1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones, 445 gfp_t gfp_mask) 446 { 447 #ifdef CONFIG_BLK_DEV_ZONED 448 struct mapped_device *md = disk->private_data; 449 struct dm_target *tgt; 450 struct dm_table *map; 451 int srcu_idx, ret; 452 453 if (dm_suspended_md(md)) 454 return -EAGAIN; 455 456 map = dm_get_live_table(md, &srcu_idx); 457 if (!map) 458 return -EIO; 459 460 tgt = dm_table_find_target(map, sector); 461 if (!dm_target_is_valid(tgt)) { 462 ret = -EIO; 463 goto out; 464 } 465 466 /* 467 * If we are executing this, we already know that the block device 468 * is a zoned device and so each target should have support for that 469 * type of drive. A missing report_zones method means that the target 470 * driver has a problem. 471 */ 472 if (WARN_ON(!tgt->type->report_zones)) { 473 ret = -EIO; 474 goto out; 475 } 476 477 /* 478 * blkdev_report_zones() will loop and call this again to cover all the 479 * zones of the target, eventually moving on to the next target. 480 * So there is no need to loop here trying to fill the entire array 481 * of zones. 482 */ 483 ret = tgt->type->report_zones(tgt, sector, zones, 484 nr_zones, gfp_mask); 485 486 out: 487 dm_put_live_table(md, srcu_idx); 488 return ret; 489 #else 490 return -ENOTSUPP; 491 #endif 492 } 493 494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 495 struct block_device **bdev) 496 __acquires(md->io_barrier) 497 { 498 struct dm_target *tgt; 499 struct dm_table *map; 500 int r; 501 502 retry: 503 r = -ENOTTY; 504 map = dm_get_live_table(md, srcu_idx); 505 if (!map || !dm_table_get_size(map)) 506 return r; 507 508 /* We only support devices that have a single target */ 509 if (dm_table_get_num_targets(map) != 1) 510 return r; 511 512 tgt = dm_table_get_target(map, 0); 513 if (!tgt->type->prepare_ioctl) 514 return r; 515 516 if (dm_suspended_md(md)) 517 return -EAGAIN; 518 519 r = tgt->type->prepare_ioctl(tgt, bdev); 520 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 521 dm_put_live_table(md, *srcu_idx); 522 msleep(10); 523 goto retry; 524 } 525 526 return r; 527 } 528 529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 530 __releases(md->io_barrier) 531 { 532 dm_put_live_table(md, srcu_idx); 533 } 534 535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 536 unsigned int cmd, unsigned long arg) 537 { 538 struct mapped_device *md = bdev->bd_disk->private_data; 539 int r, srcu_idx; 540 541 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 542 if (r < 0) 543 goto out; 544 545 if (r > 0) { 546 /* 547 * Target determined this ioctl is being issued against a 548 * subset of the parent bdev; require extra privileges. 549 */ 550 if (!capable(CAP_SYS_RAWIO)) { 551 DMWARN_LIMIT( 552 "%s: sending ioctl %x to DM device without required privilege.", 553 current->comm, cmd); 554 r = -ENOIOCTLCMD; 555 goto out; 556 } 557 } 558 559 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 560 out: 561 dm_unprepare_ioctl(md, srcu_idx); 562 return r; 563 } 564 565 static void start_io_acct(struct dm_io *io); 566 567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 568 { 569 struct dm_io *io; 570 struct dm_target_io *tio; 571 struct bio *clone; 572 573 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 574 if (!clone) 575 return NULL; 576 577 tio = container_of(clone, struct dm_target_io, clone); 578 tio->inside_dm_io = true; 579 tio->io = NULL; 580 581 io = container_of(tio, struct dm_io, tio); 582 io->magic = DM_IO_MAGIC; 583 io->status = 0; 584 atomic_set(&io->io_count, 1); 585 io->orig_bio = bio; 586 io->md = md; 587 spin_lock_init(&io->endio_lock); 588 589 start_io_acct(io); 590 591 return io; 592 } 593 594 static void free_io(struct mapped_device *md, struct dm_io *io) 595 { 596 bio_put(&io->tio.clone); 597 } 598 599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 600 unsigned target_bio_nr, gfp_t gfp_mask) 601 { 602 struct dm_target_io *tio; 603 604 if (!ci->io->tio.io) { 605 /* the dm_target_io embedded in ci->io is available */ 606 tio = &ci->io->tio; 607 } else { 608 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 609 if (!clone) 610 return NULL; 611 612 tio = container_of(clone, struct dm_target_io, clone); 613 tio->inside_dm_io = false; 614 } 615 616 tio->magic = DM_TIO_MAGIC; 617 tio->io = ci->io; 618 tio->ti = ti; 619 tio->target_bio_nr = target_bio_nr; 620 621 return tio; 622 } 623 624 static void free_tio(struct dm_target_io *tio) 625 { 626 if (tio->inside_dm_io) 627 return; 628 bio_put(&tio->clone); 629 } 630 631 static bool md_in_flight_bios(struct mapped_device *md) 632 { 633 int cpu; 634 struct hd_struct *part = &dm_disk(md)->part0; 635 long sum = 0; 636 637 for_each_possible_cpu(cpu) { 638 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 639 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 640 } 641 642 return sum != 0; 643 } 644 645 static bool md_in_flight(struct mapped_device *md) 646 { 647 if (queue_is_mq(md->queue)) 648 return blk_mq_queue_inflight(md->queue); 649 else 650 return md_in_flight_bios(md); 651 } 652 653 static void start_io_acct(struct dm_io *io) 654 { 655 struct mapped_device *md = io->md; 656 struct bio *bio = io->orig_bio; 657 658 io->start_time = jiffies; 659 660 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 661 &dm_disk(md)->part0); 662 663 if (unlikely(dm_stats_used(&md->stats))) 664 dm_stats_account_io(&md->stats, bio_data_dir(bio), 665 bio->bi_iter.bi_sector, bio_sectors(bio), 666 false, 0, &io->stats_aux); 667 } 668 669 static void end_io_acct(struct dm_io *io) 670 { 671 struct mapped_device *md = io->md; 672 struct bio *bio = io->orig_bio; 673 unsigned long duration = jiffies - io->start_time; 674 675 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 676 io->start_time); 677 678 if (unlikely(dm_stats_used(&md->stats))) 679 dm_stats_account_io(&md->stats, bio_data_dir(bio), 680 bio->bi_iter.bi_sector, bio_sectors(bio), 681 true, duration, &io->stats_aux); 682 683 /* nudge anyone waiting on suspend queue */ 684 if (unlikely(wq_has_sleeper(&md->wait))) 685 wake_up(&md->wait); 686 } 687 688 /* 689 * Add the bio to the list of deferred io. 690 */ 691 static void queue_io(struct mapped_device *md, struct bio *bio) 692 { 693 unsigned long flags; 694 695 spin_lock_irqsave(&md->deferred_lock, flags); 696 bio_list_add(&md->deferred, bio); 697 spin_unlock_irqrestore(&md->deferred_lock, flags); 698 queue_work(md->wq, &md->work); 699 } 700 701 /* 702 * Everyone (including functions in this file), should use this 703 * function to access the md->map field, and make sure they call 704 * dm_put_live_table() when finished. 705 */ 706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 707 { 708 *srcu_idx = srcu_read_lock(&md->io_barrier); 709 710 return srcu_dereference(md->map, &md->io_barrier); 711 } 712 713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 714 { 715 srcu_read_unlock(&md->io_barrier, srcu_idx); 716 } 717 718 void dm_sync_table(struct mapped_device *md) 719 { 720 synchronize_srcu(&md->io_barrier); 721 synchronize_rcu_expedited(); 722 } 723 724 /* 725 * A fast alternative to dm_get_live_table/dm_put_live_table. 726 * The caller must not block between these two functions. 727 */ 728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 729 { 730 rcu_read_lock(); 731 return rcu_dereference(md->map); 732 } 733 734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 735 { 736 rcu_read_unlock(); 737 } 738 739 static char *_dm_claim_ptr = "I belong to device-mapper"; 740 741 /* 742 * Open a table device so we can use it as a map destination. 743 */ 744 static int open_table_device(struct table_device *td, dev_t dev, 745 struct mapped_device *md) 746 { 747 struct block_device *bdev; 748 749 int r; 750 751 BUG_ON(td->dm_dev.bdev); 752 753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 754 if (IS_ERR(bdev)) 755 return PTR_ERR(bdev); 756 757 r = bd_link_disk_holder(bdev, dm_disk(md)); 758 if (r) { 759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 760 return r; 761 } 762 763 td->dm_dev.bdev = bdev; 764 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 765 return 0; 766 } 767 768 /* 769 * Close a table device that we've been using. 770 */ 771 static void close_table_device(struct table_device *td, struct mapped_device *md) 772 { 773 if (!td->dm_dev.bdev) 774 return; 775 776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 778 put_dax(td->dm_dev.dax_dev); 779 td->dm_dev.bdev = NULL; 780 td->dm_dev.dax_dev = NULL; 781 } 782 783 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 784 fmode_t mode) { 785 struct table_device *td; 786 787 list_for_each_entry(td, l, list) 788 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 789 return td; 790 791 return NULL; 792 } 793 794 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 795 struct dm_dev **result) { 796 int r; 797 struct table_device *td; 798 799 mutex_lock(&md->table_devices_lock); 800 td = find_table_device(&md->table_devices, dev, mode); 801 if (!td) { 802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 803 if (!td) { 804 mutex_unlock(&md->table_devices_lock); 805 return -ENOMEM; 806 } 807 808 td->dm_dev.mode = mode; 809 td->dm_dev.bdev = NULL; 810 811 if ((r = open_table_device(td, dev, md))) { 812 mutex_unlock(&md->table_devices_lock); 813 kfree(td); 814 return r; 815 } 816 817 format_dev_t(td->dm_dev.name, dev); 818 819 refcount_set(&td->count, 1); 820 list_add(&td->list, &md->table_devices); 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(dm_get_table_device); 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 EXPORT_SYMBOL(dm_put_table_device); 844 845 static void free_table_devices(struct list_head *devices) 846 { 847 struct list_head *tmp, *next; 848 849 list_for_each_safe(tmp, next, devices) { 850 struct table_device *td = list_entry(tmp, struct table_device, list); 851 852 DMWARN("dm_destroy: %s still exists with %d references", 853 td->dm_dev.name, refcount_read(&td->count)); 854 kfree(td); 855 } 856 } 857 858 /* 859 * Get the geometry associated with a dm device 860 */ 861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 862 { 863 *geo = md->geometry; 864 865 return 0; 866 } 867 868 /* 869 * Set the geometry of a device. 