1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/keyslot-manager.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 void *dm_per_bio_data(struct bio *bio, size_t data_size) 83 { 84 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 85 if (!tio->inside_dm_io) 86 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 87 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 88 } 89 EXPORT_SYMBOL_GPL(dm_per_bio_data); 90 91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 92 { 93 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 94 if (io->magic == DM_IO_MAGIC) 95 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 96 BUG_ON(io->magic != DM_TIO_MAGIC); 97 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 98 } 99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 100 101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 102 { 103 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 104 } 105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 106 107 #define MINOR_ALLOCED ((void *)-1) 108 109 #define DM_NUMA_NODE NUMA_NO_NODE 110 static int dm_numa_node = DM_NUMA_NODE; 111 112 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 113 static int swap_bios = DEFAULT_SWAP_BIOS; 114 static int get_swap_bios(void) 115 { 116 int latch = READ_ONCE(swap_bios); 117 if (unlikely(latch <= 0)) 118 latch = DEFAULT_SWAP_BIOS; 119 return latch; 120 } 121 122 /* 123 * For mempools pre-allocation at the table loading time. 124 */ 125 struct dm_md_mempools { 126 struct bio_set bs; 127 struct bio_set io_bs; 128 }; 129 130 struct table_device { 131 struct list_head list; 132 refcount_t count; 133 struct dm_dev dm_dev; 134 }; 135 136 /* 137 * Bio-based DM's mempools' reserved IOs set by the user. 138 */ 139 #define RESERVED_BIO_BASED_IOS 16 140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 141 142 static int __dm_get_module_param_int(int *module_param, int min, int max) 143 { 144 int param = READ_ONCE(*module_param); 145 int modified_param = 0; 146 bool modified = true; 147 148 if (param < min) 149 modified_param = min; 150 else if (param > max) 151 modified_param = max; 152 else 153 modified = false; 154 155 if (modified) { 156 (void)cmpxchg(module_param, param, modified_param); 157 param = modified_param; 158 } 159 160 return param; 161 } 162 163 unsigned __dm_get_module_param(unsigned *module_param, 164 unsigned def, unsigned max) 165 { 166 unsigned param = READ_ONCE(*module_param); 167 unsigned modified_param = 0; 168 169 if (!param) 170 modified_param = def; 171 else if (param > max) 172 modified_param = max; 173 174 if (modified_param) { 175 (void)cmpxchg(module_param, param, modified_param); 176 param = modified_param; 177 } 178 179 return param; 180 } 181 182 unsigned dm_get_reserved_bio_based_ios(void) 183 { 184 return __dm_get_module_param(&reserved_bio_based_ios, 185 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 186 } 187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 188 189 static unsigned dm_get_numa_node(void) 190 { 191 return __dm_get_module_param_int(&dm_numa_node, 192 DM_NUMA_NODE, num_online_nodes() - 1); 193 } 194 195 static int __init local_init(void) 196 { 197 int r; 198 199 r = dm_uevent_init(); 200 if (r) 201 return r; 202 203 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 204 if (!deferred_remove_workqueue) { 205 r = -ENOMEM; 206 goto out_uevent_exit; 207 } 208 209 _major = major; 210 r = register_blkdev(_major, _name); 211 if (r < 0) 212 goto out_free_workqueue; 213 214 if (!_major) 215 _major = r; 216 217 return 0; 218 219 out_free_workqueue: 220 destroy_workqueue(deferred_remove_workqueue); 221 out_uevent_exit: 222 dm_uevent_exit(); 223 224 return r; 225 } 226 227 static void local_exit(void) 228 { 229 flush_scheduled_work(); 230 destroy_workqueue(deferred_remove_workqueue); 231 232 unregister_blkdev(_major, _name); 233 dm_uevent_exit(); 234 235 _major = 0; 236 237 DMINFO("cleaned up"); 238 } 239 240 static int (*_inits[])(void) __initdata = { 241 local_init, 242 dm_target_init, 243 dm_linear_init, 244 dm_stripe_init, 245 dm_io_init, 246 dm_kcopyd_init, 247 dm_interface_init, 248 dm_statistics_init, 249 }; 250 251 static void (*_exits[])(void) = { 252 local_exit, 253 dm_target_exit, 254 dm_linear_exit, 255 dm_stripe_exit, 256 dm_io_exit, 257 dm_kcopyd_exit, 258 dm_interface_exit, 259 dm_statistics_exit, 260 }; 261 262 static int __init dm_init(void) 263 { 264 const int count = ARRAY_SIZE(_inits); 265 int r, i; 266 267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 268 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 269 " Duplicate IMA measurements will not be recorded in the IMA log."); 270 #endif 271 272 for (i = 0; i < count; i++) { 273 r = _inits[i](); 274 if (r) 275 goto bad; 276 } 277 278 return 0; 279 bad: 280 while (i--) 281 _exits[i](); 282 283 return r; 284 } 285 286 static void __exit dm_exit(void) 287 { 288 int i = ARRAY_SIZE(_exits); 289 290 while (i--) 291 _exits[i](); 292 293 /* 294 * Should be empty by this point. 295 */ 296 idr_destroy(&_minor_idr); 297 } 298 299 /* 300 * Block device functions 301 */ 302 int dm_deleting_md(struct mapped_device *md) 303 { 304 return test_bit(DMF_DELETING, &md->flags); 305 } 306 307 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 308 { 309 struct mapped_device *md; 310 311 spin_lock(&_minor_lock); 312 313 md = bdev->bd_disk->private_data; 314 if (!md) 315 goto out; 316 317 if (test_bit(DMF_FREEING, &md->flags) || 318 dm_deleting_md(md)) { 319 md = NULL; 320 goto out; 321 } 322 323 dm_get(md); 324 atomic_inc(&md->open_count); 325 out: 326 spin_unlock(&_minor_lock); 327 328 return md ? 