1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 /* 33 * Cookies are numeric values sent with CHANGE and REMOVE 34 * uevents while resuming, removing or renaming the device. 35 */ 36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 37 #define DM_COOKIE_LENGTH 24 38 39 static const char *_name = DM_NAME; 40 41 static unsigned int major = 0; 42 static unsigned int _major = 0; 43 44 static DEFINE_IDR(_minor_idr); 45 46 static DEFINE_SPINLOCK(_minor_lock); 47 48 static void do_deferred_remove(struct work_struct *w); 49 50 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 51 52 static struct workqueue_struct *deferred_remove_workqueue; 53 54 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 56 57 void dm_issue_global_event(void) 58 { 59 atomic_inc(&dm_global_event_nr); 60 wake_up(&dm_global_eventq); 61 } 62 63 /* 64 * One of these is allocated (on-stack) per original bio. 65 */ 66 struct clone_info { 67 struct dm_table *map; 68 struct bio *bio; 69 struct dm_io *io; 70 sector_t sector; 71 unsigned sector_count; 72 }; 73 74 /* 75 * One of these is allocated per clone bio. 76 */ 77 #define DM_TIO_MAGIC 7282014 78 struct dm_target_io { 79 unsigned magic; 80 struct dm_io *io; 81 struct dm_target *ti; 82 unsigned target_bio_nr; 83 unsigned *len_ptr; 84 bool inside_dm_io; 85 struct bio clone; 86 }; 87 88 /* 89 * One of these is allocated per original bio. 90 * It contains the first clone used for that original. 91 */ 92 #define DM_IO_MAGIC 5191977 93 struct dm_io { 94 unsigned magic; 95 struct mapped_device *md; 96 blk_status_t status; 97 atomic_t io_count; 98 struct bio *orig_bio; 99 unsigned long start_time; 100 spinlock_t endio_lock; 101 struct dm_stats_aux stats_aux; 102 /* last member of dm_target_io is 'struct bio' */ 103 struct dm_target_io tio; 104 }; 105 106 void *dm_per_bio_data(struct bio *bio, size_t data_size) 107 { 108 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 109 if (!tio->inside_dm_io) 110 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 111 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 112 } 113 EXPORT_SYMBOL_GPL(dm_per_bio_data); 114 115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 116 { 117 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 118 if (io->magic == DM_IO_MAGIC) 119 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 120 BUG_ON(io->magic != DM_TIO_MAGIC); 121 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 122 } 123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 124 125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 126 { 127 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 128 } 129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 130 131 #define MINOR_ALLOCED ((void *)-1) 132 133 /* 134 * Bits for the md->flags field. 135 */ 136 #define DMF_BLOCK_IO_FOR_SUSPEND 0 137 #define DMF_SUSPENDED 1 138 #define DMF_FROZEN 2 139 #define DMF_FREEING 3 140 #define DMF_DELETING 4 141 #define DMF_NOFLUSH_SUSPENDING 5 142 #define DMF_DEFERRED_REMOVE 6 143 #define DMF_SUSPENDED_INTERNALLY 7 144 145 #define DM_NUMA_NODE NUMA_NO_NODE 146 static int dm_numa_node = DM_NUMA_NODE; 147 148 /* 149 * For mempools pre-allocation at the table loading time. 150 */ 151 struct dm_md_mempools { 152 struct bio_set bs; 153 struct bio_set io_bs; 154 }; 155 156 struct table_device { 157 struct list_head list; 158 refcount_t count; 159 struct dm_dev dm_dev; 160 }; 161 162 /* 163 * Bio-based DM's mempools' reserved IOs set by the user. 164 */ 165 #define RESERVED_BIO_BASED_IOS 16 166 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 167 168 static int __dm_get_module_param_int(int *module_param, int min, int max) 169 { 170 int param = READ_ONCE(*module_param); 171 int modified_param = 0; 172 bool modified = true; 173 174 if (param < min) 175 modified_param = min; 176 else if (param > max) 177 modified_param = max; 178 else 179 modified = false; 180 181 if (modified) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned __dm_get_module_param(unsigned *module_param, 190 unsigned def, unsigned max) 191 { 192 unsigned param = READ_ONCE(*module_param); 193 unsigned modified_param = 0; 194 195 if (!param) 196 modified_param = def; 197 else if (param > max) 198 modified_param = max; 199 200 if (modified_param) { 201 (void)cmpxchg(module_param, param, modified_param); 202 param = modified_param; 203 } 204 205 return param; 206 } 207 208 unsigned dm_get_reserved_bio_based_ios(void) 209 { 210 return __dm_get_module_param(&reserved_bio_based_ios, 211 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 212 } 213 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 214 215 static unsigned dm_get_numa_node(void) 216 { 217 return __dm_get_module_param_int(&dm_numa_node, 218 DM_NUMA_NODE, num_online_nodes() - 1); 219 } 220 221 static int __init local_init(void) 222 { 223 int r; 224 225 r = dm_uevent_init(); 226 if (r) 227 return r; 228 229 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 230 if (!deferred_remove_workqueue) { 231 r = -ENOMEM; 232 goto out_uevent_exit; 233 } 234 235 _major = major; 236 r = register_blkdev(_major, _name); 237 if (r < 0) 238 goto out_free_workqueue; 239 240 if (!_major) 241 _major = r; 242 243 return 0; 244 245 out_free_workqueue: 246 destroy_workqueue(deferred_remove_workqueue); 247 out_uevent_exit: 248 dm_uevent_exit(); 249 250 return r; 251 } 252 253 static void local_exit(void) 254 { 255 flush_scheduled_work(); 256 destroy_workqueue(deferred_remove_workqueue); 257 258 unregister_blkdev(_major, _name); 259 dm_uevent_exit(); 260 261 _major = 0; 262 263 DMINFO("cleaned up"); 264 } 265 266 static int (*_inits[])(void) __initdata = { 267 local_init, 268 dm_target_init, 269 dm_linear_init, 270 dm_stripe_init, 271 dm_io_init, 272 dm_kcopyd_init, 273 dm_interface_init, 274 dm_statistics_init, 275 }; 276 277 static void (*_exits[])(void) = { 278 local_exit, 279 dm_target_exit, 280 dm_linear_exit, 281 dm_stripe_exit, 282 dm_io_exit, 283 dm_kcopyd_exit, 284 dm_interface_exit, 285 dm_statistics_exit, 286 }; 287 288 static int __init dm_init(void) 289 { 290 const int count = ARRAY_SIZE(_inits); 291 292 int r, i; 293 294 for (i = 0; i < count; i++) { 295 r = _inits[i](); 296 if (r) 297 goto bad; 298 } 299 300 return 0; 301 302 bad: 303 while (i--) 304 _exits[i](); 305 306 return r; 307 } 308 309 static void __exit dm_exit(void) 310 { 311 int i = ARRAY_SIZE(_exits); 312 313 while (i--) 314 _exits[i](); 315 316 /* 317 * Should be empty by this point. 318 */ 319 idr_destroy(&_minor_idr); 320 } 321 322 /* 323 * Block device functions 324 */ 325 int dm_deleting_md(struct mapped_device *md) 326 { 327 return test_bit(DMF_DELETING, &md->flags); 328 } 329 330 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 331 { 332 struct mapped_device *md; 333 334 spin_lock(&_minor_lock); 335 336 md = bdev->bd_disk->private_data; 337 if (!md) 338 goto out; 339 340 if (test_bit(DMF_FREEING, &md->flags) || 341 dm_deleting_md(md)) { 342 md = NULL; 343 goto out; 344 } 345 346 dm_get(md); 347 atomic_inc(&md->open_count); 348 out: 349 spin_unlock(&_minor_lock); 350 351 return md ? 0 : -ENXIO; 352 } 353 354 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 355 { 356 struct mapped_device *md; 357 358 spin_lock(&_minor_lock); 359 360 md = disk->private_data; 361 if (WARN_ON(!md)) 362 goto out; 363 364 if (atomic_dec_and_test(&md->open_count) && 365 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 366 queue_work(deferred_remove_workqueue, &deferred_remove_work); 367 368 dm_put(md); 369 out: 370 spin_unlock(&_minor_lock); 371 } 372 373 int dm_open_count(struct mapped_device *md) 374 { 375 return atomic_read(&md->open_count); 376 } 377 378 /* 379 * Guarantees nothing is using the device before it's deleted. 380 */ 381 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 382 { 383 int r = 0; 384 385 spin_lock(&_minor_lock); 386 387 if (dm_open_count(md)) { 388 r = -EBUSY; 389 if (mark_deferred) 390 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 391 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 392 r = -EEXIST; 393 else 394 set_bit(DMF_DELETING, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 int dm_cancel_deferred_remove(struct mapped_device *md) 402 { 403 int r = 0; 404 405 spin_lock(&_minor_lock); 406 407 if (test_bit(DMF_DELETING, &md->flags)) 408 r = -EBUSY; 409 else 410 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 411 412 spin_unlock(&_minor_lock); 413 414 return r; 415 } 416 417 static void do_deferred_remove(struct work_struct *w) 418 { 419 dm_deferred_remove(); 420 } 421 422 sector_t dm_get_size(struct mapped_device *md) 423 { 424 return get_capacity(md->disk); 425 } 426 427 struct request_queue *dm_get_md_queue(struct mapped_device *md) 428 { 429 return md->queue; 430 } 431 432 struct dm_stats *dm_get_stats(struct mapped_device *md) 433 { 434 return &md->stats; 435 } 436 437 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 438 { 439 struct mapped_device *md = bdev->bd_disk->private_data; 440 441 return dm_get_geometry(md, geo); 442 } 443 444 #ifdef CONFIG_BLK_DEV_ZONED 445 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 446 { 447 struct dm_report_zones_args *args = data; 448 sector_t sector_diff = args->tgt->begin - args->start; 449 450 /* 451 * Ignore zones beyond the target range. 452 */ 453 if (zone->start >= args->start + args->tgt->len) 454 return 0; 455 456 /* 457 * Remap the start sector and write pointer position of the zone 458 * to match its position in the target range. 