870 */ 871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 872 { 873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 874 875 if (geo->start > sz) { 876 DMWARN("Start sector is beyond the geometry limits."); 877 return -EINVAL; 878 } 879 880 md->geometry = *geo; 881 882 return 0; 883 } 884 885 static int __noflush_suspending(struct mapped_device *md) 886 { 887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 888 } 889 890 /* 891 * Decrements the number of outstanding ios that a bio has been 892 * cloned into, completing the original io if necc. 893 */ 894 static void dec_pending(struct dm_io *io, blk_status_t error) 895 { 896 unsigned long flags; 897 blk_status_t io_error; 898 struct bio *bio; 899 struct mapped_device *md = io->md; 900 901 /* Push-back supersedes any I/O errors */ 902 if (unlikely(error)) { 903 spin_lock_irqsave(&io->endio_lock, flags); 904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 905 io->status = error; 906 spin_unlock_irqrestore(&io->endio_lock, flags); 907 } 908 909 if (atomic_dec_and_test(&io->io_count)) { 910 if (io->status == BLK_STS_DM_REQUEUE) { 911 /* 912 * Target requested pushing back the I/O. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if (__noflush_suspending(md)) 916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 917 bio_list_add_head(&md->deferred, io->orig_bio); 918 else 919 /* noflush suspend was interrupted. */ 920 io->status = BLK_STS_IOERR; 921 spin_unlock_irqrestore(&md->deferred_lock, flags); 922 } 923 924 io_error = io->status; 925 bio = io->orig_bio; 926 end_io_acct(io); 927 free_io(md, io); 928 929 if (io_error == BLK_STS_DM_REQUEUE) 930 return; 931 932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 933 /* 934 * Preflush done for flush with data, reissue 935 * without REQ_PREFLUSH. 936 */ 937 bio->bi_opf &= ~REQ_PREFLUSH; 938 queue_io(md, bio); 939 } else { 940 /* done with normal IO or empty flush */ 941 if (io_error) 942 bio->bi_status = io_error; 943 bio_endio(bio); 944 } 945 } 946 } 947 948 void disable_discard(struct mapped_device *md) 949 { 950 struct queue_limits *limits = dm_get_queue_limits(md); 951 952 /* device doesn't really support DISCARD, disable it */ 953 limits->max_discard_sectors = 0; 954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 955 } 956 957 void disable_write_same(struct mapped_device *md) 958 { 959 struct queue_limits *limits = dm_get_queue_limits(md); 960 961 /* device doesn't really support WRITE SAME, disable it */ 962 limits->max_write_same_sectors = 0; 963 } 964 965 void disable_write_zeroes(struct mapped_device *md) 966 { 967 struct queue_limits *limits = dm_get_queue_limits(md); 968 969 /* device doesn't really support WRITE ZEROES, disable it */ 970 limits->max_write_zeroes_sectors = 0; 971 } 972 973 static void clone_endio(struct bio *bio) 974 { 975 blk_status_t error = bio->bi_status; 976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 977 struct dm_io *io = tio->io; 978 struct mapped_device *md = tio->io->md; 979 dm_endio_fn endio = tio->ti->type->end_io; 980 981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 982 if (bio_op(bio) == REQ_OP_DISCARD && 983 !bio->bi_disk->queue->limits.max_discard_sectors) 984 disable_discard(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 986 !bio->bi_disk->queue->limits.max_write_same_sectors) 987 disable_write_same(md); 988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 990 disable_write_zeroes(md); 991 } 992 993 if (endio) { 994 int r = endio(tio->ti, bio, &error); 995 switch (r) { 996 case DM_ENDIO_REQUEUE: 997 error = BLK_STS_DM_REQUEUE; 998 /*FALLTHRU*/ 999 case DM_ENDIO_DONE: 1000 break; 1001 case DM_ENDIO_INCOMPLETE: 1002 /* The target will handle the io */ 1003 return; 1004 default: 1005 DMWARN("unimplemented target endio return value: %d", r); 1006 BUG(); 1007 } 1008 } 1009 1010 free_tio(tio); 1011 dec_pending(io, error); 1012 } 1013 1014 /* 1015 * Return maximum size of I/O possible at the supplied sector up to the current 1016 * target boundary. 1017 */ 1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1019 { 1020 sector_t target_offset = dm_target_offset(ti, sector); 1021 1022 return ti->len - target_offset; 1023 } 1024 1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1026 { 1027 sector_t len = max_io_len_target_boundary(sector, ti); 1028 sector_t offset, max_len; 1029 1030 /* 1031 * Does the target need to split even further? 1032 */ 1033 if (ti->max_io_len) { 1034 offset = dm_target_offset(ti, sector); 1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1036 max_len = sector_div(offset, ti->max_io_len); 1037 else 1038 max_len = offset & (ti->max_io_len - 1); 1039 max_len = ti->max_io_len - max_len; 1040 1041 if (len > max_len) 1042 len = max_len; 1043 } 1044 1045 return len; 1046 } 1047 1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1049 { 1050 if (len > UINT_MAX) { 1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1052 (unsigned long long)len, UINT_MAX); 1053 ti->error = "Maximum size of target IO is too large"; 1054 return -EINVAL; 1055 } 1056 1057 ti->max_io_len = (uint32_t) len; 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1062 1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1064 sector_t sector, int *srcu_idx) 1065 __acquires(md->io_barrier) 1066 { 1067 struct dm_table *map; 1068 struct dm_target *ti; 1069 1070 map = dm_get_live_table(md, srcu_idx); 1071 if (!map) 1072 return NULL; 1073 1074 ti = dm_table_find_target(map, sector); 1075 if (!dm_target_is_valid(ti)) 1076 return NULL; 1077 1078 return ti; 1079 } 1080 1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1082 long nr_pages, void **kaddr, pfn_t *pfn) 1083 { 1084 struct mapped_device *md = dax_get_private(dax_dev); 1085 sector_t sector = pgoff * PAGE_SECTORS; 1086 struct dm_target *ti; 1087 long len, ret = -EIO; 1088 int srcu_idx; 1089 1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1091 1092 if (!ti) 1093 goto out; 1094 if (!ti->type->direct_access) 1095 goto out; 1096 len = max_io_len(sector, ti) / PAGE_SECTORS; 1097 if (len < 1) 1098 goto out; 1099 nr_pages = min(len, nr_pages); 1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1101 1102 out: 1103 dm_put_live_table(md, srcu_idx); 1104 1105 return ret; 1106 } 1107 1108 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1109 void *addr, size_t bytes, struct iov_iter *i) 1110 { 1111 struct mapped_device *md = dax_get_private(dax_dev); 1112 sector_t sector = pgoff * PAGE_SECTORS; 1113 struct dm_target *ti; 1114 long ret = 0; 1115 int srcu_idx; 1116 1117 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1118 1119 if (!ti) 1120 goto out; 1121 if (!ti->type->dax_copy_from_iter) { 1122 ret = copy_from_iter(addr, bytes, i); 1123 goto out; 1124 } 1125 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1126 out: 1127 dm_put_live_table(md, srcu_idx); 1128 1129 return ret; 1130 } 1131 1132 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1133 void *addr, size_t bytes, struct iov_iter *i) 1134 { 1135 struct mapped_device *md = dax_get_private(dax_dev); 1136 sector_t sector = pgoff * PAGE_SECTORS; 1137 struct dm_target *ti; 1138 long ret = 0; 1139 int srcu_idx; 1140 1141 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1142 1143 if (!ti) 1144 goto out; 1145 if (!ti->type->dax_copy_to_iter) { 1146 ret = copy_to_iter(addr, bytes, i); 1147 goto out; 1148 } 1149 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1150 out: 1151 dm_put_live_table(md, srcu_idx); 1152 1153 return ret; 1154 } 1155 1156 /* 1157 * A target may call dm_accept_partial_bio only from the map routine. It is 1158 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1159 * 1160 * dm_accept_partial_bio informs the dm that the target only wants to process 1161 * additional n_sectors sectors of the bio and the rest of the data should be 1162 * sent in a next bio. 1163 * 1164 * A diagram that explains the arithmetics: 1165 * +--------------------+---------------+-------+ 1166 * | 1 | 2 | 3 | 1167 * +--------------------+---------------+-------+ 1168 * 1169 * <-------------- *tio->len_ptr ---------------> 1170 * <------- bi_size -------> 1171 * <-- n_sectors --> 1172 * 1173 * Region 1 was already iterated over with bio_advance or similar function. 