0 : -ENXIO; 329 } 330 331 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = disk->private_data; 338 if (WARN_ON(!md)) 339 goto out; 340 341 if (atomic_dec_and_test(&md->open_count) && 342 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 343 queue_work(deferred_remove_workqueue, &deferred_remove_work); 344 345 dm_put(md); 346 out: 347 spin_unlock(&_minor_lock); 348 } 349 350 int dm_open_count(struct mapped_device *md) 351 { 352 return atomic_read(&md->open_count); 353 } 354 355 /* 356 * Guarantees nothing is using the device before it's deleted. 357 */ 358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 359 { 360 int r = 0; 361 362 spin_lock(&_minor_lock); 363 364 if (dm_open_count(md)) { 365 r = -EBUSY; 366 if (mark_deferred) 367 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 368 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 369 r = -EEXIST; 370 else 371 set_bit(DMF_DELETING, &md->flags); 372 373 spin_unlock(&_minor_lock); 374 375 return r; 376 } 377 378 int dm_cancel_deferred_remove(struct mapped_device *md) 379 { 380 int r = 0; 381 382 spin_lock(&_minor_lock); 383 384 if (test_bit(DMF_DELETING, &md->flags)) 385 r = -EBUSY; 386 else 387 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 388 389 spin_unlock(&_minor_lock); 390 391 return r; 392 } 393 394 static void do_deferred_remove(struct work_struct *w) 395 { 396 dm_deferred_remove(); 397 } 398 399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 400 { 401 struct mapped_device *md = bdev->bd_disk->private_data; 402 403 return dm_get_geometry(md, geo); 404 } 405 406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 407 struct block_device **bdev) 408 { 409 struct dm_target *tgt; 410 struct dm_table *map; 411 int r; 412 413 retry: 414 r = -ENOTTY; 415 map = dm_get_live_table(md, srcu_idx); 416 if (!map || !dm_table_get_size(map)) 417 return r; 418 419 /* We only support devices that have a single target */ 420 if (dm_table_get_num_targets(map) != 1) 421 return r; 422 423 tgt = dm_table_get_target(map, 0); 424 if (!tgt->type->prepare_ioctl) 425 return r; 426 427 if (dm_suspended_md(md)) 428 return -EAGAIN; 429 430 r = tgt->type->prepare_ioctl(tgt, bdev); 431 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 432 dm_put_live_table(md, *srcu_idx); 433 msleep(10); 434 goto retry; 435 } 436 437 return r; 438 } 439 440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 441 { 442 dm_put_live_table(md, srcu_idx); 443 } 444 445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 446 unsigned int cmd, unsigned long arg) 447 { 448 struct mapped_device *md = bdev->bd_disk->private_data; 449 int r, srcu_idx; 450 451 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 452 if (r < 0) 453 goto out; 454 455 if (r > 0) { 456 /* 457 * Target determined this ioctl is being issued against a 458 * subset of the parent bdev; require extra privileges. 459 */ 460 if (!capable(CAP_SYS_RAWIO)) { 461 DMDEBUG_LIMIT( 462 "%s: sending ioctl %x to DM device without required privilege.", 463 current->comm, cmd); 464 r = -ENOIOCTLCMD; 465 goto out; 466 } 467 } 468 469 if (!bdev->bd_disk->fops->ioctl) 470 r = -ENOTTY; 471 else 472 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 473 out: 474 dm_unprepare_ioctl(md, srcu_idx); 475 return r; 476 } 477 478 u64 dm_start_time_ns_from_clone(struct bio *bio) 479 { 480 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 481 struct dm_io *io = tio->io; 482 483 return jiffies_to_nsecs(io->start_time); 484 } 485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 486 487 static void start_io_acct(struct dm_io *io) 488 { 489 struct mapped_device *md = io->md; 490 struct bio *bio = io->orig_bio; 491 492 io->start_time = bio_start_io_acct(bio); 493 if (unlikely(dm_stats_used(&md->stats))) 494 dm_stats_account_io(&md->stats, bio_data_dir(bio), 495 bio->bi_iter.bi_sector, bio_sectors(bio), 496 false, 0, &io->stats_aux); 497 } 498 499 static void end_io_acct(struct mapped_device *md, struct bio *bio, 500 unsigned long start_time, struct dm_stats_aux *stats_aux) 501 { 502 unsigned long duration = jiffies - start_time; 503 504 bio_end_io_acct(bio, start_time); 505 506 if (unlikely(dm_stats_used(&md->stats))) 507 dm_stats_account_io(&md->stats, bio_data_dir(bio), 508 bio->bi_iter.bi_sector, bio_sectors(bio), 509 true, duration, stats_aux); 510 511 /* nudge anyone waiting on suspend queue */ 512 if (unlikely(wq_has_sleeper(&md->wait))) 513 wake_up(&md->wait); 514 } 515 516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 517 { 518 struct dm_io *io; 519 struct dm_target_io *tio; 520 struct bio *clone; 521 522 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 523 if (!clone) 524 return NULL; 525 526 tio = container_of(clone, struct dm_target_io, clone); 527 tio->inside_dm_io = true; 528 tio->io = NULL; 529 530 io = container_of(tio, struct dm_io, tio); 531 io->magic = DM_IO_MAGIC; 532 io->status = 0; 533 atomic_set(&io->io_count, 1); 534 io->orig_bio = bio; 535 io->md = md; 536 spin_lock_init(&io->endio_lock); 537 538 start_io_acct(io); 539 540 return io; 541 } 542 543 static void free_io(struct mapped_device *md, struct dm_io *io) 544 { 545 bio_put(&io->tio.clone); 546 } 547 