459 */ 460 zone->start += sector_diff; 461 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 462 if (zone->cond == BLK_ZONE_COND_FULL) 463 zone->wp = zone->start + zone->len; 464 else if (zone->cond == BLK_ZONE_COND_EMPTY) 465 zone->wp = zone->start; 466 else 467 zone->wp += sector_diff; 468 } 469 470 args->next_sector = zone->start + zone->len; 471 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 472 } 473 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 474 475 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 476 unsigned int nr_zones, report_zones_cb cb, void *data) 477 { 478 struct mapped_device *md = disk->private_data; 479 struct dm_table *map; 480 int srcu_idx, ret; 481 struct dm_report_zones_args args = { 482 .next_sector = sector, 483 .orig_data = data, 484 .orig_cb = cb, 485 }; 486 487 if (dm_suspended_md(md)) 488 return -EAGAIN; 489 490 map = dm_get_live_table(md, &srcu_idx); 491 if (!map) 492 return -EIO; 493 494 do { 495 struct dm_target *tgt; 496 497 tgt = dm_table_find_target(map, args.next_sector); 498 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 499 ret = -EIO; 500 goto out; 501 } 502 503 args.tgt = tgt; 504 ret = tgt->type->report_zones(tgt, &args, nr_zones); 505 if (ret < 0) 506 goto out; 507 } while (args.zone_idx < nr_zones && 508 args.next_sector < get_capacity(disk)); 509 510 ret = args.zone_idx; 511 out: 512 dm_put_live_table(md, srcu_idx); 513 return ret; 514 } 515 #else 516 #define dm_blk_report_zones NULL 517 #endif /* CONFIG_BLK_DEV_ZONED */ 518 519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 520 struct block_device **bdev) 521 __acquires(md->io_barrier) 522 { 523 struct dm_target *tgt; 524 struct dm_table *map; 525 int r; 526 527 retry: 528 r = -ENOTTY; 529 map = dm_get_live_table(md, srcu_idx); 530 if (!map || !dm_table_get_size(map)) 531 return r; 532 533 /* We only support devices that have a single target */ 534 if (dm_table_get_num_targets(map) != 1) 535 return r; 536 537 tgt = dm_table_get_target(map, 0); 538 if (!tgt->type->prepare_ioctl) 539 return r; 540 541 if (dm_suspended_md(md)) 542 return -EAGAIN; 543 544 r = tgt->type->prepare_ioctl(tgt, bdev); 545 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 546 dm_put_live_table(md, *srcu_idx); 547 msleep(10); 548 goto retry; 549 } 550 551 return r; 552 } 553 554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 555 __releases(md->io_barrier) 556 { 557 dm_put_live_table(md, srcu_idx); 558 } 559 560 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 561 unsigned int cmd, unsigned long arg) 562 { 563 struct mapped_device *md = bdev->bd_disk->private_data; 564 int r, srcu_idx; 565 566 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 567 if (r < 0) 568 goto out; 569 570 if (r > 0) { 571 /* 572 * Target determined this ioctl is being issued against a 573 * subset of the parent bdev; require extra privileges. 574 */ 575 if (!capable(CAP_SYS_RAWIO)) { 576 DMWARN_LIMIT( 577 "%s: sending ioctl %x to DM device without required privilege.", 578 current->comm, cmd); 579 r = -ENOIOCTLCMD; 580 goto out; 581 } 582 } 583 584 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 585 out: 586 dm_unprepare_ioctl(md, srcu_idx); 587 return r; 588 } 589 590 static void start_io_acct(struct dm_io *io); 591 592 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 593 { 594 struct dm_io *io; 595 struct dm_target_io *tio; 596 struct bio *clone; 597 598 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 599 if (!clone) 600 return NULL; 601 602 tio = container_of(clone, struct dm_target_io, clone); 603 tio->inside_dm_io = true; 604 tio->io = NULL; 605 606 io = container_of(tio, struct dm_io, tio); 607 io->magic = DM_IO_MAGIC; 608 io->status = 0; 609 atomic_set(&io->io_count, 1); 610 io->orig_bio = bio; 611 io->md = md; 612 spin_lock_init(&io->endio_lock); 613 614 start_io_acct(io); 615 616 return io; 617 } 618 619 static void free_io(struct mapped_device *md, struct dm_io *io) 620 { 621 bio_put(&io->tio.clone); 622 } 623 624 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 625 unsigned target_bio_nr, gfp_t gfp_mask) 626 { 627 struct dm_target_io *tio; 628 629 if (!ci->io->tio.io) { 630 /* the dm_target_io embedded in ci->io is available */ 631 tio = &ci->io->tio; 632 } else { 633 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 634 if (!clone) 635 return NULL; 636 637 tio = container_of(clone, struct dm_target_io, clone); 638 tio->inside_dm_io = false; 639 } 640 641 tio->magic = DM_TIO_MAGIC; 642 tio->io = ci->io; 643 tio->ti = ti; 644 tio->target_bio_nr = target_bio_nr; 645 646 return tio; 647 } 648 649 static void free_tio(struct dm_target_io *tio) 650 { 651 if (tio->inside_dm_io) 652 return; 653 bio_put(&tio->clone); 654 } 655 656 static bool md_in_flight_bios(struct mapped_device *md) 657 { 658 int cpu; 659 struct hd_struct *part = &dm_disk(md)->part0; 660 long sum = 0; 661 662 for_each_possible_cpu(cpu) { 663 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 664 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 665 } 666 667 return sum != 0; 668 } 669 670 static bool md_in_flight(struct mapped_device *md) 671 { 672 if (queue_is_mq(md->queue)) 673 return blk_mq_queue_inflight(md->queue); 674 else 675 return md_in_flight_bios(md); 676 } 677 678 static void start_io_acct(struct dm_io *io) 679 { 680 struct mapped_device *md = io->md; 681 struct bio *bio = io->orig_bio; 682 683 io->start_time = jiffies; 684 685 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 686 &dm_disk(md)->part0); 687 688 if (unlikely(dm_stats_used(&md->stats))) 689 dm_stats_account_io(&md->stats, bio_data_dir(bio), 690 bio->bi_iter.bi_sector, bio_sectors(bio), 691 false, 0, &io->stats_aux); 692 } 693 694 static void end_io_acct(struct dm_io *io) 695 { 696 struct mapped_device *md = io->md; 697 struct bio *bio = io->orig_bio; 698 unsigned long duration = jiffies - io->start_time; 699 700 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 701 io->start_time); 702 703 if (unlikely(dm_stats_used(&md->stats))) 704 dm_stats_account_io(&md->stats, bio_data_dir(bio), 705 bio->bi_iter.bi_sector, bio_sectors(bio), 706 true, duration, &io->stats_aux); 707 708 /* nudge anyone waiting on suspend queue */ 709 if (unlikely(wq_has_sleeper(&md->wait))) 710 wake_up(&md->wait); 711 } 712 713 /* 714 * Add the bio to the list of deferred io. 715 */ 716 static void queue_io(struct mapped_device *md, struct bio *bio) 717 { 718 unsigned long flags; 719 720 spin_lock_irqsave(&md->deferred_lock, flags); 721 bio_list_add(&md->deferred, bio); 722 spin_unlock_irqrestore(&md->deferred_lock, flags); 723 queue_work(md->wq, &md->work); 724 } 725 726 /* 727 * Everyone (including functions in this file), should use this 728 * function to access the md->map field, and make sure they call 729 * dm_put_live_table() when finished. 730 */ 731 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 732 { 733 *srcu_idx = srcu_read_lock(&md->io_barrier); 734 735 return srcu_dereference(md->map, &md->io_barrier); 736 } 737 738 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 739 { 740 srcu_read_unlock(&md->io_barrier, srcu_idx); 741 } 742 743 void dm_sync_table(struct mapped_device *md) 744 { 745 synchronize_srcu(&md->io_barrier); 746 synchronize_rcu_expedited(); 747 } 748 749 /* 750 * A fast alternative to dm_get_live_table/dm_put_live_table. 751 * The caller must not block between these two functions. 752 */ 753 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 754 { 755 rcu_read_lock(); 756 return rcu_dereference(md->map); 757 } 758 759 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 760 { 761 rcu_read_unlock(); 762 } 763 764 static char *_dm_claim_ptr = "I belong to device-mapper"; 765 766 /* 767 * Open a table device so we can use it as a map destination. 768 */ 769 static int open_table_device(struct table_device *td, dev_t dev, 770 struct mapped_device *md) 771 { 772 struct block_device *bdev; 773 774 int r; 775 776 BUG_ON(td->dm_dev.bdev); 777 778 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 779 if (IS_ERR(bdev)) 780 return PTR_ERR(bdev); 781 782 r = bd_link_disk_holder(bdev, dm_disk(md)); 783 if (r) { 784 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 785 return r; 786 } 787 788 td->dm_dev.bdev = bdev; 789 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 790 return 0; 791 } 792 793 /* 794 * Close a table device that we've been using. 795 */ 796 static void close_table_device(struct table_device *td, struct mapped_device *md) 797 { 798 if (!td->dm_dev.bdev) 799 return; 800 801 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 802 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 803 put_dax(td->dm_dev.dax_dev); 804 td->dm_dev.bdev = NULL; 805 td->dm_dev.dax_dev = NULL; 806 } 807 808 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 809 fmode_t mode) 810 { 811 struct table_device *td; 812 813 list_for_each_entry(td, l, list) 814 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 815 return td; 816 817 return NULL; 818 } 819 820 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 821 struct dm_dev **result) 822 { 823 int r; 824 struct table_device *td; 825 826 mutex_lock(&md->table_devices_lock); 827 td = find_table_device(&md->table_devices, dev, mode); 828 if (!td) { 829 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 830 if (!td) { 831 mutex_unlock(&md->table_devices_lock); 832 return -ENOMEM; 833 } 834 835 td->dm_dev.mode = mode; 836 td->dm_dev.bdev = NULL; 837 838 if ((r = open_table_device(td, dev, md))) { 839 mutex_unlock(&md->table_devices_lock); 840 kfree(td); 841 return r; 842 } 843 844 format_dev_t(td->dm_dev.name, dev); 845 846 refcount_set(&td->count, 1); 847 list_add(&td->list, &md->table_devices); 848 } else { 849 refcount_inc(&td->count); 850 } 851 mutex_unlock(&md->table_devices_lock); 852 853 *result = &td->dm_dev; 854 return 0; 855 } 856 EXPORT_SYMBOL_GPL(dm_get_table_device); 857 858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 859 { 860 struct table_device *td = container_of(d, struct table_device, dm_dev); 861 862 mutex_lock(&md->table_devices_lock); 863 if (refcount_dec_and_test(&td->count)) { 864 close_table_device(td, md); 865 list_del(&td->list); 866 kfree(td); 867 } 868 mutex_unlock(&md->table_devices_lock); 869 } 870 EXPORT_SYMBOL(dm_put_table_device); 871 872 static void free_table_devices(struct list_head *devices) 873 { 874 struct list_head *tmp, *next; 875 876 list_for_each_safe(tmp, next, devices) { 877 struct table_device *td = list_entry(tmp, struct table_device, list); 878 879 DMWARN("dm_destroy: %s still exists with %d references", 880 td->dm_dev.name, refcount_read(&td->count)); 881 kfree(td); 882 } 883 } 884 885 /* 886 * Get the geometry associated with a dm device 887 */ 888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 889 { 890 *geo = md->geometry; 891 892 return 0; 893 } 894 895 /* 896 * Set the geometry of a device. 