1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 580 tio = clone_to_tio(clone); 581 tio->flags = 0; 582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 583 tio->io = NULL; 584 585 io = container_of(tio, struct dm_io, tio); 586 io->magic = DM_IO_MAGIC; 587 io->status = BLK_STS_OK; 588 589 /* one ref is for submission, the other is for completion */ 590 atomic_set(&io->io_count, 2); 591 this_cpu_inc(*md->pending_io); 592 io->orig_bio = bio; 593 io->md = md; 594 spin_lock_init(&io->lock); 595 io->start_time = jiffies; 596 io->flags = 0; 597 if (blk_queue_io_stat(md->queue)) 598 dm_io_set_flag(io, DM_IO_BLK_STAT); 599 600 if (static_branch_unlikely(&stats_enabled) && 601 unlikely(dm_stats_used(&md->stats))) 602 dm_stats_record_start(&md->stats, &io->stats_aux); 603 604 return io; 605 } 606 607 static void free_io(struct dm_io *io) 608 { 609 bio_put(&io->tio.clone); 610 } 611 612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 613 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 614 { 615 struct mapped_device *md = ci->io->md; 616 struct dm_target_io *tio; 617 struct bio *clone; 618 619 if (!ci->io->tio.io) { 620 /* the dm_target_io embedded in ci->io is available */ 621 tio = &ci->io->tio; 622 /* alloc_io() already initialized embedded clone */ 623 clone = &tio->clone; 624 } else { 625 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 626 &md->mempools->bs); 627 if (!clone) 628 return NULL; 629 630 /* REQ_DM_POLL_LIST shouldn't be inherited */ 631 clone->bi_opf &= ~REQ_DM_POLL_LIST; 632 633 tio = clone_to_tio(clone); 634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 635 } 636 637 tio->magic = DM_TIO_MAGIC; 638 tio->io = ci->io; 639 tio->ti = ti; 640 tio->target_bio_nr = target_bio_nr; 641 tio->len_ptr = len; 642 tio->old_sector = 0; 643 644 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 645 clone->bi_bdev = md->disk->part0; 646 if (unlikely(ti->needs_bio_set_dev)) 647 bio_set_dev(clone, md->disk->part0); 648 649 if (len) { 650 clone->bi_iter.bi_size = to_bytes(*len); 651 if (bio_integrity(clone)) 652 bio_integrity_trim(clone); 653 } 654 655 return clone; 656 } 657 658 static void free_tio(struct bio *clone) 659 { 660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 661 return; 662 bio_put(clone); 663 } 664 665 /* 666 * Add the bio to the list of deferred io. 667 */ 668 static void queue_io(struct mapped_device *md, struct bio *bio) 669 { 670 unsigned long flags; 671 672 spin_lock_irqsave(&md->deferred_lock, flags); 673 bio_list_add(&md->deferred, bio); 674 spin_unlock_irqrestore(&md->deferred_lock, flags); 675 queue_work(md->wq, &md->work); 676 } 677 678 /* 679 * Everyone (including functions in this file), should use this 680 * function to access the md->map field, and make sure they call 681 * dm_put_live_table() when finished. 682 */ 683 struct dm_table *dm_get_live_table(struct mapped_device *md, 684 int *srcu_idx) __acquires(md->io_barrier) 685 { 686 *srcu_idx = srcu_read_lock(&md->io_barrier); 687 688 return srcu_dereference(md->map, &md->io_barrier); 689 } 690 691 void dm_put_live_table(struct mapped_device *md, 692 int srcu_idx) __releases(md->io_barrier) 693 { 694 srcu_read_unlock(&md->io_barrier, srcu_idx); 695 } 696 697 void dm_sync_table(struct mapped_device *md) 698 { 699 synchronize_srcu(&md->io_barrier); 700 synchronize_rcu_expedited(); 701 } 702 703 /* 704 * A fast alternative to dm_get_live_table/dm_put_live_table. 705 * The caller must not block between these two functions. 706 */ 707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 708 { 709 rcu_read_lock(); 710 return rcu_dereference(md->map); 711 } 712 713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 714 { 715 rcu_read_unlock(); 716 } 717 718 static char *_dm_claim_ptr = "I belong to device-mapper"; 719 720 /* 721 * Open a table device so we can use it as a map destination. 722 */ 723 static struct table_device *open_table_device(struct mapped_device *md, 724 dev_t dev, blk_mode_t mode) 725 { 726 struct table_device *td; 727 struct block_device *bdev; 728 u64 part_off; 729 int r; 730 731 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 732 if (!td) 733 return ERR_PTR(-ENOMEM); 734 refcount_set(&td->count, 1); 735 736 bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL); 737 if (IS_ERR(bdev)) { 738 r = PTR_ERR(bdev); 739 goto out_free_td; 740 } 741 742 /* 743 * We can be called before the dm disk is added. In that case we can't 744 * register the holder relation here. It will be done once add_disk was 745 * called. 746 */ 747 if (md->disk->slave_dir) { 748 r = bd_link_disk_holder(bdev, md->disk); 749 if (r) 750 goto out_blkdev_put; 751 } 752 753 td->dm_dev.mode = mode; 754 td->dm_dev.bdev = bdev; 755 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 756 format_dev_t(td->dm_dev.name, dev); 757 list_add(&td->list, &md->table_devices); 758 return td; 759 760 out_blkdev_put: 761 blkdev_put(bdev, _dm_claim_ptr); 762 out_free_td: 763 kfree(td); 764 return ERR_PTR(r); 765 } 766 767 /* 768 * Close a table device that we've been using. 769 */ 770 static void close_table_device(struct table_device *td, struct mapped_device *md) 771 { 772 if (md->disk->slave_dir) 773 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 774 blkdev_put(td->dm_dev.bdev, _dm_claim_ptr); 775 put_dax(td->dm_dev.dax_dev); 776 list_del(&td->list); 777 kfree(td); 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 blk_mode_t mode) 782 { 783 struct table_device *td; 784 785 list_for_each_entry(td, l, list) 786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 787 return td; 788 789 return NULL; 790 } 791 792 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 793 struct dm_dev **result) 794 { 795 struct table_device *td; 796 797 mutex_lock(&md->table_devices_lock); 798 td = find_table_device(&md->table_devices, dev, mode); 799 if (!td) { 800 td = open_table_device(md, dev, mode); 801 if (IS_ERR(td)) { 802 mutex_unlock(&md->table_devices_lock); 803 return PTR_ERR(td); 804 } 805 } else { 806 refcount_inc(&td->count); 807 } 808 mutex_unlock(&md->table_devices_lock); 809 810 *result = &td->dm_dev; 811 return 0; 812 } 813 814 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 815 { 816 struct table_device *td = container_of(d, struct table_device, dm_dev); 817 818 mutex_lock(&md->table_devices_lock); 819 if (refcount_dec_and_test(&td->count)) 820 close_table_device(td, md); 821 mutex_unlock(&md->table_devices_lock); 822 } 823 824 /* 825 * Get the geometry associated with a dm device 826 */ 827 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 828 { 829 *geo = md->geometry; 830 831 return 0; 832 } 833 834 /* 835 * Set the geometry of a device. 836 */ 837 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 838 { 839 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 840 841 if (geo->start > sz) { 842 DMERR("Start sector is beyond the geometry limits."); 843 return -EINVAL; 844 } 845 846 md->geometry = *geo; 847 848 return 0; 849 } 850 851 static int __noflush_suspending(struct mapped_device *md) 852 { 853 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 854 } 855 856 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 857 { 858 struct mapped_device *md = io->md; 859 860 if (first_stage) { 861 struct dm_io *next = md->requeue_list; 862 863 md->requeue_list = io; 864 io->next = next; 865 } else { 866 bio_list_add_head(&md->deferred, io->orig_bio); 867 } 868 } 869 870 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 871 { 872 if (first_stage) 873 queue_work(md->wq, &md->requeue_work); 874 else 875 queue_work(md->wq, &md->work); 876 } 877 878 /* 879 * Return true if the dm_io's original bio is requeued. 880 * io->status is updated with error if requeue disallowed. 881 */ 882 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 883 { 884 struct bio *bio = io->orig_bio; 885 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 886 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 887 (bio->bi_opf & REQ_POLLED)); 888 struct mapped_device *md = io->md; 889 bool requeued = false; 890 891 if (handle_requeue || handle_polled_eagain) { 892 unsigned long flags; 893 894 if (bio->bi_opf & REQ_POLLED) { 895 /* 896 * Upper layer won't help us poll split bio 897 * (io->orig_bio may only reflect a subset of the 898 * pre-split original) so clear REQ_POLLED. 899 */ 900 bio_clear_polled(bio); 901 } 902 903 /* 904 * Target requested pushing back the I/O or 905 * polled IO hit BLK_STS_AGAIN. 906 */ 907 spin_lock_irqsave(&md->deferred_lock, flags); 908 if ((__noflush_suspending(md) && 909 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 910 handle_polled_eagain || first_stage) { 911 dm_requeue_add_io(io, first_stage); 912 requeued = true; 913 } else { 914 /* 915 * noflush suspend was interrupted or this is 916 * a write to a zoned target. 917 */ 918 io->status = BLK_STS_IOERR; 919 } 920 spin_unlock_irqrestore(&md->deferred_lock, flags); 921 } 922 923 if (requeued) 924 dm_kick_requeue(md, first_stage); 925 926 return requeued; 927 } 928 929 static void __dm_io_complete(struct dm_io *io, bool first_stage) 930 { 931 struct bio *bio = io->orig_bio; 932 struct mapped_device *md = io->md; 933 blk_status_t io_error; 934 bool requeued; 935 936 requeued = dm_handle_requeue(io, first_stage); 937 if (requeued && first_stage) 938 return; 939 940 io_error = io->status; 941 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 942 dm_end_io_acct(io); 943 else if (!io_error) { 944 /* 945 * Must handle target that DM_MAPIO_SUBMITTED only to 946 * then bio_endio() rather than dm_submit_bio_remap() 947 */ 948 __dm_start_io_acct(io); 949 dm_end_io_acct(io); 950 } 951 free_io(io); 952 smp_wmb(); 953 this_cpu_dec(*md->pending_io); 954 955 /* nudge anyone waiting on suspend queue */ 956 if (unlikely(wq_has_sleeper(&md->wait))) 957 wake_up(&md->wait); 958 959 /* Return early if the original bio was requeued */ 960 if (requeued) 961 return; 962 963 if (bio_is_flush_with_data(bio)) { 964 /* 965 * Preflush done for flush with data, reissue 966 * without REQ_PREFLUSH. 