548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 549 unsigned target_bio_nr, gfp_t gfp_mask) 550 { 551 struct dm_target_io *tio; 552 553 if (!ci->io->tio.io) { 554 /* the dm_target_io embedded in ci->io is available */ 555 tio = &ci->io->tio; 556 } else { 557 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = container_of(clone, struct dm_target_io, clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 570 return tio; 571 } 572 573 static void free_tio(struct dm_target_io *tio) 574 { 575 if (tio->inside_dm_io) 576 return; 577 bio_put(&tio->clone); 578 } 579 580 /* 581 * Add the bio to the list of deferred io. 582 */ 583 static void queue_io(struct mapped_device *md, struct bio *bio) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 bio_list_add(&md->deferred, bio); 589 spin_unlock_irqrestore(&md->deferred_lock, flags); 590 queue_work(md->wq, &md->work); 591 } 592 593 /* 594 * Everyone (including functions in this file), should use this 595 * function to access the md->map field, and make sure they call 596 * dm_put_live_table() when finished. 597 */ 598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 599 { 600 *srcu_idx = srcu_read_lock(&md->io_barrier); 601 602 return srcu_dereference(md->map, &md->io_barrier); 603 } 604 605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 606 { 607 srcu_read_unlock(&md->io_barrier, srcu_idx); 608 } 609 610 void dm_sync_table(struct mapped_device *md) 611 { 612 synchronize_srcu(&md->io_barrier); 613 synchronize_rcu_expedited(); 614 } 615 616 /* 617 * A fast alternative to dm_get_live_table/dm_put_live_table. 618 * The caller must not block between these two functions. 619 */ 620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 621 { 622 rcu_read_lock(); 623 return rcu_dereference(md->map); 624 } 625 626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 627 { 628 rcu_read_unlock(); 629 } 630 631 static char *_dm_claim_ptr = "I belong to device-mapper"; 632 633 /* 634 * Open a table device so we can use it as a map destination. 635 */ 636 static int open_table_device(struct table_device *td, dev_t dev, 637 struct mapped_device *md) 638 { 639 struct block_device *bdev; 640 641 int r; 642 643 BUG_ON(td->dm_dev.bdev); 644 645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 646 if (IS_ERR(bdev)) 647 return PTR_ERR(bdev); 648 649 r = bd_link_disk_holder(bdev, dm_disk(md)); 650 if (r) { 651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 652 return r; 653 } 654 655 td->dm_dev.bdev = bdev; 656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev); 657 return 0; 658 } 659 660 /* 661 * Close a table device that we've been using. 662 */ 663 static void close_table_device(struct table_device *td, struct mapped_device *md) 664 { 665 if (!td->dm_dev.bdev) 666 return; 667 668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 670 put_dax(td->dm_dev.dax_dev); 671 td->dm_dev.bdev = NULL; 672 td->dm_dev.dax_dev = NULL; 673 } 674 675 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 676 fmode_t mode) 677 { 678 struct table_device *td; 679 680 list_for_each_entry(td, l, list) 681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 682 return td; 683 684 return NULL; 685 } 686 687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 688 struct dm_dev **result) 689 { 690 int r; 691 struct table_device *td; 692 693 mutex_lock(&md->table_devices_lock); 694 td = find_table_device(&md->table_devices, dev, mode); 695 if (!td) { 696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 697 if (!td) { 698 mutex_unlock(&md->table_devices_lock); 699 return -ENOMEM; 700 } 701 702 td->dm_dev.mode = mode; 703 td->dm_dev.bdev = NULL; 704 705 if ((r = open_table_device(td, dev, md))) { 706 mutex_unlock(&md->table_devices_lock); 707 kfree(td); 708 return r; 709 } 710 711 format_dev_t(td->dm_dev.name, dev); 712 713 refcount_set(&td->count, 1); 714 list_add(&td->list, &md->table_devices); 715 } else { 716 refcount_inc(&td->count); 717 } 718 mutex_unlock(&md->table_devices_lock); 719 720 *result = &td->dm_dev; 721 return 0; 722 } 723 724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 725 { 726 struct table_device *td = container_of(d, struct table_device, dm_dev); 727 728 mutex_lock(&md->table_devices_lock); 729 if (refcount_dec_and_test(&td->count)) { 730 close_table_device(td, md); 731 list_del(&td->list); 732 kfree(td); 733 } 734 mutex_unlock(&md->table_devices_lock); 735 } 736 737 static void free_table_devices(struct list_head *devices) 738 { 739 struct list_head *tmp, *next; 740 741 list_for_each_safe(tmp, next, devices) { 742 struct table_device *td = list_entry(tmp, struct table_device, list); 743 744 DMWARN("dm_destroy: %s still exists with %d references", 745 td->dm_dev.name, refcount_read(&td->count)); 746 kfree(td); 747 } 748 } 749 750 /* 751 * Get the geometry associated with a dm device 752 */ 753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 754 { 755 *geo = md->geometry; 756 757 return 0; 758 } 759 760 /* 761 * Set the geometry of a device. 