897 */ 898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 899 { 900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 901 902 if (geo->start > sz) { 903 DMWARN("Start sector is beyond the geometry limits."); 904 return -EINVAL; 905 } 906 907 md->geometry = *geo; 908 909 return 0; 910 } 911 912 static int __noflush_suspending(struct mapped_device *md) 913 { 914 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 915 } 916 917 /* 918 * Decrements the number of outstanding ios that a bio has been 919 * cloned into, completing the original io if necc. 920 */ 921 static void dec_pending(struct dm_io *io, blk_status_t error) 922 { 923 unsigned long flags; 924 blk_status_t io_error; 925 struct bio *bio; 926 struct mapped_device *md = io->md; 927 928 /* Push-back supersedes any I/O errors */ 929 if (unlikely(error)) { 930 spin_lock_irqsave(&io->endio_lock, flags); 931 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 932 io->status = error; 933 spin_unlock_irqrestore(&io->endio_lock, flags); 934 } 935 936 if (atomic_dec_and_test(&io->io_count)) { 937 if (io->status == BLK_STS_DM_REQUEUE) { 938 /* 939 * Target requested pushing back the I/O. 940 */ 941 spin_lock_irqsave(&md->deferred_lock, flags); 942 if (__noflush_suspending(md)) 943 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 944 bio_list_add_head(&md->deferred, io->orig_bio); 945 else 946 /* noflush suspend was interrupted. */ 947 io->status = BLK_STS_IOERR; 948 spin_unlock_irqrestore(&md->deferred_lock, flags); 949 } 950 951 io_error = io->status; 952 bio = io->orig_bio; 953 end_io_acct(io); 954 free_io(md, io); 955 956 if (io_error == BLK_STS_DM_REQUEUE) 957 return; 958 959 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 960 /* 961 * Preflush done for flush with data, reissue 962 * without REQ_PREFLUSH. 963 */ 964 bio->bi_opf &= ~REQ_PREFLUSH; 965 queue_io(md, bio); 966 } else { 967 /* done with normal IO or empty flush */ 968 if (io_error) 969 bio->bi_status = io_error; 970 bio_endio(bio); 971 } 972 } 973 } 974 975 void disable_discard(struct mapped_device *md) 976 { 977 struct queue_limits *limits = dm_get_queue_limits(md); 978 979 /* device doesn't really support DISCARD, disable it */ 980 limits->max_discard_sectors = 0; 981 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 982 } 983 984 void disable_write_same(struct mapped_device *md) 985 { 986 struct queue_limits *limits = dm_get_queue_limits(md); 987 988 /* device doesn't really support WRITE SAME, disable it */ 989 limits->max_write_same_sectors = 0; 990 } 991 992 void disable_write_zeroes(struct mapped_device *md) 993 { 994 struct queue_limits *limits = dm_get_queue_limits(md); 995 996 /* device doesn't really support WRITE ZEROES, disable it */ 997 limits->max_write_zeroes_sectors = 0; 998 } 999 1000 static void clone_endio(struct bio *bio) 1001 { 1002 blk_status_t error = bio->bi_status; 1003 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1004 struct dm_io *io = tio->io; 1005 struct mapped_device *md = tio->io->md; 1006 dm_endio_fn endio = tio->ti->type->end_io; 1007 1008 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1009 if (bio_op(bio) == REQ_OP_DISCARD && 1010 !bio->bi_disk->queue->limits.max_discard_sectors) 1011 disable_discard(md); 1012 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1013 !bio->bi_disk->queue->limits.max_write_same_sectors) 1014 disable_write_same(md); 1015 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1016 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1017 disable_write_zeroes(md); 1018 } 1019 1020 if (endio) { 1021 int r = endio(tio->ti, bio, &error); 1022 switch (r) { 1023 case DM_ENDIO_REQUEUE: 1024 error = BLK_STS_DM_REQUEUE; 1025 /*FALLTHRU*/ 1026 case DM_ENDIO_DONE: 1027 break; 1028 case DM_ENDIO_INCOMPLETE: 1029 /* The target will handle the io */ 1030 return; 1031 default: 1032 DMWARN("unimplemented target endio return value: %d", r); 1033 BUG(); 1034 } 1035 } 1036 1037 free_tio(tio); 1038 dec_pending(io, error); 1039 } 1040 1041 /* 1042 * Return maximum size of I/O possible at the supplied sector up to the current 1043 * target boundary. 1044 */ 1045 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1046 { 1047 sector_t target_offset = dm_target_offset(ti, sector); 1048 1049 return ti->len - target_offset; 1050 } 1051 1052 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1053 { 1054 sector_t len = max_io_len_target_boundary(sector, ti); 1055 sector_t offset, max_len; 1056 1057 /* 1058 * Does the target need to split even further? 1059 */ 1060 if (ti->max_io_len) { 1061 offset = dm_target_offset(ti, sector); 1062 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1063 max_len = sector_div(offset, ti->max_io_len); 1064 else 1065 max_len = offset & (ti->max_io_len - 1); 1066 max_len = ti->max_io_len - max_len; 1067 1068 if (len > max_len) 1069 len = max_len; 1070 } 1071 1072 return len; 1073 } 1074 1075 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1076 { 1077 if (len > UINT_MAX) { 1078 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1079 (unsigned long long)len, UINT_MAX); 1080 ti->error = "Maximum size of target IO is too large"; 1081 return -EINVAL; 1082 } 1083 1084 ti->max_io_len = (uint32_t) len; 1085 1086 return 0; 1087 } 1088 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1089 1090 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1091 sector_t sector, int *srcu_idx) 1092 __acquires(md->io_barrier) 1093 { 1094 struct dm_table *map; 1095 struct dm_target *ti; 1096 1097 map = dm_get_live_table(md, srcu_idx); 1098 if (!map) 1099 return NULL; 1100 1101 ti = dm_table_find_target(map, sector); 1102 if (!ti) 1103 return NULL; 1104 1105 return ti; 1106 } 1107 1108 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1109 long nr_pages, void **kaddr, pfn_t *pfn) 1110 { 1111 struct mapped_device *md = dax_get_private(dax_dev); 1112 sector_t sector = pgoff * PAGE_SECTORS; 1113 struct dm_target *ti; 1114 long len, ret = -EIO; 1115 int srcu_idx; 1116 1117 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1118 1119 if (!ti) 1120 goto out; 1121 if (!ti->type->direct_access) 1122 goto out; 1123 len = max_io_len(sector, ti) / PAGE_SECTORS; 1124 if (len < 1) 1125 goto out; 1126 nr_pages = min(len, nr_pages); 1127 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1128 1129 out: 1130 dm_put_live_table(md, srcu_idx); 1131 1132 return ret; 1133 } 1134 1135 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1136 int blocksize, sector_t start, sector_t len) 1137 { 1138 struct mapped_device *md = dax_get_private(dax_dev); 1139 struct dm_table *map; 1140 int srcu_idx; 1141 bool ret; 1142 1143 map = dm_get_live_table(md, &srcu_idx); 1144 if (!map) 1145 return false; 1146 1147 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1148 1149 dm_put_live_table(md, srcu_idx); 1150 1151 return ret; 1152 } 1153 1154 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1155 void *addr, size_t bytes, struct iov_iter *i) 1156 { 1157 struct mapped_device *md = dax_get_private(dax_dev); 1158 sector_t sector = pgoff * PAGE_SECTORS; 1159 struct dm_target *ti; 1160 long ret = 0; 1161 int srcu_idx; 1162 1163 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1164 1165 if (!ti) 1166 goto out; 1167 if (!ti->type->dax_copy_from_iter) { 1168 ret = copy_from_iter(addr, bytes, i); 1169 goto out; 1170 } 1171 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1172 out: 1173 dm_put_live_table(md, srcu_idx); 1174 1175 return ret; 1176 } 1177 1178 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1179 void *addr, size_t bytes, struct iov_iter *i) 1180 { 1181 struct mapped_device *md = dax_get_private(dax_dev); 1182 sector_t sector = pgoff * PAGE_SECTORS; 1183 struct dm_target *ti; 1184 long ret = 0; 1185 int srcu_idx; 1186 1187 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1188 1189 if (!ti) 1190 goto out; 1191 if (!ti->type->dax_copy_to_iter) { 1192 ret = copy_to_iter(addr, bytes, i); 1193 goto out; 1194 } 1195 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1196 out: 1197 dm_put_live_table(md, srcu_idx); 1198 1199 return ret; 1200 } 1201 1202 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1203 size_t nr_pages) 1204 { 1205 struct mapped_device *md = dax_get_private(dax_dev); 1206 sector_t sector = pgoff * PAGE_SECTORS; 1207 struct dm_target *ti; 1208 int ret = -EIO; 1209 int srcu_idx; 1210 1211 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1212 1213 if (!ti) 1214 goto out; 1215 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1216 /* 1217 * ->zero_page_range() is mandatory dax operation. If we are 1218 * here, something is wrong. 1219 */ 1220 dm_put_live_table(md, srcu_idx); 1221 goto out; 1222 } 1223 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1224 1225 out: 1226 dm_put_live_table(md, srcu_idx); 1227 1228 return ret; 1229 } 1230 1231 /* 1232 * A target may call dm_accept_partial_bio only from the map routine. It is 1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1235 * 1236 * dm_accept_partial_bio informs the dm that the target only wants to process 1237 * additional n_sectors sectors of the bio and the rest of the data should be 1238 * sent in a next bio. 1239 * 1240 * A diagram that explains the arithmetics: 1241 * +--------------------+---------------+-------+ 1242 * | 1 | 2 | 3 | 1243 * +--------------------+---------------+-------+ 1244 * 1245 * <-------------- *tio->len_ptr ---------------> 1246 * <------- bi_size -------> 1247 * <-- n_sectors --> 1248 * 1249 * Region 1 was already iterated over with bio_advance or similar function. 1250 * (it may be empty if the target doesn't use bio_advance) 1251 * Region 2 is the remaining bio size that the target wants to process. 1252 * (it may be empty if region 1 is non-empty, although there is no reason 1253 * to make it empty) 1254 * The target requires that region 3 is to be sent in the next bio. 1255 * 1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1257 * the partially processed part (the sum of regions 1+2) must be the same for all 1258 * copies of the bio. 1259 */ 1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1261 { 1262 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1263 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1264 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1265 BUG_ON(bi_size > *tio->len_ptr); 1266 BUG_ON(n_sectors > bi_size); 1267 *tio->len_ptr -= bi_size - n_sectors; 1268 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1269 } 1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1271 1272 static blk_qc_t __map_bio(struct dm_target_io *tio) 1273 { 1274 int r; 1275 sector_t sector; 1276 struct bio *clone = &tio->clone; 1277 struct dm_io *io = tio->io; 1278 struct mapped_device *md = io->md; 1279 struct dm_target *ti = tio->ti; 1280 blk_qc_t ret = BLK_QC_T_NONE; 1281 1282 clone->bi_end_io = clone_endio; 1283 1284 /* 1285 * Map the clone. If r == 0 we don't need to do 1286 * anything, the target has assumed ownership of 1287 * this io. 1288 */ 1289 atomic_inc(&io->io_count); 1290 sector = clone->bi_iter.bi_sector; 1291 1292 r = ti->type->map(ti, clone); 1293 switch (r) { 1294 case DM_MAPIO_SUBMITTED: 1295 break; 1296 case DM_MAPIO_REMAPPED: 1297 /* the bio has been remapped so dispatch it */ 1298 trace_block_bio_remap(clone->bi_disk->queue, clone, 1299 bio_dev(io->orig_bio), sector); 1300 if (md->type == DM_TYPE_NVME_BIO_BASED) 1301 ret = direct_make_request(clone); 1302 else 1303 ret = generic_make_request(clone); 1304 break; 1305 case DM_MAPIO_KILL: 1306 free_tio(tio); 1307 dec_pending(io, BLK_STS_IOERR); 1308 break; 1309 case DM_MAPIO_REQUEUE: 1310 free_tio(tio); 1311 dec_pending(io, BLK_STS_DM_REQUEUE); 1312 break; 1313 default: 1314 DMWARN("unimplemented target map return value: %d", r); 1315 BUG(); 1316 } 1317 1318 return ret; 1319 } 1320 1321 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1322 { 1323 bio->bi_iter.bi_sector = sector; 1324 bio->bi_iter.bi_size = to_bytes(len); 1325 } 1326 1327 /* 1328 * Creates a bio that consists of range of complete bvecs. 