1174 * (it may be empty if the target doesn't use bio_advance) 1175 * Region 2 is the remaining bio size that the target wants to process. 1176 * (it may be empty if region 1 is non-empty, although there is no reason 1177 * to make it empty) 1178 * The target requires that region 3 is to be sent in the next bio. 1179 * 1180 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1181 * the partially processed part (the sum of regions 1+2) must be the same for all 1182 * copies of the bio. 1183 */ 1184 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1185 { 1186 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1187 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1188 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1189 BUG_ON(bi_size > *tio->len_ptr); 1190 BUG_ON(n_sectors > bi_size); 1191 *tio->len_ptr -= bi_size - n_sectors; 1192 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1193 } 1194 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1195 1196 /* 1197 * The zone descriptors obtained with a zone report indicate 1198 * zone positions within the underlying device of the target. The zone 1199 * descriptors must be remapped to match their position within the dm device. 1200 * The caller target should obtain the zones information using 1201 * blkdev_report_zones() to ensure that remapping for partition offset is 1202 * already handled. 1203 */ 1204 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1205 struct blk_zone *zones, unsigned int *nr_zones) 1206 { 1207 #ifdef CONFIG_BLK_DEV_ZONED 1208 struct blk_zone *zone; 1209 unsigned int nrz = *nr_zones; 1210 int i; 1211 1212 /* 1213 * Remap the start sector and write pointer position of the zones in 1214 * the array. Since we may have obtained from the target underlying 1215 * device more zones that the target size, also adjust the number 1216 * of zones. 1217 */ 1218 for (i = 0; i < nrz; i++) { 1219 zone = zones + i; 1220 if (zone->start >= start + ti->len) { 1221 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1222 break; 1223 } 1224 1225 zone->start = zone->start + ti->begin - start; 1226 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1227 continue; 1228 1229 if (zone->cond == BLK_ZONE_COND_FULL) 1230 zone->wp = zone->start + zone->len; 1231 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1232 zone->wp = zone->start; 1233 else 1234 zone->wp = zone->wp + ti->begin - start; 1235 } 1236 1237 *nr_zones = i; 1238 #else /* !CONFIG_BLK_DEV_ZONED */ 1239 *nr_zones = 0; 1240 #endif 1241 } 1242 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1243 1244 static blk_qc_t __map_bio(struct dm_target_io *tio) 1245 { 1246 int r; 1247 sector_t sector; 1248 struct bio *clone = &tio->clone; 1249 struct dm_io *io = tio->io; 1250 struct mapped_device *md = io->md; 1251 struct dm_target *ti = tio->ti; 1252 blk_qc_t ret = BLK_QC_T_NONE; 1253 1254 clone->bi_end_io = clone_endio; 1255 1256 /* 1257 * Map the clone. If r == 0 we don't need to do 1258 * anything, the target has assumed ownership of 1259 * this io. 1260 */ 1261 atomic_inc(&io->io_count); 1262 sector = clone->bi_iter.bi_sector; 1263 1264 r = ti->type->map(ti, clone); 1265 switch (r) { 1266 case DM_MAPIO_SUBMITTED: 1267 break; 1268 case DM_MAPIO_REMAPPED: 1269 /* the bio has been remapped so dispatch it */ 1270 trace_block_bio_remap(clone->bi_disk->queue, clone, 1271 bio_dev(io->orig_bio), sector); 1272 if (md->type == DM_TYPE_NVME_BIO_BASED) 1273 ret = direct_make_request(clone); 1274 else 1275 ret = generic_make_request(clone); 1276 break; 1277 case DM_MAPIO_KILL: 1278 free_tio(tio); 1279 dec_pending(io, BLK_STS_IOERR); 1280 break; 1281 case DM_MAPIO_REQUEUE: 1282 free_tio(tio); 1283 dec_pending(io, BLK_STS_DM_REQUEUE); 1284 break; 1285 default: 1286 DMWARN("unimplemented target map return value: %d", r); 1287 BUG(); 1288 } 1289 1290 return ret; 1291 } 1292 1293 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1294 { 1295 bio->bi_iter.bi_sector = sector; 1296 bio->bi_iter.bi_size = to_bytes(len); 1297 } 1298 1299 /* 1300 * Creates a bio that consists of range of complete bvecs. 1301 */ 1302 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1303 sector_t sector, unsigned len) 1304 { 1305 struct bio *clone = &tio->clone; 1306 1307 __bio_clone_fast(clone, bio); 1308 1309 if (bio_integrity(bio)) { 1310 int r; 1311 1312 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1313 !dm_target_passes_integrity(tio->ti->type))) { 1314 DMWARN("%s: the target %s doesn't support integrity data.", 1315 dm_device_name(tio->io->md), 1316 tio->ti->type->name); 1317 return -EIO; 1318 } 1319 1320 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1321 if (r < 0) 1322 return r; 1323 } 1324 1325 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1326 clone->bi_iter.bi_size = to_bytes(len); 1327 1328 if (bio_integrity(bio)) 1329 bio_integrity_trim(clone); 1330 1331 return 0; 1332 } 1333 1334 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1335 struct dm_target *ti, unsigned num_bios) 1336 { 1337 struct dm_target_io *tio; 1338 int try; 1339 1340 if (!num_bios) 1341 return; 1342 1343 if (num_bios == 1) { 1344 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1345 bio_list_add(blist, &tio->clone); 1346 return; 1347 } 1348 1349 for (try = 0; try < 2; try++) { 1350 int bio_nr; 1351 struct bio *bio; 1352 1353 if (try) 1354 mutex_lock(&ci->io->md->table_devices_lock); 1355 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1356 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1357 if (!tio) 1358 break; 1359 1360 bio_list_add(blist, &tio->clone); 1361 } 1362 if (try) 1363 mutex_unlock(&ci->io->md->table_devices_lock); 1364 if (bio_nr == num_bios) 1365 return; 1366 1367 while ((bio = bio_list_pop(blist))) { 1368 tio = container_of(bio, struct dm_target_io, clone); 1369 free_tio(tio); 1370 } 1371 } 1372 } 1373 1374 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1375 struct dm_target_io *tio, unsigned *len) 1376 { 1377 struct bio *clone = &tio->clone; 1378 1379 tio->len_ptr = len; 1380 1381 __bio_clone_fast(clone, ci->bio); 1382 if (len) 1383 bio_setup_sector(clone, ci->sector, *len); 1384 1385 return __map_bio(tio); 1386 } 1387 1388 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1389 unsigned num_bios, unsigned *len) 1390 { 1391 struct bio_list blist = BIO_EMPTY_LIST; 1392 struct bio *bio; 1393 struct dm_target_io *tio; 1394 1395 alloc_multiple_bios(&blist, ci, ti, num_bios); 1396 1397 while ((bio = bio_list_pop(&blist))) { 1398 tio = container_of(bio, struct dm_target_io, clone); 1399 (void) __clone_and_map_simple_bio(ci, tio, len); 1400 } 1401 } 1402 1403 static int __send_empty_flush(struct clone_info *ci) 1404 { 1405 unsigned target_nr = 0; 1406 struct dm_target *ti; 1407 1408 /* 1409 * Empty flush uses a statically initialized bio, as the base for 1410 * cloning. However, blkg association requires that a bdev is 1411 * associated with a gendisk, which doesn't happen until the bdev is 1412 * opened. So, blkg association is done at issue time of the flush 1413 * rather than when the device is created in alloc_dev(). 1414 */ 1415 bio_set_dev(ci->bio, ci->io->md->bdev); 1416 1417 BUG_ON(bio_has_data(ci->bio)); 1418 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1419 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1420 1421 bio_disassociate_blkg(ci->bio); 1422 1423 return 0; 1424 } 1425 1426 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1427 sector_t sector, unsigned *len) 1428 { 1429 struct bio *bio = ci->bio; 1430 struct dm_target_io *tio; 1431 int r; 1432 1433 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1434 tio->len_ptr = len; 1435 r = clone_bio(tio, bio, sector, *len); 1436 if (r < 0) { 1437 free_tio(tio); 1438 return r; 1439 } 1440 (void) __map_bio(tio); 1441 1442 return 0; 1443 } 1444 1445 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1446 1447 static unsigned get_num_discard_bios(struct dm_target *ti) 1448 { 1449 return ti->num_discard_bios; 1450 } 1451 1452 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1453 { 1454 return ti->num_secure_erase_bios; 1455 } 1456 1457 static unsigned get_num_write_same_bios(struct dm_target *ti) 1458 { 1459 return ti->num_write_same_bios; 1460 } 1461 1462 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1463 { 1464 return ti->num_write_zeroes_bios; 1465 } 1466 1467 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1468 unsigned num_bios) 1469 { 1470 unsigned len = ci->sector_count; 1471 1472 /* 1473 * Even though the device advertised support for this type of 1474 * request, that does not mean every target supports it, and 1475 * reconfiguration might also have changed that since the 1476 * check was performed. 