967 */ 968 bio->bi_opf &= ~REQ_PREFLUSH; 969 queue_io(md, bio); 970 } else { 971 /* done with normal IO or empty flush */ 972 if (io_error) 973 bio->bi_status = io_error; 974 bio_endio(bio); 975 } 976 } 977 978 static void dm_wq_requeue_work(struct work_struct *work) 979 { 980 struct mapped_device *md = container_of(work, struct mapped_device, 981 requeue_work); 982 unsigned long flags; 983 struct dm_io *io; 984 985 /* reuse deferred lock to simplify dm_handle_requeue */ 986 spin_lock_irqsave(&md->deferred_lock, flags); 987 io = md->requeue_list; 988 md->requeue_list = NULL; 989 spin_unlock_irqrestore(&md->deferred_lock, flags); 990 991 while (io) { 992 struct dm_io *next = io->next; 993 994 dm_io_rewind(io, &md->disk->bio_split); 995 996 io->next = NULL; 997 __dm_io_complete(io, false); 998 io = next; 999 cond_resched(); 1000 } 1001 } 1002 1003 /* 1004 * Two staged requeue: 1005 * 1006 * 1) io->orig_bio points to the real original bio, and the part mapped to 1007 * this io must be requeued, instead of other parts of the original bio. 1008 * 1009 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1010 */ 1011 static void dm_io_complete(struct dm_io *io) 1012 { 1013 bool first_requeue; 1014 1015 /* 1016 * Only dm_io that has been split needs two stage requeue, otherwise 1017 * we may run into long bio clone chain during suspend and OOM could 1018 * be triggered. 1019 * 1020 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1021 * also aren't handled via the first stage requeue. 1022 */ 1023 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1024 first_requeue = true; 1025 else 1026 first_requeue = false; 1027 1028 __dm_io_complete(io, first_requeue); 1029 } 1030 1031 /* 1032 * Decrements the number of outstanding ios that a bio has been 1033 * cloned into, completing the original io if necc. 1034 */ 1035 static inline void __dm_io_dec_pending(struct dm_io *io) 1036 { 1037 if (atomic_dec_and_test(&io->io_count)) 1038 dm_io_complete(io); 1039 } 1040 1041 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1042 { 1043 unsigned long flags; 1044 1045 /* Push-back supersedes any I/O errors */ 1046 spin_lock_irqsave(&io->lock, flags); 1047 if (!(io->status == BLK_STS_DM_REQUEUE && 1048 __noflush_suspending(io->md))) { 1049 io->status = error; 1050 } 1051 spin_unlock_irqrestore(&io->lock, flags); 1052 } 1053 1054 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1055 { 1056 if (unlikely(error)) 1057 dm_io_set_error(io, error); 1058 1059 __dm_io_dec_pending(io); 1060 } 1061 1062 /* 1063 * The queue_limits are only valid as long as you have a reference 1064 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1065 */ 1066 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1067 { 1068 return &md->queue->limits; 1069 } 1070 1071 void disable_discard(struct mapped_device *md) 1072 { 1073 struct queue_limits *limits = dm_get_queue_limits(md); 1074 1075 /* device doesn't really support DISCARD, disable it */ 1076 limits->max_discard_sectors = 0; 1077 } 1078 1079 void disable_write_zeroes(struct mapped_device *md) 1080 { 1081 struct queue_limits *limits = dm_get_queue_limits(md); 1082 1083 /* device doesn't really support WRITE ZEROES, disable it */ 1084 limits->max_write_zeroes_sectors = 0; 1085 } 1086 1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1088 { 1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1090 } 1091 1092 static void clone_endio(struct bio *bio) 1093 { 1094 blk_status_t error = bio->bi_status; 1095 struct dm_target_io *tio = clone_to_tio(bio); 1096 struct dm_target *ti = tio->ti; 1097 dm_endio_fn endio = ti->type->end_io; 1098 struct dm_io *io = tio->io; 1099 struct mapped_device *md = io->md; 1100 1101 if (unlikely(error == BLK_STS_TARGET)) { 1102 if (bio_op(bio) == REQ_OP_DISCARD && 1103 !bdev_max_discard_sectors(bio->bi_bdev)) 1104 disable_discard(md); 1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1106 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1107 disable_write_zeroes(md); 1108 } 1109 1110 if (static_branch_unlikely(&zoned_enabled) && 1111 unlikely(bdev_is_zoned(bio->bi_bdev))) 1112 dm_zone_endio(io, bio); 1113 1114 if (endio) { 1115 int r = endio(ti, bio, &error); 1116 1117 switch (r) { 1118 case DM_ENDIO_REQUEUE: 1119 if (static_branch_unlikely(&zoned_enabled)) { 1120 /* 1121 * Requeuing writes to a sequential zone of a zoned 1122 * target will break the sequential write pattern: 1123 * fail such IO. 1124 */ 1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1126 error = BLK_STS_IOERR; 1127 else 1128 error = BLK_STS_DM_REQUEUE; 1129 } else 1130 error = BLK_STS_DM_REQUEUE; 1131 fallthrough; 1132 case DM_ENDIO_DONE: 1133 break; 1134 case DM_ENDIO_INCOMPLETE: 1135 /* The target will handle the io */ 1136 return; 1137 default: 1138 DMCRIT("unimplemented target endio return value: %d", r); 1139 BUG(); 1140 } 1141 } 1142 1143 if (static_branch_unlikely(&swap_bios_enabled) && 1144 unlikely(swap_bios_limit(ti, bio))) 1145 up(&md->swap_bios_semaphore); 1146 1147 free_tio(bio); 1148 dm_io_dec_pending(io, error); 1149 } 1150 1151 /* 1152 * Return maximum size of I/O possible at the supplied sector up to the current 1153 * target boundary. 1154 */ 1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1156 sector_t target_offset) 1157 { 1158 return ti->len - target_offset; 1159 } 1160 1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1162 unsigned int max_granularity, 1163 unsigned int max_sectors) 1164 { 1165 sector_t target_offset = dm_target_offset(ti, sector); 1166 sector_t len = max_io_len_target_boundary(ti, target_offset); 1167 1168 /* 1169 * Does the target need to split IO even further? 1170 * - varied (per target) IO splitting is a tenet of DM; this 1171 * explains why stacked chunk_sectors based splitting via 1172 * bio_split_to_limits() isn't possible here. 1173 */ 1174 if (!max_granularity) 1175 return len; 1176 return min_t(sector_t, len, 1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1178 blk_chunk_sectors_left(target_offset, max_granularity))); 1179 } 1180 1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1182 { 1183 return __max_io_len(ti, sector, ti->max_io_len, 0); 1184 } 1185 1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1187 { 1188 if (len > UINT_MAX) { 1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1190 (unsigned long long)len, UINT_MAX); 1191 ti->error = "Maximum size of target IO is too large"; 1192 return -EINVAL; 1193 } 1194 1195 ti->max_io_len = (uint32_t) len; 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1200 1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1202 sector_t sector, int *srcu_idx) 1203 __acquires(md->io_barrier) 1204 { 1205 struct dm_table *map; 1206 struct dm_target *ti; 1207 1208 map = dm_get_live_table(md, srcu_idx); 1209 if (!map) 1210 return NULL; 1211 1212 ti = dm_table_find_target(map, sector); 1213 if (!ti) 1214 return NULL; 1215 1216 return ti; 1217 } 1218 1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1220 long nr_pages, enum dax_access_mode mode, void **kaddr, 1221 pfn_t *pfn) 1222 { 1223 struct mapped_device *md = dax_get_private(dax_dev); 1224 sector_t sector = pgoff * PAGE_SECTORS; 1225 struct dm_target *ti; 1226 long len, ret = -EIO; 1227 int srcu_idx; 1228 1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1230 1231 if (!ti) 1232 goto out; 1233 if (!ti->type->direct_access) 1234 goto out; 1235 len = max_io_len(ti, sector) / PAGE_SECTORS; 1236 if (len < 1) 1237 goto out; 1238 nr_pages = min(len, nr_pages); 1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1240 1241 out: 1242 dm_put_live_table(md, srcu_idx); 1243 1244 return ret; 1245 } 1246 1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1248 size_t nr_pages) 1249 { 1250 struct mapped_device *md = dax_get_private(dax_dev); 1251 sector_t sector = pgoff * PAGE_SECTORS; 1252 struct dm_target *ti; 1253 int ret = -EIO; 1254 int srcu_idx; 1255 1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1257 1258 if (!ti) 1259 goto out; 1260 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1261 /* 1262 * ->zero_page_range() is mandatory dax operation. If we are 1263 * here, something is wrong. 1264 */ 1265 goto out; 1266 } 1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1268 out: 1269 dm_put_live_table(md, srcu_idx); 1270 1271 return ret; 1272 } 1273 1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1275 void *addr, size_t bytes, struct iov_iter *i) 1276 { 1277 struct mapped_device *md = dax_get_private(dax_dev); 1278 sector_t sector = pgoff * PAGE_SECTORS; 1279 struct dm_target *ti; 1280 int srcu_idx; 1281 long ret = 0; 1282 1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1284 if (!ti || !ti->type->dax_recovery_write) 1285 goto out; 1286 1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1288 out: 1289 dm_put_live_table(md, srcu_idx); 1290 return ret; 1291 } 1292 1293 /* 1294 * A target may call dm_accept_partial_bio only from the map routine. It is 1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1297 * __send_duplicate_bios(). 1298 * 1299 * dm_accept_partial_bio informs the dm that the target only wants to process 1300 * additional n_sectors sectors of the bio and the rest of the data should be 1301 * sent in a next bio. 1302 * 1303 * A diagram that explains the arithmetics: 1304 * +--------------------+---------------+-------+ 1305 * | 1 | 2 | 3 | 1306 * +--------------------+---------------+-------+ 1307 * 1308 * <-------------- *tio->len_ptr ---------------> 1309 * <----- bio_sectors -----> 1310 * <-- n_sectors --> 1311 * 1312 * Region 1 was already iterated over with bio_advance or similar function. 