xref: /openbmc/linux/drivers/md/dm.c (revision 29c37341)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 sector_t dm_get_size(struct mapped_device *md)
426 {
427 	return get_capacity(md->disk);
428 }
429 
430 struct request_queue *dm_get_md_queue(struct mapped_device *md)
431 {
432 	return md->queue;
433 }
434 
435 struct dm_stats *dm_get_stats(struct mapped_device *md)
436 {
437 	return &md->stats;
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map)
495 		return -EIO;
496 
497 	do {
498 		struct dm_target *tgt;
499 
500 		tgt = dm_table_find_target(map, args.next_sector);
501 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
502 			ret = -EIO;
503 			goto out;
504 		}
505 
506 		args.tgt = tgt;
507 		ret = tgt->type->report_zones(tgt, &args,
508 					      nr_zones - args.zone_idx);
509 		if (ret < 0)
510 			goto out;
511 	} while (args.zone_idx < nr_zones &&
512 		 args.next_sector < get_capacity(disk));
513 
514 	ret = args.zone_idx;
515 out:
516 	dm_put_live_table(md, srcu_idx);
517 	return ret;
518 }
519 #else
520 #define dm_blk_report_zones		NULL
521 #endif /* CONFIG_BLK_DEV_ZONED */
522 
523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
524 			    struct block_device **bdev)
525 	__acquires(md->io_barrier)
526 {
527 	struct dm_target *tgt;
528 	struct dm_table *map;
529 	int r;
530 
531 retry:
532 	r = -ENOTTY;
533 	map = dm_get_live_table(md, srcu_idx);
534 	if (!map || !dm_table_get_size(map))
535 		return r;
536 
537 	/* We only support devices that have a single target */
538 	if (dm_table_get_num_targets(map) != 1)
539 		return r;
540 
541 	tgt = dm_table_get_target(map, 0);
542 	if (!tgt->type->prepare_ioctl)
543 		return r;
544 
545 	if (dm_suspended_md(md))
546 		return -EAGAIN;
547 
548 	r = tgt->type->prepare_ioctl(tgt, bdev);
549 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
550 		dm_put_live_table(md, *srcu_idx);
551 		msleep(10);
552 		goto retry;
553 	}
554 
555 	return r;
556 }
557 
558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
559 	__releases(md->io_barrier)
560 {
561 	dm_put_live_table(md, srcu_idx);
562 }
563 
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 			unsigned int cmd, unsigned long arg)
566 {
567 	struct mapped_device *md = bdev->bd_disk->private_data;
568 	int r, srcu_idx;
569 
570 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 	if (r < 0)
572 		goto out;
573 
574 	if (r > 0) {
575 		/*
576 		 * Target determined this ioctl is being issued against a
577 		 * subset of the parent bdev; require extra privileges.
578 		 */
579 		if (!capable(CAP_SYS_RAWIO)) {
580 			DMWARN_LIMIT(
581 	"%s: sending ioctl %x to DM device without required privilege.",
582 				current->comm, cmd);
583 			r = -ENOIOCTLCMD;
584 			goto out;
585 		}
586 	}
587 
588 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
589 out:
590 	dm_unprepare_ioctl(md, srcu_idx);
591 	return r;
592 }
593 
594 static void start_io_acct(struct dm_io *io);
595 
596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
597 {
598 	struct dm_io *io;
599 	struct dm_target_io *tio;
600 	struct bio *clone;
601 
602 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
603 	if (!clone)
604 		return NULL;
605 
606 	tio = container_of(clone, struct dm_target_io, clone);
607 	tio->inside_dm_io = true;
608 	tio->io = NULL;
609 
610 	io = container_of(tio, struct dm_io, tio);
611 	io->magic = DM_IO_MAGIC;
612 	io->status = 0;
613 	atomic_set(&io->io_count, 1);
614 	io->orig_bio = bio;
615 	io->md = md;
616 	spin_lock_init(&io->endio_lock);
617 
618 	start_io_acct(io);
619 
620 	return io;
621 }
622 
623 static void free_io(struct mapped_device *md, struct dm_io *io)
624 {
625 	bio_put(&io->tio.clone);
626 }
627 
628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
629 				      unsigned target_bio_nr, gfp_t gfp_mask)
630 {
631 	struct dm_target_io *tio;
632 
633 	if (!ci->io->tio.io) {
634 		/* the dm_target_io embedded in ci->io is available */
635 		tio = &ci->io->tio;
636 	} else {
637 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
638 		if (!clone)
639 			return NULL;
640 
641 		tio = container_of(clone, struct dm_target_io, clone);
642 		tio->inside_dm_io = false;
643 	}
644 
645 	tio->magic = DM_TIO_MAGIC;
646 	tio->io = ci->io;
647 	tio->ti = ti;
648 	tio->target_bio_nr = target_bio_nr;
649 
650 	return tio;
651 }
652 
653 static void free_tio(struct dm_target_io *tio)
654 {
655 	if (tio->inside_dm_io)
656 		return;
657 	bio_put(&tio->clone);
658 }
659 
660 u64 dm_start_time_ns_from_clone(struct bio *bio)
661 {
662 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
663 	struct dm_io *io = tio->io;
664 
665 	return jiffies_to_nsecs(io->start_time);
666 }
667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
668 
669 static void start_io_acct(struct dm_io *io)
670 {
671 	struct mapped_device *md = io->md;
672 	struct bio *bio = io->orig_bio;
673 
674 	io->start_time = bio_start_io_acct(bio);
675 	if (unlikely(dm_stats_used(&md->stats)))
676 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
677 				    bio->bi_iter.bi_sector, bio_sectors(bio),
678 				    false, 0, &io->stats_aux);
679 }
680 
681 static void end_io_acct(struct dm_io *io)
682 {
683 	struct mapped_device *md = io->md;
684 	struct bio *bio = io->orig_bio;
685 	unsigned long duration = jiffies - io->start_time;
686 
687 	bio_end_io_acct(bio, io->start_time);
688 
689 	if (unlikely(dm_stats_used(&md->stats)))
690 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
691 				    bio->bi_iter.bi_sector, bio_sectors(bio),
692 				    true, duration, &io->stats_aux);
693 
694 	/* nudge anyone waiting on suspend queue */
695 	if (unlikely(wq_has_sleeper(&md->wait)))
696 		wake_up(&md->wait);
697 }
698 
699 /*
700  * Add the bio to the list of deferred io.
701  */
702 static void queue_io(struct mapped_device *md, struct bio *bio)
703 {
704 	unsigned long flags;
705 
706 	spin_lock_irqsave(&md->deferred_lock, flags);
707 	bio_list_add(&md->deferred, bio);
708 	spin_unlock_irqrestore(&md->deferred_lock, flags);
709 	queue_work(md->wq, &md->work);
710 }
711 
712 /*
713  * Everyone (including functions in this file), should use this
714  * function to access the md->map field, and make sure they call
715  * dm_put_live_table() when finished.
716  */
717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
718 {
719 	*srcu_idx = srcu_read_lock(&md->io_barrier);
720 
721 	return srcu_dereference(md->map, &md->io_barrier);
722 }
723 
724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
725 {
726 	srcu_read_unlock(&md->io_barrier, srcu_idx);
727 }
728 
729 void dm_sync_table(struct mapped_device *md)
730 {
731 	synchronize_srcu(&md->io_barrier);
732 	synchronize_rcu_expedited();
733 }
734 
735 /*
736  * A fast alternative to dm_get_live_table/dm_put_live_table.
737  * The caller must not block between these two functions.
738  */
739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
740 {
741 	rcu_read_lock();
742 	return rcu_dereference(md->map);
743 }
744 
745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
746 {
747 	rcu_read_unlock();
748 }
749 
750 static char *_dm_claim_ptr = "I belong to device-mapper";
751 
752 /*
753  * Open a table device so we can use it as a map destination.
754  */
755 static int open_table_device(struct table_device *td, dev_t dev,
756 			     struct mapped_device *md)
757 {
758 	struct block_device *bdev;
759 
760 	int r;
761 
762 	BUG_ON(td->dm_dev.bdev);
763 
764 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
765 	if (IS_ERR(bdev))
766 		return PTR_ERR(bdev);
767 
768 	r = bd_link_disk_holder(bdev, dm_disk(md));
769 	if (r) {
770 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
771 		return r;
772 	}
773 
774 	td->dm_dev.bdev = bdev;
775 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
776 	return 0;
777 }
778 
779 /*
780  * Close a table device that we've been using.
781  */
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 	if (!td->dm_dev.bdev)
785 		return;
786 
787 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
788 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
789 	put_dax(td->dm_dev.dax_dev);
790 	td->dm_dev.bdev = NULL;
791 	td->dm_dev.dax_dev = NULL;
792 }
793 
794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 					      fmode_t mode)
796 {
797 	struct table_device *td;
798 
799 	list_for_each_entry(td, l, list)
800 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 			return td;
802 
803 	return NULL;
804 }
805 
806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
807 			struct dm_dev **result)
808 {
809 	int r;
810 	struct table_device *td;
811 
812 	mutex_lock(&md->table_devices_lock);
813 	td = find_table_device(&md->table_devices, dev, mode);
814 	if (!td) {
815 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
816 		if (!td) {
817 			mutex_unlock(&md->table_devices_lock);
818 			return -ENOMEM;
819 		}
820 
821 		td->dm_dev.mode = mode;
822 		td->dm_dev.bdev = NULL;
823 
824 		if ((r = open_table_device(td, dev, md))) {
825 			mutex_unlock(&md->table_devices_lock);
826 			kfree(td);
827 			return r;
828 		}
829 
830 		format_dev_t(td->dm_dev.name, dev);
831 
832 		refcount_set(&td->count, 1);
833 		list_add(&td->list, &md->table_devices);
834 	} else {
835 		refcount_inc(&td->count);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 
839 	*result = &td->dm_dev;
840 	return 0;
841 }
842 EXPORT_SYMBOL_GPL(dm_get_table_device);
843 
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
845 {
846 	struct table_device *td = container_of(d, struct table_device, dm_dev);
847 
848 	mutex_lock(&md->table_devices_lock);
849 	if (refcount_dec_and_test(&td->count)) {
850 		close_table_device(td, md);
851 		list_del(&td->list);
852 		kfree(td);
853 	}
854 	mutex_unlock(&md->table_devices_lock);
855 }
856 EXPORT_SYMBOL(dm_put_table_device);
857 
858 static void free_table_devices(struct list_head *devices)
859 {
860 	struct list_head *tmp, *next;
861 
862 	list_for_each_safe(tmp, next, devices) {
863 		struct table_device *td = list_entry(tmp, struct table_device, list);
864 
865 		DMWARN("dm_destroy: %s still exists with %d references",
866 		       td->dm_dev.name, refcount_read(&td->count));
867 		kfree(td);
868 	}
869 }
870 
871 /*
872  * Get the geometry associated with a dm device
873  */
874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
875 {
876 	*geo = md->geometry;
877 
878 	return 0;
879 }
880 
881 /*
882  * Set the geometry of a device.
