xref: /openbmc/linux/drivers/md/dm.c (revision 1b39eacd)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated per bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	blk_status_t status;
68 	atomic_t io_count;
69 	struct bio *bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 #define MINOR_ALLOCED ((void *)-1)
76 
77 /*
78  * Bits for the md->flags field.
79  */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88 
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91 
92 /*
93  * For mempools pre-allocation at the table loading time.
94  */
95 struct dm_md_mempools {
96 	mempool_t *io_pool;
97 	struct bio_set *bs;
98 };
99 
100 struct table_device {
101 	struct list_head list;
102 	refcount_t count;
103 	struct dm_dev dm_dev;
104 };
105 
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109 
110 /*
111  * Bio-based DM's mempools' reserved IOs set by the user.
112  */
113 #define RESERVED_BIO_BASED_IOS		16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 	int param = READ_ONCE(*module_param);
119 	int modified_param = 0;
120 	bool modified = true;
121 
122 	if (param < min)
123 		modified_param = min;
124 	else if (param > max)
125 		modified_param = max;
126 	else
127 		modified = false;
128 
129 	if (modified) {
130 		(void)cmpxchg(module_param, param, modified_param);
131 		param = modified_param;
132 	}
133 
134 	return param;
135 }
136 
137 unsigned __dm_get_module_param(unsigned *module_param,
138 			       unsigned def, unsigned max)
139 {
140 	unsigned param = READ_ONCE(*module_param);
141 	unsigned modified_param = 0;
142 
143 	if (!param)
144 		modified_param = def;
145 	else if (param > max)
146 		modified_param = max;
147 
148 	if (modified_param) {
149 		(void)cmpxchg(module_param, param, modified_param);
150 		param = modified_param;
151 	}
152 
153 	return param;
154 }
155 
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 	return __dm_get_module_param(&reserved_bio_based_ios,
159 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 
163 static unsigned dm_get_numa_node(void)
164 {
165 	return __dm_get_module_param_int(&dm_numa_node,
166 					 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168 
169 static int __init local_init(void)
170 {
171 	int r = -ENOMEM;
172 
173 	/* allocate a slab for the dm_ios */
174 	_io_cache = KMEM_CACHE(dm_io, 0);
175 	if (!_io_cache)
176 		return r;
177 
178 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 	if (!_rq_tio_cache)
180 		goto out_free_io_cache;
181 
182 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 				      __alignof__(struct request), 0, NULL);
184 	if (!_rq_cache)
185 		goto out_free_rq_tio_cache;
186 
187 	r = dm_uevent_init();
188 	if (r)
189 		goto out_free_rq_cache;
190 
191 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 	if (!deferred_remove_workqueue) {
193 		r = -ENOMEM;
194 		goto out_uevent_exit;
195 	}
196 
197 	_major = major;
198 	r = register_blkdev(_major, _name);
199 	if (r < 0)
200 		goto out_free_workqueue;
201 
202 	if (!_major)
203 		_major = r;
204 
205 	return 0;
206 
207 out_free_workqueue:
208 	destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 	dm_uevent_exit();
211 out_free_rq_cache:
212 	kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 	kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 	kmem_cache_destroy(_io_cache);
217 
218 	return r;
219 }
220 
221 static void local_exit(void)
222 {
223 	flush_scheduled_work();
224 	destroy_workqueue(deferred_remove_workqueue);
225 
226 	kmem_cache_destroy(_rq_cache);
227 	kmem_cache_destroy(_rq_tio_cache);
228 	kmem_cache_destroy(_io_cache);
229 	unregister_blkdev(_major, _name);
230 	dm_uevent_exit();
231 
232 	_major = 0;
233 
234 	DMINFO("cleaned up");
235 }
236 
237 static int (*_inits[])(void) __initdata = {
238 	local_init,
239 	dm_target_init,
240 	dm_linear_init,
241 	dm_stripe_init,
242 	dm_io_init,
243 	dm_kcopyd_init,
244 	dm_interface_init,
245 	dm_statistics_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_io_exit,
254 	dm_kcopyd_exit,
255 	dm_interface_exit,
256 	dm_statistics_exit,
257 };
258 
259 static int __init dm_init(void)
260 {
261 	const int count = ARRAY_SIZE(_inits);
262 
263 	int r, i;
264 
265 	for (i = 0; i < count; i++) {
266 		r = _inits[i]();
267 		if (r)
268 			goto bad;
269 	}
270 
271 	return 0;
272 
273       bad:
274 	while (i--)
275 		_exits[i]();
276 
277 	return r;
278 }
279 
280 static void __exit dm_exit(void)
281 {
282 	int i = ARRAY_SIZE(_exits);
283 
284 	while (i--)
285 		_exits[i]();
286 
287 	/*
288 	 * Should be empty by this point.
289 	 */
290 	idr_destroy(&_minor_idr);
291 }
292 
293 /*
294  * Block device functions
295  */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 	return test_bit(DMF_DELETING, &md->flags);
299 }
300 
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 	struct mapped_device *md;
304 
305 	spin_lock(&_minor_lock);
306 
307 	md = bdev->bd_disk->private_data;
308 	if (!md)
309 		goto out;
310 
311 	if (test_bit(DMF_FREEING, &md->flags) ||
312 	    dm_deleting_md(md)) {
313 		md = NULL;
314 		goto out;
315 	}
316 
317 	dm_get(md);
318 	atomic_inc(&md->open_count);
319 out:
320 	spin_unlock(&_minor_lock);
321 
322 	return md ? 0 : -ENXIO;
323 }
324 
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mapped_device *md;
328 
329 	spin_lock(&_minor_lock);
330 
331 	md = disk->private_data;
332 	if (WARN_ON(!md))
333 		goto out;
334 
335 	if (atomic_dec_and_test(&md->open_count) &&
336 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 
339 	dm_put(md);
340 out:
341 	spin_unlock(&_minor_lock);
342 }
343 
344 int dm_open_count(struct mapped_device *md)
345 {
346 	return atomic_read(&md->open_count);
347 }
348 
349 /*
350  * Guarantees nothing is using the device before it's deleted.
351  */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 	int r = 0;
355 
356 	spin_lock(&_minor_lock);
357 
358 	if (dm_open_count(md)) {
359 		r = -EBUSY;
360 		if (mark_deferred)
361 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 		r = -EEXIST;
364 	else
365 		set_bit(DMF_DELETING, &md->flags);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return r;
370 }
371 
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 	int r = 0;
375 
376 	spin_lock(&_minor_lock);
377 
378 	if (test_bit(DMF_DELETING, &md->flags))
379 		r = -EBUSY;
380 	else
381 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 
383 	spin_unlock(&_minor_lock);
384 
385 	return r;
386 }
387 
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 	dm_deferred_remove();
391 }
392 
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 	return get_capacity(md->disk);
396 }
397 
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 	return md->queue;
401 }
402 
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 	return &md->stats;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 				  struct block_device **bdev,
417 				  fmode_t *mode)
418 {
419 	struct dm_target *tgt;
420 	struct dm_table *map;
421 	int srcu_idx, r;
422 
423 retry:
424 	r = -ENOTTY;
425 	map = dm_get_live_table(md, &srcu_idx);
426 	if (!map || !dm_table_get_size(map))
427 		goto out;
428 
429 	/* We only support devices that have a single target */
430 	if (dm_table_get_num_targets(map) != 1)
431 		goto out;
432 
433 	tgt = dm_table_get_target(map, 0);
434 	if (!tgt->type->prepare_ioctl)
435 		goto out;
436 
437 	if (dm_suspended_md(md)) {
438 		r = -EAGAIN;
439 		goto out;
440 	}
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 	if (r < 0)
444 		goto out;
445 
446 	bdgrab(*bdev);
447 	dm_put_live_table(md, srcu_idx);
448 	return r;
449 
450 out:
451 	dm_put_live_table(md, srcu_idx);
452 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 		msleep(10);
454 		goto retry;
455 	}
456 	return r;
457 }
458 
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 			unsigned int cmd, unsigned long arg)
461 {
462 	struct mapped_device *md = bdev->bd_disk->private_data;
463 	int r;
464 
465 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 	if (r < 0)
467 		return r;
468 
469 	if (r > 0) {
470 		/*
471 		 * Target determined this ioctl is being issued against a
472 		 * subset of the parent bdev; require extra privileges.
473 		 */
474 		if (!capable(CAP_SYS_RAWIO)) {
475 			DMWARN_LIMIT(
476 	"%s: sending ioctl %x to DM device without required privilege.",
477 				current->comm, cmd);
478 			r = -ENOIOCTLCMD;
479 			goto out;
480 		}
481 	}
482 
483 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 	bdput(bdev);
486 	return r;
487 }
488 
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 	return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493 
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 	mempool_free(io, md->io_pool);
497 }
498 
499 static void free_tio(struct dm_target_io *tio)
500 {
501 	bio_put(&tio->clone);
502 }
503 
504 int md_in_flight(struct mapped_device *md)
505 {
506 	return atomic_read(&md->pending[READ]) +
507 	       atomic_read(&md->pending[WRITE]);
508 }
509 
510 static void start_io_acct(struct dm_io *io)
511 {
512 	struct mapped_device *md = io->md;
513 	struct bio *bio = io->bio;
514 	int cpu;
515 	int rw = bio_data_dir(bio);
516 
517 	io->start_time = jiffies;
518 
519 	cpu = part_stat_lock();
520 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 	part_stat_unlock();
522 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 		atomic_inc_return(&md->pending[rw]));
524 
525 	if (unlikely(dm_stats_used(&md->stats)))
526 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 				    bio->bi_iter.bi_sector, bio_sectors(bio),
528 				    false, 0, &io->stats_aux);
529 }
530 
531 static void end_io_acct(struct dm_io *io)
532 {
533 	struct mapped_device *md = io->md;
534 	struct bio *bio = io->bio;
535 	unsigned long duration = jiffies - io->start_time;
536 	int pending;
537 	int rw = bio_data_dir(bio);
538 
539 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540 
541 	if (unlikely(dm_stats_used(&md->stats)))
542 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 				    bio->bi_iter.bi_sector, bio_sectors(bio),
544 				    true, duration, &io->stats_aux);
545 
546 	/*
547 	 * After this is decremented the bio must not be touched if it is
548 	 * a flush.
