1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 462 struct blk_zone *zones, unsigned int *nr_zones, 463 gfp_t gfp_mask) 464 { 465 #ifdef CONFIG_BLK_DEV_ZONED 466 struct mapped_device *md = disk->private_data; 467 struct dm_target *tgt; 468 struct dm_table *map; 469 int srcu_idx, ret; 470 471 if (dm_suspended_md(md)) 472 return -EAGAIN; 473 474 map = dm_get_live_table(md, &srcu_idx); 475 if (!map) 476 return -EIO; 477 478 tgt = dm_table_find_target(map, sector); 479 if (!dm_target_is_valid(tgt)) { 480 ret = -EIO; 481 goto out; 482 } 483 484 /* 485 * If we are executing this, we already know that the block device 486 * is a zoned device and so each target should have support for that 487 * type of drive. A missing report_zones method means that the target 488 * driver has a problem. 489 */ 490 if (WARN_ON(!tgt->type->report_zones)) { 491 ret = -EIO; 492 goto out; 493 } 494 495 /* 496 * blkdev_report_zones() will loop and call this again to cover all the 497 * zones of the target, eventually moving on to the next target. 498 * So there is no need to loop here trying to fill the entire array 499 * of zones. 500 */ 501 ret = tgt->type->report_zones(tgt, sector, zones, 502 nr_zones, gfp_mask); 503 504 out: 505 dm_put_live_table(md, srcu_idx); 506 return ret; 507 #else 508 return -ENOTSUPP; 509 #endif 510 } 511 512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 513 struct block_device **bdev) 514 __acquires(md->io_barrier) 515 { 516 struct dm_target *tgt; 517 struct dm_table *map; 518 int r; 519 520 retry: 521 r = -ENOTTY; 522 map = dm_get_live_table(md, srcu_idx); 523 if (!map || !dm_table_get_size(map)) 524 return r; 525 526 /* We only support devices that have a single target */ 527 if (dm_table_get_num_targets(map) != 1) 528 return r; 529 530 tgt = dm_table_get_target(map, 0); 531 if (!tgt->type->prepare_ioctl) 532 return r; 533 534 if (dm_suspended_md(md)) 535 return -EAGAIN; 536 537 r = tgt->type->prepare_ioctl(tgt, bdev); 538 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 539 dm_put_live_table(md, *srcu_idx); 540 msleep(10); 541 goto retry; 542 } 543 544 return r; 545 } 546 547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 548 __releases(md->io_barrier) 549 { 550 dm_put_live_table(md, srcu_idx); 551 } 552 553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 554 unsigned int cmd, unsigned long arg) 555 { 556 struct mapped_device *md = bdev->bd_disk->private_data; 557 int r, srcu_idx; 558 559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 560 if (r < 0) 561 goto out; 562 563 if (r > 0) { 564 /* 565 * Target determined this ioctl is being issued against a 566 * subset of the parent bdev; require extra privileges. 567 */ 568 if (!capable(CAP_SYS_RAWIO)) { 569 DMWARN_LIMIT( 570 "%s: sending ioctl %x to DM device without required privilege.", 571 current->comm, cmd); 572 r = -ENOIOCTLCMD; 573 goto out; 574 } 575 } 576 577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 578 out: 579 dm_unprepare_ioctl(md, srcu_idx); 580 return r; 581 } 582 583 static void start_io_acct(struct dm_io *io); 584 585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 586 { 587 struct dm_io *io; 588 struct dm_target_io *tio; 589 struct bio *clone; 590 591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 592 if (!clone) 593 return NULL; 594 595 tio = container_of(clone, struct dm_target_io, clone); 596 tio->inside_dm_io = true; 597 tio->io = NULL; 598 599 io = container_of(tio, struct dm_io, tio); 600 io->magic = DM_IO_MAGIC; 601 io->status = 0; 602 atomic_set(&io->io_count, 1); 603 io->orig_bio = bio; 604 io->md = md; 605 spin_lock_init(&io->endio_lock); 606 607 start_io_acct(io); 608 609 return io; 610 } 611 612 static void free_io(struct mapped_device *md, struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned target_bio_nr, gfp_t gfp_mask) 619 { 620 struct dm_target_io *tio; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 } else { 626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 627 if (!clone) 628 return NULL; 629 630 tio = container_of(clone, struct dm_target_io, clone); 631 tio->inside_dm_io = false; 632 } 633 634 tio->magic = DM_TIO_MAGIC; 635 tio->io = ci->io; 636 tio->ti = ti; 637 tio->target_bio_nr = target_bio_nr; 638 639 return tio; 640 } 641 642 static void free_tio(struct dm_target_io *tio) 643 { 644 if (tio->inside_dm_io) 645 return; 646 bio_put(&tio->clone); 647 } 648 649 static bool md_in_flight_bios(struct mapped_device *md) 650 { 651 int cpu; 652 struct hd_struct *part = &dm_disk(md)->part0; 653 long sum = 0; 654 655 for_each_possible_cpu(cpu) { 656 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 657 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 658 } 659 660 return sum != 0; 661 } 662 663 static bool md_in_flight(struct mapped_device *md) 664 { 665 if (queue_is_mq(md->queue)) 666 return blk_mq_queue_inflight(md->queue); 667 else 668 return md_in_flight_bios(md); 669 } 670 671 static void start_io_acct(struct dm_io *io) 672 { 673 struct mapped_device *md = io->md; 674 struct bio *bio = io->orig_bio; 675 676 io->start_time = jiffies; 677 678 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 679 &dm_disk(md)->part0); 680 681 if (unlikely(dm_stats_used(&md->stats))) 682 dm_stats_account_io(&md->stats, bio_data_dir(bio), 683 bio->bi_iter.bi_sector, bio_sectors(bio), 684 false, 0, &io->stats_aux); 685 } 686 687 static void end_io_acct(struct dm_io *io) 688 { 689 struct mapped_device *md = io->md; 690 struct bio *bio = io->orig_bio; 691 unsigned long duration = jiffies - io->start_time; 692 693 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 694 io->start_time); 695 696 if (unlikely(dm_stats_used(&md->stats))) 697 dm_stats_account_io(&md->stats, bio_data_dir(bio), 698 bio->bi_iter.bi_sector, bio_sectors(bio), 699 true, duration, &io->stats_aux); 700 701 /* nudge anyone waiting on suspend queue */ 702 if (unlikely(waitqueue_active(&md->wait))) 703 wake_up(&md->wait); 704 } 705 706 /* 707 * Add the bio to the list of deferred io. 708 */ 709 static void queue_io(struct mapped_device *md, struct bio *bio) 710 { 711 unsigned long flags; 712 713 spin_lock_irqsave(&md->deferred_lock, flags); 714 bio_list_add(&md->deferred, bio); 715 spin_unlock_irqrestore(&md->deferred_lock, flags); 716 queue_work(md->wq, &md->work); 717 } 718 719 /* 720 * Everyone (including functions in this file), should use this 721 * function to access the md->map field, and make sure they call 722 * dm_put_live_table() when finished. 723 */ 724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 725 { 726 *srcu_idx = srcu_read_lock(&md->io_barrier); 727 728 return srcu_dereference(md->map, &md->io_barrier); 729 } 730 731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 732 { 733 srcu_read_unlock(&md->io_barrier, srcu_idx); 734 } 735 736 void dm_sync_table(struct mapped_device *md) 737 { 738 synchronize_srcu(&md->io_barrier); 739 synchronize_rcu_expedited(); 740 } 741 742 /* 743 * A fast alternative to dm_get_live_table/dm_put_live_table. 744 * The caller must not block between these two functions. 745 */ 746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 747 { 748 rcu_read_lock(); 749 return rcu_dereference(md->map); 750 } 751 752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 753 { 754 rcu_read_unlock(); 755 } 756 757 static char *_dm_claim_ptr = "I belong to device-mapper"; 758 759 /* 760 * Open a table device so we can use it as a map destination. 761 */ 762 static int open_table_device(struct table_device *td, dev_t dev, 763 struct mapped_device *md) 764 { 765 struct block_device *bdev; 766 767 int r; 768 769 BUG_ON(td->dm_dev.bdev); 770 771 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 772 if (IS_ERR(bdev)) 773 return PTR_ERR(bdev); 774 775 r = bd_link_disk_holder(bdev, dm_disk(md)); 776 if (r) { 777 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 778 return r; 779 } 780 781 td->dm_dev.bdev = bdev; 782 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 783 return 0; 784 } 785 786 /* 787 * Close a table device that we've been using. 