1477 */ 1478 if (!num_bios) 1479 return -EOPNOTSUPP; 1480 1481 __send_duplicate_bios(ci, ti, num_bios, &len); 1482 1483 ci->sector += len; 1484 ci->sector_count -= len; 1485 1486 return 0; 1487 } 1488 1489 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1490 { 1491 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1492 } 1493 1494 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1495 { 1496 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1497 } 1498 1499 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1500 { 1501 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1502 } 1503 1504 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1505 { 1506 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1507 } 1508 1509 static bool is_abnormal_io(struct bio *bio) 1510 { 1511 bool r = false; 1512 1513 switch (bio_op(bio)) { 1514 case REQ_OP_DISCARD: 1515 case REQ_OP_SECURE_ERASE: 1516 case REQ_OP_WRITE_SAME: 1517 case REQ_OP_WRITE_ZEROES: 1518 r = true; 1519 break; 1520 } 1521 1522 return r; 1523 } 1524 1525 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1526 int *result) 1527 { 1528 struct bio *bio = ci->bio; 1529 1530 if (bio_op(bio) == REQ_OP_DISCARD) 1531 *result = __send_discard(ci, ti); 1532 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1533 *result = __send_secure_erase(ci, ti); 1534 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1535 *result = __send_write_same(ci, ti); 1536 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1537 *result = __send_write_zeroes(ci, ti); 1538 else 1539 return false; 1540 1541 return true; 1542 } 1543 1544 /* 1545 * Select the correct strategy for processing a non-flush bio. 1546 */ 1547 static int __split_and_process_non_flush(struct clone_info *ci) 1548 { 1549 struct dm_target *ti; 1550 unsigned len; 1551 int r; 1552 1553 ti = dm_table_find_target(ci->map, ci->sector); 1554 if (!dm_target_is_valid(ti)) 1555 return -EIO; 1556 1557 if (__process_abnormal_io(ci, ti, &r)) 1558 return r; 1559 1560 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1561 1562 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1563 if (r < 0) 1564 return r; 1565 1566 ci->sector += len; 1567 ci->sector_count -= len; 1568 1569 return 0; 1570 } 1571 1572 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1573 struct dm_table *map, struct bio *bio) 1574 { 1575 ci->map = map; 1576 ci->io = alloc_io(md, bio); 1577 ci->sector = bio->bi_iter.bi_sector; 1578 } 1579 1580 #define __dm_part_stat_sub(part, field, subnd) \ 1581 (part_stat_get(part, field) -= (subnd)) 1582 1583 /* 1584 * Entry point to split a bio into clones and submit them to the targets. 1585 */ 1586 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1587 struct dm_table *map, struct bio *bio) 1588 { 1589 struct clone_info ci; 1590 blk_qc_t ret = BLK_QC_T_NONE; 1591 int error = 0; 1592 1593 init_clone_info(&ci, md, map, bio); 1594 1595 if (bio->bi_opf & REQ_PREFLUSH) { 1596 struct bio flush_bio; 1597 1598 /* 1599 * Use an on-stack bio for this, it's safe since we don't 1600 * need to reference it after submit. It's just used as 1601 * the basis for the clone(s). 1602 */ 1603 bio_init(&flush_bio, NULL, 0); 1604 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1605 ci.bio = &flush_bio; 1606 ci.sector_count = 0; 1607 error = __send_empty_flush(&ci); 1608 /* dec_pending submits any data associated with flush */ 1609 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1610 ci.bio = bio; 1611 ci.sector_count = 0; 1612 error = __split_and_process_non_flush(&ci); 1613 } else { 1614 ci.bio = bio; 1615 ci.sector_count = bio_sectors(bio); 1616 while (ci.sector_count && !error) { 1617 error = __split_and_process_non_flush(&ci); 1618 if (current->bio_list && ci.sector_count && !error) { 1619 /* 1620 * Remainder must be passed to generic_make_request() 1621 * so that it gets handled *after* bios already submitted 1622 * have been completely processed. 1623 * We take a clone of the original to store in 1624 * ci.io->orig_bio to be used by end_io_acct() and 1625 * for dec_pending to use for completion handling. 1626 */ 1627 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1628 GFP_NOIO, &md->queue->bio_split); 1629 ci.io->orig_bio = b; 1630 1631 /* 1632 * Adjust IO stats for each split, otherwise upon queue 1633 * reentry there will be redundant IO accounting. 1634 * NOTE: this is a stop-gap fix, a proper fix involves 1635 * significant refactoring of DM core's bio splitting 1636 * (by eliminating DM's splitting and just using bio_split) 1637 */ 1638 part_stat_lock(); 1639 __dm_part_stat_sub(&dm_disk(md)->part0, 1640 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1641 part_stat_unlock(); 1642 1643 bio_chain(b, bio); 1644 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1645 ret = generic_make_request(bio); 1646 break; 1647 } 1648 } 1649 } 1650 1651 /* drop the extra reference count */ 1652 dec_pending(ci.io, errno_to_blk_status(error)); 1653 return ret; 1654 } 1655 1656 /* 1657 * Optimized variant of __split_and_process_bio that leverages the 1658 * fact that targets that use it do _not_ have a need to split bios. 1659 */ 1660 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1661 struct bio *bio, struct dm_target *ti) 1662 { 1663 struct clone_info ci; 1664 blk_qc_t ret = BLK_QC_T_NONE; 1665 int error = 0; 1666 1667 init_clone_info(&ci, md, map, bio); 1668 1669 if (bio->bi_opf & REQ_PREFLUSH) { 1670 struct bio flush_bio; 1671 1672 /* 1673 * Use an on-stack bio for this, it's safe since we don't 1674 * need to reference it after submit. It's just used as 1675 * the basis for the clone(s). 1676 */ 1677 bio_init(&flush_bio, NULL, 0); 1678 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1679 ci.bio = &flush_bio; 1680 ci.sector_count = 0; 1681 error = __send_empty_flush(&ci); 1682 /* dec_pending submits any data associated with flush */ 1683 } else { 1684 struct dm_target_io *tio; 1685 1686 ci.bio = bio; 1687 ci.sector_count = bio_sectors(bio); 1688 if (__process_abnormal_io(&ci, ti, &error)) 1689 goto out; 1690 1691 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1692 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1693 } 1694 out: 1695 /* drop the extra reference count */ 1696 dec_pending(ci.io, errno_to_blk_status(error)); 1697 return ret; 1698 } 1699 1700 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1701 { 1702 unsigned len, sector_count; 1703 1704 sector_count = bio_sectors(*bio); 1705 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1706 1707 if (sector_count > len) { 1708 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1709 1710 bio_chain(split, *bio); 1711 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1712 generic_make_request(*bio); 1713 *bio = split; 1714 } 1715 } 1716 1717 static blk_qc_t dm_process_bio(struct mapped_device *md, 1718 struct dm_table *map, struct bio *bio) 1719 { 1720 blk_qc_t ret = BLK_QC_T_NONE; 1721 struct dm_target *ti = md->immutable_target; 1722 1723 if (unlikely(!map)) { 1724 bio_io_error(bio); 1725 return ret; 1726 } 1727 1728 if (!ti) { 1729 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1730 if (unlikely(!ti || !dm_target_is_valid(ti))) { 1731 bio_io_error(bio); 1732 return ret; 1733 } 1734 } 1735 1736 /* 1737 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1738 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1739 * won't be imposed. 1740 */ 1741 if (current->bio_list) { 1742 blk_queue_split(md->queue, &bio); 1743 if (!is_abnormal_io(bio)) 1744 dm_queue_split(md, ti, &bio); 1745 } 1746 1747 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1748 return __process_bio(md, map, bio, ti); 1749 else 1750 return __split_and_process_bio(md, map, bio); 1751 } 1752 1753 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1754 { 1755 struct mapped_device *md = q->queuedata; 1756 blk_qc_t ret = BLK_QC_T_NONE; 1757 int srcu_idx; 1758 struct dm_table *map; 1759 1760 map = dm_get_live_table(md, &srcu_idx); 1761 1762 /* if we're suspended, we have to queue this io for later */ 1763 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1764 dm_put_live_table(md, srcu_idx); 1765 1766 if (!(bio->bi_opf & REQ_RAHEAD)) 1767 queue_io(md, bio); 1768 else 1769 bio_io_error(bio); 1770 return ret; 1771 } 1772 1773 ret = dm_process_bio(md, map, bio); 1774 1775 dm_put_live_table(md, srcu_idx); 1776 return ret; 1777 } 1778 1779 static int dm_any_congested(void *congested_data, int bdi_bits) 1780 { 1781 int r = bdi_bits; 1782 struct mapped_device *md = congested_data; 1783 struct dm_table *map; 1784 1785 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1786 if (dm_request_based(md)) { 1787 /* 1788 * With request-based DM we only need to check the 1789 * top-level queue for congestion. 1790 */ 1791 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1792 } else { 1793 map = dm_get_live_table_fast(md); 1794 if (map) 1795 r = dm_table_any_congested(map, bdi_bits); 1796 dm_put_live_table_fast(md); 1797 } 1798 } 1799 1800 return r; 1801 } 1802 1803 /*----------------------------------------------------------------- 1804 * An IDR is used to keep track of allocated minor numbers. 