xref: /openbmc/linux/drivers/md/dm.c (revision 2596e07a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 	if (rq && rq->end_io_data)
112 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116 
117 #define MINOR_ALLOCED ((void *)-1)
118 
119 /*
120  * Bits for the md->flags field.
121  */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130 
131 /*
132  * A dummy definition to make RCU happy.
133  * struct dm_table should never be dereferenced in this file.
134  */
135 struct dm_table {
136 	int undefined__;
137 };
138 
139 /*
140  * Work processed by per-device workqueue.
141  */
142 struct mapped_device {
143 	struct srcu_struct io_barrier;
144 	struct mutex suspend_lock;
145 	atomic_t holders;
146 	atomic_t open_count;
147 
148 	/*
149 	 * The current mapping.
150 	 * Use dm_get_live_table{_fast} or take suspend_lock for
151 	 * dereference.
152 	 */
153 	struct dm_table __rcu *map;
154 
155 	struct list_head table_devices;
156 	struct mutex table_devices_lock;
157 
158 	unsigned long flags;
159 
160 	struct request_queue *queue;
161 	unsigned type;
162 	/* Protect queue and type against concurrent access. */
163 	struct mutex type_lock;
164 
165 	struct target_type *immutable_target_type;
166 
167 	struct gendisk *disk;
168 	char name[16];
169 
170 	void *interface_ptr;
171 
172 	/*
173 	 * A list of ios that arrived while we were suspended.
174 	 */
175 	atomic_t pending[2];
176 	wait_queue_head_t wait;
177 	struct work_struct work;
178 	struct bio_list deferred;
179 	spinlock_t deferred_lock;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * Event handling.
196 	 */
197 	atomic_t event_nr;
198 	wait_queue_head_t eventq;
199 	atomic_t uevent_seq;
200 	struct list_head uevent_list;
201 	spinlock_t uevent_lock; /* Protect access to uevent_list */
202 
203 	/*
204 	 * freeze/thaw support require holding onto a super block
205 	 */
206 	struct super_block *frozen_sb;
207 	struct block_device *bdev;
208 
209 	/* forced geometry settings */
210 	struct hd_geometry geometry;
211 
212 	/* kobject and completion */
213 	struct dm_kobject_holder kobj_holder;
214 
215 	/* zero-length flush that will be cloned and submitted to targets */
216 	struct bio flush_bio;
217 
218 	/* the number of internal suspends */
219 	unsigned internal_suspend_count;
220 
221 	struct dm_stats stats;
222 
223 	struct kthread_worker kworker;
224 	struct task_struct *kworker_task;
225 
226 	/* for request-based merge heuristic in dm_request_fn() */
227 	unsigned seq_rq_merge_deadline_usecs;
228 	int last_rq_rw;
229 	sector_t last_rq_pos;
230 	ktime_t last_rq_start_time;
231 
232 	/* for blk-mq request-based DM support */
233 	struct blk_mq_tag_set tag_set;
234 	bool use_blk_mq;
235 };
236 
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242 
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 	return md->use_blk_mq;
246 }
247 
248 /*
249  * For mempools pre-allocation at the table loading time.
250  */
251 struct dm_md_mempools {
252 	mempool_t *io_pool;
253 	mempool_t *rq_pool;
254 	struct bio_set *bs;
255 };
256 
257 struct table_device {
258 	struct list_head list;
259 	atomic_t count;
260 	struct dm_dev dm_dev;
261 };
262 
263 #define RESERVED_BIO_BASED_IOS		16
264 #define RESERVED_REQUEST_BASED_IOS	256
265 #define RESERVED_MAX_IOS		1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269 
270 /*
271  * Bio-based DM's mempools' reserved IOs set by the user.
272  */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274 
275 /*
276  * Request-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279 
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 				      unsigned def, unsigned max)
282 {
283 	unsigned param = ACCESS_ONCE(*module_param);
284 	unsigned modified_param = 0;
285 
286 	if (!param)
287 		modified_param = def;
288 	else if (param > max)
289 		modified_param = max;
290 
291 	if (modified_param) {
292 		(void)cmpxchg(module_param, param, modified_param);
293 		param = modified_param;
294 	}
295 
296 	return param;
297 }
298 
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 	return __dm_get_module_param(&reserved_bio_based_ios,
302 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305 
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 	return __dm_get_module_param(&reserved_rq_based_ios,
309 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312 
313 static int __init local_init(void)
314 {
315 	int r = -ENOMEM;
316 
317 	/* allocate a slab for the dm_ios */
318 	_io_cache = KMEM_CACHE(dm_io, 0);
319 	if (!_io_cache)
320 		return r;
321 
322 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 	if (!_rq_tio_cache)
324 		goto out_free_io_cache;
325 
326 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 				      __alignof__(struct request), 0, NULL);
328 	if (!_rq_cache)
329 		goto out_free_rq_tio_cache;
330 
331 	r = dm_uevent_init();
332 	if (r)
333 		goto out_free_rq_cache;
334 
335 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 	if (!deferred_remove_workqueue) {
337 		r = -ENOMEM;
338 		goto out_uevent_exit;
339 	}
340 
341 	_major = major;
342 	r = register_blkdev(_major, _name);
343 	if (r < 0)
344 		goto out_free_workqueue;
345 
346 	if (!_major)
347 		_major = r;
348 
349 	return 0;
350 
351 out_free_workqueue:
352 	destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 	dm_uevent_exit();
355 out_free_rq_cache:
356 	kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 	kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 	kmem_cache_destroy(_io_cache);
361 
362 	return r;
363 }
364 
365 static void local_exit(void)
366 {
367 	flush_scheduled_work();
368 	destroy_workqueue(deferred_remove_workqueue);
369 
370 	kmem_cache_destroy(_rq_cache);
371 	kmem_cache_destroy(_rq_tio_cache);
372 	kmem_cache_destroy(_io_cache);
373 	unregister_blkdev(_major, _name);
374 	dm_uevent_exit();
375 
376 	_major = 0;
377 
378 	DMINFO("cleaned up");
379 }
380 
381 static int (*_inits[])(void) __initdata = {
382 	local_init,
383 	dm_target_init,
384 	dm_linear_init,
385 	dm_stripe_init,
386 	dm_io_init,
387 	dm_kcopyd_init,
388 	dm_interface_init,
389 	dm_statistics_init,
390 };
391 
392 static void (*_exits[])(void) = {
393 	local_exit,
394 	dm_target_exit,
395 	dm_linear_exit,
396 	dm_stripe_exit,
397 	dm_io_exit,
398 	dm_kcopyd_exit,
399 	dm_interface_exit,
400 	dm_statistics_exit,
401 };
402 
403 static int __init dm_init(void)
404 {
405 	const int count = ARRAY_SIZE(_inits);
406 
407 	int r, i;
408 
409 	for (i = 0; i < count; i++) {
410 		r = _inits[i]();
411 		if (r)
412 			goto bad;
413 	}
414 
415 	return 0;
416 
417       bad:
418 	while (i--)
419 		_exits[i]();
420 
421 	return r;
422 }
423 
424 static void __exit dm_exit(void)
425 {
426 	int i = ARRAY_SIZE(_exits);
427 
428 	while (i--)
429 		_exits[i]();
430 
431 	/*
432 	 * Should be empty by this point.
433 	 */
434 	idr_destroy(&_minor_idr);
435 }
436 
437 /*
438  * Block device functions
439  */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 	return test_bit(DMF_DELETING, &md->flags);
443 }
444 
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 	struct mapped_device *md;
448 
449 	spin_lock(&_minor_lock);
450 
451 	md = bdev->bd_disk->private_data;
452 	if (!md)
453 		goto out;
454 
455 	if (test_bit(DMF_FREEING, &md->flags) ||
456 	    dm_deleting_md(md)) {
457 		md = NULL;
458 		goto out;
459 	}
460 
461 	dm_get(md);
462 	atomic_inc(&md->open_count);
463 out:
464 	spin_unlock(&_minor_lock);
465 
466 	return md ? 0 : -ENXIO;
467 }
468 
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 	struct mapped_device *md;
472 
473 	spin_lock(&_minor_lock);
474 
475 	md = disk->private_data;
476 	if (WARN_ON(!md))
477 		goto out;
478 
479 	if (atomic_dec_and_test(&md->open_count) &&
480 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 
483 	dm_put(md);
484 out:
485 	spin_unlock(&_minor_lock);
486 }
487 
488 int dm_open_count(struct mapped_device *md)
489 {
490 	return atomic_read(&md->open_count);
491 }
492 
493 /*
494  * Guarantees nothing is using the device before it's deleted.
495  */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 	int r = 0;
499 
500 	spin_lock(&_minor_lock);
501 
502 	if (dm_open_count(md)) {
503 		r = -EBUSY;
504 		if (mark_deferred)
505 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 		r = -EEXIST;
508 	else
509 		set_bit(DMF_DELETING, &md->flags);
510 
511 	spin_unlock(&_minor_lock);
512 
513 	return r;
514 }
515 
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 	int r = 0;
519 
520 	spin_lock(&_minor_lock);
521 
522 	if (test_bit(DMF_DELETING, &md->flags))
523 		r = -EBUSY;
524 	else
525 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526 
527 	spin_unlock(&_minor_lock);
528 
529 	return r;
530 }
531 
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 	dm_deferred_remove();
535 }
536 
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 	return get_capacity(md->disk);
540 }
541 
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 	return md->queue;
545 }
546 
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 	return &md->stats;
550 }
551 
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	struct mapped_device *md = bdev->bd_disk->private_data;
555 
556 	return dm_get_geometry(md, geo);
557 }
558 
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 		struct dm_target **tgt, struct block_device **bdev,
561 		fmode_t *mode, int *srcu_idx)
562 {
563 	struct dm_table *map;
564 	int r;
565 
566 retry:
567 	r = -ENOTTY;
568 	map = dm_get_live_table(md, srcu_idx);
569 	if (!map || !dm_table_get_size(map))
570 		goto out;
571 
572 	/* We only support devices that have a single target */
573 	if (dm_table_get_num_targets(map) != 1)
574 		goto out;
575 
576 	*tgt = dm_table_get_target(map, 0);
577 
578 	if (!(*tgt)->type->prepare_ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 	if (r < 0)
588 		goto out;
589 
590 	return r;
591 
592 out:
593 	dm_put_live_table(md, *srcu_idx);
594 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 		msleep(10);
596 		goto retry;
597 	}
598 	return r;
599 }
600 
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 			unsigned int cmd, unsigned long arg)
603 {
604 	struct mapped_device *md = bdev->bd_disk->private_data;
605 	struct dm_target *tgt;
606 	struct block_device *tgt_bdev = NULL;
607 	int srcu_idx, r;
608 
609 	r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 	if (r < 0)
611 		return r;
612 
613 	if (r > 0) {
614 		/*
615 		 * Target determined this ioctl is being issued against
616 		 * a logical partition of the parent bdev; so extra
617 		 * validation is needed.
618 		 */
619 		r = scsi_verify_blk_ioctl(NULL, cmd);
620 		if (r)
621 			goto out;
622 	}
623 
624 	r =  __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 	dm_put_live_table(md, srcu_idx);
627 	return r;
628 }
629 
630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 	return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634 
635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 	mempool_free(io, md->io_pool);
638 }
639 
640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 	bio_put(&tio->clone);
643 }
644 
645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 					    gfp_t gfp_mask)
647 {
648 	return mempool_alloc(md->io_pool, gfp_mask);
649 }
650 
651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 	mempool_free(tio, tio->md->io_pool);
654 }
655 
656 static struct request *alloc_clone_request(struct mapped_device *md,
657 					   gfp_t gfp_mask)
658 {
659 	return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661 
662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 	mempool_free(rq, md->rq_pool);
665 }
666 
667 static int md_in_flight(struct mapped_device *md)
668 {
669 	return atomic_read(&md->pending[READ]) +
670 	       atomic_read(&md->pending[WRITE]);
671 }
672 
673 static void start_io_acct(struct dm_io *io)
674 {
675 	struct mapped_device *md = io->md;
676 	struct bio *bio = io->bio;
677 	int cpu;
678 	int rw = bio_data_dir(bio);
679 
680 	io->start_time = jiffies;
681 
682 	cpu = part_stat_lock();
683 	part_round_stats(cpu, &dm_disk(md)->part0);
684 	part_stat_unlock();
685 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 		atomic_inc_return(&md->pending[rw]));
687 
688 	if (unlikely(dm_stats_used(&md->stats)))
689 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 				    bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692 
693 static void end_io_acct(struct dm_io *io)
694 {
695 	struct mapped_device *md = io->md;
696 	struct bio *bio = io->bio;
697 	unsigned long duration = jiffies - io->start_time;
698 	int pending;
699 	int rw = bio_data_dir(bio);
700 
701 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702 
703 	if (unlikely(dm_stats_used(&md->stats)))
704 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 				    bio_sectors(bio), true, duration, &io->stats_aux);
706 
707 	/*
708 	 * After this is decremented the bio must not be touched if it is
709 	 * a flush.