1329 */ 1330 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1331 sector_t sector, unsigned len) 1332 { 1333 struct bio *clone = &tio->clone; 1334 1335 __bio_clone_fast(clone, bio); 1336 1337 if (bio_integrity(bio)) { 1338 int r; 1339 1340 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1341 !dm_target_passes_integrity(tio->ti->type))) { 1342 DMWARN("%s: the target %s doesn't support integrity data.", 1343 dm_device_name(tio->io->md), 1344 tio->ti->type->name); 1345 return -EIO; 1346 } 1347 1348 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1349 if (r < 0) 1350 return r; 1351 } 1352 1353 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1354 clone->bi_iter.bi_size = to_bytes(len); 1355 1356 if (bio_integrity(bio)) 1357 bio_integrity_trim(clone); 1358 1359 return 0; 1360 } 1361 1362 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1363 struct dm_target *ti, unsigned num_bios) 1364 { 1365 struct dm_target_io *tio; 1366 int try; 1367 1368 if (!num_bios) 1369 return; 1370 1371 if (num_bios == 1) { 1372 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1373 bio_list_add(blist, &tio->clone); 1374 return; 1375 } 1376 1377 for (try = 0; try < 2; try++) { 1378 int bio_nr; 1379 struct bio *bio; 1380 1381 if (try) 1382 mutex_lock(&ci->io->md->table_devices_lock); 1383 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1384 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1385 if (!tio) 1386 break; 1387 1388 bio_list_add(blist, &tio->clone); 1389 } 1390 if (try) 1391 mutex_unlock(&ci->io->md->table_devices_lock); 1392 if (bio_nr == num_bios) 1393 return; 1394 1395 while ((bio = bio_list_pop(blist))) { 1396 tio = container_of(bio, struct dm_target_io, clone); 1397 free_tio(tio); 1398 } 1399 } 1400 } 1401 1402 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1403 struct dm_target_io *tio, unsigned *len) 1404 { 1405 struct bio *clone = &tio->clone; 1406 1407 tio->len_ptr = len; 1408 1409 __bio_clone_fast(clone, ci->bio); 1410 if (len) 1411 bio_setup_sector(clone, ci->sector, *len); 1412 1413 return __map_bio(tio); 1414 } 1415 1416 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1417 unsigned num_bios, unsigned *len) 1418 { 1419 struct bio_list blist = BIO_EMPTY_LIST; 1420 struct bio *bio; 1421 struct dm_target_io *tio; 1422 1423 alloc_multiple_bios(&blist, ci, ti, num_bios); 1424 1425 while ((bio = bio_list_pop(&blist))) { 1426 tio = container_of(bio, struct dm_target_io, clone); 1427 (void) __clone_and_map_simple_bio(ci, tio, len); 1428 } 1429 } 1430 1431 static int __send_empty_flush(struct clone_info *ci) 1432 { 1433 unsigned target_nr = 0; 1434 struct dm_target *ti; 1435 1436 /* 1437 * Empty flush uses a statically initialized bio, as the base for 1438 * cloning. However, blkg association requires that a bdev is 1439 * associated with a gendisk, which doesn't happen until the bdev is 1440 * opened. So, blkg association is done at issue time of the flush 1441 * rather than when the device is created in alloc_dev(). 1442 */ 1443 bio_set_dev(ci->bio, ci->io->md->bdev); 1444 1445 BUG_ON(bio_has_data(ci->bio)); 1446 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1447 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1448 1449 bio_disassociate_blkg(ci->bio); 1450 1451 return 0; 1452 } 1453 1454 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1455 sector_t sector, unsigned *len) 1456 { 1457 struct bio *bio = ci->bio; 1458 struct dm_target_io *tio; 1459 int r; 1460 1461 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1462 tio->len_ptr = len; 1463 r = clone_bio(tio, bio, sector, *len); 1464 if (r < 0) { 1465 free_tio(tio); 1466 return r; 1467 } 1468 (void) __map_bio(tio); 1469 1470 return 0; 1471 } 1472 1473 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1474 1475 static unsigned get_num_discard_bios(struct dm_target *ti) 1476 { 1477 return ti->num_discard_bios; 1478 } 1479 1480 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1481 { 1482 return ti->num_secure_erase_bios; 1483 } 1484 1485 static unsigned get_num_write_same_bios(struct dm_target *ti) 1486 { 1487 return ti->num_write_same_bios; 1488 } 1489 1490 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1491 { 1492 return ti->num_write_zeroes_bios; 1493 } 1494 1495 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1496 unsigned num_bios) 1497 { 1498 unsigned len; 1499 1500 /* 1501 * Even though the device advertised support for this type of 1502 * request, that does not mean every target supports it, and 1503 * reconfiguration might also have changed that since the 1504 * check was performed. 1505 */ 1506 if (!num_bios) 1507 return -EOPNOTSUPP; 1508 1509 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1510 1511 __send_duplicate_bios(ci, ti, num_bios, &len); 1512 1513 ci->sector += len; 1514 ci->sector_count -= len; 1515 1516 return 0; 1517 } 1518 1519 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1520 { 1521 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1522 } 1523 1524 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1525 { 1526 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1527 } 1528 1529 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1530 { 1531 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1532 } 1533 1534 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1535 { 1536 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1537 } 1538 1539 static bool is_abnormal_io(struct bio *bio) 1540 { 1541 bool r = false; 1542 1543 switch (bio_op(bio)) { 1544 case REQ_OP_DISCARD: 1545 case REQ_OP_SECURE_ERASE: 1546 case REQ_OP_WRITE_SAME: 1547 case REQ_OP_WRITE_ZEROES: 1548 r = true; 1549 break; 1550 } 1551 1552 return r; 1553 } 1554 1555 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1556 int *result) 1557 { 1558 struct bio *bio = ci->bio; 1559 1560 if (bio_op(bio) == REQ_OP_DISCARD) 1561 *result = __send_discard(ci, ti); 1562 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1563 *result = __send_secure_erase(ci, ti); 1564 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1565 *result = __send_write_same(ci, ti); 1566 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1567 *result = __send_write_zeroes(ci, ti); 1568 else 1569 return false; 1570 1571 return true; 1572 } 1573 1574 /* 1575 * Select the correct strategy for processing a non-flush bio. 1576 */ 1577 static int __split_and_process_non_flush(struct clone_info *ci) 1578 { 1579 struct dm_target *ti; 1580 unsigned len; 1581 int r; 1582 1583 ti = dm_table_find_target(ci->map, ci->sector); 1584 if (!ti) 1585 return -EIO; 1586 1587 if (__process_abnormal_io(ci, ti, &r)) 1588 return r; 1589 1590 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1591 1592 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1593 if (r < 0) 1594 return r; 1595 1596 ci->sector += len; 1597 ci->sector_count -= len; 1598 1599 return 0; 1600 } 1601 1602 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1603 struct dm_table *map, struct bio *bio) 1604 { 1605 ci->map = map; 1606 ci->io = alloc_io(md, bio); 1607 ci->sector = bio->bi_iter.bi_sector; 1608 } 1609 1610 #define __dm_part_stat_sub(part, field, subnd) \ 1611 (part_stat_get(part, field) -= (subnd)) 1612 1613 /* 1614 * Entry point to split a bio into clones and submit them to the targets. 1615 */ 1616 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1617 struct dm_table *map, struct bio *bio) 1618 { 1619 struct clone_info ci; 1620 blk_qc_t ret = BLK_QC_T_NONE; 1621 int error = 0; 1622 1623 init_clone_info(&ci, md, map, bio); 1624 1625 if (bio->bi_opf & REQ_PREFLUSH) { 1626 struct bio flush_bio; 1627 1628 /* 1629 * Use an on-stack bio for this, it's safe since we don't 1630 * need to reference it after submit. It's just used as 1631 * the basis for the clone(s). 1632 */ 1633 bio_init(&flush_bio, NULL, 0); 1634 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1635 ci.bio = &flush_bio; 1636 ci.sector_count = 0; 1637 error = __send_empty_flush(&ci); 1638 /* dec_pending submits any data associated with flush */ 1639 } else if (op_is_zone_mgmt(bio_op(bio))) { 1640 ci.bio = bio; 1641 ci.sector_count = 0; 1642 error = __split_and_process_non_flush(&ci); 1643 } else { 1644 ci.bio = bio; 1645 ci.sector_count = bio_sectors(bio); 1646 while (ci.sector_count && !error) { 1647 error = __split_and_process_non_flush(&ci); 1648 if (current->bio_list && ci.sector_count && !error) { 1649 /* 1650 * Remainder must be passed to generic_make_request() 1651 * so that it gets handled *after* bios already submitted 1652 * have been completely processed. 1653 * We take a clone of the original to store in 1654 * ci.io->orig_bio to be used by end_io_acct() and 1655 * for dec_pending to use for completion handling. 1656 */ 1657 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1658 GFP_NOIO, &md->queue->bio_split); 1659 ci.io->orig_bio = b; 1660 1661 /* 1662 * Adjust IO stats for each split, otherwise upon queue 1663 * reentry there will be redundant IO accounting. 