762 */ 763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 764 { 765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 766 767 if (geo->start > sz) { 768 DMWARN("Start sector is beyond the geometry limits."); 769 return -EINVAL; 770 } 771 772 md->geometry = *geo; 773 774 return 0; 775 } 776 777 static int __noflush_suspending(struct mapped_device *md) 778 { 779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 780 } 781 782 /* 783 * Decrements the number of outstanding ios that a bio has been 784 * cloned into, completing the original io if necc. 785 */ 786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 787 { 788 unsigned long flags; 789 blk_status_t io_error; 790 struct bio *bio; 791 struct mapped_device *md = io->md; 792 unsigned long start_time = 0; 793 struct dm_stats_aux stats_aux; 794 795 /* Push-back supersedes any I/O errors */ 796 if (unlikely(error)) { 797 spin_lock_irqsave(&io->endio_lock, flags); 798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 799 io->status = error; 800 spin_unlock_irqrestore(&io->endio_lock, flags); 801 } 802 803 if (atomic_dec_and_test(&io->io_count)) { 804 bio = io->orig_bio; 805 if (io->status == BLK_STS_DM_REQUEUE) { 806 /* 807 * Target requested pushing back the I/O. 808 */ 809 spin_lock_irqsave(&md->deferred_lock, flags); 810 if (__noflush_suspending(md) && 811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 813 bio_list_add_head(&md->deferred, bio); 814 } else { 815 /* 816 * noflush suspend was interrupted or this is 817 * a write to a zoned target. 818 */ 819 io->status = BLK_STS_IOERR; 820 } 821 spin_unlock_irqrestore(&md->deferred_lock, flags); 822 } 823 824 io_error = io->status; 825 start_time = io->start_time; 826 stats_aux = io->stats_aux; 827 free_io(md, io); 828 end_io_acct(md, bio, start_time, &stats_aux); 829 830 if (io_error == BLK_STS_DM_REQUEUE) 831 return; 832 833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 834 /* 835 * Preflush done for flush with data, reissue 836 * without REQ_PREFLUSH. 837 */ 838 bio->bi_opf &= ~REQ_PREFLUSH; 839 queue_io(md, bio); 840 } else { 841 /* done with normal IO or empty flush */ 842 if (io_error) 843 bio->bi_status = io_error; 844 bio_endio(bio); 845 } 846 } 847 } 848 849 void disable_discard(struct mapped_device *md) 850 { 851 struct queue_limits *limits = dm_get_queue_limits(md); 852 853 /* device doesn't really support DISCARD, disable it */ 854 limits->max_discard_sectors = 0; 855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 856 } 857 858 void disable_write_same(struct mapped_device *md) 859 { 860 struct queue_limits *limits = dm_get_queue_limits(md); 861 862 /* device doesn't really support WRITE SAME, disable it */ 863 limits->max_write_same_sectors = 0; 864 } 865 866 void disable_write_zeroes(struct mapped_device *md) 867 { 868 struct queue_limits *limits = dm_get_queue_limits(md); 869 870 /* device doesn't really support WRITE ZEROES, disable it */ 871 limits->max_write_zeroes_sectors = 0; 872 } 873 874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 875 { 876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 877 } 878 879 static void clone_endio(struct bio *bio) 880 { 881 blk_status_t error = bio->bi_status; 882 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 883 struct dm_io *io = tio->io; 884 struct mapped_device *md = tio->io->md; 885 dm_endio_fn endio = tio->ti->type->end_io; 886 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 887 888 if (unlikely(error == BLK_STS_TARGET)) { 889 if (bio_op(bio) == REQ_OP_DISCARD && 890 !q->limits.max_discard_sectors) 891 disable_discard(md); 892 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 893 !q->limits.max_write_same_sectors) 894 disable_write_same(md); 895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 896 !q->limits.max_write_zeroes_sectors) 897 disable_write_zeroes(md); 898 } 899 900 if (blk_queue_is_zoned(q)) 901 dm_zone_endio(io, bio); 902 903 if (endio) { 904 int r = endio(tio->ti, bio, &error); 905 switch (r) { 906 case DM_ENDIO_REQUEUE: 907 /* 908 * Requeuing writes to a sequential zone of a zoned 909 * target will break the sequential write pattern: 910 * fail such IO. 911 */ 912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 913 error = BLK_STS_IOERR; 914 else 915 error = BLK_STS_DM_REQUEUE; 916 fallthrough; 917 case DM_ENDIO_DONE: 918 break; 919 case DM_ENDIO_INCOMPLETE: 920 /* The target will handle the io */ 921 return; 922 default: 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(swap_bios_limit(tio->ti, bio))) { 929 struct mapped_device *md = io->md; 930 up(&md->swap_bios_semaphore); 931 } 932 933 free_tio(tio); 934 dm_io_dec_pending(io, error); 935 } 936 937 /* 938 * Return maximum size of I/O possible at the supplied sector up to the current 939 * target boundary. 940 */ 941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 942 sector_t target_offset) 943 { 944 return ti->len - target_offset; 945 } 946 947 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 948 { 949 sector_t target_offset = dm_target_offset(ti, sector); 950 sector_t len = max_io_len_target_boundary(ti, target_offset); 951 sector_t max_len; 952 953 /* 954 * Does the target need to split IO even further? 955 * - varied (per target) IO splitting is a tenet of DM; this 956 * explains why stacked chunk_sectors based splitting via 957 * blk_max_size_offset() isn't possible here. So pass in 958 * ti->max_io_len to override stacked chunk_sectors. 