	 */
576 	if (ti->split_io) {
577 		sector_t boundary;
578 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
579 			   - offset;
580 		if (len > boundary)
581 			len = boundary;
582 	}
583 
584 	return len;
585 }
586 
587 static void __map_bio(struct dm_target *ti, struct bio *clone,
588 		      struct dm_target_io *tio)
589 {
590 	int r;
591 	sector_t sector;
592 	struct mapped_device *md;
593 
594 	/*
595 	 * Sanity checks.
596 	 */
597 	BUG_ON(!clone->bi_size);
598 
599 	clone->bi_end_io = clone_endio;
600 	clone->bi_private = tio;
601 
602 	/*
603 	 * Map the clone.  If r == 0 we don't need to do
604 	 * anything, the target has assumed ownership of
605 	 * this io.
606 	 */
607 	atomic_inc(&tio->io->io_count);
608 	sector = clone->bi_sector;
609 	r = ti->type->map(ti, clone, &tio->info);
610 	if (r == DM_MAPIO_REMAPPED) {
611 		/* the bio has been remapped so dispatch it */
612 
613 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
614 				    tio->io->bio->bi_bdev->bd_dev,
615 				    clone->bi_sector, sector);
616 
617 		generic_make_request(clone);
618 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
619 		/* error the io and bail out, or requeue it if needed */
620 		md = tio->io->md;
621 		dec_pending(tio->io, r);
622 		/*
623 		 * Store bio_set for cleanup.
624 		 */
625 		clone->bi_private = md->bs;
626 		bio_put(clone);
627 		free_tio(md, tio);
628 	} else if (r) {
629 		DMWARN("unimplemented target map return value: %d", r);
630 		BUG();
631 	}
632 }
633 
634 struct clone_info {
635 	struct mapped_device *md;
636 	struct dm_table *map;
637 	struct bio *bio;
638 	struct dm_io *io;
639 	sector_t sector;
640 	sector_t sector_count;
641 	unsigned short idx;
642 };
643 
644 static void dm_bio_destructor(struct bio *bio)
645 {
646 	struct bio_set *bs = bio->bi_private;
647 
648 	bio_free(bio, bs);
649 }
650 
651 /*
652  * Creates a little bio that is just does part of a bvec.
653  */
654 static struct bio *split_bvec(struct bio *bio, sector_t sector,
655 			      unsigned short idx, unsigned int offset,
656 			      unsigned int len, struct bio_set *bs)
657 {
658 	struct bio *clone;
659 	struct bio_vec *bv = bio->bi_io_vec + idx;
660 
661 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
662 	clone->bi_destructor = dm_bio_destructor;
663 	*clone->bi_io_vec = *bv;
664 
665 	clone->bi_sector = sector;
666 	clone->bi_bdev = bio->bi_bdev;
667 	clone->bi_rw = bio->bi_rw;
668 	clone->bi_vcnt = 1;
669 	clone->bi_size = to_bytes(len);
670 	clone->bi_io_vec->bv_offset = offset;
671 	clone->bi_io_vec->bv_len = clone->bi_size;
672 
673 	return clone;
674 }
675 
676 /*
677  * Creates a bio that consists of range of complete bvecs.
678  */
679 static struct bio *clone_bio(struct bio *bio, sector_t sector,
680 			     unsigned short idx, unsigned short bv_count,
681 			     unsigned int len, struct bio_set *bs)
682 {
683 	struct bio *clone;
684 
685 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
686 	__bio_clone(clone, bio);
687 	clone->bi_destructor = dm_bio_destructor;
688 	clone->bi_sector = sector;
689 	clone->bi_idx = idx;
690 	clone->bi_vcnt = idx + bv_count;
691 	clone->bi_size = to_bytes(len);
692 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
693 
694 	return clone;
695 }
696 
697 static int __clone_and_map(struct clone_info *ci)
698 {
699 	struct bio *clone, *bio = ci->bio;
700 	struct dm_target *ti;
701 	sector_t len = 0, max;
702 	struct dm_target_io *tio;
703 
704 	ti = dm_table_find_target(ci->map, ci->sector);
705 	if (!dm_target_is_valid(ti))
706 		return -EIO;
707 
708 	max = max_io_len(ci->md, ci->sector, ti);
709 
710 	/*
711 	 * Allocate a target io object.