788 */ 789 static void close_table_device(struct table_device *td, struct mapped_device *md) 790 { 791 if (!td->dm_dev.bdev) 792 return; 793 794 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 795 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 796 put_dax(td->dm_dev.dax_dev); 797 td->dm_dev.bdev = NULL; 798 td->dm_dev.dax_dev = NULL; 799 } 800 801 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 802 fmode_t mode) { 803 struct table_device *td; 804 805 list_for_each_entry(td, l, list) 806 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 807 return td; 808 809 return NULL; 810 } 811 812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 813 struct dm_dev **result) { 814 int r; 815 struct table_device *td; 816 817 mutex_lock(&md->table_devices_lock); 818 td = find_table_device(&md->table_devices, dev, mode); 819 if (!td) { 820 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 821 if (!td) { 822 mutex_unlock(&md->table_devices_lock); 823 return -ENOMEM; 824 } 825 826 td->dm_dev.mode = mode; 827 td->dm_dev.bdev = NULL; 828 829 if ((r = open_table_device(td, dev, md))) { 830 mutex_unlock(&md->table_devices_lock); 831 kfree(td); 832 return r; 833 } 834 835 format_dev_t(td->dm_dev.name, dev); 836 837 refcount_set(&td->count, 1); 838 list_add(&td->list, &md->table_devices); 839 } else { 840 refcount_inc(&td->count); 841 } 842 mutex_unlock(&md->table_devices_lock); 843 844 *result = &td->dm_dev; 845 return 0; 846 } 847 EXPORT_SYMBOL_GPL(dm_get_table_device); 848 849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 850 { 851 struct table_device *td = container_of(d, struct table_device, dm_dev); 852 853 mutex_lock(&md->table_devices_lock); 854 if (refcount_dec_and_test(&td->count)) { 855 close_table_device(td, md); 856 list_del(&td->list); 857 kfree(td); 858 } 859 mutex_unlock(&md->table_devices_lock); 860 } 861 EXPORT_SYMBOL(dm_put_table_device); 862 863 static void free_table_devices(struct list_head *devices) 864 { 865 struct list_head *tmp, *next; 866 867 list_for_each_safe(tmp, next, devices) { 868 struct table_device *td = list_entry(tmp, struct table_device, list); 869 870 DMWARN("dm_destroy: %s still exists with %d references", 871 td->dm_dev.name, refcount_read(&td->count)); 872 kfree(td); 873 } 874 } 875 876 /* 877 * Get the geometry associated with a dm device 878 */ 879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 880 { 881 *geo = md->geometry; 882 883 return 0; 884 } 885 886 /* 887 * Set the geometry of a device. 888 */ 889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 890 { 891 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 892 893 if (geo->start > sz) { 894 DMWARN("Start sector is beyond the geometry limits."); 895 return -EINVAL; 896 } 897 898 md->geometry = *geo; 899 900 return 0; 901 } 902 903 static int __noflush_suspending(struct mapped_device *md) 904 { 905 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 906 } 907 908 /* 909 * Decrements the number of outstanding ios that a bio has been 910 * cloned into, completing the original io if necc. 911 */ 912 static void dec_pending(struct dm_io *io, blk_status_t error) 913 { 914 unsigned long flags; 915 blk_status_t io_error; 916 struct bio *bio; 917 struct mapped_device *md = io->md; 918 919 /* Push-back supersedes any I/O errors */ 920 if (unlikely(error)) { 921 spin_lock_irqsave(&io->endio_lock, flags); 922 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 923 io->status = error; 924 spin_unlock_irqrestore(&io->endio_lock, flags); 925 } 926 927 if (atomic_dec_and_test(&io->io_count)) { 928 if (io->status == BLK_STS_DM_REQUEUE) { 929 /* 930 * Target requested pushing back the I/O. 931 */ 932 spin_lock_irqsave(&md->deferred_lock, flags); 933 if (__noflush_suspending(md)) 934 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 935 bio_list_add_head(&md->deferred, io->orig_bio); 936 else 937 /* noflush suspend was interrupted. */ 938 io->status = BLK_STS_IOERR; 939 spin_unlock_irqrestore(&md->deferred_lock, flags); 940 } 941 942 io_error = io->status; 943 bio = io->orig_bio; 944 end_io_acct(io); 945 free_io(md, io); 946 947 if (io_error == BLK_STS_DM_REQUEUE) 948 return; 949 950 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 951 /* 952 * Preflush done for flush with data, reissue 953 * without REQ_PREFLUSH. 954 */ 955 bio->bi_opf &= ~REQ_PREFLUSH; 956 queue_io(md, bio); 957 } else { 958 /* done with normal IO or empty flush */ 959 if (io_error) 960 bio->bi_status = io_error; 961 bio_endio(bio); 962 } 963 } 964 } 965 966 void disable_write_same(struct mapped_device *md) 967 { 968 struct queue_limits *limits = dm_get_queue_limits(md); 969 970 /* device doesn't really support WRITE SAME, disable it */ 971 limits->max_write_same_sectors = 0; 972 } 973 974 void disable_write_zeroes(struct mapped_device *md) 975 { 976 struct queue_limits *limits = dm_get_queue_limits(md); 977 978 /* device doesn't really support WRITE ZEROES, disable it */ 979 limits->max_write_zeroes_sectors = 0; 980 } 981 982 static void clone_endio(struct bio *bio) 983 { 984 blk_status_t error = bio->bi_status; 985 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 986 struct dm_io *io = tio->io; 987 struct mapped_device *md = tio->io->md; 988 dm_endio_fn endio = tio->ti->type->end_io; 989 990 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 991 if (bio_op(bio) == REQ_OP_WRITE_SAME && 992 !bio->bi_disk->queue->limits.max_write_same_sectors) 993 disable_write_same(md); 994 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 995 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 996 disable_write_zeroes(md); 997 } 998 999 if (endio) { 1000 int r = endio(tio->ti, bio, &error); 1001 switch (r) { 1002 case DM_ENDIO_REQUEUE: 1003 error = BLK_STS_DM_REQUEUE; 1004 /*FALLTHRU*/ 1005 case DM_ENDIO_DONE: 1006 break; 1007 case DM_ENDIO_INCOMPLETE: 1008 /* The target will handle the io */ 1009 return; 1010 default: 1011 DMWARN("unimplemented target endio return value: %d", r); 1012 BUG(); 1013 } 1014 } 1015 1016 free_tio(tio); 1017 dec_pending(io, error); 1018 } 1019 1020 /* 1021 * Return maximum size of I/O possible at the supplied sector up to the current 1022 * target boundary. 1023 */ 1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1025 { 1026 sector_t target_offset = dm_target_offset(ti, sector); 1027 1028 return ti->len - target_offset; 1029 } 1030 1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1032 { 1033 sector_t len = max_io_len_target_boundary(sector, ti); 1034 sector_t offset, max_len; 1035 1036 /* 1037 * Does the target need to split even further? 1038 */ 1039 if (ti->max_io_len) { 1040 offset = dm_target_offset(ti, sector); 1041 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1042 max_len = sector_div(offset, ti->max_io_len); 1043 else 1044 max_len = offset & (ti->max_io_len - 1); 1045 max_len = ti->max_io_len - max_len; 1046 1047 if (len > max_len) 1048 len = max_len; 1049 } 1050 1051 return len; 1052 } 1053 1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1055 { 1056 if (len > UINT_MAX) { 1057 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1058 (unsigned long long)len, UINT_MAX); 1059 ti->error = "Maximum size of target IO is too large"; 1060 return -EINVAL; 1061 } 1062 1063 /* 1064 * BIO based queue uses its own splitting. When multipage bvecs 1065 * is switched on, size of the incoming bio may be too big to 1066 * be handled in some targets, such as crypt. 1067 * 1068 * When these targets are ready for the big bio, we can remove 1069 * the limit. 1070 */ 1071 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1072 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1076 1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1078 sector_t sector, int *srcu_idx) 1079 __acquires(md->io_barrier) 1080 { 1081 struct dm_table *map; 1082 struct dm_target *ti; 1083 1084 map = dm_get_live_table(md, srcu_idx); 1085 if (!map) 1086 return NULL; 1087 1088 ti = dm_table_find_target(map, sector); 1089 if (!dm_target_is_valid(ti)) 1090 return NULL; 1091 1092 return ti; 1093 } 1094 1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1096 long nr_pages, void **kaddr, pfn_t *pfn) 1097 { 1098 struct mapped_device *md = dax_get_private(dax_dev); 1099 sector_t sector = pgoff * PAGE_SECTORS; 1100 struct dm_target *ti; 1101 long len, ret = -EIO; 1102 int srcu_idx; 1103 1104 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1105 1106 if (!ti) 1107 goto out; 1108 if (!ti->type->direct_access) 1109 goto out; 1110 len = max_io_len(sector, ti) / PAGE_SECTORS; 1111 if (len < 1) 1112 goto out; 1113 nr_pages = min(len, nr_pages); 1114 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1115 1116 out: 1117 dm_put_live_table(md, srcu_idx); 1118 1119 return ret; 1120 } 1121 1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1123 void *addr, size_t bytes, struct iov_iter *i) 1124 { 1125 struct mapped_device *md = dax_get_private(dax_dev); 1126 sector_t sector = pgoff * PAGE_SECTORS; 1127 struct dm_target *ti; 1128 long ret = 0; 1129 int srcu_idx; 1130 1131 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1132 1133 if (!ti) 1134 goto out; 1135 if (!ti->type->dax_copy_from_iter) { 1136 ret = copy_from_iter(addr, bytes, i); 1137 goto out; 1138 } 1139 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1140 out: 1141 dm_put_live_table(md, srcu_idx); 1142 1143 return ret; 1144 } 1145 1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1147 void *addr, size_t bytes, struct iov_iter *i) 1148 { 1149 struct mapped_device *md = dax_get_private(dax_dev); 1150 sector_t sector = pgoff * PAGE_SECTORS; 1151 struct dm_target *ti; 1152 long ret = 0; 1153 int srcu_idx; 1154 1155 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1156 1157 if (!ti) 1158 goto out; 1159 if (!ti->type->dax_copy_to_iter) { 1160 ret = copy_to_iter(addr, bytes, i); 1161 goto out; 1162 } 1163 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1164 out: 1165 dm_put_live_table(md, srcu_idx); 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * A target may call dm_accept_partial_bio only from the map routine. It is 1172 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1173 * 1174 * dm_accept_partial_bio informs the dm that the target only wants to process 1175 * additional n_sectors sectors of the bio and the rest of the data should be 1176 * sent in a next bio. 1177 * 1178 * A diagram that explains the arithmetics: 1179 * +--------------------+---------------+-------+ 1180 * | 1 | 2 | 3 | 1181 * +--------------------+---------------+-------+ 1182 * 1183 * <-------------- *tio->len_ptr ---------------> 1184 * <------- bi_size -------> 1185 * <-- n_sectors --> 1186 * 1187 * Region 1 was already iterated over with bio_advance or similar function. 