883  */
884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
885 {
886 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
887 
888 	if (geo->start > sz) {
889 		DMWARN("Start sector is beyond the geometry limits.");
890 		return -EINVAL;
891 	}
892 
893 	md->geometry = *geo;
894 
895 	return 0;
896 }
897 
898 static int __noflush_suspending(struct mapped_device *md)
899 {
900 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
901 }
902 
903 /*
904  * Decrements the number of outstanding ios that a bio has been
905  * cloned into, completing the original io if necc.
906  */
907 static void dec_pending(struct dm_io *io, blk_status_t error)
908 {
909 	unsigned long flags;
910 	blk_status_t io_error;
911 	struct bio *bio;
912 	struct mapped_device *md = io->md;
913 
914 	/* Push-back supersedes any I/O errors */
915 	if (unlikely(error)) {
916 		spin_lock_irqsave(&io->endio_lock, flags);
917 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
918 			io->status = error;
919 		spin_unlock_irqrestore(&io->endio_lock, flags);
920 	}
921 
922 	if (atomic_dec_and_test(&io->io_count)) {
923 		if (io->status == BLK_STS_DM_REQUEUE) {
924 			/*
925 			 * Target requested pushing back the I/O.
926 			 */
927 			spin_lock_irqsave(&md->deferred_lock, flags);
928 			if (__noflush_suspending(md))
929 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
930 				bio_list_add_head(&md->deferred, io->orig_bio);
931 			else
932 				/* noflush suspend was interrupted. */
933 				io->status = BLK_STS_IOERR;
934 			spin_unlock_irqrestore(&md->deferred_lock, flags);
935 		}
936 
937 		io_error = io->status;
938 		bio = io->orig_bio;
939 		end_io_acct(io);
940 		free_io(md, io);
941 
942 		if (io_error == BLK_STS_DM_REQUEUE)
943 			return;
944 
945 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
946 			/*
947 			 * Preflush done for flush with data, reissue
948 			 * without REQ_PREFLUSH.
949 			 */
950 			bio->bi_opf &= ~REQ_PREFLUSH;
951 			queue_io(md, bio);
952 		} else {
953 			/* done with normal IO or empty flush */
954 			if (io_error)
955 				bio->bi_status = io_error;
956 			bio_endio(bio);
957 		}
958 	}
959 }
960 
961 void disable_discard(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support DISCARD, disable it */
966 	limits->max_discard_sectors = 0;
967 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
968 }
969 
970 void disable_write_same(struct mapped_device *md)
971 {
972 	struct queue_limits *limits = dm_get_queue_limits(md);
973 
974 	/* device doesn't really support WRITE SAME, disable it */
975 	limits->max_write_same_sectors = 0;
976 }
977 
978 void disable_write_zeroes(struct mapped_device *md)
979 {
980 	struct queue_limits *limits = dm_get_queue_limits(md);
981 
982 	/* device doesn't really support WRITE ZEROES, disable it */
983 	limits->max_write_zeroes_sectors = 0;
984 }
985 
986 static void clone_endio(struct bio *bio)
987 {
988 	blk_status_t error = bio->bi_status;
989 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
990 	struct dm_io *io = tio->io;
991 	struct mapped_device *md = tio->io->md;
992 	dm_endio_fn endio = tio->ti->type->end_io;
993 	struct bio *orig_bio = io->orig_bio;
994 
995 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
996 		if (bio_op(bio) == REQ_OP_DISCARD &&
997 		    !bio->bi_disk->queue->limits.max_discard_sectors)
998 			disable_discard(md);
999 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001 			disable_write_same(md);
1002 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004 			disable_write_zeroes(md);
1005 	}
1006 
1007 	/*
1008 	 * For zone-append bios get offset in zone of the written
1009 	 * sector and add that to the original bio sector pos.
1010 	 */
1011 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012 		sector_t written_sector = bio->bi_iter.bi_sector;
1013 		struct request_queue *q = orig_bio->bi_disk->queue;
1014 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015 
1016 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017 	}
1018 
1019 	if (endio) {
1020 		int r = endio(tio->ti, bio, &error);
1021 		switch (r) {
1022 		case DM_ENDIO_REQUEUE:
1023 			error = BLK_STS_DM_REQUEUE;
1024 			/*FALLTHRU*/
1025 		case DM_ENDIO_DONE:
1026 			break;
1027 		case DM_ENDIO_INCOMPLETE:
1028 			/* The target will handle the io */
1029 			return;
1030 		default:
1031 			DMWARN("unimplemented target endio return value: %d", r);
1032 			BUG();
1033 		}
1034 	}
1035 
1036 	free_tio(tio);
1037 	dec_pending(io, error);
1038 }
1039 
1040 /*
1041  * Return maximum size of I/O possible at the supplied sector up to the current
1042  * target boundary.
1043  */
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045 {
1046 	sector_t target_offset = dm_target_offset(ti, sector);
1047 
1048 	return ti->len - target_offset;
1049 }
1050 
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052 {
1053 	sector_t len = max_io_len_target_boundary(sector, ti);
1054 	sector_t offset, max_len;
1055 
1056 	/*
1057 	 * Does the target need to split even further?
1058 	 */
1059 	if (ti->max_io_len) {
1060 		offset = dm_target_offset(ti, sector);
1061 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 			max_len = sector_div(offset, ti->max_io_len);
1063 		else
1064 			max_len = offset & (ti->max_io_len - 1);
1065 		max_len = ti->max_io_len - max_len;
1066 
1067 		if (len > max_len)
1068 			len = max_len;
1069 	}
1070 
1071 	return len;
1072 }
1073 
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075 {
1076 	if (len > UINT_MAX) {
1077 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 		      (unsigned long long)len, UINT_MAX);
1079 		ti->error = "Maximum size of target IO is too large";
1080 		return -EINVAL;
1081 	}
1082 
1083 	ti->max_io_len = (uint32_t) len;
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088 
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 						sector_t sector, int *srcu_idx)
1091 	__acquires(md->io_barrier)
1092 {
1093 	struct dm_table *map;
1094 	struct dm_target *ti;
1095 
1096 	map = dm_get_live_table(md, srcu_idx);
1097 	if (!map)
1098 		return NULL;
1099 
1100 	ti = dm_table_find_target(map, sector);
1101 	if (!ti)
1102 		return NULL;
1103 
1104 	return ti;
1105 }
1106 
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 				 long nr_pages, void **kaddr, pfn_t *pfn)
1109 {
1110 	struct mapped_device *md = dax_get_private(dax_dev);
1111 	sector_t sector = pgoff * PAGE_SECTORS;
1112 	struct dm_target *ti;
1113 	long len, ret = -EIO;
1114 	int srcu_idx;
1115 
1116 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117 
1118 	if (!ti)
1119 		goto out;
1120 	if (!ti->type->direct_access)
1121 		goto out;
1122 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123 	if (len < 1)
1124 		goto out;
1125 	nr_pages = min(len, nr_pages);
1126 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127 
1128  out:
1129 	dm_put_live_table(md, srcu_idx);
1130 
1131 	return ret;
1132 }
1133 
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 		int blocksize, sector_t start, sector_t len)
1136 {
1137 	struct mapped_device *md = dax_get_private(dax_dev);
1138 	struct dm_table *map;
1139 	int srcu_idx;
1140 	bool ret;
1141 
1142 	map = dm_get_live_table(md, &srcu_idx);
1143 	if (!map)
1144 		return false;
1145 
1146 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147 
1148 	dm_put_live_table(md, srcu_idx);
1149 
1150 	return ret;
1151 }
1152 
1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 				    void *addr, size_t bytes, struct iov_iter *i)
1155 {
1156 	struct mapped_device *md = dax_get_private(dax_dev);
1157 	sector_t sector = pgoff * PAGE_SECTORS;
1158 	struct dm_target *ti;
1159 	long ret = 0;
1160 	int srcu_idx;
1161 
1162 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1163 
1164 	if (!ti)
1165 		goto out;
1166 	if (!ti->type->dax_copy_from_iter) {
1167 		ret = copy_from_iter(addr, bytes, i);
1168 		goto out;
1169 	}
1170 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1171  out:
1172 	dm_put_live_table(md, srcu_idx);
1173 
1174 	return ret;
1175 }
1176 
1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1178 		void *addr, size_t bytes, struct iov_iter *i)
1179 {
1180 	struct mapped_device *md = dax_get_private(dax_dev);
1181 	sector_t sector = pgoff * PAGE_SECTORS;
1182 	struct dm_target *ti;
1183 	long ret = 0;
1184 	int srcu_idx;
1185 
1186 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1187 
1188 	if (!ti)
1189 		goto out;
1190 	if (!ti->type->dax_copy_to_iter) {
1191 		ret = copy_to_iter(addr, bytes, i);
1192 		goto out;
1193 	}
1194 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1195  out:
1196 	dm_put_live_table(md, srcu_idx);
1197 
1198 	return ret;
1199 }
1200 
1201 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1202 				  size_t nr_pages)
1203 {
1204 	struct mapped_device *md = dax_get_private(dax_dev);
1205 	sector_t sector = pgoff * PAGE_SECTORS;
1206 	struct dm_target *ti;
1207 	int ret = -EIO;
1208 	int srcu_idx;
1209 
1210 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1211 
1212 	if (!ti)
1213 		goto out;
1214 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1215 		/*
1216 		 * ->zero_page_range() is mandatory dax operation. If we are
1217 		 *  here, something is wrong.