712 	 */
713 	tio = alloc_tio(ci->md);
714 	tio->io = ci->io;
715 	tio->ti = ti;
716 	memset(&tio->info, 0, sizeof(tio->info));
717 
718 	if (ci->sector_count <= max) {
719 		/*
720 		 * Optimise for the simple case where we can do all of
721 		 * the remaining io with a single clone.
722 		 */
723 		clone = clone_bio(bio, ci->sector, ci->idx,
724 				  bio->bi_vcnt - ci->idx, ci->sector_count,
725 				  ci->md->bs);
726 		__map_bio(ti, clone, tio);
727 		ci->sector_count = 0;
728 
729 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
730 		/*
731 		 * There are some bvecs that don't span targets.
732 		 * Do as many of these as possible.
733 		 */
734 		int i;
735 		sector_t remaining = max;
736 		sector_t bv_len;
737 
738 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
739 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
740 
741 			if (bv_len > remaining)
742 				break;
743 
744 			remaining -= bv_len;
745 			len += bv_len;
746 		}
747 
748 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
749 				  ci->md->bs);
750 		__map_bio(ti, clone, tio);
751 
752 		ci->sector += len;
753 		ci->sector_count -= len;
754 		ci->idx = i;
755 
756 	} else {
757 		/*
758 		 * Handle a bvec that must be split between two or more targets.
759 		 */
760 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
761 		sector_t remaining = to_sector(bv->bv_len);
762 		unsigned int offset = 0;
763 
764 		do {
765 			if (offset) {
766 				ti = dm_table_find_target(ci->map, ci->sector);
767 				if (!dm_target_is_valid(ti))
768 					return -EIO;
769 
770 				max = max_io_len(ci->md, ci->sector, ti);
771 
772 				tio = alloc_tio(ci->md);
773 				tio->io = ci->io;
774 				tio->ti = ti;
775 				memset(&tio->info, 0, sizeof(tio->info));
776 			}
777 
778 			len = min(remaining, max);
779 
780 			clone = split_bvec(bio, ci->sector, ci->idx,
781 					   bv->bv_offset + offset, len,
782 					   ci->md->bs);
783 
784 			__map_bio(ti, clone, tio);
785 
786 			ci->sector += len;
787 			ci->sector_count -= len;
788 			offset += to_bytes(len);
789 		} while (remaining -= len);
790 
791 		ci->idx++;
792 	}
793 
794 	return 0;
795 }
796 
797 /*
798  * Split the bio into several clones.
799  */
800 static int __split_bio(struct mapped_device *md, struct bio *bio)
801 {
802 	struct clone_info ci;
803 	int error = 0;
804 
805 	ci.map = dm_get_table(md);
806 	if (unlikely(!ci.map))
807 		return -EIO;
808 
809 	ci.md = md;
810 	ci.bio = bio;
811 	ci.io = alloc_io(md);
812 	ci.io->error = 0;
813 	atomic_set(&ci.io->io_count, 1);
814 	ci.io->bio = bio;
815 	ci.io->md = md;
816 	ci.sector = bio->bi_sector;
817 	ci.sector_count = bio_sectors(bio);
818 	ci.idx = bio->bi_idx;
819 
820 	start_io_acct(ci.io);
821 	while (ci.sector_count && !error)
822 		error = __clone_and_map(&ci);
823 
824 	/* drop the extra reference count */
825 	dec_pending(ci.io, error);
826 	dm_table_put(ci.map);
827 
828 	return 0;
829 }
830 /*-----------------------------------------------------------------
831  * CRUD END
832  *---------------------------------------------------------------*/
833 
834 static int dm_merge_bvec(struct request_queue *q,
835 			 struct bvec_merge_data *bvm,
836 			 struct bio_vec *biovec)
837 {
838 	struct mapped_device *md = q->queuedata;
839 	struct dm_table *map = dm_get_table(md);
840 	struct dm_target *ti;
841 	sector_t max_sectors;
842 	int max_size = 0;
843 
844 	if (unlikely(!map))
845 		goto out;
846 
847 	ti = dm_table_find_target(map, bvm->bi_sector);
848 	if (!dm_target_is_valid(ti))
849 		goto out_table;
850 
851 	/*
852 	 * Find maximum amount of I/O that won't need splitting
853 	 */
854 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
855 			  (sector_t) BIO_MAX_SECTORS);
856 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
857 	if (max_size < 0)
858 		max_size = 0;
859 
860 	/*
861 	 * merge_bvec_fn() returns number of bytes
862 	 * it can accept at this offset
863 	 * max is precomputed maximal io size
864 	 */
865 	if (max_size && ti->type->merge)
866 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
867 
868 out_table:
869 	dm_table_put(map);
870 
871 out:
872 	/*
873 	 * Always allow an entire first page
874 	 */
875 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
876 		max_size = biovec->bv_len;
877 
878 	return max_size;
879 }
880 
881 /*
882  * The request function that just remaps the bio built up by
883  * dm_merge_bvec.