549 	 */
550 	pending = atomic_dec_return(&md->pending[rw]);
551 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 	pending += atomic_read(&md->pending[rw^0x1]);
553 
554 	/* nudge anyone waiting on suspend queue */
555 	if (!pending)
556 		wake_up(&md->wait);
557 }
558 
559 /*
560  * Add the bio to the list of deferred io.
561  */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&md->deferred_lock, flags);
567 	bio_list_add(&md->deferred, bio);
568 	spin_unlock_irqrestore(&md->deferred_lock, flags);
569 	queue_work(md->wq, &md->work);
570 }
571 
572 /*
573  * Everyone (including functions in this file), should use this
574  * function to access the md->map field, and make sure they call
575  * dm_put_live_table() when finished.
576  */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 	*srcu_idx = srcu_read_lock(&md->io_barrier);
580 
581 	return srcu_dereference(md->map, &md->io_barrier);
582 }
583 
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 	srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588 
589 void dm_sync_table(struct mapped_device *md)
590 {
591 	synchronize_srcu(&md->io_barrier);
592 	synchronize_rcu_expedited();
593 }
594 
595 /*
596  * A fast alternative to dm_get_live_table/dm_put_live_table.
597  * The caller must not block between these two functions.
598  */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 	rcu_read_lock();
602 	return rcu_dereference(md->map);
603 }
604 
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 	rcu_read_unlock();
608 }
609 
610 /*
611  * Open a table device so we can use it as a map destination.
612  */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 			     struct mapped_device *md)
615 {
616 	static char *_claim_ptr = "I belong to device-mapper";
617 	struct block_device *bdev;
618 
619 	int r;
620 
621 	BUG_ON(td->dm_dev.bdev);
622 
623 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 	if (IS_ERR(bdev))
625 		return PTR_ERR(bdev);
626 
627 	r = bd_link_disk_holder(bdev, dm_disk(md));
628 	if (r) {
629 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 		return r;
631 	}
632 
633 	td->dm_dev.bdev = bdev;
634 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 	return 0;
636 }
637 
638 /*
639  * Close a table device that we've been using.
640  */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 	if (!td->dm_dev.bdev)
644 		return;
645 
646 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 	put_dax(td->dm_dev.dax_dev);
649 	td->dm_dev.bdev = NULL;
650 	td->dm_dev.dax_dev = NULL;
651 }
652 
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 					      fmode_t mode) {
655 	struct table_device *td;
656 
657 	list_for_each_entry(td, l, list)
658 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 			return td;
660 
661 	return NULL;
662 }
663 
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 			struct dm_dev **result) {
666 	int r;
667 	struct table_device *td;
668 
669 	mutex_lock(&md->table_devices_lock);
670 	td = find_table_device(&md->table_devices, dev, mode);
671 	if (!td) {
672 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 		if (!td) {
674 			mutex_unlock(&md->table_devices_lock);
675 			return -ENOMEM;
676 		}
677 
678 		td->dm_dev.mode = mode;
679 		td->dm_dev.bdev = NULL;
680 
681 		if ((r = open_table_device(td, dev, md))) {
682 			mutex_unlock(&md->table_devices_lock);
683 			kfree(td);
684 			return r;
685 		}
686 
687 		format_dev_t(td->dm_dev.name, dev);
688 
689 		refcount_set(&td->count, 1);
690 		list_add(&td->list, &md->table_devices);
691 	} else {
692 		refcount_inc(&td->count);
693 	}
694 	mutex_unlock(&md->table_devices_lock);
695 
696 	*result = &td->dm_dev;
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700 
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 	struct table_device *td = container_of(d, struct table_device, dm_dev);
704 
705 	mutex_lock(&md->table_devices_lock);
706 	if (refcount_dec_and_test(&td->count)) {
707 		close_table_device(td, md);
708 		list_del(&td->list);
709 		kfree(td);
710 	}
711 	mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714 
715 static void free_table_devices(struct list_head *devices)
716 {
717 	struct list_head *tmp, *next;
718 
719 	list_for_each_safe(tmp, next, devices) {
720 		struct table_device *td = list_entry(tmp, struct table_device, list);
721 
722 		DMWARN("dm_destroy: %s still exists with %d references",
723 		       td->dm_dev.name, refcount_read(&td->count));
724 		kfree(td);
725 	}
726 }
727 
728 /*
729  * Get the geometry associated with a dm device
730  */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 	*geo = md->geometry;
734 
735 	return 0;
736 }
737 
738 /*
739  * Set the geometry of a device.
740  */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744 
745 	if (geo->start > sz) {
746 		DMWARN("Start sector is beyond the geometry limits.");
747 		return -EINVAL;
748 	}
749 
750 	md->geometry = *geo;
751 
752 	return 0;
753 }
754 
755 /*-----------------------------------------------------------------
756  * CRUD START:
757  *   A more elegant soln is in the works that uses the queue
758  *   merge fn, unfortunately there are a couple of changes to
759  *   the block layer that I want to make for this.  So in the
760  *   interests of getting something for people to use I give
761  *   you this clearly demarcated crap.
762  *---------------------------------------------------------------*/
763 
764 static int __noflush_suspending(struct mapped_device *md)
765 {
766 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
767 }
768 
769 /*
770  * Decrements the number of outstanding ios that a bio has been
771  * cloned into, completing the original io if necc.
772  */
773 static void dec_pending(struct dm_io *io, blk_status_t error)
774 {
775 	unsigned long flags;
776 	blk_status_t io_error;
777 	struct bio *bio;
778 	struct mapped_device *md = io->md;
779 
780 	/* Push-back supersedes any I/O errors */
781 	if (unlikely(error)) {
782 		spin_lock_irqsave(&io->endio_lock, flags);
783 		if (!(io->status == BLK_STS_DM_REQUEUE &&
784 				__noflush_suspending(md)))
785 			io->status = error;
786 		spin_unlock_irqrestore(&io->endio_lock, flags);
787 	}
788 
789 	if (atomic_dec_and_test(&io->io_count)) {
790 		if (io->status == BLK_STS_DM_REQUEUE) {
791 			/*
792 			 * Target requested pushing back the I/O.
793 			 */
794 			spin_lock_irqsave(&md->deferred_lock, flags);
795 			if (__noflush_suspending(md))
796 				bio_list_add_head(&md->deferred, io->bio);
797 			else
798 				/* noflush suspend was interrupted. */
799 				io->status = BLK_STS_IOERR;
800 			spin_unlock_irqrestore(&md->deferred_lock, flags);
801 		}
802 
803 		io_error = io->status;
804 		bio = io->bio;
805 		end_io_acct(io);
806 		free_io(md, io);
807 
808 		if (io_error == BLK_STS_DM_REQUEUE)
809 			return;
810 
811 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
812 			/*
813 			 * Preflush done for flush with data, reissue
814 			 * without REQ_PREFLUSH.
815 			 */
816 			bio->bi_opf &= ~REQ_PREFLUSH;
817 			queue_io(md, bio);
818 		} else {
819 			/* done with normal IO or empty flush */
820 			bio->bi_status = io_error;
821 			bio_endio(bio);
822 		}
823 	}
824 }
825 
826 void disable_write_same(struct mapped_device *md)
827 {
828 	struct queue_limits *limits = dm_get_queue_limits(md);
829 
830 	/* device doesn't really support WRITE SAME, disable it */
831 	limits->max_write_same_sectors = 0;
832 }
833 
834 void disable_write_zeroes(struct mapped_device *md)
835 {
836 	struct queue_limits *limits = dm_get_queue_limits(md);
837 
838 	/* device doesn't really support WRITE ZEROES, disable it */
839 	limits->max_write_zeroes_sectors = 0;
840 }
841 
842 static void clone_endio(struct bio *bio)
843 {
844 	blk_status_t error = bio->bi_status;
845 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
846 	struct dm_io *io = tio->io;
847 	struct mapped_device *md = tio->io->md;
848 	dm_endio_fn endio = tio->ti->type->end_io;
849 
850 	if (unlikely(error == BLK_STS_TARGET)) {
851 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
852 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
853 			disable_write_same(md);
854 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
855 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
856 			disable_write_zeroes(md);
857 	}
858 
859 	if (endio) {
860 		int r = endio(tio->ti, bio, &error);
861 		switch (r) {
862 		case DM_ENDIO_REQUEUE:
863 			error = BLK_STS_DM_REQUEUE;
864 			/*FALLTHRU*/
865 		case DM_ENDIO_DONE:
866 			break;
867 		case DM_ENDIO_INCOMPLETE:
868 			/* The target will handle the io */
869 			return;
870 		default:
871 			DMWARN("unimplemented target endio return value: %d", r);
872 			BUG();
873 		}
874 	}
875 
876 	free_tio(tio);
877 	dec_pending(io, error);
878 }
879 
880 /*
881  * Return maximum size of I/O possible at the supplied sector up to the current
882  * target boundary.
883  */
884 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
885 {
886 	sector_t target_offset = dm_target_offset(ti, sector);
887 
888 	return ti->len - target_offset;
889 }
890 
891 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
892 {
893 	sector_t len = max_io_len_target_boundary(sector, ti);
894 	sector_t offset, max_len;
895 
896 	/*
897 	 * Does the target need to split even further?
