1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 #include <linux/pr.h> 28 29 #include <trace/events/block.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 #ifdef CONFIG_PRINTK 34 /* 35 * ratelimit state to be used in DMXXX_LIMIT(). 36 */ 37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 38 DEFAULT_RATELIMIT_INTERVAL, 39 DEFAULT_RATELIMIT_BURST); 40 EXPORT_SYMBOL(dm_ratelimit_state); 41 #endif 42 43 /* 44 * Cookies are numeric values sent with CHANGE and REMOVE 45 * uevents while resuming, removing or renaming the device. 46 */ 47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 48 #define DM_COOKIE_LENGTH 24 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per bio. 68 */ 69 struct dm_io { 70 struct mapped_device *md; 71 int error; 72 atomic_t io_count; 73 struct bio *bio; 74 unsigned long start_time; 75 spinlock_t endio_lock; 76 struct dm_stats_aux stats_aux; 77 }; 78 79 /* 80 * For request-based dm. 81 * One of these is allocated per request. 82 */ 83 struct dm_rq_target_io { 84 struct mapped_device *md; 85 struct dm_target *ti; 86 struct request *orig, *clone; 87 struct kthread_work work; 88 int error; 89 union map_info info; 90 struct dm_stats_aux stats_aux; 91 unsigned long duration_jiffies; 92 unsigned n_sectors; 93 }; 94 95 /* 96 * For request-based dm - the bio clones we allocate are embedded in these 97 * structs. 98 * 99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 100 * the bioset is created - this means the bio has to come at the end of the 101 * struct. 102 */ 103 struct dm_rq_clone_bio_info { 104 struct bio *orig; 105 struct dm_rq_target_io *tio; 106 struct bio clone; 107 }; 108 109 union map_info *dm_get_rq_mapinfo(struct request *rq) 110 { 111 if (rq && rq->end_io_data) 112 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 113 return NULL; 114 } 115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 116 117 #define MINOR_ALLOCED ((void *)-1) 118 119 /* 120 * Bits for the md->flags field. 121 */ 122 #define DMF_BLOCK_IO_FOR_SUSPEND 0 123 #define DMF_SUSPENDED 1 124 #define DMF_FROZEN 2 125 #define DMF_FREEING 3 126 #define DMF_DELETING 4 127 #define DMF_NOFLUSH_SUSPENDING 5 128 #define DMF_DEFERRED_REMOVE 6 129 #define DMF_SUSPENDED_INTERNALLY 7 130 131 /* 132 * A dummy definition to make RCU happy. 133 * struct dm_table should never be dereferenced in this file. 134 */ 135 struct dm_table { 136 int undefined__; 137 }; 138 139 /* 140 * Work processed by per-device workqueue. 141 */ 142 struct mapped_device { 143 struct srcu_struct io_barrier; 144 struct mutex suspend_lock; 145 atomic_t holders; 146 atomic_t open_count; 147 148 /* 149 * The current mapping. 150 * Use dm_get_live_table{_fast} or take suspend_lock for 151 * dereference. 152 */ 153 struct dm_table __rcu *map; 154 155 struct list_head table_devices; 156 struct mutex table_devices_lock; 157 158 unsigned long flags; 159 160 struct request_queue *queue; 161 unsigned type; 162 /* Protect queue and type against concurrent access. */ 163 struct mutex type_lock; 164 165 struct target_type *immutable_target_type; 166 167 struct gendisk *disk; 168 char name[16]; 169 170 void *interface_ptr; 171 172 /* 173 * A list of ios that arrived while we were suspended. 174 */ 175 atomic_t pending[2]; 176 wait_queue_head_t wait; 177 struct work_struct work; 178 struct bio_list deferred; 179 spinlock_t deferred_lock; 180 181 /* 182 * Processing queue (flush) 183 */ 184 struct workqueue_struct *wq; 185 186 /* 187 * io objects are allocated from here. 188 */ 189 mempool_t *io_pool; 190 mempool_t *rq_pool; 191 192 struct bio_set *bs; 193 194 /* 195 * Event handling. 196 */ 197 atomic_t event_nr; 198 wait_queue_head_t eventq; 199 atomic_t uevent_seq; 200 struct list_head uevent_list; 201 spinlock_t uevent_lock; /* Protect access to uevent_list */ 202 203 /* 204 * freeze/thaw support require holding onto a super block 205 */ 206 struct super_block *frozen_sb; 207 struct block_device *bdev; 208 209 /* forced geometry settings */ 210 struct hd_geometry geometry; 211 212 /* kobject and completion */ 213 struct dm_kobject_holder kobj_holder; 214 215 /* zero-length flush that will be cloned and submitted to targets */ 216 struct bio flush_bio; 217 218 /* the number of internal suspends */ 219 unsigned internal_suspend_count; 220 221 struct dm_stats stats; 222 223 struct kthread_worker kworker; 224 struct task_struct *kworker_task; 225 226 /* for request-based merge heuristic in dm_request_fn() */ 227 unsigned seq_rq_merge_deadline_usecs; 228 int last_rq_rw; 229 sector_t last_rq_pos; 230 ktime_t last_rq_start_time; 231 232 /* for blk-mq request-based DM support */ 233 struct blk_mq_tag_set tag_set; 234 bool use_blk_mq; 235 }; 236 237 #ifdef CONFIG_DM_MQ_DEFAULT 238 static bool use_blk_mq = true; 239 #else 240 static bool use_blk_mq = false; 241 #endif 242 243 bool dm_use_blk_mq(struct mapped_device *md) 244 { 245 return md->use_blk_mq; 246 } 247 248 /* 249 * For mempools pre-allocation at the table loading time. 250 */ 251 struct dm_md_mempools { 252 mempool_t *io_pool; 253 mempool_t *rq_pool; 254 struct bio_set *bs; 255 }; 256 257 struct table_device { 258 struct list_head list; 259 atomic_t count; 260 struct dm_dev dm_dev; 261 }; 262 263 #define RESERVED_BIO_BASED_IOS 16 264 #define RESERVED_REQUEST_BASED_IOS 256 265 #define RESERVED_MAX_IOS 1024 266 static struct kmem_cache *_io_cache; 267 static struct kmem_cache *_rq_tio_cache; 268 static struct kmem_cache *_rq_cache; 269 270 /* 271 * Bio-based DM's mempools' reserved IOs set by the user. 272 */ 273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 274 275 /* 276 * Request-based DM's mempools' reserved IOs set by the user. 277 */ 278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 279 280 static unsigned __dm_get_module_param(unsigned *module_param, 281 unsigned def, unsigned max) 282 { 283 unsigned param = ACCESS_ONCE(*module_param); 284 unsigned modified_param = 0; 285 286 if (!param) 287 modified_param = def; 288 else if (param > max) 289 modified_param = max; 290 291 if (modified_param) { 292 (void)cmpxchg(module_param, param, modified_param); 293 param = modified_param; 294 } 295 296 return param; 297 } 298 299 unsigned dm_get_reserved_bio_based_ios(void) 300 { 301 return __dm_get_module_param(&reserved_bio_based_ios, 302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 303 } 304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 305 306 unsigned dm_get_reserved_rq_based_ios(void) 307 { 308 return __dm_get_module_param(&reserved_rq_based_ios, 309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 310 } 311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 312 313 static int __init local_init(void) 314 { 315 int r = -ENOMEM; 316 317 /* allocate a slab for the dm_ios */ 318 _io_cache = KMEM_CACHE(dm_io, 0); 319 if (!_io_cache) 320 return r; 321 322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 323 if (!_rq_tio_cache) 324 goto out_free_io_cache; 325 326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 327 __alignof__(struct request), 0, NULL); 328 if (!_rq_cache) 329 goto out_free_rq_tio_cache; 330 331 r = dm_uevent_init(); 332 if (r) 333 goto out_free_rq_cache; 334 335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 336 if (!deferred_remove_workqueue) { 337 r = -ENOMEM; 338 goto out_uevent_exit; 339 } 340 341 _major = major; 342 r = register_blkdev(_major, _name); 343 if (r < 0) 344 goto out_free_workqueue; 345 346 if (!_major) 347 _major = r; 348 349 return 0; 350 351 out_free_workqueue: 352 destroy_workqueue(deferred_remove_workqueue); 353 out_uevent_exit: 354 dm_uevent_exit(); 355 out_free_rq_cache: 356 kmem_cache_destroy(_rq_cache); 357 out_free_rq_tio_cache: 358 kmem_cache_destroy(_rq_tio_cache); 359 out_free_io_cache: 360 kmem_cache_destroy(_io_cache); 361 362 return r; 363 } 364 365 static void local_exit(void) 366 { 367 flush_scheduled_work(); 368 destroy_workqueue(deferred_remove_workqueue); 369 370 kmem_cache_destroy(_rq_cache); 371 kmem_cache_destroy(_rq_tio_cache); 372 kmem_cache_destroy(_io_cache); 373 unregister_blkdev(_major, _name); 374 dm_uevent_exit(); 375 376 _major = 0; 377 378 DMINFO("cleaned up"); 379 } 380 381 static int (*_inits[])(void) __initdata = { 382 local_init, 383 dm_target_init, 384 dm_linear_init, 385 dm_stripe_init, 386 dm_io_init, 387 dm_kcopyd_init, 388 dm_interface_init, 389 dm_statistics_init, 390 }; 391 392 static void (*_exits[])(void) = { 393 local_exit, 394 dm_target_exit, 395 dm_linear_exit, 396 dm_stripe_exit, 397 dm_io_exit, 398 dm_kcopyd_exit, 399 dm_interface_exit, 400 dm_statistics_exit, 401 }; 402 403 static int __init dm_init(void) 404 { 405 const int count = ARRAY_SIZE(_inits); 406 407 int r, i; 408 409 for (i = 0; i < count; i++) { 410 r = _inits[i](); 411 if (r) 412 goto bad; 413 } 414 415 return 0; 416 417 bad: 418 while (i--) 419 _exits[i](); 420 421 return r; 422 } 423 424 static void __exit dm_exit(void) 425 { 426 int i = ARRAY_SIZE(_exits); 427 428 while (i--) 429 _exits[i](); 430 431 /* 432 * Should be empty by this point. 433 */ 434 idr_destroy(&_minor_idr); 435 } 436 437 /* 438 * Block device functions 439 */ 440 int dm_deleting_md(struct mapped_device *md) 441 { 442 return test_bit(DMF_DELETING, &md->flags); 443 } 444 445 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 446 { 447 struct mapped_device *md; 448 449 spin_lock(&_minor_lock); 450 451 md = bdev->bd_disk->private_data; 452 if (!md) 453 goto out; 454 455 if (test_bit(DMF_FREEING, &md->flags) || 456 dm_deleting_md(md)) { 457 md = NULL; 458 goto out; 459 } 460 461 dm_get(md); 462 atomic_inc(&md->open_count); 463 out: 464 spin_unlock(&_minor_lock); 465 466 return md ? 0 : -ENXIO; 467 } 468 469 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 470 { 471 struct mapped_device *md; 472 473 spin_lock(&_minor_lock); 474 475 md = disk->private_data; 476 if (WARN_ON(!md)) 477 goto out; 478 479 if (atomic_dec_and_test(&md->open_count) && 480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 481 queue_work(deferred_remove_workqueue, &deferred_remove_work); 482 483 dm_put(md); 484 out: 485 spin_unlock(&_minor_lock); 486 } 487 488 int dm_open_count(struct mapped_device *md) 489 { 490 return atomic_read(&md->open_count); 491 } 492 493 /* 494 * Guarantees nothing is using the device before it's deleted. 495 */ 496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 497 { 498 int r = 0; 499 500 spin_lock(&_minor_lock); 501 502 if (dm_open_count(md)) { 503 r = -EBUSY; 504 if (mark_deferred) 505 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 507 r = -EEXIST; 508 else 509 set_bit(DMF_DELETING, &md->flags); 510 511 spin_unlock(&_minor_lock); 512 513 return r; 514 } 515 516 int dm_cancel_deferred_remove(struct mapped_device *md) 517 { 518 int r = 0; 519 520 spin_lock(&_minor_lock); 521 522 if (test_bit(DMF_DELETING, &md->flags)) 523 r = -EBUSY; 524 else 525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 526 527 spin_unlock(&_minor_lock); 528 529 return r; 530 } 531 532 static void do_deferred_remove(struct work_struct *w) 533 { 534 dm_deferred_remove(); 535 } 536 537 sector_t dm_get_size(struct mapped_device *md) 538 { 539 return get_capacity(md->disk); 540 } 541 542 struct request_queue *dm_get_md_queue(struct mapped_device *md) 543 { 544 return md->queue; 545 } 546 547 struct dm_stats *dm_get_stats(struct mapped_device *md) 548 { 549 return &md->stats; 550 } 551 552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 553 { 554 struct mapped_device *md = bdev->bd_disk->private_data; 555 556 return dm_get_geometry(md, geo); 557 } 558 559 static int dm_get_live_table_for_ioctl(struct mapped_device *md, 560 struct dm_target **tgt, struct block_device **bdev, 561 fmode_t *mode, int *srcu_idx) 562 { 563 struct dm_table *map; 564 int r; 565 566 retry: 567 r = -ENOTTY; 568 map = dm_get_live_table(md, srcu_idx); 569 if (!map || !dm_table_get_size(map)) 570 goto out; 571 572 /* We only support devices that have a single target */ 573 if (dm_table_get_num_targets(map) != 1) 574 goto out; 575 576 *tgt = dm_table_get_target(map, 0); 577 578 if (!