1188 * (it may be empty if the target doesn't use bio_advance) 1189 * Region 2 is the remaining bio size that the target wants to process. 1190 * (it may be empty if region 1 is non-empty, although there is no reason 1191 * to make it empty) 1192 * The target requires that region 3 is to be sent in the next bio. 1193 * 1194 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1195 * the partially processed part (the sum of regions 1+2) must be the same for all 1196 * copies of the bio. 1197 */ 1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1199 { 1200 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1201 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1202 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1203 BUG_ON(bi_size > *tio->len_ptr); 1204 BUG_ON(n_sectors > bi_size); 1205 *tio->len_ptr -= bi_size - n_sectors; 1206 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1207 } 1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1209 1210 /* 1211 * The zone descriptors obtained with a zone report indicate 1212 * zone positions within the underlying device of the target. The zone 1213 * descriptors must be remapped to match their position within the dm device. 1214 * The caller target should obtain the zones information using 1215 * blkdev_report_zones() to ensure that remapping for partition offset is 1216 * already handled. 1217 */ 1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1219 struct blk_zone *zones, unsigned int *nr_zones) 1220 { 1221 #ifdef CONFIG_BLK_DEV_ZONED 1222 struct blk_zone *zone; 1223 unsigned int nrz = *nr_zones; 1224 int i; 1225 1226 /* 1227 * Remap the start sector and write pointer position of the zones in 1228 * the array. Since we may have obtained from the target underlying 1229 * device more zones that the target size, also adjust the number 1230 * of zones. 1231 */ 1232 for (i = 0; i < nrz; i++) { 1233 zone = zones + i; 1234 if (zone->start >= start + ti->len) { 1235 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1236 break; 1237 } 1238 1239 zone->start = zone->start + ti->begin - start; 1240 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1241 continue; 1242 1243 if (zone->cond == BLK_ZONE_COND_FULL) 1244 zone->wp = zone->start + zone->len; 1245 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1246 zone->wp = zone->start; 1247 else 1248 zone->wp = zone->wp + ti->begin - start; 1249 } 1250 1251 *nr_zones = i; 1252 #else /* !CONFIG_BLK_DEV_ZONED */ 1253 *nr_zones = 0; 1254 #endif 1255 } 1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1257 1258 static blk_qc_t __map_bio(struct dm_target_io *tio) 1259 { 1260 int r; 1261 sector_t sector; 1262 struct bio *clone = &tio->clone; 1263 struct dm_io *io = tio->io; 1264 struct mapped_device *md = io->md; 1265 struct dm_target *ti = tio->ti; 1266 blk_qc_t ret = BLK_QC_T_NONE; 1267 1268 clone->bi_end_io = clone_endio; 1269 1270 /* 1271 * Map the clone. If r == 0 we don't need to do 1272 * anything, the target has assumed ownership of 1273 * this io. 1274 */ 1275 atomic_inc(&io->io_count); 1276 sector = clone->bi_iter.bi_sector; 1277 1278 r = ti->type->map(ti, clone); 1279 switch (r) { 1280 case DM_MAPIO_SUBMITTED: 1281 break; 1282 case DM_MAPIO_REMAPPED: 1283 /* the bio has been remapped so dispatch it */ 1284 trace_block_bio_remap(clone->bi_disk->queue, clone, 1285 bio_dev(io->orig_bio), sector); 1286 if (md->type == DM_TYPE_NVME_BIO_BASED) 1287 ret = direct_make_request(clone); 1288 else 1289 ret = generic_make_request(clone); 1290 break; 1291 case DM_MAPIO_KILL: 1292 free_tio(tio); 1293 dec_pending(io, BLK_STS_IOERR); 1294 break; 1295 case DM_MAPIO_REQUEUE: 1296 free_tio(tio); 1297 dec_pending(io, BLK_STS_DM_REQUEUE); 1298 break; 1299 default: 1300 DMWARN("unimplemented target map return value: %d", r); 1301 BUG(); 1302 } 1303 1304 return ret; 1305 } 1306 1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1308 { 1309 bio->bi_iter.bi_sector = sector; 1310 bio->bi_iter.bi_size = to_bytes(len); 1311 } 1312 1313 /* 1314 * Creates a bio that consists of range of complete bvecs. 1315 */ 1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1317 sector_t sector, unsigned len) 1318 { 1319 struct bio *clone = &tio->clone; 1320 1321 __bio_clone_fast(clone, bio); 1322 1323 if (unlikely(bio_integrity(bio) != NULL)) { 1324 int r; 1325 1326 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1327 !dm_target_passes_integrity(tio->ti->type))) { 1328 DMWARN("%s: the target %s doesn't support integrity data.", 1329 dm_device_name(tio->io->md), 1330 tio->ti->type->name); 1331 return -EIO; 1332 } 1333 1334 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1335 if (r < 0) 1336 return r; 1337 } 1338 1339 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1340 clone->bi_iter.bi_size = to_bytes(len); 1341 1342 if (unlikely(bio_integrity(bio) != NULL)) 1343 bio_integrity_trim(clone); 1344 1345 return 0; 1346 } 1347 1348 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1349 struct dm_target *ti, unsigned num_bios) 1350 { 1351 struct dm_target_io *tio; 1352 int try; 1353 1354 if (!num_bios) 1355 return; 1356 1357 if (num_bios == 1) { 1358 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1359 bio_list_add(blist, &tio->clone); 1360 return; 1361 } 1362 1363 for (try = 0; try < 2; try++) { 1364 int bio_nr; 1365 struct bio *bio; 1366 1367 if (try) 1368 mutex_lock(&ci->io->md->table_devices_lock); 1369 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1370 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1371 if (!tio) 1372 break; 1373 1374 bio_list_add(blist, &tio->clone); 1375 } 1376 if (try) 1377 mutex_unlock(&ci->io->md->table_devices_lock); 1378 if (bio_nr == num_bios) 1379 return; 1380 1381 while ((bio = bio_list_pop(blist))) { 1382 tio = container_of(bio, struct dm_target_io, clone); 1383 free_tio(tio); 1384 } 1385 } 1386 } 1387 1388 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1389 struct dm_target_io *tio, unsigned *len) 1390 { 1391 struct bio *clone = &tio->clone; 1392 1393 tio->len_ptr = len; 1394 1395 __bio_clone_fast(clone, ci->bio); 1396 if (len) 1397 bio_setup_sector(clone, ci->sector, *len); 1398 1399 return __map_bio(tio); 1400 } 1401 1402 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1403 unsigned num_bios, unsigned *len) 1404 { 1405 struct bio_list blist = BIO_EMPTY_LIST; 1406 struct bio *bio; 1407 struct dm_target_io *tio; 1408 1409 alloc_multiple_bios(&blist, ci, ti, num_bios); 1410 1411 while ((bio = bio_list_pop(&blist))) { 1412 tio = container_of(bio, struct dm_target_io, clone); 1413 (void) __clone_and_map_simple_bio(ci, tio, len); 1414 } 1415 } 1416 1417 static int __send_empty_flush(struct clone_info *ci) 1418 { 1419 unsigned target_nr = 0; 1420 struct dm_target *ti; 1421 1422 /* 1423 * Empty flush uses a statically initialized bio, as the base for 1424 * cloning. However, blkg association requires that a bdev is 1425 * associated with a gendisk, which doesn't happen until the bdev is 1426 * opened. So, blkg association is done at issue time of the flush 1427 * rather than when the device is created in alloc_dev(). 1428 */ 1429 bio_set_dev(ci->bio, ci->io->md->bdev); 1430 1431 BUG_ON(bio_has_data(ci->bio)); 1432 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1433 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1434 1435 bio_disassociate_blkg(ci->bio); 1436 1437 return 0; 1438 } 1439 1440 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1441 sector_t sector, unsigned *len) 1442 { 1443 struct bio *bio = ci->bio; 1444 struct dm_target_io *tio; 1445 int r; 1446 1447 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1448 tio->len_ptr = len; 1449 r = clone_bio(tio, bio, sector, *len); 1450 if (r < 0) { 1451 free_tio(tio); 1452 return r; 1453 } 1454 (void) __map_bio(tio); 1455 1456 return 0; 1457 } 1458 1459 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1460 1461 static unsigned get_num_discard_bios(struct dm_target *ti) 1462 { 1463 return ti->num_discard_bios; 1464 } 1465 1466 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1467 { 1468 return ti->num_secure_erase_bios; 1469 } 1470 1471 static unsigned get_num_write_same_bios(struct dm_target *ti) 1472 { 1473 return ti->num_write_same_bios; 1474 } 1475 1476 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1477 { 1478 return ti->num_write_zeroes_bios; 1479 } 1480 1481 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1482 1483 static bool is_split_required_for_discard(struct dm_target *ti) 1484 { 1485 return ti->split_discard_bios; 1486 } 1487 1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1489 unsigned num_bios, bool is_split_required) 1490 { 1491 unsigned len; 1492 1493 /* 1494 * Even though the device advertised support for this type of 1495 * request, that does not mean every target supports it, and 1496 * reconfiguration might also have changed that since the 1497 * check was performed. 