1313 * (it may be empty if the target doesn't use bio_advance) 1314 * Region 2 is the remaining bio size that the target wants to process. 1315 * (it may be empty if region 1 is non-empty, although there is no reason 1316 * to make it empty) 1317 * The target requires that region 3 is to be sent in the next bio. 1318 * 1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1320 * the partially processed part (the sum of regions 1+2) must be the same for all 1321 * copies of the bio. 1322 */ 1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1324 { 1325 struct dm_target_io *tio = clone_to_tio(bio); 1326 struct dm_io *io = tio->io; 1327 unsigned int bio_sectors = bio_sectors(bio); 1328 1329 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1330 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1331 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1332 BUG_ON(bio_sectors > *tio->len_ptr); 1333 BUG_ON(n_sectors > bio_sectors); 1334 1335 *tio->len_ptr -= bio_sectors - n_sectors; 1336 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1337 1338 /* 1339 * __split_and_process_bio() may have already saved mapped part 1340 * for accounting but it is being reduced so update accordingly. 1341 */ 1342 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1343 io->sectors = n_sectors; 1344 io->sector_offset = bio_sectors(io->orig_bio); 1345 } 1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1347 1348 /* 1349 * @clone: clone bio that DM core passed to target's .map function 1350 * @tgt_clone: clone of @clone bio that target needs submitted 1351 * 1352 * Targets should use this interface to submit bios they take 1353 * ownership of when returning DM_MAPIO_SUBMITTED. 1354 * 1355 * Target should also enable ti->accounts_remapped_io 1356 */ 1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1358 { 1359 struct dm_target_io *tio = clone_to_tio(clone); 1360 struct dm_io *io = tio->io; 1361 1362 /* establish bio that will get submitted */ 1363 if (!tgt_clone) 1364 tgt_clone = clone; 1365 1366 /* 1367 * Account io->origin_bio to DM dev on behalf of target 1368 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1369 */ 1370 dm_start_io_acct(io, clone); 1371 1372 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1373 tio->old_sector); 1374 submit_bio_noacct(tgt_clone); 1375 } 1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1377 1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1379 { 1380 mutex_lock(&md->swap_bios_lock); 1381 while (latch < md->swap_bios) { 1382 cond_resched(); 1383 down(&md->swap_bios_semaphore); 1384 md->swap_bios--; 1385 } 1386 while (latch > md->swap_bios) { 1387 cond_resched(); 1388 up(&md->swap_bios_semaphore); 1389 md->swap_bios++; 1390 } 1391 mutex_unlock(&md->swap_bios_lock); 1392 } 1393 1394 static void __map_bio(struct bio *clone) 1395 { 1396 struct dm_target_io *tio = clone_to_tio(clone); 1397 struct dm_target *ti = tio->ti; 1398 struct dm_io *io = tio->io; 1399 struct mapped_device *md = io->md; 1400 int r; 1401 1402 clone->bi_end_io = clone_endio; 1403 1404 /* 1405 * Map the clone. 1406 */ 1407 tio->old_sector = clone->bi_iter.bi_sector; 1408 1409 if (static_branch_unlikely(&swap_bios_enabled) && 1410 unlikely(swap_bios_limit(ti, clone))) { 1411 int latch = get_swap_bios(); 1412 1413 if (unlikely(latch != md->swap_bios)) 1414 __set_swap_bios_limit(md, latch); 1415 down(&md->swap_bios_semaphore); 1416 } 1417 1418 if (static_branch_unlikely(&zoned_enabled)) { 1419 /* 1420 * Check if the IO needs a special mapping due to zone append 1421 * emulation on zoned target. In this case, dm_zone_map_bio() 1422 * calls the target map operation. 1423 */ 1424 if (unlikely(dm_emulate_zone_append(md))) 1425 r = dm_zone_map_bio(tio); 1426 else 1427 r = ti->type->map(ti, clone); 1428 } else 1429 r = ti->type->map(ti, clone); 1430 1431 switch (r) { 1432 case DM_MAPIO_SUBMITTED: 1433 /* target has assumed ownership of this io */ 1434 if (!ti->accounts_remapped_io) 1435 dm_start_io_acct(io, clone); 1436 break; 1437 case DM_MAPIO_REMAPPED: 1438 dm_submit_bio_remap(clone, NULL); 1439 break; 1440 case DM_MAPIO_KILL: 1441 case DM_MAPIO_REQUEUE: 1442 if (static_branch_unlikely(&swap_bios_enabled) && 1443 unlikely(swap_bios_limit(ti, clone))) 1444 up(&md->swap_bios_semaphore); 1445 free_tio(clone); 1446 if (r == DM_MAPIO_KILL) 1447 dm_io_dec_pending(io, BLK_STS_IOERR); 1448 else 1449 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1450 break; 1451 default: 1452 DMCRIT("unimplemented target map return value: %d", r); 1453 BUG(); 1454 } 1455 } 1456 1457 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1458 { 1459 struct dm_io *io = ci->io; 1460 1461 if (ci->sector_count > len) { 1462 /* 1463 * Split needed, save the mapped part for accounting. 1464 * NOTE: dm_accept_partial_bio() will update accordingly. 1465 */ 1466 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1467 io->sectors = len; 1468 io->sector_offset = bio_sectors(ci->bio); 1469 } 1470 } 1471 1472 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1473 struct dm_target *ti, unsigned int num_bios, 1474 unsigned *len) 1475 { 1476 struct bio *bio; 1477 int try; 1478 1479 for (try = 0; try < 2; try++) { 1480 int bio_nr; 1481 1482 if (try) 1483 mutex_lock(&ci->io->md->table_devices_lock); 1484 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1485 bio = alloc_tio(ci, ti, bio_nr, len, 1486 try ? GFP_NOIO : GFP_NOWAIT); 1487 if (!bio) 1488 break; 1489 1490 bio_list_add(blist, bio); 1491 } 1492 if (try) 1493 mutex_unlock(&ci->io->md->table_devices_lock); 1494 if (bio_nr == num_bios) 1495 return; 1496 1497 while ((bio = bio_list_pop(blist))) 1498 free_tio(bio); 1499 } 1500 } 1501 1502 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1503 unsigned int num_bios, unsigned int *len) 1504 { 1505 struct bio_list blist = BIO_EMPTY_LIST; 1506 struct bio *clone; 1507 unsigned int ret = 0; 1508 1509 switch (num_bios) { 1510 case 0: 1511 break; 1512 case 1: 1513 if (len) 1514 setup_split_accounting(ci, *len); 1515 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1516 __map_bio(clone); 1517 ret = 1; 1518 break; 1519 default: 1520 if (len) 1521 setup_split_accounting(ci, *len); 1522 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1523 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1524 while ((clone = bio_list_pop(&blist))) { 1525 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1526 __map_bio(clone); 1527 ret += 1; 1528 } 1529 break; 1530 } 1531 1532 return ret; 1533 } 1534 1535 static void __send_empty_flush(struct clone_info *ci) 1536 { 1537 struct dm_table *t = ci->map; 1538 struct bio flush_bio; 1539 1540 /* 1541 * Use an on-stack bio for this, it's safe since we don't 1542 * need to reference it after submit. It's just used as 1543 * the basis for the clone(s). 1544 */ 1545 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1546 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1547 1548 ci->bio = &flush_bio; 1549 ci->sector_count = 0; 1550 ci->io->tio.clone.bi_iter.bi_size = 0; 1551 1552 for (unsigned int i = 0; i < t->num_targets; i++) { 1553 unsigned int bios; 1554 struct dm_target *ti = dm_table_get_target(t, i); 1555 1556 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1557 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1558 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1559 } 1560 1561 /* 1562 * alloc_io() takes one extra reference for submission, so the 1563 * reference won't reach 0 without the following subtraction 1564 */ 1565 atomic_sub(1, &ci->io->io_count); 1566 1567 bio_uninit(ci->bio); 1568 } 1569 1570 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1571 unsigned int num_bios, 1572 unsigned int max_granularity, 1573 unsigned int max_sectors) 1574 { 1575 unsigned int len, bios; 1576 1577 len = min_t(sector_t, ci->sector_count, 1578 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1579 1580 atomic_add(num_bios, &ci->io->io_count); 1581 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1582 /* 1583 * alloc_io() takes one extra reference for submission, so the 1584 * reference won't reach 0 without the following (+1) subtraction 1585 */ 1586 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1587 1588 ci->sector += len; 1589 ci->sector_count -= len; 1590 } 1591 1592 static bool is_abnormal_io(struct bio *bio) 1593 { 1594 enum req_op op = bio_op(bio); 1595 1596 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1597 switch (op) { 1598 case REQ_OP_DISCARD: 1599 case REQ_OP_SECURE_ERASE: 1600 case REQ_OP_WRITE_ZEROES: 1601 return true; 1602 default: 1603 break; 1604 } 1605 } 1606 1607 return false; 1608 } 1609 1610 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1611 struct dm_target *ti) 1612 { 1613 unsigned int num_bios = 0; 1614 unsigned int max_granularity = 0; 1615 unsigned int max_sectors = 0; 1616 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1617 1618 switch (bio_op(ci->bio)) { 1619 case REQ_OP_DISCARD: 1620 num_bios = ti->num_discard_bios; 1621 max_sectors = limits->max_discard_sectors; 1622 if (ti->max_discard_granularity) 1623 max_granularity = max_sectors; 1624 break; 1625 case REQ_OP_SECURE_ERASE: 1626 num_bios = ti->num_secure_erase_bios; 1627 max_sectors = limits->max_secure_erase_sectors; 1628 if (ti->max_secure_erase_granularity) 1629 max_granularity = max_sectors; 1630 break; 1631 case REQ_OP_WRITE_ZEROES: 1632 num_bios = ti->num_write_zeroes_bios; 1633 max_sectors = limits->max_write_zeroes_sectors; 1634 if (ti->max_write_zeroes_granularity) 1635 max_granularity = max_sectors; 1636 break; 1637 default: 1638 break; 1639 } 1640 1641 /* 1642 * Even though the device advertised support for this type of 1643 * request, that does not mean every target supports it, and 1644 * reconfiguration might also have changed that since the 1645 * check was performed. 