884  */
885 static int dm_request(struct request_queue *q, struct bio *bio)
886 {
887 	int r = -EIO;
888 	int rw = bio_data_dir(bio);
889 	struct mapped_device *md = q->queuedata;
890 	int cpu;
891 
892 	/*
893 	 * There is no use in forwarding any barrier request since we can't
894 	 * guarantee it is (or can be) handled by the targets correctly.
895 	 */
896 	if (unlikely(bio_barrier(bio))) {
897 		bio_endio(bio, -EOPNOTSUPP);
898 		return 0;
899 	}
900 
901 	down_read(&md->io_lock);
902 
903 	cpu = part_stat_lock();
904 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
905 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
906 	part_stat_unlock();
907 
908 	/*
909 	 * If we're suspended we have to queue
910 	 * this io for later.
911 	 */
912 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
913 		up_read(&md->io_lock);
914 
915 		if (bio_rw(bio) != READA)
916 			r = queue_io(md, bio);
917 
918 		if (r <= 0)
919 			goto out_req;
920 
921 		/*
922 		 * We're in a while loop, because someone could suspend
923 		 * before we get to the following read lock.
924 		 */
925 		down_read(&md->io_lock);
926 	}
927 
928 	r = __split_bio(md, bio);
929 	up_read(&md->io_lock);
930 
931 out_req:
932 	if (r < 0)
933 		bio_io_error(bio);
934 
935 	return 0;
936 }
937 
938 static void dm_unplug_all(struct request_queue *q)
939 {
940 	struct mapped_device *md = q->queuedata;
941 	struct dm_table *map = dm_get_table(md);
942 
943 	if (map) {
944 		dm_table_unplug_all(map);
945 		dm_table_put(map);
946 	}
947 }
948 
949 static int dm_any_congested(void *congested_data, int bdi_bits)
950 {
951 	int r;
952 	struct mapped_device *md = (struct mapped_device *) congested_data;
953 	struct dm_table *map = dm_get_table(md);
954 
955 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
956 		r = bdi_bits;
957 	else
958 		r = dm_table_any_congested(map, bdi_bits);
959 
960 	dm_table_put(map);
961 	return r;
962 }
963 
964 /*-----------------------------------------------------------------
965  * An IDR is used to keep track of allocated minor numbers.
966  *---------------------------------------------------------------*/
967 static DEFINE_IDR(_minor_idr);
968 
969 static void free_minor(int minor)
970 {
971 	spin_lock(&_minor_lock);
972 	idr_remove(&_minor_idr, minor);
973 	spin_unlock(&_minor_lock);
974 }
975 
976 /*
977  * See if the device with a specific minor # is free.
978  */
979 static int specific_minor(int minor)
980 {
981 	int r, m;
982 
983 	if (minor >= (1 << MINORBITS))
984 		return -EINVAL;
985 
986 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
987 	if (!r)
988 		return -ENOMEM;
989 
990 	spin_lock(&_minor_lock);
991 
992 	if (idr_find(&_minor_idr, minor)) {
993 		r = -EBUSY;
994 		goto out;
995 	}
996 
997 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
998 	if (r)
999 		goto out;
1000 
1001 	if (m != minor) {
1002 		idr_remove(&_minor_idr, m);
1003 		r = -EBUSY;
1004 		goto out;
1005 	}
1006 
1007 out:
1008 	spin_unlock(&_minor_lock);
1009 	return r;
1010 }
1011 
1012 static int next_free_minor(int *minor)
1013 {
1014 	int r, m;
1015 
1016 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1017 	if (!r)
1018 		return -ENOMEM;
1019 
1020 	spin_lock(&_minor_lock);
1021 
1022 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1023 	if (r)
1024 		goto out;
1025 
1026 	if (m >= (1 << MINORBITS)) {
1027 		idr_remove(&_minor_idr, m);
1028 		r = -ENOSPC;
1029 		goto out;
1030 	}
1031 
1032 	*minor = m;
1033 
1034 out:
1035 	spin_unlock(&_minor_lock);
1036 	return r;
1037 }
1038 
1039 static struct block_device_operations dm_blk_dops;
1040 
1041 /*
1042  * Allocate and initialise a blank device with a given minor.