898 	 */
899 	if (ti->max_io_len) {
900 		offset = dm_target_offset(ti, sector);
901 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
902 			max_len = sector_div(offset, ti->max_io_len);
903 		else
904 			max_len = offset & (ti->max_io_len - 1);
905 		max_len = ti->max_io_len - max_len;
906 
907 		if (len > max_len)
908 			len = max_len;
909 	}
910 
911 	return len;
912 }
913 
914 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
915 {
916 	if (len > UINT_MAX) {
917 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
918 		      (unsigned long long)len, UINT_MAX);
919 		ti->error = "Maximum size of target IO is too large";
920 		return -EINVAL;
921 	}
922 
923 	ti->max_io_len = (uint32_t) len;
924 
925 	return 0;
926 }
927 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
928 
929 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
930 		sector_t sector, int *srcu_idx)
931 {
932 	struct dm_table *map;
933 	struct dm_target *ti;
934 
935 	map = dm_get_live_table(md, srcu_idx);
936 	if (!map)
937 		return NULL;
938 
939 	ti = dm_table_find_target(map, sector);
940 	if (!dm_target_is_valid(ti))
941 		return NULL;
942 
943 	return ti;
944 }
945 
946 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
947 		long nr_pages, void **kaddr, pfn_t *pfn)
948 {
949 	struct mapped_device *md = dax_get_private(dax_dev);
950 	sector_t sector = pgoff * PAGE_SECTORS;
951 	struct dm_target *ti;
952 	long len, ret = -EIO;
953 	int srcu_idx;
954 
955 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
956 
957 	if (!ti)
958 		goto out;
959 	if (!ti->type->direct_access)
960 		goto out;
961 	len = max_io_len(sector, ti) / PAGE_SECTORS;
962 	if (len < 1)
963 		goto out;
964 	nr_pages = min(len, nr_pages);
965 	if (ti->type->direct_access)
966 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
967 
968  out:
969 	dm_put_live_table(md, srcu_idx);
970 
971 	return ret;
972 }
973 
974 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
975 		void *addr, size_t bytes, struct iov_iter *i)
976 {
977 	struct mapped_device *md = dax_get_private(dax_dev);
978 	sector_t sector = pgoff * PAGE_SECTORS;
979 	struct dm_target *ti;
980 	long ret = 0;
981 	int srcu_idx;
982 
983 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
984 
985 	if (!ti)
986 		goto out;
987 	if (!ti->type->dax_copy_from_iter) {
988 		ret = copy_from_iter(addr, bytes, i);
989 		goto out;
990 	}
991 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
992  out:
993 	dm_put_live_table(md, srcu_idx);
994 
995 	return ret;
996 }
997 
998 /*
999  * A target may call dm_accept_partial_bio only from the map routine.  It is
1000  * allowed for all bio types except REQ_PREFLUSH.
1001  *
1002  * dm_accept_partial_bio informs the dm that the target only wants to process
1003  * additional n_sectors sectors of the bio and the rest of the data should be
1004  * sent in a next bio.
1005  *
1006  * A diagram that explains the arithmetics:
1007  * +--------------------+---------------+-------+
1008  * |         1          |       2       |   3   |
1009  * +--------------------+---------------+-------+
1010  *
1011  * <-------------- *tio->len_ptr --------------->
1012  *                      <------- bi_size ------->
1013  *                      <-- n_sectors -->
1014  *
1015  * Region 1 was already iterated over with bio_advance or similar function.
1016  *	(it may be empty if the target doesn't use bio_advance)
1017  * Region 2 is the remaining bio size that the target wants to process.
1018  *	(it may be empty if region 1 is non-empty, although there is no reason
1019  *	 to make it empty)
1020  * The target requires that region 3 is to be sent in the next bio.
1021  *
1022  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1023  * the partially processed part (the sum of regions 1+2) must be the same for all
1024  * copies of the bio.
1025  */
1026 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1027 {
1028 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1029 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1030 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1031 	BUG_ON(bi_size > *tio->len_ptr);
1032 	BUG_ON(n_sectors > bi_size);
1033 	*tio->len_ptr -= bi_size - n_sectors;
1034 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1035 }
1036 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1037 
1038 /*
1039  * The zone descriptors obtained with a zone report indicate
1040  * zone positions within the target device. The zone descriptors
1041  * must be remapped to match their position within the dm device.
1042  * A target may call dm_remap_zone_report after completion of a
1043  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1044  * from the target device mapping to the dm device.
1045  */
1046 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1047 {
1048 #ifdef CONFIG_BLK_DEV_ZONED
1049 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1050 	struct bio *report_bio = tio->io->bio;
1051 	struct blk_zone_report_hdr *hdr = NULL;
1052 	struct blk_zone *zone;
1053 	unsigned int nr_rep = 0;
1054 	unsigned int ofst;
1055 	struct bio_vec bvec;
1056 	struct bvec_iter iter;
1057 	void *addr;
1058 
1059 	if (bio->bi_status)
1060 		return;
1061 
1062 	/*
1063 	 * Remap the start sector of the reported zones. For sequential zones,
1064 	 * also remap the write pointer position.
1065 	 */
1066 	bio_for_each_segment(bvec, report_bio, iter) {
1067 		addr = kmap_atomic(bvec.bv_page);
1068 
1069 		/* Remember the report header in the first page */
1070 		if (!hdr) {
1071 			hdr = addr;
1072 			ofst = sizeof(struct blk_zone_report_hdr);
1073 		} else
1074 			ofst = 0;
1075 
1076 		/* Set zones start sector */
1077 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1078 			zone = addr + ofst;
1079 			if (zone->start >= start + ti->len) {
1080 				hdr->nr_zones = 0;
1081 				break;
1082 			}
1083 			zone->start = zone->start + ti->begin - start;
1084 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1085 				if (zone->cond == BLK_ZONE_COND_FULL)
1086 					zone->wp = zone->start + zone->len;
1087 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1088 					zone->wp = zone->start;
1089 				else
1090 					zone->wp = zone->wp + ti->begin - start;
1091 			}
1092 			ofst += sizeof(struct blk_zone);
1093 			hdr->nr_zones--;
1094 			nr_rep++;
1095 		}
1096 
1097 		if (addr != hdr)
1098 			kunmap_atomic(addr);
1099 
1100 		if (!hdr->nr_zones)
1101 			break;
1102 	}
1103 
1104 	if (hdr) {
1105 		hdr->nr_zones = nr_rep;
1106 		kunmap_atomic(hdr);
1107 	}
1108 
1109 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1110 
1111 #else /* !CONFIG_BLK_DEV_ZONED */
1112 	bio->bi_status = BLK_STS_NOTSUPP;
1113 #endif
1114 }
1115 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1116 
1117 /*
1118  * Flush current->bio_list when the target map method blocks.
1119  * This fixes deadlocks in snapshot and possibly in other targets.
1120  */
1121 struct dm_offload {
1122 	struct blk_plug plug;
1123 	struct blk_plug_cb cb;
1124 };
1125 
1126 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1127 {
1128 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1129 	struct bio_list list;
1130 	struct bio *bio;
1131 	int i;
1132 
1133 	INIT_LIST_HEAD(&o->cb.list);
1134 
1135 	if (unlikely(!current->bio_list))
1136 		return;
1137 
1138 	for (i = 0; i < 2; i++) {
1139 		list = current->bio_list[i];
1140 		bio_list_init(&current->bio_list[i]);
1141 
1142 		while ((bio = bio_list_pop(&list))) {
1143 			struct bio_set *bs = bio->bi_pool;
1144 			if (unlikely(!bs) || bs == fs_bio_set ||
1145 			    !bs->rescue_workqueue) {
1146 				bio_list_add(&current->bio_list[i], bio);
1147 				continue;
1148 			}
1149 
1150 			spin_lock(&bs->rescue_lock);
1151 			bio_list_add(&bs->rescue_list, bio);
1152 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1153 			spin_unlock(&bs->rescue_lock);
1154 		}
1155 	}
1156 }
1157 
1158 static void dm_offload_start(struct dm_offload *o)
1159 {
1160 	blk_start_plug(&o->plug);
1161 	o->cb.callback = flush_current_bio_list;
1162 	list_add(&o->cb.list, &current->plug->cb_list);
1163 }
1164 
1165 static void dm_offload_end(struct dm_offload *o)
1166 {
1167 	list_del(&o->cb.list);
1168 	blk_finish_plug(&o->plug);
1169 }
1170 
1171 static void __map_bio(struct dm_target_io *tio)
1172 {
1173 	int r;
1174 	sector_t sector;
1175 	struct dm_offload o;
1176 	struct bio *clone = &tio->clone;
1177 	struct dm_target *ti = tio->ti;
1178 
1179 	clone->bi_end_io = clone_endio;
1180 
1181 	/*
1182 	 * Map the clone.  If r == 0 we don't need to do
1183 	 * anything, the target has assumed ownership of
1184 	 * this io.
1185 	 */
1186 	atomic_inc(&tio->io->io_count);
1187 	sector = clone->bi_iter.bi_sector;
1188 
1189 	dm_offload_start(&o);
1190 	r = ti->type->map(ti, clone);
1191 	dm_offload_end(&o);
1192 
1193 	switch (r) {
1194 	case DM_MAPIO_SUBMITTED:
1195 		break;
1196 	case DM_MAPIO_REMAPPED:
1197 		/* the bio has been remapped so dispatch it */
1198 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1199 				      bio_dev(tio->io->bio), sector);
1200 		generic_make_request(clone);
1201 		break;
1202 	case DM_MAPIO_KILL:
1203 		dec_pending(tio->io, BLK_STS_IOERR);
1204 		free_tio(tio);
1205 		break;
1206 	case DM_MAPIO_REQUEUE:
1207 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1208 		free_tio(tio);
1209 		break;
1210 	default:
1211 		DMWARN("unimplemented target map return value: %d", r);
1212 		BUG();
1213 	}
1214 }
1215 
1216 struct clone_info {
1217 	struct mapped_device *md;
1218 	struct dm_table *map;
1219 	struct bio *bio;
1220 	struct dm_io *io;
1221 	sector_t sector;
1222 	unsigned sector_count;
1223 };
1224 
1225 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1226 {
1227 	bio->bi_iter.bi_sector = sector;
1228 	bio->bi_iter.bi_size = to_bytes(len);
1229 }
1230 
1231 /*
1232  * Creates a bio that consists of range of complete bvecs.