710 	 */
711 	pending = atomic_dec_return(&md->pending[rw]);
712 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 	pending += atomic_read(&md->pending[rw^0x1]);
714 
715 	/* nudge anyone waiting on suspend queue */
716 	if (!pending)
717 		wake_up(&md->wait);
718 }
719 
720 /*
721  * Add the bio to the list of deferred io.
722  */
723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&md->deferred_lock, flags);
728 	bio_list_add(&md->deferred, bio);
729 	spin_unlock_irqrestore(&md->deferred_lock, flags);
730 	queue_work(md->wq, &md->work);
731 }
732 
733 /*
734  * Everyone (including functions in this file), should use this
735  * function to access the md->map field, and make sure they call
736  * dm_put_live_table() when finished.
737  */
738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 	*srcu_idx = srcu_read_lock(&md->io_barrier);
741 
742 	return srcu_dereference(md->map, &md->io_barrier);
743 }
744 
745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 	srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749 
750 void dm_sync_table(struct mapped_device *md)
751 {
752 	synchronize_srcu(&md->io_barrier);
753 	synchronize_rcu_expedited();
754 }
755 
756 /*
757  * A fast alternative to dm_get_live_table/dm_put_live_table.
758  * The caller must not block between these two functions.
759  */
760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 	rcu_read_lock();
763 	return rcu_dereference(md->map);
764 }
765 
766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 	rcu_read_unlock();
769 }
770 
771 /*
772  * Open a table device so we can use it as a map destination.
773  */
774 static int open_table_device(struct table_device *td, dev_t dev,
775 			     struct mapped_device *md)
776 {
777 	static char *_claim_ptr = "I belong to device-mapper";
778 	struct block_device *bdev;
779 
780 	int r;
781 
782 	BUG_ON(td->dm_dev.bdev);
783 
784 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 	if (IS_ERR(bdev))
786 		return PTR_ERR(bdev);
787 
788 	r = bd_link_disk_holder(bdev, dm_disk(md));
789 	if (r) {
790 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 		return r;
792 	}
793 
794 	td->dm_dev.bdev = bdev;
795 	return 0;
796 }
797 
798 /*
799  * Close a table device that we've been using.
800  */
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 	if (!td->dm_dev.bdev)
804 		return;
805 
806 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 	td->dm_dev.bdev = NULL;
809 }
810 
811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 					      fmode_t mode) {
813 	struct table_device *td;
814 
815 	list_for_each_entry(td, l, list)
816 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 			return td;
818 
819 	return NULL;
820 }
821 
822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 			struct dm_dev **result) {
824 	int r;
825 	struct table_device *td;
826 
827 	mutex_lock(&md->table_devices_lock);
828 	td = find_table_device(&md->table_devices, dev, mode);
829 	if (!td) {
830 		td = kmalloc(sizeof(*td), GFP_KERNEL);
831 		if (!td) {
832 			mutex_unlock(&md->table_devices_lock);
833 			return -ENOMEM;
834 		}
835 
836 		td->dm_dev.mode = mode;
837 		td->dm_dev.bdev = NULL;
838 
839 		if ((r = open_table_device(td, dev, md))) {
840 			mutex_unlock(&md->table_devices_lock);
841 			kfree(td);
842 			return r;
843 		}
844 
845 		format_dev_t(td->dm_dev.name, dev);
846 
847 		atomic_set(&td->count, 0);
848 		list_add(&td->list, &md->table_devices);
849 	}
850 	atomic_inc(&td->count);
851 	mutex_unlock(&md->table_devices_lock);
852 
853 	*result = &td->dm_dev;
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857 
858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 	struct table_device *td = container_of(d, struct table_device, dm_dev);
861 
862 	mutex_lock(&md->table_devices_lock);
863 	if (atomic_dec_and_test(&td->count)) {
864 		close_table_device(td, md);
865 		list_del(&td->list);
866 		kfree(td);
867 	}
868 	mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871 
872 static void free_table_devices(struct list_head *devices)
873 {
874 	struct list_head *tmp, *next;
875 
876 	list_for_each_safe(tmp, next, devices) {
877 		struct table_device *td = list_entry(tmp, struct table_device, list);
878 
879 		DMWARN("dm_destroy: %s still exists with %d references",
880 		       td->dm_dev.name, atomic_read(&td->count));
881 		kfree(td);
882 	}
883 }
884 
885 /*
886  * Get the geometry associated with a dm device
887  */
888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 	*geo = md->geometry;
891 
892 	return 0;
893 }
894 
895 /*
896  * Set the geometry of a device.
897  */
898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901 
902 	if (geo->start > sz) {
903 		DMWARN("Start sector is beyond the geometry limits.");
904 		return -EINVAL;
905 	}
906 
907 	md->geometry = *geo;
908 
909 	return 0;
910 }
911 
912 /*-----------------------------------------------------------------
913  * CRUD START:
914  *   A more elegant soln is in the works that uses the queue
915  *   merge fn, unfortunately there are a couple of changes to
916  *   the block layer that I want to make for this.  So in the
917  *   interests of getting something for people to use I give
918  *   you this clearly demarcated crap.
919  *---------------------------------------------------------------*/
920 
921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925 
926 /*
927  * Decrements the number of outstanding ios that a bio has been
928  * cloned into, completing the original io if necc.
929  */
930 static void dec_pending(struct dm_io *io, int error)
931 {
932 	unsigned long flags;
933 	int io_error;
934 	struct bio *bio;
935 	struct mapped_device *md = io->md;
936 
937 	/* Push-back supersedes any I/O errors */
938 	if (unlikely(error)) {
939 		spin_lock_irqsave(&io->endio_lock, flags);
940 		if (!(io->error > 0 && __noflush_suspending(md)))
941 			io->error = error;
942 		spin_unlock_irqrestore(&io->endio_lock, flags);
943 	}
944 
945 	if (atomic_dec_and_test(&io->io_count)) {
946 		if (io->error == DM_ENDIO_REQUEUE) {
947 			/*
948 			 * Target requested pushing back the I/O.
949 			 */
950 			spin_lock_irqsave(&md->deferred_lock, flags);
951 			if (__noflush_suspending(md))
952 				bio_list_add_head(&md->deferred, io->bio);
953 			else
954 				/* noflush suspend was interrupted. */
955 				io->error = -EIO;
956 			spin_unlock_irqrestore(&md->deferred_lock, flags);
957 		}
958 
959 		io_error = io->error;
960 		bio = io->bio;
961 		end_io_acct(io);
962 		free_io(md, io);
963 
964 		if (io_error == DM_ENDIO_REQUEUE)
965 			return;
966 
967 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 			/*
969 			 * Preflush done for flush with data, reissue
970 			 * without REQ_FLUSH.
971 			 */
972 			bio->bi_rw &= ~REQ_FLUSH;
973 			queue_io(md, bio);
974 		} else {
975 			/* done with normal IO or empty flush */
976 			trace_block_bio_complete(md->queue, bio, io_error);
977 			bio->bi_error = io_error;
978 			bio_endio(bio);
979 		}
980 	}
981 }
982 
983 static void disable_write_same(struct mapped_device *md)
984 {
985 	struct queue_limits *limits = dm_get_queue_limits(md);
986 
987 	/* device doesn't really support WRITE SAME, disable it */
988 	limits->max_write_same_sectors = 0;
989 }
990 
991 static void clone_endio(struct bio *bio)
992 {
993 	int error = bio->bi_error;
994 	int r = error;
995 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 	struct dm_io *io = tio->io;
997 	struct mapped_device *md = tio->io->md;
998 	dm_endio_fn endio = tio->ti->type->end_io;
999 
1000 	if (endio) {
1001 		r = endio(tio->ti, bio, error);
1002 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 			/*
1004 			 * error and requeue request are handled
1005 			 * in dec_pending().
1006 			 */
1007 			error = r;
1008 		else if (r == DM_ENDIO_INCOMPLETE)
1009 			/* The target will handle the io */
1010 			return;
1011 		else if (r) {
1012 			DMWARN("unimplemented target endio return value: %d", r);
1013 			BUG();
1014 		}
1015 	}
1016 
1017 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 		disable_write_same(md);
1020 
1021 	free_tio(md, tio);
1022 	dec_pending(io, error);
1023 }
1024 
1025 /*
1026  * Partial completion handling for request-based dm
1027  */
1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 	struct dm_rq_clone_bio_info *info =
1031 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 	struct dm_rq_target_io *tio = info->tio;
1033 	struct bio *bio = info->orig;
1034 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 	int error = clone->bi_error;
1036 
1037 	bio_put(clone);
1038 
1039 	if (tio->error)
1040 		/*
1041 		 * An error has already been detected on the request.
1042 		 * Once error occurred, just let clone->end_io() handle
1043 		 * the remainder.
1044 		 */
1045 		return;
1046 	else if (error) {
1047 		/*
1048 		 * Don't notice the error to the upper layer yet.
1049 		 * The error handling decision is made by the target driver,
1050 		 * when the request is completed.
1051 		 */
1052 		tio->error = error;
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * I/O for the bio successfully completed.
1058 	 * Notice the data completion to the upper layer.
1059 	 */
1060 
1061 	/*
1062 	 * bios are processed from the head of the list.
1063 	 * So the completing bio should always be rq->bio.
1064 	 * If it's not, something wrong is happening.
1065 	 */
1066 	if (tio->orig->bio != bio)
1067 		DMERR("bio completion is going in the middle of the request");
1068 
1069 	/*
1070 	 * Update the original request.
1071 	 * Do not use blk_end_request() here, because it may complete
1072 	 * the original request before the clone, and break the ordering.
1073 	 */
1074 	blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076 
1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081 
1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 	if (unlikely(dm_stats_used(&md->stats))) {
1085 		struct dm_rq_target_io *tio = tio_from_request(orig);
1086 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 				    tio->n_sectors, true, tio->duration_jiffies,
1089 				    &tio->stats_aux);
1090 	}
1091 }
1092 
1093 /*
1094  * Don't touch any member of the md after calling this function because
1095  * the md may be freed in dm_put() at the end of this function.
1096  * Or do dm_get() before calling this function and dm_put() later.
1097  */
1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 	atomic_dec(&md->pending[rw]);
1101 
1102 	/* nudge anyone waiting on suspend queue */
1103 	if (!md_in_flight(md))
1104 		wake_up(&md->wait);
1105 
1106 	/*
1107 	 * Run this off this callpath, as drivers could invoke end_io while
1108 	 * inside their request_fn (and holding the queue lock). Calling
1109 	 * back into ->request_fn() could deadlock attempting to grab the
1110 	 * queue lock again.
1111 	 */
1112 	if (run_queue) {
1113 		if (md->queue->mq_ops)
1114 			blk_mq_run_hw_queues(md->queue, true);
1115 		else
1116 			blk_run_queue_async(md->queue);
1117 	}
1118 
1119 	/*
1120 	 * dm_put() must be at the end of this function. See the comment above
1121 	 */
1122 	dm_put(md);
1123 }
1124 
1125 static void free_rq_clone(struct request *clone)
1126 {
1127 	struct dm_rq_target_io *tio = clone->end_io_data;
1128 	struct mapped_device *md = tio->md;
1129 
1130 	blk_rq_unprep_clone(clone);
1131 
1132 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1133 		/* stacked on blk-mq queue(s) */
1134 		tio->ti->type->release_clone_rq(clone);
1135 	else if (!md->queue->mq_ops)
1136 		/* request_fn queue stacked on request_fn queue(s) */
1137 		free_clone_request(md, clone);
1138 	/*
1139 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1140 	 * no need to call free_clone_request() because we leverage blk-mq by
1141 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1142 	 */
1143 
1144 	if (!md->queue->mq_ops)
1145 		free_rq_tio(tio);
1146 }
1147 
1148 /*
1149  * Complete the clone and the original request.
1150  * Must be called without clone's queue lock held,
1151  * see end_clone_request() for more details.
1152  */
1153 static void dm_end_request(struct request *clone, int error)
1154 {
1155 	int rw = rq_data_dir(clone);
1156 	struct dm_rq_target_io *tio = clone->end_io_data;
1157 	struct mapped_device *md = tio->md;
1158 	struct request *rq = tio->orig;
1159 
1160 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1161 		rq->errors = clone->errors;
1162 		rq->resid_len = clone->resid_len;
1163 
1164 		if (rq->sense)
1165 			/*
1166 			 * We are using the sense buffer of the original
1167 			 * request.
1168 			 * So setting the length of the sense data is enough.