959 */ 960 if (ti->max_io_len) { 961 max_len = blk_max_size_offset(ti->table->md->queue, 962 target_offset, ti->max_io_len); 963 if (len > max_len) 964 len = max_len; 965 } 966 967 return len; 968 } 969 970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 971 { 972 if (len > UINT_MAX) { 973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 974 (unsigned long long)len, UINT_MAX); 975 ti->error = "Maximum size of target IO is too large"; 976 return -EINVAL; 977 } 978 979 ti->max_io_len = (uint32_t) len; 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 984 985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 986 sector_t sector, int *srcu_idx) 987 __acquires(md->io_barrier) 988 { 989 struct dm_table *map; 990 struct dm_target *ti; 991 992 map = dm_get_live_table(md, srcu_idx); 993 if (!map) 994 return NULL; 995 996 ti = dm_table_find_target(map, sector); 997 if (!ti) 998 return NULL; 999 1000 return ti; 1001 } 1002 1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1004 long nr_pages, void **kaddr, pfn_t *pfn) 1005 { 1006 struct mapped_device *md = dax_get_private(dax_dev); 1007 sector_t sector = pgoff * PAGE_SECTORS; 1008 struct dm_target *ti; 1009 long len, ret = -EIO; 1010 int srcu_idx; 1011 1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1013 1014 if (!ti) 1015 goto out; 1016 if (!ti->type->direct_access) 1017 goto out; 1018 len = max_io_len(ti, sector) / PAGE_SECTORS; 1019 if (len < 1) 1020 goto out; 1021 nr_pages = min(len, nr_pages); 1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1023 1024 out: 1025 dm_put_live_table(md, srcu_idx); 1026 1027 return ret; 1028 } 1029 1030 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1031 int blocksize, sector_t start, sector_t len) 1032 { 1033 struct mapped_device *md = dax_get_private(dax_dev); 1034 struct dm_table *map; 1035 bool ret = false; 1036 int srcu_idx; 1037 1038 map = dm_get_live_table(md, &srcu_idx); 1039 if (!map) 1040 goto out; 1041 1042 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize); 1043 1044 out: 1045 dm_put_live_table(md, srcu_idx); 1046 1047 return ret; 1048 } 1049 1050 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1051 void *addr, size_t bytes, struct iov_iter *i) 1052 { 1053 struct mapped_device *md = dax_get_private(dax_dev); 1054 sector_t sector = pgoff * PAGE_SECTORS; 1055 struct dm_target *ti; 1056 long ret = 0; 1057 int srcu_idx; 1058 1059 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1060 1061 if (!ti) 1062 goto out; 1063 if (!ti->type->dax_copy_from_iter) { 1064 ret = copy_from_iter(addr, bytes, i); 1065 goto out; 1066 } 1067 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1068 out: 1069 dm_put_live_table(md, srcu_idx); 1070 1071 return ret; 1072 } 1073 1074 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1075 void *addr, size_t bytes, struct iov_iter *i) 1076 { 1077 struct mapped_device *md = dax_get_private(dax_dev); 1078 sector_t sector = pgoff * PAGE_SECTORS; 1079 struct dm_target *ti; 1080 long ret = 0; 1081 int srcu_idx; 1082 1083 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1084 1085 if (!ti) 1086 goto out; 1087 if (!ti->type->dax_copy_to_iter) { 1088 ret = copy_to_iter(addr, bytes, i); 1089 goto out; 1090 } 1091 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1092 out: 1093 dm_put_live_table(md, srcu_idx); 1094 1095 return ret; 1096 } 1097 1098 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1099 size_t nr_pages) 1100 { 1101 struct mapped_device *md = dax_get_private(dax_dev); 1102 sector_t sector = pgoff * PAGE_SECTORS; 1103 struct dm_target *ti; 1104 int ret = -EIO; 1105 int srcu_idx; 1106 1107 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1108 1109 if (!ti) 1110 goto out; 1111 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1112 /* 1113 * ->zero_page_range() is mandatory dax operation. If we are 1114 * here, something is wrong. 1115 */ 1116 goto out; 1117 } 1118 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1119 out: 1120 dm_put_live_table(md, srcu_idx); 1121 1122 return ret; 1123 } 1124 1125 /* 1126 * A target may call dm_accept_partial_bio only from the map routine. It is 1127 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1128 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1129 * 1130 * dm_accept_partial_bio informs the dm that the target only wants to process 1131 * additional n_sectors sectors of the bio and the rest of the data should be 1132 * sent in a next bio. 1133 * 1134 * A diagram that explains the arithmetics: 1135 * +--------------------+---------------+-------+ 1136 * | 1 | 2 | 3 | 1137 * +--------------------+---------------+-------+ 1138 * 1139 * <-------------- *tio->len_ptr ---------------> 1140 * <------- bi_size -------> 1141 * <-- n_sectors --> 1142 * 1143 * Region 1 was already iterated over with bio_advance or similar function. 1144 * (it may be empty if the target doesn't use bio_advance) 1145 * Region 2 is the remaining bio size that the target wants to process. 