1498 */ 1499 if (!num_bios) 1500 return -EOPNOTSUPP; 1501 1502 if (!is_split_required) 1503 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1504 else 1505 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1506 1507 __send_duplicate_bios(ci, ti, num_bios, &len); 1508 1509 ci->sector += len; 1510 ci->sector_count -= len; 1511 1512 return 0; 1513 } 1514 1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1516 { 1517 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti), 1518 is_split_required_for_discard(ti)); 1519 } 1520 1521 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1522 { 1523 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false); 1524 } 1525 1526 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1527 { 1528 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false); 1529 } 1530 1531 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1532 { 1533 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false); 1534 } 1535 1536 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1537 int *result) 1538 { 1539 struct bio *bio = ci->bio; 1540 1541 if (bio_op(bio) == REQ_OP_DISCARD) 1542 *result = __send_discard(ci, ti); 1543 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1544 *result = __send_secure_erase(ci, ti); 1545 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1546 *result = __send_write_same(ci, ti); 1547 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1548 *result = __send_write_zeroes(ci, ti); 1549 else 1550 return false; 1551 1552 return true; 1553 } 1554 1555 /* 1556 * Select the correct strategy for processing a non-flush bio. 1557 */ 1558 static int __split_and_process_non_flush(struct clone_info *ci) 1559 { 1560 struct dm_target *ti; 1561 unsigned len; 1562 int r; 1563 1564 ti = dm_table_find_target(ci->map, ci->sector); 1565 if (!dm_target_is_valid(ti)) 1566 return -EIO; 1567 1568 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1569 return r; 1570 1571 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1572 1573 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1574 if (r < 0) 1575 return r; 1576 1577 ci->sector += len; 1578 ci->sector_count -= len; 1579 1580 return 0; 1581 } 1582 1583 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1584 struct dm_table *map, struct bio *bio) 1585 { 1586 ci->map = map; 1587 ci->io = alloc_io(md, bio); 1588 ci->sector = bio->bi_iter.bi_sector; 1589 } 1590 1591 /* 1592 * Entry point to split a bio into clones and submit them to the targets. 1593 */ 1594 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1595 struct dm_table *map, struct bio *bio) 1596 { 1597 struct clone_info ci; 1598 blk_qc_t ret = BLK_QC_T_NONE; 1599 int error = 0; 1600 1601 if (unlikely(!map)) { 1602 bio_io_error(bio); 1603 return ret; 1604 } 1605 1606 blk_queue_split(md->queue, &bio); 1607 1608 init_clone_info(&ci, md, map, bio); 1609 1610 if (bio->bi_opf & REQ_PREFLUSH) { 1611 struct bio flush_bio; 1612 1613 /* 1614 * Use an on-stack bio for this, it's safe since we don't 1615 * need to reference it after submit. It's just used as 1616 * the basis for the clone(s). 1617 */ 1618 bio_init(&flush_bio, NULL, 0); 1619 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1620 ci.bio = &flush_bio; 1621 ci.sector_count = 0; 1622 error = __send_empty_flush(&ci); 1623 /* dec_pending submits any data associated with flush */ 1624 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1625 ci.bio = bio; 1626 ci.sector_count = 0; 1627 error = __split_and_process_non_flush(&ci); 1628 } else { 1629 ci.bio = bio; 1630 ci.sector_count = bio_sectors(bio); 1631 while (ci.sector_count && !error) { 1632 error = __split_and_process_non_flush(&ci); 1633 if (current->bio_list && ci.sector_count && !error) { 1634 /* 1635 * Remainder must be passed to generic_make_request() 1636 * so that it gets handled *after* bios already submitted 1637 * have been completely processed. 1638 * We take a clone of the original to store in 1639 * ci.io->orig_bio to be used by end_io_acct() and 1640 * for dec_pending to use for completion handling. 1641 */ 1642 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1643 GFP_NOIO, &md->queue->bio_split); 1644 ci.io->orig_bio = b; 1645 bio_chain(b, bio); 1646 ret = generic_make_request(bio); 1647 break; 1648 } 1649 } 1650 } 1651 1652 /* drop the extra reference count */ 1653 dec_pending(ci.io, errno_to_blk_status(error)); 1654 return ret; 1655 } 1656 1657 /* 1658 * Optimized variant of __split_and_process_bio that leverages the 1659 * fact that targets that use it do _not_ have a need to split bios. 1660 */ 1661 static blk_qc_t __process_bio(struct mapped_device *md, 1662 struct dm_table *map, struct bio *bio) 1663 { 1664 struct clone_info ci; 1665 blk_qc_t ret = BLK_QC_T_NONE; 1666 int error = 0; 1667 1668 if (unlikely(!map)) { 1669 bio_io_error(bio); 1670 return ret; 1671 } 1672 1673 init_clone_info(&ci, md, map, bio); 1674 1675 if (bio->bi_opf & REQ_PREFLUSH) { 1676 struct bio flush_bio; 1677 1678 /* 1679 * Use an on-stack bio for this, it's safe since we don't 1680 * need to reference it after submit. It's just used as 1681 * the basis for the clone(s). 1682 */ 1683 bio_init(&flush_bio, NULL, 0); 1684 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1685 ci.bio = &flush_bio; 1686 ci.sector_count = 0; 1687 error = __send_empty_flush(&ci); 1688 /* dec_pending submits any data associated with flush */ 1689 } else { 1690 struct dm_target *ti = md->immutable_target; 1691 struct dm_target_io *tio; 1692 1693 /* 1694 * Defend against IO still getting in during teardown 1695 * - as was seen for a time with nvme-fcloop 1696 */ 1697 if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) { 1698 error = -EIO; 1699 goto out; 1700 } 1701 1702 ci.bio = bio; 1703 ci.sector_count = bio_sectors(bio); 1704 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1705 goto out; 1706 1707 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1708 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1709 } 1710 out: 1711 /* drop the extra reference count */ 1712 dec_pending(ci.io, errno_to_blk_status(error)); 1713 return ret; 1714 } 1715 1716 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1717 { 1718 struct mapped_device *md = q->queuedata; 1719 blk_qc_t ret = BLK_QC_T_NONE; 1720 int srcu_idx; 1721 struct dm_table *map; 1722 1723 map = dm_get_live_table(md, &srcu_idx); 1724 1725 /* if we're suspended, we have to queue this io for later */ 1726 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1727 dm_put_live_table(md, srcu_idx); 1728 1729 if (!(bio->bi_opf & REQ_RAHEAD)) 1730 queue_io(md, bio); 1731 else 1732 bio_io_error(bio); 1733 return ret; 1734 } 1735 1736 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1737 ret = __process_bio(md, map, bio); 1738 else 1739 ret = __split_and_process_bio(md, map, bio); 1740 1741 dm_put_live_table(md, srcu_idx); 1742 return ret; 1743 } 1744 1745 static int dm_any_congested(void *congested_data, int bdi_bits) 1746 { 1747 int r = bdi_bits; 1748 struct mapped_device *md = congested_data; 1749 struct dm_table *map; 1750 1751 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1752 if (dm_request_based(md)) { 1753 /* 1754 * With request-based DM we only need to check the 1755 * top-level queue for congestion. 1756 */ 1757 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1758 } else { 1759 map = dm_get_live_table_fast(md); 1760 if (map) 1761 r = dm_table_any_congested(map, bdi_bits); 1762 dm_put_live_table_fast(md); 1763 } 1764 } 1765 1766 return r; 1767 } 1768 1769 /*----------------------------------------------------------------- 1770 * An IDR is used to keep track of allocated minor numbers. 