1043  */
1044 static struct mapped_device *alloc_dev(int minor)
1045 {
1046 	int r;
1047 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1048 	void *old_md;
1049 
1050 	if (!md) {
1051 		DMWARN("unable to allocate device, out of memory.");
1052 		return NULL;
1053 	}
1054 
1055 	if (!try_module_get(THIS_MODULE))
1056 		goto bad_module_get;
1057 
1058 	/* get a minor number for the dev */
1059 	if (minor == DM_ANY_MINOR)
1060 		r = next_free_minor(&minor);
1061 	else
1062 		r = specific_minor(minor);
1063 	if (r < 0)
1064 		goto bad_minor;
1065 
1066 	init_rwsem(&md->io_lock);
1067 	mutex_init(&md->suspend_lock);
1068 	spin_lock_init(&md->pushback_lock);
1069 	rwlock_init(&md->map_lock);
1070 	atomic_set(&md->holders, 1);
1071 	atomic_set(&md->open_count, 0);
1072 	atomic_set(&md->event_nr, 0);
1073 	atomic_set(&md->uevent_seq, 0);
1074 	INIT_LIST_HEAD(&md->uevent_list);
1075 	spin_lock_init(&md->uevent_lock);
1076 
1077 	md->queue = blk_alloc_queue(GFP_KERNEL);
1078 	if (!md->queue)
1079 		goto bad_queue;
1080 
1081 	md->queue->queuedata = md;
1082 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1083 	md->queue->backing_dev_info.congested_data = md;
1084 	blk_queue_make_request(md->queue, dm_request);
1085 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1086 	md->queue->unplug_fn = dm_unplug_all;
1087 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1088 
1089 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1090 	if (!md->io_pool)
1091 		goto bad_io_pool;
1092 
1093 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1094 	if (!md->tio_pool)
1095 		goto bad_tio_pool;
1096 
1097 	md->bs = bioset_create(16, 16);
1098 	if (!md->bs)
1099 		goto bad_no_bioset;
1100 
1101 	md->disk = alloc_disk(1);
1102 	if (!md->disk)
1103 		goto bad_disk;
1104 
1105 	atomic_set(&md->pending, 0);
1106 	init_waitqueue_head(&md->wait);
1107 	init_waitqueue_head(&md->eventq);
1108 
1109 	md->disk->major = _major;
1110 	md->disk->first_minor = minor;
1111 	md->disk->fops = &dm_blk_dops;
1112 	md->disk->queue = md->queue;
1113 	md->disk->private_data = md;
1114 	sprintf(md->disk->disk_name, "dm-%d", minor);
1115 	add_disk(md->disk);
1116 	format_dev_t(md->name, MKDEV(_major, minor));
1117 
1118 	md->wq = create_singlethread_workqueue("kdmflush");
1119 	if (!md->wq)
1120 		goto bad_thread;
1121 
1122 	/* Populate the mapping, nobody knows we exist yet */
1123 	spin_lock(&_minor_lock);
1124 	old_md = idr_replace(&_minor_idr, md, minor);
1125 	spin_unlock(&_minor_lock);
1126 
1127 	BUG_ON(old_md != MINOR_ALLOCED);
1128 
1129 	return md;
1130 
1131 bad_thread:
1132 	put_disk(md->disk);
1133 bad_disk:
1134 	bioset_free(md->bs);
1135 bad_no_bioset:
1136 	mempool_destroy(md->tio_pool);
1137 bad_tio_pool:
1138 	mempool_destroy(md->io_pool);
1139 bad_io_pool:
1140 	blk_cleanup_queue(md->queue);
1141 bad_queue:
1142 	free_minor(minor);
1143 bad_minor:
1144 	module_put(THIS_MODULE);
1145 bad_module_get:
1146 	kfree(md);
1147 	return NULL;
1148 }
1149 
1150 static void unlock_fs(struct mapped_device *md);
1151 
1152 static void free_dev(struct mapped_device *md)
1153 {
1154 	int minor = MINOR(disk_devt(md->disk));
1155 
1156 	if (md->suspended_bdev) {
1157 		unlock_fs(md);
1158 		bdput(md->suspended_bdev);
1159 	}
1160 	destroy_workqueue(md->wq);
1161 	mempool_destroy(md->tio_pool);
1162 	mempool_destroy(md->io_pool);
1163 	bioset_free(md->bs);
1164 	del_gendisk(md->disk);
1165 	free_minor(minor);
1166 
1167 	spin_lock(&_minor_lock);
1168 	md->disk->private_data = NULL;
1169 	spin_unlock(&_minor_lock);
1170 
1171 	put_disk(md->disk);
1172 	blk_cleanup_queue(md->queue);
1173 	module_put(THIS_MODULE);
1174 	kfree(md);
1175 }
1176 
1177 /*
1178  * Bind a table to the device.