1169 			 */
1170 			rq->sense_len = clone->sense_len;
1171 	}
1172 
1173 	free_rq_clone(clone);
1174 	rq_end_stats(md, rq);
1175 	if (!rq->q->mq_ops)
1176 		blk_end_request_all(rq, error);
1177 	else
1178 		blk_mq_end_request(rq, error);
1179 	rq_completed(md, rw, true);
1180 }
1181 
1182 static void dm_unprep_request(struct request *rq)
1183 {
1184 	struct dm_rq_target_io *tio = tio_from_request(rq);
1185 	struct request *clone = tio->clone;
1186 
1187 	if (!rq->q->mq_ops) {
1188 		rq->special = NULL;
1189 		rq->cmd_flags &= ~REQ_DONTPREP;
1190 	}
1191 
1192 	if (clone)
1193 		free_rq_clone(clone);
1194 	else if (!tio->md->queue->mq_ops)
1195 		free_rq_tio(tio);
1196 }
1197 
1198 /*
1199  * Requeue the original request of a clone.
1200  */
1201 static void old_requeue_request(struct request *rq)
1202 {
1203 	struct request_queue *q = rq->q;
1204 	unsigned long flags;
1205 
1206 	spin_lock_irqsave(q->queue_lock, flags);
1207 	blk_requeue_request(q, rq);
1208 	blk_run_queue_async(q);
1209 	spin_unlock_irqrestore(q->queue_lock, flags);
1210 }
1211 
1212 static void dm_requeue_original_request(struct mapped_device *md,
1213 					struct request *rq)
1214 {
1215 	int rw = rq_data_dir(rq);
1216 
1217 	dm_unprep_request(rq);
1218 
1219 	rq_end_stats(md, rq);
1220 	if (!rq->q->mq_ops)
1221 		old_requeue_request(rq);
1222 	else {
1223 		blk_mq_requeue_request(rq);
1224 		blk_mq_kick_requeue_list(rq->q);
1225 	}
1226 
1227 	rq_completed(md, rw, false);
1228 }
1229 
1230 static void old_stop_queue(struct request_queue *q)
1231 {
1232 	unsigned long flags;
1233 
1234 	if (blk_queue_stopped(q))
1235 		return;
1236 
1237 	spin_lock_irqsave(q->queue_lock, flags);
1238 	blk_stop_queue(q);
1239 	spin_unlock_irqrestore(q->queue_lock, flags);
1240 }
1241 
1242 static void stop_queue(struct request_queue *q)
1243 {
1244 	if (!q->mq_ops)
1245 		old_stop_queue(q);
1246 	else
1247 		blk_mq_stop_hw_queues(q);
1248 }
1249 
1250 static void old_start_queue(struct request_queue *q)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(q->queue_lock, flags);
1255 	if (blk_queue_stopped(q))
1256 		blk_start_queue(q);
1257 	spin_unlock_irqrestore(q->queue_lock, flags);
1258 }
1259 
1260 static void start_queue(struct request_queue *q)
1261 {
1262 	if (!q->mq_ops)
1263 		old_start_queue(q);
1264 	else
1265 		blk_mq_start_stopped_hw_queues(q, true);
1266 }
1267 
1268 static void dm_done(struct request *clone, int error, bool mapped)
1269 {
1270 	int r = error;
1271 	struct dm_rq_target_io *tio = clone->end_io_data;
1272 	dm_request_endio_fn rq_end_io = NULL;
1273 
1274 	if (tio->ti) {
1275 		rq_end_io = tio->ti->type->rq_end_io;
1276 
1277 		if (mapped && rq_end_io)
1278 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1279 	}
1280 
1281 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1282 		     !clone->q->limits.max_write_same_sectors))
1283 		disable_write_same(tio->md);
1284 
1285 	if (r <= 0)
1286 		/* The target wants to complete the I/O */
1287 		dm_end_request(clone, r);
1288 	else if (r == DM_ENDIO_INCOMPLETE)
1289 		/* The target will handle the I/O */
1290 		return;
1291 	else if (r == DM_ENDIO_REQUEUE)
1292 		/* The target wants to requeue the I/O */
1293 		dm_requeue_original_request(tio->md, tio->orig);
1294 	else {
1295 		DMWARN("unimplemented target endio return value: %d", r);
1296 		BUG();
1297 	}
1298 }
1299 
1300 /*
1301  * Request completion handler for request-based dm
1302  */
1303 static void dm_softirq_done(struct request *rq)
1304 {
1305 	bool mapped = true;
1306 	struct dm_rq_target_io *tio = tio_from_request(rq);
1307 	struct request *clone = tio->clone;
1308 	int rw;
1309 
1310 	if (!clone) {
1311 		rq_end_stats(tio->md, rq);
1312 		rw = rq_data_dir(rq);
1313 		if (!rq->q->mq_ops) {
1314 			blk_end_request_all(rq, tio->error);
1315 			rq_completed(tio->md, rw, false);
1316 			free_rq_tio(tio);
1317 		} else {
1318 			blk_mq_end_request(rq, tio->error);
1319 			rq_completed(tio->md, rw, false);
1320 		}
1321 		return;
1322 	}
1323 
1324 	if (rq->cmd_flags & REQ_FAILED)
1325 		mapped = false;
1326 
1327 	dm_done(clone, tio->error, mapped);
1328 }
1329 
1330 /*
1331  * Complete the clone and the original request with the error status
1332  * through softirq context.
1333  */
1334 static void dm_complete_request(struct request *rq, int error)
1335 {
1336 	struct dm_rq_target_io *tio = tio_from_request(rq);
1337 
1338 	tio->error = error;
1339 	blk_complete_request(rq);
1340 }
1341 
1342 /*
1343  * Complete the not-mapped clone and the original request with the error status
1344  * through softirq context.
1345  * Target's rq_end_io() function isn't called.
1346  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1347  */
1348 static void dm_kill_unmapped_request(struct request *rq, int error)
1349 {
1350 	rq->cmd_flags |= REQ_FAILED;
1351 	dm_complete_request(rq, error);
1352 }
1353 
1354 /*
1355  * Called with the clone's queue lock held (for non-blk-mq)
1356  */
1357 static void end_clone_request(struct request *clone, int error)
1358 {
1359 	struct dm_rq_target_io *tio = clone->end_io_data;
1360 
1361 	if (!clone->q->mq_ops) {
1362 		/*
1363 		 * For just cleaning up the information of the queue in which
1364 		 * the clone was dispatched.
1365 		 * The clone is *NOT* freed actually here because it is alloced
1366 		 * from dm own mempool (REQ_ALLOCED isn't set).
1367 		 */
1368 		__blk_put_request(clone->q, clone);
1369 	}
1370 
1371 	/*
1372 	 * Actual request completion is done in a softirq context which doesn't
1373 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1374 	 *     - another request may be submitted by the upper level driver
1375 	 *       of the stacking during the completion
1376 	 *     - the submission which requires queue lock may be done
1377 	 *       against this clone's queue
1378 	 */
1379 	dm_complete_request(tio->orig, error);
1380 }
1381 
1382 /*
1383  * Return maximum size of I/O possible at the supplied sector up to the current
1384  * target boundary.
1385  */
1386 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1387 {
1388 	sector_t target_offset = dm_target_offset(ti, sector);
1389 
1390 	return ti->len - target_offset;
1391 }
1392 
1393 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1394 {
1395 	sector_t len = max_io_len_target_boundary(sector, ti);
1396 	sector_t offset, max_len;
1397 
1398 	/*
1399 	 * Does the target need to split even further?
1400 	 */
1401 	if (ti->max_io_len) {
1402 		offset = dm_target_offset(ti, sector);
1403 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1404 			max_len = sector_div(offset, ti->max_io_len);
1405 		else
1406 			max_len = offset & (ti->max_io_len - 1);
1407 		max_len = ti->max_io_len - max_len;
1408 
1409 		if (len > max_len)
1410 			len = max_len;
1411 	}
1412 
1413 	return len;
1414 }
1415 
1416 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1417 {
1418 	if (len > UINT_MAX) {
1419 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1420 		      (unsigned long long)len, UINT_MAX);
1421 		ti->error = "Maximum size of target IO is too large";
1422 		return -EINVAL;
1423 	}
1424 
1425 	ti->max_io_len = (uint32_t) len;
1426 
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1430 
1431 /*
1432  * A target may call dm_accept_partial_bio only from the map routine.  It is
1433  * allowed for all bio types except REQ_FLUSH.
1434  *
1435  * dm_accept_partial_bio informs the dm that the target only wants to process
1436  * additional n_sectors sectors of the bio and the rest of the data should be
1437  * sent in a next bio.
1438  *
1439  * A diagram that explains the arithmetics:
1440  * +--------------------+---------------+-------+
1441  * |         1          |       2       |   3   |
1442  * +--------------------+---------------+-------+
1443  *
1444  * <-------------- *tio->len_ptr --------------->
1445  *                      <------- bi_size ------->
1446  *                      <-- n_sectors -->
1447  *
1448  * Region 1 was already iterated over with bio_advance or similar function.
1449  *	(it may be empty if the target doesn't use bio_advance)
1450  * Region 2 is the remaining bio size that the target wants to process.
1451  *	(it may be empty if region 1 is non-empty, although there is no reason
1452  *	 to make it empty)
1453  * The target requires that region 3 is to be sent in the next bio.
1454  *
1455  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1456  * the partially processed part (the sum of regions 1+2) must be the same for all
1457  * copies of the bio.
1458  */
1459 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1460 {
1461 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1462 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1463 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1464 	BUG_ON(bi_size > *tio->len_ptr);
1465 	BUG_ON(n_sectors > bi_size);
1466 	*tio->len_ptr -= bi_size - n_sectors;
1467 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1468 }
1469 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1470 
1471 static void __map_bio(struct dm_target_io *tio)
1472 {
1473 	int r;
1474 	sector_t sector;
1475 	struct mapped_device *md;
1476 	struct bio *clone = &tio->clone;
1477 	struct dm_target *ti = tio->ti;
1478 
1479 	clone->bi_end_io = clone_endio;
1480 
1481 	/*
1482 	 * Map the clone.  If r == 0 we don't need to do
1483 	 * anything, the target has assumed ownership of
1484 	 * this io.
1485 	 */
1486 	atomic_inc(&tio->io->io_count);
1487 	sector = clone->bi_iter.bi_sector;
1488 	r = ti->type->map(ti, clone);
1489 	if (r == DM_MAPIO_REMAPPED) {
1490 		/* the bio has been remapped so dispatch it */
1491 
1492 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1493 				      tio->io->bio->bi_bdev->bd_dev, sector);
1494 
1495 		generic_make_request(clone);
1496 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1497 		/* error the io and bail out, or requeue it if needed */
1498 		md = tio->io->md;
1499 		dec_pending(tio->io, r);
1500 		free_tio(md, tio);
1501 	} else if (r != DM_MAPIO_SUBMITTED) {
1502 		DMWARN("unimplemented target map return value: %d", r);
1503 		BUG();
1504 	}
1505 }
1506 
1507 struct clone_info {
1508 	struct mapped_device *md;
1509 	struct dm_table *map;
1510 	struct bio *bio;
1511 	struct dm_io *io;
1512 	sector_t sector;
1513 	unsigned sector_count;
1514 };
1515 
1516 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1517 {
1518 	bio->bi_iter.bi_sector = sector;
1519 	bio->bi_iter.bi_size = to_bytes(len);
1520 }
1521 
1522 /*
1523  * Creates a bio that consists of range of complete bvecs.
1524  */
1525 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1526 		      sector_t sector, unsigned len)
1527 {
1528 	struct bio *clone = &tio->clone;
1529 
1530 	__bio_clone_fast(clone, bio);
1531 
1532 	if (bio_integrity(bio))
1533 		bio_integrity_clone(clone, bio, GFP_NOIO);
1534 
1535 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1536 	clone->bi_iter.bi_size = to_bytes(len);
1537 
1538 	if (bio_integrity(bio))
1539 		bio_integrity_trim(clone, 0, len);
1540 }
1541 
1542 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1543 				      struct dm_target *ti,
1544 				      unsigned target_bio_nr)
1545 {
1546 	struct dm_target_io *tio;
1547 	struct bio *clone;
1548 
1549 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1550 	tio = container_of(clone, struct dm_target_io, clone);
1551 
1552 	tio->io = ci->io;
1553 	tio->ti = ti;
1554 	tio->target_bio_nr = target_bio_nr;
1555 
1556 	return tio;
1557 }
1558 
1559 static void __clone_and_map_simple_bio(struct clone_info *ci,
1560 				       struct dm_target *ti,
1561 				       unsigned target_bio_nr, unsigned *len)
1562 {
1563 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1564 	struct bio *clone = &tio->clone;
1565 
1566 	tio->len_ptr = len;
1567 
1568 	__bio_clone_fast(clone, ci->bio);
1569 	if (len)
1570 		bio_setup_sector(clone, ci->sector, *len);
1571 
1572 	__map_bio(tio);
1573 }
1574 
1575 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1576 				  unsigned num_bios, unsigned *len)
1577 {
1578 	unsigned target_bio_nr;
1579 
1580 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1581 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1582 }
1583 
1584 static int __send_empty_flush(struct clone_info *ci)
1585 {
1586 	unsigned target_nr = 0;
1587 	struct dm_target *ti;
1588 
1589 	BUG_ON(bio_has_data(ci->bio));
1590 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1591 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1592 
1593 	return 0;
1594 }
1595 
1596 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1597 				     sector_t sector, unsigned *len)
1598 {
1599 	struct bio *bio = ci->bio;
1600 	struct dm_target_io *tio;
1601 	unsigned target_bio_nr;
1602 	unsigned num_target_bios = 1;
1603 
1604 	/*
1605 	 * Does the target want to receive duplicate copies of the bio?