1805 *---------------------------------------------------------------*/ 1806 static void free_minor(int minor) 1807 { 1808 spin_lock(&_minor_lock); 1809 idr_remove(&_minor_idr, minor); 1810 spin_unlock(&_minor_lock); 1811 } 1812 1813 /* 1814 * See if the device with a specific minor # is free. 1815 */ 1816 static int specific_minor(int minor) 1817 { 1818 int r; 1819 1820 if (minor >= (1 << MINORBITS)) 1821 return -EINVAL; 1822 1823 idr_preload(GFP_KERNEL); 1824 spin_lock(&_minor_lock); 1825 1826 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1827 1828 spin_unlock(&_minor_lock); 1829 idr_preload_end(); 1830 if (r < 0) 1831 return r == -ENOSPC ? -EBUSY : r; 1832 return 0; 1833 } 1834 1835 static int next_free_minor(int *minor) 1836 { 1837 int r; 1838 1839 idr_preload(GFP_KERNEL); 1840 spin_lock(&_minor_lock); 1841 1842 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1843 1844 spin_unlock(&_minor_lock); 1845 idr_preload_end(); 1846 if (r < 0) 1847 return r; 1848 *minor = r; 1849 return 0; 1850 } 1851 1852 static const struct block_device_operations dm_blk_dops; 1853 static const struct dax_operations dm_dax_ops; 1854 1855 static void dm_wq_work(struct work_struct *work); 1856 1857 static void dm_init_normal_md_queue(struct mapped_device *md) 1858 { 1859 /* 1860 * Initialize aspects of queue that aren't relevant for blk-mq 1861 */ 1862 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1863 } 1864 1865 static void cleanup_mapped_device(struct mapped_device *md) 1866 { 1867 if (md->wq) 1868 destroy_workqueue(md->wq); 1869 bioset_exit(&md->bs); 1870 bioset_exit(&md->io_bs); 1871 1872 if (md->dax_dev) { 1873 kill_dax(md->dax_dev); 1874 put_dax(md->dax_dev); 1875 md->dax_dev = NULL; 1876 } 1877 1878 if (md->disk) { 1879 spin_lock(&_minor_lock); 1880 md->disk->private_data = NULL; 1881 spin_unlock(&_minor_lock); 1882 del_gendisk(md->disk); 1883 put_disk(md->disk); 1884 } 1885 1886 if (md->queue) 1887 blk_cleanup_queue(md->queue); 1888 1889 cleanup_srcu_struct(&md->io_barrier); 1890 1891 if (md->bdev) { 1892 bdput(md->bdev); 1893 md->bdev = NULL; 1894 } 1895 1896 mutex_destroy(&md->suspend_lock); 1897 mutex_destroy(&md->type_lock); 1898 mutex_destroy(&md->table_devices_lock); 1899 1900 dm_mq_cleanup_mapped_device(md); 1901 } 1902 1903 /* 1904 * Allocate and initialise a blank device with a given minor. 1905 */ 1906 static struct mapped_device *alloc_dev(int minor) 1907 { 1908 int r, numa_node_id = dm_get_numa_node(); 1909 struct dax_device *dax_dev = NULL; 1910 struct mapped_device *md; 1911 void *old_md; 1912 1913 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1914 if (!md) { 1915 DMWARN("unable to allocate device, out of memory."); 1916 return NULL; 1917 } 1918 1919 if (!try_module_get(THIS_MODULE)) 1920 goto bad_module_get; 1921 1922 /* get a minor number for the dev */ 1923 if (minor == DM_ANY_MINOR) 1924 r = next_free_minor(&minor); 1925 else 1926 r = specific_minor(minor); 1927 if (r < 0) 1928 goto bad_minor; 1929 1930 r = init_srcu_struct(&md->io_barrier); 1931 if (r < 0) 1932 goto bad_io_barrier; 1933 1934 md->numa_node_id = numa_node_id; 1935 md->init_tio_pdu = false; 1936 md->type = DM_TYPE_NONE; 1937 mutex_init(&md->suspend_lock); 1938 mutex_init(&md->type_lock); 1939 mutex_init(&md->table_devices_lock); 1940 spin_lock_init(&md->deferred_lock); 1941 atomic_set(&md->holders, 1); 1942 atomic_set(&md->open_count, 0); 1943 atomic_set(&md->event_nr, 0); 1944 atomic_set(&md->uevent_seq, 0); 1945 INIT_LIST_HEAD(&md->uevent_list); 1946 INIT_LIST_HEAD(&md->table_devices); 1947 spin_lock_init(&md->uevent_lock); 1948 1949 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1950 if (!md->queue) 1951 goto bad; 1952 md->queue->queuedata = md; 1953 md->queue->backing_dev_info->congested_data = md; 1954 1955 md->disk = alloc_disk_node(1, md->numa_node_id); 1956 if (!md->disk) 1957 goto bad; 1958 1959 init_waitqueue_head(&md->wait); 1960 INIT_WORK(&md->work, dm_wq_work); 1961 init_waitqueue_head(&md->eventq); 1962 init_completion(&md->kobj_holder.completion); 1963 1964 md->disk->major = _major; 1965 md->disk->first_minor = minor; 1966 md->disk->fops = &dm_blk_dops; 1967 md->disk->queue = md->queue; 1968 md->disk->private_data = md; 1969 sprintf(md->disk->disk_name, "dm-%d", minor); 1970 1971 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1972 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1973 if (!dax_dev) 1974 goto bad; 1975 } 1976 md->dax_dev = dax_dev; 1977 1978 add_disk_no_queue_reg(md->disk); 1979 format_dev_t(md->name, MKDEV(_major, minor)); 1980 1981 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1982 if (!md->wq) 1983 goto bad; 1984 1985 md->bdev = bdget_disk(md->disk, 0); 1986 if (!md->bdev) 1987 goto bad; 1988 1989 dm_stats_init(&md->stats); 1990 1991 /* Populate the mapping, nobody knows we exist yet */ 1992 spin_lock(&_minor_lock); 1993 old_md = idr_replace(&_minor_idr, md, minor); 1994 spin_unlock(&_minor_lock); 1995 1996 BUG_ON(old_md != MINOR_ALLOCED); 1997 1998 return md; 1999 2000 bad: 2001 cleanup_mapped_device(md); 2002 bad_io_barrier: 2003 free_minor(minor); 2004 bad_minor: 2005 module_put(THIS_MODULE); 2006 bad_module_get: 2007 kvfree(md); 2008 return NULL; 2009 } 2010 2011 static void unlock_fs(struct mapped_device *md); 2012 2013 static void free_dev(struct mapped_device *md) 2014 { 2015 int minor = MINOR(disk_devt(md->disk)); 2016 2017 unlock_fs(md); 2018 2019 cleanup_mapped_device(md); 2020 2021 free_table_devices(&md->table_devices); 2022 dm_stats_cleanup(&md->stats); 2023 free_minor(minor); 2024 2025 module_put(THIS_MODULE); 2026 kvfree(md); 2027 } 2028 2029 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2030 { 2031 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2032 int ret = 0; 2033 2034 if (dm_table_bio_based(t)) { 2035 /* 2036 * The md may already have mempools that need changing. 2037 * If so, reload bioset because front_pad may have changed 2038 * because a different table was loaded. 2039 */ 2040 bioset_exit(&md->bs); 2041 bioset_exit(&md->io_bs); 2042 2043 } else if (bioset_initialized(&md->bs)) { 2044 /* 2045 * There's no need to reload with request-based dm 2046 * because the size of front_pad doesn't change. 2047 * Note for future: If you are to reload bioset, 2048 * prep-ed requests in the queue may refer 2049 * to bio from the old bioset, so you must walk 2050 * through the queue to unprep. 2051 */ 2052 goto out; 2053 } 2054 2055 BUG_ON(!p || 2056 bioset_initialized(&md->bs) || 2057 bioset_initialized(&md->io_bs)); 2058 2059 ret = bioset_init_from_src(&md->bs, &p->bs); 2060 if (ret) 2061 goto out; 2062 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2063 if (ret) 2064 bioset_exit(&md->bs); 2065 out: 2066 /* mempool bind completed, no longer need any mempools in the table */ 2067 dm_table_free_md_mempools(t); 2068 return ret; 2069 } 2070 2071 /* 2072 * Bind a table to the device. 2073 */ 2074 static void event_callback(void *context) 2075 { 2076 unsigned long flags; 2077 LIST_HEAD(uevents); 2078 struct mapped_device *md = (struct mapped_device *) context; 2079 2080 spin_lock_irqsave(&md->uevent_lock, flags); 2081 list_splice_init(&md->uevent_list, &uevents); 2082 spin_unlock_irqrestore(&md->uevent_lock, flags); 2083 2084 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2085 2086 atomic_inc(&md->event_nr); 2087 wake_up(&md->eventq); 2088 dm_issue_global_event(); 2089 } 2090 2091 /* 2092 * Protected by md->suspend_lock obtained by dm_swap_table(). 2093 */ 2094 static void __set_size(struct mapped_device *md, sector_t size) 2095 { 2096 lockdep_assert_held(&md->suspend_lock); 2097 2098 set_capacity(md->disk, size); 2099 2100 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2101 } 2102 2103 /* 2104 * Returns old map, which caller must destroy. 2105 */ 2106 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2107 struct queue_limits *limits) 2108 { 2109 struct dm_table *old_map; 2110 struct request_queue *q = md->queue; 2111 bool request_based = dm_table_request_based(t); 2112 sector_t size; 2113 int ret; 2114 2115 lockdep_assert_held(&md->suspend_lock); 2116 2117 size = dm_table_get_size(t); 2118 2119 /* 2120 * Wipe any geometry if the size of the table changed. 2121 */ 2122 if (size != dm_get_size(md)) 2123 memset(&md->geometry, 0, sizeof(md->geometry)); 2124 2125 __set_size(md, size); 2126 2127 dm_table_event_callback(t, event_callback, md); 2128 2129 /* 2130 * The queue hasn't been stopped yet, if the old table type wasn't 2131 * for request-based during suspension. So stop it to prevent 2132 * I/O mapping before resume. 2133 * This must be done before setting the queue restrictions, 2134 * because request-based dm may be run just after the setting. 2135 */ 2136 if (request_based) 2137 dm_stop_queue(q); 2138 2139 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2140 /* 2141 * Leverage the fact that request-based DM targets and 2142 * NVMe bio based targets are immutable singletons 2143 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2144 * and __process_bio. 2145 */ 2146 md->immutable_target = dm_table_get_immutable_target(t); 2147 } 2148 2149 ret = __bind_mempools(md, t); 2150 if (ret) { 2151 old_map = ERR_PTR(ret); 2152 goto out; 2153 } 2154 2155 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2156 rcu_assign_pointer(md->map, (void *)t); 2157 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2158 2159 dm_table_set_restrictions(t, q, limits); 2160 if (old_map) 2161 dm_sync_table(md); 2162 2163 out: 2164 return old_map; 2165 } 2166 2167 /* 2168 * Returns unbound table for the caller to free. 2169 */ 2170 static struct dm_table *__unbind(struct mapped_device *md) 2171 { 2172 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2173 2174 if (!map) 2175 return NULL; 2176 2177 dm_table_event_callback(map, NULL, NULL); 2178 RCU_INIT_POINTER(md->map, NULL); 2179 dm_sync_table(md); 2180 2181 return map; 2182 } 2183 2184 /* 2185 * Constructor for a new device. 