1233  */
1234 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1235 		     sector_t sector, unsigned len)
1236 {
1237 	struct bio *clone = &tio->clone;
1238 
1239 	__bio_clone_fast(clone, bio);
1240 
1241 	if (unlikely(bio_integrity(bio) != NULL)) {
1242 		int r;
1243 
1244 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1245 			     !dm_target_passes_integrity(tio->ti->type))) {
1246 			DMWARN("%s: the target %s doesn't support integrity data.",
1247 				dm_device_name(tio->io->md),
1248 				tio->ti->type->name);
1249 			return -EIO;
1250 		}
1251 
1252 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1253 		if (r < 0)
1254 			return r;
1255 	}
1256 
1257 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1258 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1259 	clone->bi_iter.bi_size = to_bytes(len);
1260 
1261 	if (unlikely(bio_integrity(bio) != NULL))
1262 		bio_integrity_trim(clone);
1263 
1264 	return 0;
1265 }
1266 
1267 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1268 				      struct dm_target *ti,
1269 				      unsigned target_bio_nr)
1270 {
1271 	struct dm_target_io *tio;
1272 	struct bio *clone;
1273 
1274 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1275 	tio = container_of(clone, struct dm_target_io, clone);
1276 
1277 	tio->io = ci->io;
1278 	tio->ti = ti;
1279 	tio->target_bio_nr = target_bio_nr;
1280 
1281 	return tio;
1282 }
1283 
1284 static void __clone_and_map_simple_bio(struct clone_info *ci,
1285 				       struct dm_target *ti,
1286 				       unsigned target_bio_nr, unsigned *len)
1287 {
1288 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1289 	struct bio *clone = &tio->clone;
1290 
1291 	tio->len_ptr = len;
1292 
1293 	__bio_clone_fast(clone, ci->bio);
1294 	if (len)
1295 		bio_setup_sector(clone, ci->sector, *len);
1296 
1297 	__map_bio(tio);
1298 }
1299 
1300 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1301 				  unsigned num_bios, unsigned *len)
1302 {
1303 	unsigned target_bio_nr;
1304 
1305 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1306 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1307 }
1308 
1309 static int __send_empty_flush(struct clone_info *ci)
1310 {
1311 	unsigned target_nr = 0;
1312 	struct dm_target *ti;
1313 
1314 	BUG_ON(bio_has_data(ci->bio));
1315 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1316 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1317 
1318 	return 0;
1319 }
1320 
1321 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1322 				     sector_t sector, unsigned *len)
1323 {
1324 	struct bio *bio = ci->bio;
1325 	struct dm_target_io *tio;
1326 	unsigned target_bio_nr;
1327 	unsigned num_target_bios = 1;
1328 	int r = 0;
1329 
1330 	/*
1331 	 * Does the target want to receive duplicate copies of the bio?
1332 	 */
1333 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1334 		num_target_bios = ti->num_write_bios(ti, bio);
1335 
1336 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1337 		tio = alloc_tio(ci, ti, target_bio_nr);
1338 		tio->len_ptr = len;
1339 		r = clone_bio(tio, bio, sector, *len);
1340 		if (r < 0) {
1341 			free_tio(tio);
1342 			break;
1343 		}
1344 		__map_bio(tio);
1345 	}
1346 
1347 	return r;
1348 }
1349 
1350 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1351 
1352 static unsigned get_num_discard_bios(struct dm_target *ti)
1353 {
1354 	return ti->num_discard_bios;
1355 }
1356 
1357 static unsigned get_num_write_same_bios(struct dm_target *ti)
1358 {
1359 	return ti->num_write_same_bios;
1360 }
1361 
1362 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1363 {
1364 	return ti->num_write_zeroes_bios;
1365 }
1366 
1367 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1368 
1369 static bool is_split_required_for_discard(struct dm_target *ti)
1370 {
1371 	return ti->split_discard_bios;
1372 }
1373 
1374 static int __send_changing_extent_only(struct clone_info *ci,
1375 				       get_num_bios_fn get_num_bios,
1376 				       is_split_required_fn is_split_required)
1377 {
1378 	struct dm_target *ti;
1379 	unsigned len;
1380 	unsigned num_bios;
1381 
1382 	do {
1383 		ti = dm_table_find_target(ci->map, ci->sector);
1384 		if (!dm_target_is_valid(ti))
1385 			return -EIO;
1386 
1387 		/*
1388 		 * Even though the device advertised support for this type of
1389 		 * request, that does not mean every target supports it, and
1390 		 * reconfiguration might also have changed that since the
1391 		 * check was performed.
1392 		 */
1393 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1394 		if (!num_bios)
1395 			return -EOPNOTSUPP;
1396 
1397 		if (is_split_required && !is_split_required(ti))
1398 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1399 		else
1400 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1401 
1402 		__send_duplicate_bios(ci, ti, num_bios, &len);
1403 
1404 		ci->sector += len;
1405 	} while (ci->sector_count -= len);
1406 
1407 	return 0;
1408 }
1409 
1410 static int __send_discard(struct clone_info *ci)
1411 {
1412 	return __send_changing_extent_only(ci, get_num_discard_bios,
1413 					   is_split_required_for_discard);
1414 }
1415 
1416 static int __send_write_same(struct clone_info *ci)
1417 {
1418 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1419 }
1420 
1421 static int __send_write_zeroes(struct clone_info *ci)
1422 {
1423 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1424 }
1425 
1426 /*
1427  * Select the correct strategy for processing a non-flush bio.
1428  */
1429 static int __split_and_process_non_flush(struct clone_info *ci)
1430 {
1431 	struct bio *bio = ci->bio;
1432 	struct dm_target *ti;
1433 	unsigned len;
1434 	int r;
1435 
1436 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1437 		return __send_discard(ci);
1438 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1439 		return __send_write_same(ci);
1440 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1441 		return __send_write_zeroes(ci);
1442 
1443 	ti = dm_table_find_target(ci->map, ci->sector);
1444 	if (!dm_target_is_valid(ti))
1445 		return -EIO;
1446 
1447 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1448 		len = ci->sector_count;
1449 	else
1450 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1451 			    ci->sector_count);
1452 
1453 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1454 	if (r < 0)
1455 		return r;
1456 
1457 	ci->sector += len;
1458 	ci->sector_count -= len;
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Entry point to split a bio into clones and submit them to the targets.
1465  */
1466 static void __split_and_process_bio(struct mapped_device *md,
1467 				    struct dm_table *map, struct bio *bio)
1468 {
1469 	struct clone_info ci;
1470 	int error = 0;
1471 
1472 	if (unlikely(!map)) {
1473 		bio_io_error(bio);
1474 		return;
1475 	}
1476 
1477 	ci.map = map;
1478 	ci.md = md;
1479 	ci.io = alloc_io(md);
1480 	ci.io->status = 0;
1481 	atomic_set(&ci.io->io_count, 1);
1482 	ci.io->bio = bio;
1483 	ci.io->md = md;
1484 	spin_lock_init(&ci.io->endio_lock);
1485 	ci.sector = bio->bi_iter.bi_sector;
1486 
1487 	start_io_acct(ci.io);
1488 
1489 	if (bio->bi_opf & REQ_PREFLUSH) {
1490 		ci.bio = &ci.md->flush_bio;
1491 		ci.sector_count = 0;
1492 		error = __send_empty_flush(&ci);
1493 		/* dec_pending submits any data associated with flush */
1494 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1495 		ci.bio = bio;
1496 		ci.sector_count = 0;
1497 		error = __split_and_process_non_flush(&ci);
1498 	} else {
1499 		ci.bio = bio;
1500 		ci.sector_count = bio_sectors(bio);
1501 		while (ci.sector_count && !error)
1502 			error = __split_and_process_non_flush(&ci);
1503 	}
1504 
1505 	/* drop the extra reference count */
1506 	dec_pending(ci.io, errno_to_blk_status(error));
1507 }
1508 /*-----------------------------------------------------------------
1509  * CRUD END
1510  *---------------------------------------------------------------*/
1511 
1512 /*
1513  * The request function that just remaps the bio built up by
1514  * dm_merge_bvec.
1515  */
1516 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1517 {
1518 	int rw = bio_data_dir(bio);
1519 	struct mapped_device *md = q->queuedata;
1520 	int srcu_idx;
1521 	struct dm_table *map;
1522 
1523 	map = dm_get_live_table(md, &srcu_idx);
1524 
1525 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1526 
1527 	/* if we're suspended, we have to queue this io for later */
1528 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1529 		dm_put_live_table(md, srcu_idx);
1530 
1531 		if (!(bio->bi_opf & REQ_RAHEAD))
1532 			queue_io(md, bio);
1533 		else
1534 			bio_io_error(bio);
1535 		return BLK_QC_T_NONE;
1536 	}
1537 
1538 	__split_and_process_bio(md, map, bio);
1539 	dm_put_live_table(md, srcu_idx);
1540 	return BLK_QC_T_NONE;
1541 }
1542 
1543 static int dm_any_congested(void *congested_data, int bdi_bits)
1544 {
1545 	int r = bdi_bits;
1546 	struct mapped_device *md = congested_data;
1547 	struct dm_table *map;
1548 
1549 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1550 		if (dm_request_based(md)) {
1551 			/*
1552 			 * With request-based DM we only need to check the
1553 			 * top-level queue for congestion.
1554 			 */
1555 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1556 		} else {
1557 			map = dm_get_live_table_fast(md);
1558 			if (map)
1559 				r = dm_table_any_congested(map, bdi_bits);
1560 			dm_put_live_table_fast(md);
1561 		}
1562 	}
1563 
1564 	return r;
1565 }
1566 
1567 /*-----------------------------------------------------------------
1568  * An IDR is used to keep track of allocated minor numbers.
1569  *---------------------------------------------------------------*/
1570 static void free_minor(int minor)
1571 {
1572 	spin_lock(&_minor_lock);
1573 	idr_remove(&_minor_idr, minor);
1574 	spin_unlock(&_minor_lock);
1575 }
1576 
1577 /*
1578  * See if the device with a specific minor # is free.