1771 *---------------------------------------------------------------*/ 1772 static void free_minor(int minor) 1773 { 1774 spin_lock(&_minor_lock); 1775 idr_remove(&_minor_idr, minor); 1776 spin_unlock(&_minor_lock); 1777 } 1778 1779 /* 1780 * See if the device with a specific minor # is free. 1781 */ 1782 static int specific_minor(int minor) 1783 { 1784 int r; 1785 1786 if (minor >= (1 << MINORBITS)) 1787 return -EINVAL; 1788 1789 idr_preload(GFP_KERNEL); 1790 spin_lock(&_minor_lock); 1791 1792 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1793 1794 spin_unlock(&_minor_lock); 1795 idr_preload_end(); 1796 if (r < 0) 1797 return r == -ENOSPC ? -EBUSY : r; 1798 return 0; 1799 } 1800 1801 static int next_free_minor(int *minor) 1802 { 1803 int r; 1804 1805 idr_preload(GFP_KERNEL); 1806 spin_lock(&_minor_lock); 1807 1808 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1809 1810 spin_unlock(&_minor_lock); 1811 idr_preload_end(); 1812 if (r < 0) 1813 return r; 1814 *minor = r; 1815 return 0; 1816 } 1817 1818 static const struct block_device_operations dm_blk_dops; 1819 static const struct dax_operations dm_dax_ops; 1820 1821 static void dm_wq_work(struct work_struct *work); 1822 1823 static void dm_init_normal_md_queue(struct mapped_device *md) 1824 { 1825 /* 1826 * Initialize aspects of queue that aren't relevant for blk-mq 1827 */ 1828 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1829 } 1830 1831 static void cleanup_mapped_device(struct mapped_device *md) 1832 { 1833 if (md->wq) 1834 destroy_workqueue(md->wq); 1835 bioset_exit(&md->bs); 1836 bioset_exit(&md->io_bs); 1837 1838 if (md->dax_dev) { 1839 kill_dax(md->dax_dev); 1840 put_dax(md->dax_dev); 1841 md->dax_dev = NULL; 1842 } 1843 1844 if (md->disk) { 1845 spin_lock(&_minor_lock); 1846 md->disk->private_data = NULL; 1847 spin_unlock(&_minor_lock); 1848 del_gendisk(md->disk); 1849 put_disk(md->disk); 1850 } 1851 1852 if (md->queue) 1853 blk_cleanup_queue(md->queue); 1854 1855 cleanup_srcu_struct(&md->io_barrier); 1856 1857 if (md->bdev) { 1858 bdput(md->bdev); 1859 md->bdev = NULL; 1860 } 1861 1862 mutex_destroy(&md->suspend_lock); 1863 mutex_destroy(&md->type_lock); 1864 mutex_destroy(&md->table_devices_lock); 1865 1866 dm_mq_cleanup_mapped_device(md); 1867 } 1868 1869 /* 1870 * Allocate and initialise a blank device with a given minor. 1871 */ 1872 static struct mapped_device *alloc_dev(int minor) 1873 { 1874 int r, numa_node_id = dm_get_numa_node(); 1875 struct dax_device *dax_dev = NULL; 1876 struct mapped_device *md; 1877 void *old_md; 1878 1879 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1880 if (!md) { 1881 DMWARN("unable to allocate device, out of memory."); 1882 return NULL; 1883 } 1884 1885 if (!try_module_get(THIS_MODULE)) 1886 goto bad_module_get; 1887 1888 /* get a minor number for the dev */ 1889 if (minor == DM_ANY_MINOR) 1890 r = next_free_minor(&minor); 1891 else 1892 r = specific_minor(minor); 1893 if (r < 0) 1894 goto bad_minor; 1895 1896 r = init_srcu_struct(&md->io_barrier); 1897 if (r < 0) 1898 goto bad_io_barrier; 1899 1900 md->numa_node_id = numa_node_id; 1901 md->init_tio_pdu = false; 1902 md->type = DM_TYPE_NONE; 1903 mutex_init(&md->suspend_lock); 1904 mutex_init(&md->type_lock); 1905 mutex_init(&md->table_devices_lock); 1906 spin_lock_init(&md->deferred_lock); 1907 atomic_set(&md->holders, 1); 1908 atomic_set(&md->open_count, 0); 1909 atomic_set(&md->event_nr, 0); 1910 atomic_set(&md->uevent_seq, 0); 1911 INIT_LIST_HEAD(&md->uevent_list); 1912 INIT_LIST_HEAD(&md->table_devices); 1913 spin_lock_init(&md->uevent_lock); 1914 1915 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1916 if (!md->queue) 1917 goto bad; 1918 md->queue->queuedata = md; 1919 md->queue->backing_dev_info->congested_data = md; 1920 1921 md->disk = alloc_disk_node(1, md->numa_node_id); 1922 if (!md->disk) 1923 goto bad; 1924 1925 init_waitqueue_head(&md->wait); 1926 INIT_WORK(&md->work, dm_wq_work); 1927 init_waitqueue_head(&md->eventq); 1928 init_completion(&md->kobj_holder.completion); 1929 1930 md->disk->major = _major; 1931 md->disk->first_minor = minor; 1932 md->disk->fops = &dm_blk_dops; 1933 md->disk->queue = md->queue; 1934 md->disk->private_data = md; 1935 sprintf(md->disk->disk_name, "dm-%d", minor); 1936 1937 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1938 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1939 if (!dax_dev) 1940 goto bad; 1941 } 1942 md->dax_dev = dax_dev; 1943 1944 add_disk_no_queue_reg(md->disk); 1945 format_dev_t(md->name, MKDEV(_major, minor)); 1946 1947 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1948 if (!md->wq) 1949 goto bad; 1950 1951 md->bdev = bdget_disk(md->disk, 0); 1952 if (!md->bdev) 1953 goto bad; 1954 1955 dm_stats_init(&md->stats); 1956 1957 /* Populate the mapping, nobody knows we exist yet */ 1958 spin_lock(&_minor_lock); 1959 old_md = idr_replace(&_minor_idr, md, minor); 1960 spin_unlock(&_minor_lock); 1961 1962 BUG_ON(old_md != MINOR_ALLOCED); 1963 1964 return md; 1965 1966 bad: 1967 cleanup_mapped_device(md); 1968 bad_io_barrier: 1969 free_minor(minor); 1970 bad_minor: 1971 module_put(THIS_MODULE); 1972 bad_module_get: 1973 kvfree(md); 1974 return NULL; 1975 } 1976 1977 static void unlock_fs(struct mapped_device *md); 1978 1979 static void free_dev(struct mapped_device *md) 1980 { 1981 int minor = MINOR(disk_devt(md->disk)); 1982 1983 unlock_fs(md); 1984 1985 cleanup_mapped_device(md); 1986 1987 free_table_devices(&md->table_devices); 1988 dm_stats_cleanup(&md->stats); 1989 free_minor(minor); 1990 1991 module_put(THIS_MODULE); 1992 kvfree(md); 1993 } 1994 1995 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1996 { 1997 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1998 int ret = 0; 1999 2000 if (dm_table_bio_based(t)) { 2001 /* 2002 * The md may already have mempools that need changing. 2003 * If so, reload bioset because front_pad may have changed 2004 * because a different table was loaded. 2005 */ 2006 bioset_exit(&md->bs); 2007 bioset_exit(&md->io_bs); 2008 2009 } else if (bioset_initialized(&md->bs)) { 2010 /* 2011 * There's no need to reload with request-based dm 2012 * because the size of front_pad doesn't change. 2013 * Note for future: If you are to reload bioset, 2014 * prep-ed requests in the queue may refer 2015 * to bio from the old bioset, so you must walk 2016 * through the queue to unprep. 2017 */ 2018 goto out; 2019 } 2020 2021 BUG_ON(!p || 2022 bioset_initialized(&md->bs) || 2023 bioset_initialized(&md->io_bs)); 2024 2025 ret = bioset_init_from_src(&md->bs, &p->bs); 2026 if (ret) 2027 goto out; 2028 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2029 if (ret) 2030 bioset_exit(&md->bs); 2031 out: 2032 /* mempool bind completed, no longer need any mempools in the table */ 2033 dm_table_free_md_mempools(t); 2034 return ret; 2035 } 2036 2037 /* 2038 * Bind a table to the device. 2039 */ 2040 static void event_callback(void *context) 2041 { 2042 unsigned long flags; 2043 LIST_HEAD(uevents); 2044 struct mapped_device *md = (struct mapped_device *) context; 2045 2046 spin_lock_irqsave(&md->uevent_lock, flags); 2047 list_splice_init(&md->uevent_list, &uevents); 2048 spin_unlock_irqrestore(&md->uevent_lock, flags); 2049 2050 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2051 2052 atomic_inc(&md->event_nr); 2053 wake_up(&md->eventq); 2054 dm_issue_global_event(); 2055 } 2056 2057 /* 2058 * Protected by md->suspend_lock obtained by dm_swap_table(). 2059 */ 2060 static void __set_size(struct mapped_device *md, sector_t size) 2061 { 2062 lockdep_assert_held(&md->suspend_lock); 2063 2064 set_capacity(md->disk, size); 2065 2066 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2067 } 2068 2069 /* 2070 * Returns old map, which caller must destroy. 2071 */ 2072 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2073 struct queue_limits *limits) 2074 { 2075 struct dm_table *old_map; 2076 struct request_queue *q = md->queue; 2077 bool request_based = dm_table_request_based(t); 2078 sector_t size; 2079 int ret; 2080 2081 lockdep_assert_held(&md->suspend_lock); 2082 2083 size = dm_table_get_size(t); 2084 2085 /* 2086 * Wipe any geometry if the size of the table changed. 2087 */ 2088 if (size != dm_get_size(md)) 2089 memset(&md->geometry, 0, sizeof(md->geometry)); 2090 2091 __set_size(md, size); 2092 2093 dm_table_event_callback(t, event_callback, md); 2094 2095 /* 2096 * The queue hasn't been stopped yet, if the old table type wasn't 2097 * for request-based during suspension. So stop it to prevent 2098 * I/O mapping before resume. 2099 * This must be done before setting the queue restrictions, 2100 * because request-based dm may be run just after the setting. 2101 */ 2102 if (request_based) 2103 dm_stop_queue(q); 2104 2105 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2106 /* 2107 * Leverage the fact that request-based DM targets and 2108 * NVMe bio based targets are immutable singletons 2109 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2110 * and __process_bio. 2111 */ 2112 md->immutable_target = dm_table_get_immutable_target(t); 2113 } 2114 2115 ret = __bind_mempools(md, t); 2116 if (ret) { 2117 old_map = ERR_PTR(ret); 2118 goto out; 2119 } 2120 2121 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2122 rcu_assign_pointer(md->map, (void *)t); 2123 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2124 2125 dm_table_set_restrictions(t, q, limits); 2126 if (old_map) 2127 dm_sync_table(md); 2128 2129 out: 2130 return old_map; 2131 } 2132 2133 /* 2134 * Returns unbound table for the caller to free. 2135 */ 2136 static struct dm_table *__unbind(struct mapped_device *md) 2137 { 2138 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2139 2140 if (!map) 2141 return NULL; 2142 2143 dm_table_event_callback(map, NULL, NULL); 2144 RCU_INIT_POINTER(md->map, NULL); 2145 dm_sync_table(md); 2146 2147 return map; 2148 } 2149 2150 /* 2151 * Constructor for a new device. 