1218 		 */
1219 		dm_put_live_table(md, srcu_idx);
1220 		goto out;
1221 	}
1222 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1223 
1224  out:
1225 	dm_put_live_table(md, srcu_idx);
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * A target may call dm_accept_partial_bio only from the map routine.  It is
1232  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1233  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1234  *
1235  * dm_accept_partial_bio informs the dm that the target only wants to process
1236  * additional n_sectors sectors of the bio and the rest of the data should be
1237  * sent in a next bio.
1238  *
1239  * A diagram that explains the arithmetics:
1240  * +--------------------+---------------+-------+
1241  * |         1          |       2       |   3   |
1242  * +--------------------+---------------+-------+
1243  *
1244  * <-------------- *tio->len_ptr --------------->
1245  *                      <------- bi_size ------->
1246  *                      <-- n_sectors -->
1247  *
1248  * Region 1 was already iterated over with bio_advance or similar function.
1249  *	(it may be empty if the target doesn't use bio_advance)
1250  * Region 2 is the remaining bio size that the target wants to process.
1251  *	(it may be empty if region 1 is non-empty, although there is no reason
1252  *	 to make it empty)
1253  * The target requires that region 3 is to be sent in the next bio.
1254  *
1255  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1256  * the partially processed part (the sum of regions 1+2) must be the same for all
1257  * copies of the bio.
1258  */
1259 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1260 {
1261 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1262 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1263 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1264 	BUG_ON(bi_size > *tio->len_ptr);
1265 	BUG_ON(n_sectors > bi_size);
1266 	*tio->len_ptr -= bi_size - n_sectors;
1267 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1268 }
1269 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1270 
1271 static blk_qc_t __map_bio(struct dm_target_io *tio)
1272 {
1273 	int r;
1274 	sector_t sector;
1275 	struct bio *clone = &tio->clone;
1276 	struct dm_io *io = tio->io;
1277 	struct dm_target *ti = tio->ti;
1278 	blk_qc_t ret = BLK_QC_T_NONE;
1279 
1280 	clone->bi_end_io = clone_endio;
1281 
1282 	/*
1283 	 * Map the clone.  If r == 0 we don't need to do
1284 	 * anything, the target has assumed ownership of
1285 	 * this io.
1286 	 */
1287 	atomic_inc(&io->io_count);
1288 	sector = clone->bi_iter.bi_sector;
1289 
1290 	r = ti->type->map(ti, clone);
1291 	switch (r) {
1292 	case DM_MAPIO_SUBMITTED:
1293 		break;
1294 	case DM_MAPIO_REMAPPED:
1295 		/* the bio has been remapped so dispatch it */
1296 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1297 				      bio_dev(io->orig_bio), sector);
1298 		ret = submit_bio_noacct(clone);
1299 		break;
1300 	case DM_MAPIO_KILL:
1301 		free_tio(tio);
1302 		dec_pending(io, BLK_STS_IOERR);
1303 		break;
1304 	case DM_MAPIO_REQUEUE:
1305 		free_tio(tio);
1306 		dec_pending(io, BLK_STS_DM_REQUEUE);
1307 		break;
1308 	default:
1309 		DMWARN("unimplemented target map return value: %d", r);
1310 		BUG();
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1317 {
1318 	bio->bi_iter.bi_sector = sector;
1319 	bio->bi_iter.bi_size = to_bytes(len);
1320 }
1321 
1322 /*
1323  * Creates a bio that consists of range of complete bvecs.
1324  */
1325 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1326 		     sector_t sector, unsigned len)
1327 {
1328 	struct bio *clone = &tio->clone;
1329 
1330 	__bio_clone_fast(clone, bio);
1331 
1332 	bio_crypt_clone(clone, bio, GFP_NOIO);
1333 
1334 	if (bio_integrity(bio)) {
1335 		int r;
1336 
1337 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1338 			     !dm_target_passes_integrity(tio->ti->type))) {
1339 			DMWARN("%s: the target %s doesn't support integrity data.",
1340 				dm_device_name(tio->io->md),
1341 				tio->ti->type->name);
1342 			return -EIO;
1343 		}
1344 
1345 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1346 		if (r < 0)
1347 			return r;
1348 	}
1349 
1350 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1351 	clone->bi_iter.bi_size = to_bytes(len);
1352 
1353 	if (bio_integrity(bio))
1354 		bio_integrity_trim(clone);
1355 
1356 	return 0;
1357 }
1358 
1359 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1360 				struct dm_target *ti, unsigned num_bios)
1361 {
1362 	struct dm_target_io *tio;
1363 	int try;
1364 
1365 	if (!num_bios)
1366 		return;
1367 
1368 	if (num_bios == 1) {
1369 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1370 		bio_list_add(blist, &tio->clone);
1371 		return;
1372 	}
1373 
1374 	for (try = 0; try < 2; try++) {
1375 		int bio_nr;
1376 		struct bio *bio;
1377 
1378 		if (try)
1379 			mutex_lock(&ci->io->md->table_devices_lock);
1380 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1381 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1382 			if (!tio)
1383 				break;
1384 
1385 			bio_list_add(blist, &tio->clone);
1386 		}
1387 		if (try)
1388 			mutex_unlock(&ci->io->md->table_devices_lock);
1389 		if (bio_nr == num_bios)
1390 			return;
1391 
1392 		while ((bio = bio_list_pop(blist))) {
1393 			tio = container_of(bio, struct dm_target_io, clone);
1394 			free_tio(tio);
1395 		}
1396 	}
1397 }
1398 
1399 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1400 					   struct dm_target_io *tio, unsigned *len)
1401 {
1402 	struct bio *clone = &tio->clone;
1403 
1404 	tio->len_ptr = len;
1405 
1406 	__bio_clone_fast(clone, ci->bio);
1407 	if (len)
1408 		bio_setup_sector(clone, ci->sector, *len);
1409 
1410 	return __map_bio(tio);
1411 }
1412 
1413 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1414 				  unsigned num_bios, unsigned *len)
1415 {
1416 	struct bio_list blist = BIO_EMPTY_LIST;
1417 	struct bio *bio;
1418 	struct dm_target_io *tio;
1419 
1420 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1421 
1422 	while ((bio = bio_list_pop(&blist))) {
1423 		tio = container_of(bio, struct dm_target_io, clone);
1424 		(void) __clone_and_map_simple_bio(ci, tio, len);
1425 	}
1426 }
1427 
1428 static int __send_empty_flush(struct clone_info *ci)
1429 {
1430 	unsigned target_nr = 0;
1431 	struct dm_target *ti;
1432 
1433 	/*
1434 	 * Empty flush uses a statically initialized bio, as the base for
1435 	 * cloning.  However, blkg association requires that a bdev is
1436 	 * associated with a gendisk, which doesn't happen until the bdev is
1437 	 * opened.  So, blkg association is done at issue time of the flush
1438 	 * rather than when the device is created in alloc_dev().
1439 	 */
1440 	bio_set_dev(ci->bio, ci->io->md->bdev);
1441 
1442 	BUG_ON(bio_has_data(ci->bio));
1443 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1444 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1445 	return 0;
1446 }
1447 
1448 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1449 				    sector_t sector, unsigned *len)
1450 {
1451 	struct bio *bio = ci->bio;
1452 	struct dm_target_io *tio;
1453 	int r;
1454 
1455 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1456 	tio->len_ptr = len;
1457 	r = clone_bio(tio, bio, sector, *len);
1458 	if (r < 0) {
1459 		free_tio(tio);
1460 		return r;
1461 	}
1462 	(void) __map_bio(tio);
1463 
1464 	return 0;
1465 }
1466 
1467 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1468 
1469 static unsigned get_num_discard_bios(struct dm_target *ti)
1470 {
1471 	return ti->num_discard_bios;
1472 }
1473 
1474 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1475 {
1476 	return ti->num_secure_erase_bios;
1477 }
1478 
1479 static unsigned get_num_write_same_bios(struct dm_target *ti)
1480 {
1481 	return ti->num_write_same_bios;
1482 }
1483 
1484 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1485 {
1486 	return ti->num_write_zeroes_bios;
1487 }
1488 
1489 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1490 				       unsigned num_bios)
1491 {
1492 	unsigned len;
1493 
1494 	/*
1495 	 * Even though the device advertised support for this type of
1496 	 * request, that does not mean every target supports it, and
1497 	 * reconfiguration might also have changed that since the
1498 	 * check was performed.
1499 	 */
1500 	if (!num_bios)
1501 		return -EOPNOTSUPP;
1502 
1503 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1504 
1505 	__send_duplicate_bios(ci, ti, num_bios, &len);
1506 
1507 	ci->sector += len;
1508 	ci->sector_count -= len;
1509 
1510 	return 0;
1511 }
1512 
1513 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1514 {
1515 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1516 }
1517 
1518 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1519 {
1520 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1521 }
1522 
1523 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1524 {
1525 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1526 }
1527 
1528 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1529 {
1530 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1531 }
1532 
1533 static bool is_abnormal_io(struct bio *bio)
1534 {
1535 	bool r = false;
1536 
1537 	switch (bio_op(bio)) {
1538 	case REQ_OP_DISCARD:
1539 	case REQ_OP_SECURE_ERASE:
1540 	case REQ_OP_WRITE_SAME:
1541 	case REQ_OP_WRITE_ZEROES:
1542 		r = true;
1543 		break;
1544 	}
1545 
1546 	return r;
1547 }
1548 
1549 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1550 				  int *result)
1551 {
1552 	struct bio *bio = ci->bio;
1553 
1554 	if (bio_op(bio) == REQ_OP_DISCARD)
1555 		*result = __send_discard(ci, ti);
1556 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1557 		*result = __send_secure_erase(ci, ti);
1558 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1559 		*result = __send_write_same(ci, ti);
1560 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1561 		*result = __send_write_zeroes(ci, ti);
1562 	else
1563 		return false;
1564 
1565 	return true;
1566 }
1567 
1568 /*
1569  * Select the correct strategy for processing a non-flush bio.