1606 	 */
1607 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1608 		num_target_bios = ti->num_write_bios(ti, bio);
1609 
1610 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1611 		tio = alloc_tio(ci, ti, target_bio_nr);
1612 		tio->len_ptr = len;
1613 		clone_bio(tio, bio, sector, *len);
1614 		__map_bio(tio);
1615 	}
1616 }
1617 
1618 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1619 
1620 static unsigned get_num_discard_bios(struct dm_target *ti)
1621 {
1622 	return ti->num_discard_bios;
1623 }
1624 
1625 static unsigned get_num_write_same_bios(struct dm_target *ti)
1626 {
1627 	return ti->num_write_same_bios;
1628 }
1629 
1630 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1631 
1632 static bool is_split_required_for_discard(struct dm_target *ti)
1633 {
1634 	return ti->split_discard_bios;
1635 }
1636 
1637 static int __send_changing_extent_only(struct clone_info *ci,
1638 				       get_num_bios_fn get_num_bios,
1639 				       is_split_required_fn is_split_required)
1640 {
1641 	struct dm_target *ti;
1642 	unsigned len;
1643 	unsigned num_bios;
1644 
1645 	do {
1646 		ti = dm_table_find_target(ci->map, ci->sector);
1647 		if (!dm_target_is_valid(ti))
1648 			return -EIO;
1649 
1650 		/*
1651 		 * Even though the device advertised support for this type of
1652 		 * request, that does not mean every target supports it, and
1653 		 * reconfiguration might also have changed that since the
1654 		 * check was performed.
1655 		 */
1656 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1657 		if (!num_bios)
1658 			return -EOPNOTSUPP;
1659 
1660 		if (is_split_required && !is_split_required(ti))
1661 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1662 		else
1663 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1664 
1665 		__send_duplicate_bios(ci, ti, num_bios, &len);
1666 
1667 		ci->sector += len;
1668 	} while (ci->sector_count -= len);
1669 
1670 	return 0;
1671 }
1672 
1673 static int __send_discard(struct clone_info *ci)
1674 {
1675 	return __send_changing_extent_only(ci, get_num_discard_bios,
1676 					   is_split_required_for_discard);
1677 }
1678 
1679 static int __send_write_same(struct clone_info *ci)
1680 {
1681 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1682 }
1683 
1684 /*
1685  * Select the correct strategy for processing a non-flush bio.
1686  */
1687 static int __split_and_process_non_flush(struct clone_info *ci)
1688 {
1689 	struct bio *bio = ci->bio;
1690 	struct dm_target *ti;
1691 	unsigned len;
1692 
1693 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1694 		return __send_discard(ci);
1695 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1696 		return __send_write_same(ci);
1697 
1698 	ti = dm_table_find_target(ci->map, ci->sector);
1699 	if (!dm_target_is_valid(ti))
1700 		return -EIO;
1701 
1702 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1703 
1704 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1705 
1706 	ci->sector += len;
1707 	ci->sector_count -= len;
1708 
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Entry point to split a bio into clones and submit them to the targets.
1714  */
1715 static void __split_and_process_bio(struct mapped_device *md,
1716 				    struct dm_table *map, struct bio *bio)
1717 {
1718 	struct clone_info ci;
1719 	int error = 0;
1720 
1721 	if (unlikely(!map)) {
1722 		bio_io_error(bio);
1723 		return;
1724 	}
1725 
1726 	ci.map = map;
1727 	ci.md = md;
1728 	ci.io = alloc_io(md);
1729 	ci.io->error = 0;
1730 	atomic_set(&ci.io->io_count, 1);
1731 	ci.io->bio = bio;
1732 	ci.io->md = md;
1733 	spin_lock_init(&ci.io->endio_lock);
1734 	ci.sector = bio->bi_iter.bi_sector;
1735 
1736 	start_io_acct(ci.io);
1737 
1738 	if (bio->bi_rw & REQ_FLUSH) {
1739 		ci.bio = &ci.md->flush_bio;
1740 		ci.sector_count = 0;
1741 		error = __send_empty_flush(&ci);
1742 		/* dec_pending submits any data associated with flush */
1743 	} else {
1744 		ci.bio = bio;
1745 		ci.sector_count = bio_sectors(bio);
1746 		while (ci.sector_count && !error)
1747 			error = __split_and_process_non_flush(&ci);
1748 	}
1749 
1750 	/* drop the extra reference count */
1751 	dec_pending(ci.io, error);
1752 }
1753 /*-----------------------------------------------------------------
1754  * CRUD END
1755  *---------------------------------------------------------------*/
1756 
1757 /*
1758  * The request function that just remaps the bio built up by
1759  * dm_merge_bvec.
1760  */
1761 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1762 {
1763 	int rw = bio_data_dir(bio);
1764 	struct mapped_device *md = q->queuedata;
1765 	int srcu_idx;
1766 	struct dm_table *map;
1767 
1768 	map = dm_get_live_table(md, &srcu_idx);
1769 
1770 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1771 
1772 	/* if we're suspended, we have to queue this io for later */
1773 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1774 		dm_put_live_table(md, srcu_idx);
1775 
1776 		if (bio_rw(bio) != READA)
1777 			queue_io(md, bio);
1778 		else
1779 			bio_io_error(bio);
1780 		return BLK_QC_T_NONE;
1781 	}
1782 
1783 	__split_and_process_bio(md, map, bio);
1784 	dm_put_live_table(md, srcu_idx);
1785 	return BLK_QC_T_NONE;
1786 }
1787 
1788 int dm_request_based(struct mapped_device *md)
1789 {
1790 	return blk_queue_stackable(md->queue);
1791 }
1792 
1793 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1794 {
1795 	int r;
1796 
1797 	if (blk_queue_io_stat(clone->q))
1798 		clone->cmd_flags |= REQ_IO_STAT;
1799 
1800 	clone->start_time = jiffies;
1801 	r = blk_insert_cloned_request(clone->q, clone);
1802 	if (r)
1803 		/* must complete clone in terms of original request */
1804 		dm_complete_request(rq, r);
1805 }
1806 
1807 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1808 				 void *data)
1809 {
1810 	struct dm_rq_target_io *tio = data;
1811 	struct dm_rq_clone_bio_info *info =
1812 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1813 
1814 	info->orig = bio_orig;
1815 	info->tio = tio;
1816 	bio->bi_end_io = end_clone_bio;
1817 
1818 	return 0;
1819 }
1820 
1821 static int setup_clone(struct request *clone, struct request *rq,
1822 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1823 {
1824 	int r;
1825 
1826 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1827 			      dm_rq_bio_constructor, tio);
1828 	if (r)
1829 		return r;
1830 
1831 	clone->cmd = rq->cmd;
1832 	clone->cmd_len = rq->cmd_len;
1833 	clone->sense = rq->sense;
1834 	clone->end_io = end_clone_request;
1835 	clone->end_io_data = tio;
1836 
1837 	tio->clone = clone;
1838 
1839 	return 0;
1840 }
1841 
1842 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1843 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1844 {
1845 	/*
1846 	 * Do not allocate a clone if tio->clone was already set
1847 	 * (see: dm_mq_queue_rq).
1848 	 */
1849 	bool alloc_clone = !tio->clone;
1850 	struct request *clone;
1851 
1852 	if (alloc_clone) {
1853 		clone = alloc_clone_request(md, gfp_mask);
1854 		if (!clone)
1855 			return NULL;
1856 	} else
1857 		clone = tio->clone;
1858 
1859 	blk_rq_init(NULL, clone);
1860 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1861 		/* -ENOMEM */
1862 		if (alloc_clone)
1863 			free_clone_request(md, clone);
1864 		return NULL;
1865 	}
1866 
1867 	return clone;
1868 }
1869 
1870 static void map_tio_request(struct kthread_work *work);
1871 
1872 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1873 		     struct mapped_device *md)
1874 {
1875 	tio->md = md;
1876 	tio->ti = NULL;
1877 	tio->clone = NULL;
1878 	tio->orig = rq;
1879 	tio->error = 0;
1880 	memset(&tio->info, 0, sizeof(tio->info));
1881 	if (md->kworker_task)
1882 		init_kthread_work(&tio->work, map_tio_request);
1883 }
1884 
1885 static struct dm_rq_target_io *prep_tio(struct request *rq,
1886 					struct mapped_device *md, gfp_t gfp_mask)
1887 {
1888 	struct dm_rq_target_io *tio;
1889 	int srcu_idx;
1890 	struct dm_table *table;
1891 
1892 	tio = alloc_rq_tio(md, gfp_mask);
1893 	if (!tio)
1894 		return NULL;
1895 
1896 	init_tio(tio, rq, md);
1897 
1898 	table = dm_get_live_table(md, &srcu_idx);
1899 	if (!dm_table_mq_request_based(table)) {
1900 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1901 			dm_put_live_table(md, srcu_idx);
1902 			free_rq_tio(tio);
1903 			return NULL;
1904 		}
1905 	}
1906 	dm_put_live_table(md, srcu_idx);
1907 
1908 	return tio;
1909 }
1910 
1911 /*
1912  * Called with the queue lock held.
1913  */
1914 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1915 {
1916 	struct mapped_device *md = q->queuedata;
1917 	struct dm_rq_target_io *tio;
1918 
1919 	if (unlikely(rq->special)) {
1920 		DMWARN("Already has something in rq->special.");
1921 		return BLKPREP_KILL;
1922 	}
1923 
1924 	tio = prep_tio(rq, md, GFP_ATOMIC);
1925 	if (!tio)
1926 		return BLKPREP_DEFER;
1927 
1928 	rq->special = tio;
1929 	rq->cmd_flags |= REQ_DONTPREP;
1930 
1931 	return BLKPREP_OK;
1932 }
1933 
1934 /*
1935  * Returns:
1936  * 0                : the request has been processed
1937  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1938  * < 0              : the request was completed due to failure
1939  */
1940 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1941 		       struct mapped_device *md)
1942 {
1943 	int r;
1944 	struct dm_target *ti = tio->ti;
1945 	struct request *clone = NULL;
1946 
1947 	if (tio->clone) {
1948 		clone = tio->clone;
1949 		r = ti->type->map_rq(ti, clone, &tio->info);
1950 	} else {
1951 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1952 		if (r < 0) {
1953 			/* The target wants to complete the I/O */
1954 			dm_kill_unmapped_request(rq, r);
1955 			return r;
1956 		}
1957 		if (r != DM_MAPIO_REMAPPED)
1958 			return r;
1959 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1960 			/* -ENOMEM */
1961 			ti->type->release_clone_rq(clone);
1962 			return DM_MAPIO_REQUEUE;
1963 		}
1964 	}
1965 
1966 	switch (r) {
1967 	case DM_MAPIO_SUBMITTED:
1968 		/* The target has taken the I/O to submit by itself later */
1969 		break;
1970 	case DM_MAPIO_REMAPPED:
1971 		/* The target has remapped the I/O so dispatch it */
1972 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1973 				     blk_rq_pos(rq));
1974 		dm_dispatch_clone_request(clone, rq);
1975 		break;
1976 	case DM_MAPIO_REQUEUE:
1977 		/* The target wants to requeue the I/O */
1978 		dm_requeue_original_request(md, tio->orig);
1979 		break;
1980 	default:
1981 		if (r > 0) {
1982 			DMWARN("unimplemented target map return value: %d", r);
1983 			BUG();
1984 		}
1985 
1986 		/* The target wants to complete the I/O */
1987 		dm_kill_unmapped_request(rq, r);
1988 		return r;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static void map_tio_request(struct kthread_work *work)
1995 {
1996 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1997 	struct request *rq = tio->orig;
1998 	struct mapped_device *md = tio->md;
1999 
2000 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2001 		dm_requeue_original_request(md, rq);
2002 }
2003 
2004 static void dm_start_request(struct mapped_device *md, struct request *orig)
2005 {
2006 	if (!orig->q->mq_ops)
2007 		blk_start_request(orig);
2008 	else
2009 		blk_mq_start_request(orig);
2010 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2011 
2012 	if (md->seq_rq_merge_deadline_usecs) {
2013 		md->last_rq_pos = rq_end_sector(orig);
2014 		md->last_rq_rw = rq_data_dir(orig);
2015 		md->last_rq_start_time = ktime_get();
2016 	}
2017 
2018 	if (unlikely(dm_stats_used(&md->stats))) {
2019 		struct dm_rq_target_io *tio = tio_from_request(orig);
2020 		tio->duration_jiffies = jiffies;
2021 		tio->n_sectors = blk_rq_sectors(orig);
2022 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2023 				    tio->n_sectors, false, 0, &tio->stats_aux);
2024 	}
2025 
2026 	/*
2027 	 * Hold the md reference here for the in-flight I/O.