1664 * NOTE: this is a stop-gap fix, a proper fix involves 1665 * significant refactoring of DM core's bio splitting 1666 * (by eliminating DM's splitting and just using bio_split) 1667 */ 1668 part_stat_lock(); 1669 __dm_part_stat_sub(&dm_disk(md)->part0, 1670 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1671 part_stat_unlock(); 1672 1673 bio_chain(b, bio); 1674 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1675 ret = generic_make_request(bio); 1676 break; 1677 } 1678 } 1679 } 1680 1681 /* drop the extra reference count */ 1682 dec_pending(ci.io, errno_to_blk_status(error)); 1683 return ret; 1684 } 1685 1686 /* 1687 * Optimized variant of __split_and_process_bio that leverages the 1688 * fact that targets that use it do _not_ have a need to split bios. 1689 */ 1690 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1691 struct bio *bio, struct dm_target *ti) 1692 { 1693 struct clone_info ci; 1694 blk_qc_t ret = BLK_QC_T_NONE; 1695 int error = 0; 1696 1697 init_clone_info(&ci, md, map, bio); 1698 1699 if (bio->bi_opf & REQ_PREFLUSH) { 1700 struct bio flush_bio; 1701 1702 /* 1703 * Use an on-stack bio for this, it's safe since we don't 1704 * need to reference it after submit. It's just used as 1705 * the basis for the clone(s). 1706 */ 1707 bio_init(&flush_bio, NULL, 0); 1708 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1709 ci.bio = &flush_bio; 1710 ci.sector_count = 0; 1711 error = __send_empty_flush(&ci); 1712 /* dec_pending submits any data associated with flush */ 1713 } else { 1714 struct dm_target_io *tio; 1715 1716 ci.bio = bio; 1717 ci.sector_count = bio_sectors(bio); 1718 if (__process_abnormal_io(&ci, ti, &error)) 1719 goto out; 1720 1721 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1722 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1723 } 1724 out: 1725 /* drop the extra reference count */ 1726 dec_pending(ci.io, errno_to_blk_status(error)); 1727 return ret; 1728 } 1729 1730 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1731 { 1732 unsigned len, sector_count; 1733 1734 sector_count = bio_sectors(*bio); 1735 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1736 1737 if (sector_count > len) { 1738 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1739 1740 bio_chain(split, *bio); 1741 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1742 generic_make_request(*bio); 1743 *bio = split; 1744 } 1745 } 1746 1747 static blk_qc_t dm_process_bio(struct mapped_device *md, 1748 struct dm_table *map, struct bio *bio) 1749 { 1750 blk_qc_t ret = BLK_QC_T_NONE; 1751 struct dm_target *ti = md->immutable_target; 1752 1753 if (unlikely(!map)) { 1754 bio_io_error(bio); 1755 return ret; 1756 } 1757 1758 if (!ti) { 1759 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1760 if (unlikely(!ti)) { 1761 bio_io_error(bio); 1762 return ret; 1763 } 1764 } 1765 1766 /* 1767 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1768 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1769 * won't be imposed. 1770 */ 1771 if (current->bio_list) { 1772 if (is_abnormal_io(bio)) 1773 blk_queue_split(md->queue, &bio); 1774 else 1775 dm_queue_split(md, ti, &bio); 1776 } 1777 1778 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1779 return __process_bio(md, map, bio, ti); 1780 else 1781 return __split_and_process_bio(md, map, bio); 1782 } 1783 1784 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1785 { 1786 struct mapped_device *md = q->queuedata; 1787 blk_qc_t ret = BLK_QC_T_NONE; 1788 int srcu_idx; 1789 struct dm_table *map; 1790 1791 map = dm_get_live_table(md, &srcu_idx); 1792 1793 /* if we're suspended, we have to queue this io for later */ 1794 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1795 dm_put_live_table(md, srcu_idx); 1796 1797 if (!(bio->bi_opf & REQ_RAHEAD)) 1798 queue_io(md, bio); 1799 else 1800 bio_io_error(bio); 1801 return ret; 1802 } 1803 1804 ret = dm_process_bio(md, map, bio); 1805 1806 dm_put_live_table(md, srcu_idx); 1807 return ret; 1808 } 1809 1810 static int dm_any_congested(void *congested_data, int bdi_bits) 1811 { 1812 int r = bdi_bits; 1813 struct mapped_device *md = congested_data; 1814 struct dm_table *map; 1815 1816 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1817 if (dm_request_based(md)) { 1818 /* 1819 * With request-based DM we only need to check the 1820 * top-level queue for congestion. 1821 */ 1822 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1823 r = bdi->wb.congested->state & bdi_bits; 1824 } else { 1825 map = dm_get_live_table_fast(md); 1826 if (map) 1827 r = dm_table_any_congested(map, bdi_bits); 1828 dm_put_live_table_fast(md); 1829 } 1830 } 1831 1832 return r; 1833 } 1834 1835 /*----------------------------------------------------------------- 1836 * An IDR is used to keep track of allocated minor numbers. 1837 *---------------------------------------------------------------*/ 1838 static void free_minor(int minor) 1839 { 1840 spin_lock(&_minor_lock); 1841 idr_remove(&_minor_idr, minor); 1842 spin_unlock(&_minor_lock); 1843 } 1844 1845 /* 1846 * See if the device with a specific minor # is free. 1847 */ 1848 static int specific_minor(int minor) 1849 { 1850 int r; 1851 1852 if (minor >= (1 << MINORBITS)) 1853 return -EINVAL; 1854 1855 idr_preload(GFP_KERNEL); 1856 spin_lock(&_minor_lock); 1857 1858 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1859 1860 spin_unlock(&_minor_lock); 1861 idr_preload_end(); 1862 if (r < 0) 1863 return r == -ENOSPC ? -EBUSY : r; 1864 return 0; 1865 } 1866 1867 static int next_free_minor(int *minor) 1868 { 1869 int r; 1870 1871 idr_preload(GFP_KERNEL); 1872 spin_lock(&_minor_lock); 1873 1874 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1875 1876 spin_unlock(&_minor_lock); 1877 idr_preload_end(); 1878 if (r < 0) 1879 return r; 1880 *minor = r; 1881 return 0; 1882 } 1883 1884 static const struct block_device_operations dm_blk_dops; 1885 static const struct dax_operations dm_dax_ops; 1886 1887 static void dm_wq_work(struct work_struct *work); 1888 1889 static void cleanup_mapped_device(struct mapped_device *md) 1890 { 1891 if (md->wq) 1892 destroy_workqueue(md->wq); 1893 bioset_exit(&md->bs); 1894 bioset_exit(&md->io_bs); 1895 1896 if (md->dax_dev) { 1897 kill_dax(md->dax_dev); 1898 put_dax(md->dax_dev); 1899 md->dax_dev = NULL; 1900 } 1901 1902 if (md->disk) { 1903 spin_lock(&_minor_lock); 1904 md->disk->private_data = NULL; 1905 spin_unlock(&_minor_lock); 1906 del_gendisk(md->disk); 1907 put_disk(md->disk); 1908 } 1909 1910 if (md->queue) 1911 blk_cleanup_queue(md->queue); 1912 1913 cleanup_srcu_struct(&md->io_barrier); 1914 1915 if (md->bdev) { 1916 bdput(md->bdev); 1917 md->bdev = NULL; 1918 } 1919 1920 mutex_destroy(&md->suspend_lock); 1921 mutex_destroy(&md->type_lock); 1922 mutex_destroy(&md->table_devices_lock); 1923 1924 dm_mq_cleanup_mapped_device(md); 1925 } 1926 1927 /* 1928 * Allocate and initialise a blank device with a given minor. 1929 */ 1930 static struct mapped_device *alloc_dev(int minor) 1931 { 1932 int r, numa_node_id = dm_get_numa_node(); 1933 struct mapped_device *md; 1934 void *old_md; 1935 1936 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1937 if (!md) { 1938 DMWARN("unable to allocate device, out of memory."); 1939 return NULL; 1940 } 1941 1942 if (!try_module_get(THIS_MODULE)) 1943 goto bad_module_get; 1944 1945 /* get a minor number for the dev */ 1946 if (minor == DM_ANY_MINOR) 1947 r = next_free_minor(&minor); 1948 else 1949 r = specific_minor(minor); 1950 if (r < 0) 1951 goto bad_minor; 1952 1953 r = init_srcu_struct(&md->io_barrier); 1954 if (r < 0) 1955 goto bad_io_barrier; 1956 1957 md->numa_node_id = numa_node_id; 1958 md->init_tio_pdu = false; 1959 md->type = DM_TYPE_NONE; 1960 mutex_init(&md->suspend_lock); 1961 mutex_init(&md->type_lock); 1962 mutex_init(&md->table_devices_lock); 1963 spin_lock_init(&md->deferred_lock); 1964 atomic_set(&md->holders, 1); 1965 atomic_set(&md->open_count, 0); 1966 atomic_set(&md->event_nr, 0); 1967 atomic_set(&md->uevent_seq, 0); 1968 INIT_LIST_HEAD(&md->uevent_list); 1969 INIT_LIST_HEAD(&md->table_devices); 1970 spin_lock_init(&md->uevent_lock); 1971 1972 /* 1973 * default to bio-based required ->make_request_fn until DM 1974 * table is loaded and md->type established. If request-based 1975 * table is loaded: blk-mq will override accordingly. 1976 */ 1977 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 1978 if (!md->queue) 1979 goto bad; 1980 md->queue->queuedata = md; 1981 1982 md->disk = alloc_disk_node(1, md->numa_node_id); 1983 if (!md->disk) 1984 goto bad; 1985 1986 init_waitqueue_head(&md->wait); 1987 INIT_WORK(&md->work, dm_wq_work); 1988 init_waitqueue_head(&md->eventq); 1989 init_completion(&md->kobj_holder.completion); 1990 1991 md->disk->major = _major; 1992 md->disk->first_minor = minor; 1993 md->disk->fops = &dm_blk_dops; 1994 md->disk->queue = md->queue; 1995 md->disk->private_data = md; 1996 sprintf(md->disk->disk_name, "dm-%d", minor); 1997 1998 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1999 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2000 &dm_dax_ops, 0); 2001 if (IS_ERR(md->dax_dev)) 2002 goto bad; 2003 } 2004 2005 add_disk_no_queue_reg(md->disk); 2006 format_dev_t(md->name, MKDEV(_major, minor)); 2007 2008 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2009 if (!md->wq) 2010 goto bad; 2011 2012 md->bdev = bdget_disk(md->disk, 0); 2013 if (!md->bdev) 2014 goto bad; 2015 2016 dm_stats_init(&md->stats); 2017 2018 /* Populate the mapping, nobody knows we exist yet */ 2019 spin_lock(&_minor_lock); 2020 old_md = idr_replace(&_minor_idr, md, minor); 2021 spin_unlock(&_minor_lock); 2022 2023 BUG_ON(old_md != MINOR_ALLOCED); 2024 2025 return md; 2026 2027 bad: 2028 cleanup_mapped_device(md); 2029 bad_io_barrier: 2030 free_minor(minor); 2031 bad_minor: 2032 module_put(THIS_MODULE); 2033 bad_module_get: 2034 kvfree(md); 2035 return NULL; 2036 } 2037 2038 static void unlock_fs(struct mapped_device *md); 2039 2040 static void free_dev(struct mapped_device *md) 2041 { 2042 int minor = MINOR(disk_devt(md->disk)); 2043 2044 unlock_fs(md); 2045 2046 cleanup_mapped_device(md); 2047 2048 free_table_devices(&md->table_devices); 2049 dm_stats_cleanup(&md->stats); 2050 free_minor(minor); 2051 2052 module_put(THIS_MODULE); 2053 kvfree(md); 2054 } 2055 2056 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2057 { 2058 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2059 int ret = 0; 2060 2061 if (dm_table_bio_based(t)) { 2062 /* 2063 * The md may already have mempools that need changing. 2064 * If so, reload bioset because front_pad may have changed 2065 * because a different table was loaded. 