1570  */
1571 static int __split_and_process_non_flush(struct clone_info *ci)
1572 {
1573 	struct dm_target *ti;
1574 	unsigned len;
1575 	int r;
1576 
1577 	ti = dm_table_find_target(ci->map, ci->sector);
1578 	if (!ti)
1579 		return -EIO;
1580 
1581 	if (__process_abnormal_io(ci, ti, &r))
1582 		return r;
1583 
1584 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1585 
1586 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1587 	if (r < 0)
1588 		return r;
1589 
1590 	ci->sector += len;
1591 	ci->sector_count -= len;
1592 
1593 	return 0;
1594 }
1595 
1596 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1597 			    struct dm_table *map, struct bio *bio)
1598 {
1599 	ci->map = map;
1600 	ci->io = alloc_io(md, bio);
1601 	ci->sector = bio->bi_iter.bi_sector;
1602 }
1603 
1604 #define __dm_part_stat_sub(part, field, subnd)	\
1605 	(part_stat_get(part, field) -= (subnd))
1606 
1607 /*
1608  * Entry point to split a bio into clones and submit them to the targets.
1609  */
1610 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1611 					struct dm_table *map, struct bio *bio)
1612 {
1613 	struct clone_info ci;
1614 	blk_qc_t ret = BLK_QC_T_NONE;
1615 	int error = 0;
1616 
1617 	init_clone_info(&ci, md, map, bio);
1618 
1619 	if (bio->bi_opf & REQ_PREFLUSH) {
1620 		struct bio flush_bio;
1621 
1622 		/*
1623 		 * Use an on-stack bio for this, it's safe since we don't
1624 		 * need to reference it after submit. It's just used as
1625 		 * the basis for the clone(s).
1626 		 */
1627 		bio_init(&flush_bio, NULL, 0);
1628 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1629 		ci.bio = &flush_bio;
1630 		ci.sector_count = 0;
1631 		error = __send_empty_flush(&ci);
1632 		bio_uninit(ci.bio);
1633 		/* dec_pending submits any data associated with flush */
1634 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1635 		ci.bio = bio;
1636 		ci.sector_count = 0;
1637 		error = __split_and_process_non_flush(&ci);
1638 	} else {
1639 		ci.bio = bio;
1640 		ci.sector_count = bio_sectors(bio);
1641 		while (ci.sector_count && !error) {
1642 			error = __split_and_process_non_flush(&ci);
1643 			if (current->bio_list && ci.sector_count && !error) {
1644 				/*
1645 				 * Remainder must be passed to submit_bio_noacct()
1646 				 * so that it gets handled *after* bios already submitted
1647 				 * have been completely processed.
1648 				 * We take a clone of the original to store in
1649 				 * ci.io->orig_bio to be used by end_io_acct() and
1650 				 * for dec_pending to use for completion handling.
1651 				 */
1652 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1653 							  GFP_NOIO, &md->queue->bio_split);
1654 				ci.io->orig_bio = b;
1655 
1656 				/*
1657 				 * Adjust IO stats for each split, otherwise upon queue
1658 				 * reentry there will be redundant IO accounting.
1659 				 * NOTE: this is a stop-gap fix, a proper fix involves
1660 				 * significant refactoring of DM core's bio splitting
1661 				 * (by eliminating DM's splitting and just using bio_split)
1662 				 */
1663 				part_stat_lock();
1664 				__dm_part_stat_sub(&dm_disk(md)->part0,
1665 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1666 				part_stat_unlock();
1667 
1668 				bio_chain(b, bio);
1669 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1670 				ret = submit_bio_noacct(bio);
1671 				break;
1672 			}
1673 		}
1674 	}
1675 
1676 	/* drop the extra reference count */
1677 	dec_pending(ci.io, errno_to_blk_status(error));
1678 	return ret;
1679 }
1680 
1681 /*
1682  * Optimized variant of __split_and_process_bio that leverages the
1683  * fact that targets that use it do _not_ have a need to split bios.
1684  */
1685 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1686 			      struct bio *bio, struct dm_target *ti)
1687 {
1688 	struct clone_info ci;
1689 	blk_qc_t ret = BLK_QC_T_NONE;
1690 	int error = 0;
1691 
1692 	init_clone_info(&ci, md, map, bio);
1693 
1694 	if (bio->bi_opf & REQ_PREFLUSH) {
1695 		struct bio flush_bio;
1696 
1697 		/*
1698 		 * Use an on-stack bio for this, it's safe since we don't
1699 		 * need to reference it after submit. It's just used as
1700 		 * the basis for the clone(s).
1701 		 */
1702 		bio_init(&flush_bio, NULL, 0);
1703 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1704 		ci.bio = &flush_bio;
1705 		ci.sector_count = 0;
1706 		error = __send_empty_flush(&ci);
1707 		bio_uninit(ci.bio);
1708 		/* dec_pending submits any data associated with flush */
1709 	} else {
1710 		struct dm_target_io *tio;
1711 
1712 		ci.bio = bio;
1713 		ci.sector_count = bio_sectors(bio);
1714 		if (__process_abnormal_io(&ci, ti, &error))
1715 			goto out;
1716 
1717 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1718 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1719 	}
1720 out:
1721 	/* drop the extra reference count */
1722 	dec_pending(ci.io, errno_to_blk_status(error));
1723 	return ret;
1724 }
1725 
1726 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1727 {
1728 	unsigned len, sector_count;
1729 
1730 	sector_count = bio_sectors(*bio);
1731 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1732 
1733 	if (sector_count > len) {
1734 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1735 
1736 		bio_chain(split, *bio);
1737 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1738 		submit_bio_noacct(*bio);
1739 		*bio = split;
1740 	}
1741 }
1742 
1743 static blk_qc_t dm_process_bio(struct mapped_device *md,
1744 			       struct dm_table *map, struct bio *bio)
1745 {
1746 	blk_qc_t ret = BLK_QC_T_NONE;
1747 	struct dm_target *ti = md->immutable_target;
1748 
1749 	if (unlikely(!map)) {
1750 		bio_io_error(bio);
1751 		return ret;
1752 	}
1753 
1754 	if (!ti) {
1755 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1756 		if (unlikely(!ti)) {
1757 			bio_io_error(bio);
1758 			return ret;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * If in ->queue_bio we need to use blk_queue_split(), otherwise
1764 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1765 	 * won't be imposed.
1766 	 */
1767 	if (current->bio_list) {
1768 		if (is_abnormal_io(bio))
1769 			blk_queue_split(&bio);
1770 		else
1771 			dm_queue_split(md, ti, &bio);
1772 	}
1773 
1774 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1775 		return __process_bio(md, map, bio, ti);
1776 	else
1777 		return __split_and_process_bio(md, map, bio);
1778 }
1779 
1780 static blk_qc_t dm_submit_bio(struct bio *bio)
1781 {
1782 	struct mapped_device *md = bio->bi_disk->private_data;
1783 	blk_qc_t ret = BLK_QC_T_NONE;
1784 	int srcu_idx;
1785 	struct dm_table *map;
1786 
1787 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1788 		/*
1789 		 * We are called with a live reference on q_usage_counter, but
1790 		 * that one will be released as soon as we return.  Grab an
1791 		 * extra one as blk_mq_submit_bio expects to be able to consume
1792 		 * a reference (which lives until the request is freed in case a
1793 		 * request is allocated).
1794 		 */
1795 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1796 		return blk_mq_submit_bio(bio);
1797 	}
1798 
1799 	map = dm_get_live_table(md, &srcu_idx);
1800 
1801 	/* if we're suspended, we have to queue this io for later */
1802 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1803 		dm_put_live_table(md, srcu_idx);
1804 
1805 		if (!(bio->bi_opf & REQ_RAHEAD))
1806 			queue_io(md, bio);
1807 		else
1808 			bio_io_error(bio);
1809 		return ret;
1810 	}
1811 
1812 	ret = dm_process_bio(md, map, bio);
1813 
1814 	dm_put_live_table(md, srcu_idx);
1815 	return ret;
1816 }
1817 
1818 /*-----------------------------------------------------------------
1819  * An IDR is used to keep track of allocated minor numbers.
1820  *---------------------------------------------------------------*/
1821 static void free_minor(int minor)
1822 {
1823 	spin_lock(&_minor_lock);
1824 	idr_remove(&_minor_idr, minor);
1825 	spin_unlock(&_minor_lock);
1826 }
1827 
1828 /*
1829  * See if the device with a specific minor # is free.
1830  */
1831 static int specific_minor(int minor)
1832 {
1833 	int r;
1834 
1835 	if (minor >= (1 << MINORBITS))
1836 		return -EINVAL;
1837 
1838 	idr_preload(GFP_KERNEL);
1839 	spin_lock(&_minor_lock);
1840 
1841 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1842 
1843 	spin_unlock(&_minor_lock);
1844 	idr_preload_end();
1845 	if (r < 0)
1846 		return r == -ENOSPC ? -EBUSY : r;
1847 	return 0;
1848 }
1849 
1850 static int next_free_minor(int *minor)
1851 {
1852 	int r;
1853 
1854 	idr_preload(GFP_KERNEL);
1855 	spin_lock(&_minor_lock);
1856 
1857 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1858 
1859 	spin_unlock(&_minor_lock);
1860 	idr_preload_end();
1861 	if (r < 0)
1862 		return r;
1863 	*minor = r;
1864 	return 0;
1865 }
1866 
1867 static const struct block_device_operations dm_blk_dops;
1868 static const struct dax_operations dm_dax_ops;
1869 
1870 static void dm_wq_work(struct work_struct *work);
1871 
1872 static void cleanup_mapped_device(struct mapped_device *md)
1873 {
1874 	if (md->wq)
1875 		destroy_workqueue(md->wq);
1876 	bioset_exit(&md->bs);
1877 	bioset_exit(&md->io_bs);
1878 
1879 	if (md->dax_dev) {
1880 		kill_dax(md->dax_dev);
1881 		put_dax(md->dax_dev);
1882 		md->dax_dev = NULL;
1883 	}
1884 
1885 	if (md->disk) {
1886 		spin_lock(&_minor_lock);
1887 		md->disk->private_data = NULL;
1888 		spin_unlock(&_minor_lock);
1889 		del_gendisk(md->disk);
1890 		put_disk(md->disk);
1891 	}
1892 
1893 	if (md->queue)
1894 		blk_cleanup_queue(md->queue);
1895 
1896 	cleanup_srcu_struct(&md->io_barrier);
1897 
1898 	if (md->bdev) {
1899 		bdput(md->bdev);
1900 		md->bdev = NULL;
1901 	}
1902 
1903 	mutex_destroy(&md->suspend_lock);
1904 	mutex_destroy(&md->type_lock);
1905 	mutex_destroy(&md->table_devices_lock);
1906 
1907 	dm_mq_cleanup_mapped_device(md);
1908 }
1909 
1910 /*
1911  * Allocate and initialise a blank device with a given minor.