2028 	 * We can't rely on the reference count by device opener,
2029 	 * because the device may be closed during the request completion
2030 	 * when all bios are completed.
2031 	 * See the comment in rq_completed() too.
2032 	 */
2033 	dm_get(md);
2034 }
2035 
2036 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2037 
2038 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2039 {
2040 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2041 }
2042 
2043 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2044 						     const char *buf, size_t count)
2045 {
2046 	unsigned deadline;
2047 
2048 	if (!dm_request_based(md) || md->use_blk_mq)
2049 		return count;
2050 
2051 	if (kstrtouint(buf, 10, &deadline))
2052 		return -EINVAL;
2053 
2054 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2055 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2056 
2057 	md->seq_rq_merge_deadline_usecs = deadline;
2058 
2059 	return count;
2060 }
2061 
2062 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2063 {
2064 	ktime_t kt_deadline;
2065 
2066 	if (!md->seq_rq_merge_deadline_usecs)
2067 		return false;
2068 
2069 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2070 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2071 
2072 	return !ktime_after(ktime_get(), kt_deadline);
2073 }
2074 
2075 /*
2076  * q->request_fn for request-based dm.
2077  * Called with the queue lock held.
2078  */
2079 static void dm_request_fn(struct request_queue *q)
2080 {
2081 	struct mapped_device *md = q->queuedata;
2082 	int srcu_idx;
2083 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2084 	struct dm_target *ti;
2085 	struct request *rq;
2086 	struct dm_rq_target_io *tio;
2087 	sector_t pos;
2088 
2089 	/*
2090 	 * For suspend, check blk_queue_stopped() and increment
2091 	 * ->pending within a single queue_lock not to increment the
2092 	 * number of in-flight I/Os after the queue is stopped in
2093 	 * dm_suspend().
2094 	 */
2095 	while (!blk_queue_stopped(q)) {
2096 		rq = blk_peek_request(q);
2097 		if (!rq)
2098 			goto out;
2099 
2100 		/* always use block 0 to find the target for flushes for now */
2101 		pos = 0;
2102 		if (!(rq->cmd_flags & REQ_FLUSH))
2103 			pos = blk_rq_pos(rq);
2104 
2105 		ti = dm_table_find_target(map, pos);
2106 		if (!dm_target_is_valid(ti)) {
2107 			/*
2108 			 * Must perform setup, that rq_completed() requires,
2109 			 * before calling dm_kill_unmapped_request
2110 			 */
2111 			DMERR_LIMIT("request attempted access beyond the end of device");
2112 			dm_start_request(md, rq);
2113 			dm_kill_unmapped_request(rq, -EIO);
2114 			continue;
2115 		}
2116 
2117 		if (dm_request_peeked_before_merge_deadline(md) &&
2118 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2119 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2120 			goto delay_and_out;
2121 
2122 		if (ti->type->busy && ti->type->busy(ti))
2123 			goto delay_and_out;
2124 
2125 		dm_start_request(md, rq);
2126 
2127 		tio = tio_from_request(rq);
2128 		/* Establish tio->ti before queuing work (map_tio_request) */
2129 		tio->ti = ti;
2130 		queue_kthread_work(&md->kworker, &tio->work);
2131 		BUG_ON(!irqs_disabled());
2132 	}
2133 
2134 	goto out;
2135 
2136 delay_and_out:
2137 	blk_delay_queue(q, HZ / 100);
2138 out:
2139 	dm_put_live_table(md, srcu_idx);
2140 }
2141 
2142 static int dm_any_congested(void *congested_data, int bdi_bits)
2143 {
2144 	int r = bdi_bits;
2145 	struct mapped_device *md = congested_data;
2146 	struct dm_table *map;
2147 
2148 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2149 		map = dm_get_live_table_fast(md);
2150 		if (map) {
2151 			/*
2152 			 * Request-based dm cares about only own queue for
2153 			 * the query about congestion status of request_queue
2154 			 */
2155 			if (dm_request_based(md))
2156 				r = md->queue->backing_dev_info.wb.state &
2157 				    bdi_bits;
2158 			else
2159 				r = dm_table_any_congested(map, bdi_bits);
2160 		}
2161 		dm_put_live_table_fast(md);
2162 	}
2163 
2164 	return r;
2165 }
2166 
2167 /*-----------------------------------------------------------------
2168  * An IDR is used to keep track of allocated minor numbers.
2169  *---------------------------------------------------------------*/
2170 static void free_minor(int minor)
2171 {
2172 	spin_lock(&_minor_lock);
2173 	idr_remove(&_minor_idr, minor);
2174 	spin_unlock(&_minor_lock);
2175 }
2176 
2177 /*
2178  * See if the device with a specific minor # is free.
2179  */
2180 static int specific_minor(int minor)
2181 {
2182 	int r;
2183 
2184 	if (minor >= (1 << MINORBITS))
2185 		return -EINVAL;
2186 
2187 	idr_preload(GFP_KERNEL);
2188 	spin_lock(&_minor_lock);
2189 
2190 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2191 
2192 	spin_unlock(&_minor_lock);
2193 	idr_preload_end();
2194 	if (r < 0)
2195 		return r == -ENOSPC ? -EBUSY : r;
2196 	return 0;
2197 }
2198 
2199 static int next_free_minor(int *minor)
2200 {
2201 	int r;
2202 
2203 	idr_preload(GFP_KERNEL);
2204 	spin_lock(&_minor_lock);
2205 
2206 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2207 
2208 	spin_unlock(&_minor_lock);
2209 	idr_preload_end();
2210 	if (r < 0)
2211 		return r;
2212 	*minor = r;
2213 	return 0;
2214 }
2215 
2216 static const struct block_device_operations dm_blk_dops;
2217 
2218 static void dm_wq_work(struct work_struct *work);
2219 
2220 static void dm_init_md_queue(struct mapped_device *md)
2221 {
2222 	/*
2223 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2224 	 * devices.  The type of this dm device may not have been decided yet.
2225 	 * The type is decided at the first table loading time.
2226 	 * To prevent problematic device stacking, clear the queue flag
2227 	 * for request stacking support until then.
2228 	 *
2229 	 * This queue is new, so no concurrency on the queue_flags.
2230 	 */
2231 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2232 
2233 	/*
2234 	 * Initialize data that will only be used by a non-blk-mq DM queue
2235 	 * - must do so here (in alloc_dev callchain) before queue is used
2236 	 */
2237 	md->queue->queuedata = md;
2238 	md->queue->backing_dev_info.congested_data = md;
2239 }
2240 
2241 static void dm_init_old_md_queue(struct mapped_device *md)
2242 {
2243 	md->use_blk_mq = false;
2244 	dm_init_md_queue(md);
2245 
2246 	/*
2247 	 * Initialize aspects of queue that aren't relevant for blk-mq
2248 	 */
2249 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2250 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2251 }
2252 
2253 static void cleanup_mapped_device(struct mapped_device *md)
2254 {
2255 	if (md->wq)
2256 		destroy_workqueue(md->wq);
2257 	if (md->kworker_task)
2258 		kthread_stop(md->kworker_task);
2259 	mempool_destroy(md->io_pool);
2260 	mempool_destroy(md->rq_pool);
2261 	if (md->bs)
2262 		bioset_free(md->bs);
2263 
2264 	cleanup_srcu_struct(&md->io_barrier);
2265 
2266 	if (md->disk) {
2267 		spin_lock(&_minor_lock);
2268 		md->disk->private_data = NULL;
2269 		spin_unlock(&_minor_lock);
2270 		del_gendisk(md->disk);
2271 		put_disk(md->disk);
2272 	}
2273 
2274 	if (md->queue)
2275 		blk_cleanup_queue(md->queue);
2276 
2277 	if (md->bdev) {
2278 		bdput(md->bdev);
2279 		md->bdev = NULL;
2280 	}
2281 }
2282 
2283 /*
2284  * Allocate and initialise a blank device with a given minor.
2285  */
2286 static struct mapped_device *alloc_dev(int minor)
2287 {
2288 	int r;
2289 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2290 	void *old_md;
2291 
2292 	if (!md) {
2293 		DMWARN("unable to allocate device, out of memory.");
2294 		return NULL;
2295 	}
2296 
2297 	if (!try_module_get(THIS_MODULE))
2298 		goto bad_module_get;
2299 
2300 	/* get a minor number for the dev */
2301 	if (minor == DM_ANY_MINOR)
2302 		r = next_free_minor(&minor);
2303 	else
2304 		r = specific_minor(minor);
2305 	if (r < 0)
2306 		goto bad_minor;
2307 
2308 	r = init_srcu_struct(&md->io_barrier);
2309 	if (r < 0)
2310 		goto bad_io_barrier;
2311 
2312 	md->use_blk_mq = use_blk_mq;
2313 	md->type = DM_TYPE_NONE;
2314 	mutex_init(&md->suspend_lock);
2315 	mutex_init(&md->type_lock);
2316 	mutex_init(&md->table_devices_lock);
2317 	spin_lock_init(&md->deferred_lock);
2318 	atomic_set(&md->holders, 1);
2319 	atomic_set(&md->open_count, 0);
2320 	atomic_set(&md->event_nr, 0);
2321 	atomic_set(&md->uevent_seq, 0);
2322 	INIT_LIST_HEAD(&md->uevent_list);
2323 	INIT_LIST_HEAD(&md->table_devices);
2324 	spin_lock_init(&md->uevent_lock);
2325 
2326 	md->queue = blk_alloc_queue(GFP_KERNEL);
2327 	if (!md->queue)
2328 		goto bad;
2329 
2330 	dm_init_md_queue(md);
2331 
2332 	md->disk = alloc_disk(1);
2333 	if (!md->disk)
2334 		goto bad;
2335 
2336 	atomic_set(&md->pending[0], 0);
2337 	atomic_set(&md->pending[1], 0);
2338 	init_waitqueue_head(&md->wait);
2339 	INIT_WORK(&md->work, dm_wq_work);
2340 	init_waitqueue_head(&md->eventq);
2341 	init_completion(&md->kobj_holder.completion);
2342 	md->kworker_task = NULL;
2343 
2344 	md->disk->major = _major;
2345 	md->disk->first_minor = minor;
2346 	md->disk->fops = &dm_blk_dops;
2347 	md->disk->queue = md->queue;
2348 	md->disk->private_data = md;
2349 	sprintf(md->disk->disk_name, "dm-%d", minor);
2350 	add_disk(md->disk);
2351 	format_dev_t(md->name, MKDEV(_major, minor));
2352 
2353 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2354 	if (!md->wq)
2355 		goto bad;
2356 
2357 	md->bdev = bdget_disk(md->disk, 0);
2358 	if (!md->bdev)
2359 		goto bad;
2360 
2361 	bio_init(&md->flush_bio);
2362 	md->flush_bio.bi_bdev = md->bdev;
2363 	md->flush_bio.bi_rw = WRITE_FLUSH;
2364 
2365 	dm_stats_init(&md->stats);
2366 
2367 	/* Populate the mapping, nobody knows we exist yet */
2368 	spin_lock(&_minor_lock);
2369 	old_md = idr_replace(&_minor_idr, md, minor);
2370 	spin_unlock(&_minor_lock);
2371 
2372 	BUG_ON(old_md != MINOR_ALLOCED);
2373 
2374 	return md;
2375 
2376 bad:
2377 	cleanup_mapped_device(md);
2378 bad_io_barrier:
2379 	free_minor(minor);
2380 bad_minor:
2381 	module_put(THIS_MODULE);
2382 bad_module_get:
2383 	kfree(md);
2384 	return NULL;
2385 }
2386 
2387 static void unlock_fs(struct mapped_device *md);
2388 
2389 static void free_dev(struct mapped_device *md)
2390 {
2391 	int minor = MINOR(disk_devt(md->disk));
2392 
2393 	unlock_fs(md);
2394 
2395 	cleanup_mapped_device(md);
2396 	if (md->use_blk_mq)
2397 		blk_mq_free_tag_set(&md->tag_set);
2398 
2399 	free_table_devices(&md->table_devices);
2400 	dm_stats_cleanup(&md->stats);
2401 	free_minor(minor);
2402 
2403 	module_put(THIS_MODULE);
2404 	kfree(md);
2405 }
2406 
2407 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2408 {
2409 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2410 
2411 	if (md->bs) {
2412 		/* The md already has necessary mempools. */
2413 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2414 			/*
2415 			 * Reload bioset because front_pad may have changed
2416 			 * because a different table was loaded.