2152 */ 2153 int dm_create(int minor, struct mapped_device **result) 2154 { 2155 int r; 2156 struct mapped_device *md; 2157 2158 md = alloc_dev(minor); 2159 if (!md) 2160 return -ENXIO; 2161 2162 r = dm_sysfs_init(md); 2163 if (r) { 2164 free_dev(md); 2165 return r; 2166 } 2167 2168 *result = md; 2169 return 0; 2170 } 2171 2172 /* 2173 * Functions to manage md->type. 2174 * All are required to hold md->type_lock. 2175 */ 2176 void dm_lock_md_type(struct mapped_device *md) 2177 { 2178 mutex_lock(&md->type_lock); 2179 } 2180 2181 void dm_unlock_md_type(struct mapped_device *md) 2182 { 2183 mutex_unlock(&md->type_lock); 2184 } 2185 2186 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2187 { 2188 BUG_ON(!mutex_is_locked(&md->type_lock)); 2189 md->type = type; 2190 } 2191 2192 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2193 { 2194 return md->type; 2195 } 2196 2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2198 { 2199 return md->immutable_target_type; 2200 } 2201 2202 /* 2203 * The queue_limits are only valid as long as you have a reference 2204 * count on 'md'. 2205 */ 2206 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2207 { 2208 BUG_ON(!atomic_read(&md->holders)); 2209 return &md->queue->limits; 2210 } 2211 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2212 2213 /* 2214 * Setup the DM device's queue based on md's type 2215 */ 2216 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2217 { 2218 int r; 2219 struct queue_limits limits; 2220 enum dm_queue_mode type = dm_get_md_type(md); 2221 2222 switch (type) { 2223 case DM_TYPE_REQUEST_BASED: 2224 r = dm_mq_init_request_queue(md, t); 2225 if (r) { 2226 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2227 return r; 2228 } 2229 break; 2230 case DM_TYPE_BIO_BASED: 2231 case DM_TYPE_DAX_BIO_BASED: 2232 case DM_TYPE_NVME_BIO_BASED: 2233 dm_init_normal_md_queue(md); 2234 blk_queue_make_request(md->queue, dm_make_request); 2235 break; 2236 case DM_TYPE_NONE: 2237 WARN_ON_ONCE(true); 2238 break; 2239 } 2240 2241 r = dm_calculate_queue_limits(t, &limits); 2242 if (r) { 2243 DMERR("Cannot calculate initial queue limits"); 2244 return r; 2245 } 2246 dm_table_set_restrictions(t, md->queue, &limits); 2247 blk_register_queue(md->disk); 2248 2249 return 0; 2250 } 2251 2252 struct mapped_device *dm_get_md(dev_t dev) 2253 { 2254 struct mapped_device *md; 2255 unsigned minor = MINOR(dev); 2256 2257 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2258 return NULL; 2259 2260 spin_lock(&_minor_lock); 2261 2262 md = idr_find(&_minor_idr, minor); 2263 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2264 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2265 md = NULL; 2266 goto out; 2267 } 2268 dm_get(md); 2269 out: 2270 spin_unlock(&_minor_lock); 2271 2272 return md; 2273 } 2274 EXPORT_SYMBOL_GPL(dm_get_md); 2275 2276 void *dm_get_mdptr(struct mapped_device *md) 2277 { 2278 return md->interface_ptr; 2279 } 2280 2281 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2282 { 2283 md->interface_ptr = ptr; 2284 } 2285 2286 void dm_get(struct mapped_device *md) 2287 { 2288 atomic_inc(&md->holders); 2289 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2290 } 2291 2292 int dm_hold(struct mapped_device *md) 2293 { 2294 spin_lock(&_minor_lock); 2295 if (test_bit(DMF_FREEING, &md->flags)) { 2296 spin_unlock(&_minor_lock); 2297 return -EBUSY; 2298 } 2299 dm_get(md); 2300 spin_unlock(&_minor_lock); 2301 return 0; 2302 } 2303 EXPORT_SYMBOL_GPL(dm_hold); 2304 2305 const char *dm_device_name(struct mapped_device *md) 2306 { 2307 return md->name; 2308 } 2309 EXPORT_SYMBOL_GPL(dm_device_name); 2310 2311 static void __dm_destroy(struct mapped_device *md, bool wait) 2312 { 2313 struct dm_table *map; 2314 int srcu_idx; 2315 2316 might_sleep(); 2317 2318 spin_lock(&_minor_lock); 2319 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2320 set_bit(DMF_FREEING, &md->flags); 2321 spin_unlock(&_minor_lock); 2322 2323 blk_set_queue_dying(md->queue); 2324 2325 /* 2326 * Take suspend_lock so that presuspend and postsuspend methods 2327 * do not race with internal suspend. 2328 */ 2329 mutex_lock(&md->suspend_lock); 2330 map = dm_get_live_table(md, &srcu_idx); 2331 if (!dm_suspended_md(md)) { 2332 dm_table_presuspend_targets(map); 2333 dm_table_postsuspend_targets(map); 2334 } 2335 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2336 dm_put_live_table(md, srcu_idx); 2337 mutex_unlock(&md->suspend_lock); 2338 2339 /* 2340 * Rare, but there may be I/O requests still going to complete, 2341 * for example. Wait for all references to disappear. 2342 * No one should increment the reference count of the mapped_device, 2343 * after the mapped_device state becomes DMF_FREEING. 2344 */ 2345 if (wait) 2346 while (atomic_read(&md->holders)) 2347 msleep(1); 2348 else if (atomic_read(&md->holders)) 2349 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2350 dm_device_name(md), atomic_read(&md->holders)); 2351 2352 dm_sysfs_exit(md); 2353 dm_table_destroy(__unbind(md)); 2354 free_dev(md); 2355 } 2356 2357 void dm_destroy(struct mapped_device *md) 2358 { 2359 __dm_destroy(md, true); 2360 } 2361 2362 void dm_destroy_immediate(struct mapped_device *md) 2363 { 2364 __dm_destroy(md, false); 2365 } 2366 2367 void dm_put(struct mapped_device *md) 2368 { 2369 atomic_dec(&md->holders); 2370 } 2371 EXPORT_SYMBOL_GPL(dm_put); 2372 2373 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2374 { 2375 int r = 0; 2376 DEFINE_WAIT(wait); 2377 2378 while (1) { 2379 prepare_to_wait(&md->wait, &wait, task_state); 2380 2381 if (!md_in_flight(md)) 2382 break; 2383 2384 if (signal_pending_state(task_state, current)) { 2385 r = -EINTR; 2386 break; 2387 } 2388 2389 io_schedule(); 2390 } 2391 finish_wait(&md->wait, &wait); 2392 2393 return r; 2394 } 2395 2396 /* 2397 * Process the deferred bios 2398 */ 2399 static void dm_wq_work(struct work_struct *work) 2400 { 2401 struct mapped_device *md = container_of(work, struct mapped_device, 2402 work); 2403 struct bio *c; 2404 int srcu_idx; 2405 struct dm_table *map; 2406 2407 map = dm_get_live_table(md, &srcu_idx); 2408 2409 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2410 spin_lock_irq(&md->deferred_lock); 2411 c = bio_list_pop(&md->deferred); 2412 spin_unlock_irq(&md->deferred_lock); 2413 2414 if (!c) 2415 break; 2416 2417 if (dm_request_based(md)) 2418 generic_make_request(c); 2419 else 2420 __split_and_process_bio(md, map, c); 2421 } 2422 2423 dm_put_live_table(md, srcu_idx); 2424 } 2425 2426 static void dm_queue_flush(struct mapped_device *md) 2427 { 2428 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2429 smp_mb__after_atomic(); 2430 queue_work(md->wq, &md->work); 2431 } 2432 2433 /* 2434 * Swap in a new table, returning the old one for the caller to destroy. 2435 */ 2436 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2437 { 2438 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2439 struct queue_limits limits; 2440 int r; 2441 2442 mutex_lock(&md->suspend_lock); 2443 2444 /* device must be suspended */ 2445 if (!dm_suspended_md(md)) 2446 goto out; 2447 2448 /* 2449 * If the new table has no data devices, retain the existing limits. 2450 * This helps multipath with queue_if_no_path if all paths disappear, 2451 * then new I/O is queued based on these limits, and then some paths 2452 * reappear. 2453 */ 2454 if (dm_table_has_no_data_devices(table)) { 2455 live_map = dm_get_live_table_fast(md); 2456 if (live_map) 2457 limits = md->queue->limits; 2458 dm_put_live_table_fast(md); 2459 } 2460 2461 if (!live_map) { 2462 r = dm_calculate_queue_limits(table, &limits); 2463 if (r) { 2464 map = ERR_PTR(r); 2465 goto out; 2466 } 2467 } 2468 2469 map = __bind(md, table, &limits); 2470 dm_issue_global_event(); 2471 2472 out: 2473 mutex_unlock(&md->suspend_lock); 2474 return map; 2475 } 2476 2477 /* 2478 * Functions to lock and unlock any filesystem running on the 2479 * device. 2480 */ 2481 static int lock_fs(struct mapped_device *md) 2482 { 2483 int r; 2484 2485 WARN_ON(md->frozen_sb); 2486 2487 md->frozen_sb = freeze_bdev(md->bdev); 2488 if (IS_ERR(md->frozen_sb)) { 2489 r = PTR_ERR(md->frozen_sb); 2490 md->frozen_sb = NULL; 2491 return r; 2492 } 2493 2494 set_bit(DMF_FROZEN, &md->flags); 2495 2496 return 0; 2497 } 2498 2499 static void unlock_fs(struct mapped_device *md) 2500 { 2501 if (!test_bit(DMF_FROZEN, &md->flags)) 2502 return; 2503 2504 thaw_bdev(md->bdev, md->frozen_sb); 2505 md->frozen_sb = NULL; 2506 clear_bit(DMF_FROZEN, &md->flags); 2507 } 2508 2509 /* 2510 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2511 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2512 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2513 * 2514 * If __dm_suspend returns 0, the device is completely quiescent 2515 * now. There is no request-processing activity. All new requests 2516 * are being added to md->deferred list. 2517 */ 2518 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2519 unsigned suspend_flags, long task_state, 2520 int dmf_suspended_flag) 2521 { 2522 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2523 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2524 int r; 2525 2526 lockdep_assert_held(&md->suspend_lock); 2527 2528 /* 2529 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2530 * This flag is cleared before dm_suspend returns. 