1579  */
1580 static int specific_minor(int minor)
1581 {
1582 	int r;
1583 
1584 	if (minor >= (1 << MINORBITS))
1585 		return -EINVAL;
1586 
1587 	idr_preload(GFP_KERNEL);
1588 	spin_lock(&_minor_lock);
1589 
1590 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1591 
1592 	spin_unlock(&_minor_lock);
1593 	idr_preload_end();
1594 	if (r < 0)
1595 		return r == -ENOSPC ? -EBUSY : r;
1596 	return 0;
1597 }
1598 
1599 static int next_free_minor(int *minor)
1600 {
1601 	int r;
1602 
1603 	idr_preload(GFP_KERNEL);
1604 	spin_lock(&_minor_lock);
1605 
1606 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1607 
1608 	spin_unlock(&_minor_lock);
1609 	idr_preload_end();
1610 	if (r < 0)
1611 		return r;
1612 	*minor = r;
1613 	return 0;
1614 }
1615 
1616 static const struct block_device_operations dm_blk_dops;
1617 static const struct dax_operations dm_dax_ops;
1618 
1619 static void dm_wq_work(struct work_struct *work);
1620 
1621 void dm_init_md_queue(struct mapped_device *md)
1622 {
1623 	/*
1624 	 * Initialize data that will only be used by a non-blk-mq DM queue
1625 	 * - must do so here (in alloc_dev callchain) before queue is used
1626 	 */
1627 	md->queue->queuedata = md;
1628 	md->queue->backing_dev_info->congested_data = md;
1629 }
1630 
1631 void dm_init_normal_md_queue(struct mapped_device *md)
1632 {
1633 	md->use_blk_mq = false;
1634 	dm_init_md_queue(md);
1635 
1636 	/*
1637 	 * Initialize aspects of queue that aren't relevant for blk-mq
1638 	 */
1639 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1640 }
1641 
1642 static void cleanup_mapped_device(struct mapped_device *md)
1643 {
1644 	if (md->wq)
1645 		destroy_workqueue(md->wq);
1646 	if (md->kworker_task)
1647 		kthread_stop(md->kworker_task);
1648 	mempool_destroy(md->io_pool);
1649 	if (md->bs)
1650 		bioset_free(md->bs);
1651 
1652 	if (md->dax_dev) {
1653 		kill_dax(md->dax_dev);
1654 		put_dax(md->dax_dev);
1655 		md->dax_dev = NULL;
1656 	}
1657 
1658 	if (md->disk) {
1659 		spin_lock(&_minor_lock);
1660 		md->disk->private_data = NULL;
1661 		spin_unlock(&_minor_lock);
1662 		del_gendisk(md->disk);
1663 		put_disk(md->disk);
1664 	}
1665 
1666 	if (md->queue)
1667 		blk_cleanup_queue(md->queue);
1668 
1669 	cleanup_srcu_struct(&md->io_barrier);
1670 
1671 	if (md->bdev) {
1672 		bdput(md->bdev);
1673 		md->bdev = NULL;
1674 	}
1675 
1676 	dm_mq_cleanup_mapped_device(md);
1677 }
1678 
1679 /*
1680  * Allocate and initialise a blank device with a given minor.
1681  */
1682 static struct mapped_device *alloc_dev(int minor)
1683 {
1684 	int r, numa_node_id = dm_get_numa_node();
1685 	struct dax_device *dax_dev;
1686 	struct mapped_device *md;
1687 	void *old_md;
1688 
1689 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1690 	if (!md) {
1691 		DMWARN("unable to allocate device, out of memory.");
1692 		return NULL;
1693 	}
1694 
1695 	if (!try_module_get(THIS_MODULE))
1696 		goto bad_module_get;
1697 
1698 	/* get a minor number for the dev */
1699 	if (minor == DM_ANY_MINOR)
1700 		r = next_free_minor(&minor);
1701 	else
1702 		r = specific_minor(minor);
1703 	if (r < 0)
1704 		goto bad_minor;
1705 
1706 	r = init_srcu_struct(&md->io_barrier);
1707 	if (r < 0)
1708 		goto bad_io_barrier;
1709 
1710 	md->numa_node_id = numa_node_id;
1711 	md->use_blk_mq = dm_use_blk_mq_default();
1712 	md->init_tio_pdu = false;
1713 	md->type = DM_TYPE_NONE;
1714 	mutex_init(&md->suspend_lock);
1715 	mutex_init(&md->type_lock);
1716 	mutex_init(&md->table_devices_lock);
1717 	spin_lock_init(&md->deferred_lock);
1718 	atomic_set(&md->holders, 1);
1719 	atomic_set(&md->open_count, 0);
1720 	atomic_set(&md->event_nr, 0);
1721 	atomic_set(&md->uevent_seq, 0);
1722 	INIT_LIST_HEAD(&md->uevent_list);
1723 	INIT_LIST_HEAD(&md->table_devices);
1724 	spin_lock_init(&md->uevent_lock);
1725 
1726 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1727 	if (!md->queue)
1728 		goto bad;
1729 
1730 	dm_init_md_queue(md);
1731 
1732 	md->disk = alloc_disk_node(1, numa_node_id);
1733 	if (!md->disk)
1734 		goto bad;
1735 
1736 	atomic_set(&md->pending[0], 0);
1737 	atomic_set(&md->pending[1], 0);
1738 	init_waitqueue_head(&md->wait);
1739 	INIT_WORK(&md->work, dm_wq_work);
1740 	init_waitqueue_head(&md->eventq);
1741 	init_completion(&md->kobj_holder.completion);
1742 	md->kworker_task = NULL;
1743 
1744 	md->disk->major = _major;
1745 	md->disk->first_minor = minor;
1746 	md->disk->fops = &dm_blk_dops;
1747 	md->disk->queue = md->queue;
1748 	md->disk->private_data = md;
1749 	sprintf(md->disk->disk_name, "dm-%d", minor);
1750 
1751 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1752 	if (!dax_dev)
1753 		goto bad;
1754 	md->dax_dev = dax_dev;
1755 
1756 	add_disk(md->disk);
1757 	format_dev_t(md->name, MKDEV(_major, minor));
1758 
1759 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1760 	if (!md->wq)
1761 		goto bad;
1762 
1763 	md->bdev = bdget_disk(md->disk, 0);
1764 	if (!md->bdev)
1765 		goto bad;
1766 
1767 	bio_init(&md->flush_bio, NULL, 0);
1768 	bio_set_dev(&md->flush_bio, md->bdev);
1769 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1770 
1771 	dm_stats_init(&md->stats);
1772 
1773 	/* Populate the mapping, nobody knows we exist yet */
1774 	spin_lock(&_minor_lock);
1775 	old_md = idr_replace(&_minor_idr, md, minor);
1776 	spin_unlock(&_minor_lock);
1777 
1778 	BUG_ON(old_md != MINOR_ALLOCED);
1779 
1780 	return md;
1781 
1782 bad:
1783 	cleanup_mapped_device(md);
1784 bad_io_barrier:
1785 	free_minor(minor);
1786 bad_minor:
1787 	module_put(THIS_MODULE);
1788 bad_module_get:
1789 	kvfree(md);
1790 	return NULL;
1791 }
1792 
1793 static void unlock_fs(struct mapped_device *md);
1794 
1795 static void free_dev(struct mapped_device *md)
1796 {
1797 	int minor = MINOR(disk_devt(md->disk));
1798 
1799 	unlock_fs(md);
1800 
1801 	cleanup_mapped_device(md);
1802 
1803 	free_table_devices(&md->table_devices);
1804 	dm_stats_cleanup(&md->stats);
1805 	free_minor(minor);
1806 
1807 	module_put(THIS_MODULE);
1808 	kvfree(md);
1809 }
1810 
1811 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1812 {
1813 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1814 
1815 	if (md->bs) {
1816 		/* The md already has necessary mempools. */
1817 		if (dm_table_bio_based(t)) {
1818 			/*
1819 			 * Reload bioset because front_pad may have changed
1820 			 * because a different table was loaded.
1821 			 */
1822 			bioset_free(md->bs);
1823 			md->bs = p->bs;
1824 			p->bs = NULL;
1825 		}
1826 		/*
1827 		 * There's no need to reload with request-based dm
1828 		 * because the size of front_pad doesn't change.
1829 		 * Note for future: If you are to reload bioset,
1830 		 * prep-ed requests in the queue may refer
1831 		 * to bio from the old bioset, so you must walk
1832 		 * through the queue to unprep.
1833 		 */
1834 		goto out;
1835 	}
1836 
1837 	BUG_ON(!p || md->io_pool || md->bs);
1838 
1839 	md->io_pool = p->io_pool;
1840 	p->io_pool = NULL;
1841 	md->bs = p->bs;
1842 	p->bs = NULL;
1843 
1844 out:
1845 	/* mempool bind completed, no longer need any mempools in the table */
1846 	dm_table_free_md_mempools(t);
1847 }
1848 
1849 /*
1850  * Bind a table to the device.
1851  */
1852 static void event_callback(void *context)
1853 {
1854 	unsigned long flags;
1855 	LIST_HEAD(uevents);
1856 	struct mapped_device *md = (struct mapped_device *) context;
1857 
1858 	spin_lock_irqsave(&md->uevent_lock, flags);
1859 	list_splice_init(&md->uevent_list, &uevents);
1860 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1861 
1862 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1863 
1864 	atomic_inc(&md->event_nr);
1865 	wake_up(&md->eventq);
1866 	dm_issue_global_event();
1867 }
1868 
1869 /*
1870  * Protected by md->suspend_lock obtained by dm_swap_table().
1871  */
1872 static void __set_size(struct mapped_device *md, sector_t size)
1873 {
1874 	lockdep_assert_held(&md->suspend_lock);
1875 
1876 	set_capacity(md->disk, size);
1877 
1878 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1879 }
1880 
1881 /*
1882  * Returns old map, which caller must destroy.
1883  */
1884 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1885 			       struct queue_limits *limits)
1886 {
1887 	struct dm_table *old_map;
1888 	struct request_queue *q = md->queue;
1889 	sector_t size;
1890 
1891 	lockdep_assert_held(&md->suspend_lock);
1892 
1893 	size = dm_table_get_size(t);
1894 
1895 	/*
1896 	 * Wipe any geometry if the size of the table changed.
1897 	 */
1898 	if (size != dm_get_size(md))
1899 		memset(&md->geometry, 0, sizeof(md->geometry));
1900 
1901 	__set_size(md, size);
1902 
1903 	dm_table_event_callback(t, event_callback, md);
1904 
1905 	/*
1906 	 * The queue hasn't been stopped yet, if the old table type wasn't
1907 	 * for request-based during suspension.  So stop it to prevent
1908 	 * I/O mapping before resume.
1909 	 * This must be done before setting the queue restrictions,
1910 	 * because request-based dm may be run just after the setting.