2417 			 */
2418 			bioset_free(md->bs);
2419 			md->bs = p->bs;
2420 			p->bs = NULL;
2421 		}
2422 		/*
2423 		 * There's no need to reload with request-based dm
2424 		 * because the size of front_pad doesn't change.
2425 		 * Note for future: If you are to reload bioset,
2426 		 * prep-ed requests in the queue may refer
2427 		 * to bio from the old bioset, so you must walk
2428 		 * through the queue to unprep.
2429 		 */
2430 		goto out;
2431 	}
2432 
2433 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2434 
2435 	md->io_pool = p->io_pool;
2436 	p->io_pool = NULL;
2437 	md->rq_pool = p->rq_pool;
2438 	p->rq_pool = NULL;
2439 	md->bs = p->bs;
2440 	p->bs = NULL;
2441 
2442 out:
2443 	/* mempool bind completed, no longer need any mempools in the table */
2444 	dm_table_free_md_mempools(t);
2445 }
2446 
2447 /*
2448  * Bind a table to the device.
2449  */
2450 static void event_callback(void *context)
2451 {
2452 	unsigned long flags;
2453 	LIST_HEAD(uevents);
2454 	struct mapped_device *md = (struct mapped_device *) context;
2455 
2456 	spin_lock_irqsave(&md->uevent_lock, flags);
2457 	list_splice_init(&md->uevent_list, &uevents);
2458 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2459 
2460 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2461 
2462 	atomic_inc(&md->event_nr);
2463 	wake_up(&md->eventq);
2464 }
2465 
2466 /*
2467  * Protected by md->suspend_lock obtained by dm_swap_table().
2468  */
2469 static void __set_size(struct mapped_device *md, sector_t size)
2470 {
2471 	set_capacity(md->disk, size);
2472 
2473 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2474 }
2475 
2476 /*
2477  * Returns old map, which caller must destroy.
2478  */
2479 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2480 			       struct queue_limits *limits)
2481 {
2482 	struct dm_table *old_map;
2483 	struct request_queue *q = md->queue;
2484 	sector_t size;
2485 
2486 	size = dm_table_get_size(t);
2487 
2488 	/*
2489 	 * Wipe any geometry if the size of the table changed.
2490 	 */
2491 	if (size != dm_get_size(md))
2492 		memset(&md->geometry, 0, sizeof(md->geometry));
2493 
2494 	__set_size(md, size);
2495 
2496 	dm_table_event_callback(t, event_callback, md);
2497 
2498 	/*
2499 	 * The queue hasn't been stopped yet, if the old table type wasn't
2500 	 * for request-based during suspension.  So stop it to prevent
2501 	 * I/O mapping before resume.
2502 	 * This must be done before setting the queue restrictions,
2503 	 * because request-based dm may be run just after the setting.
2504 	 */
2505 	if (dm_table_request_based(t))
2506 		stop_queue(q);
2507 
2508 	__bind_mempools(md, t);
2509 
2510 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2511 	rcu_assign_pointer(md->map, t);
2512 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2513 
2514 	dm_table_set_restrictions(t, q, limits);
2515 	if (old_map)
2516 		dm_sync_table(md);
2517 
2518 	return old_map;
2519 }
2520 
2521 /*
2522  * Returns unbound table for the caller to free.
2523  */
2524 static struct dm_table *__unbind(struct mapped_device *md)
2525 {
2526 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2527 
2528 	if (!map)
2529 		return NULL;
2530 
2531 	dm_table_event_callback(map, NULL, NULL);
2532 	RCU_INIT_POINTER(md->map, NULL);
2533 	dm_sync_table(md);
2534 
2535 	return map;
2536 }
2537 
2538 /*
2539  * Constructor for a new device.
2540  */
2541 int dm_create(int minor, struct mapped_device **result)
2542 {
2543 	struct mapped_device *md;
2544 
2545 	md = alloc_dev(minor);
2546 	if (!md)
2547 		return -ENXIO;
2548 
2549 	dm_sysfs_init(md);
2550 
2551 	*result = md;
2552 	return 0;
2553 }
2554 
2555 /*
2556  * Functions to manage md->type.
2557  * All are required to hold md->type_lock.
2558  */
2559 void dm_lock_md_type(struct mapped_device *md)
2560 {
2561 	mutex_lock(&md->type_lock);
2562 }
2563 
2564 void dm_unlock_md_type(struct mapped_device *md)
2565 {
2566 	mutex_unlock(&md->type_lock);
2567 }
2568 
2569 void dm_set_md_type(struct mapped_device *md, unsigned type)
2570 {
2571 	BUG_ON(!mutex_is_locked(&md->type_lock));
2572 	md->type = type;
2573 }
2574 
2575 unsigned dm_get_md_type(struct mapped_device *md)
2576 {
2577 	BUG_ON(!mutex_is_locked(&md->type_lock));
2578 	return md->type;
2579 }
2580 
2581 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2582 {
2583 	return md->immutable_target_type;
2584 }
2585 
2586 /*
2587  * The queue_limits are only valid as long as you have a reference
2588  * count on 'md'.
2589  */
2590 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2591 {
2592 	BUG_ON(!atomic_read(&md->holders));
2593 	return &md->queue->limits;
2594 }
2595 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2596 
2597 static void init_rq_based_worker_thread(struct mapped_device *md)
2598 {
2599 	/* Initialize the request-based DM worker thread */
2600 	init_kthread_worker(&md->kworker);
2601 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2602 				       "kdmwork-%s", dm_device_name(md));
2603 }
2604 
2605 /*
2606  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2607  */
2608 static int dm_init_request_based_queue(struct mapped_device *md)
2609 {
2610 	struct request_queue *q = NULL;
2611 
2612 	/* Fully initialize the queue */
2613 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2614 	if (!q)
2615 		return -EINVAL;
2616 
2617 	/* disable dm_request_fn's merge heuristic by default */
2618 	md->seq_rq_merge_deadline_usecs = 0;
2619 
2620 	md->queue = q;
2621 	dm_init_old_md_queue(md);
2622 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2623 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2624 
2625 	init_rq_based_worker_thread(md);
2626 
2627 	elv_register_queue(md->queue);
2628 
2629 	return 0;
2630 }
2631 
2632 static int dm_mq_init_request(void *data, struct request *rq,
2633 			      unsigned int hctx_idx, unsigned int request_idx,
2634 			      unsigned int numa_node)
2635 {
2636 	struct mapped_device *md = data;
2637 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2638 
2639 	/*
2640 	 * Must initialize md member of tio, otherwise it won't
2641 	 * be available in dm_mq_queue_rq.
2642 	 */
2643 	tio->md = md;
2644 
2645 	return 0;
2646 }
2647 
2648 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2649 			  const struct blk_mq_queue_data *bd)
2650 {
2651 	struct request *rq = bd->rq;
2652 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2653 	struct mapped_device *md = tio->md;
2654 	int srcu_idx;
2655 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2656 	struct dm_target *ti;
2657 	sector_t pos;
2658 
2659 	/* always use block 0 to find the target for flushes for now */
2660 	pos = 0;
2661 	if (!(rq->cmd_flags & REQ_FLUSH))
2662 		pos = blk_rq_pos(rq);
2663 
2664 	ti = dm_table_find_target(map, pos);
2665 	if (!dm_target_is_valid(ti)) {
2666 		dm_put_live_table(md, srcu_idx);
2667 		DMERR_LIMIT("request attempted access beyond the end of device");
2668 		/*
2669 		 * Must perform setup, that rq_completed() requires,
2670 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2671 		 */
2672 		dm_start_request(md, rq);
2673 		return BLK_MQ_RQ_QUEUE_ERROR;
2674 	}
2675 	dm_put_live_table(md, srcu_idx);
2676 
2677 	if (ti->type->busy && ti->type->busy(ti))
2678 		return BLK_MQ_RQ_QUEUE_BUSY;
2679 
2680 	dm_start_request(md, rq);
2681 
2682 	/* Init tio using md established in .init_request */
2683 	init_tio(tio, rq, md);
2684 
2685 	/*
2686 	 * Establish tio->ti before queuing work (map_tio_request)
2687 	 * or making direct call to map_request().
2688 	 */
2689 	tio->ti = ti;
2690 
2691 	/* Clone the request if underlying devices aren't blk-mq */
2692 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2693 		/* clone request is allocated at the end of the pdu */
2694 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2695 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2696 		queue_kthread_work(&md->kworker, &tio->work);
2697 	} else {
2698 		/* Direct call is fine since .queue_rq allows allocations */
2699 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2700 			/* Undo dm_start_request() before requeuing */
2701 			rq_end_stats(md, rq);
2702 			rq_completed(md, rq_data_dir(rq), false);
2703 			return BLK_MQ_RQ_QUEUE_BUSY;
2704 		}
2705 	}
2706 
2707 	return BLK_MQ_RQ_QUEUE_OK;
2708 }
2709 
2710 static struct blk_mq_ops dm_mq_ops = {
2711 	.queue_rq = dm_mq_queue_rq,
2712 	.map_queue = blk_mq_map_queue,
2713 	.complete = dm_softirq_done,
2714 	.init_request = dm_mq_init_request,
2715 };
2716 
2717 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2718 {
2719 	unsigned md_type = dm_get_md_type(md);
2720 	struct request_queue *q;
2721 	int err;
2722 
2723 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2724 	md->tag_set.ops = &dm_mq_ops;
2725 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2726 	md->tag_set.numa_node = NUMA_NO_NODE;
2727 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2728 	md->tag_set.nr_hw_queues = 1;
2729 	if (md_type == DM_TYPE_REQUEST_BASED) {
2730 		/* make the memory for non-blk-mq clone part of the pdu */
2731 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2732 	} else
2733 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2734 	md->tag_set.driver_data = md;
2735 
2736 	err = blk_mq_alloc_tag_set(&md->tag_set);
2737 	if (err)
2738 		return err;
2739 
2740 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2741 	if (IS_ERR(q)) {
2742 		err = PTR_ERR(q);
2743 		goto out_tag_set;
2744 	}
2745 	md->queue = q;
2746 	dm_init_md_queue(md);
2747 
2748 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2749 	blk_mq_register_disk(md->disk);
2750 
2751 	if (md_type == DM_TYPE_REQUEST_BASED)
2752 		init_rq_based_worker_thread(md);
2753 
2754 	return 0;
2755 
2756 out_tag_set:
2757 	blk_mq_free_tag_set(&md->tag_set);
2758 	return err;
2759 }
2760 
2761 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2762 {
2763 	if (type == DM_TYPE_BIO_BASED)
2764 		return type;
2765 
2766 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2767 }
2768 
2769 /*
2770  * Setup the DM device's queue based on md's type
2771  */
2772 int dm_setup_md_queue(struct mapped_device *md)
2773 {
2774 	int r;
2775 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2776 
2777 	switch (md_type) {
2778 	case DM_TYPE_REQUEST_BASED:
2779 		r = dm_init_request_based_queue(md);
2780 		if (r) {
2781 			DMWARN("Cannot initialize queue for request-based mapped device");
2782 			return r;
2783 		}
2784 		break;
2785 	case DM_TYPE_MQ_REQUEST_BASED:
2786 		r = dm_init_request_based_blk_mq_queue(md);
2787 		if (r) {
2788 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2789 			return r;
2790 		}
2791 		break;
2792 	case DM_TYPE_BIO_BASED:
2793 		dm_init_old_md_queue(md);
2794 		blk_queue_make_request(md->queue, dm_make_request);
2795 		/*
2796 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2797 		 * since it won't be used (saves 1 process per bio-based DM device).