1912  */
1913 static struct mapped_device *alloc_dev(int minor)
1914 {
1915 	int r, numa_node_id = dm_get_numa_node();
1916 	struct mapped_device *md;
1917 	void *old_md;
1918 
1919 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1920 	if (!md) {
1921 		DMWARN("unable to allocate device, out of memory.");
1922 		return NULL;
1923 	}
1924 
1925 	if (!try_module_get(THIS_MODULE))
1926 		goto bad_module_get;
1927 
1928 	/* get a minor number for the dev */
1929 	if (minor == DM_ANY_MINOR)
1930 		r = next_free_minor(&minor);
1931 	else
1932 		r = specific_minor(minor);
1933 	if (r < 0)
1934 		goto bad_minor;
1935 
1936 	r = init_srcu_struct(&md->io_barrier);
1937 	if (r < 0)
1938 		goto bad_io_barrier;
1939 
1940 	md->numa_node_id = numa_node_id;
1941 	md->init_tio_pdu = false;
1942 	md->type = DM_TYPE_NONE;
1943 	mutex_init(&md->suspend_lock);
1944 	mutex_init(&md->type_lock);
1945 	mutex_init(&md->table_devices_lock);
1946 	spin_lock_init(&md->deferred_lock);
1947 	atomic_set(&md->holders, 1);
1948 	atomic_set(&md->open_count, 0);
1949 	atomic_set(&md->event_nr, 0);
1950 	atomic_set(&md->uevent_seq, 0);
1951 	INIT_LIST_HEAD(&md->uevent_list);
1952 	INIT_LIST_HEAD(&md->table_devices);
1953 	spin_lock_init(&md->uevent_lock);
1954 
1955 	/*
1956 	 * default to bio-based until DM table is loaded and md->type
1957 	 * established. If request-based table is loaded: blk-mq will
1958 	 * override accordingly.
1959 	 */
1960 	md->queue = blk_alloc_queue(numa_node_id);
1961 	if (!md->queue)
1962 		goto bad;
1963 
1964 	md->disk = alloc_disk_node(1, md->numa_node_id);
1965 	if (!md->disk)
1966 		goto bad;
1967 
1968 	init_waitqueue_head(&md->wait);
1969 	INIT_WORK(&md->work, dm_wq_work);
1970 	init_waitqueue_head(&md->eventq);
1971 	init_completion(&md->kobj_holder.completion);
1972 
1973 	md->disk->major = _major;
1974 	md->disk->first_minor = minor;
1975 	md->disk->fops = &dm_blk_dops;
1976 	md->disk->queue = md->queue;
1977 	md->disk->private_data = md;
1978 	sprintf(md->disk->disk_name, "dm-%d", minor);
1979 
1980 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1981 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1982 					&dm_dax_ops, 0);
1983 		if (IS_ERR(md->dax_dev))
1984 			goto bad;
1985 	}
1986 
1987 	add_disk_no_queue_reg(md->disk);
1988 	format_dev_t(md->name, MKDEV(_major, minor));
1989 
1990 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1991 	if (!md->wq)
1992 		goto bad;
1993 
1994 	md->bdev = bdget_disk(md->disk, 0);
1995 	if (!md->bdev)
1996 		goto bad;
1997 
1998 	dm_stats_init(&md->stats);
1999 
2000 	/* Populate the mapping, nobody knows we exist yet */
2001 	spin_lock(&_minor_lock);
2002 	old_md = idr_replace(&_minor_idr, md, minor);
2003 	spin_unlock(&_minor_lock);
2004 
2005 	BUG_ON(old_md != MINOR_ALLOCED);
2006 
2007 	return md;
2008 
2009 bad:
2010 	cleanup_mapped_device(md);
2011 bad_io_barrier:
2012 	free_minor(minor);
2013 bad_minor:
2014 	module_put(THIS_MODULE);
2015 bad_module_get:
2016 	kvfree(md);
2017 	return NULL;
2018 }
2019 
2020 static void unlock_fs(struct mapped_device *md);
2021 
2022 static void free_dev(struct mapped_device *md)
2023 {
2024 	int minor = MINOR(disk_devt(md->disk));
2025 
2026 	unlock_fs(md);
2027 
2028 	cleanup_mapped_device(md);
2029 
2030 	free_table_devices(&md->table_devices);
2031 	dm_stats_cleanup(&md->stats);
2032 	free_minor(minor);
2033 
2034 	module_put(THIS_MODULE);
2035 	kvfree(md);
2036 }
2037 
2038 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2039 {
2040 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2041 	int ret = 0;
2042 
2043 	if (dm_table_bio_based(t)) {
2044 		/*
2045 		 * The md may already have mempools that need changing.
2046 		 * If so, reload bioset because front_pad may have changed
2047 		 * because a different table was loaded.
2048 		 */
2049 		bioset_exit(&md->bs);
2050 		bioset_exit(&md->io_bs);
2051 
2052 	} else if (bioset_initialized(&md->bs)) {
2053 		/*
2054 		 * There's no need to reload with request-based dm
2055 		 * because the size of front_pad doesn't change.
2056 		 * Note for future: If you are to reload bioset,
2057 		 * prep-ed requests in the queue may refer
2058 		 * to bio from the old bioset, so you must walk
2059 		 * through the queue to unprep.
2060 		 */
2061 		goto out;
2062 	}
2063 
2064 	BUG_ON(!p ||
2065 	       bioset_initialized(&md->bs) ||
2066 	       bioset_initialized(&md->io_bs));
2067 
2068 	ret = bioset_init_from_src(&md->bs, &p->bs);
2069 	if (ret)
2070 		goto out;
2071 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2072 	if (ret)
2073 		bioset_exit(&md->bs);
2074 out:
2075 	/* mempool bind completed, no longer need any mempools in the table */
2076 	dm_table_free_md_mempools(t);
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Bind a table to the device.
2082  */
2083 static void event_callback(void *context)
2084 {
2085 	unsigned long flags;
2086 	LIST_HEAD(uevents);
2087 	struct mapped_device *md = (struct mapped_device *) context;
2088 
2089 	spin_lock_irqsave(&md->uevent_lock, flags);
2090 	list_splice_init(&md->uevent_list, &uevents);
2091 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2092 
2093 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2094 
2095 	atomic_inc(&md->event_nr);
2096 	wake_up(&md->eventq);
2097 	dm_issue_global_event();
2098 }
2099 
2100 /*
2101  * Protected by md->suspend_lock obtained by dm_swap_table().
2102  */
2103 static void __set_size(struct mapped_device *md, sector_t size)
2104 {
2105 	lockdep_assert_held(&md->suspend_lock);
2106 
2107 	set_capacity(md->disk, size);
2108 
2109 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2110 }
2111 
2112 /*
2113  * Returns old map, which caller must destroy.
2114  */
2115 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2116 			       struct queue_limits *limits)
2117 {
2118 	struct dm_table *old_map;
2119 	struct request_queue *q = md->queue;
2120 	bool request_based = dm_table_request_based(t);
2121 	sector_t size;
2122 	int ret;
2123 
2124 	lockdep_assert_held(&md->suspend_lock);
2125 
2126 	size = dm_table_get_size(t);
2127 
2128 	/*
2129 	 * Wipe any geometry if the size of the table changed.
2130 	 */
2131 	if (size != dm_get_size(md))
2132 		memset(&md->geometry, 0, sizeof(md->geometry));
2133 
2134 	__set_size(md, size);
2135 
2136 	dm_table_event_callback(t, event_callback, md);
2137 
2138 	/*
2139 	 * The queue hasn't been stopped yet, if the old table type wasn't
2140 	 * for request-based during suspension.  So stop it to prevent
2141 	 * I/O mapping before resume.
2142 	 * This must be done before setting the queue restrictions,
2143 	 * because request-based dm may be run just after the setting.
2144 	 */
2145 	if (request_based)
2146 		dm_stop_queue(q);
2147 
2148 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2149 		/*
2150 		 * Leverage the fact that request-based DM targets and
2151 		 * NVMe bio based targets are immutable singletons
2152 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2153 		 *   and __process_bio.
2154 		 */
2155 		md->immutable_target = dm_table_get_immutable_target(t);
2156 	}
2157 
2158 	ret = __bind_mempools(md, t);
2159 	if (ret) {
2160 		old_map = ERR_PTR(ret);
2161 		goto out;
2162 	}
2163 
2164 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2165 	rcu_assign_pointer(md->map, (void *)t);
2166 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2167 
2168 	dm_table_set_restrictions(t, q, limits);
2169 	if (old_map)
2170 		dm_sync_table(md);
2171 
2172 out:
2173 	return old_map;
2174 }
2175 
2176 /*
2177  * Returns unbound table for the caller to free.
2178  */
2179 static struct dm_table *__unbind(struct mapped_device *md)
2180 {
2181 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2182 
2183 	if (!map)
2184 		return NULL;
2185 
2186 	dm_table_event_callback(map, NULL, NULL);
2187 	RCU_INIT_POINTER(md->map, NULL);
2188 	dm_sync_table(md);
2189 
2190 	return map;
2191 }
2192 
2193 /*
2194  * Constructor for a new device.
2195  */
2196 int dm_create(int minor, struct mapped_device **result)
2197 {
2198 	int r;
2199 	struct mapped_device *md;
2200 
2201 	md = alloc_dev(minor);
2202 	if (!md)
2203 		return -ENXIO;
2204 
2205 	r = dm_sysfs_init(md);
2206 	if (r) {
2207 		free_dev(md);
2208 		return r;
2209 	}
2210 
2211 	*result = md;
2212 	return 0;
2213 }
2214 
2215 /*
2216  * Functions to manage md->type.
2217  * All are required to hold md->type_lock.