2531 */ 2532 if (noflush) 2533 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2534 else 2535 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2536 2537 /* 2538 * This gets reverted if there's an error later and the targets 2539 * provide the .presuspend_undo hook. 2540 */ 2541 dm_table_presuspend_targets(map); 2542 2543 /* 2544 * Flush I/O to the device. 2545 * Any I/O submitted after lock_fs() may not be flushed. 2546 * noflush takes precedence over do_lockfs. 2547 * (lock_fs() flushes I/Os and waits for them to complete.) 2548 */ 2549 if (!noflush && do_lockfs) { 2550 r = lock_fs(md); 2551 if (r) { 2552 dm_table_presuspend_undo_targets(map); 2553 return r; 2554 } 2555 } 2556 2557 /* 2558 * Here we must make sure that no processes are submitting requests 2559 * to target drivers i.e. no one may be executing 2560 * __split_and_process_bio. This is called from dm_request and 2561 * dm_wq_work. 2562 * 2563 * To get all processes out of __split_and_process_bio in dm_request, 2564 * we take the write lock. To prevent any process from reentering 2565 * __split_and_process_bio from dm_request and quiesce the thread 2566 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2567 * flush_workqueue(md->wq). 2568 */ 2569 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2570 if (map) 2571 synchronize_srcu(&md->io_barrier); 2572 2573 /* 2574 * Stop md->queue before flushing md->wq in case request-based 2575 * dm defers requests to md->wq from md->queue. 2576 */ 2577 if (dm_request_based(md)) 2578 dm_stop_queue(md->queue); 2579 2580 flush_workqueue(md->wq); 2581 2582 /* 2583 * At this point no more requests are entering target request routines. 2584 * We call dm_wait_for_completion to wait for all existing requests 2585 * to finish. 2586 */ 2587 r = dm_wait_for_completion(md, task_state); 2588 if (!r) 2589 set_bit(dmf_suspended_flag, &md->flags); 2590 2591 if (noflush) 2592 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2593 if (map) 2594 synchronize_srcu(&md->io_barrier); 2595 2596 /* were we interrupted ? */ 2597 if (r < 0) { 2598 dm_queue_flush(md); 2599 2600 if (dm_request_based(md)) 2601 dm_start_queue(md->queue); 2602 2603 unlock_fs(md); 2604 dm_table_presuspend_undo_targets(map); 2605 /* pushback list is already flushed, so skip flush */ 2606 } 2607 2608 return r; 2609 } 2610 2611 /* 2612 * We need to be able to change a mapping table under a mounted 2613 * filesystem. For example we might want to move some data in 2614 * the background. Before the table can be swapped with 2615 * dm_bind_table, dm_suspend must be called to flush any in 2616 * flight bios and ensure that any further io gets deferred. 2617 */ 2618 /* 2619 * Suspend mechanism in request-based dm. 2620 * 2621 * 1. Flush all I/Os by lock_fs() if needed. 2622 * 2. Stop dispatching any I/O by stopping the request_queue. 2623 * 3. Wait for all in-flight I/Os to be completed or requeued. 2624 * 2625 * To abort suspend, start the request_queue. 2626 */ 2627 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2628 { 2629 struct dm_table *map = NULL; 2630 int r = 0; 2631 2632 retry: 2633 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2634 2635 if (dm_suspended_md(md)) { 2636 r = -EINVAL; 2637 goto out_unlock; 2638 } 2639 2640 if (dm_suspended_internally_md(md)) { 2641 /* already internally suspended, wait for internal resume */ 2642 mutex_unlock(&md->suspend_lock); 2643 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2644 if (r) 2645 return r; 2646 goto retry; 2647 } 2648 2649 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2650 2651 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2652 if (r) 2653 goto out_unlock; 2654 2655 dm_table_postsuspend_targets(map); 2656 2657 out_unlock: 2658 mutex_unlock(&md->suspend_lock); 2659 return r; 2660 } 2661 2662 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2663 { 2664 if (map) { 2665 int r = dm_table_resume_targets(map); 2666 if (r) 2667 return r; 2668 } 2669 2670 dm_queue_flush(md); 2671 2672 /* 2673 * Flushing deferred I/Os must be done after targets are resumed 2674 * so that mapping of targets can work correctly. 2675 * Request-based dm is queueing the deferred I/Os in its request_queue. 2676 */ 2677 if (dm_request_based(md)) 2678 dm_start_queue(md->queue); 2679 2680 unlock_fs(md); 2681 2682 return 0; 2683 } 2684 2685 int dm_resume(struct mapped_device *md) 2686 { 2687 int r; 2688 struct dm_table *map = NULL; 2689 2690 retry: 2691 r = -EINVAL; 2692 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2693 2694 if (!dm_suspended_md(md)) 2695 goto out; 2696 2697 if (dm_suspended_internally_md(md)) { 2698 /* already internally suspended, wait for internal resume */ 2699 mutex_unlock(&md->suspend_lock); 2700 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2701 if (r) 2702 return r; 2703 goto retry; 2704 } 2705 2706 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2707 if (!map || !dm_table_get_size(map)) 2708 goto out; 2709 2710 r = __dm_resume(md, map); 2711 if (r) 2712 goto out; 2713 2714 clear_bit(DMF_SUSPENDED, &md->flags); 2715 out: 2716 mutex_unlock(&md->suspend_lock); 2717 2718 return r; 2719 } 2720 2721 /* 2722 * Internal suspend/resume works like userspace-driven suspend. It waits 2723 * until all bios finish and prevents issuing new bios to the target drivers. 2724 * It may be used only from the kernel. 2725 */ 2726 2727 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2728 { 2729 struct dm_table *map = NULL; 2730 2731 lockdep_assert_held(&md->suspend_lock); 2732 2733 if (md->internal_suspend_count++) 2734 return; /* nested internal suspend */ 2735 2736 if (dm_suspended_md(md)) { 2737 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2738 return; /* nest suspend */ 2739 } 2740 2741 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2742 2743 /* 2744 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2745 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2746 * would require changing .presuspend to return an error -- avoid this 2747 * until there is a need for more elaborate variants of internal suspend. 2748 */ 2749 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2750 DMF_SUSPENDED_INTERNALLY); 2751 2752 dm_table_postsuspend_targets(map); 2753 } 2754 2755 static void __dm_internal_resume(struct mapped_device *md) 2756 { 2757 BUG_ON(!md->internal_suspend_count); 2758 2759 if (--md->internal_suspend_count) 2760 return; /* resume from nested internal suspend */ 2761 2762 if (dm_suspended_md(md)) 2763 goto done; /* resume from nested suspend */ 2764 2765 /* 2766 * NOTE: existing callers don't need to call dm_table_resume_targets 2767 * (which may fail -- so best to avoid it for now by passing NULL map) 2768 */ 2769 (void) __dm_resume(md, NULL); 2770 2771 done: 2772 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2773 smp_mb__after_atomic(); 2774 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2775 } 2776 2777 void dm_internal_suspend_noflush(struct mapped_device *md) 2778 { 2779 mutex_lock(&md->suspend_lock); 2780 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2781 mutex_unlock(&md->suspend_lock); 2782 } 2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2784 2785 void dm_internal_resume(struct mapped_device *md) 2786 { 2787 mutex_lock(&md->suspend_lock); 2788 __dm_internal_resume(md); 2789 mutex_unlock(&md->suspend_lock); 2790 } 2791 EXPORT_SYMBOL_GPL(dm_internal_resume); 2792 2793 /* 2794 * Fast variants of internal suspend/resume hold md->suspend_lock, 2795 * which prevents interaction with userspace-driven suspend. 2796 */ 2797 2798 void dm_internal_suspend_fast(struct mapped_device *md) 2799 { 2800 mutex_lock(&md->suspend_lock); 2801 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2802 return; 2803 2804 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2805 synchronize_srcu(&md->io_barrier); 2806 flush_workqueue(md->wq); 2807 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2808 } 2809 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2810 2811 void dm_internal_resume_fast(struct mapped_device *md) 2812 { 2813 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2814 goto done; 2815 2816 dm_queue_flush(md); 2817 2818 done: 2819 mutex_unlock(&md->suspend_lock); 2820 } 2821 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2822 2823 /*----------------------------------------------------------------- 2824 * Event notification. 