1179  */
1180 static void event_callback(void *context)
1181 {
1182 	unsigned long flags;
1183 	LIST_HEAD(uevents);
1184 	struct mapped_device *md = (struct mapped_device *) context;
1185 
1186 	spin_lock_irqsave(&md->uevent_lock, flags);
1187 	list_splice_init(&md->uevent_list, &uevents);
1188 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1189 
1190 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1191 
1192 	atomic_inc(&md->event_nr);
1193 	wake_up(&md->eventq);
1194 }
1195 
1196 static void __set_size(struct mapped_device *md, sector_t size)
1197 {
1198 	set_capacity(md->disk, size);
1199 
1200 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1201 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1202 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1203 }
1204 
1205 static int __bind(struct mapped_device *md, struct dm_table *t)
1206 {
1207 	struct request_queue *q = md->queue;
1208 	sector_t size;
1209 
1210 	size = dm_table_get_size(t);
1211 
1212 	/*
1213 	 * Wipe any geometry if the size of the table changed.
1214 	 */
1215 	if (size != get_capacity(md->disk))
1216 		memset(&md->geometry, 0, sizeof(md->geometry));
1217 
1218 	if (md->suspended_bdev)
1219 		__set_size(md, size);
1220 	if (size == 0)
1221 		return 0;
1222 
1223 	dm_table_get(t);
1224 	dm_table_event_callback(t, event_callback, md);
1225 
1226 	write_lock(&md->map_lock);
1227 	md->map = t;
1228 	dm_table_set_restrictions(t, q);
1229 	write_unlock(&md->map_lock);
1230 
1231 	return 0;
1232 }
1233 
1234 static void __unbind(struct mapped_device *md)
1235 {
1236 	struct dm_table *map = md->map;
1237 
1238 	if (!map)
1239 		return;
1240 
1241 	dm_table_event_callback(map, NULL, NULL);
1242 	write_lock(&md->map_lock);
1243 	md->map = NULL;
1244 	write_unlock(&md->map_lock);
1245 	dm_table_put(map);
1246 }
1247 
1248 /*
1249  * Constructor for a new device.