1146 * (it may be empty if region 1 is non-empty, although there is no reason 1147 * to make it empty) 1148 * The target requires that region 3 is to be sent in the next bio. 1149 * 1150 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1151 * the partially processed part (the sum of regions 1+2) must be the same for all 1152 * copies of the bio. 1153 */ 1154 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1155 { 1156 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1157 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1158 1159 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1160 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1161 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1162 BUG_ON(bi_size > *tio->len_ptr); 1163 BUG_ON(n_sectors > bi_size); 1164 1165 *tio->len_ptr -= bi_size - n_sectors; 1166 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1167 } 1168 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1169 1170 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1171 { 1172 mutex_lock(&md->swap_bios_lock); 1173 while (latch < md->swap_bios) { 1174 cond_resched(); 1175 down(&md->swap_bios_semaphore); 1176 md->swap_bios--; 1177 } 1178 while (latch > md->swap_bios) { 1179 cond_resched(); 1180 up(&md->swap_bios_semaphore); 1181 md->swap_bios++; 1182 } 1183 mutex_unlock(&md->swap_bios_lock); 1184 } 1185 1186 static blk_qc_t __map_bio(struct dm_target_io *tio) 1187 { 1188 int r; 1189 sector_t sector; 1190 struct bio *clone = &tio->clone; 1191 struct dm_io *io = tio->io; 1192 struct dm_target *ti = tio->ti; 1193 blk_qc_t ret = BLK_QC_T_NONE; 1194 1195 clone->bi_end_io = clone_endio; 1196 1197 /* 1198 * Map the clone. If r == 0 we don't need to do 1199 * anything, the target has assumed ownership of 1200 * this io. 1201 */ 1202 dm_io_inc_pending(io); 1203 sector = clone->bi_iter.bi_sector; 1204 1205 if (unlikely(swap_bios_limit(ti, clone))) { 1206 struct mapped_device *md = io->md; 1207 int latch = get_swap_bios(); 1208 if (unlikely(latch != md->swap_bios)) 1209 __set_swap_bios_limit(md, latch); 1210 down(&md->swap_bios_semaphore); 1211 } 1212 1213 /* 1214 * Check if the IO needs a special mapping due to zone append emulation 1215 * on zoned target. In this case, dm_zone_map_bio() calls the target 1216 * map operation. 1217 */ 1218 if (dm_emulate_zone_append(io->md)) 1219 r = dm_zone_map_bio(tio); 1220 else 1221 r = ti->type->map(ti, clone); 1222 1223 switch (r) { 1224 case DM_MAPIO_SUBMITTED: 1225 break; 1226 case DM_MAPIO_REMAPPED: 1227 /* the bio has been remapped so dispatch it */ 1228 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1229 ret = submit_bio_noacct(clone); 1230 break; 1231 case DM_MAPIO_KILL: 1232 if (unlikely(swap_bios_limit(ti, clone))) { 1233 struct mapped_device *md = io->md; 1234 up(&md->swap_bios_semaphore); 1235 } 1236 free_tio(tio); 1237 dm_io_dec_pending(io, BLK_STS_IOERR); 1238 break; 1239 case DM_MAPIO_REQUEUE: 1240 if (unlikely(swap_bios_limit(ti, clone))) { 1241 struct mapped_device *md = io->md; 1242 up(&md->swap_bios_semaphore); 1243 } 1244 free_tio(tio); 1245 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1246 break; 1247 default: 1248 DMWARN("unimplemented target map return value: %d", r); 1249 BUG(); 1250 } 1251 1252 return ret; 1253 } 1254 1255 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1256 { 1257 bio->bi_iter.bi_sector = sector; 1258 bio->bi_iter.bi_size = to_bytes(len); 1259 } 1260 1261 /* 1262 * Creates a bio that consists of range of complete bvecs. 1263 */ 1264 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1265 sector_t sector, unsigned len) 1266 { 1267 struct bio *clone = &tio->clone; 1268 int r; 1269 1270 __bio_clone_fast(clone, bio); 1271 1272 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1273 if (r < 0) 1274 return r; 1275 1276 if (bio_integrity(bio)) { 1277 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1278 !dm_target_passes_integrity(tio->ti->type))) { 1279 DMWARN("%s: the target %s doesn't support integrity data.", 1280 dm_device_name(tio->io->md), 1281 tio->ti->type->name); 1282 return -EIO; 1283 } 1284 1285 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1286 if (r < 0) 1287 return r; 1288 } 1289 1290 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1291 clone->bi_iter.bi_size = to_bytes(len); 1292 1293 if (bio_integrity(bio)) 1294 bio_integrity_trim(clone); 1295 1296 return 0; 1297 } 1298 1299 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1300 struct dm_target *ti, unsigned num_bios) 1301 { 1302 struct dm_target_io *tio; 1303 int try; 1304 1305 if (!num_bios) 1306 return; 1307 1308 if (num_bios == 1) { 1309 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1310 bio_list_add(blist, &tio->clone); 1311 return; 1312 } 1313 1314 for (try = 0; try < 2; try++) { 1315 int bio_nr; 1316 struct bio *bio; 1317 1318 if (try) 1319 mutex_lock(&ci->io->md->table_devices_lock); 1320 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1321 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1322 if (!tio) 1323 break; 1324 1325 bio_list_add(blist, &tio->clone); 1326 } 1327 if (try) 1328 mutex_unlock(&ci->io->md->table_devices_lock); 1329 if (bio_nr == num_bios) 1330 return; 1331 1332 while ((bio = bio_list_pop(blist))) { 1333 tio = container_of(bio, struct dm_target_io, clone); 1334 free_tio(tio); 1335 } 1336 } 1337 } 1338 1339 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1340 struct dm_target_io *tio, unsigned *len) 1341 { 1342 struct bio *clone = &tio->clone; 1343 1344 tio->len_ptr = len; 1345 1346 __bio_clone_fast(clone, ci->bio); 1347 if (len) 1348 bio_setup_sector(clone, ci->sector, *len); 1349 1350 return __map_bio(tio); 1351 } 1352 1353 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1354 unsigned num_bios, unsigned *len) 1355 { 1356 struct bio_list blist = BIO_EMPTY_LIST; 1357 struct bio *bio; 1358 struct dm_target_io *tio; 1359 1360 alloc_multiple_bios(&blist, ci, ti, num_bios); 1361 1362 while ((bio = bio_list_pop(&blist))) { 1363 tio = container_of(bio, struct dm_target_io, clone); 1364 (void) __clone_and_map_simple_bio(ci, tio, len); 1365 } 1366 } 1367 1368 static int __send_empty_flush(struct clone_info *ci) 1369 { 1370 unsigned target_nr = 0; 1371 struct dm_target *ti; 1372 struct bio flush_bio; 1373 1374 /* 1375 * Use an on-stack bio for this, it's safe since we don't 1376 * need to reference it after submit. It's just used as 1377 * the basis for the clone(s). 