1646 */ 1647 if (unlikely(!num_bios)) 1648 return BLK_STS_NOTSUPP; 1649 1650 __send_changing_extent_only(ci, ti, num_bios, 1651 max_granularity, max_sectors); 1652 return BLK_STS_OK; 1653 } 1654 1655 /* 1656 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1657 * associated with this bio, and this bio's bi_private needs to be 1658 * stored in dm_io->data before the reuse. 1659 * 1660 * bio->bi_private is owned by fs or upper layer, so block layer won't 1661 * touch it after splitting. Meantime it won't be changed by anyone after 1662 * bio is submitted. So this reuse is safe. 1663 */ 1664 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1665 { 1666 return (struct dm_io **)&bio->bi_private; 1667 } 1668 1669 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1670 { 1671 struct dm_io **head = dm_poll_list_head(bio); 1672 1673 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1674 bio->bi_opf |= REQ_DM_POLL_LIST; 1675 /* 1676 * Save .bi_private into dm_io, so that we can reuse 1677 * .bi_private as dm_io list head for storing dm_io list 1678 */ 1679 io->data = bio->bi_private; 1680 1681 /* tell block layer to poll for completion */ 1682 bio->bi_cookie = ~BLK_QC_T_NONE; 1683 1684 io->next = NULL; 1685 } else { 1686 /* 1687 * bio recursed due to split, reuse original poll list, 1688 * and save bio->bi_private too. 1689 */ 1690 io->data = (*head)->data; 1691 io->next = *head; 1692 } 1693 1694 *head = io; 1695 } 1696 1697 /* 1698 * Select the correct strategy for processing a non-flush bio. 1699 */ 1700 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1701 { 1702 struct bio *clone; 1703 struct dm_target *ti; 1704 unsigned int len; 1705 1706 ti = dm_table_find_target(ci->map, ci->sector); 1707 if (unlikely(!ti)) 1708 return BLK_STS_IOERR; 1709 1710 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1711 unlikely(!dm_target_supports_nowait(ti->type))) 1712 return BLK_STS_NOTSUPP; 1713 1714 if (unlikely(ci->is_abnormal_io)) 1715 return __process_abnormal_io(ci, ti); 1716 1717 /* 1718 * Only support bio polling for normal IO, and the target io is 1719 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1720 */ 1721 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1722 1723 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1724 setup_split_accounting(ci, len); 1725 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1726 __map_bio(clone); 1727 1728 ci->sector += len; 1729 ci->sector_count -= len; 1730 1731 return BLK_STS_OK; 1732 } 1733 1734 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1735 struct dm_table *map, struct bio *bio, bool is_abnormal) 1736 { 1737 ci->map = map; 1738 ci->io = alloc_io(md, bio); 1739 ci->bio = bio; 1740 ci->is_abnormal_io = is_abnormal; 1741 ci->submit_as_polled = false; 1742 ci->sector = bio->bi_iter.bi_sector; 1743 ci->sector_count = bio_sectors(bio); 1744 1745 /* Shouldn't happen but sector_count was being set to 0 so... */ 1746 if (static_branch_unlikely(&zoned_enabled) && 1747 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1748 ci->sector_count = 0; 1749 } 1750 1751 /* 1752 * Entry point to split a bio into clones and submit them to the targets. 1753 */ 1754 static void dm_split_and_process_bio(struct mapped_device *md, 1755 struct dm_table *map, struct bio *bio) 1756 { 1757 struct clone_info ci; 1758 struct dm_io *io; 1759 blk_status_t error = BLK_STS_OK; 1760 bool is_abnormal; 1761 1762 is_abnormal = is_abnormal_io(bio); 1763 if (unlikely(is_abnormal)) { 1764 /* 1765 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1766 * otherwise associated queue_limits won't be imposed. 1767 */ 1768 bio = bio_split_to_limits(bio); 1769 if (!bio) 1770 return; 1771 } 1772 1773 init_clone_info(&ci, md, map, bio, is_abnormal); 1774 io = ci.io; 1775 1776 if (bio->bi_opf & REQ_PREFLUSH) { 1777 __send_empty_flush(&ci); 1778 /* dm_io_complete submits any data associated with flush */ 1779 goto out; 1780 } 1781 1782 error = __split_and_process_bio(&ci); 1783 if (error || !ci.sector_count) 1784 goto out; 1785 /* 1786 * Remainder must be passed to submit_bio_noacct() so it gets handled 1787 * *after* bios already submitted have been completely processed. 1788 */ 1789 bio_trim(bio, io->sectors, ci.sector_count); 1790 trace_block_split(bio, bio->bi_iter.bi_sector); 1791 bio_inc_remaining(bio); 1792 submit_bio_noacct(bio); 1793 out: 1794 /* 1795 * Drop the extra reference count for non-POLLED bio, and hold one 1796 * reference for POLLED bio, which will be released in dm_poll_bio 1797 * 1798 * Add every dm_io instance into the dm_io list head which is stored 1799 * in bio->bi_private, so that dm_poll_bio can poll them all. 1800 */ 1801 if (error || !ci.submit_as_polled) { 1802 /* 1803 * In case of submission failure, the extra reference for 1804 * submitting io isn't consumed yet 1805 */ 1806 if (error) 1807 atomic_dec(&io->io_count); 1808 dm_io_dec_pending(io, error); 1809 } else 1810 dm_queue_poll_io(bio, io); 1811 } 1812 1813 static void dm_submit_bio(struct bio *bio) 1814 { 1815 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1816 int srcu_idx; 1817 struct dm_table *map; 1818 1819 map = dm_get_live_table(md, &srcu_idx); 1820 if (unlikely(!map)) { 1821 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1822 dm_device_name(md)); 1823 bio_io_error(bio); 1824 goto out; 1825 } 1826 1827 /* If suspended, queue this IO for later */ 1828 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1829 if (bio->bi_opf & REQ_NOWAIT) 1830 bio_wouldblock_error(bio); 1831 else if (bio->bi_opf & REQ_RAHEAD) 1832 bio_io_error(bio); 1833 else 1834 queue_io(md, bio); 1835 goto out; 1836 } 1837 1838 dm_split_and_process_bio(md, map, bio); 1839 out: 1840 dm_put_live_table(md, srcu_idx); 1841 } 1842 1843 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1844 unsigned int flags) 1845 { 1846 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1847 1848 /* don't poll if the mapped io is done */ 1849 if (atomic_read(&io->io_count) > 1) 1850 bio_poll(&io->tio.clone, iob, flags); 1851 1852 /* bio_poll holds the last reference */ 1853 return atomic_read(&io->io_count) == 1; 1854 } 1855 1856 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1857 unsigned int flags) 1858 { 1859 struct dm_io **head = dm_poll_list_head(bio); 1860 struct dm_io *list = *head; 1861 struct dm_io *tmp = NULL; 1862 struct dm_io *curr, *next; 1863 1864 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1865 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1866 return 0; 1867 1868 WARN_ON_ONCE(!list); 1869 1870 /* 1871 * Restore .bi_private before possibly completing dm_io. 1872 * 1873 * bio_poll() is only possible once @bio has been completely 1874 * submitted via submit_bio_noacct()'s depth-first submission. 1875 * So there is no dm_queue_poll_io() race associated with 1876 * clearing REQ_DM_POLL_LIST here. 1877 */ 1878 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1879 bio->bi_private = list->data; 1880 1881 for (curr = list, next = curr->next; curr; curr = next, next = 1882 curr ? curr->next : NULL) { 1883 if (dm_poll_dm_io(curr, iob, flags)) { 1884 /* 1885 * clone_endio() has already occurred, so no 1886 * error handling is needed here. 1887 */ 1888 __dm_io_dec_pending(curr); 1889 } else { 1890 curr->next = tmp; 1891 tmp = curr; 1892 } 1893 } 1894 1895 /* Not done? */ 1896 if (tmp) { 1897 bio->bi_opf |= REQ_DM_POLL_LIST; 1898 /* Reset bio->bi_private to dm_io list head */ 1899 *head = tmp; 1900 return 0; 1901 } 1902 return 1; 1903 } 1904 1905 /* 1906 *--------------------------------------------------------------- 1907 * An IDR is used to keep track of allocated minor numbers. 1908 *--------------------------------------------------------------- 1909 */ 1910 static void free_minor(int minor) 1911 { 1912 spin_lock(&_minor_lock); 1913 idr_remove(&_minor_idr, minor); 1914 spin_unlock(&_minor_lock); 1915 } 1916 1917 /* 1918 * See if the device with a specific minor # is free. 1919 */ 1920 static int specific_minor(int minor) 1921 { 1922 int r; 1923 1924 if (minor >= (1 << MINORBITS)) 1925 return -EINVAL; 1926 1927 idr_preload(GFP_KERNEL); 1928 spin_lock(&_minor_lock); 1929 1930 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1931 1932 spin_unlock(&_minor_lock); 1933 idr_preload_end(); 1934 if (r < 0) 1935 return r == -ENOSPC ? -EBUSY : r; 1936 return 0; 1937 } 1938 1939 static int next_free_minor(int *minor) 1940 { 1941 int r; 1942 1943 idr_preload(GFP_KERNEL); 1944 spin_lock(&_minor_lock); 1945 1946 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1947 1948 spin_unlock(&_minor_lock); 1949 idr_preload_end(); 1950 if (r < 0) 1951 return r; 1952 *minor = r; 1953 return 0; 1954 } 1955 1956 static const struct block_device_operations dm_blk_dops; 1957 static const struct block_device_operations dm_rq_blk_dops; 1958 static const struct dax_operations dm_dax_ops; 1959 1960 static void dm_wq_work(struct work_struct *work); 1961 1962 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1963 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1964 { 1965 dm_destroy_crypto_profile(q->crypto_profile); 1966 } 1967 1968 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1969 1970 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1971 { 1972 } 1973 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1974 1975 static void cleanup_mapped_device(struct mapped_device *md) 1976 { 1977 if (md->wq) 1978 destroy_workqueue(md->wq); 1979 dm_free_md_mempools(md->mempools); 1980 1981 if (md->dax_dev) { 1982 dax_remove_host(md->disk); 1983 kill_dax(md->dax_dev); 1984 put_dax(md->dax_dev); 1985 md->dax_dev = NULL; 1986 } 1987 1988 dm_cleanup_zoned_dev(md); 1989 if (md->disk) { 1990 spin_lock(&_minor_lock); 1991 md->disk->private_data = NULL; 1992 spin_unlock(&_minor_lock); 1993 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1994 struct table_device *td; 1995 1996 dm_sysfs_exit(md); 1997 list_for_each_entry(td, &md->table_devices, list) { 1998 bd_unlink_disk_holder(td->dm_dev.bdev, 1999 md->disk); 2000 } 2001 2002 /* 2003 * Hold lock to make sure del_gendisk() won't concurrent 2004 * with open/close_table_device(). 