2218  */
2219 void dm_lock_md_type(struct mapped_device *md)
2220 {
2221 	mutex_lock(&md->type_lock);
2222 }
2223 
2224 void dm_unlock_md_type(struct mapped_device *md)
2225 {
2226 	mutex_unlock(&md->type_lock);
2227 }
2228 
2229 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2230 {
2231 	BUG_ON(!mutex_is_locked(&md->type_lock));
2232 	md->type = type;
2233 }
2234 
2235 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2236 {
2237 	return md->type;
2238 }
2239 
2240 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2241 {
2242 	return md->immutable_target_type;
2243 }
2244 
2245 /*
2246  * The queue_limits are only valid as long as you have a reference
2247  * count on 'md'.
2248  */
2249 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2250 {
2251 	BUG_ON(!atomic_read(&md->holders));
2252 	return &md->queue->limits;
2253 }
2254 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2255 
2256 /*
2257  * Setup the DM device's queue based on md's type
2258  */
2259 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2260 {
2261 	int r;
2262 	struct queue_limits limits;
2263 	enum dm_queue_mode type = dm_get_md_type(md);
2264 
2265 	switch (type) {
2266 	case DM_TYPE_REQUEST_BASED:
2267 		r = dm_mq_init_request_queue(md, t);
2268 		if (r) {
2269 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2270 			return r;
2271 		}
2272 		break;
2273 	case DM_TYPE_BIO_BASED:
2274 	case DM_TYPE_DAX_BIO_BASED:
2275 	case DM_TYPE_NVME_BIO_BASED:
2276 		break;
2277 	case DM_TYPE_NONE:
2278 		WARN_ON_ONCE(true);
2279 		break;
2280 	}
2281 
2282 	r = dm_calculate_queue_limits(t, &limits);
2283 	if (r) {
2284 		DMERR("Cannot calculate initial queue limits");
2285 		return r;
2286 	}
2287 	dm_table_set_restrictions(t, md->queue, &limits);
2288 	blk_register_queue(md->disk);
2289 
2290 	return 0;
2291 }
2292 
2293 struct mapped_device *dm_get_md(dev_t dev)
2294 {
2295 	struct mapped_device *md;
2296 	unsigned minor = MINOR(dev);
2297 
2298 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2299 		return NULL;
2300 
2301 	spin_lock(&_minor_lock);
2302 
2303 	md = idr_find(&_minor_idr, minor);
2304 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2305 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2306 		md = NULL;
2307 		goto out;
2308 	}
2309 	dm_get(md);
2310 out:
2311 	spin_unlock(&_minor_lock);
2312 
2313 	return md;
2314 }
2315 EXPORT_SYMBOL_GPL(dm_get_md);
2316 
2317 void *dm_get_mdptr(struct mapped_device *md)
2318 {
2319 	return md->interface_ptr;
2320 }
2321 
2322 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2323 {
2324 	md->interface_ptr = ptr;
2325 }
2326 
2327 void dm_get(struct mapped_device *md)
2328 {
2329 	atomic_inc(&md->holders);
2330 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2331 }
2332 
2333 int dm_hold(struct mapped_device *md)
2334 {
2335 	spin_lock(&_minor_lock);
2336 	if (test_bit(DMF_FREEING, &md->flags)) {
2337 		spin_unlock(&_minor_lock);
2338 		return -EBUSY;
2339 	}
2340 	dm_get(md);
2341 	spin_unlock(&_minor_lock);
2342 	return 0;
2343 }
2344 EXPORT_SYMBOL_GPL(dm_hold);
2345 
2346 const char *dm_device_name(struct mapped_device *md)
2347 {
2348 	return md->name;
2349 }
2350 EXPORT_SYMBOL_GPL(dm_device_name);
2351 
2352 static void __dm_destroy(struct mapped_device *md, bool wait)
2353 {
2354 	struct dm_table *map;
2355 	int srcu_idx;
2356 
2357 	might_sleep();
2358 
2359 	spin_lock(&_minor_lock);
2360 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2361 	set_bit(DMF_FREEING, &md->flags);
2362 	spin_unlock(&_minor_lock);
2363 
2364 	blk_set_queue_dying(md->queue);
2365 
2366 	/*
2367 	 * Take suspend_lock so that presuspend and postsuspend methods
2368 	 * do not race with internal suspend.
2369 	 */
2370 	mutex_lock(&md->suspend_lock);
2371 	map = dm_get_live_table(md, &srcu_idx);
2372 	if (!dm_suspended_md(md)) {
2373 		dm_table_presuspend_targets(map);
2374 		set_bit(DMF_SUSPENDED, &md->flags);
2375 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2376 		dm_table_postsuspend_targets(map);
2377 	}
2378 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2379 	dm_put_live_table(md, srcu_idx);
2380 	mutex_unlock(&md->suspend_lock);
2381 
2382 	/*
2383 	 * Rare, but there may be I/O requests still going to complete,
2384 	 * for example.  Wait for all references to disappear.
2385 	 * No one should increment the reference count of the mapped_device,
2386 	 * after the mapped_device state becomes DMF_FREEING.
2387 	 */
2388 	if (wait)
2389 		while (atomic_read(&md->holders))
2390 			msleep(1);
2391 	else if (atomic_read(&md->holders))
2392 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2393 		       dm_device_name(md), atomic_read(&md->holders));
2394 
2395 	dm_sysfs_exit(md);
2396 	dm_table_destroy(__unbind(md));
2397 	free_dev(md);
2398 }
2399 
2400 void dm_destroy(struct mapped_device *md)
2401 {
2402 	__dm_destroy(md, true);
2403 }
2404 
2405 void dm_destroy_immediate(struct mapped_device *md)
2406 {
2407 	__dm_destroy(md, false);
2408 }
2409 
2410 void dm_put(struct mapped_device *md)
2411 {
2412 	atomic_dec(&md->holders);
2413 }
2414 EXPORT_SYMBOL_GPL(dm_put);
2415 
2416 static bool md_in_flight_bios(struct mapped_device *md)
2417 {
2418 	int cpu;
2419 	struct hd_struct *part = &dm_disk(md)->part0;
2420 	long sum = 0;
2421 
2422 	for_each_possible_cpu(cpu) {
2423 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2424 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2425 	}
2426 
2427 	return sum != 0;
2428 }
2429 
2430 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2431 {
2432 	int r = 0;
2433 	DEFINE_WAIT(wait);
2434 
2435 	while (true) {
2436 		prepare_to_wait(&md->wait, &wait, task_state);
2437 
2438 		if (!md_in_flight_bios(md))
2439 			break;
2440 
2441 		if (signal_pending_state(task_state, current)) {
2442 			r = -EINTR;
2443 			break;
2444 		}
2445 
2446 		io_schedule();
2447 	}
2448 	finish_wait(&md->wait, &wait);
2449 
2450 	return r;
2451 }
2452 
2453 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2454 {
2455 	int r = 0;
2456 
2457 	if (!queue_is_mq(md->queue))
2458 		return dm_wait_for_bios_completion(md, task_state);
2459 
2460 	while (true) {
2461 		if (!blk_mq_queue_inflight(md->queue))
2462 			break;
2463 
2464 		if (signal_pending_state(task_state, current)) {
2465 			r = -EINTR;
2466 			break;
2467 		}
2468 
2469 		msleep(5);
2470 	}
2471 
2472 	return r;
2473 }
2474 
2475 /*
2476  * Process the deferred bios
2477  */
2478 static void dm_wq_work(struct work_struct *work)
2479 {
2480 	struct mapped_device *md = container_of(work, struct mapped_device,
2481 						work);
2482 	struct bio *c;
2483 	int srcu_idx;
2484 	struct dm_table *map;
2485 
2486 	map = dm_get_live_table(md, &srcu_idx);
2487 
2488 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2489 		spin_lock_irq(&md->deferred_lock);
2490 		c = bio_list_pop(&md->deferred);
2491 		spin_unlock_irq(&md->deferred_lock);
2492 
2493 		if (!c)
2494 			break;
2495 
2496 		if (dm_request_based(md))
2497 			(void) submit_bio_noacct(c);
2498 		else
2499 			(void) dm_process_bio(md, map, c);
2500 	}
2501 
2502 	dm_put_live_table(md, srcu_idx);
2503 }
2504 
2505 static void dm_queue_flush(struct mapped_device *md)
2506 {
2507 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2508 	smp_mb__after_atomic();
2509 	queue_work(md->wq, &md->work);
2510 }
2511 
2512 /*
2513  * Swap in a new table, returning the old one for the caller to destroy.
2514  */
2515 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2516 {
2517 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2518 	struct queue_limits limits;
2519 	int r;
2520 
2521 	mutex_lock(&md->suspend_lock);
2522 
2523 	/* device must be suspended */
2524 	if (!dm_suspended_md(md))
2525 		goto out;
2526 
2527 	/*
2528 	 * If the new table has no data devices, retain the existing limits.
2529 	 * This helps multipath with queue_if_no_path if all paths disappear,
2530 	 * then new I/O is queued based on these limits, and then some paths
2531 	 * reappear.
2532 	 */
2533 	if (dm_table_has_no_data_devices(table)) {
2534 		live_map = dm_get_live_table_fast(md);
2535 		if (live_map)
2536 			limits = md->queue->limits;
2537 		dm_put_live_table_fast(md);
2538 	}
2539 
2540 	if (!live_map) {
2541 		r = dm_calculate_queue_limits(table, &limits);
2542 		if (r) {
2543 			map = ERR_PTR(r);
2544 			goto out;
2545 		}
2546 	}
2547 
2548 	map = __bind(md, table, &limits);
2549 	dm_issue_global_event();
2550 
2551 out:
2552 	mutex_unlock(&md->suspend_lock);
2553 	return map;
2554 }
2555 
2556 /*
2557  * Functions to lock and unlock any filesystem running on the
2558  * device.