1250  */
1251 int dm_create(int minor, struct mapped_device **result)
1252 {
1253 	struct mapped_device *md;
1254 
1255 	md = alloc_dev(minor);
1256 	if (!md)
1257 		return -ENXIO;
1258 
1259 	*result = md;
1260 	return 0;
1261 }
1262 
1263 static struct mapped_device *dm_find_md(dev_t dev)
1264 {
1265 	struct mapped_device *md;
1266 	unsigned minor = MINOR(dev);
1267 
1268 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1269 		return NULL;
1270 
1271 	spin_lock(&_minor_lock);
1272 
1273 	md = idr_find(&_minor_idr, minor);
1274 	if (md && (md == MINOR_ALLOCED ||
1275 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1276 		   test_bit(DMF_FREEING, &md->flags))) {
1277 		md = NULL;
1278 		goto out;
1279 	}
1280 
1281 out:
1282 	spin_unlock(&_minor_lock);
1283 
1284 	return md;
1285 }
1286 
1287 struct mapped_device *dm_get_md(dev_t dev)
1288 {
1289 	struct mapped_device *md = dm_find_md(dev);
1290 
1291 	if (md)
1292 		dm_get(md);
1293 
1294 	return md;
1295 }
1296 
1297 void *dm_get_mdptr(struct mapped_device *md)
1298 {
1299 	return md->interface_ptr;
1300 }
1301 
1302 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1303 {
1304 	md->interface_ptr = ptr;
1305 }
1306 
1307 void dm_get(struct mapped_device *md)
1308 {
1309 	atomic_inc(&md->holders);
1310 }
1311 
1312 const char *dm_device_name(struct mapped_device *md)
1313 {
1314 	return md->name;
1315 }
1316 EXPORT_SYMBOL_GPL(dm_device_name);
1317 
1318 void dm_put(struct mapped_device *md)
1319 {
1320 	struct dm_table *map;
1321 
1322 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1323 
1324 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1325 		map = dm_get_table(md);
1326 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1327 			    MINOR(disk_devt(dm_disk(md))));
1328 		set_bit(DMF_FREEING, &md->flags);
1329 		spin_unlock(&_minor_lock);
1330 		if (!dm_suspended(md)) {
1331 			dm_table_presuspend_targets(map);
1332 			dm_table_postsuspend_targets(map);
1333 		}
1334 		__unbind(md);
1335 		dm_table_put(map);
1336 		free_dev(md);
1337 	}
1338 }
1339 EXPORT_SYMBOL_GPL(dm_put);
1340 
1341 static int dm_wait_for_completion(struct mapped_device *md)
1342 {
1343 	int r = 0;
1344 
1345 	while (1) {
1346 		set_current_state(TASK_INTERRUPTIBLE);
1347 
1348 		smp_mb();
1349 		if (!atomic_read(&md->pending))
1350 			break;
1351 
1352 		if (signal_pending(current)) {
1353 			r = -EINTR;
1354 			break;
1355 		}
1356 
1357 		io_schedule();
1358 	}
1359 	set_current_state(TASK_RUNNING);
1360 
1361 	return r;
1362 }
1363 
1364 /*
1365  * Process the deferred bios
1366  */
1367 static void __flush_deferred_io(struct mapped_device *md)
1368 {
1369 	struct bio *c;
1370 
1371 	while ((c = bio_list_pop(&md->deferred))) {
1372 		if (__split_bio(md, c))
1373 			bio_io_error(c);
1374 	}
1375 
1376 	clear_bit(DMF_BLOCK_IO, &md->flags);
1377 }
1378 
1379 static void __merge_pushback_list(struct mapped_device *md)
1380 {
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&md->pushback_lock, flags);
1384 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1385 	bio_list_merge_head(&md->deferred, &md->pushback);
1386 	bio_list_init(&md->pushback);
1387 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1388 }
1389 
1390 static void dm_wq_work(struct work_struct *work)
1391 {
1392 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1393 	struct mapped_device *md = req->md;
1394 
1395 	down_write(&md->io_lock);
1396 	switch (req->type) {
1397 	case DM_WQ_FLUSH_ALL:
1398 		__merge_pushback_list(md);
1399 		/* pass through */
1400 	case DM_WQ_FLUSH_DEFERRED:
1401 		__flush_deferred_io(md);
1402 		break;
1403 	default:
1404 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1405 		BUG();
1406 	}
1407 	up_write(&md->io_lock);
1408 }
1409 
1410 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1411 			struct dm_wq_req *req)
1412 {
1413 	req->type = type;
1414 	req->md = md;
1415 	req->context = context;
1416 	INIT_WORK(&req->work, dm_wq_work);
1417 	queue_work(md->wq, &req->work);
1418 }
1419 
1420 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1421 {
1422 	struct dm_wq_req req;
1423 
1424 	dm_wq_queue(md, type, context, &req);
1425 	flush_workqueue(md->wq);
1426 }
1427 
1428 /*
1429  * Swap in a new table (destroying old one).