2005 */ 2006 mutex_lock(&md->table_devices_lock); 2007 del_gendisk(md->disk); 2008 mutex_unlock(&md->table_devices_lock); 2009 } 2010 dm_queue_destroy_crypto_profile(md->queue); 2011 put_disk(md->disk); 2012 } 2013 2014 if (md->pending_io) { 2015 free_percpu(md->pending_io); 2016 md->pending_io = NULL; 2017 } 2018 2019 cleanup_srcu_struct(&md->io_barrier); 2020 2021 mutex_destroy(&md->suspend_lock); 2022 mutex_destroy(&md->type_lock); 2023 mutex_destroy(&md->table_devices_lock); 2024 mutex_destroy(&md->swap_bios_lock); 2025 2026 dm_mq_cleanup_mapped_device(md); 2027 } 2028 2029 /* 2030 * Allocate and initialise a blank device with a given minor. 2031 */ 2032 static struct mapped_device *alloc_dev(int minor) 2033 { 2034 int r, numa_node_id = dm_get_numa_node(); 2035 struct mapped_device *md; 2036 void *old_md; 2037 2038 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2039 if (!md) { 2040 DMERR("unable to allocate device, out of memory."); 2041 return NULL; 2042 } 2043 2044 if (!try_module_get(THIS_MODULE)) 2045 goto bad_module_get; 2046 2047 /* get a minor number for the dev */ 2048 if (minor == DM_ANY_MINOR) 2049 r = next_free_minor(&minor); 2050 else 2051 r = specific_minor(minor); 2052 if (r < 0) 2053 goto bad_minor; 2054 2055 r = init_srcu_struct(&md->io_barrier); 2056 if (r < 0) 2057 goto bad_io_barrier; 2058 2059 md->numa_node_id = numa_node_id; 2060 md->init_tio_pdu = false; 2061 md->type = DM_TYPE_NONE; 2062 mutex_init(&md->suspend_lock); 2063 mutex_init(&md->type_lock); 2064 mutex_init(&md->table_devices_lock); 2065 spin_lock_init(&md->deferred_lock); 2066 atomic_set(&md->holders, 1); 2067 atomic_set(&md->open_count, 0); 2068 atomic_set(&md->event_nr, 0); 2069 atomic_set(&md->uevent_seq, 0); 2070 INIT_LIST_HEAD(&md->uevent_list); 2071 INIT_LIST_HEAD(&md->table_devices); 2072 spin_lock_init(&md->uevent_lock); 2073 2074 /* 2075 * default to bio-based until DM table is loaded and md->type 2076 * established. If request-based table is loaded: blk-mq will 2077 * override accordingly. 2078 */ 2079 md->disk = blk_alloc_disk(md->numa_node_id); 2080 if (!md->disk) 2081 goto bad; 2082 md->queue = md->disk->queue; 2083 2084 init_waitqueue_head(&md->wait); 2085 INIT_WORK(&md->work, dm_wq_work); 2086 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2087 init_waitqueue_head(&md->eventq); 2088 init_completion(&md->kobj_holder.completion); 2089 2090 md->requeue_list = NULL; 2091 md->swap_bios = get_swap_bios(); 2092 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2093 mutex_init(&md->swap_bios_lock); 2094 2095 md->disk->major = _major; 2096 md->disk->first_minor = minor; 2097 md->disk->minors = 1; 2098 md->disk->flags |= GENHD_FL_NO_PART; 2099 md->disk->fops = &dm_blk_dops; 2100 md->disk->private_data = md; 2101 sprintf(md->disk->disk_name, "dm-%d", minor); 2102 2103 if (IS_ENABLED(CONFIG_FS_DAX)) { 2104 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2105 if (IS_ERR(md->dax_dev)) { 2106 md->dax_dev = NULL; 2107 goto bad; 2108 } 2109 set_dax_nocache(md->dax_dev); 2110 set_dax_nomc(md->dax_dev); 2111 if (dax_add_host(md->dax_dev, md->disk)) 2112 goto bad; 2113 } 2114 2115 format_dev_t(md->name, MKDEV(_major, minor)); 2116 2117 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2118 if (!md->wq) 2119 goto bad; 2120 2121 md->pending_io = alloc_percpu(unsigned long); 2122 if (!md->pending_io) 2123 goto bad; 2124 2125 r = dm_stats_init(&md->stats); 2126 if (r < 0) 2127 goto bad; 2128 2129 /* Populate the mapping, nobody knows we exist yet */ 2130 spin_lock(&_minor_lock); 2131 old_md = idr_replace(&_minor_idr, md, minor); 2132 spin_unlock(&_minor_lock); 2133 2134 BUG_ON(old_md != MINOR_ALLOCED); 2135 2136 return md; 2137 2138 bad: 2139 cleanup_mapped_device(md); 2140 bad_io_barrier: 2141 free_minor(minor); 2142 bad_minor: 2143 module_put(THIS_MODULE); 2144 bad_module_get: 2145 kvfree(md); 2146 return NULL; 2147 } 2148 2149 static void unlock_fs(struct mapped_device *md); 2150 2151 static void free_dev(struct mapped_device *md) 2152 { 2153 int minor = MINOR(disk_devt(md->disk)); 2154 2155 unlock_fs(md); 2156 2157 cleanup_mapped_device(md); 2158 2159 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2160 dm_stats_cleanup(&md->stats); 2161 free_minor(minor); 2162 2163 module_put(THIS_MODULE); 2164 kvfree(md); 2165 } 2166 2167 /* 2168 * Bind a table to the device. 2169 */ 2170 static void event_callback(void *context) 2171 { 2172 unsigned long flags; 2173 LIST_HEAD(uevents); 2174 struct mapped_device *md = context; 2175 2176 spin_lock_irqsave(&md->uevent_lock, flags); 2177 list_splice_init(&md->uevent_list, &uevents); 2178 spin_unlock_irqrestore(&md->uevent_lock, flags); 2179 2180 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2181 2182 atomic_inc(&md->event_nr); 2183 wake_up(&md->eventq); 2184 dm_issue_global_event(); 2185 } 2186 2187 /* 2188 * Returns old map, which caller must destroy. 2189 */ 2190 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2191 struct queue_limits *limits) 2192 { 2193 struct dm_table *old_map; 2194 sector_t size; 2195 int ret; 2196 2197 lockdep_assert_held(&md->suspend_lock); 2198 2199 size = dm_table_get_size(t); 2200 2201 /* 2202 * Wipe any geometry if the size of the table changed. 2203 */ 2204 if (size != dm_get_size(md)) 2205 memset(&md->geometry, 0, sizeof(md->geometry)); 2206 2207 set_capacity(md->disk, size); 2208 2209 dm_table_event_callback(t, event_callback, md); 2210 2211 if (dm_table_request_based(t)) { 2212 /* 2213 * Leverage the fact that request-based DM targets are 2214 * immutable singletons - used to optimize dm_mq_queue_rq. 2215 */ 2216 md->immutable_target = dm_table_get_immutable_target(t); 2217 2218 /* 2219 * There is no need to reload with request-based dm because the 2220 * size of front_pad doesn't change. 2221 * 2222 * Note for future: If you are to reload bioset, prep-ed 2223 * requests in the queue may refer to bio from the old bioset, 2224 * so you must walk through the queue to unprep. 2225 */ 2226 if (!md->mempools) { 2227 md->mempools = t->mempools; 2228 t->mempools = NULL; 2229 } 2230 } else { 2231 /* 2232 * The md may already have mempools that need changing. 2233 * If so, reload bioset because front_pad may have changed 2234 * because a different table was loaded. 2235 */ 2236 dm_free_md_mempools(md->mempools); 2237 md->mempools = t->mempools; 2238 t->mempools = NULL; 2239 } 2240 2241 ret = dm_table_set_restrictions(t, md->queue, limits); 2242 if (ret) { 2243 old_map = ERR_PTR(ret); 2244 goto out; 2245 } 2246 2247 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2248 rcu_assign_pointer(md->map, (void *)t); 2249 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2250 2251 if (old_map) 2252 dm_sync_table(md); 2253 out: 2254 return old_map; 2255 } 2256 2257 /* 2258 * Returns unbound table for the caller to free. 2259 */ 2260 static struct dm_table *__unbind(struct mapped_device *md) 2261 { 2262 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2263 2264 if (!map) 2265 return NULL; 2266 2267 dm_table_event_callback(map, NULL, NULL); 2268 RCU_INIT_POINTER(md->map, NULL); 2269 dm_sync_table(md); 2270 2271 return map; 2272 } 2273 2274 /* 2275 * Constructor for a new device. 2276 */ 2277 int dm_create(int minor, struct mapped_device **result) 2278 { 2279 struct mapped_device *md; 2280 2281 md = alloc_dev(minor); 2282 if (!md) 2283 return -ENXIO; 2284 2285 dm_ima_reset_data(md); 2286 2287 *result = md; 2288 return 0; 2289 } 2290 2291 /* 2292 * Functions to manage md->type. 2293 * All are required to hold md->type_lock. 2294 */ 2295 void dm_lock_md_type(struct mapped_device *md) 2296 { 2297 mutex_lock(&md->type_lock); 2298 } 2299 2300 void dm_unlock_md_type(struct mapped_device *md) 2301 { 2302 mutex_unlock(&md->type_lock); 2303 } 2304 2305 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2306 { 2307 BUG_ON(!mutex_is_locked(&md->type_lock)); 2308 md->type = type; 2309 } 2310 2311 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2312 { 2313 return md->type; 2314 } 2315 2316 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2317 { 2318 return md->immutable_target_type; 2319 } 2320 2321 /* 2322 * Setup the DM device's queue based on md's type 2323 */ 2324 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2325 { 2326 enum dm_queue_mode type = dm_table_get_type(t); 2327 struct queue_limits limits; 2328 struct table_device *td; 2329 int r; 2330 2331 switch (type) { 2332 case DM_TYPE_REQUEST_BASED: 2333 md->disk->fops = &dm_rq_blk_dops; 2334 r = dm_mq_init_request_queue(md, t); 2335 if (r) { 2336 DMERR("Cannot initialize queue for request-based dm mapped device"); 2337 return r; 2338 } 2339 break; 2340 case DM_TYPE_BIO_BASED: 2341 case DM_TYPE_DAX_BIO_BASED: 2342 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); 2343 break; 2344 case DM_TYPE_NONE: 2345 WARN_ON_ONCE(true); 2346 break; 2347 } 2348 2349 r = dm_calculate_queue_limits(t, &limits); 2350 if (r) { 2351 DMERR("Cannot calculate initial queue limits"); 2352 return r; 2353 } 2354 r = dm_table_set_restrictions(t, md->queue, &limits); 2355 if (r) 2356 return r; 2357 2358 /* 2359 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2360 * with open_table_device() and close_table_device(). 