(*tgt)->type->prepare_ioctl) 579 goto out; 580 581 if (dm_suspended_md(md)) { 582 r = -EAGAIN; 583 goto out; 584 } 585 586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode); 587 if (r < 0) 588 goto out; 589 590 return r; 591 592 out: 593 dm_put_live_table(md, *srcu_idx); 594 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 595 msleep(10); 596 goto retry; 597 } 598 return r; 599 } 600 601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 602 unsigned int cmd, unsigned long arg) 603 { 604 struct mapped_device *md = bdev->bd_disk->private_data; 605 struct dm_target *tgt; 606 struct block_device *tgt_bdev = NULL; 607 int srcu_idx, r; 608 609 r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx); 610 if (r < 0) 611 return r; 612 613 if (r > 0) { 614 /* 615 * Target determined this ioctl is being issued against 616 * a logical partition of the parent bdev; so extra 617 * validation is needed. 618 */ 619 r = scsi_verify_blk_ioctl(NULL, cmd); 620 if (r) 621 goto out; 622 } 623 624 r = __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg); 625 out: 626 dm_put_live_table(md, srcu_idx); 627 return r; 628 } 629 630 static struct dm_io *alloc_io(struct mapped_device *md) 631 { 632 return mempool_alloc(md->io_pool, GFP_NOIO); 633 } 634 635 static void free_io(struct mapped_device *md, struct dm_io *io) 636 { 637 mempool_free(io, md->io_pool); 638 } 639 640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 641 { 642 bio_put(&tio->clone); 643 } 644 645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 646 gfp_t gfp_mask) 647 { 648 return mempool_alloc(md->io_pool, gfp_mask); 649 } 650 651 static void free_rq_tio(struct dm_rq_target_io *tio) 652 { 653 mempool_free(tio, tio->md->io_pool); 654 } 655 656 static struct request *alloc_clone_request(struct mapped_device *md, 657 gfp_t gfp_mask) 658 { 659 return mempool_alloc(md->rq_pool, gfp_mask); 660 } 661 662 static void free_clone_request(struct mapped_device *md, struct request *rq) 663 { 664 mempool_free(rq, md->rq_pool); 665 } 666 667 static int md_in_flight(struct mapped_device *md) 668 { 669 return atomic_read(&md->pending[READ]) + 670 atomic_read(&md->pending[WRITE]); 671 } 672 673 static void start_io_acct(struct dm_io *io) 674 { 675 struct mapped_device *md = io->md; 676 struct bio *bio = io->bio; 677 int cpu; 678 int rw = bio_data_dir(bio); 679 680 io->start_time = jiffies; 681 682 cpu = part_stat_lock(); 683 part_round_stats(cpu, &dm_disk(md)->part0); 684 part_stat_unlock(); 685 atomic_set(&dm_disk(md)->part0.in_flight[rw], 686 atomic_inc_return(&md->pending[rw])); 687 688 if (unlikely(dm_stats_used(&md->stats))) 689 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 690 bio_sectors(bio), false, 0, &io->stats_aux); 691 } 692 693 static void end_io_acct(struct dm_io *io) 694 { 695 struct mapped_device *md = io->md; 696 struct bio *bio = io->bio; 697 unsigned long duration = jiffies - io->start_time; 698 int pending; 699 int rw = bio_data_dir(bio); 700 701 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 702 703 if (unlikely(dm_stats_used(&md->stats))) 704 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 705 bio_sectors(bio), true, duration, &io->stats_aux); 706 707 /* 708 * After this is decremented the bio must not be touched if it is 709 * a flush. 710 */ 711 pending = atomic_dec_return(&md->pending[rw]); 712 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 713 pending += atomic_read(&md->pending[rw^0x1]); 714 715 /* nudge anyone waiting on suspend queue */ 716 if (!pending) 717 wake_up(&md->wait); 718 } 719 720 /* 721 * Add the bio to the list of deferred io. 722 */ 723 static void queue_io(struct mapped_device *md, struct bio *bio) 724 { 725 unsigned long flags; 726 727 spin_lock_irqsave(&md->deferred_lock, flags); 728 bio_list_add(&md->deferred, bio); 729 spin_unlock_irqrestore(&md->deferred_lock, flags); 730 queue_work(md->wq, &md->work); 731 } 732 733 /* 734 * Everyone (including functions in this file), should use this 735 * function to access the md->map field, and make sure they call 736 * dm_put_live_table() when finished. 737 */ 738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 739 { 740 *srcu_idx = srcu_read_lock(&md->io_barrier); 741 742 return srcu_dereference(md->map, &md->io_barrier); 743 } 744 745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 746 { 747 srcu_read_unlock(&md->io_barrier, srcu_idx); 748 } 749 750 void dm_sync_table(struct mapped_device *md) 751 { 752 synchronize_srcu(&md->io_barrier); 753 synchronize_rcu_expedited(); 754 } 755 756 /* 757 * A fast alternative to dm_get_live_table/dm_put_live_table. 758 * The caller must not block between these two functions. 759 */ 760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 761 { 762 rcu_read_lock(); 763 return rcu_dereference(md->map); 764 } 765 766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 767 { 768 rcu_read_unlock(); 769 } 770 771 /* 772 * Open a table device so we can use it as a map destination. 773 */ 774 static int open_table_device(struct table_device *td, dev_t dev, 775 struct mapped_device *md) 776 { 777 static char *_claim_ptr = "I belong to device-mapper"; 778 struct block_device *bdev; 779 780 int r; 781 782 BUG_ON(td->dm_dev.bdev); 783 784 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 785 if (IS_ERR(bdev)) 786 return PTR_ERR(bdev); 787 788 r = bd_link_disk_holder(bdev, dm_disk(md)); 789 if (r) { 790 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 791 return r; 792 } 793 794 td->dm_dev.bdev = bdev; 795 return 0; 796 } 797 798 /* 799 * Close a table device that we've been using. 800 */ 801 static void close_table_device(struct table_device *td, struct mapped_device *md) 802 { 803 if (!td->dm_dev.bdev) 804 return; 805 806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 808 td->dm_dev.bdev = NULL; 809 } 810 811 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 812 fmode_t mode) { 813 struct table_device *td; 814 815 list_for_each_entry(td, l, list) 816 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 817 return td; 818 819 return NULL; 820 } 821 822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 823 struct dm_dev **result) { 824 int r; 825 struct table_device *td; 826 827 mutex_lock(&md->table_devices_lock); 828 td = find_table_device(&md->table_devices, dev, mode); 829 if (!td) { 830 td = kmalloc(sizeof(*td), GFP_KERNEL); 831 if (!td) { 832 mutex_unlock(&md->table_devices_lock); 833 return -ENOMEM; 834 } 835 836 td->dm_dev.mode = mode; 837 td->dm_dev.bdev = NULL; 838 839 if ((r = open_table_device(td, dev, md))) { 840 mutex_unlock(&md->table_devices_lock); 841 kfree(td); 842 return r; 843 } 844 845 format_dev_t(td->dm_dev.name, dev); 846 847 atomic_set(&td->count, 0); 848 list_add(&td->list, &md->table_devices); 849 } 850 atomic_inc(&td->count); 851 mutex_unlock(&md->table_devices_lock); 852 853 *result = &td->dm_dev; 854 return 0; 855 } 856 EXPORT_SYMBOL_GPL(dm_get_table_device); 857 858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 859 { 860 struct table_device *td = container_of(d, struct table_device, dm_dev); 861 862 mutex_lock(&md->table_devices_lock); 863 if (atomic_dec_and_test(&td->count)) { 864 close_table_device(td, md); 865 list_del(&td->list); 866 kfree(td); 867 } 868 mutex_unlock(&md->table_devices_lock); 869 } 870 EXPORT_SYMBOL(dm_put_table_device); 871 872 static void free_table_devices(struct list_head *devices) 873 { 874 struct list_head *tmp, *next; 875 876 list_for_each_safe(tmp, next, devices) { 877 struct table_device *td = list_entry(tmp, struct table_device, list); 878 879 DMWARN("dm_destroy: %s still exists with %d references", 880 td->dm_dev.name, atomic_read(&td->count)); 881 kfree(td); 882 } 883 } 884 885 /* 886 * Get the geometry associated with a dm device 887 */ 888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 889 { 890 *geo = md->geometry; 891 892 return 0; 893 } 894 895 /* 896 * Set the geometry of a device. 897 */ 898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 899 { 900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 901 902 if (geo->start > sz) { 903 DMWARN("Start sector is beyond the geometry limits."); 904 return -EINVAL; 905 } 906 907 md->geometry = *geo; 908 909 return 0; 910 } 911 912 /*----------------------------------------------------------------- 913 * CRUD START: 914 * A more elegant soln is in the works that uses the queue 915 * merge fn, unfortunately there are a couple of changes to 916 * the block layer that I want to make for this. So in the 917 * interests of getting something for people to use I give 918 * you this clearly demarcated crap. 919 *---------------------------------------------------------------*/ 920 921 static int __noflush_suspending(struct mapped_device *md) 922 { 923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 924 } 925 926 /* 927 * Decrements the number of outstanding ios that a bio has been 928 * cloned into, completing the original io if necc. 929 */ 930 static void dec_pending(struct dm_io *io, int error) 931 { 932 unsigned long flags; 933 int io_error; 934 struct bio *bio; 935 struct mapped_device *md = io->md; 936 937 /* Push-back supersedes any I/O errors */ 938 if (unlikely(error)) { 939 spin_lock_irqsave(&io->endio_lock, flags); 940 if (!(io->error > 0 && __noflush_suspending(md))) 941 io->error = error; 942 spin_unlock_irqrestore(&io->endio_lock, flags); 943 } 944 945 if (atomic_dec_and_test(&io->io_count)) { 946 if (io->error == DM_ENDIO_REQUEUE) { 947 /* 948 * Target requested pushing back the I/O. 949 */ 950 spin_lock_irqsave(&md->deferred_lock, flags); 951 if (__noflush_suspending(md)) 952 bio_list_add_head(&md->deferred, io->bio); 953 else 954 /* noflush suspend was interrupted. */ 955 io->error = -EIO; 956 spin_unlock_irqrestore(&md->deferred_lock, flags); 957 } 958 959 io_error = io->error; 960 bio = io->bio; 961 end_io_acct(io); 962 free_io(md, io); 963 964 if (io_error == DM_ENDIO_REQUEUE) 965 return; 966 967 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 968 /* 969 * Preflush done for flush with data, reissue 970 * without REQ_FLUSH. 971 */ 972 bio->bi_rw &= ~REQ_FLUSH; 973 queue_io(md, bio); 974 } else { 975 /* done with normal IO or empty flush */ 976 trace_block_bio_complete(md->queue, bio, io_error); 977 bio->bi_error = io_error; 978 bio_endio(bio); 979 } 980 } 981 } 982 983 static void disable_write_same(struct mapped_device *md) 984 { 985 struct queue_limits *limits = dm_get_queue_limits(md); 986 987 /* device doesn't really support WRITE SAME, disable it */ 988 limits->max_write_same_sectors = 0; 989 } 990 991 static void clone_endio(struct bio *bio) 992 { 993 int error = bio->bi_error; 994 int r = error; 995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 996 struct dm_io *io = tio->io; 997 struct mapped_device *md = tio->io->md; 998 dm_endio_fn endio = tio->ti->type->end_io; 999 1000 if (endio) { 1001 r = endio(tio->ti, bio, error); 1002 if (r < 0 || r == DM_ENDIO_REQUEUE) 1003 /* 1004 * error and requeue request are handled 1005 * in dec_pending(). 1006 */ 1007 error = r; 1008 else if (r == DM_ENDIO_INCOMPLETE) 1009 /* The target will handle the io */ 1010 return; 1011 else if (r) { 1012 DMWARN("unimplemented target endio return value: %d", r); 1013 BUG(); 1014 } 1015 } 1016 1017 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 1018 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 1019 disable_write_same(md); 1020 1021 free_tio(md, tio); 1022 dec_pending(io, error); 1023 } 1024 1025 /* 1026 * Partial completion handling for request-based dm 1027 */ 1028 static void end_clone_bio(struct bio *clone) 1029 { 1030 struct dm_rq_clone_bio_info *info = 1031 container_of(clone, struct dm_rq_clone_bio_info, clone); 1032 struct dm_rq_target_io *tio = info->tio; 1033 struct bio *bio = info->orig; 1034 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1035 int error = clone->bi_error; 1036 1037 bio_put(clone); 1038 1039 if (tio->error) 1040 /* 1041 * An error has already been detected on the request. 1042 * Once error occurred, just let clone->end_io() handle 1043 * the remainder. 