2559  */
2560 static int lock_fs(struct mapped_device *md)
2561 {
2562 	int r;
2563 
2564 	WARN_ON(md->frozen_sb);
2565 
2566 	md->frozen_sb = freeze_bdev(md->bdev);
2567 	if (IS_ERR(md->frozen_sb)) {
2568 		r = PTR_ERR(md->frozen_sb);
2569 		md->frozen_sb = NULL;
2570 		return r;
2571 	}
2572 
2573 	set_bit(DMF_FROZEN, &md->flags);
2574 
2575 	return 0;
2576 }
2577 
2578 static void unlock_fs(struct mapped_device *md)
2579 {
2580 	if (!test_bit(DMF_FROZEN, &md->flags))
2581 		return;
2582 
2583 	thaw_bdev(md->bdev, md->frozen_sb);
2584 	md->frozen_sb = NULL;
2585 	clear_bit(DMF_FROZEN, &md->flags);
2586 }
2587 
2588 /*
2589  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2590  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2591  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2592  *
2593  * If __dm_suspend returns 0, the device is completely quiescent
2594  * now. There is no request-processing activity. All new requests
2595  * are being added to md->deferred list.
2596  */
2597 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2598 			unsigned suspend_flags, long task_state,
2599 			int dmf_suspended_flag)
2600 {
2601 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2602 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2603 	int r;
2604 
2605 	lockdep_assert_held(&md->suspend_lock);
2606 
2607 	/*
2608 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2609 	 * This flag is cleared before dm_suspend returns.
2610 	 */
2611 	if (noflush)
2612 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2613 	else
2614 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2615 
2616 	/*
2617 	 * This gets reverted if there's an error later and the targets
2618 	 * provide the .presuspend_undo hook.
2619 	 */
2620 	dm_table_presuspend_targets(map);
2621 
2622 	/*
2623 	 * Flush I/O to the device.
2624 	 * Any I/O submitted after lock_fs() may not be flushed.
2625 	 * noflush takes precedence over do_lockfs.
2626 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2627 	 */
2628 	if (!noflush && do_lockfs) {
2629 		r = lock_fs(md);
2630 		if (r) {
2631 			dm_table_presuspend_undo_targets(map);
2632 			return r;
2633 		}
2634 	}
2635 
2636 	/*
2637 	 * Here we must make sure that no processes are submitting requests
2638 	 * to target drivers i.e. no one may be executing
2639 	 * __split_and_process_bio. This is called from dm_request and
2640 	 * dm_wq_work.
2641 	 *
2642 	 * To get all processes out of __split_and_process_bio in dm_request,
2643 	 * we take the write lock. To prevent any process from reentering
2644 	 * __split_and_process_bio from dm_request and quiesce the thread
2645 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2646 	 * flush_workqueue(md->wq).
2647 	 */
2648 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2649 	if (map)
2650 		synchronize_srcu(&md->io_barrier);
2651 
2652 	/*
2653 	 * Stop md->queue before flushing md->wq in case request-based
2654 	 * dm defers requests to md->wq from md->queue.
2655 	 */
2656 	if (dm_request_based(md))
2657 		dm_stop_queue(md->queue);
2658 
2659 	flush_workqueue(md->wq);
2660 
2661 	/*
2662 	 * At this point no more requests are entering target request routines.
2663 	 * We call dm_wait_for_completion to wait for all existing requests
2664 	 * to finish.
2665 	 */
2666 	r = dm_wait_for_completion(md, task_state);
2667 	if (!r)
2668 		set_bit(dmf_suspended_flag, &md->flags);
2669 
2670 	if (noflush)
2671 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2672 	if (map)
2673 		synchronize_srcu(&md->io_barrier);
2674 
2675 	/* were we interrupted ? */
2676 	if (r < 0) {
2677 		dm_queue_flush(md);
2678 
2679 		if (dm_request_based(md))
2680 			dm_start_queue(md->queue);
2681 
2682 		unlock_fs(md);
2683 		dm_table_presuspend_undo_targets(map);
2684 		/* pushback list is already flushed, so skip flush */
2685 	}
2686 
2687 	return r;
2688 }
2689 
2690 /*
2691  * We need to be able to change a mapping table under a mounted
2692  * filesystem.  For example we might want to move some data in
2693  * the background.  Before the table can be swapped with
2694  * dm_bind_table, dm_suspend must be called to flush any in
2695  * flight bios and ensure that any further io gets deferred.
2696  */
2697 /*
2698  * Suspend mechanism in request-based dm.
2699  *
2700  * 1. Flush all I/Os by lock_fs() if needed.
2701  * 2. Stop dispatching any I/O by stopping the request_queue.
2702  * 3. Wait for all in-flight I/Os to be completed or requeued.
2703  *
2704  * To abort suspend, start the request_queue.
2705  */
2706 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2707 {
2708 	struct dm_table *map = NULL;
2709 	int r = 0;
2710 
2711 retry:
2712 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2713 
2714 	if (dm_suspended_md(md)) {
2715 		r = -EINVAL;
2716 		goto out_unlock;
2717 	}
2718 
2719 	if (dm_suspended_internally_md(md)) {
2720 		/* already internally suspended, wait for internal resume */
2721 		mutex_unlock(&md->suspend_lock);
2722 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2723 		if (r)
2724 			return r;
2725 		goto retry;
2726 	}
2727 
2728 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2729 
2730 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2731 	if (r)
2732 		goto out_unlock;
2733 
2734 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2735 	dm_table_postsuspend_targets(map);
2736 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2737 
2738 out_unlock:
2739 	mutex_unlock(&md->suspend_lock);
2740 	return r;
2741 }
2742 
2743 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2744 {
2745 	if (map) {
2746 		int r = dm_table_resume_targets(map);
2747 		if (r)
2748 			return r;
2749 	}
2750 
2751 	dm_queue_flush(md);
2752 
2753 	/*
2754 	 * Flushing deferred I/Os must be done after targets are resumed
2755 	 * so that mapping of targets can work correctly.
2756 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2757 	 */
2758 	if (dm_request_based(md))
2759 		dm_start_queue(md->queue);
2760 
2761 	unlock_fs(md);
2762 
2763 	return 0;
2764 }
2765 
2766 int dm_resume(struct mapped_device *md)
2767 {
2768 	int r;
2769 	struct dm_table *map = NULL;
2770 
2771 retry:
2772 	r = -EINVAL;
2773 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774 
2775 	if (!dm_suspended_md(md))
2776 		goto out;
2777 
2778 	if (dm_suspended_internally_md(md)) {
2779 		/* already internally suspended, wait for internal resume */
2780 		mutex_unlock(&md->suspend_lock);
2781 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2782 		if (r)
2783 			return r;
2784 		goto retry;
2785 	}
2786 
2787 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2788 	if (!map || !dm_table_get_size(map))
2789 		goto out;
2790 
2791 	r = __dm_resume(md, map);
2792 	if (r)
2793 		goto out;
2794 
2795 	clear_bit(DMF_SUSPENDED, &md->flags);
2796 out:
2797 	mutex_unlock(&md->suspend_lock);
2798 
2799 	return r;
2800 }
2801 
2802 /*
2803  * Internal suspend/resume works like userspace-driven suspend. It waits
2804  * until all bios finish and prevents issuing new bios to the target drivers.
2805  * It may be used only from the kernel.
2806  */
2807 
2808 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2809 {
2810 	struct dm_table *map = NULL;
2811 
2812 	lockdep_assert_held(&md->suspend_lock);
2813 
2814 	if (md->internal_suspend_count++)
2815 		return; /* nested internal suspend */
2816 
2817 	if (dm_suspended_md(md)) {
2818 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2819 		return; /* nest suspend */
2820 	}
2821 
2822 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2823 
2824 	/*
2825 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2826 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2827 	 * would require changing .presuspend to return an error -- avoid this
2828 	 * until there is a need for more elaborate variants of internal suspend.
2829 	 */
2830 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2831 			    DMF_SUSPENDED_INTERNALLY);
2832 
2833 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2834 	dm_table_postsuspend_targets(map);
2835 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2836 }
2837 
2838 static void __dm_internal_resume(struct mapped_device *md)
2839 {
2840 	BUG_ON(!md->internal_suspend_count);
2841 
2842 	if (--md->internal_suspend_count)
2843 		return; /* resume from nested internal suspend */
2844 
2845 	if (dm_suspended_md(md))
2846 		goto done; /* resume from nested suspend */
2847 
2848 	/*
2849 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2850 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2851 	 */
2852 	(void) __dm_resume(md, NULL);
2853 
2854 done:
2855 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2856 	smp_mb__after_atomic();
2857 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2858 }
2859 
2860 void dm_internal_suspend_noflush(struct mapped_device *md)
2861 {
2862 	mutex_lock(&md->suspend_lock);
2863 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2864 	mutex_unlock(&md->suspend_lock);
2865 }
2866 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2867 
2868 void dm_internal_resume(struct mapped_device *md)
2869 {
2870 	mutex_lock(&md->suspend_lock);
2871 	__dm_internal_resume(md);
2872 	mutex_unlock(&md->suspend_lock);
2873 }
2874 EXPORT_SYMBOL_GPL(dm_internal_resume);
2875 
2876 /*
2877  * Fast variants of internal suspend/resume hold md->suspend_lock,
2878  * which prevents interaction with userspace-driven suspend.
2879  */
2880 
2881 void dm_internal_suspend_fast(struct mapped_device *md)
2882 {
2883 	mutex_lock(&md->suspend_lock);
2884 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2885 		return;
2886 
2887 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2888 	synchronize_srcu(&md->io_barrier);
2889 	flush_workqueue(md->wq);
2890 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2891 }
2892 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2893 
2894 void dm_internal_resume_fast(struct mapped_device *md)
2895 {
2896 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2897 		goto done;
2898 
2899 	dm_queue_flush(md);
2900 
2901 done:
2902 	mutex_unlock(&md->suspend_lock);
2903 }
2904 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2905 
2906 /*-----------------------------------------------------------------
2907  * Event notification.
2908  *---------------------------------------------------------------*/
2909 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2910 		       unsigned cookie)
2911 {
2912 	int r;
2913 	unsigned noio_flag;
2914 	char udev_cookie[DM_COOKIE_LENGTH];
2915 	char *envp[] = { udev_cookie, NULL };
2916 
2917 	noio_flag = memalloc_noio_save();
2918 
2919 	if (!cookie)
2920 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2921 	else {
2922 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2923 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2924 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2925 				       action, envp);
2926 	}
2927 
2928 	memalloc_noio_restore(noio_flag);
2929 
2930 	return r;
2931 }
2932 
2933 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2934 {
2935 	return atomic_add_return(1, &md->uevent_seq);
2936 }
2937 
2938 uint32_t dm_get_event_nr(struct mapped_device *md)
2939 {
2940 	return atomic_read(&md->event_nr);
2941 }
2942 
2943 int dm_wait_event(struct mapped_device *md, int event_nr)
2944 {
2945 	return wait_event_interruptible(md->eventq,
2946 			(event_nr != atomic_read(&md->event_nr)));
2947 }
2948 
2949 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2950 {
2951 	unsigned long flags;
2952 
2953 	spin_lock_irqsave(&md->uevent_lock, flags);
2954 	list_add(elist, &md->uevent_list);
2955 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2956 }
2957 
2958 /*
2959  * The gendisk is only valid as long as you have a reference
2960  * count on 'md'.