2798 		 */
2799 		bioset_free(md->queue->bio_split);
2800 		md->queue->bio_split = NULL;
2801 		break;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 struct mapped_device *dm_get_md(dev_t dev)
2808 {
2809 	struct mapped_device *md;
2810 	unsigned minor = MINOR(dev);
2811 
2812 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2813 		return NULL;
2814 
2815 	spin_lock(&_minor_lock);
2816 
2817 	md = idr_find(&_minor_idr, minor);
2818 	if (md) {
2819 		if ((md == MINOR_ALLOCED ||
2820 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2821 		     dm_deleting_md(md) ||
2822 		     test_bit(DMF_FREEING, &md->flags))) {
2823 			md = NULL;
2824 			goto out;
2825 		}
2826 		dm_get(md);
2827 	}
2828 
2829 out:
2830 	spin_unlock(&_minor_lock);
2831 
2832 	return md;
2833 }
2834 EXPORT_SYMBOL_GPL(dm_get_md);
2835 
2836 void *dm_get_mdptr(struct mapped_device *md)
2837 {
2838 	return md->interface_ptr;
2839 }
2840 
2841 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2842 {
2843 	md->interface_ptr = ptr;
2844 }
2845 
2846 void dm_get(struct mapped_device *md)
2847 {
2848 	atomic_inc(&md->holders);
2849 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2850 }
2851 
2852 int dm_hold(struct mapped_device *md)
2853 {
2854 	spin_lock(&_minor_lock);
2855 	if (test_bit(DMF_FREEING, &md->flags)) {
2856 		spin_unlock(&_minor_lock);
2857 		return -EBUSY;
2858 	}
2859 	dm_get(md);
2860 	spin_unlock(&_minor_lock);
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(dm_hold);
2864 
2865 const char *dm_device_name(struct mapped_device *md)
2866 {
2867 	return md->name;
2868 }
2869 EXPORT_SYMBOL_GPL(dm_device_name);
2870 
2871 static void __dm_destroy(struct mapped_device *md, bool wait)
2872 {
2873 	struct dm_table *map;
2874 	int srcu_idx;
2875 
2876 	might_sleep();
2877 
2878 	spin_lock(&_minor_lock);
2879 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2880 	set_bit(DMF_FREEING, &md->flags);
2881 	spin_unlock(&_minor_lock);
2882 
2883 	if (dm_request_based(md) && md->kworker_task)
2884 		flush_kthread_worker(&md->kworker);
2885 
2886 	/*
2887 	 * Take suspend_lock so that presuspend and postsuspend methods
2888 	 * do not race with internal suspend.
2889 	 */
2890 	mutex_lock(&md->suspend_lock);
2891 	map = dm_get_live_table(md, &srcu_idx);
2892 	if (!dm_suspended_md(md)) {
2893 		dm_table_presuspend_targets(map);
2894 		dm_table_postsuspend_targets(map);
2895 	}
2896 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2897 	dm_put_live_table(md, srcu_idx);
2898 	mutex_unlock(&md->suspend_lock);
2899 
2900 	/*
2901 	 * Rare, but there may be I/O requests still going to complete,
2902 	 * for example.  Wait for all references to disappear.
2903 	 * No one should increment the reference count of the mapped_device,
2904 	 * after the mapped_device state becomes DMF_FREEING.
2905 	 */
2906 	if (wait)
2907 		while (atomic_read(&md->holders))
2908 			msleep(1);
2909 	else if (atomic_read(&md->holders))
2910 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2911 		       dm_device_name(md), atomic_read(&md->holders));
2912 
2913 	dm_sysfs_exit(md);
2914 	dm_table_destroy(__unbind(md));
2915 	free_dev(md);
2916 }
2917 
2918 void dm_destroy(struct mapped_device *md)
2919 {
2920 	__dm_destroy(md, true);
2921 }
2922 
2923 void dm_destroy_immediate(struct mapped_device *md)
2924 {
2925 	__dm_destroy(md, false);
2926 }
2927 
2928 void dm_put(struct mapped_device *md)
2929 {
2930 	atomic_dec(&md->holders);
2931 }
2932 EXPORT_SYMBOL_GPL(dm_put);
2933 
2934 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2935 {
2936 	int r = 0;
2937 	DECLARE_WAITQUEUE(wait, current);
2938 
2939 	add_wait_queue(&md->wait, &wait);
2940 
2941 	while (1) {
2942 		set_current_state(interruptible);
2943 
2944 		if (!md_in_flight(md))
2945 			break;
2946 
2947 		if (interruptible == TASK_INTERRUPTIBLE &&
2948 		    signal_pending(current)) {
2949 			r = -EINTR;
2950 			break;
2951 		}
2952 
2953 		io_schedule();
2954 	}
2955 	set_current_state(TASK_RUNNING);
2956 
2957 	remove_wait_queue(&md->wait, &wait);
2958 
2959 	return r;
2960 }
2961 
2962 /*
2963  * Process the deferred bios
2964  */
2965 static void dm_wq_work(struct work_struct *work)
2966 {
2967 	struct mapped_device *md = container_of(work, struct mapped_device,
2968 						work);
2969 	struct bio *c;
2970 	int srcu_idx;
2971 	struct dm_table *map;
2972 
2973 	map = dm_get_live_table(md, &srcu_idx);
2974 
2975 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2976 		spin_lock_irq(&md->deferred_lock);
2977 		c = bio_list_pop(&md->deferred);
2978 		spin_unlock_irq(&md->deferred_lock);
2979 
2980 		if (!c)
2981 			break;
2982 
2983 		if (dm_request_based(md))
2984 			generic_make_request(c);
2985 		else
2986 			__split_and_process_bio(md, map, c);
2987 	}
2988 
2989 	dm_put_live_table(md, srcu_idx);
2990 }
2991 
2992 static void dm_queue_flush(struct mapped_device *md)
2993 {
2994 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2995 	smp_mb__after_atomic();
2996 	queue_work(md->wq, &md->work);
2997 }
2998 
2999 /*
3000  * Swap in a new table, returning the old one for the caller to destroy.
3001  */
3002 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3003 {
3004 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3005 	struct queue_limits limits;
3006 	int r;
3007 
3008 	mutex_lock(&md->suspend_lock);
3009 
3010 	/* device must be suspended */
3011 	if (!dm_suspended_md(md))
3012 		goto out;
3013 
3014 	/*
3015 	 * If the new table has no data devices, retain the existing limits.
3016 	 * This helps multipath with queue_if_no_path if all paths disappear,
3017 	 * then new I/O is queued based on these limits, and then some paths
3018 	 * reappear.
3019 	 */
3020 	if (dm_table_has_no_data_devices(table)) {
3021 		live_map = dm_get_live_table_fast(md);
3022 		if (live_map)
3023 			limits = md->queue->limits;
3024 		dm_put_live_table_fast(md);
3025 	}
3026 
3027 	if (!live_map) {
3028 		r = dm_calculate_queue_limits(table, &limits);
3029 		if (r) {
3030 			map = ERR_PTR(r);
3031 			goto out;
3032 		}
3033 	}
3034 
3035 	map = __bind(md, table, &limits);
3036 
3037 out:
3038 	mutex_unlock(&md->suspend_lock);
3039 	return map;
3040 }
3041 
3042 /*
3043  * Functions to lock and unlock any filesystem running on the
3044  * device.
3045  */
3046 static int lock_fs(struct mapped_device *md)
3047 {
3048 	int r;
3049 
3050 	WARN_ON(md->frozen_sb);
3051 
3052 	md->frozen_sb = freeze_bdev(md->bdev);
3053 	if (IS_ERR(md->frozen_sb)) {
3054 		r = PTR_ERR(md->frozen_sb);
3055 		md->frozen_sb = NULL;
3056 		return r;
3057 	}
3058 
3059 	set_bit(DMF_FROZEN, &md->flags);
3060 
3061 	return 0;
3062 }
3063 
3064 static void unlock_fs(struct mapped_device *md)
3065 {
3066 	if (!test_bit(DMF_FROZEN, &md->flags))
3067 		return;
3068 
3069 	thaw_bdev(md->bdev, md->frozen_sb);
3070 	md->frozen_sb = NULL;
3071 	clear_bit(DMF_FROZEN, &md->flags);
3072 }
3073 
3074 /*
3075  * If __dm_suspend returns 0, the device is completely quiescent
3076  * now. There is no request-processing activity. All new requests
3077  * are being added to md->deferred list.
3078  *
3079  * Caller must hold md->suspend_lock
3080  */
3081 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3082 			unsigned suspend_flags, int interruptible)
3083 {
3084 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3085 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3086 	int r;
3087 
3088 	/*
3089 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3090 	 * This flag is cleared before dm_suspend returns.
3091 	 */
3092 	if (noflush)
3093 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3094 
3095 	/*
3096 	 * This gets reverted if there's an error later and the targets
3097 	 * provide the .presuspend_undo hook.
3098 	 */
3099 	dm_table_presuspend_targets(map);
3100 
3101 	/*
3102 	 * Flush I/O to the device.
3103 	 * Any I/O submitted after lock_fs() may not be flushed.
3104 	 * noflush takes precedence over do_lockfs.
3105 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3106 	 */
3107 	if (!noflush && do_lockfs) {
3108 		r = lock_fs(md);
3109 		if (r) {
3110 			dm_table_presuspend_undo_targets(map);
3111 			return r;
3112 		}
3113 	}
3114 
3115 	/*
3116 	 * Here we must make sure that no processes are submitting requests
3117 	 * to target drivers i.e. no one may be executing
3118 	 * __split_and_process_bio. This is called from dm_request and
3119 	 * dm_wq_work.
3120 	 *
3121 	 * To get all processes out of __split_and_process_bio in dm_request,
3122 	 * we take the write lock. To prevent any process from reentering
3123 	 * __split_and_process_bio from dm_request and quiesce the thread
3124 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3125 	 * flush_workqueue(md->wq).
3126 	 */
3127 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3128 	if (map)
3129 		synchronize_srcu(&md->io_barrier);
3130 
3131 	/*
3132 	 * Stop md->queue before flushing md->wq in case request-based
3133 	 * dm defers requests to md->wq from md->queue.
3134 	 */
3135 	if (dm_request_based(md)) {
3136 		stop_queue(md->queue);
3137 		if (md->kworker_task)
3138 			flush_kthread_worker(&md->kworker);
3139 	}
3140 
3141 	flush_workqueue(md->wq);
3142 
3143 	/*
3144 	 * At this point no more requests are entering target request routines.
3145 	 * We call dm_wait_for_completion to wait for all existing requests
3146 	 * to finish.
3147 	 */
3148 	r = dm_wait_for_completion(md, interruptible);
3149 
3150 	if (noflush)
3151 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3152 	if (map)
3153 		synchronize_srcu(&md->io_barrier);
3154 
3155 	/* were we interrupted ? */
3156 	if (r < 0) {
3157 		dm_queue_flush(md);
3158 
3159 		if (dm_request_based(md))
3160 			start_queue(md->queue);
3161 
3162 		unlock_fs(md);
3163 		dm_table_presuspend_undo_targets(map);
3164 		/* pushback list is already flushed, so skip flush */
3165 	}
3166 
3167 	return r;
3168 }
3169 
3170 /*
3171  * We need to be able to change a mapping table under a mounted
3172  * filesystem.  For example we might want to move some data in
3173  * the background.  Before the table can be swapped with
3174  * dm_bind_table, dm_suspend must be called to flush any in
3175  * flight bios and ensure that any further io gets deferred.
3176  */
3177 /*
3178  * Suspend mechanism in request-based dm.
3179  *
3180  * 1. Flush all I/Os by lock_fs() if needed.
3181  * 2. Stop dispatching any I/O by stopping the request_queue.
3182  * 3. Wait for all in-flight I/Os to be completed or requeued.
3183  *
3184  * To abort suspend, start the request_queue.
3185  */
3186 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3187 {
3188 	struct dm_table *map = NULL;
3189 	int r = 0;
3190 
3191 retry:
3192 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3193 
3194 	if (dm_suspended_md(md)) {
3195 		r = -EINVAL;
3196 		goto out_unlock;
3197 	}
3198 
3199 	if (dm_suspended_internally_md(md)) {
3200 		/* already internally suspended, wait for internal resume */
3201 		mutex_unlock(&md->suspend_lock);
3202 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3203 		if (r)
3204 			return r;
3205 		goto retry;
3206 	}
3207 
3208 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3209 
3210 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3211 	if (r)
3212 		goto out_unlock;
3213 
3214 	set_bit(DMF_SUSPENDED, &md->flags);
3215 
3216 	dm_table_postsuspend_targets(map);
3217 
3218 out_unlock:
3219 	mutex_unlock(&md->suspend_lock);
3220 	return r;
3221 }
3222 
3223 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3224 {
3225 	if (map) {
3226 		int r = dm_table_resume_targets(map);
3227 		if (r)
3228 			return r;
3229 	}
3230 
3231 	dm_queue_flush(md);
3232 
3233 	/*
3234 	 * Flushing deferred I/Os must be done after targets are resumed
3235 	 * so that mapping of targets can work correctly.