1430  */
1431 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1432 {
1433 	int r = -EINVAL;
1434 
1435 	mutex_lock(&md->suspend_lock);
1436 
1437 	/* device must be suspended */
1438 	if (!dm_suspended(md))
1439 		goto out;
1440 
1441 	/* without bdev, the device size cannot be changed */
1442 	if (!md->suspended_bdev)
1443 		if (get_capacity(md->disk) != dm_table_get_size(table))
1444 			goto out;
1445 
1446 	__unbind(md);
1447 	r = __bind(md, table);
1448 
1449 out:
1450 	mutex_unlock(&md->suspend_lock);
1451 	return r;
1452 }
1453 
1454 /*
1455  * Functions to lock and unlock any filesystem running on the
1456  * device.
1457  */
1458 static int lock_fs(struct mapped_device *md)
1459 {
1460 	int r;
1461 
1462 	WARN_ON(md->frozen_sb);
1463 
1464 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1465 	if (IS_ERR(md->frozen_sb)) {
1466 		r = PTR_ERR(md->frozen_sb);
1467 		md->frozen_sb = NULL;
1468 		return r;
1469 	}
1470 
1471 	set_bit(DMF_FROZEN, &md->flags);
1472 
1473 	/* don't bdput right now, we don't want the bdev
1474 	 * to go away while it is locked.
1475 	 */
1476 	return 0;
1477 }
1478 
1479 static void unlock_fs(struct mapped_device *md)
1480 {
1481 	if (!test_bit(DMF_FROZEN, &md->flags))
1482 		return;
1483 
1484 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1485 	md->frozen_sb = NULL;
1486 	clear_bit(DMF_FROZEN, &md->flags);
1487 }
1488 
1489 /*
1490  * We need to be able to change a mapping table under a mounted
1491  * filesystem.  For example we might want to move some data in
1492  * the background.  Before the table can be swapped with
1493  * dm_bind_table, dm_suspend must be called to flush any in
1494  * flight bios and ensure that any further io gets deferred.
1495  */
1496 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1497 {
1498 	struct dm_table *map = NULL;
1499 	DECLARE_WAITQUEUE(wait, current);
1500 	int r = 0;
1501 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1502 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1503 
1504 	mutex_lock(&md->suspend_lock);
1505 
1506 	if (dm_suspended(md)) {
1507 		r = -EINVAL;
1508 		goto out_unlock;
1509 	}
1510 
1511 	map = dm_get_table(md);
1512 
1513 	/*
1514 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1515 	 * This flag is cleared before dm_suspend returns.
1516 	 */
1517 	if (noflush)
1518 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1519 
1520 	/* This does not get reverted if there's an error later. */
1521 	dm_table_presuspend_targets(map);
1522 
1523 	/* bdget() can stall if the pending I/Os are not flushed */
1524 	if (!noflush) {
1525 		md->suspended_bdev = bdget_disk(md->disk, 0);
1526 		if (!md->suspended_bdev) {
1527 			DMWARN("bdget failed in dm_suspend");
1528 			r = -ENOMEM;
1529 			goto flush_and_out;
1530 		}
1531 
1532 		/*
1533 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1534 		 * because lock_fs() needs to flush I/Os.
1535 		 */
1536 		if (do_lockfs) {
1537 			r = lock_fs(md);
1538 			if (r)
1539 				goto out;
1540 		}
1541 	}
1542 
1543 	/*
1544 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1545 	 */
1546 	down_write(&md->io_lock);
1547 	set_bit(DMF_BLOCK_IO, &md->flags);
1548 
1549 	add_wait_queue(&md->wait, &wait);
1550 	up_write(&md->io_lock);
1551 
1552 	/* unplug */
1553 	if (map)
1554 		dm_table_unplug_all(map);
1555 
1556 	/*
1557 	 * Wait for the already-mapped ios to complete.
1558 	 */
1559 	r = dm_wait_for_completion(md);
1560 
1561 	down_write(&md->io_lock);
1562 	remove_wait_queue(&md->wait, &wait);
1563 
1564 	if (noflush)
1565 		__merge_pushback_list(md);
1566 	up_write(&md->io_lock);
1567 
1568 	/* were we interrupted ? */
1569 	if (r < 0) {
1570 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1571 
1572 		unlock_fs(md);
1573 		goto out; /* pushback list is already flushed, so skip flush */
1574 	}
1575 
1576 	dm_table_postsuspend_targets(map);
1577 
1578 	set_bit(DMF_SUSPENDED, &md->flags);
1579 
1580 flush_and_out:
1581 	if (r && noflush)
1582 		/*
1583 		 * Because there may be already I/Os in the pushback list,
1584 		 * flush them before return.