2361 */ 2362 mutex_lock(&md->table_devices_lock); 2363 r = add_disk(md->disk); 2364 mutex_unlock(&md->table_devices_lock); 2365 if (r) 2366 return r; 2367 2368 /* 2369 * Register the holder relationship for devices added before the disk 2370 * was live. 2371 */ 2372 list_for_each_entry(td, &md->table_devices, list) { 2373 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2374 if (r) 2375 goto out_undo_holders; 2376 } 2377 2378 r = dm_sysfs_init(md); 2379 if (r) 2380 goto out_undo_holders; 2381 2382 md->type = type; 2383 return 0; 2384 2385 out_undo_holders: 2386 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2387 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2388 mutex_lock(&md->table_devices_lock); 2389 del_gendisk(md->disk); 2390 mutex_unlock(&md->table_devices_lock); 2391 return r; 2392 } 2393 2394 struct mapped_device *dm_get_md(dev_t dev) 2395 { 2396 struct mapped_device *md; 2397 unsigned int minor = MINOR(dev); 2398 2399 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2400 return NULL; 2401 2402 spin_lock(&_minor_lock); 2403 2404 md = idr_find(&_minor_idr, minor); 2405 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2406 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2407 md = NULL; 2408 goto out; 2409 } 2410 dm_get(md); 2411 out: 2412 spin_unlock(&_minor_lock); 2413 2414 return md; 2415 } 2416 EXPORT_SYMBOL_GPL(dm_get_md); 2417 2418 void *dm_get_mdptr(struct mapped_device *md) 2419 { 2420 return md->interface_ptr; 2421 } 2422 2423 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2424 { 2425 md->interface_ptr = ptr; 2426 } 2427 2428 void dm_get(struct mapped_device *md) 2429 { 2430 atomic_inc(&md->holders); 2431 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2432 } 2433 2434 int dm_hold(struct mapped_device *md) 2435 { 2436 spin_lock(&_minor_lock); 2437 if (test_bit(DMF_FREEING, &md->flags)) { 2438 spin_unlock(&_minor_lock); 2439 return -EBUSY; 2440 } 2441 dm_get(md); 2442 spin_unlock(&_minor_lock); 2443 return 0; 2444 } 2445 EXPORT_SYMBOL_GPL(dm_hold); 2446 2447 const char *dm_device_name(struct mapped_device *md) 2448 { 2449 return md->name; 2450 } 2451 EXPORT_SYMBOL_GPL(dm_device_name); 2452 2453 static void __dm_destroy(struct mapped_device *md, bool wait) 2454 { 2455 struct dm_table *map; 2456 int srcu_idx; 2457 2458 might_sleep(); 2459 2460 spin_lock(&_minor_lock); 2461 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2462 set_bit(DMF_FREEING, &md->flags); 2463 spin_unlock(&_minor_lock); 2464 2465 blk_mark_disk_dead(md->disk); 2466 2467 /* 2468 * Take suspend_lock so that presuspend and postsuspend methods 2469 * do not race with internal suspend. 2470 */ 2471 mutex_lock(&md->suspend_lock); 2472 map = dm_get_live_table(md, &srcu_idx); 2473 if (!dm_suspended_md(md)) { 2474 dm_table_presuspend_targets(map); 2475 set_bit(DMF_SUSPENDED, &md->flags); 2476 set_bit(DMF_POST_SUSPENDING, &md->flags); 2477 dm_table_postsuspend_targets(map); 2478 } 2479 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2480 dm_put_live_table(md, srcu_idx); 2481 mutex_unlock(&md->suspend_lock); 2482 2483 /* 2484 * Rare, but there may be I/O requests still going to complete, 2485 * for example. Wait for all references to disappear. 2486 * No one should increment the reference count of the mapped_device, 2487 * after the mapped_device state becomes DMF_FREEING. 2488 */ 2489 if (wait) 2490 while (atomic_read(&md->holders)) 2491 fsleep(1000); 2492 else if (atomic_read(&md->holders)) 2493 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2494 dm_device_name(md), atomic_read(&md->holders)); 2495 2496 dm_table_destroy(__unbind(md)); 2497 free_dev(md); 2498 } 2499 2500 void dm_destroy(struct mapped_device *md) 2501 { 2502 __dm_destroy(md, true); 2503 } 2504 2505 void dm_destroy_immediate(struct mapped_device *md) 2506 { 2507 __dm_destroy(md, false); 2508 } 2509 2510 void dm_put(struct mapped_device *md) 2511 { 2512 atomic_dec(&md->holders); 2513 } 2514 EXPORT_SYMBOL_GPL(dm_put); 2515 2516 static bool dm_in_flight_bios(struct mapped_device *md) 2517 { 2518 int cpu; 2519 unsigned long sum = 0; 2520 2521 for_each_possible_cpu(cpu) 2522 sum += *per_cpu_ptr(md->pending_io, cpu); 2523 2524 return sum != 0; 2525 } 2526 2527 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2528 { 2529 int r = 0; 2530 DEFINE_WAIT(wait); 2531 2532 while (true) { 2533 prepare_to_wait(&md->wait, &wait, task_state); 2534 2535 if (!dm_in_flight_bios(md)) 2536 break; 2537 2538 if (signal_pending_state(task_state, current)) { 2539 r = -ERESTARTSYS; 2540 break; 2541 } 2542 2543 io_schedule(); 2544 } 2545 finish_wait(&md->wait, &wait); 2546 2547 smp_rmb(); 2548 2549 return r; 2550 } 2551 2552 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2553 { 2554 int r = 0; 2555 2556 if (!queue_is_mq(md->queue)) 2557 return dm_wait_for_bios_completion(md, task_state); 2558 2559 while (true) { 2560 if (!blk_mq_queue_inflight(md->queue)) 2561 break; 2562 2563 if (signal_pending_state(task_state, current)) { 2564 r = -ERESTARTSYS; 2565 break; 2566 } 2567 2568 fsleep(5000); 2569 } 2570 2571 return r; 2572 } 2573 2574 /* 2575 * Process the deferred bios 2576 */ 2577 static void dm_wq_work(struct work_struct *work) 2578 { 2579 struct mapped_device *md = container_of(work, struct mapped_device, work); 2580 struct bio *bio; 2581 2582 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2583 spin_lock_irq(&md->deferred_lock); 2584 bio = bio_list_pop(&md->deferred); 2585 spin_unlock_irq(&md->deferred_lock); 2586 2587 if (!bio) 2588 break; 2589 2590 submit_bio_noacct(bio); 2591 cond_resched(); 2592 } 2593 } 2594 2595 static void dm_queue_flush(struct mapped_device *md) 2596 { 2597 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2598 smp_mb__after_atomic(); 2599 queue_work(md->wq, &md->work); 2600 } 2601 2602 /* 2603 * Swap in a new table, returning the old one for the caller to destroy. 2604 */ 2605 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2606 { 2607 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2608 struct queue_limits limits; 2609 int r; 2610 2611 mutex_lock(&md->suspend_lock); 2612 2613 /* device must be suspended */ 2614 if (!dm_suspended_md(md)) 2615 goto out; 2616 2617 /* 2618 * If the new table has no data devices, retain the existing limits. 2619 * This helps multipath with queue_if_no_path if all paths disappear, 2620 * then new I/O is queued based on these limits, and then some paths 2621 * reappear. 2622 */ 2623 if (dm_table_has_no_data_devices(table)) { 2624 live_map = dm_get_live_table_fast(md); 2625 if (live_map) 2626 limits = md->queue->limits; 2627 dm_put_live_table_fast(md); 2628 } 2629 2630 if (!live_map) { 2631 r = dm_calculate_queue_limits(table, &limits); 2632 if (r) { 2633 map = ERR_PTR(r); 2634 goto out; 2635 } 2636 } 2637 2638 map = __bind(md, table, &limits); 2639 dm_issue_global_event(); 2640 2641 out: 2642 mutex_unlock(&md->suspend_lock); 2643 return map; 2644 } 2645 2646 /* 2647 * Functions to lock and unlock any filesystem running on the 2648 * device. 2649 */ 2650 static int lock_fs(struct mapped_device *md) 2651 { 2652 int r; 2653 2654 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2655 2656 r = freeze_bdev(md->disk->part0); 2657 if (!r) 2658 set_bit(DMF_FROZEN, &md->flags); 2659 return r; 2660 } 2661 2662 static void unlock_fs(struct mapped_device *md) 2663 { 2664 if (!test_bit(DMF_FROZEN, &md->flags)) 2665 return; 2666 thaw_bdev(md->disk->part0); 2667 clear_bit(DMF_FROZEN, &md->flags); 2668 } 2669 2670 /* 2671 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2672 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2673 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2674 * 2675 * If __dm_suspend returns 0, the device is completely quiescent 2676 * now. There is no request-processing activity. All new requests 2677 * are being added to md->deferred list. 2678 */ 2679 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2680 unsigned int suspend_flags, unsigned int task_state, 2681 int dmf_suspended_flag) 2682 { 2683 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2684 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2685 int r; 2686 2687 lockdep_assert_held(&md->suspend_lock); 2688 2689 /* 2690 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2691 * This flag is cleared before dm_suspend returns. 2692 */ 2693 if (noflush) 2694 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2695 else 2696 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2697 2698 /* 2699 * This gets reverted if there's an error later and the targets 2700 * provide the .presuspend_undo hook. 2701 */ 2702 dm_table_presuspend_targets(map); 2703 2704 /* 2705 * Flush I/O to the device. 2706 * Any I/O submitted after lock_fs() may not be flushed. 2707 * noflush takes precedence over do_lockfs. 2708 * (lock_fs() flushes I/Os and waits for them to complete.) 2709 */ 2710 if (!noflush && do_lockfs) { 2711 r = lock_fs(md); 2712 if (r) { 2713 dm_table_presuspend_undo_targets(map); 2714 return r; 2715 } 2716 } 2717 2718 /* 2719 * Here we must make sure that no processes are submitting requests 2720 * to target drivers i.e. no one may be executing 2721 * dm_split_and_process_bio from dm_submit_bio. 2722 * 2723 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2724 * we take the write lock. To prevent any process from reentering 2725 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2726 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2727 * flush_workqueue(md->wq). 2728 */ 2729 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2730 if (map) 2731 synchronize_srcu(&md->io_barrier); 2732 2733 /* 2734 * Stop md->queue before flushing md->wq in case request-based 2735 * dm defers requests to md->wq from md->queue. 2736 */ 2737 if (dm_request_based(md)) 2738 dm_stop_queue(md->queue); 2739 2740 flush_workqueue(md->wq); 2741 2742 /* 2743 * At this point no more requests are entering target request routines. 2744 * We call dm_wait_for_completion to wait for all existing requests 2745 * to finish. 