1378 */ 1379 bio_init(&flush_bio, NULL, 0); 1380 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1381 bio_set_dev(&flush_bio, ci->io->md->disk->part0); 1382 1383 ci->bio = &flush_bio; 1384 ci->sector_count = 0; 1385 1386 BUG_ON(bio_has_data(ci->bio)); 1387 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1388 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1389 1390 bio_uninit(ci->bio); 1391 return 0; 1392 } 1393 1394 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1395 sector_t sector, unsigned *len) 1396 { 1397 struct bio *bio = ci->bio; 1398 struct dm_target_io *tio; 1399 int r; 1400 1401 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1402 tio->len_ptr = len; 1403 r = clone_bio(tio, bio, sector, *len); 1404 if (r < 0) { 1405 free_tio(tio); 1406 return r; 1407 } 1408 (void) __map_bio(tio); 1409 1410 return 0; 1411 } 1412 1413 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1414 unsigned num_bios) 1415 { 1416 unsigned len; 1417 1418 /* 1419 * Even though the device advertised support for this type of 1420 * request, that does not mean every target supports it, and 1421 * reconfiguration might also have changed that since the 1422 * check was performed. 1423 */ 1424 if (!num_bios) 1425 return -EOPNOTSUPP; 1426 1427 len = min_t(sector_t, ci->sector_count, 1428 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1429 1430 __send_duplicate_bios(ci, ti, num_bios, &len); 1431 1432 ci->sector += len; 1433 ci->sector_count -= len; 1434 1435 return 0; 1436 } 1437 1438 static bool is_abnormal_io(struct bio *bio) 1439 { 1440 bool r = false; 1441 1442 switch (bio_op(bio)) { 1443 case REQ_OP_DISCARD: 1444 case REQ_OP_SECURE_ERASE: 1445 case REQ_OP_WRITE_SAME: 1446 case REQ_OP_WRITE_ZEROES: 1447 r = true; 1448 break; 1449 } 1450 1451 return r; 1452 } 1453 1454 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1455 int *result) 1456 { 1457 struct bio *bio = ci->bio; 1458 unsigned num_bios = 0; 1459 1460 switch (bio_op(bio)) { 1461 case REQ_OP_DISCARD: 1462 num_bios = ti->num_discard_bios; 1463 break; 1464 case REQ_OP_SECURE_ERASE: 1465 num_bios = ti->num_secure_erase_bios; 1466 break; 1467 case REQ_OP_WRITE_SAME: 1468 num_bios = ti->num_write_same_bios; 1469 break; 1470 case REQ_OP_WRITE_ZEROES: 1471 num_bios = ti->num_write_zeroes_bios; 1472 break; 1473 default: 1474 return false; 1475 } 1476 1477 *result = __send_changing_extent_only(ci, ti, num_bios); 1478 return true; 1479 } 1480 1481 /* 1482 * Select the correct strategy for processing a non-flush bio. 1483 */ 1484 static int __split_and_process_non_flush(struct clone_info *ci) 1485 { 1486 struct dm_target *ti; 1487 unsigned len; 1488 int r; 1489 1490 ti = dm_table_find_target(ci->map, ci->sector); 1491 if (!ti) 1492 return -EIO; 1493 1494 if (__process_abnormal_io(ci, ti, &r)) 1495 return r; 1496 1497 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1498 1499 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1500 if (r < 0) 1501 return r; 1502 1503 ci->sector += len; 1504 ci->sector_count -= len; 1505 1506 return 0; 1507 } 1508 1509 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1510 struct dm_table *map, struct bio *bio) 1511 { 1512 ci->map = map; 1513 ci->io = alloc_io(md, bio); 1514 ci->sector = bio->bi_iter.bi_sector; 1515 } 1516 1517 #define __dm_part_stat_sub(part, field, subnd) \ 1518 (part_stat_get(part, field) -= (subnd)) 1519 1520 /* 1521 * Entry point to split a bio into clones and submit them to the targets. 1522 */ 1523 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1524 struct dm_table *map, struct bio *bio) 1525 { 1526 struct clone_info ci; 1527 blk_qc_t ret = BLK_QC_T_NONE; 1528 int error = 0; 1529 1530 init_clone_info(&ci, md, map, bio); 1531 1532 if (bio->bi_opf & REQ_PREFLUSH) { 1533 error = __send_empty_flush(&ci); 1534 /* dm_io_dec_pending submits any data associated with flush */ 1535 } else if (op_is_zone_mgmt(bio_op(bio))) { 1536 ci.bio = bio; 1537 ci.sector_count = 0; 1538 error = __split_and_process_non_flush(&ci); 1539 } else { 1540 ci.bio = bio; 1541 ci.sector_count = bio_sectors(bio); 1542 error = __split_and_process_non_flush(&ci); 1543 if (ci.sector_count && !error) { 1544 /* 1545 * Remainder must be passed to submit_bio_noacct() 1546 * so that it gets handled *after* bios already submitted 1547 * have been completely processed. 1548 * We take a clone of the original to store in 1549 * ci.io->orig_bio to be used by end_io_acct() and 1550 * for dec_pending to use for completion handling. 1551 */ 1552 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1553 GFP_NOIO, &md->queue->bio_split); 1554 ci.io->orig_bio = b; 1555 1556 /* 1557 * Adjust IO stats for each split, otherwise upon queue 1558 * reentry there will be redundant IO accounting. 