1911 	 */
1912 	if (dm_table_request_based(t)) {
1913 		dm_stop_queue(q);
1914 		/*
1915 		 * Leverage the fact that request-based DM targets are
1916 		 * immutable singletons and establish md->immutable_target
1917 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1918 		 */
1919 		md->immutable_target = dm_table_get_immutable_target(t);
1920 	}
1921 
1922 	__bind_mempools(md, t);
1923 
1924 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1925 	rcu_assign_pointer(md->map, (void *)t);
1926 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1927 
1928 	dm_table_set_restrictions(t, q, limits);
1929 	if (old_map)
1930 		dm_sync_table(md);
1931 
1932 	return old_map;
1933 }
1934 
1935 /*
1936  * Returns unbound table for the caller to free.
1937  */
1938 static struct dm_table *__unbind(struct mapped_device *md)
1939 {
1940 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1941 
1942 	if (!map)
1943 		return NULL;
1944 
1945 	dm_table_event_callback(map, NULL, NULL);
1946 	RCU_INIT_POINTER(md->map, NULL);
1947 	dm_sync_table(md);
1948 
1949 	return map;
1950 }
1951 
1952 /*
1953  * Constructor for a new device.
1954  */
1955 int dm_create(int minor, struct mapped_device **result)
1956 {
1957 	struct mapped_device *md;
1958 
1959 	md = alloc_dev(minor);
1960 	if (!md)
1961 		return -ENXIO;
1962 
1963 	dm_sysfs_init(md);
1964 
1965 	*result = md;
1966 	return 0;
1967 }
1968 
1969 /*
1970  * Functions to manage md->type.
1971  * All are required to hold md->type_lock.
1972  */
1973 void dm_lock_md_type(struct mapped_device *md)
1974 {
1975 	mutex_lock(&md->type_lock);
1976 }
1977 
1978 void dm_unlock_md_type(struct mapped_device *md)
1979 {
1980 	mutex_unlock(&md->type_lock);
1981 }
1982 
1983 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1984 {
1985 	BUG_ON(!mutex_is_locked(&md->type_lock));
1986 	md->type = type;
1987 }
1988 
1989 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1990 {
1991 	return md->type;
1992 }
1993 
1994 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1995 {
1996 	return md->immutable_target_type;
1997 }
1998 
1999 /*
2000  * The queue_limits are only valid as long as you have a reference
2001  * count on 'md'.
2002  */
2003 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2004 {
2005 	BUG_ON(!atomic_read(&md->holders));
2006 	return &md->queue->limits;
2007 }
2008 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2009 
2010 /*
2011  * Setup the DM device's queue based on md's type
2012  */
2013 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2014 {
2015 	int r;
2016 	enum dm_queue_mode type = dm_get_md_type(md);
2017 
2018 	switch (type) {
2019 	case DM_TYPE_REQUEST_BASED:
2020 		r = dm_old_init_request_queue(md, t);
2021 		if (r) {
2022 			DMERR("Cannot initialize queue for request-based mapped device");
2023 			return r;
2024 		}
2025 		break;
2026 	case DM_TYPE_MQ_REQUEST_BASED:
2027 		r = dm_mq_init_request_queue(md, t);
2028 		if (r) {
2029 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2030 			return r;
2031 		}
2032 		break;
2033 	case DM_TYPE_BIO_BASED:
2034 	case DM_TYPE_DAX_BIO_BASED:
2035 		dm_init_normal_md_queue(md);
2036 		blk_queue_make_request(md->queue, dm_make_request);
2037 		/*
2038 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2039 		 * since it won't be used (saves 1 process per bio-based DM device).
2040 		 */
2041 		bioset_free(md->queue->bio_split);
2042 		md->queue->bio_split = NULL;
2043 
2044 		if (type == DM_TYPE_DAX_BIO_BASED)
2045 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2046 		break;
2047 	case DM_TYPE_NONE:
2048 		WARN_ON_ONCE(true);
2049 		break;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 struct mapped_device *dm_get_md(dev_t dev)
2056 {
2057 	struct mapped_device *md;
2058 	unsigned minor = MINOR(dev);
2059 
2060 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2061 		return NULL;
2062 
2063 	spin_lock(&_minor_lock);
2064 
2065 	md = idr_find(&_minor_idr, minor);
2066 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2067 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2068 		md = NULL;
2069 		goto out;
2070 	}
2071 	dm_get(md);
2072 out:
2073 	spin_unlock(&_minor_lock);
2074 
2075 	return md;
2076 }
2077 EXPORT_SYMBOL_GPL(dm_get_md);
2078 
2079 void *dm_get_mdptr(struct mapped_device *md)
2080 {
2081 	return md->interface_ptr;
2082 }
2083 
2084 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2085 {
2086 	md->interface_ptr = ptr;
2087 }
2088 
2089 void dm_get(struct mapped_device *md)
2090 {
2091 	atomic_inc(&md->holders);
2092 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2093 }
2094 
2095 int dm_hold(struct mapped_device *md)
2096 {
2097 	spin_lock(&_minor_lock);
2098 	if (test_bit(DMF_FREEING, &md->flags)) {
2099 		spin_unlock(&_minor_lock);
2100 		return -EBUSY;
2101 	}
2102 	dm_get(md);
2103 	spin_unlock(&_minor_lock);
2104 	return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(dm_hold);
2107 
2108 const char *dm_device_name(struct mapped_device *md)
2109 {
2110 	return md->name;
2111 }
2112 EXPORT_SYMBOL_GPL(dm_device_name);
2113 
2114 static void __dm_destroy(struct mapped_device *md, bool wait)
2115 {
2116 	struct request_queue *q = dm_get_md_queue(md);
2117 	struct dm_table *map;
2118 	int srcu_idx;
2119 
2120 	might_sleep();
2121 
2122 	spin_lock(&_minor_lock);
2123 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2124 	set_bit(DMF_FREEING, &md->flags);
2125 	spin_unlock(&_minor_lock);
2126 
2127 	blk_set_queue_dying(q);
2128 
2129 	if (dm_request_based(md) && md->kworker_task)
2130 		kthread_flush_worker(&md->kworker);
2131 
2132 	/*
2133 	 * Take suspend_lock so that presuspend and postsuspend methods
2134 	 * do not race with internal suspend.
2135 	 */
2136 	mutex_lock(&md->suspend_lock);
2137 	map = dm_get_live_table(md, &srcu_idx);
2138 	if (!dm_suspended_md(md)) {
2139 		dm_table_presuspend_targets(map);
2140 		dm_table_postsuspend_targets(map);
2141 	}
2142 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2143 	dm_put_live_table(md, srcu_idx);
2144 	mutex_unlock(&md->suspend_lock);
2145 
2146 	/*
2147 	 * Rare, but there may be I/O requests still going to complete,
2148 	 * for example.  Wait for all references to disappear.
2149 	 * No one should increment the reference count of the mapped_device,
2150 	 * after the mapped_device state becomes DMF_FREEING.
2151 	 */
2152 	if (wait)
2153 		while (atomic_read(&md->holders))
2154 			msleep(1);
2155 	else if (atomic_read(&md->holders))
2156 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2157 		       dm_device_name(md), atomic_read(&md->holders));
2158 
2159 	dm_sysfs_exit(md);
2160 	dm_table_destroy(__unbind(md));
2161 	free_dev(md);
2162 }
2163 
2164 void dm_destroy(struct mapped_device *md)
2165 {
2166 	__dm_destroy(md, true);
2167 }
2168 
2169 void dm_destroy_immediate(struct mapped_device *md)
2170 {
2171 	__dm_destroy(md, false);
2172 }
2173 
2174 void dm_put(struct mapped_device *md)
2175 {
2176 	atomic_dec(&md->holders);
2177 }
2178 EXPORT_SYMBOL_GPL(dm_put);
2179 
2180 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2181 {
2182 	int r = 0;
2183 	DEFINE_WAIT(wait);
2184 
2185 	while (1) {
2186 		prepare_to_wait(&md->wait, &wait, task_state);
2187 
2188 		if (!md_in_flight(md))
2189 			break;
2190 
2191 		if (signal_pending_state(task_state, current)) {
2192 			r = -EINTR;
2193 			break;
2194 		}
2195 
2196 		io_schedule();
2197 	}
2198 	finish_wait(&md->wait, &wait);
2199 
2200 	return r;
2201 }
2202 
2203 /*
2204  * Process the deferred bios
2205  */
2206 static void dm_wq_work(struct work_struct *work)
2207 {
2208 	struct mapped_device *md = container_of(work, struct mapped_device,
2209 						work);
2210 	struct bio *c;
2211 	int srcu_idx;
2212 	struct dm_table *map;
2213 
2214 	map = dm_get_live_table(md, &srcu_idx);
2215 
2216 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2217 		spin_lock_irq(&md->deferred_lock);
2218 		c = bio_list_pop(&md->deferred);
2219 		spin_unlock_irq(&md->deferred_lock);
2220 
2221 		if (!c)
2222 			break;
2223 
2224 		if (dm_request_based(md))
2225 			generic_make_request(c);
2226 		else
2227 			__split_and_process_bio(md, map, c);
2228 	}
2229 
2230 	dm_put_live_table(md, srcu_idx);
2231 }
2232 
2233 static void dm_queue_flush(struct mapped_device *md)
2234 {
2235 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2236 	smp_mb__after_atomic();
2237 	queue_work(md->wq, &md->work);
2238 }
2239 
2240 /*
2241  * Swap in a new table, returning the old one for the caller to destroy.
2242  */
2243 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2244 {
2245 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2246 	struct queue_limits limits;
2247 	int r;
2248 
2249 	mutex_lock(&md->suspend_lock);
2250 
2251 	/* device must be suspended */
2252 	if (!dm_suspended_md(md))
2253 		goto out;
2254 
2255 	/*
2256 	 * If the new table has no data devices, retain the existing limits.
2257 	 * This helps multipath with queue_if_no_path if all paths disappear,
2258 	 * then new I/O is queued based on these limits, and then some paths
2259 	 * reappear.
2260 	 */
2261 	if (dm_table_has_no_data_devices(table)) {
2262 		live_map = dm_get_live_table_fast(md);
2263 		if (live_map)
2264 			limits = md->queue->limits;
2265 		dm_put_live_table_fast(md);
2266 	}
2267 
2268 	if (!live_map) {
2269 		r = dm_calculate_queue_limits(table, &limits);
2270 		if (r) {
2271 			map = ERR_PTR(r);
2272 			goto out;
2273 		}
2274 	}
2275 
2276 	map = __bind(md, table, &limits);
2277 	dm_issue_global_event();
2278 
2279 out:
2280 	mutex_unlock(&md->suspend_lock);
2281 	return map;
2282 }
2283 
2284 /*
2285  * Functions to lock and unlock any filesystem running on the
2286  * device.