2825 *---------------------------------------------------------------*/ 2826 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2827 unsigned cookie) 2828 { 2829 char udev_cookie[DM_COOKIE_LENGTH]; 2830 char *envp[] = { udev_cookie, NULL }; 2831 2832 if (!cookie) 2833 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2834 else { 2835 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2836 DM_COOKIE_ENV_VAR_NAME, cookie); 2837 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2838 action, envp); 2839 } 2840 } 2841 2842 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2843 { 2844 return atomic_add_return(1, &md->uevent_seq); 2845 } 2846 2847 uint32_t dm_get_event_nr(struct mapped_device *md) 2848 { 2849 return atomic_read(&md->event_nr); 2850 } 2851 2852 int dm_wait_event(struct mapped_device *md, int event_nr) 2853 { 2854 return wait_event_interruptible(md->eventq, 2855 (event_nr != atomic_read(&md->event_nr))); 2856 } 2857 2858 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2859 { 2860 unsigned long flags; 2861 2862 spin_lock_irqsave(&md->uevent_lock, flags); 2863 list_add(elist, &md->uevent_list); 2864 spin_unlock_irqrestore(&md->uevent_lock, flags); 2865 } 2866 2867 /* 2868 * The gendisk is only valid as long as you have a reference 2869 * count on 'md'. 2870 */ 2871 struct gendisk *dm_disk(struct mapped_device *md) 2872 { 2873 return md->disk; 2874 } 2875 EXPORT_SYMBOL_GPL(dm_disk); 2876 2877 struct kobject *dm_kobject(struct mapped_device *md) 2878 { 2879 return &md->kobj_holder.kobj; 2880 } 2881 2882 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2883 { 2884 struct mapped_device *md; 2885 2886 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2887 2888 spin_lock(&_minor_lock); 2889 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2890 md = NULL; 2891 goto out; 2892 } 2893 dm_get(md); 2894 out: 2895 spin_unlock(&_minor_lock); 2896 2897 return md; 2898 } 2899 2900 int dm_suspended_md(struct mapped_device *md) 2901 { 2902 return test_bit(DMF_SUSPENDED, &md->flags); 2903 } 2904 2905 int dm_suspended_internally_md(struct mapped_device *md) 2906 { 2907 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2908 } 2909 2910 int dm_test_deferred_remove_flag(struct mapped_device *md) 2911 { 2912 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2913 } 2914 2915 int dm_suspended(struct dm_target *ti) 2916 { 2917 return dm_suspended_md(dm_table_get_md(ti->table)); 2918 } 2919 EXPORT_SYMBOL_GPL(dm_suspended); 2920 2921 int dm_noflush_suspending(struct dm_target *ti) 2922 { 2923 return __noflush_suspending(dm_table_get_md(ti->table)); 2924 } 2925 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2926 2927 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2928 unsigned integrity, unsigned per_io_data_size, 2929 unsigned min_pool_size) 2930 { 2931 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2932 unsigned int pool_size = 0; 2933 unsigned int front_pad, io_front_pad; 2934 int ret; 2935 2936 if (!pools) 2937 return NULL; 2938 2939 switch (type) { 2940 case DM_TYPE_BIO_BASED: 2941 case DM_TYPE_DAX_BIO_BASED: 2942 case DM_TYPE_NVME_BIO_BASED: 2943 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2944 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2945 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2946 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2947 if (ret) 2948 goto out; 2949 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2950 goto out; 2951 break; 2952 case DM_TYPE_REQUEST_BASED: 2953 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2954 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2955 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2956 break; 2957 default: 2958 BUG(); 2959 } 2960 2961 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2962 if (ret) 2963 goto out; 2964 2965 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2966 goto out; 2967 2968 return pools; 2969 2970 out: 2971 dm_free_md_mempools(pools); 2972 2973 return NULL; 2974 } 2975 2976 void dm_free_md_mempools(struct dm_md_mempools *pools) 2977 { 2978 if (!pools) 2979 return; 2980 2981 bioset_exit(&pools->bs); 2982 bioset_exit(&pools->io_bs); 2983 2984 kfree(pools); 2985 } 2986 2987 struct dm_pr { 2988 u64 old_key; 2989 u64 new_key; 2990 u32 flags; 2991 bool fail_early; 2992 }; 2993 2994 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2995 void *data) 2996 { 2997 struct mapped_device *md = bdev->bd_disk->private_data; 2998 struct dm_table *table; 2999 struct dm_target *ti; 3000 int ret = -ENOTTY, srcu_idx; 3001 3002 table = dm_get_live_table(md, &srcu_idx); 3003 if (!table || !dm_table_get_size(table)) 3004 goto out; 3005 3006 /* We only support devices that have a single target */ 3007 if (dm_table_get_num_targets(table) != 1) 3008 goto out; 3009 ti = dm_table_get_target(table, 0); 3010 3011 ret = -EINVAL; 3012 if (!ti->type->iterate_devices) 3013 goto out; 3014 3015 ret = ti->type->iterate_devices(ti, fn, data); 3016 out: 3017 dm_put_live_table(md, srcu_idx); 3018 return ret; 3019 } 3020 3021 /* 3022 * For register / unregister we need to manually call out to every path. 3023 */ 3024 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3025 sector_t start, sector_t len, void *data) 3026 { 3027 struct dm_pr *pr = data; 3028 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3029 3030 if (!ops || !ops->pr_register) 3031 return -EOPNOTSUPP; 3032 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3033 } 3034 3035 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3036 u32 flags) 3037 { 3038 struct dm_pr pr = { 3039 .old_key = old_key, 3040 .new_key = new_key, 3041 .flags = flags, 3042 .fail_early = true, 3043 }; 3044 int ret; 3045 3046 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3047 if (ret && new_key) { 3048 /* unregister all paths if we failed to register any path */ 3049 pr.old_key = new_key; 3050 pr.new_key = 0; 3051 pr.flags = 0; 3052 pr.fail_early = false; 3053 dm_call_pr(bdev, __dm_pr_register, &pr); 3054 } 3055 3056 return ret; 3057 } 3058 3059 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3060 u32 flags) 3061 { 3062 struct mapped_device *md = bdev->bd_disk->private_data; 3063 const struct pr_ops *ops; 3064 int r, srcu_idx; 3065 3066 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3067 if (r < 0) 3068 goto out; 3069 3070 ops = bdev->bd_disk->fops->pr_ops; 3071 if (ops && ops->pr_reserve) 3072 r = ops->pr_reserve(bdev, key, type, flags); 3073 else 3074 r = -EOPNOTSUPP; 3075 out: 3076 dm_unprepare_ioctl(md, srcu_idx); 3077 return r; 3078 } 3079 3080 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3081 { 3082 struct mapped_device *md = bdev->bd_disk->private_data; 3083 const struct pr_ops *ops; 3084 int r, srcu_idx; 3085 3086 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3087 if (r < 0) 3088 goto out; 3089 3090 ops = bdev->bd_disk->fops->pr_ops; 3091 if (ops && ops->pr_release) 3092 r = ops->pr_release(bdev, key, type); 3093 else 3094 r = -EOPNOTSUPP; 3095 out: 3096 dm_unprepare_ioctl(md, srcu_idx); 3097 return r; 3098 } 3099 3100 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3101 enum pr_type type, bool abort) 3102 { 3103 struct mapped_device *md = bdev->bd_disk->private_data; 3104 const struct pr_ops *ops; 3105 int r, srcu_idx; 3106 3107 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3108 if (r < 0) 3109 goto out; 3110 3111 ops = bdev->bd_disk->fops->pr_ops; 3112 if (ops && ops->pr_preempt) 3113 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3114 else 3115 r = -EOPNOTSUPP; 3116 out: 3117 dm_unprepare_ioctl(md, srcu_idx); 3118 return r; 3119 } 3120 3121 static int dm_pr_clear(struct block_device *bdev, u64 key) 3122 { 3123 struct mapped_device *md = bdev->bd_disk->private_data; 3124 const struct pr_ops *ops; 3125 int r, srcu_idx; 3126 3127 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3128 if (r < 0) 3129 goto out; 3130 3131 ops = bdev->bd_disk->fops->pr_ops; 3132 if (ops && ops->pr_clear) 3133 r = ops->pr_clear(bdev, key); 3134 else 3135 r = -EOPNOTSUPP; 3136 out: 3137 dm_unprepare_ioctl(md, srcu_idx); 3138 return r; 3139 } 3140 3141 static const struct pr_ops dm_pr_ops = { 3142 .pr_register = dm_pr_register, 3143 .pr_reserve = dm_pr_reserve, 3144 .pr_release = dm_pr_release, 3145 .pr_preempt = dm_pr_preempt, 3146 .pr_clear = dm_pr_clear, 3147 }; 3148 3149 static const struct block_device_operations dm_blk_dops = { 3150 .open = dm_blk_open, 3151 .release = dm_blk_close, 3152 .ioctl = dm_blk_ioctl, 3153 .getgeo = dm_blk_getgeo, 3154 .report_zones = dm_blk_report_zones, 3155 .pr_ops = &dm_pr_ops, 3156 .owner = THIS_MODULE 3157 }; 3158 3159 static const struct dax_operations dm_dax_ops = { 3160 .direct_access = dm_dax_direct_access, 3161 .copy_from_iter = dm_dax_copy_from_iter, 3162 .copy_to_iter = dm_dax_copy_to_iter, 3163 }; 3164 3165 /* 3166 * module hooks 3167 */ 3168 module_init(dm_init); 3169 module_exit(dm_exit); 3170 3171 module_param(major, uint, 0); 3172 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3173 3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3176 3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3179 3180 MODULE_DESCRIPTION(DM_NAME " driver"); 3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3182 MODULE_LICENSE("GPL"); 3183