3236 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3237 	 */
3238 	if (dm_request_based(md))
3239 		start_queue(md->queue);
3240 
3241 	unlock_fs(md);
3242 
3243 	return 0;
3244 }
3245 
3246 int dm_resume(struct mapped_device *md)
3247 {
3248 	int r = -EINVAL;
3249 	struct dm_table *map = NULL;
3250 
3251 retry:
3252 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3253 
3254 	if (!dm_suspended_md(md))
3255 		goto out;
3256 
3257 	if (dm_suspended_internally_md(md)) {
3258 		/* already internally suspended, wait for internal resume */
3259 		mutex_unlock(&md->suspend_lock);
3260 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3261 		if (r)
3262 			return r;
3263 		goto retry;
3264 	}
3265 
3266 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3267 	if (!map || !dm_table_get_size(map))
3268 		goto out;
3269 
3270 	r = __dm_resume(md, map);
3271 	if (r)
3272 		goto out;
3273 
3274 	clear_bit(DMF_SUSPENDED, &md->flags);
3275 
3276 	r = 0;
3277 out:
3278 	mutex_unlock(&md->suspend_lock);
3279 
3280 	return r;
3281 }
3282 
3283 /*
3284  * Internal suspend/resume works like userspace-driven suspend. It waits
3285  * until all bios finish and prevents issuing new bios to the target drivers.
3286  * It may be used only from the kernel.
3287  */
3288 
3289 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3290 {
3291 	struct dm_table *map = NULL;
3292 
3293 	if (md->internal_suspend_count++)
3294 		return; /* nested internal suspend */
3295 
3296 	if (dm_suspended_md(md)) {
3297 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3298 		return; /* nest suspend */
3299 	}
3300 
3301 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3302 
3303 	/*
3304 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3305 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3306 	 * would require changing .presuspend to return an error -- avoid this
3307 	 * until there is a need for more elaborate variants of internal suspend.
3308 	 */
3309 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3310 
3311 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3312 
3313 	dm_table_postsuspend_targets(map);
3314 }
3315 
3316 static void __dm_internal_resume(struct mapped_device *md)
3317 {
3318 	BUG_ON(!md->internal_suspend_count);
3319 
3320 	if (--md->internal_suspend_count)
3321 		return; /* resume from nested internal suspend */
3322 
3323 	if (dm_suspended_md(md))
3324 		goto done; /* resume from nested suspend */
3325 
3326 	/*
3327 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3328 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3329 	 */
3330 	(void) __dm_resume(md, NULL);
3331 
3332 done:
3333 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3334 	smp_mb__after_atomic();
3335 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3336 }
3337 
3338 void dm_internal_suspend_noflush(struct mapped_device *md)
3339 {
3340 	mutex_lock(&md->suspend_lock);
3341 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3342 	mutex_unlock(&md->suspend_lock);
3343 }
3344 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3345 
3346 void dm_internal_resume(struct mapped_device *md)
3347 {
3348 	mutex_lock(&md->suspend_lock);
3349 	__dm_internal_resume(md);
3350 	mutex_unlock(&md->suspend_lock);
3351 }
3352 EXPORT_SYMBOL_GPL(dm_internal_resume);
3353 
3354 /*
3355  * Fast variants of internal suspend/resume hold md->suspend_lock,
3356  * which prevents interaction with userspace-driven suspend.
3357  */
3358 
3359 void dm_internal_suspend_fast(struct mapped_device *md)
3360 {
3361 	mutex_lock(&md->suspend_lock);
3362 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3363 		return;
3364 
3365 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3366 	synchronize_srcu(&md->io_barrier);
3367 	flush_workqueue(md->wq);
3368 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3369 }
3370 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3371 
3372 void dm_internal_resume_fast(struct mapped_device *md)
3373 {
3374 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3375 		goto done;
3376 
3377 	dm_queue_flush(md);
3378 
3379 done:
3380 	mutex_unlock(&md->suspend_lock);
3381 }
3382 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3383 
3384 /*-----------------------------------------------------------------
3385  * Event notification.
3386  *---------------------------------------------------------------*/
3387 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3388 		       unsigned cookie)
3389 {
3390 	char udev_cookie[DM_COOKIE_LENGTH];
3391 	char *envp[] = { udev_cookie, NULL };
3392 
3393 	if (!cookie)
3394 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3395 	else {
3396 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3397 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3398 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3399 					  action, envp);
3400 	}
3401 }
3402 
3403 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3404 {
3405 	return atomic_add_return(1, &md->uevent_seq);
3406 }
3407 
3408 uint32_t dm_get_event_nr(struct mapped_device *md)
3409 {
3410 	return atomic_read(&md->event_nr);
3411 }
3412 
3413 int dm_wait_event(struct mapped_device *md, int event_nr)
3414 {
3415 	return wait_event_interruptible(md->eventq,
3416 			(event_nr != atomic_read(&md->event_nr)));
3417 }
3418 
3419 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3420 {
3421 	unsigned long flags;
3422 
3423 	spin_lock_irqsave(&md->uevent_lock, flags);
3424 	list_add(elist, &md->uevent_list);
3425 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3426 }
3427 
3428 /*
3429  * The gendisk is only valid as long as you have a reference
3430  * count on 'md'.
3431  */
3432 struct gendisk *dm_disk(struct mapped_device *md)
3433 {
3434 	return md->disk;
3435 }
3436 EXPORT_SYMBOL_GPL(dm_disk);
3437 
3438 struct kobject *dm_kobject(struct mapped_device *md)
3439 {
3440 	return &md->kobj_holder.kobj;
3441 }
3442 
3443 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3444 {
3445 	struct mapped_device *md;
3446 
3447 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3448 
3449 	if (test_bit(DMF_FREEING, &md->flags) ||
3450 	    dm_deleting_md(md))
3451 		return NULL;
3452 
3453 	dm_get(md);
3454 	return md;
3455 }
3456 
3457 int dm_suspended_md(struct mapped_device *md)
3458 {
3459 	return test_bit(DMF_SUSPENDED, &md->flags);
3460 }
3461 
3462 int dm_suspended_internally_md(struct mapped_device *md)
3463 {
3464 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3465 }
3466 
3467 int dm_test_deferred_remove_flag(struct mapped_device *md)
3468 {
3469 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3470 }
3471 
3472 int dm_suspended(struct dm_target *ti)
3473 {
3474 	return dm_suspended_md(dm_table_get_md(ti->table));
3475 }
3476 EXPORT_SYMBOL_GPL(dm_suspended);
3477 
3478 int dm_noflush_suspending(struct dm_target *ti)
3479 {
3480 	return __noflush_suspending(dm_table_get_md(ti->table));
3481 }
3482 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3483 
3484 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3485 					    unsigned integrity, unsigned per_bio_data_size)
3486 {
3487 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3488 	struct kmem_cache *cachep = NULL;
3489 	unsigned int pool_size = 0;
3490 	unsigned int front_pad;
3491 
3492 	if (!pools)
3493 		return NULL;
3494 
3495 	type = filter_md_type(type, md);
3496 
3497 	switch (type) {
3498 	case DM_TYPE_BIO_BASED:
3499 		cachep = _io_cache;
3500 		pool_size = dm_get_reserved_bio_based_ios();
3501 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3502 		break;
3503 	case DM_TYPE_REQUEST_BASED:
3504 		cachep = _rq_tio_cache;
3505 		pool_size = dm_get_reserved_rq_based_ios();
3506 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3507 		if (!pools->rq_pool)
3508 			goto out;
3509 		/* fall through to setup remaining rq-based pools */
3510 	case DM_TYPE_MQ_REQUEST_BASED:
3511 		if (!pool_size)
3512 			pool_size = dm_get_reserved_rq_based_ios();
3513 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3514 		/* per_bio_data_size is not used. See __bind_mempools(). */
3515 		WARN_ON(per_bio_data_size != 0);
3516 		break;
3517 	default:
3518 		BUG();
3519 	}
3520 
3521 	if (cachep) {
3522 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3523 		if (!pools->io_pool)
3524 			goto out;
3525 	}
3526 
3527 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3528 	if (!pools->bs)
3529 		goto out;
3530 
3531 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3532 		goto out;
3533 
3534 	return pools;
3535 
3536 out:
3537 	dm_free_md_mempools(pools);
3538 
3539 	return NULL;
3540 }
3541 
3542 void dm_free_md_mempools(struct dm_md_mempools *pools)
3543 {
3544 	if (!pools)
3545 		return;
3546 
3547 	mempool_destroy(pools->io_pool);
3548 	mempool_destroy(pools->rq_pool);
3549 
3550 	if (pools->bs)
3551 		bioset_free(pools->bs);
3552 
3553 	kfree(pools);
3554 }
3555 
3556 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3557 		u32 flags)
3558 {
3559 	struct mapped_device *md = bdev->bd_disk->private_data;
3560 	const struct pr_ops *ops;
3561 	struct dm_target *tgt;
3562 	fmode_t mode;
3563 	int srcu_idx, r;
3564 
3565 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3566 	if (r < 0)
3567 		return r;
3568 
3569 	ops = bdev->bd_disk->fops->pr_ops;
3570 	if (ops && ops->pr_register)
3571 		r = ops->pr_register(bdev, old_key, new_key, flags);
3572 	else
3573 		r = -EOPNOTSUPP;
3574 
3575 	dm_put_live_table(md, srcu_idx);
3576 	return r;
3577 }
3578 
3579 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3580 		u32 flags)
3581 {
3582 	struct mapped_device *md = bdev->bd_disk->private_data;
3583 	const struct pr_ops *ops;
3584 	struct dm_target *tgt;
3585 	fmode_t mode;
3586 	int srcu_idx, r;
3587 
3588 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3589 	if (r < 0)
3590 		return r;
3591 
3592 	ops = bdev->bd_disk->fops->pr_ops;
3593 	if (ops && ops->pr_reserve)
3594 		r = ops->pr_reserve(bdev, key, type, flags);
3595 	else
3596 		r = -EOPNOTSUPP;
3597 
3598 	dm_put_live_table(md, srcu_idx);
3599 	return r;
3600 }
3601 
3602 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3603 {
3604 	struct mapped_device *md = bdev->bd_disk->private_data;
3605 	const struct pr_ops *ops;
3606 	struct dm_target *tgt;
3607 	fmode_t mode;
3608 	int srcu_idx, r;
3609 
3610 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3611 	if (r < 0)
3612 		return r;
3613 
3614 	ops = bdev->bd_disk->fops->pr_ops;
3615 	if (ops && ops->pr_release)
3616 		r = ops->pr_release(bdev, key, type);
3617 	else
3618 		r = -EOPNOTSUPP;
3619 
3620 	dm_put_live_table(md, srcu_idx);
3621 	return r;
3622 }
3623 
3624 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3625 		enum pr_type type, bool abort)
3626 {
3627 	struct mapped_device *md = bdev->bd_disk->private_data;
3628 	const struct pr_ops *ops;
3629 	struct dm_target *tgt;
3630 	fmode_t mode;
3631 	int srcu_idx, r;
3632 
3633 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3634 	if (r < 0)
3635 		return r;
3636 
3637 	ops = bdev->bd_disk->fops->pr_ops;
3638 	if (ops && ops->pr_preempt)
3639 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3640 	else
3641 		r = -EOPNOTSUPP;
3642 
3643 	dm_put_live_table(md, srcu_idx);
3644 	return r;
3645 }
3646 
3647 static int dm_pr_clear(struct block_device *bdev, u64 key)
3648 {
3649 	struct mapped_device *md = bdev->bd_disk->private_data;
3650 	const struct pr_ops *ops;
3651 	struct dm_target *tgt;
3652 	fmode_t mode;
3653 	int srcu_idx, r;
3654 
3655 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3656 	if (r < 0)
3657 		return r;
3658 
3659 	ops = bdev->bd_disk->fops->pr_ops;
3660 	if (ops && ops->pr_clear)
3661 		r = ops->pr_clear(bdev, key);
3662 	else
3663 		r = -EOPNOTSUPP;
3664 
3665 	dm_put_live_table(md, srcu_idx);
3666 	return r;
3667 }
3668 
3669 static const struct pr_ops dm_pr_ops = {
3670 	.pr_register	= dm_pr_register,
3671 	.pr_reserve	= dm_pr_reserve,
3672 	.pr_release	= dm_pr_release,
3673 	.pr_preempt	= dm_pr_preempt,
3674 	.pr_clear	= dm_pr_clear,
3675 };
3676 
3677 static const struct block_device_operations dm_blk_dops = {
3678 	.open = dm_blk_open,
3679 	.release = dm_blk_close,
3680 	.ioctl = dm_blk_ioctl,
3681 	.getgeo = dm_blk_getgeo,
3682 	.pr_ops = &dm_pr_ops,
3683 	.owner = THIS_MODULE
3684 };
3685 
3686 /*
3687  * module hooks
3688  */
3689 module_init(dm_init);
3690 module_exit(dm_exit);
3691 
3692 module_param(major, uint, 0);
3693 MODULE_PARM_DESC(major, "The major number of the device mapper");
3694 
3695 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3696 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3697 
3698 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3699 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3700 
3701 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3702 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3703 
3704 MODULE_DESCRIPTION(DM_NAME " driver");
3705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3706 MODULE_LICENSE("GPL");
3707