2186 */ 2187 int dm_create(int minor, struct mapped_device **result) 2188 { 2189 int r; 2190 struct mapped_device *md; 2191 2192 md = alloc_dev(minor); 2193 if (!md) 2194 return -ENXIO; 2195 2196 r = dm_sysfs_init(md); 2197 if (r) { 2198 free_dev(md); 2199 return r; 2200 } 2201 2202 *result = md; 2203 return 0; 2204 } 2205 2206 /* 2207 * Functions to manage md->type. 2208 * All are required to hold md->type_lock. 2209 */ 2210 void dm_lock_md_type(struct mapped_device *md) 2211 { 2212 mutex_lock(&md->type_lock); 2213 } 2214 2215 void dm_unlock_md_type(struct mapped_device *md) 2216 { 2217 mutex_unlock(&md->type_lock); 2218 } 2219 2220 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2221 { 2222 BUG_ON(!mutex_is_locked(&md->type_lock)); 2223 md->type = type; 2224 } 2225 2226 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2227 { 2228 return md->type; 2229 } 2230 2231 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2232 { 2233 return md->immutable_target_type; 2234 } 2235 2236 /* 2237 * The queue_limits are only valid as long as you have a reference 2238 * count on 'md'. 2239 */ 2240 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2241 { 2242 BUG_ON(!atomic_read(&md->holders)); 2243 return &md->queue->limits; 2244 } 2245 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2246 2247 /* 2248 * Setup the DM device's queue based on md's type 2249 */ 2250 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2251 { 2252 int r; 2253 struct queue_limits limits; 2254 enum dm_queue_mode type = dm_get_md_type(md); 2255 2256 switch (type) { 2257 case DM_TYPE_REQUEST_BASED: 2258 r = dm_mq_init_request_queue(md, t); 2259 if (r) { 2260 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2261 return r; 2262 } 2263 break; 2264 case DM_TYPE_BIO_BASED: 2265 case DM_TYPE_DAX_BIO_BASED: 2266 case DM_TYPE_NVME_BIO_BASED: 2267 dm_init_normal_md_queue(md); 2268 blk_queue_make_request(md->queue, dm_make_request); 2269 break; 2270 case DM_TYPE_NONE: 2271 WARN_ON_ONCE(true); 2272 break; 2273 } 2274 2275 r = dm_calculate_queue_limits(t, &limits); 2276 if (r) { 2277 DMERR("Cannot calculate initial queue limits"); 2278 return r; 2279 } 2280 dm_table_set_restrictions(t, md->queue, &limits); 2281 blk_register_queue(md->disk); 2282 2283 return 0; 2284 } 2285 2286 struct mapped_device *dm_get_md(dev_t dev) 2287 { 2288 struct mapped_device *md; 2289 unsigned minor = MINOR(dev); 2290 2291 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2292 return NULL; 2293 2294 spin_lock(&_minor_lock); 2295 2296 md = idr_find(&_minor_idr, minor); 2297 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2298 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2299 md = NULL; 2300 goto out; 2301 } 2302 dm_get(md); 2303 out: 2304 spin_unlock(&_minor_lock); 2305 2306 return md; 2307 } 2308 EXPORT_SYMBOL_GPL(dm_get_md); 2309 2310 void *dm_get_mdptr(struct mapped_device *md) 2311 { 2312 return md->interface_ptr; 2313 } 2314 2315 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2316 { 2317 md->interface_ptr = ptr; 2318 } 2319 2320 void dm_get(struct mapped_device *md) 2321 { 2322 atomic_inc(&md->holders); 2323 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2324 } 2325 2326 int dm_hold(struct mapped_device *md) 2327 { 2328 spin_lock(&_minor_lock); 2329 if (test_bit(DMF_FREEING, &md->flags)) { 2330 spin_unlock(&_minor_lock); 2331 return -EBUSY; 2332 } 2333 dm_get(md); 2334 spin_unlock(&_minor_lock); 2335 return 0; 2336 } 2337 EXPORT_SYMBOL_GPL(dm_hold); 2338 2339 const char *dm_device_name(struct mapped_device *md) 2340 { 2341 return md->name; 2342 } 2343 EXPORT_SYMBOL_GPL(dm_device_name); 2344 2345 static void __dm_destroy(struct mapped_device *md, bool wait) 2346 { 2347 struct dm_table *map; 2348 int srcu_idx; 2349 2350 might_sleep(); 2351 2352 spin_lock(&_minor_lock); 2353 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2354 set_bit(DMF_FREEING, &md->flags); 2355 spin_unlock(&_minor_lock); 2356 2357 blk_set_queue_dying(md->queue); 2358 2359 /* 2360 * Take suspend_lock so that presuspend and postsuspend methods 2361 * do not race with internal suspend. 2362 */ 2363 mutex_lock(&md->suspend_lock); 2364 map = dm_get_live_table(md, &srcu_idx); 2365 if (!dm_suspended_md(md)) { 2366 dm_table_presuspend_targets(map); 2367 dm_table_postsuspend_targets(map); 2368 } 2369 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2370 dm_put_live_table(md, srcu_idx); 2371 mutex_unlock(&md->suspend_lock); 2372 2373 /* 2374 * Rare, but there may be I/O requests still going to complete, 2375 * for example. Wait for all references to disappear. 2376 * No one should increment the reference count of the mapped_device, 2377 * after the mapped_device state becomes DMF_FREEING. 2378 */ 2379 if (wait) 2380 while (atomic_read(&md->holders)) 2381 msleep(1); 2382 else if (atomic_read(&md->holders)) 2383 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2384 dm_device_name(md), atomic_read(&md->holders)); 2385 2386 dm_sysfs_exit(md); 2387 dm_table_destroy(__unbind(md)); 2388 free_dev(md); 2389 } 2390 2391 void dm_destroy(struct mapped_device *md) 2392 { 2393 __dm_destroy(md, true); 2394 } 2395 2396 void dm_destroy_immediate(struct mapped_device *md) 2397 { 2398 __dm_destroy(md, false); 2399 } 2400 2401 void dm_put(struct mapped_device *md) 2402 { 2403 atomic_dec(&md->holders); 2404 } 2405 EXPORT_SYMBOL_GPL(dm_put); 2406 2407 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2408 { 2409 int r = 0; 2410 DEFINE_WAIT(wait); 2411 2412 while (1) { 2413 prepare_to_wait(&md->wait, &wait, task_state); 2414 2415 if (!md_in_flight(md)) 2416 break; 2417 2418 if (signal_pending_state(task_state, current)) { 2419 r = -EINTR; 2420 break; 2421 } 2422 2423 io_schedule(); 2424 } 2425 finish_wait(&md->wait, &wait); 2426 2427 return r; 2428 } 2429 2430 /* 2431 * Process the deferred bios 2432 */ 2433 static void dm_wq_work(struct work_struct *work) 2434 { 2435 struct mapped_device *md = container_of(work, struct mapped_device, 2436 work); 2437 struct bio *c; 2438 int srcu_idx; 2439 struct dm_table *map; 2440 2441 map = dm_get_live_table(md, &srcu_idx); 2442 2443 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2444 spin_lock_irq(&md->deferred_lock); 2445 c = bio_list_pop(&md->deferred); 2446 spin_unlock_irq(&md->deferred_lock); 2447 2448 if (!c) 2449 break; 2450 2451 if (dm_request_based(md)) 2452 (void) generic_make_request(c); 2453 else 2454 (void) dm_process_bio(md, map, c); 2455 } 2456 2457 dm_put_live_table(md, srcu_idx); 2458 } 2459 2460 static void dm_queue_flush(struct mapped_device *md) 2461 { 2462 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2463 smp_mb__after_atomic(); 2464 queue_work(md->wq, &md->work); 2465 } 2466 2467 /* 2468 * Swap in a new table, returning the old one for the caller to destroy. 2469 */ 2470 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2471 { 2472 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2473 struct queue_limits limits; 2474 int r; 2475 2476 mutex_lock(&md->suspend_lock); 2477 2478 /* device must be suspended */ 2479 if (!dm_suspended_md(md)) 2480 goto out; 2481 2482 /* 2483 * If the new table has no data devices, retain the existing limits. 2484 * This helps multipath with queue_if_no_path if all paths disappear, 2485 * then new I/O is queued based on these limits, and then some paths 2486 * reappear. 2487 */ 2488 if (dm_table_has_no_data_devices(table)) { 2489 live_map = dm_get_live_table_fast(md); 2490 if (live_map) 2491 limits = md->queue->limits; 2492 dm_put_live_table_fast(md); 2493 } 2494 2495 if (!live_map) { 2496 r = dm_calculate_queue_limits(table, &limits); 2497 if (r) { 2498 map = ERR_PTR(r); 2499 goto out; 2500 } 2501 } 2502 2503 map = __bind(md, table, &limits); 2504 dm_issue_global_event(); 2505 2506 out: 2507 mutex_unlock(&md->suspend_lock); 2508 return map; 2509 } 2510 2511 /* 2512 * Functions to lock and unlock any filesystem running on the 2513 * device. 2514 */ 2515 static int lock_fs(struct mapped_device *md) 2516 { 2517 int r; 2518 2519 WARN_ON(md->frozen_sb); 2520 2521 md->frozen_sb = freeze_bdev(md->bdev); 2522 if (IS_ERR(md->frozen_sb)) { 2523 r = PTR_ERR(md->frozen_sb); 2524 md->frozen_sb = NULL; 2525 return r; 2526 } 2527 2528 set_bit(DMF_FROZEN, &md->flags); 2529 2530 return 0; 2531 } 2532 2533 static void unlock_fs(struct mapped_device *md) 2534 { 2535 if (!test_bit(DMF_FROZEN, &md->flags)) 2536 return; 2537 2538 thaw_bdev(md->bdev, md->frozen_sb); 2539 md->frozen_sb = NULL; 2540 clear_bit(DMF_FROZEN, &md->flags); 2541 } 2542 2543 /* 2544 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2545 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2546 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2547 * 2548 * If __dm_suspend returns 0, the device is completely quiescent 2549 * now. There is no request-processing activity. All new requests 2550 * are being added to md->deferred list. 2551 */ 2552 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2553 unsigned suspend_flags, long task_state, 2554 int dmf_suspended_flag) 2555 { 2556 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2557 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2558 int r; 2559 2560 lockdep_assert_held(&md->suspend_lock); 2561 2562 /* 2563 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2564 * This flag is cleared before dm_suspend returns. 