1044 */ 1045 return; 1046 else if (error) { 1047 /* 1048 * Don't notice the error to the upper layer yet. 1049 * The error handling decision is made by the target driver, 1050 * when the request is completed. 1051 */ 1052 tio->error = error; 1053 return; 1054 } 1055 1056 /* 1057 * I/O for the bio successfully completed. 1058 * Notice the data completion to the upper layer. 1059 */ 1060 1061 /* 1062 * bios are processed from the head of the list. 1063 * So the completing bio should always be rq->bio. 1064 * If it's not, something wrong is happening. 1065 */ 1066 if (tio->orig->bio != bio) 1067 DMERR("bio completion is going in the middle of the request"); 1068 1069 /* 1070 * Update the original request. 1071 * Do not use blk_end_request() here, because it may complete 1072 * the original request before the clone, and break the ordering. 1073 */ 1074 blk_update_request(tio->orig, 0, nr_bytes); 1075 } 1076 1077 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1078 { 1079 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1080 } 1081 1082 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1083 { 1084 if (unlikely(dm_stats_used(&md->stats))) { 1085 struct dm_rq_target_io *tio = tio_from_request(orig); 1086 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1087 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1088 tio->n_sectors, true, tio->duration_jiffies, 1089 &tio->stats_aux); 1090 } 1091 } 1092 1093 /* 1094 * Don't touch any member of the md after calling this function because 1095 * the md may be freed in dm_put() at the end of this function. 1096 * Or do dm_get() before calling this function and dm_put() later. 1097 */ 1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1099 { 1100 atomic_dec(&md->pending[rw]); 1101 1102 /* nudge anyone waiting on suspend queue */ 1103 if (!md_in_flight(md)) 1104 wake_up(&md->wait); 1105 1106 /* 1107 * Run this off this callpath, as drivers could invoke end_io while 1108 * inside their request_fn (and holding the queue lock). Calling 1109 * back into ->request_fn() could deadlock attempting to grab the 1110 * queue lock again. 1111 */ 1112 if (run_queue) { 1113 if (md->queue->mq_ops) 1114 blk_mq_run_hw_queues(md->queue, true); 1115 else 1116 blk_run_queue_async(md->queue); 1117 } 1118 1119 /* 1120 * dm_put() must be at the end of this function. See the comment above 1121 */ 1122 dm_put(md); 1123 } 1124 1125 static void free_rq_clone(struct request *clone) 1126 { 1127 struct dm_rq_target_io *tio = clone->end_io_data; 1128 struct mapped_device *md = tio->md; 1129 1130 blk_rq_unprep_clone(clone); 1131 1132 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1133 /* stacked on blk-mq queue(s) */ 1134 tio->ti->type->release_clone_rq(clone); 1135 else if (!md->queue->mq_ops) 1136 /* request_fn queue stacked on request_fn queue(s) */ 1137 free_clone_request(md, clone); 1138 /* 1139 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1140 * no need to call free_clone_request() because we leverage blk-mq by 1141 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1142 */ 1143 1144 if (!md->queue->mq_ops) 1145 free_rq_tio(tio); 1146 } 1147 1148 /* 1149 * Complete the clone and the original request. 1150 * Must be called without clone's queue lock held, 1151 * see end_clone_request() for more details. 1152 */ 1153 static void dm_end_request(struct request *clone, int error) 1154 { 1155 int rw = rq_data_dir(clone); 1156 struct dm_rq_target_io *tio = clone->end_io_data; 1157 struct mapped_device *md = tio->md; 1158 struct request *rq = tio->orig; 1159 1160 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1161 rq->errors = clone->errors; 1162 rq->resid_len = clone->resid_len; 1163 1164 if (rq->sense) 1165 /* 1166 * We are using the sense buffer of the original 1167 * request. 1168 * So setting the length of the sense data is enough. 1169 */ 1170 rq->sense_len = clone->sense_len; 1171 } 1172 1173 free_rq_clone(clone); 1174 rq_end_stats(md, rq); 1175 if (!rq->q->mq_ops) 1176 blk_end_request_all(rq, error); 1177 else 1178 blk_mq_end_request(rq, error); 1179 rq_completed(md, rw, true); 1180 } 1181 1182 static void dm_unprep_request(struct request *rq) 1183 { 1184 struct dm_rq_target_io *tio = tio_from_request(rq); 1185 struct request *clone = tio->clone; 1186 1187 if (!rq->q->mq_ops) { 1188 rq->special = NULL; 1189 rq->cmd_flags &= ~REQ_DONTPREP; 1190 } 1191 1192 if (clone) 1193 free_rq_clone(clone); 1194 else if (!tio->md->queue->mq_ops) 1195 free_rq_tio(tio); 1196 } 1197 1198 /* 1199 * Requeue the original request of a clone. 1200 */ 1201 static void old_requeue_request(struct request *rq) 1202 { 1203 struct request_queue *q = rq->q; 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(q->queue_lock, flags); 1207 blk_requeue_request(q, rq); 1208 blk_run_queue_async(q); 1209 spin_unlock_irqrestore(q->queue_lock, flags); 1210 } 1211 1212 static void dm_requeue_original_request(struct mapped_device *md, 1213 struct request *rq) 1214 { 1215 int rw = rq_data_dir(rq); 1216 1217 dm_unprep_request(rq); 1218 1219 rq_end_stats(md, rq); 1220 if (!rq->q->mq_ops) 1221 old_requeue_request(rq); 1222 else { 1223 blk_mq_requeue_request(rq); 1224 blk_mq_kick_requeue_list(rq->q); 1225 } 1226 1227 rq_completed(md, rw, false); 1228 } 1229 1230 static void old_stop_queue(struct request_queue *q) 1231 { 1232 unsigned long flags; 1233 1234 if (blk_queue_stopped(q)) 1235 return; 1236 1237 spin_lock_irqsave(q->queue_lock, flags); 1238 blk_stop_queue(q); 1239 spin_unlock_irqrestore(q->queue_lock, flags); 1240 } 1241 1242 static void stop_queue(struct request_queue *q) 1243 { 1244 if (!q->mq_ops) 1245 old_stop_queue(q); 1246 else 1247 blk_mq_stop_hw_queues(q); 1248 } 1249 1250 static void old_start_queue(struct request_queue *q) 1251 { 1252 unsigned long flags; 1253 1254 spin_lock_irqsave(q->queue_lock, flags); 1255 if (blk_queue_stopped(q)) 1256 blk_start_queue(q); 1257 spin_unlock_irqrestore(q->queue_lock, flags); 1258 } 1259 1260 static void start_queue(struct request_queue *q) 1261 { 1262 if (!q->mq_ops) 1263 old_start_queue(q); 1264 else 1265 blk_mq_start_stopped_hw_queues(q, true); 1266 } 1267 1268 static void dm_done(struct request *clone, int error, bool mapped) 1269 { 1270 int r = error; 1271 struct dm_rq_target_io *tio = clone->end_io_data; 1272 dm_request_endio_fn rq_end_io = NULL; 1273 1274 if (tio->ti) { 1275 rq_end_io = tio->ti->type->rq_end_io; 1276 1277 if (mapped && rq_end_io) 1278 r = rq_end_io(tio->ti, clone, error, &tio->info); 1279 } 1280 1281 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1282 !clone->q->limits.max_write_same_sectors)) 1283 disable_write_same(tio->md); 1284 1285 if (r <= 0) 1286 /* The target wants to complete the I/O */ 1287 dm_end_request(clone, r); 1288 else if (r == DM_ENDIO_INCOMPLETE) 1289 /* The target will handle the I/O */ 1290 return; 1291 else if (r == DM_ENDIO_REQUEUE) 1292 /* The target wants to requeue the I/O */ 1293 dm_requeue_original_request(tio->md, tio->orig); 1294 else { 1295 DMWARN("unimplemented target endio return value: %d", r); 1296 BUG(); 1297 } 1298 } 1299 1300 /* 1301 * Request completion handler for request-based dm 1302 */ 1303 static void dm_softirq_done(struct request *rq) 1304 { 1305 bool mapped = true; 1306 struct dm_rq_target_io *tio = tio_from_request(rq); 1307 struct request *clone = tio->clone; 1308 int rw; 1309 1310 if (!clone) { 1311 rq_end_stats(tio->md, rq); 1312 rw = rq_data_dir(rq); 1313 if (!rq->q->mq_ops) { 1314 blk_end_request_all(rq, tio->error); 1315 rq_completed(tio->md, rw, false); 1316 free_rq_tio(tio); 1317 } else { 1318 blk_mq_end_request(rq, tio->error); 1319 rq_completed(tio->md, rw, false); 1320 } 1321 return; 1322 } 1323 1324 if (rq->cmd_flags & REQ_FAILED) 1325 mapped = false; 1326 1327 dm_done(clone, tio->error, mapped); 1328 } 1329 1330 /* 1331 * Complete the clone and the original request with the error status 1332 * through softirq context. 1333 */ 1334 static void dm_complete_request(struct request *rq, int error) 1335 { 1336 struct dm_rq_target_io *tio = tio_from_request(rq); 1337 1338 tio->error = error; 1339 blk_complete_request(rq); 1340 } 1341 1342 /* 1343 * Complete the not-mapped clone and the original request with the error status 1344 * through softirq context. 1345 * Target's rq_end_io() function isn't called. 1346 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1347 */ 1348 static void dm_kill_unmapped_request(struct request *rq, int error) 1349 { 1350 rq->cmd_flags |= REQ_FAILED; 1351 dm_complete_request(rq, error); 1352 } 1353 1354 /* 1355 * Called with the clone's queue lock held (for non-blk-mq) 1356 */ 1357 static void end_clone_request(struct request *clone, int error) 1358 { 1359 struct dm_rq_target_io *tio = clone->end_io_data; 1360 1361 if (!clone->q->mq_ops) { 1362 /* 1363 * For just cleaning up the information of the queue in which 1364 * the clone was dispatched. 1365 * The clone is *NOT* freed actually here because it is alloced 1366 * from dm own mempool (REQ_ALLOCED isn't set). 1367 */ 1368 __blk_put_request(clone->q, clone); 1369 } 1370 1371 /* 1372 * Actual request completion is done in a softirq context which doesn't 1373 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1374 * - another request may be submitted by the upper level driver 1375 * of the stacking during the completion 1376 * - the submission which requires queue lock may be done 1377 * against this clone's queue 1378 */ 1379 dm_complete_request(tio->orig, error); 1380 } 1381 1382 /* 1383 * Return maximum size of I/O possible at the supplied sector up to the current 1384 * target boundary. 1385 */ 1386 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1387 { 1388 sector_t target_offset = dm_target_offset(ti, sector); 1389 1390 return ti->len - target_offset; 1391 } 1392 1393 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1394 { 1395 sector_t len = max_io_len_target_boundary(sector, ti); 1396 sector_t offset, max_len; 1397 1398 /* 1399 * Does the target need to split even further? 1400 */ 1401 if (ti->max_io_len) { 1402 offset = dm_target_offset(ti, sector); 1403 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1404 max_len = sector_div(offset, ti->max_io_len); 1405 else 1406 max_len = offset & (ti->max_io_len - 1); 1407 max_len = ti->max_io_len - max_len; 1408 1409 if (len > max_len) 1410 len = max_len; 1411 } 1412 1413 return len; 1414 } 1415 1416 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1417 { 1418 if (len > UINT_MAX) { 1419 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1420 (unsigned long long)len, UINT_MAX); 1421 ti->error = "Maximum size of target IO is too large"; 1422 return -EINVAL; 1423 } 1424 1425 ti->max_io_len = (uint32_t) len; 1426 1427 return 0; 1428 } 1429 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1430 1431 /* 1432 * A target may call dm_accept_partial_bio only from the map routine. It is 1433 * allowed for all bio types except REQ_FLUSH. 1434 * 1435 * dm_accept_partial_bio informs the dm that the target only wants to process 1436 * additional n_sectors sectors of the bio and the rest of the data should be 1437 * sent in a next bio. 1438 * 1439 * A diagram that explains the arithmetics: 1440 * +--------------------+---------------+-------+ 1441 * | 1 | 2 | 3 | 1442 * +--------------------+---------------+-------+ 1443 * 1444 * <-------------- *tio->len_ptr ---------------> 1445 * <------- bi_size -------> 1446 * <-- n_sectors --> 1447 * 1448 * Region 1 was already iterated over with bio_advance or similar function. 1449 * (it may be empty if the target doesn't use bio_advance) 1450 * Region 2 is the remaining bio size that the target wants to process. 