2287  */
2288 static int lock_fs(struct mapped_device *md)
2289 {
2290 	int r;
2291 
2292 	WARN_ON(md->frozen_sb);
2293 
2294 	md->frozen_sb = freeze_bdev(md->bdev);
2295 	if (IS_ERR(md->frozen_sb)) {
2296 		r = PTR_ERR(md->frozen_sb);
2297 		md->frozen_sb = NULL;
2298 		return r;
2299 	}
2300 
2301 	set_bit(DMF_FROZEN, &md->flags);
2302 
2303 	return 0;
2304 }
2305 
2306 static void unlock_fs(struct mapped_device *md)
2307 {
2308 	if (!test_bit(DMF_FROZEN, &md->flags))
2309 		return;
2310 
2311 	thaw_bdev(md->bdev, md->frozen_sb);
2312 	md->frozen_sb = NULL;
2313 	clear_bit(DMF_FROZEN, &md->flags);
2314 }
2315 
2316 /*
2317  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2318  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2319  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2320  *
2321  * If __dm_suspend returns 0, the device is completely quiescent
2322  * now. There is no request-processing activity. All new requests
2323  * are being added to md->deferred list.
2324  */
2325 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2326 			unsigned suspend_flags, long task_state,
2327 			int dmf_suspended_flag)
2328 {
2329 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2330 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2331 	int r;
2332 
2333 	lockdep_assert_held(&md->suspend_lock);
2334 
2335 	/*
2336 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2337 	 * This flag is cleared before dm_suspend returns.
2338 	 */
2339 	if (noflush)
2340 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2341 	else
2342 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2343 
2344 	/*
2345 	 * This gets reverted if there's an error later and the targets
2346 	 * provide the .presuspend_undo hook.
2347 	 */
2348 	dm_table_presuspend_targets(map);
2349 
2350 	/*
2351 	 * Flush I/O to the device.
2352 	 * Any I/O submitted after lock_fs() may not be flushed.
2353 	 * noflush takes precedence over do_lockfs.
2354 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2355 	 */
2356 	if (!noflush && do_lockfs) {
2357 		r = lock_fs(md);
2358 		if (r) {
2359 			dm_table_presuspend_undo_targets(map);
2360 			return r;
2361 		}
2362 	}
2363 
2364 	/*
2365 	 * Here we must make sure that no processes are submitting requests
2366 	 * to target drivers i.e. no one may be executing
2367 	 * __split_and_process_bio. This is called from dm_request and
2368 	 * dm_wq_work.
2369 	 *
2370 	 * To get all processes out of __split_and_process_bio in dm_request,
2371 	 * we take the write lock. To prevent any process from reentering
2372 	 * __split_and_process_bio from dm_request and quiesce the thread
2373 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2374 	 * flush_workqueue(md->wq).
2375 	 */
2376 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2377 	if (map)
2378 		synchronize_srcu(&md->io_barrier);
2379 
2380 	/*
2381 	 * Stop md->queue before flushing md->wq in case request-based
2382 	 * dm defers requests to md->wq from md->queue.
2383 	 */
2384 	if (dm_request_based(md)) {
2385 		dm_stop_queue(md->queue);
2386 		if (md->kworker_task)
2387 			kthread_flush_worker(&md->kworker);
2388 	}
2389 
2390 	flush_workqueue(md->wq);
2391 
2392 	/*
2393 	 * At this point no more requests are entering target request routines.
2394 	 * We call dm_wait_for_completion to wait for all existing requests
2395 	 * to finish.
2396 	 */
2397 	r = dm_wait_for_completion(md, task_state);
2398 	if (!r)
2399 		set_bit(dmf_suspended_flag, &md->flags);
2400 
2401 	if (noflush)
2402 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2403 	if (map)
2404 		synchronize_srcu(&md->io_barrier);
2405 
2406 	/* were we interrupted ? */
2407 	if (r < 0) {
2408 		dm_queue_flush(md);
2409 
2410 		if (dm_request_based(md))
2411 			dm_start_queue(md->queue);
2412 
2413 		unlock_fs(md);
2414 		dm_table_presuspend_undo_targets(map);
2415 		/* pushback list is already flushed, so skip flush */
2416 	}
2417 
2418 	return r;
2419 }
2420 
2421 /*
2422  * We need to be able to change a mapping table under a mounted
2423  * filesystem.  For example we might want to move some data in
2424  * the background.  Before the table can be swapped with
2425  * dm_bind_table, dm_suspend must be called to flush any in
2426  * flight bios and ensure that any further io gets deferred.
2427  */
2428 /*
2429  * Suspend mechanism in request-based dm.
2430  *
2431  * 1. Flush all I/Os by lock_fs() if needed.
2432  * 2. Stop dispatching any I/O by stopping the request_queue.
2433  * 3. Wait for all in-flight I/Os to be completed or requeued.
2434  *
2435  * To abort suspend, start the request_queue.
2436  */
2437 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2438 {
2439 	struct dm_table *map = NULL;
2440 	int r = 0;
2441 
2442 retry:
2443 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2444 
2445 	if (dm_suspended_md(md)) {
2446 		r = -EINVAL;
2447 		goto out_unlock;
2448 	}
2449 
2450 	if (dm_suspended_internally_md(md)) {
2451 		/* already internally suspended, wait for internal resume */
2452 		mutex_unlock(&md->suspend_lock);
2453 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2454 		if (r)
2455 			return r;
2456 		goto retry;
2457 	}
2458 
2459 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2460 
2461 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2462 	if (r)
2463 		goto out_unlock;
2464 
2465 	dm_table_postsuspend_targets(map);
2466 
2467 out_unlock:
2468 	mutex_unlock(&md->suspend_lock);
2469 	return r;
2470 }
2471 
2472 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2473 {
2474 	if (map) {
2475 		int r = dm_table_resume_targets(map);
2476 		if (r)
2477 			return r;
2478 	}
2479 
2480 	dm_queue_flush(md);
2481 
2482 	/*
2483 	 * Flushing deferred I/Os must be done after targets are resumed
2484 	 * so that mapping of targets can work correctly.
2485 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2486 	 */
2487 	if (dm_request_based(md))
2488 		dm_start_queue(md->queue);
2489 
2490 	unlock_fs(md);
2491 
2492 	return 0;
2493 }
2494 
2495 int dm_resume(struct mapped_device *md)
2496 {
2497 	int r;
2498 	struct dm_table *map = NULL;
2499 
2500 retry:
2501 	r = -EINVAL;
2502 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2503 
2504 	if (!dm_suspended_md(md))
2505 		goto out;
2506 
2507 	if (dm_suspended_internally_md(md)) {
2508 		/* already internally suspended, wait for internal resume */
2509 		mutex_unlock(&md->suspend_lock);
2510 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2511 		if (r)
2512 			return r;
2513 		goto retry;
2514 	}
2515 
2516 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2517 	if (!map || !dm_table_get_size(map))
2518 		goto out;
2519 
2520 	r = __dm_resume(md, map);
2521 	if (r)
2522 		goto out;
2523 
2524 	clear_bit(DMF_SUSPENDED, &md->flags);
2525 out:
2526 	mutex_unlock(&md->suspend_lock);
2527 
2528 	return r;
2529 }
2530 
2531 /*
2532  * Internal suspend/resume works like userspace-driven suspend. It waits
2533  * until all bios finish and prevents issuing new bios to the target drivers.
2534  * It may be used only from the kernel.
2535  */
2536 
2537 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2538 {
2539 	struct dm_table *map = NULL;
2540 
2541 	lockdep_assert_held(&md->suspend_lock);
2542 
2543 	if (md->internal_suspend_count++)
2544 		return; /* nested internal suspend */
2545 
2546 	if (dm_suspended_md(md)) {
2547 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2548 		return; /* nest suspend */
2549 	}
2550 
2551 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2552 
2553 	/*
2554 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2555 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2556 	 * would require changing .presuspend to return an error -- avoid this
2557 	 * until there is a need for more elaborate variants of internal suspend.
2558 	 */
2559 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2560 			    DMF_SUSPENDED_INTERNALLY);
2561 
2562 	dm_table_postsuspend_targets(map);
2563 }
2564 
2565 static void __dm_internal_resume(struct mapped_device *md)
2566 {
2567 	BUG_ON(!md->internal_suspend_count);
2568 
2569 	if (--md->internal_suspend_count)
2570 		return; /* resume from nested internal suspend */
2571 
2572 	if (dm_suspended_md(md))
2573 		goto done; /* resume from nested suspend */
2574 
2575 	/*
2576 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2577 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2578 	 */
2579 	(void) __dm_resume(md, NULL);
2580 
2581 done:
2582 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2583 	smp_mb__after_atomic();
2584 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2585 }
2586 
2587 void dm_internal_suspend_noflush(struct mapped_device *md)
2588 {
2589 	mutex_lock(&md->suspend_lock);
2590 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2591 	mutex_unlock(&md->suspend_lock);
2592 }
2593 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2594 
2595 void dm_internal_resume(struct mapped_device *md)
2596 {
2597 	mutex_lock(&md->suspend_lock);
2598 	__dm_internal_resume(md);
2599 	mutex_unlock(&md->suspend_lock);
2600 }
2601 EXPORT_SYMBOL_GPL(dm_internal_resume);
2602 
2603 /*
2604  * Fast variants of internal suspend/resume hold md->suspend_lock,
2605  * which prevents interaction with userspace-driven suspend.
2606  */
2607 
2608 void dm_internal_suspend_fast(struct mapped_device *md)
2609 {
2610 	mutex_lock(&md->suspend_lock);
2611 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2612 		return;
2613 
2614 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2615 	synchronize_srcu(&md->io_barrier);
2616 	flush_workqueue(md->wq);
2617 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2618 }
2619 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2620 
2621 void dm_internal_resume_fast(struct mapped_device *md)
2622 {
2623 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2624 		goto done;
2625 
2626 	dm_queue_flush(md);
2627 
2628 done:
2629 	mutex_unlock(&md->suspend_lock);
2630 }
2631 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2632 
2633 /*-----------------------------------------------------------------
2634  * Event notification.