2565 */ 2566 if (noflush) 2567 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2568 else 2569 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2570 2571 /* 2572 * This gets reverted if there's an error later and the targets 2573 * provide the .presuspend_undo hook. 2574 */ 2575 dm_table_presuspend_targets(map); 2576 2577 /* 2578 * Flush I/O to the device. 2579 * Any I/O submitted after lock_fs() may not be flushed. 2580 * noflush takes precedence over do_lockfs. 2581 * (lock_fs() flushes I/Os and waits for them to complete.) 2582 */ 2583 if (!noflush && do_lockfs) { 2584 r = lock_fs(md); 2585 if (r) { 2586 dm_table_presuspend_undo_targets(map); 2587 return r; 2588 } 2589 } 2590 2591 /* 2592 * Here we must make sure that no processes are submitting requests 2593 * to target drivers i.e. no one may be executing 2594 * __split_and_process_bio. This is called from dm_request and 2595 * dm_wq_work. 2596 * 2597 * To get all processes out of __split_and_process_bio in dm_request, 2598 * we take the write lock. To prevent any process from reentering 2599 * __split_and_process_bio from dm_request and quiesce the thread 2600 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2601 * flush_workqueue(md->wq). 2602 */ 2603 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2604 if (map) 2605 synchronize_srcu(&md->io_barrier); 2606 2607 /* 2608 * Stop md->queue before flushing md->wq in case request-based 2609 * dm defers requests to md->wq from md->queue. 2610 */ 2611 if (dm_request_based(md)) 2612 dm_stop_queue(md->queue); 2613 2614 flush_workqueue(md->wq); 2615 2616 /* 2617 * At this point no more requests are entering target request routines. 2618 * We call dm_wait_for_completion to wait for all existing requests 2619 * to finish. 2620 */ 2621 r = dm_wait_for_completion(md, task_state); 2622 if (!r) 2623 set_bit(dmf_suspended_flag, &md->flags); 2624 2625 if (noflush) 2626 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2627 if (map) 2628 synchronize_srcu(&md->io_barrier); 2629 2630 /* were we interrupted ? */ 2631 if (r < 0) { 2632 dm_queue_flush(md); 2633 2634 if (dm_request_based(md)) 2635 dm_start_queue(md->queue); 2636 2637 unlock_fs(md); 2638 dm_table_presuspend_undo_targets(map); 2639 /* pushback list is already flushed, so skip flush */ 2640 } 2641 2642 return r; 2643 } 2644 2645 /* 2646 * We need to be able to change a mapping table under a mounted 2647 * filesystem. For example we might want to move some data in 2648 * the background. Before the table can be swapped with 2649 * dm_bind_table, dm_suspend must be called to flush any in 2650 * flight bios and ensure that any further io gets deferred. 2651 */ 2652 /* 2653 * Suspend mechanism in request-based dm. 2654 * 2655 * 1. Flush all I/Os by lock_fs() if needed. 2656 * 2. Stop dispatching any I/O by stopping the request_queue. 2657 * 3. Wait for all in-flight I/Os to be completed or requeued. 2658 * 2659 * To abort suspend, start the request_queue. 2660 */ 2661 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2662 { 2663 struct dm_table *map = NULL; 2664 int r = 0; 2665 2666 retry: 2667 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2668 2669 if (dm_suspended_md(md)) { 2670 r = -EINVAL; 2671 goto out_unlock; 2672 } 2673 2674 if (dm_suspended_internally_md(md)) { 2675 /* already internally suspended, wait for internal resume */ 2676 mutex_unlock(&md->suspend_lock); 2677 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2678 if (r) 2679 return r; 2680 goto retry; 2681 } 2682 2683 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2684 2685 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2686 if (r) 2687 goto out_unlock; 2688 2689 dm_table_postsuspend_targets(map); 2690 2691 out_unlock: 2692 mutex_unlock(&md->suspend_lock); 2693 return r; 2694 } 2695 2696 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2697 { 2698 if (map) { 2699 int r = dm_table_resume_targets(map); 2700 if (r) 2701 return r; 2702 } 2703 2704 dm_queue_flush(md); 2705 2706 /* 2707 * Flushing deferred I/Os must be done after targets are resumed 2708 * so that mapping of targets can work correctly. 2709 * Request-based dm is queueing the deferred I/Os in its request_queue. 2710 */ 2711 if (dm_request_based(md)) 2712 dm_start_queue(md->queue); 2713 2714 unlock_fs(md); 2715 2716 return 0; 2717 } 2718 2719 int dm_resume(struct mapped_device *md) 2720 { 2721 int r; 2722 struct dm_table *map = NULL; 2723 2724 retry: 2725 r = -EINVAL; 2726 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2727 2728 if (!dm_suspended_md(md)) 2729 goto out; 2730 2731 if (dm_suspended_internally_md(md)) { 2732 /* already internally suspended, wait for internal resume */ 2733 mutex_unlock(&md->suspend_lock); 2734 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2735 if (r) 2736 return r; 2737 goto retry; 2738 } 2739 2740 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2741 if (!map || !dm_table_get_size(map)) 2742 goto out; 2743 2744 r = __dm_resume(md, map); 2745 if (r) 2746 goto out; 2747 2748 clear_bit(DMF_SUSPENDED, &md->flags); 2749 out: 2750 mutex_unlock(&md->suspend_lock); 2751 2752 return r; 2753 } 2754 2755 /* 2756 * Internal suspend/resume works like userspace-driven suspend. It waits 2757 * until all bios finish and prevents issuing new bios to the target drivers. 2758 * It may be used only from the kernel. 2759 */ 2760 2761 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2762 { 2763 struct dm_table *map = NULL; 2764 2765 lockdep_assert_held(&md->suspend_lock); 2766 2767 if (md->internal_suspend_count++) 2768 return; /* nested internal suspend */ 2769 2770 if (dm_suspended_md(md)) { 2771 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2772 return; /* nest suspend */ 2773 } 2774 2775 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2776 2777 /* 2778 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2779 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2780 * would require changing .presuspend to return an error -- avoid this 2781 * until there is a need for more elaborate variants of internal suspend. 2782 */ 2783 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2784 DMF_SUSPENDED_INTERNALLY); 2785 2786 dm_table_postsuspend_targets(map); 2787 } 2788 2789 static void __dm_internal_resume(struct mapped_device *md) 2790 { 2791 BUG_ON(!md->internal_suspend_count); 2792 2793 if (--md->internal_suspend_count) 2794 return; /* resume from nested internal suspend */ 2795 2796 if (dm_suspended_md(md)) 2797 goto done; /* resume from nested suspend */ 2798 2799 /* 2800 * NOTE: existing callers don't need to call dm_table_resume_targets 2801 * (which may fail -- so best to avoid it for now by passing NULL map) 2802 */ 2803 (void) __dm_resume(md, NULL); 2804 2805 done: 2806 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2807 smp_mb__after_atomic(); 2808 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2809 } 2810 2811 void dm_internal_suspend_noflush(struct mapped_device *md) 2812 { 2813 mutex_lock(&md->suspend_lock); 2814 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2815 mutex_unlock(&md->suspend_lock); 2816 } 2817 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2818 2819 void dm_internal_resume(struct mapped_device *md) 2820 { 2821 mutex_lock(&md->suspend_lock); 2822 __dm_internal_resume(md); 2823 mutex_unlock(&md->suspend_lock); 2824 } 2825 EXPORT_SYMBOL_GPL(dm_internal_resume); 2826 2827 /* 2828 * Fast variants of internal suspend/resume hold md->suspend_lock, 2829 * which prevents interaction with userspace-driven suspend. 2830 */ 2831 2832 void dm_internal_suspend_fast(struct mapped_device *md) 2833 { 2834 mutex_lock(&md->suspend_lock); 2835 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2836 return; 2837 2838 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2839 synchronize_srcu(&md->io_barrier); 2840 flush_workqueue(md->wq); 2841 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2842 } 2843 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2844 2845 void dm_internal_resume_fast(struct mapped_device *md) 2846 { 2847 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2848 goto done; 2849 2850 dm_queue_flush(md); 2851 2852 done: 2853 mutex_unlock(&md->suspend_lock); 2854 } 2855 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2856 2857 /*----------------------------------------------------------------- 2858 * Event notification. 