1451 * (it may be empty if region 1 is non-empty, although there is no reason 1452 * to make it empty) 1453 * The target requires that region 3 is to be sent in the next bio. 1454 * 1455 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1456 * the partially processed part (the sum of regions 1+2) must be the same for all 1457 * copies of the bio. 1458 */ 1459 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1460 { 1461 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1462 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1463 BUG_ON(bio->bi_rw & REQ_FLUSH); 1464 BUG_ON(bi_size > *tio->len_ptr); 1465 BUG_ON(n_sectors > bi_size); 1466 *tio->len_ptr -= bi_size - n_sectors; 1467 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1468 } 1469 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1470 1471 static void __map_bio(struct dm_target_io *tio) 1472 { 1473 int r; 1474 sector_t sector; 1475 struct mapped_device *md; 1476 struct bio *clone = &tio->clone; 1477 struct dm_target *ti = tio->ti; 1478 1479 clone->bi_end_io = clone_endio; 1480 1481 /* 1482 * Map the clone. If r == 0 we don't need to do 1483 * anything, the target has assumed ownership of 1484 * this io. 1485 */ 1486 atomic_inc(&tio->io->io_count); 1487 sector = clone->bi_iter.bi_sector; 1488 r = ti->type->map(ti, clone); 1489 if (r == DM_MAPIO_REMAPPED) { 1490 /* the bio has been remapped so dispatch it */ 1491 1492 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1493 tio->io->bio->bi_bdev->bd_dev, sector); 1494 1495 generic_make_request(clone); 1496 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1497 /* error the io and bail out, or requeue it if needed */ 1498 md = tio->io->md; 1499 dec_pending(tio->io, r); 1500 free_tio(md, tio); 1501 } else if (r != DM_MAPIO_SUBMITTED) { 1502 DMWARN("unimplemented target map return value: %d", r); 1503 BUG(); 1504 } 1505 } 1506 1507 struct clone_info { 1508 struct mapped_device *md; 1509 struct dm_table *map; 1510 struct bio *bio; 1511 struct dm_io *io; 1512 sector_t sector; 1513 unsigned sector_count; 1514 }; 1515 1516 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1517 { 1518 bio->bi_iter.bi_sector = sector; 1519 bio->bi_iter.bi_size = to_bytes(len); 1520 } 1521 1522 /* 1523 * Creates a bio that consists of range of complete bvecs. 1524 */ 1525 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1526 sector_t sector, unsigned len) 1527 { 1528 struct bio *clone = &tio->clone; 1529 1530 __bio_clone_fast(clone, bio); 1531 1532 if (bio_integrity(bio)) 1533 bio_integrity_clone(clone, bio, GFP_NOIO); 1534 1535 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1536 clone->bi_iter.bi_size = to_bytes(len); 1537 1538 if (bio_integrity(bio)) 1539 bio_integrity_trim(clone, 0, len); 1540 } 1541 1542 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1543 struct dm_target *ti, 1544 unsigned target_bio_nr) 1545 { 1546 struct dm_target_io *tio; 1547 struct bio *clone; 1548 1549 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1550 tio = container_of(clone, struct dm_target_io, clone); 1551 1552 tio->io = ci->io; 1553 tio->ti = ti; 1554 tio->target_bio_nr = target_bio_nr; 1555 1556 return tio; 1557 } 1558 1559 static void __clone_and_map_simple_bio(struct clone_info *ci, 1560 struct dm_target *ti, 1561 unsigned target_bio_nr, unsigned *len) 1562 { 1563 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1564 struct bio *clone = &tio->clone; 1565 1566 tio->len_ptr = len; 1567 1568 __bio_clone_fast(clone, ci->bio); 1569 if (len) 1570 bio_setup_sector(clone, ci->sector, *len); 1571 1572 __map_bio(tio); 1573 } 1574 1575 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1576 unsigned num_bios, unsigned *len) 1577 { 1578 unsigned target_bio_nr; 1579 1580 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1581 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1582 } 1583 1584 static int __send_empty_flush(struct clone_info *ci) 1585 { 1586 unsigned target_nr = 0; 1587 struct dm_target *ti; 1588 1589 BUG_ON(bio_has_data(ci->bio)); 1590 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1591 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1592 1593 return 0; 1594 } 1595 1596 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1597 sector_t sector, unsigned *len) 1598 { 1599 struct bio *bio = ci->bio; 1600 struct dm_target_io *tio; 1601 unsigned target_bio_nr; 1602 unsigned num_target_bios = 1; 1603 1604 /* 1605 * Does the target want to receive duplicate copies of the bio? 1606 */ 1607 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1608 num_target_bios = ti->num_write_bios(ti, bio); 1609 1610 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1611 tio = alloc_tio(ci, ti, target_bio_nr); 1612 tio->len_ptr = len; 1613 clone_bio(tio, bio, sector, *len); 1614 __map_bio(tio); 1615 } 1616 } 1617 1618 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1619 1620 static unsigned get_num_discard_bios(struct dm_target *ti) 1621 { 1622 return ti->num_discard_bios; 1623 } 1624 1625 static unsigned get_num_write_same_bios(struct dm_target *ti) 1626 { 1627 return ti->num_write_same_bios; 1628 } 1629 1630 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1631 1632 static bool is_split_required_for_discard(struct dm_target *ti) 1633 { 1634 return ti->split_discard_bios; 1635 } 1636 1637 static int __send_changing_extent_only(struct clone_info *ci, 1638 get_num_bios_fn get_num_bios, 1639 is_split_required_fn is_split_required) 1640 { 1641 struct dm_target *ti; 1642 unsigned len; 1643 unsigned num_bios; 1644 1645 do { 1646 ti = dm_table_find_target(ci->map, ci->sector); 1647 if (!dm_target_is_valid(ti)) 1648 return -EIO; 1649 1650 /* 1651 * Even though the device advertised support for this type of 1652 * request, that does not mean every target supports it, and 1653 * reconfiguration might also have changed that since the 1654 * check was performed. 1655 */ 1656 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1657 if (!num_bios) 1658 return -EOPNOTSUPP; 1659 1660 if (is_split_required && !is_split_required(ti)) 1661 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1662 else 1663 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1664 1665 __send_duplicate_bios(ci, ti, num_bios, &len); 1666 1667 ci->sector += len; 1668 } while (ci->sector_count -= len); 1669 1670 return 0; 1671 } 1672 1673 static int __send_discard(struct clone_info *ci) 1674 { 1675 return __send_changing_extent_only(ci, get_num_discard_bios, 1676 is_split_required_for_discard); 1677 } 1678 1679 static int __send_write_same(struct clone_info *ci) 1680 { 1681 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1682 } 1683 1684 /* 1685 * Select the correct strategy for processing a non-flush bio. 1686 */ 1687 static int __split_and_process_non_flush(struct clone_info *ci) 1688 { 1689 struct bio *bio = ci->bio; 1690 struct dm_target *ti; 1691 unsigned len; 1692 1693 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1694 return __send_discard(ci); 1695 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1696 return __send_write_same(ci); 1697 1698 ti = dm_table_find_target(ci->map, ci->sector); 1699 if (!dm_target_is_valid(ti)) 1700 return -EIO; 1701 1702 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1703 1704 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1705 1706 ci->sector += len; 1707 ci->sector_count -= len; 1708 1709 return 0; 1710 } 1711 1712 /* 1713 * Entry point to split a bio into clones and submit them to the targets. 1714 */ 1715 static void __split_and_process_bio(struct mapped_device *md, 1716 struct dm_table *map, struct bio *bio) 1717 { 1718 struct clone_info ci; 1719 int error = 0; 1720 1721 if (unlikely(!map)) { 1722 bio_io_error(bio); 1723 return; 1724 } 1725 1726 ci.map = map; 1727 ci.md = md; 1728 ci.io = alloc_io(md); 1729 ci.io->error = 0; 1730 atomic_set(&ci.io->io_count, 1); 1731 ci.io->bio = bio; 1732 ci.io->md = md; 1733 spin_lock_init(&ci.io->endio_lock); 1734 ci.sector = bio->bi_iter.bi_sector; 1735 1736 start_io_acct(ci.io); 1737 1738 if (bio->bi_rw & REQ_FLUSH) { 1739 ci.bio = &ci.md->flush_bio; 1740 ci.sector_count = 0; 1741 error = __send_empty_flush(&ci); 1742 /* dec_pending submits any data associated with flush */ 1743 } else { 1744 ci.bio = bio; 1745 ci.sector_count = bio_sectors(bio); 1746 while (ci.sector_count && !error) 1747 error = __split_and_process_non_flush(&ci); 1748 } 1749 1750 /* drop the extra reference count */ 1751 dec_pending(ci.io, error); 1752 } 1753 /*----------------------------------------------------------------- 1754 * CRUD END 1755 *---------------------------------------------------------------*/ 1756 1757 /* 1758 * The request function that just remaps the bio built up by 1759 * dm_merge_bvec. 1760 */ 1761 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1762 { 1763 int rw = bio_data_dir(bio); 1764 struct mapped_device *md = q->queuedata; 1765 int srcu_idx; 1766 struct dm_table *map; 1767 1768 map = dm_get_live_table(md, &srcu_idx); 1769 1770 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1771 1772 /* if we're suspended, we have to queue this io for later */ 1773 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1774 dm_put_live_table(md, srcu_idx); 1775 1776 if (bio_rw(bio) != READA) 1777 queue_io(md, bio); 1778 else 1779 bio_io_error(bio); 1780 return BLK_QC_T_NONE; 1781 } 1782 1783 __split_and_process_bio(md, map, bio); 1784 dm_put_live_table(md, srcu_idx); 1785 return BLK_QC_T_NONE; 1786 } 1787 1788 int dm_request_based(struct mapped_device *md) 1789 { 1790 return blk_queue_stackable(md->queue); 1791 } 1792 1793 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1794 { 1795 int r; 1796 1797 if (blk_queue_io_stat(clone->q)) 1798 clone->cmd_flags |= REQ_IO_STAT; 1799 1800 clone->start_time = jiffies; 1801 r = blk_insert_cloned_request(clone->q, clone); 1802 if (r) 1803 /* must complete clone in terms of original request */ 1804 dm_complete_request(rq, r); 1805 } 1806 1807 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1808 void *data) 1809 { 1810 struct dm_rq_target_io *tio = data; 1811 struct dm_rq_clone_bio_info *info = 1812 container_of(bio, struct dm_rq_clone_bio_info, clone); 1813 1814 info->orig = bio_orig; 1815 info->tio = tio; 1816 bio->bi_end_io = end_clone_bio; 1817 1818 return 0; 1819 } 1820 1821 static int setup_clone(struct request *clone, struct request *rq, 1822 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1823 { 1824 int r; 1825 1826 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1827 dm_rq_bio_constructor, tio); 1828 if (r) 1829 return r; 1830 1831 clone->cmd = rq->cmd; 1832 clone->cmd_len = rq->cmd_len; 1833 clone->sense = rq->sense; 1834 clone->end_io = end_clone_request; 1835 clone->end_io_data = tio; 1836 1837 tio->clone = clone; 1838 1839 return 0; 1840 } 1841 1842 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1843 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1844 { 1845 /* 1846 * Do not allocate a clone if tio->clone was already set 1847 * (see: dm_mq_queue_rq). 