1585 		 */
1586 		dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1587 
1588 out:
1589 	if (r && md->suspended_bdev) {
1590 		bdput(md->suspended_bdev);
1591 		md->suspended_bdev = NULL;
1592 	}
1593 
1594 	dm_table_put(map);
1595 
1596 out_unlock:
1597 	mutex_unlock(&md->suspend_lock);
1598 	return r;
1599 }
1600 
1601 int dm_resume(struct mapped_device *md)
1602 {
1603 	int r = -EINVAL;
1604 	struct dm_table *map = NULL;
1605 
1606 	mutex_lock(&md->suspend_lock);
1607 	if (!dm_suspended(md))
1608 		goto out;
1609 
1610 	map = dm_get_table(md);
1611 	if (!map || !dm_table_get_size(map))
1612 		goto out;
1613 
1614 	r = dm_table_resume_targets(map);
1615 	if (r)
1616 		goto out;
1617 
1618 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1619 
1620 	unlock_fs(md);
1621 
1622 	if (md->suspended_bdev) {
1623 		bdput(md->suspended_bdev);
1624 		md->suspended_bdev = NULL;
1625 	}
1626 
1627 	clear_bit(DMF_SUSPENDED, &md->flags);
1628 
1629 	dm_table_unplug_all(map);
1630 
1631 	dm_kobject_uevent(md);
1632 
1633 	r = 0;
1634 
1635 out:
1636 	dm_table_put(map);
1637 	mutex_unlock(&md->suspend_lock);
1638 
1639 	return r;
1640 }
1641 
1642 /*-----------------------------------------------------------------
1643  * Event notification.
1644  *---------------------------------------------------------------*/
1645 void dm_kobject_uevent(struct mapped_device *md)
1646 {
1647 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1648 }
1649 
1650 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1651 {
1652 	return atomic_add_return(1, &md->uevent_seq);
1653 }
1654 
1655 uint32_t dm_get_event_nr(struct mapped_device *md)
1656 {
1657 	return atomic_read(&md->event_nr);
1658 }
1659 
1660 int dm_wait_event(struct mapped_device *md, int event_nr)
1661 {
1662 	return wait_event_interruptible(md->eventq,
1663 			(event_nr != atomic_read(&md->event_nr)));
1664 }
1665 
1666 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1667 {
1668 	unsigned long flags;
1669 
1670 	spin_lock_irqsave(&md->uevent_lock, flags);
1671 	list_add(elist, &md->uevent_list);
1672 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1673 }
1674 
1675 /*
1676  * The gendisk is only valid as long as you have a reference
1677  * count on 'md'.
1678  */
1679 struct gendisk *dm_disk(struct mapped_device *md)
1680 {
1681 	return md->disk;
1682 }
1683 
1684 int dm_suspended(struct mapped_device *md)
1685 {
1686 	return test_bit(DMF_SUSPENDED, &md->flags);
1687 }
1688 
1689 int dm_noflush_suspending(struct dm_target *ti)
1690 {
1691 	struct mapped_device *md = dm_table_get_md(ti->table);
1692 	int r = __noflush_suspending(md);
1693 
1694 	dm_put(md);
1695 
1696 	return r;
1697 }
1698 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1699 
1700 static struct block_device_operations dm_blk_dops = {
1701 	.open = dm_blk_open,
1702 	.release = dm_blk_close,
1703 	.ioctl = dm_blk_ioctl,
1704 	.getgeo = dm_blk_getgeo,
1705 	.owner = THIS_MODULE
1706 };
1707 
1708 EXPORT_SYMBOL(dm_get_mapinfo);
1709 
1710 /*
1711  * module hooks
1712  */
1713 module_init(dm_init);
1714 module_exit(dm_exit);
1715 
1716 module_param(major, uint, 0);
1717 MODULE_PARM_DESC(major, "The major number of the device mapper");
1718 MODULE_DESCRIPTION(DM_NAME " driver");
1719 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1720 MODULE_LICENSE("GPL");
1721