2066 */ 2067 bioset_exit(&md->bs); 2068 bioset_exit(&md->io_bs); 2069 2070 } else if (bioset_initialized(&md->bs)) { 2071 /* 2072 * There's no need to reload with request-based dm 2073 * because the size of front_pad doesn't change. 2074 * Note for future: If you are to reload bioset, 2075 * prep-ed requests in the queue may refer 2076 * to bio from the old bioset, so you must walk 2077 * through the queue to unprep. 2078 */ 2079 goto out; 2080 } 2081 2082 BUG_ON(!p || 2083 bioset_initialized(&md->bs) || 2084 bioset_initialized(&md->io_bs)); 2085 2086 ret = bioset_init_from_src(&md->bs, &p->bs); 2087 if (ret) 2088 goto out; 2089 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2090 if (ret) 2091 bioset_exit(&md->bs); 2092 out: 2093 /* mempool bind completed, no longer need any mempools in the table */ 2094 dm_table_free_md_mempools(t); 2095 return ret; 2096 } 2097 2098 /* 2099 * Bind a table to the device. 2100 */ 2101 static void event_callback(void *context) 2102 { 2103 unsigned long flags; 2104 LIST_HEAD(uevents); 2105 struct mapped_device *md = (struct mapped_device *) context; 2106 2107 spin_lock_irqsave(&md->uevent_lock, flags); 2108 list_splice_init(&md->uevent_list, &uevents); 2109 spin_unlock_irqrestore(&md->uevent_lock, flags); 2110 2111 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2112 2113 atomic_inc(&md->event_nr); 2114 wake_up(&md->eventq); 2115 dm_issue_global_event(); 2116 } 2117 2118 /* 2119 * Protected by md->suspend_lock obtained by dm_swap_table(). 2120 */ 2121 static void __set_size(struct mapped_device *md, sector_t size) 2122 { 2123 lockdep_assert_held(&md->suspend_lock); 2124 2125 set_capacity(md->disk, size); 2126 2127 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2128 } 2129 2130 /* 2131 * Returns old map, which caller must destroy. 2132 */ 2133 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2134 struct queue_limits *limits) 2135 { 2136 struct dm_table *old_map; 2137 struct request_queue *q = md->queue; 2138 bool request_based = dm_table_request_based(t); 2139 sector_t size; 2140 int ret; 2141 2142 lockdep_assert_held(&md->suspend_lock); 2143 2144 size = dm_table_get_size(t); 2145 2146 /* 2147 * Wipe any geometry if the size of the table changed. 2148 */ 2149 if (size != dm_get_size(md)) 2150 memset(&md->geometry, 0, sizeof(md->geometry)); 2151 2152 __set_size(md, size); 2153 2154 dm_table_event_callback(t, event_callback, md); 2155 2156 /* 2157 * The queue hasn't been stopped yet, if the old table type wasn't 2158 * for request-based during suspension. So stop it to prevent 2159 * I/O mapping before resume. 2160 * This must be done before setting the queue restrictions, 2161 * because request-based dm may be run just after the setting. 2162 */ 2163 if (request_based) 2164 dm_stop_queue(q); 2165 2166 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2167 /* 2168 * Leverage the fact that request-based DM targets and 2169 * NVMe bio based targets are immutable singletons 2170 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2171 * and __process_bio. 2172 */ 2173 md->immutable_target = dm_table_get_immutable_target(t); 2174 } 2175 2176 ret = __bind_mempools(md, t); 2177 if (ret) { 2178 old_map = ERR_PTR(ret); 2179 goto out; 2180 } 2181 2182 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2183 rcu_assign_pointer(md->map, (void *)t); 2184 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2185 2186 dm_table_set_restrictions(t, q, limits); 2187 if (old_map) 2188 dm_sync_table(md); 2189 2190 out: 2191 return old_map; 2192 } 2193 2194 /* 2195 * Returns unbound table for the caller to free. 2196 */ 2197 static struct dm_table *__unbind(struct mapped_device *md) 2198 { 2199 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2200 2201 if (!map) 2202 return NULL; 2203 2204 dm_table_event_callback(map, NULL, NULL); 2205 RCU_INIT_POINTER(md->map, NULL); 2206 dm_sync_table(md); 2207 2208 return map; 2209 } 2210 2211 /* 2212 * Constructor for a new device. 2213 */ 2214 int dm_create(int minor, struct mapped_device **result) 2215 { 2216 int r; 2217 struct mapped_device *md; 2218 2219 md = alloc_dev(minor); 2220 if (!md) 2221 return -ENXIO; 2222 2223 r = dm_sysfs_init(md); 2224 if (r) { 2225 free_dev(md); 2226 return r; 2227 } 2228 2229 *result = md; 2230 return 0; 2231 } 2232 2233 /* 2234 * Functions to manage md->type. 2235 * All are required to hold md->type_lock. 2236 */ 2237 void dm_lock_md_type(struct mapped_device *md) 2238 { 2239 mutex_lock(&md->type_lock); 2240 } 2241 2242 void dm_unlock_md_type(struct mapped_device *md) 2243 { 2244 mutex_unlock(&md->type_lock); 2245 } 2246 2247 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2248 { 2249 BUG_ON(!mutex_is_locked(&md->type_lock)); 2250 md->type = type; 2251 } 2252 2253 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2254 { 2255 return md->type; 2256 } 2257 2258 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2259 { 2260 return md->immutable_target_type; 2261 } 2262 2263 /* 2264 * The queue_limits are only valid as long as you have a reference 2265 * count on 'md'. 2266 */ 2267 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2268 { 2269 BUG_ON(!atomic_read(&md->holders)); 2270 return &md->queue->limits; 2271 } 2272 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2273 2274 static void dm_init_congested_fn(struct mapped_device *md) 2275 { 2276 md->queue->backing_dev_info->congested_data = md; 2277 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2278 } 2279 2280 /* 2281 * Setup the DM device's queue based on md's type 2282 */ 2283 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2284 { 2285 int r; 2286 struct queue_limits limits; 2287 enum dm_queue_mode type = dm_get_md_type(md); 2288 2289 switch (type) { 2290 case DM_TYPE_REQUEST_BASED: 2291 r = dm_mq_init_request_queue(md, t); 2292 if (r) { 2293 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2294 return r; 2295 } 2296 dm_init_congested_fn(md); 2297 break; 2298 case DM_TYPE_BIO_BASED: 2299 case DM_TYPE_DAX_BIO_BASED: 2300 case DM_TYPE_NVME_BIO_BASED: 2301 dm_init_congested_fn(md); 2302 break; 2303 case DM_TYPE_NONE: 2304 WARN_ON_ONCE(true); 2305 break; 2306 } 2307 2308 r = dm_calculate_queue_limits(t, &limits); 2309 if (r) { 2310 DMERR("Cannot calculate initial queue limits"); 2311 return r; 2312 } 2313 dm_table_set_restrictions(t, md->queue, &limits); 2314 blk_register_queue(md->disk); 2315 2316 return 0; 2317 } 2318 2319 struct mapped_device *dm_get_md(dev_t dev) 2320 { 2321 struct mapped_device *md; 2322 unsigned minor = MINOR(dev); 2323 2324 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2325 return NULL; 2326 2327 spin_lock(&_minor_lock); 2328 2329 md = idr_find(&_minor_idr, minor); 2330 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2331 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2332 md = NULL; 2333 goto out; 2334 } 2335 dm_get(md); 2336 out: 2337 spin_unlock(&_minor_lock); 2338 2339 return md; 2340 } 2341 EXPORT_SYMBOL_GPL(dm_get_md); 2342 2343 void *dm_get_mdptr(struct mapped_device *md) 2344 { 2345 return md->interface_ptr; 2346 } 2347 2348 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2349 { 2350 md->interface_ptr = ptr; 2351 } 2352 2353 void dm_get(struct mapped_device *md) 2354 { 2355 atomic_inc(&md->holders); 2356 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2357 } 2358 2359 int dm_hold(struct mapped_device *md) 2360 { 2361 spin_lock(&_minor_lock); 2362 if (test_bit(DMF_FREEING, &md->flags)) { 2363 spin_unlock(&_minor_lock); 2364 return -EBUSY; 2365 } 2366 dm_get(md); 2367 spin_unlock(&_minor_lock); 2368 return 0; 2369 } 2370 EXPORT_SYMBOL_GPL(dm_hold); 2371 2372 const char *dm_device_name(struct mapped_device *md) 2373 { 2374 return md->name; 2375 } 2376 EXPORT_SYMBOL_GPL(dm_device_name); 2377 2378 static void __dm_destroy(struct mapped_device *md, bool wait) 2379 { 2380 struct dm_table *map; 2381 int srcu_idx; 2382 2383 might_sleep(); 2384 2385 spin_lock(&_minor_lock); 2386 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2387 set_bit(DMF_FREEING, &md->flags); 2388 spin_unlock(&_minor_lock); 2389 2390 blk_set_queue_dying(md->queue); 2391 2392 /* 2393 * Take suspend_lock so that presuspend and postsuspend methods 2394 * do not race with internal suspend. 2395 */ 2396 mutex_lock(&md->suspend_lock); 2397 map = dm_get_live_table(md, &srcu_idx); 2398 if (!dm_suspended_md(md)) { 2399 dm_table_presuspend_targets(map); 2400 set_bit(DMF_SUSPENDED, &md->flags); 2401 dm_table_postsuspend_targets(map); 2402 } 2403 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2404 dm_put_live_table(md, srcu_idx); 2405 mutex_unlock(&md->suspend_lock); 2406 2407 /* 2408 * Rare, but there may be I/O requests still going to complete, 2409 * for example. Wait for all references to disappear. 2410 * No one should increment the reference count of the mapped_device, 2411 * after the mapped_device state becomes DMF_FREEING. 2412 */ 2413 if (wait) 2414 while (atomic_read(&md->holders)) 2415 msleep(1); 2416 else if (atomic_read(&md->holders)) 2417 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2418 dm_device_name(md), atomic_read(&md->holders)); 2419 2420 dm_sysfs_exit(md); 2421 dm_table_destroy(__unbind(md)); 2422 free_dev(md); 2423 } 2424 2425 void dm_destroy(struct mapped_device *md) 2426 { 2427 __dm_destroy(md, true); 2428 } 2429 2430 void dm_destroy_immediate(struct mapped_device *md) 2431 { 2432 __dm_destroy(md, false); 2433 } 2434 2435 void dm_put(struct mapped_device *md) 2436 { 2437 atomic_dec(&md->holders); 2438 } 2439 EXPORT_SYMBOL_GPL(dm_put); 2440 2441 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2442 { 2443 int r = 0; 2444 DEFINE_WAIT(wait); 2445 2446 while (1) { 2447 prepare_to_wait(&md->wait, &wait, task_state); 2448 2449 if (!md_in_flight(md)) 2450 break; 2451 2452 if (signal_pending_state(task_state, current)) { 2453 r = -EINTR; 2454 break; 2455 } 2456 2457 io_schedule(); 2458 } 2459 finish_wait(&md->wait, &wait); 2460 2461 return r; 2462 } 2463 2464 /* 2465 * Process the deferred bios 2466 */ 2467 static void dm_wq_work(struct work_struct *work) 2468 { 2469 struct mapped_device *md = container_of(work, struct mapped_device, 2470 work); 2471 struct bio *c; 2472 int srcu_idx; 2473 struct dm_table *map; 2474 2475 map = dm_get_live_table(md, &srcu_idx); 2476 2477 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2478 spin_lock_irq(&md->deferred_lock); 2479 c = bio_list_pop(&md->deferred); 2480 spin_unlock_irq(&md->deferred_lock); 2481 2482 if (!c) 2483 break; 2484 2485 if (dm_request_based(md)) 2486 (void) generic_make_request(c); 2487 else 2488 (void) dm_process_bio(md, map, c); 2489 } 2490 2491 dm_put_live_table(md, srcu_idx); 2492 } 2493 2494 static void dm_queue_flush(struct mapped_device *md) 2495 { 2496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2497 smp_mb__after_atomic(); 2498 queue_work(md->wq, &md->work); 2499 } 2500 2501 /* 2502 * Swap in a new table, returning the old one for the caller to destroy. 