1848 */ 1849 bool alloc_clone = !tio->clone; 1850 struct request *clone; 1851 1852 if (alloc_clone) { 1853 clone = alloc_clone_request(md, gfp_mask); 1854 if (!clone) 1855 return NULL; 1856 } else 1857 clone = tio->clone; 1858 1859 blk_rq_init(NULL, clone); 1860 if (setup_clone(clone, rq, tio, gfp_mask)) { 1861 /* -ENOMEM */ 1862 if (alloc_clone) 1863 free_clone_request(md, clone); 1864 return NULL; 1865 } 1866 1867 return clone; 1868 } 1869 1870 static void map_tio_request(struct kthread_work *work); 1871 1872 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1873 struct mapped_device *md) 1874 { 1875 tio->md = md; 1876 tio->ti = NULL; 1877 tio->clone = NULL; 1878 tio->orig = rq; 1879 tio->error = 0; 1880 memset(&tio->info, 0, sizeof(tio->info)); 1881 if (md->kworker_task) 1882 init_kthread_work(&tio->work, map_tio_request); 1883 } 1884 1885 static struct dm_rq_target_io *prep_tio(struct request *rq, 1886 struct mapped_device *md, gfp_t gfp_mask) 1887 { 1888 struct dm_rq_target_io *tio; 1889 int srcu_idx; 1890 struct dm_table *table; 1891 1892 tio = alloc_rq_tio(md, gfp_mask); 1893 if (!tio) 1894 return NULL; 1895 1896 init_tio(tio, rq, md); 1897 1898 table = dm_get_live_table(md, &srcu_idx); 1899 if (!dm_table_mq_request_based(table)) { 1900 if (!clone_rq(rq, md, tio, gfp_mask)) { 1901 dm_put_live_table(md, srcu_idx); 1902 free_rq_tio(tio); 1903 return NULL; 1904 } 1905 } 1906 dm_put_live_table(md, srcu_idx); 1907 1908 return tio; 1909 } 1910 1911 /* 1912 * Called with the queue lock held. 1913 */ 1914 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1915 { 1916 struct mapped_device *md = q->queuedata; 1917 struct dm_rq_target_io *tio; 1918 1919 if (unlikely(rq->special)) { 1920 DMWARN("Already has something in rq->special."); 1921 return BLKPREP_KILL; 1922 } 1923 1924 tio = prep_tio(rq, md, GFP_ATOMIC); 1925 if (!tio) 1926 return BLKPREP_DEFER; 1927 1928 rq->special = tio; 1929 rq->cmd_flags |= REQ_DONTPREP; 1930 1931 return BLKPREP_OK; 1932 } 1933 1934 /* 1935 * Returns: 1936 * 0 : the request has been processed 1937 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1938 * < 0 : the request was completed due to failure 1939 */ 1940 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1941 struct mapped_device *md) 1942 { 1943 int r; 1944 struct dm_target *ti = tio->ti; 1945 struct request *clone = NULL; 1946 1947 if (tio->clone) { 1948 clone = tio->clone; 1949 r = ti->type->map_rq(ti, clone, &tio->info); 1950 } else { 1951 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1952 if (r < 0) { 1953 /* The target wants to complete the I/O */ 1954 dm_kill_unmapped_request(rq, r); 1955 return r; 1956 } 1957 if (r != DM_MAPIO_REMAPPED) 1958 return r; 1959 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1960 /* -ENOMEM */ 1961 ti->type->release_clone_rq(clone); 1962 return DM_MAPIO_REQUEUE; 1963 } 1964 } 1965 1966 switch (r) { 1967 case DM_MAPIO_SUBMITTED: 1968 /* The target has taken the I/O to submit by itself later */ 1969 break; 1970 case DM_MAPIO_REMAPPED: 1971 /* The target has remapped the I/O so dispatch it */ 1972 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1973 blk_rq_pos(rq)); 1974 dm_dispatch_clone_request(clone, rq); 1975 break; 1976 case DM_MAPIO_REQUEUE: 1977 /* The target wants to requeue the I/O */ 1978 dm_requeue_original_request(md, tio->orig); 1979 break; 1980 default: 1981 if (r > 0) { 1982 DMWARN("unimplemented target map return value: %d", r); 1983 BUG(); 1984 } 1985 1986 /* The target wants to complete the I/O */ 1987 dm_kill_unmapped_request(rq, r); 1988 return r; 1989 } 1990 1991 return 0; 1992 } 1993 1994 static void map_tio_request(struct kthread_work *work) 1995 { 1996 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 1997 struct request *rq = tio->orig; 1998 struct mapped_device *md = tio->md; 1999 2000 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2001 dm_requeue_original_request(md, rq); 2002 } 2003 2004 static void dm_start_request(struct mapped_device *md, struct request *orig) 2005 { 2006 if (!orig->q->mq_ops) 2007 blk_start_request(orig); 2008 else 2009 blk_mq_start_request(orig); 2010 atomic_inc(&md->pending[rq_data_dir(orig)]); 2011 2012 if (md->seq_rq_merge_deadline_usecs) { 2013 md->last_rq_pos = rq_end_sector(orig); 2014 md->last_rq_rw = rq_data_dir(orig); 2015 md->last_rq_start_time = ktime_get(); 2016 } 2017 2018 if (unlikely(dm_stats_used(&md->stats))) { 2019 struct dm_rq_target_io *tio = tio_from_request(orig); 2020 tio->duration_jiffies = jiffies; 2021 tio->n_sectors = blk_rq_sectors(orig); 2022 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 2023 tio->n_sectors, false, 0, &tio->stats_aux); 2024 } 2025 2026 /* 2027 * Hold the md reference here for the in-flight I/O. 2028 * We can't rely on the reference count by device opener, 2029 * because the device may be closed during the request completion 2030 * when all bios are completed. 2031 * See the comment in rq_completed() too. 2032 */ 2033 dm_get(md); 2034 } 2035 2036 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2037 2038 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2039 { 2040 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2041 } 2042 2043 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2044 const char *buf, size_t count) 2045 { 2046 unsigned deadline; 2047 2048 if (!dm_request_based(md) || md->use_blk_mq) 2049 return count; 2050 2051 if (kstrtouint(buf, 10, &deadline)) 2052 return -EINVAL; 2053 2054 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2055 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2056 2057 md->seq_rq_merge_deadline_usecs = deadline; 2058 2059 return count; 2060 } 2061 2062 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2063 { 2064 ktime_t kt_deadline; 2065 2066 if (!md->seq_rq_merge_deadline_usecs) 2067 return false; 2068 2069 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2070 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2071 2072 return !ktime_after(ktime_get(), kt_deadline); 2073 } 2074 2075 /* 2076 * q->request_fn for request-based dm. 2077 * Called with the queue lock held. 2078 */ 2079 static void dm_request_fn(struct request_queue *q) 2080 { 2081 struct mapped_device *md = q->queuedata; 2082 int srcu_idx; 2083 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2084 struct dm_target *ti; 2085 struct request *rq; 2086 struct dm_rq_target_io *tio; 2087 sector_t pos; 2088 2089 /* 2090 * For suspend, check blk_queue_stopped() and increment 2091 * ->pending within a single queue_lock not to increment the 2092 * number of in-flight I/Os after the queue is stopped in 2093 * dm_suspend(). 2094 */ 2095 while (!blk_queue_stopped(q)) { 2096 rq = blk_peek_request(q); 2097 if (!rq) 2098 goto out; 2099 2100 /* always use block 0 to find the target for flushes for now */ 2101 pos = 0; 2102 if (!(rq->cmd_flags & REQ_FLUSH)) 2103 pos = blk_rq_pos(rq); 2104 2105 ti = dm_table_find_target(map, pos); 2106 if (!dm_target_is_valid(ti)) { 2107 /* 2108 * Must perform setup, that rq_completed() requires, 2109 * before calling dm_kill_unmapped_request 2110 */ 2111 DMERR_LIMIT("request attempted access beyond the end of device"); 2112 dm_start_request(md, rq); 2113 dm_kill_unmapped_request(rq, -EIO); 2114 continue; 2115 } 2116 2117 if (dm_request_peeked_before_merge_deadline(md) && 2118 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2119 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2120 goto delay_and_out; 2121 2122 if (ti->type->busy && ti->type->busy(ti)) 2123 goto delay_and_out; 2124 2125 dm_start_request(md, rq); 2126 2127 tio = tio_from_request(rq); 2128 /* Establish tio->ti before queuing work (map_tio_request) */ 2129 tio->ti = ti; 2130 queue_kthread_work(&md->kworker, &tio->work); 2131 BUG_ON(!irqs_disabled()); 2132 } 2133 2134 goto out; 2135 2136 delay_and_out: 2137 blk_delay_queue(q, HZ / 100); 2138 out: 2139 dm_put_live_table(md, srcu_idx); 2140 } 2141 2142 static int dm_any_congested(void *congested_data, int bdi_bits) 2143 { 2144 int r = bdi_bits; 2145 struct mapped_device *md = congested_data; 2146 struct dm_table *map; 2147 2148 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2149 map = dm_get_live_table_fast(md); 2150 if (map) { 2151 /* 2152 * Request-based dm cares about only own queue for 2153 * the query about congestion status of request_queue 2154 */ 2155 if (dm_request_based(md)) 2156 r = md->queue->backing_dev_info.wb.state & 2157 bdi_bits; 2158 else 2159 r = dm_table_any_congested(map, bdi_bits); 2160 } 2161 dm_put_live_table_fast(md); 2162 } 2163 2164 return r; 2165 } 2166 2167 /*----------------------------------------------------------------- 2168 * An IDR is used to keep track of allocated minor numbers. 2169 *---------------------------------------------------------------*/ 2170 static void free_minor(int minor) 2171 { 2172 spin_lock(&_minor_lock); 2173 idr_remove(&_minor_idr, minor); 2174 spin_unlock(&_minor_lock); 2175 } 2176 2177 /* 2178 * See if the device with a specific minor # is free. 2179 */ 2180 static int specific_minor(int minor) 2181 { 2182 int r; 2183 2184 if (minor >= (1 << MINORBITS)) 2185 return -EINVAL; 2186 2187 idr_preload(GFP_KERNEL); 2188 spin_lock(&_minor_lock); 2189 2190 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2191 2192 spin_unlock(&_minor_lock); 2193 idr_preload_end(); 2194 if (r < 0) 2195 return r == -ENOSPC ? -EBUSY : r; 2196 return 0; 2197 } 2198 2199 static int next_free_minor(int *minor) 2200 { 2201 int r; 2202 2203 idr_preload(GFP_KERNEL); 2204 spin_lock(&_minor_lock); 2205 2206 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2207 2208 spin_unlock(&_minor_lock); 2209 idr_preload_end(); 2210 if (r < 0) 2211 return r; 2212 *minor = r; 2213 return 0; 2214 } 2215 2216 static const struct block_device_operations dm_blk_dops; 2217 2218 static void dm_wq_work(struct work_struct *work); 2219 2220 static void dm_init_md_queue(struct mapped_device *md) 2221 { 2222 /* 2223 * Request-based dm devices cannot be stacked on top of bio-based dm 2224 * devices. The type of this dm device may not have been decided yet. 2225 * The type is decided at the first table loading time. 2226 * To prevent problematic device stacking, clear the queue flag 2227 * for request stacking support until then. 2228 * 2229 * This queue is new, so no concurrency on the queue_flags. 2230 */ 2231 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2232 2233 /* 2234 * Initialize data that will only be used by a non-blk-mq DM queue 2235 * - must do so here (in alloc_dev callchain) before queue is used 2236 */ 2237 md->queue->queuedata = md; 2238 md->queue->backing_dev_info.congested_data = md; 2239 } 2240 2241 static void dm_init_old_md_queue(struct mapped_device *md) 2242 { 2243 md->use_blk_mq = false; 2244 dm_init_md_queue(md); 2245 2246 /* 2247 * Initialize aspects of queue that aren't relevant for blk-mq 2248 */ 2249 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2250 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2251 } 2252 2253 static void cleanup_mapped_device(struct mapped_device *md) 2254 { 2255 if (md->wq) 2256 destroy_workqueue(md->wq); 2257 if (md->kworker_task) 2258 kthread_stop(md->kworker_task); 2259 mempool_destroy(md->io_pool); 2260 mempool_destroy(md->rq_pool); 2261 if (md->bs) 2262 bioset_free(md->bs); 2263 2264 cleanup_srcu_struct(&md->io_barrier); 2265 2266 if (md->disk) { 2267 spin_lock(&_minor_lock); 2268 md->disk->private_data = NULL; 2269 spin_unlock(&_minor_lock); 2270 del_gendisk(md->disk); 2271 put_disk(md->disk); 2272 } 2273 2274 if (md->queue) 2275 blk_cleanup_queue(md->queue); 2276 2277 if (md->bdev) { 2278 bdput(md->bdev); 2279 md->bdev = NULL; 2280 } 2281 } 2282 2283 /* 2284 * Allocate and initialise a blank device with a given minor. 2285 */ 2286 static struct mapped_device *alloc_dev(int minor) 2287 { 2288 int r; 2289 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2290 void *old_md; 2291 2292 if (!md) { 2293 DMWARN("unable to allocate device, out of memory."); 2294 return NULL; 2295 } 2296 2297 if (!try_module_get(THIS_MODULE)) 2298 goto bad_module_get; 2299 2300 /* get a minor number for the dev */ 2301 if (minor == DM_ANY_MINOR) 2302 r = next_free_minor(&minor); 2303 else 2304 r = specific_minor(minor); 2305 if (r < 0) 2306 goto bad_minor; 2307 2308 r = init_srcu_struct(&md->io_barrier); 2309 if (r < 0) 2310 goto bad_io_barrier; 2311 2312 md->use_blk_mq = use_blk_mq; 2313 md->type = DM_TYPE_NONE; 2314 mutex_init(&md->suspend_lock); 2315 mutex_init(&md->type_lock); 2316 mutex_init(&md->table_devices_lock); 2317 spin_lock_init(&md->deferred_lock); 2318 atomic_set(&md->holders, 1); 2319 atomic_set(&md->open_count, 0); 2320 atomic_set(&md->event_nr, 0); 2321 atomic_set(&md->uevent_seq, 0); 2322 INIT_LIST_HEAD(&md->uevent_list); 2323 INIT_LIST_HEAD(&md->table_devices); 2324 spin_lock_init(&md->uevent_lock); 2325 2326 md->queue = blk_alloc_queue(GFP_KERNEL); 2327 if (!md->queue) 2328 goto bad; 2329 2330 dm_init_md_queue(md); 2331 2332 md->disk = alloc_disk(1); 2333 if (!md->disk) 2334 goto bad; 2335 2336 atomic_set(&md->pending[0], 0); 2337 atomic_set(&md->pending[1], 0); 2338 init_waitqueue_head(&md->wait); 2339 INIT_WORK(&md->work, dm_wq_work); 2340 init_waitqueue_head(&md->eventq); 2341 init_completion(&md->kobj_holder.completion); 2342 md->kworker_task = NULL; 2343 2344 md->disk->major = _major; 2345 md->disk->first_minor = minor; 2346 md->disk->fops = &dm_blk_dops; 2347 md->disk->queue = md->queue; 2348 md->disk->private_data = md; 2349 sprintf(md->disk->disk_name, "dm-%d", minor); 2350 add_disk(md->disk); 2351 format_dev_t(md->name, MKDEV(_major, minor)); 2352 2353 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2354 if (!md->wq) 2355 goto bad; 2356 2357 md->bdev = bdget_disk(md->disk, 0); 2358 if (!md->bdev) 2359 goto bad; 2360 2361 bio_init(&md->flush_bio); 2362 md->flush_bio.bi_bdev = md->bdev; 2363 md->flush_bio.bi_rw = WRITE_FLUSH; 2364 2365 dm_stats_init(&md->stats); 2366 2367 /* Populate the mapping, nobody knows we exist yet */ 2368 spin_lock(&_minor_lock); 2369 old_md = idr_replace(&_minor_idr, md, minor); 2370 spin_unlock(&_minor_lock); 2371 2372 BUG_ON(old_md != MINOR_ALLOCED); 2373 2374 return md; 2375 2376 bad: 2377 cleanup_mapped_device(md); 2378 bad_io_barrier: 2379 free_minor(minor); 2380 bad_minor: 2381 module_put(THIS_MODULE); 2382 bad_module_get: 2383 kfree(md); 2384 return NULL; 2385 } 2386 2387 static void unlock_fs(struct mapped_device *md); 2388 2389 static void free_dev(struct mapped_device *md) 2390 { 2391 int minor = MINOR(disk_devt(md->disk)); 2392 2393 unlock_fs(md); 2394 2395 cleanup_mapped_device(md); 2396 if (md->use_blk_mq) 2397 blk_mq_free_tag_set(&md->tag_set); 2398 2399 free_table_devices(&md->table_devices); 2400 dm_stats_cleanup(&md->stats); 2401 free_minor(minor); 2402 2403 module_put(THIS_MODULE); 2404 kfree(md); 2405 } 2406 2407 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2408 { 2409 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2410 2411 if (md->bs) { 2412 /* The md already has necessary mempools. */ 2413 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2414 /* 2415 * Reload bioset because front_pad may have changed 2416 * because a different table was loaded. 