2961  */
2962 struct gendisk *dm_disk(struct mapped_device *md)
2963 {
2964 	return md->disk;
2965 }
2966 EXPORT_SYMBOL_GPL(dm_disk);
2967 
2968 struct kobject *dm_kobject(struct mapped_device *md)
2969 {
2970 	return &md->kobj_holder.kobj;
2971 }
2972 
2973 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2974 {
2975 	struct mapped_device *md;
2976 
2977 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2978 
2979 	spin_lock(&_minor_lock);
2980 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2981 		md = NULL;
2982 		goto out;
2983 	}
2984 	dm_get(md);
2985 out:
2986 	spin_unlock(&_minor_lock);
2987 
2988 	return md;
2989 }
2990 
2991 int dm_suspended_md(struct mapped_device *md)
2992 {
2993 	return test_bit(DMF_SUSPENDED, &md->flags);
2994 }
2995 
2996 static int dm_post_suspending_md(struct mapped_device *md)
2997 {
2998 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2999 }
3000 
3001 int dm_suspended_internally_md(struct mapped_device *md)
3002 {
3003 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3004 }
3005 
3006 int dm_test_deferred_remove_flag(struct mapped_device *md)
3007 {
3008 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3009 }
3010 
3011 int dm_suspended(struct dm_target *ti)
3012 {
3013 	return dm_suspended_md(dm_table_get_md(ti->table));
3014 }
3015 EXPORT_SYMBOL_GPL(dm_suspended);
3016 
3017 int dm_post_suspending(struct dm_target *ti)
3018 {
3019 	return dm_post_suspending_md(dm_table_get_md(ti->table));
3020 }
3021 EXPORT_SYMBOL_GPL(dm_post_suspending);
3022 
3023 int dm_noflush_suspending(struct dm_target *ti)
3024 {
3025 	return __noflush_suspending(dm_table_get_md(ti->table));
3026 }
3027 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3028 
3029 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3030 					    unsigned integrity, unsigned per_io_data_size,
3031 					    unsigned min_pool_size)
3032 {
3033 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3034 	unsigned int pool_size = 0;
3035 	unsigned int front_pad, io_front_pad;
3036 	int ret;
3037 
3038 	if (!pools)
3039 		return NULL;
3040 
3041 	switch (type) {
3042 	case DM_TYPE_BIO_BASED:
3043 	case DM_TYPE_DAX_BIO_BASED:
3044 	case DM_TYPE_NVME_BIO_BASED:
3045 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3046 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3047 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3048 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3049 		if (ret)
3050 			goto out;
3051 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3052 			goto out;
3053 		break;
3054 	case DM_TYPE_REQUEST_BASED:
3055 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3056 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3057 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3058 		break;
3059 	default:
3060 		BUG();
3061 	}
3062 
3063 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3064 	if (ret)
3065 		goto out;
3066 
3067 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3068 		goto out;
3069 
3070 	return pools;
3071 
3072 out:
3073 	dm_free_md_mempools(pools);
3074 
3075 	return NULL;
3076 }
3077 
3078 void dm_free_md_mempools(struct dm_md_mempools *pools)
3079 {
3080 	if (!pools)
3081 		return;
3082 
3083 	bioset_exit(&pools->bs);
3084 	bioset_exit(&pools->io_bs);
3085 
3086 	kfree(pools);
3087 }
3088 
3089 struct dm_pr {
3090 	u64	old_key;
3091 	u64	new_key;
3092 	u32	flags;
3093 	bool	fail_early;
3094 };
3095 
3096 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3097 		      void *data)
3098 {
3099 	struct mapped_device *md = bdev->bd_disk->private_data;
3100 	struct dm_table *table;
3101 	struct dm_target *ti;
3102 	int ret = -ENOTTY, srcu_idx;
3103 
3104 	table = dm_get_live_table(md, &srcu_idx);
3105 	if (!table || !dm_table_get_size(table))
3106 		goto out;
3107 
3108 	/* We only support devices that have a single target */
3109 	if (dm_table_get_num_targets(table) != 1)
3110 		goto out;
3111 	ti = dm_table_get_target(table, 0);
3112 
3113 	ret = -EINVAL;
3114 	if (!ti->type->iterate_devices)
3115 		goto out;
3116 
3117 	ret = ti->type->iterate_devices(ti, fn, data);
3118 out:
3119 	dm_put_live_table(md, srcu_idx);
3120 	return ret;
3121 }
3122 
3123 /*
3124  * For register / unregister we need to manually call out to every path.
3125  */
3126 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3127 			    sector_t start, sector_t len, void *data)
3128 {
3129 	struct dm_pr *pr = data;
3130 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3131 
3132 	if (!ops || !ops->pr_register)
3133 		return -EOPNOTSUPP;
3134 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3135 }
3136 
3137 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3138 			  u32 flags)
3139 {
3140 	struct dm_pr pr = {
3141 		.old_key	= old_key,
3142 		.new_key	= new_key,
3143 		.flags		= flags,
3144 		.fail_early	= true,
3145 	};
3146 	int ret;
3147 
3148 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3149 	if (ret && new_key) {
3150 		/* unregister all paths if we failed to register any path */
3151 		pr.old_key = new_key;
3152 		pr.new_key = 0;
3153 		pr.flags = 0;
3154 		pr.fail_early = false;
3155 		dm_call_pr(bdev, __dm_pr_register, &pr);
3156 	}
3157 
3158 	return ret;
3159 }
3160 
3161 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3162 			 u32 flags)
3163 {
3164 	struct mapped_device *md = bdev->bd_disk->private_data;
3165 	const struct pr_ops *ops;
3166 	int r, srcu_idx;
3167 
3168 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3169 	if (r < 0)
3170 		goto out;
3171 
3172 	ops = bdev->bd_disk->fops->pr_ops;
3173 	if (ops && ops->pr_reserve)
3174 		r = ops->pr_reserve(bdev, key, type, flags);
3175 	else
3176 		r = -EOPNOTSUPP;
3177 out:
3178 	dm_unprepare_ioctl(md, srcu_idx);
3179 	return r;
3180 }
3181 
3182 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3183 {
3184 	struct mapped_device *md = bdev->bd_disk->private_data;
3185 	const struct pr_ops *ops;
3186 	int r, srcu_idx;
3187 
3188 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3189 	if (r < 0)
3190 		goto out;
3191 
3192 	ops = bdev->bd_disk->fops->pr_ops;
3193 	if (ops && ops->pr_release)
3194 		r = ops->pr_release(bdev, key, type);
3195 	else
3196 		r = -EOPNOTSUPP;
3197 out:
3198 	dm_unprepare_ioctl(md, srcu_idx);
3199 	return r;
3200 }
3201 
3202 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3203 			 enum pr_type type, bool abort)
3204 {
3205 	struct mapped_device *md = bdev->bd_disk->private_data;
3206 	const struct pr_ops *ops;
3207 	int r, srcu_idx;
3208 
3209 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3210 	if (r < 0)
3211 		goto out;
3212 
3213 	ops = bdev->bd_disk->fops->pr_ops;
3214 	if (ops && ops->pr_preempt)
3215 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3216 	else
3217 		r = -EOPNOTSUPP;
3218 out:
3219 	dm_unprepare_ioctl(md, srcu_idx);
3220 	return r;
3221 }
3222 
3223 static int dm_pr_clear(struct block_device *bdev, u64 key)
3224 {
3225 	struct mapped_device *md = bdev->bd_disk->private_data;
3226 	const struct pr_ops *ops;
3227 	int r, srcu_idx;
3228 
3229 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3230 	if (r < 0)
3231 		goto out;
3232 
3233 	ops = bdev->bd_disk->fops->pr_ops;
3234 	if (ops && ops->pr_clear)
3235 		r = ops->pr_clear(bdev, key);
3236 	else
3237 		r = -EOPNOTSUPP;
3238 out:
3239 	dm_unprepare_ioctl(md, srcu_idx);
3240 	return r;
3241 }
3242 
3243 static const struct pr_ops dm_pr_ops = {
3244 	.pr_register	= dm_pr_register,
3245 	.pr_reserve	= dm_pr_reserve,
3246 	.pr_release	= dm_pr_release,
3247 	.pr_preempt	= dm_pr_preempt,
3248 	.pr_clear	= dm_pr_clear,
3249 };
3250 
3251 static const struct block_device_operations dm_blk_dops = {
3252 	.submit_bio = dm_submit_bio,
3253 	.open = dm_blk_open,
3254 	.release = dm_blk_close,
3255 	.ioctl = dm_blk_ioctl,
3256 	.getgeo = dm_blk_getgeo,
3257 	.report_zones = dm_blk_report_zones,
3258 	.pr_ops = &dm_pr_ops,
3259 	.owner = THIS_MODULE
3260 };
3261 
3262 static const struct dax_operations dm_dax_ops = {
3263 	.direct_access = dm_dax_direct_access,
3264 	.dax_supported = dm_dax_supported,
3265 	.copy_from_iter = dm_dax_copy_from_iter,
3266 	.copy_to_iter = dm_dax_copy_to_iter,
3267 	.zero_page_range = dm_dax_zero_page_range,
3268 };
3269 
3270 /*
3271  * module hooks
3272  */
3273 module_init(dm_init);
3274 module_exit(dm_exit);
3275 
3276 module_param(major, uint, 0);
3277 MODULE_PARM_DESC(major, "The major number of the device mapper");
3278 
3279 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3280 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3281 
3282 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3283 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3284 
3285 MODULE_DESCRIPTION(DM_NAME " driver");
3286 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3287 MODULE_LICENSE("GPL");
3288