2859 *---------------------------------------------------------------*/ 2860 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2861 unsigned cookie) 2862 { 2863 char udev_cookie[DM_COOKIE_LENGTH]; 2864 char *envp[] = { udev_cookie, NULL }; 2865 2866 if (!cookie) 2867 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2868 else { 2869 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2870 DM_COOKIE_ENV_VAR_NAME, cookie); 2871 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2872 action, envp); 2873 } 2874 } 2875 2876 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2877 { 2878 return atomic_add_return(1, &md->uevent_seq); 2879 } 2880 2881 uint32_t dm_get_event_nr(struct mapped_device *md) 2882 { 2883 return atomic_read(&md->event_nr); 2884 } 2885 2886 int dm_wait_event(struct mapped_device *md, int event_nr) 2887 { 2888 return wait_event_interruptible(md->eventq, 2889 (event_nr != atomic_read(&md->event_nr))); 2890 } 2891 2892 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2893 { 2894 unsigned long flags; 2895 2896 spin_lock_irqsave(&md->uevent_lock, flags); 2897 list_add(elist, &md->uevent_list); 2898 spin_unlock_irqrestore(&md->uevent_lock, flags); 2899 } 2900 2901 /* 2902 * The gendisk is only valid as long as you have a reference 2903 * count on 'md'. 2904 */ 2905 struct gendisk *dm_disk(struct mapped_device *md) 2906 { 2907 return md->disk; 2908 } 2909 EXPORT_SYMBOL_GPL(dm_disk); 2910 2911 struct kobject *dm_kobject(struct mapped_device *md) 2912 { 2913 return &md->kobj_holder.kobj; 2914 } 2915 2916 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2917 { 2918 struct mapped_device *md; 2919 2920 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2921 2922 spin_lock(&_minor_lock); 2923 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2924 md = NULL; 2925 goto out; 2926 } 2927 dm_get(md); 2928 out: 2929 spin_unlock(&_minor_lock); 2930 2931 return md; 2932 } 2933 2934 int dm_suspended_md(struct mapped_device *md) 2935 { 2936 return test_bit(DMF_SUSPENDED, &md->flags); 2937 } 2938 2939 int dm_suspended_internally_md(struct mapped_device *md) 2940 { 2941 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2942 } 2943 2944 int dm_test_deferred_remove_flag(struct mapped_device *md) 2945 { 2946 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2947 } 2948 2949 int dm_suspended(struct dm_target *ti) 2950 { 2951 return dm_suspended_md(dm_table_get_md(ti->table)); 2952 } 2953 EXPORT_SYMBOL_GPL(dm_suspended); 2954 2955 int dm_noflush_suspending(struct dm_target *ti) 2956 { 2957 return __noflush_suspending(dm_table_get_md(ti->table)); 2958 } 2959 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2960 2961 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2962 unsigned integrity, unsigned per_io_data_size, 2963 unsigned min_pool_size) 2964 { 2965 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2966 unsigned int pool_size = 0; 2967 unsigned int front_pad, io_front_pad; 2968 int ret; 2969 2970 if (!pools) 2971 return NULL; 2972 2973 switch (type) { 2974 case DM_TYPE_BIO_BASED: 2975 case DM_TYPE_DAX_BIO_BASED: 2976 case DM_TYPE_NVME_BIO_BASED: 2977 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2978 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2979 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2980 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2981 if (ret) 2982 goto out; 2983 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2984 goto out; 2985 break; 2986 case DM_TYPE_REQUEST_BASED: 2987 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2988 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2989 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2990 break; 2991 default: 2992 BUG(); 2993 } 2994 2995 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2996 if (ret) 2997 goto out; 2998 2999 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3000 goto out; 3001 3002 return pools; 3003 3004 out: 3005 dm_free_md_mempools(pools); 3006 3007 return NULL; 3008 } 3009 3010 void dm_free_md_mempools(struct dm_md_mempools *pools) 3011 { 3012 if (!pools) 3013 return; 3014 3015 bioset_exit(&pools->bs); 3016 bioset_exit(&pools->io_bs); 3017 3018 kfree(pools); 3019 } 3020 3021 struct dm_pr { 3022 u64 old_key; 3023 u64 new_key; 3024 u32 flags; 3025 bool fail_early; 3026 }; 3027 3028 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3029 void *data) 3030 { 3031 struct mapped_device *md = bdev->bd_disk->private_data; 3032 struct dm_table *table; 3033 struct dm_target *ti; 3034 int ret = -ENOTTY, srcu_idx; 3035 3036 table = dm_get_live_table(md, &srcu_idx); 3037 if (!table || !dm_table_get_size(table)) 3038 goto out; 3039 3040 /* We only support devices that have a single target */ 3041 if (dm_table_get_num_targets(table) != 1) 3042 goto out; 3043 ti = dm_table_get_target(table, 0); 3044 3045 ret = -EINVAL; 3046 if (!ti->type->iterate_devices) 3047 goto out; 3048 3049 ret = ti->type->iterate_devices(ti, fn, data); 3050 out: 3051 dm_put_live_table(md, srcu_idx); 3052 return ret; 3053 } 3054 3055 /* 3056 * For register / unregister we need to manually call out to every path. 3057 */ 3058 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3059 sector_t start, sector_t len, void *data) 3060 { 3061 struct dm_pr *pr = data; 3062 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3063 3064 if (!ops || !ops->pr_register) 3065 return -EOPNOTSUPP; 3066 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3067 } 3068 3069 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3070 u32 flags) 3071 { 3072 struct dm_pr pr = { 3073 .old_key = old_key, 3074 .new_key = new_key, 3075 .flags = flags, 3076 .fail_early = true, 3077 }; 3078 int ret; 3079 3080 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3081 if (ret && new_key) { 3082 /* unregister all paths if we failed to register any path */ 3083 pr.old_key = new_key; 3084 pr.new_key = 0; 3085 pr.flags = 0; 3086 pr.fail_early = false; 3087 dm_call_pr(bdev, __dm_pr_register, &pr); 3088 } 3089 3090 return ret; 3091 } 3092 3093 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3094 u32 flags) 3095 { 3096 struct mapped_device *md = bdev->bd_disk->private_data; 3097 const struct pr_ops *ops; 3098 int r, srcu_idx; 3099 3100 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3101 if (r < 0) 3102 goto out; 3103 3104 ops = bdev->bd_disk->fops->pr_ops; 3105 if (ops && ops->pr_reserve) 3106 r = ops->pr_reserve(bdev, key, type, flags); 3107 else 3108 r = -EOPNOTSUPP; 3109 out: 3110 dm_unprepare_ioctl(md, srcu_idx); 3111 return r; 3112 } 3113 3114 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3115 { 3116 struct mapped_device *md = bdev->bd_disk->private_data; 3117 const struct pr_ops *ops; 3118 int r, srcu_idx; 3119 3120 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3121 if (r < 0) 3122 goto out; 3123 3124 ops = bdev->bd_disk->fops->pr_ops; 3125 if (ops && ops->pr_release) 3126 r = ops->pr_release(bdev, key, type); 3127 else 3128 r = -EOPNOTSUPP; 3129 out: 3130 dm_unprepare_ioctl(md, srcu_idx); 3131 return r; 3132 } 3133 3134 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3135 enum pr_type type, bool abort) 3136 { 3137 struct mapped_device *md = bdev->bd_disk->private_data; 3138 const struct pr_ops *ops; 3139 int r, srcu_idx; 3140 3141 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3142 if (r < 0) 3143 goto out; 3144 3145 ops = bdev->bd_disk->fops->pr_ops; 3146 if (ops && ops->pr_preempt) 3147 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3148 else 3149 r = -EOPNOTSUPP; 3150 out: 3151 dm_unprepare_ioctl(md, srcu_idx); 3152 return r; 3153 } 3154 3155 static int dm_pr_clear(struct block_device *bdev, u64 key) 3156 { 3157 struct mapped_device *md = bdev->bd_disk->private_data; 3158 const struct pr_ops *ops; 3159 int r, srcu_idx; 3160 3161 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3162 if (r < 0) 3163 goto out; 3164 3165 ops = bdev->bd_disk->fops->pr_ops; 3166 if (ops && ops->pr_clear) 3167 r = ops->pr_clear(bdev, key); 3168 else 3169 r = -EOPNOTSUPP; 3170 out: 3171 dm_unprepare_ioctl(md, srcu_idx); 3172 return r; 3173 } 3174 3175 static const struct pr_ops dm_pr_ops = { 3176 .pr_register = dm_pr_register, 3177 .pr_reserve = dm_pr_reserve, 3178 .pr_release = dm_pr_release, 3179 .pr_preempt = dm_pr_preempt, 3180 .pr_clear = dm_pr_clear, 3181 }; 3182 3183 static const struct block_device_operations dm_blk_dops = { 3184 .open = dm_blk_open, 3185 .release = dm_blk_close, 3186 .ioctl = dm_blk_ioctl, 3187 .getgeo = dm_blk_getgeo, 3188 .report_zones = dm_blk_report_zones, 3189 .pr_ops = &dm_pr_ops, 3190 .owner = THIS_MODULE 3191 }; 3192 3193 static const struct dax_operations dm_dax_ops = { 3194 .direct_access = dm_dax_direct_access, 3195 .copy_from_iter = dm_dax_copy_from_iter, 3196 .copy_to_iter = dm_dax_copy_to_iter, 3197 }; 3198 3199 /* 3200 * module hooks 3201 */ 3202 module_init(dm_init); 3203 module_exit(dm_exit); 3204 3205 module_param(major, uint, 0); 3206 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3207 3208 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3209 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3210 3211 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3212 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3213 3214 MODULE_DESCRIPTION(DM_NAME " driver"); 3215 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3216 MODULE_LICENSE("GPL"); 3217