2417 */ 2418 bioset_free(md->bs); 2419 md->bs = p->bs; 2420 p->bs = NULL; 2421 } 2422 /* 2423 * There's no need to reload with request-based dm 2424 * because the size of front_pad doesn't change. 2425 * Note for future: If you are to reload bioset, 2426 * prep-ed requests in the queue may refer 2427 * to bio from the old bioset, so you must walk 2428 * through the queue to unprep. 2429 */ 2430 goto out; 2431 } 2432 2433 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2434 2435 md->io_pool = p->io_pool; 2436 p->io_pool = NULL; 2437 md->rq_pool = p->rq_pool; 2438 p->rq_pool = NULL; 2439 md->bs = p->bs; 2440 p->bs = NULL; 2441 2442 out: 2443 /* mempool bind completed, no longer need any mempools in the table */ 2444 dm_table_free_md_mempools(t); 2445 } 2446 2447 /* 2448 * Bind a table to the device. 2449 */ 2450 static void event_callback(void *context) 2451 { 2452 unsigned long flags; 2453 LIST_HEAD(uevents); 2454 struct mapped_device *md = (struct mapped_device *) context; 2455 2456 spin_lock_irqsave(&md->uevent_lock, flags); 2457 list_splice_init(&md->uevent_list, &uevents); 2458 spin_unlock_irqrestore(&md->uevent_lock, flags); 2459 2460 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2461 2462 atomic_inc(&md->event_nr); 2463 wake_up(&md->eventq); 2464 } 2465 2466 /* 2467 * Protected by md->suspend_lock obtained by dm_swap_table(). 2468 */ 2469 static void __set_size(struct mapped_device *md, sector_t size) 2470 { 2471 set_capacity(md->disk, size); 2472 2473 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2474 } 2475 2476 /* 2477 * Returns old map, which caller must destroy. 2478 */ 2479 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2480 struct queue_limits *limits) 2481 { 2482 struct dm_table *old_map; 2483 struct request_queue *q = md->queue; 2484 sector_t size; 2485 2486 size = dm_table_get_size(t); 2487 2488 /* 2489 * Wipe any geometry if the size of the table changed. 2490 */ 2491 if (size != dm_get_size(md)) 2492 memset(&md->geometry, 0, sizeof(md->geometry)); 2493 2494 __set_size(md, size); 2495 2496 dm_table_event_callback(t, event_callback, md); 2497 2498 /* 2499 * The queue hasn't been stopped yet, if the old table type wasn't 2500 * for request-based during suspension. So stop it to prevent 2501 * I/O mapping before resume. 2502 * This must be done before setting the queue restrictions, 2503 * because request-based dm may be run just after the setting. 2504 */ 2505 if (dm_table_request_based(t)) 2506 stop_queue(q); 2507 2508 __bind_mempools(md, t); 2509 2510 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2511 rcu_assign_pointer(md->map, t); 2512 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2513 2514 dm_table_set_restrictions(t, q, limits); 2515 if (old_map) 2516 dm_sync_table(md); 2517 2518 return old_map; 2519 } 2520 2521 /* 2522 * Returns unbound table for the caller to free. 2523 */ 2524 static struct dm_table *__unbind(struct mapped_device *md) 2525 { 2526 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2527 2528 if (!map) 2529 return NULL; 2530 2531 dm_table_event_callback(map, NULL, NULL); 2532 RCU_INIT_POINTER(md->map, NULL); 2533 dm_sync_table(md); 2534 2535 return map; 2536 } 2537 2538 /* 2539 * Constructor for a new device. 2540 */ 2541 int dm_create(int minor, struct mapped_device **result) 2542 { 2543 struct mapped_device *md; 2544 2545 md = alloc_dev(minor); 2546 if (!md) 2547 return -ENXIO; 2548 2549 dm_sysfs_init(md); 2550 2551 *result = md; 2552 return 0; 2553 } 2554 2555 /* 2556 * Functions to manage md->type. 2557 * All are required to hold md->type_lock. 2558 */ 2559 void dm_lock_md_type(struct mapped_device *md) 2560 { 2561 mutex_lock(&md->type_lock); 2562 } 2563 2564 void dm_unlock_md_type(struct mapped_device *md) 2565 { 2566 mutex_unlock(&md->type_lock); 2567 } 2568 2569 void dm_set_md_type(struct mapped_device *md, unsigned type) 2570 { 2571 BUG_ON(!mutex_is_locked(&md->type_lock)); 2572 md->type = type; 2573 } 2574 2575 unsigned dm_get_md_type(struct mapped_device *md) 2576 { 2577 BUG_ON(!mutex_is_locked(&md->type_lock)); 2578 return md->type; 2579 } 2580 2581 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2582 { 2583 return md->immutable_target_type; 2584 } 2585 2586 /* 2587 * The queue_limits are only valid as long as you have a reference 2588 * count on 'md'. 2589 */ 2590 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2591 { 2592 BUG_ON(!atomic_read(&md->holders)); 2593 return &md->queue->limits; 2594 } 2595 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2596 2597 static void init_rq_based_worker_thread(struct mapped_device *md) 2598 { 2599 /* Initialize the request-based DM worker thread */ 2600 init_kthread_worker(&md->kworker); 2601 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2602 "kdmwork-%s", dm_device_name(md)); 2603 } 2604 2605 /* 2606 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2607 */ 2608 static int dm_init_request_based_queue(struct mapped_device *md) 2609 { 2610 struct request_queue *q = NULL; 2611 2612 /* Fully initialize the queue */ 2613 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2614 if (!q) 2615 return -EINVAL; 2616 2617 /* disable dm_request_fn's merge heuristic by default */ 2618 md->seq_rq_merge_deadline_usecs = 0; 2619 2620 md->queue = q; 2621 dm_init_old_md_queue(md); 2622 blk_queue_softirq_done(md->queue, dm_softirq_done); 2623 blk_queue_prep_rq(md->queue, dm_prep_fn); 2624 2625 init_rq_based_worker_thread(md); 2626 2627 elv_register_queue(md->queue); 2628 2629 return 0; 2630 } 2631 2632 static int dm_mq_init_request(void *data, struct request *rq, 2633 unsigned int hctx_idx, unsigned int request_idx, 2634 unsigned int numa_node) 2635 { 2636 struct mapped_device *md = data; 2637 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2638 2639 /* 2640 * Must initialize md member of tio, otherwise it won't 2641 * be available in dm_mq_queue_rq. 2642 */ 2643 tio->md = md; 2644 2645 return 0; 2646 } 2647 2648 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2649 const struct blk_mq_queue_data *bd) 2650 { 2651 struct request *rq = bd->rq; 2652 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2653 struct mapped_device *md = tio->md; 2654 int srcu_idx; 2655 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2656 struct dm_target *ti; 2657 sector_t pos; 2658 2659 /* always use block 0 to find the target for flushes for now */ 2660 pos = 0; 2661 if (!(rq->cmd_flags & REQ_FLUSH)) 2662 pos = blk_rq_pos(rq); 2663 2664 ti = dm_table_find_target(map, pos); 2665 if (!dm_target_is_valid(ti)) { 2666 dm_put_live_table(md, srcu_idx); 2667 DMERR_LIMIT("request attempted access beyond the end of device"); 2668 /* 2669 * Must perform setup, that rq_completed() requires, 2670 * before returning BLK_MQ_RQ_QUEUE_ERROR 2671 */ 2672 dm_start_request(md, rq); 2673 return BLK_MQ_RQ_QUEUE_ERROR; 2674 } 2675 dm_put_live_table(md, srcu_idx); 2676 2677 if (ti->type->busy && ti->type->busy(ti)) 2678 return BLK_MQ_RQ_QUEUE_BUSY; 2679 2680 dm_start_request(md, rq); 2681 2682 /* Init tio using md established in .init_request */ 2683 init_tio(tio, rq, md); 2684 2685 /* 2686 * Establish tio->ti before queuing work (map_tio_request) 2687 * or making direct call to map_request(). 2688 */ 2689 tio->ti = ti; 2690 2691 /* Clone the request if underlying devices aren't blk-mq */ 2692 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2693 /* clone request is allocated at the end of the pdu */ 2694 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2695 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2696 queue_kthread_work(&md->kworker, &tio->work); 2697 } else { 2698 /* Direct call is fine since .queue_rq allows allocations */ 2699 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2700 /* Undo dm_start_request() before requeuing */ 2701 rq_end_stats(md, rq); 2702 rq_completed(md, rq_data_dir(rq), false); 2703 return BLK_MQ_RQ_QUEUE_BUSY; 2704 } 2705 } 2706 2707 return BLK_MQ_RQ_QUEUE_OK; 2708 } 2709 2710 static struct blk_mq_ops dm_mq_ops = { 2711 .queue_rq = dm_mq_queue_rq, 2712 .map_queue = blk_mq_map_queue, 2713 .complete = dm_softirq_done, 2714 .init_request = dm_mq_init_request, 2715 }; 2716 2717 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2718 { 2719 unsigned md_type = dm_get_md_type(md); 2720 struct request_queue *q; 2721 int err; 2722 2723 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2724 md->tag_set.ops = &dm_mq_ops; 2725 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2726 md->tag_set.numa_node = NUMA_NO_NODE; 2727 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2728 md->tag_set.nr_hw_queues = 1; 2729 if (md_type == DM_TYPE_REQUEST_BASED) { 2730 /* make the memory for non-blk-mq clone part of the pdu */ 2731 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2732 } else 2733 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2734 md->tag_set.driver_data = md; 2735 2736 err = blk_mq_alloc_tag_set(&md->tag_set); 2737 if (err) 2738 return err; 2739 2740 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2741 if (IS_ERR(q)) { 2742 err = PTR_ERR(q); 2743 goto out_tag_set; 2744 } 2745 md->queue = q; 2746 dm_init_md_queue(md); 2747 2748 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2749 blk_mq_register_disk(md->disk); 2750 2751 if (md_type == DM_TYPE_REQUEST_BASED) 2752 init_rq_based_worker_thread(md); 2753 2754 return 0; 2755 2756 out_tag_set: 2757 blk_mq_free_tag_set(&md->tag_set); 2758 return err; 2759 } 2760 2761 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2762 { 2763 if (type == DM_TYPE_BIO_BASED) 2764 return type; 2765 2766 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2767 } 2768 2769 /* 2770 * Setup the DM device's queue based on md's type 2771 */ 2772 int dm_setup_md_queue(struct mapped_device *md) 2773 { 2774 int r; 2775 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2776 2777 switch (md_type) { 2778 case DM_TYPE_REQUEST_BASED: 2779 r = dm_init_request_based_queue(md); 2780 if (r) { 2781 DMWARN("Cannot initialize queue for request-based mapped device"); 2782 return r; 2783 } 2784 break; 2785 case DM_TYPE_MQ_REQUEST_BASED: 2786 r = dm_init_request_based_blk_mq_queue(md); 2787 if (r) { 2788 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2789 return r; 2790 } 2791 break; 2792 case DM_TYPE_BIO_BASED: 2793 dm_init_old_md_queue(md); 2794 blk_queue_make_request(md->queue, dm_make_request); 2795 /* 2796 * DM handles splitting bios as needed. Free the bio_split bioset 2797 * since it won't be used (saves 1 process per bio-based DM device). 