2503 */ 2504 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2505 { 2506 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2507 struct queue_limits limits; 2508 int r; 2509 2510 mutex_lock(&md->suspend_lock); 2511 2512 /* device must be suspended */ 2513 if (!dm_suspended_md(md)) 2514 goto out; 2515 2516 /* 2517 * If the new table has no data devices, retain the existing limits. 2518 * This helps multipath with queue_if_no_path if all paths disappear, 2519 * then new I/O is queued based on these limits, and then some paths 2520 * reappear. 2521 */ 2522 if (dm_table_has_no_data_devices(table)) { 2523 live_map = dm_get_live_table_fast(md); 2524 if (live_map) 2525 limits = md->queue->limits; 2526 dm_put_live_table_fast(md); 2527 } 2528 2529 if (!live_map) { 2530 r = dm_calculate_queue_limits(table, &limits); 2531 if (r) { 2532 map = ERR_PTR(r); 2533 goto out; 2534 } 2535 } 2536 2537 map = __bind(md, table, &limits); 2538 dm_issue_global_event(); 2539 2540 out: 2541 mutex_unlock(&md->suspend_lock); 2542 return map; 2543 } 2544 2545 /* 2546 * Functions to lock and unlock any filesystem running on the 2547 * device. 2548 */ 2549 static int lock_fs(struct mapped_device *md) 2550 { 2551 int r; 2552 2553 WARN_ON(md->frozen_sb); 2554 2555 md->frozen_sb = freeze_bdev(md->bdev); 2556 if (IS_ERR(md->frozen_sb)) { 2557 r = PTR_ERR(md->frozen_sb); 2558 md->frozen_sb = NULL; 2559 return r; 2560 } 2561 2562 set_bit(DMF_FROZEN, &md->flags); 2563 2564 return 0; 2565 } 2566 2567 static void unlock_fs(struct mapped_device *md) 2568 { 2569 if (!test_bit(DMF_FROZEN, &md->flags)) 2570 return; 2571 2572 thaw_bdev(md->bdev, md->frozen_sb); 2573 md->frozen_sb = NULL; 2574 clear_bit(DMF_FROZEN, &md->flags); 2575 } 2576 2577 /* 2578 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2579 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2580 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2581 * 2582 * If __dm_suspend returns 0, the device is completely quiescent 2583 * now. There is no request-processing activity. All new requests 2584 * are being added to md->deferred list. 2585 */ 2586 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2587 unsigned suspend_flags, long task_state, 2588 int dmf_suspended_flag) 2589 { 2590 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2591 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2592 int r; 2593 2594 lockdep_assert_held(&md->suspend_lock); 2595 2596 /* 2597 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2598 * This flag is cleared before dm_suspend returns. 2599 */ 2600 if (noflush) 2601 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2602 else 2603 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2604 2605 /* 2606 * This gets reverted if there's an error later and the targets 2607 * provide the .presuspend_undo hook. 2608 */ 2609 dm_table_presuspend_targets(map); 2610 2611 /* 2612 * Flush I/O to the device. 2613 * Any I/O submitted after lock_fs() may not be flushed. 2614 * noflush takes precedence over do_lockfs. 2615 * (lock_fs() flushes I/Os and waits for them to complete.) 2616 */ 2617 if (!noflush && do_lockfs) { 2618 r = lock_fs(md); 2619 if (r) { 2620 dm_table_presuspend_undo_targets(map); 2621 return r; 2622 } 2623 } 2624 2625 /* 2626 * Here we must make sure that no processes are submitting requests 2627 * to target drivers i.e. no one may be executing 2628 * __split_and_process_bio. This is called from dm_request and 2629 * dm_wq_work. 2630 * 2631 * To get all processes out of __split_and_process_bio in dm_request, 2632 * we take the write lock. To prevent any process from reentering 2633 * __split_and_process_bio from dm_request and quiesce the thread 2634 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2635 * flush_workqueue(md->wq). 2636 */ 2637 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2638 if (map) 2639 synchronize_srcu(&md->io_barrier); 2640 2641 /* 2642 * Stop md->queue before flushing md->wq in case request-based 2643 * dm defers requests to md->wq from md->queue. 2644 */ 2645 if (dm_request_based(md)) 2646 dm_stop_queue(md->queue); 2647 2648 flush_workqueue(md->wq); 2649 2650 /* 2651 * At this point no more requests are entering target request routines. 2652 * We call dm_wait_for_completion to wait for all existing requests 2653 * to finish. 2654 */ 2655 r = dm_wait_for_completion(md, task_state); 2656 if (!r) 2657 set_bit(dmf_suspended_flag, &md->flags); 2658 2659 if (noflush) 2660 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2661 if (map) 2662 synchronize_srcu(&md->io_barrier); 2663 2664 /* were we interrupted ? */ 2665 if (r < 0) { 2666 dm_queue_flush(md); 2667 2668 if (dm_request_based(md)) 2669 dm_start_queue(md->queue); 2670 2671 unlock_fs(md); 2672 dm_table_presuspend_undo_targets(map); 2673 /* pushback list is already flushed, so skip flush */ 2674 } 2675 2676 return r; 2677 } 2678 2679 /* 2680 * We need to be able to change a mapping table under a mounted 2681 * filesystem. For example we might want to move some data in 2682 * the background. Before the table can be swapped with 2683 * dm_bind_table, dm_suspend must be called to flush any in 2684 * flight bios and ensure that any further io gets deferred. 2685 */ 2686 /* 2687 * Suspend mechanism in request-based dm. 2688 * 2689 * 1. Flush all I/Os by lock_fs() if needed. 2690 * 2. Stop dispatching any I/O by stopping the request_queue. 2691 * 3. Wait for all in-flight I/Os to be completed or requeued. 2692 * 2693 * To abort suspend, start the request_queue. 2694 */ 2695 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2696 { 2697 struct dm_table *map = NULL; 2698 int r = 0; 2699 2700 retry: 2701 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2702 2703 if (dm_suspended_md(md)) { 2704 r = -EINVAL; 2705 goto out_unlock; 2706 } 2707 2708 if (dm_suspended_internally_md(md)) { 2709 /* already internally suspended, wait for internal resume */ 2710 mutex_unlock(&md->suspend_lock); 2711 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2712 if (r) 2713 return r; 2714 goto retry; 2715 } 2716 2717 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2718 2719 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2720 if (r) 2721 goto out_unlock; 2722 2723 dm_table_postsuspend_targets(map); 2724 2725 out_unlock: 2726 mutex_unlock(&md->suspend_lock); 2727 return r; 2728 } 2729 2730 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2731 { 2732 if (map) { 2733 int r = dm_table_resume_targets(map); 2734 if (r) 2735 return r; 2736 } 2737 2738 dm_queue_flush(md); 2739 2740 /* 2741 * Flushing deferred I/Os must be done after targets are resumed 2742 * so that mapping of targets can work correctly. 2743 * Request-based dm is queueing the deferred I/Os in its request_queue. 2744 */ 2745 if (dm_request_based(md)) 2746 dm_start_queue(md->queue); 2747 2748 unlock_fs(md); 2749 2750 return 0; 2751 } 2752 2753 int dm_resume(struct mapped_device *md) 2754 { 2755 int r; 2756 struct dm_table *map = NULL; 2757 2758 retry: 2759 r = -EINVAL; 2760 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2761 2762 if (!dm_suspended_md(md)) 2763 goto out; 2764 2765 if (dm_suspended_internally_md(md)) { 2766 /* already internally suspended, wait for internal resume */ 2767 mutex_unlock(&md->suspend_lock); 2768 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2769 if (r) 2770 return r; 2771 goto retry; 2772 } 2773 2774 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2775 if (!map || !dm_table_get_size(map)) 2776 goto out; 2777 2778 r = __dm_resume(md, map); 2779 if (r) 2780 goto out; 2781 2782 clear_bit(DMF_SUSPENDED, &md->flags); 2783 out: 2784 mutex_unlock(&md->suspend_lock); 2785 2786 return r; 2787 } 2788 2789 /* 2790 * Internal suspend/resume works like userspace-driven suspend. It waits 2791 * until all bios finish and prevents issuing new bios to the target drivers. 2792 * It may be used only from the kernel. 2793 */ 2794 2795 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2796 { 2797 struct dm_table *map = NULL; 2798 2799 lockdep_assert_held(&md->suspend_lock); 2800 2801 if (md->internal_suspend_count++) 2802 return; /* nested internal suspend */ 2803 2804 if (dm_suspended_md(md)) { 2805 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2806 return; /* nest suspend */ 2807 } 2808 2809 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2810 2811 /* 2812 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2813 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2814 * would require changing .presuspend to return an error -- avoid this 2815 * until there is a need for more elaborate variants of internal suspend. 2816 */ 2817 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2818 DMF_SUSPENDED_INTERNALLY); 2819 2820 dm_table_postsuspend_targets(map); 2821 } 2822 2823 static void __dm_internal_resume(struct mapped_device *md) 2824 { 2825 BUG_ON(!md->internal_suspend_count); 2826 2827 if (--md->internal_suspend_count) 2828 return; /* resume from nested internal suspend */ 2829 2830 if (dm_suspended_md(md)) 2831 goto done; /* resume from nested suspend */ 2832 2833 /* 2834 * NOTE: existing callers don't need to call dm_table_resume_targets 2835 * (which may fail -- so best to avoid it for now by passing NULL map) 2836 */ 2837 (void) __dm_resume(md, NULL); 2838 2839 done: 2840 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2841 smp_mb__after_atomic(); 2842 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2843 } 2844 2845 void dm_internal_suspend_noflush(struct mapped_device *md) 2846 { 2847 mutex_lock(&md->suspend_lock); 2848 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2849 mutex_unlock(&md->suspend_lock); 2850 } 2851 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2852 2853 void dm_internal_resume(struct mapped_device *md) 2854 { 2855 mutex_lock(&md->suspend_lock); 2856 __dm_internal_resume(md); 2857 mutex_unlock(&md->suspend_lock); 2858 } 2859 EXPORT_SYMBOL_GPL(dm_internal_resume); 2860 2861 /* 2862 * Fast variants of internal suspend/resume hold md->suspend_lock, 2863 * which prevents interaction with userspace-driven suspend. 