2635  *---------------------------------------------------------------*/
2636 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2637 		       unsigned cookie)
2638 {
2639 	char udev_cookie[DM_COOKIE_LENGTH];
2640 	char *envp[] = { udev_cookie, NULL };
2641 
2642 	if (!cookie)
2643 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2644 	else {
2645 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2646 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2647 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2648 					  action, envp);
2649 	}
2650 }
2651 
2652 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2653 {
2654 	return atomic_add_return(1, &md->uevent_seq);
2655 }
2656 
2657 uint32_t dm_get_event_nr(struct mapped_device *md)
2658 {
2659 	return atomic_read(&md->event_nr);
2660 }
2661 
2662 int dm_wait_event(struct mapped_device *md, int event_nr)
2663 {
2664 	return wait_event_interruptible(md->eventq,
2665 			(event_nr != atomic_read(&md->event_nr)));
2666 }
2667 
2668 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2669 {
2670 	unsigned long flags;
2671 
2672 	spin_lock_irqsave(&md->uevent_lock, flags);
2673 	list_add(elist, &md->uevent_list);
2674 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2675 }
2676 
2677 /*
2678  * The gendisk is only valid as long as you have a reference
2679  * count on 'md'.
2680  */
2681 struct gendisk *dm_disk(struct mapped_device *md)
2682 {
2683 	return md->disk;
2684 }
2685 EXPORT_SYMBOL_GPL(dm_disk);
2686 
2687 struct kobject *dm_kobject(struct mapped_device *md)
2688 {
2689 	return &md->kobj_holder.kobj;
2690 }
2691 
2692 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2693 {
2694 	struct mapped_device *md;
2695 
2696 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2697 
2698 	spin_lock(&_minor_lock);
2699 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2700 		md = NULL;
2701 		goto out;
2702 	}
2703 	dm_get(md);
2704 out:
2705 	spin_unlock(&_minor_lock);
2706 
2707 	return md;
2708 }
2709 
2710 int dm_suspended_md(struct mapped_device *md)
2711 {
2712 	return test_bit(DMF_SUSPENDED, &md->flags);
2713 }
2714 
2715 int dm_suspended_internally_md(struct mapped_device *md)
2716 {
2717 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2718 }
2719 
2720 int dm_test_deferred_remove_flag(struct mapped_device *md)
2721 {
2722 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2723 }
2724 
2725 int dm_suspended(struct dm_target *ti)
2726 {
2727 	return dm_suspended_md(dm_table_get_md(ti->table));
2728 }
2729 EXPORT_SYMBOL_GPL(dm_suspended);
2730 
2731 int dm_noflush_suspending(struct dm_target *ti)
2732 {
2733 	return __noflush_suspending(dm_table_get_md(ti->table));
2734 }
2735 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2736 
2737 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2738 					    unsigned integrity, unsigned per_io_data_size)
2739 {
2740 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2741 	unsigned int pool_size = 0;
2742 	unsigned int front_pad;
2743 
2744 	if (!pools)
2745 		return NULL;
2746 
2747 	switch (type) {
2748 	case DM_TYPE_BIO_BASED:
2749 	case DM_TYPE_DAX_BIO_BASED:
2750 		pool_size = dm_get_reserved_bio_based_ios();
2751 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2752 
2753 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2754 		if (!pools->io_pool)
2755 			goto out;
2756 		break;
2757 	case DM_TYPE_REQUEST_BASED:
2758 	case DM_TYPE_MQ_REQUEST_BASED:
2759 		pool_size = dm_get_reserved_rq_based_ios();
2760 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2761 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2762 		break;
2763 	default:
2764 		BUG();
2765 	}
2766 
2767 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2768 	if (!pools->bs)
2769 		goto out;
2770 
2771 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2772 		goto out;
2773 
2774 	return pools;
2775 
2776 out:
2777 	dm_free_md_mempools(pools);
2778 
2779 	return NULL;
2780 }
2781 
2782 void dm_free_md_mempools(struct dm_md_mempools *pools)
2783 {
2784 	if (!pools)
2785 		return;
2786 
2787 	mempool_destroy(pools->io_pool);
2788 
2789 	if (pools->bs)
2790 		bioset_free(pools->bs);
2791 
2792 	kfree(pools);
2793 }
2794 
2795 struct dm_pr {
2796 	u64	old_key;
2797 	u64	new_key;
2798 	u32	flags;
2799 	bool	fail_early;
2800 };
2801 
2802 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2803 		      void *data)
2804 {
2805 	struct mapped_device *md = bdev->bd_disk->private_data;
2806 	struct dm_table *table;
2807 	struct dm_target *ti;
2808 	int ret = -ENOTTY, srcu_idx;
2809 
2810 	table = dm_get_live_table(md, &srcu_idx);
2811 	if (!table || !dm_table_get_size(table))
2812 		goto out;
2813 
2814 	/* We only support devices that have a single target */
2815 	if (dm_table_get_num_targets(table) != 1)
2816 		goto out;
2817 	ti = dm_table_get_target(table, 0);
2818 
2819 	ret = -EINVAL;
2820 	if (!ti->type->iterate_devices)
2821 		goto out;
2822 
2823 	ret = ti->type->iterate_devices(ti, fn, data);
2824 out:
2825 	dm_put_live_table(md, srcu_idx);
2826 	return ret;
2827 }
2828 
2829 /*
2830  * For register / unregister we need to manually call out to every path.
2831  */
2832 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2833 			    sector_t start, sector_t len, void *data)
2834 {
2835 	struct dm_pr *pr = data;
2836 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2837 
2838 	if (!ops || !ops->pr_register)
2839 		return -EOPNOTSUPP;
2840 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2841 }
2842 
2843 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2844 			  u32 flags)
2845 {
2846 	struct dm_pr pr = {
2847 		.old_key	= old_key,
2848 		.new_key	= new_key,
2849 		.flags		= flags,
2850 		.fail_early	= true,
2851 	};
2852 	int ret;
2853 
2854 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2855 	if (ret && new_key) {
2856 		/* unregister all paths if we failed to register any path */
2857 		pr.old_key = new_key;
2858 		pr.new_key = 0;
2859 		pr.flags = 0;
2860 		pr.fail_early = false;
2861 		dm_call_pr(bdev, __dm_pr_register, &pr);
2862 	}
2863 
2864 	return ret;
2865 }
2866 
2867 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2868 			 u32 flags)
2869 {
2870 	struct mapped_device *md = bdev->bd_disk->private_data;
2871 	const struct pr_ops *ops;
2872 	fmode_t mode;
2873 	int r;
2874 
2875 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2876 	if (r < 0)
2877 		return r;
2878 
2879 	ops = bdev->bd_disk->fops->pr_ops;
2880 	if (ops && ops->pr_reserve)
2881 		r = ops->pr_reserve(bdev, key, type, flags);
2882 	else
2883 		r = -EOPNOTSUPP;
2884 
2885 	bdput(bdev);
2886 	return r;
2887 }
2888 
2889 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2890 {
2891 	struct mapped_device *md = bdev->bd_disk->private_data;
2892 	const struct pr_ops *ops;
2893 	fmode_t mode;
2894 	int r;
2895 
2896 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2897 	if (r < 0)
2898 		return r;
2899 
2900 	ops = bdev->bd_disk->fops->pr_ops;
2901 	if (ops && ops->pr_release)
2902 		r = ops->pr_release(bdev, key, type);
2903 	else
2904 		r = -EOPNOTSUPP;
2905 
2906 	bdput(bdev);
2907 	return r;
2908 }
2909 
2910 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2911 			 enum pr_type type, bool abort)
2912 {
2913 	struct mapped_device *md = bdev->bd_disk->private_data;
2914 	const struct pr_ops *ops;
2915 	fmode_t mode;
2916 	int r;
2917 
2918 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919 	if (r < 0)
2920 		return r;
2921 
2922 	ops = bdev->bd_disk->fops->pr_ops;
2923 	if (ops && ops->pr_preempt)
2924 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2925 	else
2926 		r = -EOPNOTSUPP;
2927 
2928 	bdput(bdev);
2929 	return r;
2930 }
2931 
2932 static int dm_pr_clear(struct block_device *bdev, u64 key)
2933 {
2934 	struct mapped_device *md = bdev->bd_disk->private_data;
2935 	const struct pr_ops *ops;
2936 	fmode_t mode;
2937 	int r;
2938 
2939 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2940 	if (r < 0)
2941 		return r;
2942 
2943 	ops = bdev->bd_disk->fops->pr_ops;
2944 	if (ops && ops->pr_clear)
2945 		r = ops->pr_clear(bdev, key);
2946 	else
2947 		r = -EOPNOTSUPP;
2948 
2949 	bdput(bdev);
2950 	return r;
2951 }
2952 
2953 static const struct pr_ops dm_pr_ops = {
2954 	.pr_register	= dm_pr_register,
2955 	.pr_reserve	= dm_pr_reserve,
2956 	.pr_release	= dm_pr_release,
2957 	.pr_preempt	= dm_pr_preempt,
2958 	.pr_clear	= dm_pr_clear,
2959 };
2960 
2961 static const struct block_device_operations dm_blk_dops = {
2962 	.open = dm_blk_open,
2963 	.release = dm_blk_close,
2964 	.ioctl = dm_blk_ioctl,
2965 	.getgeo = dm_blk_getgeo,
2966 	.pr_ops = &dm_pr_ops,
2967 	.owner = THIS_MODULE
2968 };
2969 
2970 static const struct dax_operations dm_dax_ops = {
2971 	.direct_access = dm_dax_direct_access,
2972 	.copy_from_iter = dm_dax_copy_from_iter,
2973 };
2974 
2975 /*
2976  * module hooks
2977  */
2978 module_init(dm_init);
2979 module_exit(dm_exit);
2980 
2981 module_param(major, uint, 0);
2982 MODULE_PARM_DESC(major, "The major number of the device mapper");
2983 
2984 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2985 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2986 
2987 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2988 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2989 
2990 MODULE_DESCRIPTION(DM_NAME " driver");
2991 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2992 MODULE_LICENSE("GPL");
2993