2798 */ 2799 bioset_free(md->queue->bio_split); 2800 md->queue->bio_split = NULL; 2801 break; 2802 } 2803 2804 return 0; 2805 } 2806 2807 struct mapped_device *dm_get_md(dev_t dev) 2808 { 2809 struct mapped_device *md; 2810 unsigned minor = MINOR(dev); 2811 2812 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2813 return NULL; 2814 2815 spin_lock(&_minor_lock); 2816 2817 md = idr_find(&_minor_idr, minor); 2818 if (md) { 2819 if ((md == MINOR_ALLOCED || 2820 (MINOR(disk_devt(dm_disk(md))) != minor) || 2821 dm_deleting_md(md) || 2822 test_bit(DMF_FREEING, &md->flags))) { 2823 md = NULL; 2824 goto out; 2825 } 2826 dm_get(md); 2827 } 2828 2829 out: 2830 spin_unlock(&_minor_lock); 2831 2832 return md; 2833 } 2834 EXPORT_SYMBOL_GPL(dm_get_md); 2835 2836 void *dm_get_mdptr(struct mapped_device *md) 2837 { 2838 return md->interface_ptr; 2839 } 2840 2841 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2842 { 2843 md->interface_ptr = ptr; 2844 } 2845 2846 void dm_get(struct mapped_device *md) 2847 { 2848 atomic_inc(&md->holders); 2849 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2850 } 2851 2852 int dm_hold(struct mapped_device *md) 2853 { 2854 spin_lock(&_minor_lock); 2855 if (test_bit(DMF_FREEING, &md->flags)) { 2856 spin_unlock(&_minor_lock); 2857 return -EBUSY; 2858 } 2859 dm_get(md); 2860 spin_unlock(&_minor_lock); 2861 return 0; 2862 } 2863 EXPORT_SYMBOL_GPL(dm_hold); 2864 2865 const char *dm_device_name(struct mapped_device *md) 2866 { 2867 return md->name; 2868 } 2869 EXPORT_SYMBOL_GPL(dm_device_name); 2870 2871 static void __dm_destroy(struct mapped_device *md, bool wait) 2872 { 2873 struct dm_table *map; 2874 int srcu_idx; 2875 2876 might_sleep(); 2877 2878 spin_lock(&_minor_lock); 2879 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2880 set_bit(DMF_FREEING, &md->flags); 2881 spin_unlock(&_minor_lock); 2882 2883 if (dm_request_based(md) && md->kworker_task) 2884 flush_kthread_worker(&md->kworker); 2885 2886 /* 2887 * Take suspend_lock so that presuspend and postsuspend methods 2888 * do not race with internal suspend. 2889 */ 2890 mutex_lock(&md->suspend_lock); 2891 map = dm_get_live_table(md, &srcu_idx); 2892 if (!dm_suspended_md(md)) { 2893 dm_table_presuspend_targets(map); 2894 dm_table_postsuspend_targets(map); 2895 } 2896 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2897 dm_put_live_table(md, srcu_idx); 2898 mutex_unlock(&md->suspend_lock); 2899 2900 /* 2901 * Rare, but there may be I/O requests still going to complete, 2902 * for example. Wait for all references to disappear. 2903 * No one should increment the reference count of the mapped_device, 2904 * after the mapped_device state becomes DMF_FREEING. 2905 */ 2906 if (wait) 2907 while (atomic_read(&md->holders)) 2908 msleep(1); 2909 else if (atomic_read(&md->holders)) 2910 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2911 dm_device_name(md), atomic_read(&md->holders)); 2912 2913 dm_sysfs_exit(md); 2914 dm_table_destroy(__unbind(md)); 2915 free_dev(md); 2916 } 2917 2918 void dm_destroy(struct mapped_device *md) 2919 { 2920 __dm_destroy(md, true); 2921 } 2922 2923 void dm_destroy_immediate(struct mapped_device *md) 2924 { 2925 __dm_destroy(md, false); 2926 } 2927 2928 void dm_put(struct mapped_device *md) 2929 { 2930 atomic_dec(&md->holders); 2931 } 2932 EXPORT_SYMBOL_GPL(dm_put); 2933 2934 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2935 { 2936 int r = 0; 2937 DECLARE_WAITQUEUE(wait, current); 2938 2939 add_wait_queue(&md->wait, &wait); 2940 2941 while (1) { 2942 set_current_state(interruptible); 2943 2944 if (!md_in_flight(md)) 2945 break; 2946 2947 if (interruptible == TASK_INTERRUPTIBLE && 2948 signal_pending(current)) { 2949 r = -EINTR; 2950 break; 2951 } 2952 2953 io_schedule(); 2954 } 2955 set_current_state(TASK_RUNNING); 2956 2957 remove_wait_queue(&md->wait, &wait); 2958 2959 return r; 2960 } 2961 2962 /* 2963 * Process the deferred bios 2964 */ 2965 static void dm_wq_work(struct work_struct *work) 2966 { 2967 struct mapped_device *md = container_of(work, struct mapped_device, 2968 work); 2969 struct bio *c; 2970 int srcu_idx; 2971 struct dm_table *map; 2972 2973 map = dm_get_live_table(md, &srcu_idx); 2974 2975 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2976 spin_lock_irq(&md->deferred_lock); 2977 c = bio_list_pop(&md->deferred); 2978 spin_unlock_irq(&md->deferred_lock); 2979 2980 if (!c) 2981 break; 2982 2983 if (dm_request_based(md)) 2984 generic_make_request(c); 2985 else 2986 __split_and_process_bio(md, map, c); 2987 } 2988 2989 dm_put_live_table(md, srcu_idx); 2990 } 2991 2992 static void dm_queue_flush(struct mapped_device *md) 2993 { 2994 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2995 smp_mb__after_atomic(); 2996 queue_work(md->wq, &md->work); 2997 } 2998 2999 /* 3000 * Swap in a new table, returning the old one for the caller to destroy. 3001 */ 3002 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3003 { 3004 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3005 struct queue_limits limits; 3006 int r; 3007 3008 mutex_lock(&md->suspend_lock); 3009 3010 /* device must be suspended */ 3011 if (!dm_suspended_md(md)) 3012 goto out; 3013 3014 /* 3015 * If the new table has no data devices, retain the existing limits. 3016 * This helps multipath with queue_if_no_path if all paths disappear, 3017 * then new I/O is queued based on these limits, and then some paths 3018 * reappear. 3019 */ 3020 if (dm_table_has_no_data_devices(table)) { 3021 live_map = dm_get_live_table_fast(md); 3022 if (live_map) 3023 limits = md->queue->limits; 3024 dm_put_live_table_fast(md); 3025 } 3026 3027 if (!live_map) { 3028 r = dm_calculate_queue_limits(table, &limits); 3029 if (r) { 3030 map = ERR_PTR(r); 3031 goto out; 3032 } 3033 } 3034 3035 map = __bind(md, table, &limits); 3036 3037 out: 3038 mutex_unlock(&md->suspend_lock); 3039 return map; 3040 } 3041 3042 /* 3043 * Functions to lock and unlock any filesystem running on the 3044 * device. 3045 */ 3046 static int lock_fs(struct mapped_device *md) 3047 { 3048 int r; 3049 3050 WARN_ON(md->frozen_sb); 3051 3052 md->frozen_sb = freeze_bdev(md->bdev); 3053 if (IS_ERR(md->frozen_sb)) { 3054 r = PTR_ERR(md->frozen_sb); 3055 md->frozen_sb = NULL; 3056 return r; 3057 } 3058 3059 set_bit(DMF_FROZEN, &md->flags); 3060 3061 return 0; 3062 } 3063 3064 static void unlock_fs(struct mapped_device *md) 3065 { 3066 if (!test_bit(DMF_FROZEN, &md->flags)) 3067 return; 3068 3069 thaw_bdev(md->bdev, md->frozen_sb); 3070 md->frozen_sb = NULL; 3071 clear_bit(DMF_FROZEN, &md->flags); 3072 } 3073 3074 /* 3075 * If __dm_suspend returns 0, the device is completely quiescent 3076 * now. There is no request-processing activity. All new requests 3077 * are being added to md->deferred list. 3078 * 3079 * Caller must hold md->suspend_lock 3080 */ 3081 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3082 unsigned suspend_flags, int interruptible) 3083 { 3084 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3085 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3086 int r; 3087 3088 /* 3089 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3090 * This flag is cleared before dm_suspend returns. 3091 */ 3092 if (noflush) 3093 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3094 3095 /* 3096 * This gets reverted if there's an error later and the targets 3097 * provide the .presuspend_undo hook. 3098 */ 3099 dm_table_presuspend_targets(map); 3100 3101 /* 3102 * Flush I/O to the device. 3103 * Any I/O submitted after lock_fs() may not be flushed. 3104 * noflush takes precedence over do_lockfs. 3105 * (lock_fs() flushes I/Os and waits for them to complete.) 3106 */ 3107 if (!noflush && do_lockfs) { 3108 r = lock_fs(md); 3109 if (r) { 3110 dm_table_presuspend_undo_targets(map); 3111 return r; 3112 } 3113 } 3114 3115 /* 3116 * Here we must make sure that no processes are submitting requests 3117 * to target drivers i.e. no one may be executing 3118 * __split_and_process_bio. This is called from dm_request and 3119 * dm_wq_work. 3120 * 3121 * To get all processes out of __split_and_process_bio in dm_request, 3122 * we take the write lock. To prevent any process from reentering 3123 * __split_and_process_bio from dm_request and quiesce the thread 3124 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3125 * flush_workqueue(md->wq). 3126 */ 3127 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3128 if (map) 3129 synchronize_srcu(&md->io_barrier); 3130 3131 /* 3132 * Stop md->queue before flushing md->wq in case request-based 3133 * dm defers requests to md->wq from md->queue. 3134 */ 3135 if (dm_request_based(md)) { 3136 stop_queue(md->queue); 3137 if (md->kworker_task) 3138 flush_kthread_worker(&md->kworker); 3139 } 3140 3141 flush_workqueue(md->wq); 3142 3143 /* 3144 * At this point no more requests are entering target request routines. 3145 * We call dm_wait_for_completion to wait for all existing requests 3146 * to finish. 3147 */ 3148 r = dm_wait_for_completion(md, interruptible); 3149 3150 if (noflush) 3151 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3152 if (map) 3153 synchronize_srcu(&md->io_barrier); 3154 3155 /* were we interrupted ? */ 3156 if (r < 0) { 3157 dm_queue_flush(md); 3158 3159 if (dm_request_based(md)) 3160 start_queue(md->queue); 3161 3162 unlock_fs(md); 3163 dm_table_presuspend_undo_targets(map); 3164 /* pushback list is already flushed, so skip flush */ 3165 } 3166 3167 return r; 3168 } 3169 3170 /* 3171 * We need to be able to change a mapping table under a mounted 3172 * filesystem. For example we might want to move some data in 3173 * the background. Before the table can be swapped with 3174 * dm_bind_table, dm_suspend must be called to flush any in 3175 * flight bios and ensure that any further io gets deferred. 3176 */ 3177 /* 3178 * Suspend mechanism in request-based dm. 3179 * 3180 * 1. Flush all I/Os by lock_fs() if needed. 3181 * 2. Stop dispatching any I/O by stopping the request_queue. 3182 * 3. Wait for all in-flight I/Os to be completed or requeued. 3183 * 3184 * To abort suspend, start the request_queue. 3185 */ 3186 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3187 { 3188 struct dm_table *map = NULL; 3189 int r = 0; 3190 3191 retry: 3192 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3193 3194 if (dm_suspended_md(md)) { 3195 r = -EINVAL; 3196 goto out_unlock; 3197 } 3198 3199 if (dm_suspended_internally_md(md)) { 3200 /* already internally suspended, wait for internal resume */ 3201 mutex_unlock(&md->suspend_lock); 3202 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3203 if (r) 3204 return r; 3205 goto retry; 3206 } 3207 3208 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3209 3210 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3211 if (r) 3212 goto out_unlock; 3213 3214 set_bit(DMF_SUSPENDED, &md->flags); 3215 3216 dm_table_postsuspend_targets(map); 3217 3218 out_unlock: 3219 mutex_unlock(&md->suspend_lock); 3220 return r; 3221 } 3222 3223 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3224 { 3225 if (map) { 3226 int r = dm_table_resume_targets(map); 3227 if (r) 3228 return r; 3229 } 3230 3231 dm_queue_flush(md); 3232 3233 /* 3234 * Flushing deferred I/Os must be done after targets are resumed 3235 * so that mapping of targets can work correctly. 3236 * Request-based dm is queueing the deferred I/Os in its request_queue. 