2746 */ 2747 r = dm_wait_for_completion(md, task_state); 2748 if (!r) 2749 set_bit(dmf_suspended_flag, &md->flags); 2750 2751 if (noflush) 2752 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2753 if (map) 2754 synchronize_srcu(&md->io_barrier); 2755 2756 /* were we interrupted ? */ 2757 if (r < 0) { 2758 dm_queue_flush(md); 2759 2760 if (dm_request_based(md)) 2761 dm_start_queue(md->queue); 2762 2763 unlock_fs(md); 2764 dm_table_presuspend_undo_targets(map); 2765 /* pushback list is already flushed, so skip flush */ 2766 } 2767 2768 return r; 2769 } 2770 2771 /* 2772 * We need to be able to change a mapping table under a mounted 2773 * filesystem. For example we might want to move some data in 2774 * the background. Before the table can be swapped with 2775 * dm_bind_table, dm_suspend must be called to flush any in 2776 * flight bios and ensure that any further io gets deferred. 2777 */ 2778 /* 2779 * Suspend mechanism in request-based dm. 2780 * 2781 * 1. Flush all I/Os by lock_fs() if needed. 2782 * 2. Stop dispatching any I/O by stopping the request_queue. 2783 * 3. Wait for all in-flight I/Os to be completed or requeued. 2784 * 2785 * To abort suspend, start the request_queue. 2786 */ 2787 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2788 { 2789 struct dm_table *map = NULL; 2790 int r = 0; 2791 2792 retry: 2793 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2794 2795 if (dm_suspended_md(md)) { 2796 r = -EINVAL; 2797 goto out_unlock; 2798 } 2799 2800 if (dm_suspended_internally_md(md)) { 2801 /* already internally suspended, wait for internal resume */ 2802 mutex_unlock(&md->suspend_lock); 2803 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2804 if (r) 2805 return r; 2806 goto retry; 2807 } 2808 2809 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2810 if (!map) { 2811 /* avoid deadlock with fs/namespace.c:do_mount() */ 2812 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2813 } 2814 2815 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2816 if (r) 2817 goto out_unlock; 2818 2819 set_bit(DMF_POST_SUSPENDING, &md->flags); 2820 dm_table_postsuspend_targets(map); 2821 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2822 2823 out_unlock: 2824 mutex_unlock(&md->suspend_lock); 2825 return r; 2826 } 2827 2828 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2829 { 2830 if (map) { 2831 int r = dm_table_resume_targets(map); 2832 2833 if (r) 2834 return r; 2835 } 2836 2837 dm_queue_flush(md); 2838 2839 /* 2840 * Flushing deferred I/Os must be done after targets are resumed 2841 * so that mapping of targets can work correctly. 2842 * Request-based dm is queueing the deferred I/Os in its request_queue. 2843 */ 2844 if (dm_request_based(md)) 2845 dm_start_queue(md->queue); 2846 2847 unlock_fs(md); 2848 2849 return 0; 2850 } 2851 2852 int dm_resume(struct mapped_device *md) 2853 { 2854 int r; 2855 struct dm_table *map = NULL; 2856 2857 retry: 2858 r = -EINVAL; 2859 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2860 2861 if (!dm_suspended_md(md)) 2862 goto out; 2863 2864 if (dm_suspended_internally_md(md)) { 2865 /* already internally suspended, wait for internal resume */ 2866 mutex_unlock(&md->suspend_lock); 2867 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2868 if (r) 2869 return r; 2870 goto retry; 2871 } 2872 2873 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2874 if (!map || !dm_table_get_size(map)) 2875 goto out; 2876 2877 r = __dm_resume(md, map); 2878 if (r) 2879 goto out; 2880 2881 clear_bit(DMF_SUSPENDED, &md->flags); 2882 out: 2883 mutex_unlock(&md->suspend_lock); 2884 2885 return r; 2886 } 2887 2888 /* 2889 * Internal suspend/resume works like userspace-driven suspend. It waits 2890 * until all bios finish and prevents issuing new bios to the target drivers. 2891 * It may be used only from the kernel. 2892 */ 2893 2894 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2895 { 2896 struct dm_table *map = NULL; 2897 2898 lockdep_assert_held(&md->suspend_lock); 2899 2900 if (md->internal_suspend_count++) 2901 return; /* nested internal suspend */ 2902 2903 if (dm_suspended_md(md)) { 2904 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2905 return; /* nest suspend */ 2906 } 2907 2908 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2909 2910 /* 2911 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2912 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2913 * would require changing .presuspend to return an error -- avoid this 2914 * until there is a need for more elaborate variants of internal suspend. 2915 */ 2916 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2917 DMF_SUSPENDED_INTERNALLY); 2918 2919 set_bit(DMF_POST_SUSPENDING, &md->flags); 2920 dm_table_postsuspend_targets(map); 2921 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2922 } 2923 2924 static void __dm_internal_resume(struct mapped_device *md) 2925 { 2926 int r; 2927 struct dm_table *map; 2928 2929 BUG_ON(!md->internal_suspend_count); 2930 2931 if (--md->internal_suspend_count) 2932 return; /* resume from nested internal suspend */ 2933 2934 if (dm_suspended_md(md)) 2935 goto done; /* resume from nested suspend */ 2936 2937 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2938 r = __dm_resume(md, map); 2939 if (r) { 2940 /* 2941 * If a preresume method of some target failed, we are in a 2942 * tricky situation. We can't return an error to the caller. We 2943 * can't fake success because then the "resume" and 2944 * "postsuspend" methods would not be paired correctly, and it 2945 * would break various targets, for example it would cause list 2946 * corruption in the "origin" target. 2947 * 2948 * So, we fake normal suspend here, to make sure that the 2949 * "resume" and "postsuspend" methods will be paired correctly. 2950 */ 2951 DMERR("Preresume method failed: %d", r); 2952 set_bit(DMF_SUSPENDED, &md->flags); 2953 } 2954 done: 2955 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2956 smp_mb__after_atomic(); 2957 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2958 } 2959 2960 void dm_internal_suspend_noflush(struct mapped_device *md) 2961 { 2962 mutex_lock(&md->suspend_lock); 2963 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2964 mutex_unlock(&md->suspend_lock); 2965 } 2966 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2967 2968 void dm_internal_resume(struct mapped_device *md) 2969 { 2970 mutex_lock(&md->suspend_lock); 2971 __dm_internal_resume(md); 2972 mutex_unlock(&md->suspend_lock); 2973 } 2974 EXPORT_SYMBOL_GPL(dm_internal_resume); 2975 2976 /* 2977 * Fast variants of internal suspend/resume hold md->suspend_lock, 2978 * which prevents interaction with userspace-driven suspend. 2979 */ 2980 2981 void dm_internal_suspend_fast(struct mapped_device *md) 2982 { 2983 mutex_lock(&md->suspend_lock); 2984 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2985 return; 2986 2987 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2988 synchronize_srcu(&md->io_barrier); 2989 flush_workqueue(md->wq); 2990 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2991 } 2992 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2993 2994 void dm_internal_resume_fast(struct mapped_device *md) 2995 { 2996 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2997 goto done; 2998 2999 dm_queue_flush(md); 3000 3001 done: 3002 mutex_unlock(&md->suspend_lock); 3003 } 3004 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3005 3006 /* 3007 *--------------------------------------------------------------- 3008 * Event notification. 3009 *--------------------------------------------------------------- 3010 */ 3011 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3012 unsigned int cookie, bool need_resize_uevent) 3013 { 3014 int r; 3015 unsigned int noio_flag; 3016 char udev_cookie[DM_COOKIE_LENGTH]; 3017 char *envp[3] = { NULL, NULL, NULL }; 3018 char **envpp = envp; 3019 if (cookie) { 3020 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3021 DM_COOKIE_ENV_VAR_NAME, cookie); 3022 *envpp++ = udev_cookie; 3023 } 3024 if (need_resize_uevent) { 3025 *envpp++ = "RESIZE=1"; 3026 } 3027 3028 noio_flag = memalloc_noio_save(); 3029 3030 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3031 3032 memalloc_noio_restore(noio_flag); 3033 3034 return r; 3035 } 3036 3037 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3038 { 3039 return atomic_add_return(1, &md->uevent_seq); 3040 } 3041 3042 uint32_t dm_get_event_nr(struct mapped_device *md) 3043 { 3044 return atomic_read(&md->event_nr); 3045 } 3046 3047 int dm_wait_event(struct mapped_device *md, int event_nr) 3048 { 3049 return wait_event_interruptible(md->eventq, 3050 (event_nr != atomic_read(&md->event_nr))); 3051 } 3052 3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3054 { 3055 unsigned long flags; 3056 3057 spin_lock_irqsave(&md->uevent_lock, flags); 3058 list_add(elist, &md->uevent_list); 3059 spin_unlock_irqrestore(&md->uevent_lock, flags); 3060 } 3061 3062 /* 3063 * The gendisk is only valid as long as you have a reference 3064 * count on 'md'. 