2864 */ 2865 2866 void dm_internal_suspend_fast(struct mapped_device *md) 2867 { 2868 mutex_lock(&md->suspend_lock); 2869 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2870 return; 2871 2872 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2873 synchronize_srcu(&md->io_barrier); 2874 flush_workqueue(md->wq); 2875 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2876 } 2877 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2878 2879 void dm_internal_resume_fast(struct mapped_device *md) 2880 { 2881 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2882 goto done; 2883 2884 dm_queue_flush(md); 2885 2886 done: 2887 mutex_unlock(&md->suspend_lock); 2888 } 2889 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2890 2891 /*----------------------------------------------------------------- 2892 * Event notification. 2893 *---------------------------------------------------------------*/ 2894 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2895 unsigned cookie) 2896 { 2897 char udev_cookie[DM_COOKIE_LENGTH]; 2898 char *envp[] = { udev_cookie, NULL }; 2899 2900 if (!cookie) 2901 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2902 else { 2903 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2904 DM_COOKIE_ENV_VAR_NAME, cookie); 2905 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2906 action, envp); 2907 } 2908 } 2909 2910 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2911 { 2912 return atomic_add_return(1, &md->uevent_seq); 2913 } 2914 2915 uint32_t dm_get_event_nr(struct mapped_device *md) 2916 { 2917 return atomic_read(&md->event_nr); 2918 } 2919 2920 int dm_wait_event(struct mapped_device *md, int event_nr) 2921 { 2922 return wait_event_interruptible(md->eventq, 2923 (event_nr != atomic_read(&md->event_nr))); 2924 } 2925 2926 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2927 { 2928 unsigned long flags; 2929 2930 spin_lock_irqsave(&md->uevent_lock, flags); 2931 list_add(elist, &md->uevent_list); 2932 spin_unlock_irqrestore(&md->uevent_lock, flags); 2933 } 2934 2935 /* 2936 * The gendisk is only valid as long as you have a reference 2937 * count on 'md'. 2938 */ 2939 struct gendisk *dm_disk(struct mapped_device *md) 2940 { 2941 return md->disk; 2942 } 2943 EXPORT_SYMBOL_GPL(dm_disk); 2944 2945 struct kobject *dm_kobject(struct mapped_device *md) 2946 { 2947 return &md->kobj_holder.kobj; 2948 } 2949 2950 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2951 { 2952 struct mapped_device *md; 2953 2954 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2955 2956 spin_lock(&_minor_lock); 2957 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2958 md = NULL; 2959 goto out; 2960 } 2961 dm_get(md); 2962 out: 2963 spin_unlock(&_minor_lock); 2964 2965 return md; 2966 } 2967 2968 int dm_suspended_md(struct mapped_device *md) 2969 { 2970 return test_bit(DMF_SUSPENDED, &md->flags); 2971 } 2972 2973 int dm_suspended_internally_md(struct mapped_device *md) 2974 { 2975 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2976 } 2977 2978 int dm_test_deferred_remove_flag(struct mapped_device *md) 2979 { 2980 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2981 } 2982 2983 int dm_suspended(struct dm_target *ti) 2984 { 2985 return dm_suspended_md(dm_table_get_md(ti->table)); 2986 } 2987 EXPORT_SYMBOL_GPL(dm_suspended); 2988 2989 int dm_noflush_suspending(struct dm_target *ti) 2990 { 2991 return __noflush_suspending(dm_table_get_md(ti->table)); 2992 } 2993 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2994 2995 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2996 unsigned integrity, unsigned per_io_data_size, 2997 unsigned min_pool_size) 2998 { 2999 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3000 unsigned int pool_size = 0; 3001 unsigned int front_pad, io_front_pad; 3002 int ret; 3003 3004 if (!pools) 3005 return NULL; 3006 3007 switch (type) { 3008 case DM_TYPE_BIO_BASED: 3009 case DM_TYPE_DAX_BIO_BASED: 3010 case DM_TYPE_NVME_BIO_BASED: 3011 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3012 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3013 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3014 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3015 if (ret) 3016 goto out; 3017 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3018 goto out; 3019 break; 3020 case DM_TYPE_REQUEST_BASED: 3021 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3022 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3023 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3024 break; 3025 default: 3026 BUG(); 3027 } 3028 3029 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3030 if (ret) 3031 goto out; 3032 3033 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3034 goto out; 3035 3036 return pools; 3037 3038 out: 3039 dm_free_md_mempools(pools); 3040 3041 return NULL; 3042 } 3043 3044 void dm_free_md_mempools(struct dm_md_mempools *pools) 3045 { 3046 if (!pools) 3047 return; 3048 3049 bioset_exit(&pools->bs); 3050 bioset_exit(&pools->io_bs); 3051 3052 kfree(pools); 3053 } 3054 3055 struct dm_pr { 3056 u64 old_key; 3057 u64 new_key; 3058 u32 flags; 3059 bool fail_early; 3060 }; 3061 3062 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3063 void *data) 3064 { 3065 struct mapped_device *md = bdev->bd_disk->private_data; 3066 struct dm_table *table; 3067 struct dm_target *ti; 3068 int ret = -ENOTTY, srcu_idx; 3069 3070 table = dm_get_live_table(md, &srcu_idx); 3071 if (!table || !dm_table_get_size(table)) 3072 goto out; 3073 3074 /* We only support devices that have a single target */ 3075 if (dm_table_get_num_targets(table) != 1) 3076 goto out; 3077 ti = dm_table_get_target(table, 0); 3078 3079 ret = -EINVAL; 3080 if (!ti->type->iterate_devices) 3081 goto out; 3082 3083 ret = ti->type->iterate_devices(ti, fn, data); 3084 out: 3085 dm_put_live_table(md, srcu_idx); 3086 return ret; 3087 } 3088 3089 /* 3090 * For register / unregister we need to manually call out to every path. 3091 */ 3092 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3093 sector_t start, sector_t len, void *data) 3094 { 3095 struct dm_pr *pr = data; 3096 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3097 3098 if (!ops || !ops->pr_register) 3099 return -EOPNOTSUPP; 3100 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3101 } 3102 3103 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3104 u32 flags) 3105 { 3106 struct dm_pr pr = { 3107 .old_key = old_key, 3108 .new_key = new_key, 3109 .flags = flags, 3110 .fail_early = true, 3111 }; 3112 int ret; 3113 3114 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3115 if (ret && new_key) { 3116 /* unregister all paths if we failed to register any path */ 3117 pr.old_key = new_key; 3118 pr.new_key = 0; 3119 pr.flags = 0; 3120 pr.fail_early = false; 3121 dm_call_pr(bdev, __dm_pr_register, &pr); 3122 } 3123 3124 return ret; 3125 } 3126 3127 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3128 u32 flags) 3129 { 3130 struct mapped_device *md = bdev->bd_disk->private_data; 3131 const struct pr_ops *ops; 3132 int r, srcu_idx; 3133 3134 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3135 if (r < 0) 3136 goto out; 3137 3138 ops = bdev->bd_disk->fops->pr_ops; 3139 if (ops && ops->pr_reserve) 3140 r = ops->pr_reserve(bdev, key, type, flags); 3141 else 3142 r = -EOPNOTSUPP; 3143 out: 3144 dm_unprepare_ioctl(md, srcu_idx); 3145 return r; 3146 } 3147 3148 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3149 { 3150 struct mapped_device *md = bdev->bd_disk->private_data; 3151 const struct pr_ops *ops; 3152 int r, srcu_idx; 3153 3154 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3155 if (r < 0) 3156 goto out; 3157 3158 ops = bdev->bd_disk->fops->pr_ops; 3159 if (ops && ops->pr_release) 3160 r = ops->pr_release(bdev, key, type); 3161 else 3162 r = -EOPNOTSUPP; 3163 out: 3164 dm_unprepare_ioctl(md, srcu_idx); 3165 return r; 3166 } 3167 3168 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3169 enum pr_type type, bool abort) 3170 { 3171 struct mapped_device *md = bdev->bd_disk->private_data; 3172 const struct pr_ops *ops; 3173 int r, srcu_idx; 3174 3175 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3176 if (r < 0) 3177 goto out; 3178 3179 ops = bdev->bd_disk->fops->pr_ops; 3180 if (ops && ops->pr_preempt) 3181 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3182 else 3183 r = -EOPNOTSUPP; 3184 out: 3185 dm_unprepare_ioctl(md, srcu_idx); 3186 return r; 3187 } 3188 3189 static int dm_pr_clear(struct block_device *bdev, u64 key) 3190 { 3191 struct mapped_device *md = bdev->bd_disk->private_data; 3192 const struct pr_ops *ops; 3193 int r, srcu_idx; 3194 3195 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3196 if (r < 0) 3197 goto out; 3198 3199 ops = bdev->bd_disk->fops->pr_ops; 3200 if (ops && ops->pr_clear) 3201 r = ops->pr_clear(bdev, key); 3202 else 3203 r = -EOPNOTSUPP; 3204 out: 3205 dm_unprepare_ioctl(md, srcu_idx); 3206 return r; 3207 } 3208 3209 static const struct pr_ops dm_pr_ops = { 3210 .pr_register = dm_pr_register, 3211 .pr_reserve = dm_pr_reserve, 3212 .pr_release = dm_pr_release, 3213 .pr_preempt = dm_pr_preempt, 3214 .pr_clear = dm_pr_clear, 3215 }; 3216 3217 static const struct block_device_operations dm_blk_dops = { 3218 .open = dm_blk_open, 3219 .release = dm_blk_close, 3220 .ioctl = dm_blk_ioctl, 3221 .getgeo = dm_blk_getgeo, 3222 .report_zones = dm_blk_report_zones, 3223 .pr_ops = &dm_pr_ops, 3224 .owner = THIS_MODULE 3225 }; 3226 3227 static const struct dax_operations dm_dax_ops = { 3228 .direct_access = dm_dax_direct_access, 3229 .dax_supported = dm_dax_supported, 3230 .copy_from_iter = dm_dax_copy_from_iter, 3231 .copy_to_iter = dm_dax_copy_to_iter, 3232 .zero_page_range = dm_dax_zero_page_range, 3233 }; 3234 3235 /* 3236 * module hooks 3237 */ 3238 module_init(dm_init); 3239 module_exit(dm_exit); 3240 3241 module_param(major, uint, 0); 3242 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3243 3244 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3245 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3246 3247 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3248 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3249 3250 MODULE_DESCRIPTION(DM_NAME " driver"); 3251 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3252 MODULE_LICENSE("GPL"); 3253