3237 */ 3238 if (dm_request_based(md)) 3239 start_queue(md->queue); 3240 3241 unlock_fs(md); 3242 3243 return 0; 3244 } 3245 3246 int dm_resume(struct mapped_device *md) 3247 { 3248 int r = -EINVAL; 3249 struct dm_table *map = NULL; 3250 3251 retry: 3252 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3253 3254 if (!dm_suspended_md(md)) 3255 goto out; 3256 3257 if (dm_suspended_internally_md(md)) { 3258 /* already internally suspended, wait for internal resume */ 3259 mutex_unlock(&md->suspend_lock); 3260 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3261 if (r) 3262 return r; 3263 goto retry; 3264 } 3265 3266 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3267 if (!map || !dm_table_get_size(map)) 3268 goto out; 3269 3270 r = __dm_resume(md, map); 3271 if (r) 3272 goto out; 3273 3274 clear_bit(DMF_SUSPENDED, &md->flags); 3275 3276 r = 0; 3277 out: 3278 mutex_unlock(&md->suspend_lock); 3279 3280 return r; 3281 } 3282 3283 /* 3284 * Internal suspend/resume works like userspace-driven suspend. It waits 3285 * until all bios finish and prevents issuing new bios to the target drivers. 3286 * It may be used only from the kernel. 3287 */ 3288 3289 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3290 { 3291 struct dm_table *map = NULL; 3292 3293 if (md->internal_suspend_count++) 3294 return; /* nested internal suspend */ 3295 3296 if (dm_suspended_md(md)) { 3297 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3298 return; /* nest suspend */ 3299 } 3300 3301 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3302 3303 /* 3304 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3305 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3306 * would require changing .presuspend to return an error -- avoid this 3307 * until there is a need for more elaborate variants of internal suspend. 3308 */ 3309 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3310 3311 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3312 3313 dm_table_postsuspend_targets(map); 3314 } 3315 3316 static void __dm_internal_resume(struct mapped_device *md) 3317 { 3318 BUG_ON(!md->internal_suspend_count); 3319 3320 if (--md->internal_suspend_count) 3321 return; /* resume from nested internal suspend */ 3322 3323 if (dm_suspended_md(md)) 3324 goto done; /* resume from nested suspend */ 3325 3326 /* 3327 * NOTE: existing callers don't need to call dm_table_resume_targets 3328 * (which may fail -- so best to avoid it for now by passing NULL map) 3329 */ 3330 (void) __dm_resume(md, NULL); 3331 3332 done: 3333 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3334 smp_mb__after_atomic(); 3335 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3336 } 3337 3338 void dm_internal_suspend_noflush(struct mapped_device *md) 3339 { 3340 mutex_lock(&md->suspend_lock); 3341 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3342 mutex_unlock(&md->suspend_lock); 3343 } 3344 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3345 3346 void dm_internal_resume(struct mapped_device *md) 3347 { 3348 mutex_lock(&md->suspend_lock); 3349 __dm_internal_resume(md); 3350 mutex_unlock(&md->suspend_lock); 3351 } 3352 EXPORT_SYMBOL_GPL(dm_internal_resume); 3353 3354 /* 3355 * Fast variants of internal suspend/resume hold md->suspend_lock, 3356 * which prevents interaction with userspace-driven suspend. 3357 */ 3358 3359 void dm_internal_suspend_fast(struct mapped_device *md) 3360 { 3361 mutex_lock(&md->suspend_lock); 3362 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3363 return; 3364 3365 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3366 synchronize_srcu(&md->io_barrier); 3367 flush_workqueue(md->wq); 3368 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3369 } 3370 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3371 3372 void dm_internal_resume_fast(struct mapped_device *md) 3373 { 3374 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3375 goto done; 3376 3377 dm_queue_flush(md); 3378 3379 done: 3380 mutex_unlock(&md->suspend_lock); 3381 } 3382 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3383 3384 /*----------------------------------------------------------------- 3385 * Event notification. 3386 *---------------------------------------------------------------*/ 3387 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3388 unsigned cookie) 3389 { 3390 char udev_cookie[DM_COOKIE_LENGTH]; 3391 char *envp[] = { udev_cookie, NULL }; 3392 3393 if (!cookie) 3394 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3395 else { 3396 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3397 DM_COOKIE_ENV_VAR_NAME, cookie); 3398 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3399 action, envp); 3400 } 3401 } 3402 3403 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3404 { 3405 return atomic_add_return(1, &md->uevent_seq); 3406 } 3407 3408 uint32_t dm_get_event_nr(struct mapped_device *md) 3409 { 3410 return atomic_read(&md->event_nr); 3411 } 3412 3413 int dm_wait_event(struct mapped_device *md, int event_nr) 3414 { 3415 return wait_event_interruptible(md->eventq, 3416 (event_nr != atomic_read(&md->event_nr))); 3417 } 3418 3419 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3420 { 3421 unsigned long flags; 3422 3423 spin_lock_irqsave(&md->uevent_lock, flags); 3424 list_add(elist, &md->uevent_list); 3425 spin_unlock_irqrestore(&md->uevent_lock, flags); 3426 } 3427 3428 /* 3429 * The gendisk is only valid as long as you have a reference 3430 * count on 'md'. 3431 */ 3432 struct gendisk *dm_disk(struct mapped_device *md) 3433 { 3434 return md->disk; 3435 } 3436 EXPORT_SYMBOL_GPL(dm_disk); 3437 3438 struct kobject *dm_kobject(struct mapped_device *md) 3439 { 3440 return &md->kobj_holder.kobj; 3441 } 3442 3443 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3444 { 3445 struct mapped_device *md; 3446 3447 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3448 3449 if (test_bit(DMF_FREEING, &md->flags) || 3450 dm_deleting_md(md)) 3451 return NULL; 3452 3453 dm_get(md); 3454 return md; 3455 } 3456 3457 int dm_suspended_md(struct mapped_device *md) 3458 { 3459 return test_bit(DMF_SUSPENDED, &md->flags); 3460 } 3461 3462 int dm_suspended_internally_md(struct mapped_device *md) 3463 { 3464 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3465 } 3466 3467 int dm_test_deferred_remove_flag(struct mapped_device *md) 3468 { 3469 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3470 } 3471 3472 int dm_suspended(struct dm_target *ti) 3473 { 3474 return dm_suspended_md(dm_table_get_md(ti->table)); 3475 } 3476 EXPORT_SYMBOL_GPL(dm_suspended); 3477 3478 int dm_noflush_suspending(struct dm_target *ti) 3479 { 3480 return __noflush_suspending(dm_table_get_md(ti->table)); 3481 } 3482 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3483 3484 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3485 unsigned integrity, unsigned per_bio_data_size) 3486 { 3487 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3488 struct kmem_cache *cachep = NULL; 3489 unsigned int pool_size = 0; 3490 unsigned int front_pad; 3491 3492 if (!pools) 3493 return NULL; 3494 3495 type = filter_md_type(type, md); 3496 3497 switch (type) { 3498 case DM_TYPE_BIO_BASED: 3499 cachep = _io_cache; 3500 pool_size = dm_get_reserved_bio_based_ios(); 3501 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3502 break; 3503 case DM_TYPE_REQUEST_BASED: 3504 cachep = _rq_tio_cache; 3505 pool_size = dm_get_reserved_rq_based_ios(); 3506 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3507 if (!pools->rq_pool) 3508 goto out; 3509 /* fall through to setup remaining rq-based pools */ 3510 case DM_TYPE_MQ_REQUEST_BASED: 3511 if (!pool_size) 3512 pool_size = dm_get_reserved_rq_based_ios(); 3513 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3514 /* per_bio_data_size is not used. See __bind_mempools(). */ 3515 WARN_ON(per_bio_data_size != 0); 3516 break; 3517 default: 3518 BUG(); 3519 } 3520 3521 if (cachep) { 3522 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3523 if (!pools->io_pool) 3524 goto out; 3525 } 3526 3527 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3528 if (!pools->bs) 3529 goto out; 3530 3531 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3532 goto out; 3533 3534 return pools; 3535 3536 out: 3537 dm_free_md_mempools(pools); 3538 3539 return NULL; 3540 } 3541 3542 void dm_free_md_mempools(struct dm_md_mempools *pools) 3543 { 3544 if (!pools) 3545 return; 3546 3547 mempool_destroy(pools->io_pool); 3548 mempool_destroy(pools->rq_pool); 3549 3550 if (pools->bs) 3551 bioset_free(pools->bs); 3552 3553 kfree(pools); 3554 } 3555 3556 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3557 u32 flags) 3558 { 3559 struct mapped_device *md = bdev->bd_disk->private_data; 3560 const struct pr_ops *ops; 3561 struct dm_target *tgt; 3562 fmode_t mode; 3563 int srcu_idx, r; 3564 3565 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx); 3566 if (r < 0) 3567 return r; 3568 3569 ops = bdev->bd_disk->fops->pr_ops; 3570 if (ops && ops->pr_register) 3571 r = ops->pr_register(bdev, old_key, new_key, flags); 3572 else 3573 r = -EOPNOTSUPP; 3574 3575 dm_put_live_table(md, srcu_idx); 3576 return r; 3577 } 3578 3579 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3580 u32 flags) 3581 { 3582 struct mapped_device *md = bdev->bd_disk->private_data; 3583 const struct pr_ops *ops; 3584 struct dm_target *tgt; 3585 fmode_t mode; 3586 int srcu_idx, r; 3587 3588 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx); 3589 if (r < 0) 3590 return r; 3591 3592 ops = bdev->bd_disk->fops->pr_ops; 3593 if (ops && ops->pr_reserve) 3594 r = ops->pr_reserve(bdev, key, type, flags); 3595 else 3596 r = -EOPNOTSUPP; 3597 3598 dm_put_live_table(md, srcu_idx); 3599 return r; 3600 } 3601 3602 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3603 { 3604 struct mapped_device *md = bdev->bd_disk->private_data; 3605 const struct pr_ops *ops; 3606 struct dm_target *tgt; 3607 fmode_t mode; 3608 int srcu_idx, r; 3609 3610 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx); 3611 if (r < 0) 3612 return r; 3613 3614 ops = bdev->bd_disk->fops->pr_ops; 3615 if (ops && ops->pr_release) 3616 r = ops->pr_release(bdev, key, type); 3617 else 3618 r = -EOPNOTSUPP; 3619 3620 dm_put_live_table(md, srcu_idx); 3621 return r; 3622 } 3623 3624 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3625 enum pr_type type, bool abort) 3626 { 3627 struct mapped_device *md = bdev->bd_disk->private_data; 3628 const struct pr_ops *ops; 3629 struct dm_target *tgt; 3630 fmode_t mode; 3631 int srcu_idx, r; 3632 3633 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx); 3634 if (r < 0) 3635 return r; 3636 3637 ops = bdev->bd_disk->fops->pr_ops; 3638 if (ops && ops->pr_preempt) 3639 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3640 else 3641 r = -EOPNOTSUPP; 3642 3643 dm_put_live_table(md, srcu_idx); 3644 return r; 3645 } 3646 3647 static int dm_pr_clear(struct block_device *bdev, u64 key) 3648 { 3649 struct mapped_device *md = bdev->bd_disk->private_data; 3650 const struct pr_ops *ops; 3651 struct dm_target *tgt; 3652 fmode_t mode; 3653 int srcu_idx, r; 3654 3655 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx); 3656 if (r < 0) 3657 return r; 3658 3659 ops = bdev->bd_disk->fops->pr_ops; 3660 if (ops && ops->pr_clear) 3661 r = ops->pr_clear(bdev, key); 3662 else 3663 r = -EOPNOTSUPP; 3664 3665 dm_put_live_table(md, srcu_idx); 3666 return r; 3667 } 3668 3669 static const struct pr_ops dm_pr_ops = { 3670 .pr_register = dm_pr_register, 3671 .pr_reserve = dm_pr_reserve, 3672 .pr_release = dm_pr_release, 3673 .pr_preempt = dm_pr_preempt, 3674 .pr_clear = dm_pr_clear, 3675 }; 3676 3677 static const struct block_device_operations dm_blk_dops = { 3678 .open = dm_blk_open, 3679 .release = dm_blk_close, 3680 .ioctl = dm_blk_ioctl, 3681 .getgeo = dm_blk_getgeo, 3682 .pr_ops = &dm_pr_ops, 3683 .owner = THIS_MODULE 3684 }; 3685 3686 /* 3687 * module hooks 3688 */ 3689 module_init(dm_init); 3690 module_exit(dm_exit); 3691 3692 module_param(major, uint, 0); 3693 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3694 3695 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3696 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3697 3698 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3699 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3700 3701 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3702 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3703 3704 MODULE_DESCRIPTION(DM_NAME " driver"); 3705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3706 MODULE_LICENSE("GPL"); 3707