3065 */ 3066 struct gendisk *dm_disk(struct mapped_device *md) 3067 { 3068 return md->disk; 3069 } 3070 EXPORT_SYMBOL_GPL(dm_disk); 3071 3072 struct kobject *dm_kobject(struct mapped_device *md) 3073 { 3074 return &md->kobj_holder.kobj; 3075 } 3076 3077 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3078 { 3079 struct mapped_device *md; 3080 3081 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3082 3083 spin_lock(&_minor_lock); 3084 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3085 md = NULL; 3086 goto out; 3087 } 3088 dm_get(md); 3089 out: 3090 spin_unlock(&_minor_lock); 3091 3092 return md; 3093 } 3094 3095 int dm_suspended_md(struct mapped_device *md) 3096 { 3097 return test_bit(DMF_SUSPENDED, &md->flags); 3098 } 3099 3100 static int dm_post_suspending_md(struct mapped_device *md) 3101 { 3102 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3103 } 3104 3105 int dm_suspended_internally_md(struct mapped_device *md) 3106 { 3107 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3108 } 3109 3110 int dm_test_deferred_remove_flag(struct mapped_device *md) 3111 { 3112 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3113 } 3114 3115 int dm_suspended(struct dm_target *ti) 3116 { 3117 return dm_suspended_md(ti->table->md); 3118 } 3119 EXPORT_SYMBOL_GPL(dm_suspended); 3120 3121 int dm_post_suspending(struct dm_target *ti) 3122 { 3123 return dm_post_suspending_md(ti->table->md); 3124 } 3125 EXPORT_SYMBOL_GPL(dm_post_suspending); 3126 3127 int dm_noflush_suspending(struct dm_target *ti) 3128 { 3129 return __noflush_suspending(ti->table->md); 3130 } 3131 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3132 3133 void dm_free_md_mempools(struct dm_md_mempools *pools) 3134 { 3135 if (!pools) 3136 return; 3137 3138 bioset_exit(&pools->bs); 3139 bioset_exit(&pools->io_bs); 3140 3141 kfree(pools); 3142 } 3143 3144 struct dm_pr { 3145 u64 old_key; 3146 u64 new_key; 3147 u32 flags; 3148 bool abort; 3149 bool fail_early; 3150 int ret; 3151 enum pr_type type; 3152 struct pr_keys *read_keys; 3153 struct pr_held_reservation *rsv; 3154 }; 3155 3156 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3157 struct dm_pr *pr) 3158 { 3159 struct mapped_device *md = bdev->bd_disk->private_data; 3160 struct dm_table *table; 3161 struct dm_target *ti; 3162 int ret = -ENOTTY, srcu_idx; 3163 3164 table = dm_get_live_table(md, &srcu_idx); 3165 if (!table || !dm_table_get_size(table)) 3166 goto out; 3167 3168 /* We only support devices that have a single target */ 3169 if (table->num_targets != 1) 3170 goto out; 3171 ti = dm_table_get_target(table, 0); 3172 3173 if (dm_suspended_md(md)) { 3174 ret = -EAGAIN; 3175 goto out; 3176 } 3177 3178 ret = -EINVAL; 3179 if (!ti->type->iterate_devices) 3180 goto out; 3181 3182 ti->type->iterate_devices(ti, fn, pr); 3183 ret = 0; 3184 out: 3185 dm_put_live_table(md, srcu_idx); 3186 return ret; 3187 } 3188 3189 /* 3190 * For register / unregister we need to manually call out to every path. 3191 */ 3192 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3193 sector_t start, sector_t len, void *data) 3194 { 3195 struct dm_pr *pr = data; 3196 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3197 int ret; 3198 3199 if (!ops || !ops->pr_register) { 3200 pr->ret = -EOPNOTSUPP; 3201 return -1; 3202 } 3203 3204 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3205 if (!ret) 3206 return 0; 3207 3208 if (!pr->ret) 3209 pr->ret = ret; 3210 3211 if (pr->fail_early) 3212 return -1; 3213 3214 return 0; 3215 } 3216 3217 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3218 u32 flags) 3219 { 3220 struct dm_pr pr = { 3221 .old_key = old_key, 3222 .new_key = new_key, 3223 .flags = flags, 3224 .fail_early = true, 3225 .ret = 0, 3226 }; 3227 int ret; 3228 3229 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3230 if (ret) { 3231 /* Didn't even get to register a path */ 3232 return ret; 3233 } 3234 3235 if (!pr.ret) 3236 return 0; 3237 ret = pr.ret; 3238 3239 if (!new_key) 3240 return ret; 3241 3242 /* unregister all paths if we failed to register any path */ 3243 pr.old_key = new_key; 3244 pr.new_key = 0; 3245 pr.flags = 0; 3246 pr.fail_early = false; 3247 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3248 return ret; 3249 } 3250 3251 3252 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3253 sector_t start, sector_t len, void *data) 3254 { 3255 struct dm_pr *pr = data; 3256 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3257 3258 if (!ops || !ops->pr_reserve) { 3259 pr->ret = -EOPNOTSUPP; 3260 return -1; 3261 } 3262 3263 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3264 if (!pr->ret) 3265 return -1; 3266 3267 return 0; 3268 } 3269 3270 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3271 u32 flags) 3272 { 3273 struct dm_pr pr = { 3274 .old_key = key, 3275 .flags = flags, 3276 .type = type, 3277 .fail_early = false, 3278 .ret = 0, 3279 }; 3280 int ret; 3281 3282 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3283 if (ret) 3284 return ret; 3285 3286 return pr.ret; 3287 } 3288 3289 /* 3290 * If there is a non-All Registrants type of reservation, the release must be 3291 * sent down the holding path. For the cases where there is no reservation or 3292 * the path is not the holder the device will also return success, so we must 3293 * try each path to make sure we got the correct path. 3294 */ 3295 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3296 sector_t start, sector_t len, void *data) 3297 { 3298 struct dm_pr *pr = data; 3299 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3300 3301 if (!ops || !ops->pr_release) { 3302 pr->ret = -EOPNOTSUPP; 3303 return -1; 3304 } 3305 3306 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3307 if (pr->ret) 3308 return -1; 3309 3310 return 0; 3311 } 3312 3313 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3314 { 3315 struct dm_pr pr = { 3316 .old_key = key, 3317 .type = type, 3318 .fail_early = false, 3319 }; 3320 int ret; 3321 3322 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3323 if (ret) 3324 return ret; 3325 3326 return pr.ret; 3327 } 3328 3329 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3330 sector_t start, sector_t len, void *data) 3331 { 3332 struct dm_pr *pr = data; 3333 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3334 3335 if (!ops || !ops->pr_preempt) { 3336 pr->ret = -EOPNOTSUPP; 3337 return -1; 3338 } 3339 3340 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3341 pr->abort); 3342 if (!pr->ret) 3343 return -1; 3344 3345 return 0; 3346 } 3347 3348 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3349 enum pr_type type, bool abort) 3350 { 3351 struct dm_pr pr = { 3352 .new_key = new_key, 3353 .old_key = old_key, 3354 .type = type, 3355 .fail_early = false, 3356 }; 3357 int ret; 3358 3359 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3360 if (ret) 3361 return ret; 3362 3363 return pr.ret; 3364 } 3365 3366 static int dm_pr_clear(struct block_device *bdev, u64 key) 3367 { 3368 struct mapped_device *md = bdev->bd_disk->private_data; 3369 const struct pr_ops *ops; 3370 int r, srcu_idx; 3371 3372 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3373 if (r < 0) 3374 goto out; 3375 3376 ops = bdev->bd_disk->fops->pr_ops; 3377 if (ops && ops->pr_clear) 3378 r = ops->pr_clear(bdev, key); 3379 else 3380 r = -EOPNOTSUPP; 3381 out: 3382 dm_unprepare_ioctl(md, srcu_idx); 3383 return r; 3384 } 3385 3386 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3387 sector_t start, sector_t len, void *data) 3388 { 3389 struct dm_pr *pr = data; 3390 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3391 3392 if (!ops || !ops->pr_read_keys) { 3393 pr->ret = -EOPNOTSUPP; 3394 return -1; 3395 } 3396 3397 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3398 if (!pr->ret) 3399 return -1; 3400 3401 return 0; 3402 } 3403 3404 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3405 { 3406 struct dm_pr pr = { 3407 .read_keys = keys, 3408 }; 3409 int ret; 3410 3411 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3412 if (ret) 3413 return ret; 3414 3415 return pr.ret; 3416 } 3417 3418 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3419 sector_t start, sector_t len, void *data) 3420 { 3421 struct dm_pr *pr = data; 3422 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3423 3424 if (!ops || !ops->pr_read_reservation) { 3425 pr->ret = -EOPNOTSUPP; 3426 return -1; 3427 } 3428 3429 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3430 if (!pr->ret) 3431 return -1; 3432 3433 return 0; 3434 } 3435 3436 static int dm_pr_read_reservation(struct block_device *bdev, 3437 struct pr_held_reservation *rsv) 3438 { 3439 struct dm_pr pr = { 3440 .rsv = rsv, 3441 }; 3442 int ret; 3443 3444 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3445 if (ret) 3446 return ret; 3447 3448 return pr.ret; 3449 } 3450 3451 static const struct pr_ops dm_pr_ops = { 3452 .pr_register = dm_pr_register, 3453 .pr_reserve = dm_pr_reserve, 3454 .pr_release = dm_pr_release, 3455 .pr_preempt = dm_pr_preempt, 3456 .pr_clear = dm_pr_clear, 3457 .pr_read_keys = dm_pr_read_keys, 3458 .pr_read_reservation = dm_pr_read_reservation, 3459 }; 3460 3461 static const struct block_device_operations dm_blk_dops = { 3462 .submit_bio = dm_submit_bio, 3463 .poll_bio = dm_poll_bio, 3464 .open = dm_blk_open, 3465 .release = dm_blk_close, 3466 .ioctl = dm_blk_ioctl, 3467 .getgeo = dm_blk_getgeo, 3468 .report_zones = dm_blk_report_zones, 3469 .pr_ops = &dm_pr_ops, 3470 .owner = THIS_MODULE 3471 }; 3472 3473 static const struct block_device_operations dm_rq_blk_dops = { 3474 .open = dm_blk_open, 3475 .release = dm_blk_close, 3476 .ioctl = dm_blk_ioctl, 3477 .getgeo = dm_blk_getgeo, 3478 .pr_ops = &dm_pr_ops, 3479 .owner = THIS_MODULE 3480 }; 3481 3482 static const struct dax_operations dm_dax_ops = { 3483 .direct_access = dm_dax_direct_access, 3484 .zero_page_range = dm_dax_zero_page_range, 3485 .recovery_write = dm_dax_recovery_write, 3486 }; 3487 3488 /* 3489 * module hooks 3490 */ 3491 module_init(dm_init); 3492 module_exit(dm_exit); 3493 3494 module_param(major, uint, 0); 3495 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3496 3497 module_param(reserved_bio_based_ios, uint, 0644); 3498 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3499 3500 module_param(dm_numa_node, int, 0644); 3501 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3502 3503 module_param(swap_bios, int, 0644); 3504 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3505 3506 MODULE_DESCRIPTION(DM_NAME " driver"); 3507 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3508 MODULE_LICENSE("GPL"); 3509