1559 * NOTE: this is a stop-gap fix, a proper fix involves 1560 * significant refactoring of DM core's bio splitting 1561 * (by eliminating DM's splitting and just using bio_split) 1562 */ 1563 part_stat_lock(); 1564 __dm_part_stat_sub(dm_disk(md)->part0, 1565 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1566 part_stat_unlock(); 1567 1568 bio_chain(b, bio); 1569 trace_block_split(b, bio->bi_iter.bi_sector); 1570 ret = submit_bio_noacct(bio); 1571 } 1572 } 1573 1574 /* drop the extra reference count */ 1575 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1576 return ret; 1577 } 1578 1579 static blk_qc_t dm_submit_bio(struct bio *bio) 1580 { 1581 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1582 blk_qc_t ret = BLK_QC_T_NONE; 1583 int srcu_idx; 1584 struct dm_table *map; 1585 1586 map = dm_get_live_table(md, &srcu_idx); 1587 if (unlikely(!map)) { 1588 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1589 dm_device_name(md)); 1590 bio_io_error(bio); 1591 goto out; 1592 } 1593 1594 /* If suspended, queue this IO for later */ 1595 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1596 if (bio->bi_opf & REQ_NOWAIT) 1597 bio_wouldblock_error(bio); 1598 else if (bio->bi_opf & REQ_RAHEAD) 1599 bio_io_error(bio); 1600 else 1601 queue_io(md, bio); 1602 goto out; 1603 } 1604 1605 /* 1606 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1607 * otherwise associated queue_limits won't be imposed. 1608 */ 1609 if (is_abnormal_io(bio)) 1610 blk_queue_split(&bio); 1611 1612 ret = __split_and_process_bio(md, map, bio); 1613 out: 1614 dm_put_live_table(md, srcu_idx); 1615 return ret; 1616 } 1617 1618 /*----------------------------------------------------------------- 1619 * An IDR is used to keep track of allocated minor numbers. 1620 *---------------------------------------------------------------*/ 1621 static void free_minor(int minor) 1622 { 1623 spin_lock(&_minor_lock); 1624 idr_remove(&_minor_idr, minor); 1625 spin_unlock(&_minor_lock); 1626 } 1627 1628 /* 1629 * See if the device with a specific minor # is free. 1630 */ 1631 static int specific_minor(int minor) 1632 { 1633 int r; 1634 1635 if (minor >= (1 << MINORBITS)) 1636 return -EINVAL; 1637 1638 idr_preload(GFP_KERNEL); 1639 spin_lock(&_minor_lock); 1640 1641 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1642 1643 spin_unlock(&_minor_lock); 1644 idr_preload_end(); 1645 if (r < 0) 1646 return r == -ENOSPC ? -EBUSY : r; 1647 return 0; 1648 } 1649 1650 static int next_free_minor(int *minor) 1651 { 1652 int r; 1653 1654 idr_preload(GFP_KERNEL); 1655 spin_lock(&_minor_lock); 1656 1657 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1658 1659 spin_unlock(&_minor_lock); 1660 idr_preload_end(); 1661 if (r < 0) 1662 return r; 1663 *minor = r; 1664 return 0; 1665 } 1666 1667 static const struct block_device_operations dm_blk_dops; 1668 static const struct block_device_operations dm_rq_blk_dops; 1669 static const struct dax_operations dm_dax_ops; 1670 1671 static void dm_wq_work(struct work_struct *work); 1672 1673 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1674 static void dm_queue_destroy_keyslot_manager(struct request_queue *q) 1675 { 1676 dm_destroy_keyslot_manager(q->ksm); 1677 } 1678 1679 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1680 1681 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q) 1682 { 1683 } 1684 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1685 1686 static void cleanup_mapped_device(struct mapped_device *md) 1687 { 1688 if (md->wq) 1689 destroy_workqueue(md->wq); 1690 bioset_exit(&md->bs); 1691 bioset_exit(&md->io_bs); 1692 1693 if (md->dax_dev) { 1694 kill_dax(md->dax_dev); 1695 put_dax(md->dax_dev); 1696 md->dax_dev = NULL; 1697 } 1698 1699 if (md->disk) { 1700 spin_lock(&_minor_lock); 1701 md->disk->private_data = NULL; 1702 spin_unlock(&_minor_lock); 1703 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1704 dm_sysfs_exit(md); 1705 del_gendisk(md->disk); 1706 } 1707 dm_queue_destroy_keyslot_manager(md->queue); 1708 blk_cleanup_disk(md->disk); 1709 } 1710 1711 cleanup_srcu_struct(&md->io_barrier); 1712 1713 mutex_destroy(&md->suspend_lock); 1714 mutex_destroy(&md->type_lock); 1715 mutex_destroy(&md->table_devices_lock); 1716 mutex_destroy(&md->swap_bios_lock); 1717 1718 dm_mq_cleanup_mapped_device(md); 1719 dm_cleanup_zoned_dev(md); 1720 } 1721 1722 /* 1723 * Allocate and initialise a blank device with a given minor. 1724 */ 1725 static struct mapped_device *alloc_dev(int minor) 1726 { 1727 int r, numa_node_id = dm_get_numa_node(); 1728 struct mapped_device *md; 1729 void *old_md; 1730 1731 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1732 if (!md) { 1733 DMWARN("unable to allocate device, out of memory."); 1734 return NULL; 1735 } 1736 1737 if (!try_module_get(THIS_MODULE)) 1738 goto bad_module_get; 1739 1740 /* get a minor number for the dev */ 1741 if (minor == DM_ANY_MINOR) 1742 r = next_free_minor(&minor); 1743 else 1744 r = specific_minor(minor); 1745 if (r < 0) 1746 goto bad_minor; 1747 1748 r = init_srcu_struct(&md->io_barrier); 1749 if (r < 0) 1750 goto bad_io_barrier; 1751 1752 md->numa_node_id = numa_node_id; 1753 md->init_tio_pdu = false; 1754 md->type = DM_TYPE_NONE; 1755 mutex_init(&md->suspend_lock); 1756 mutex_init(&md->type_lock); 1757 mutex_init(&md->table_devices_lock); 1758 spin_lock_init(&md->deferred_lock); 1759 atomic_set(&md->holders, 1); 1760 atomic_set(&md->open_count, 0); 1761 atomic_set(&md->event_nr, 0); 1762 atomic_set(&md->uevent_seq, 0); 1763 INIT_LIST_HEAD(&md->uevent_list); 1764 INIT_LIST_HEAD(&md->table_devices); 1765 spin_lock_init(&md->uevent_lock); 1766 1767 /* 1768 * default to bio-based until DM table is loaded and md->type 1769 * established. If request-based table is loaded: blk-mq will 1770 * override accordingly. 1771 */ 1772 md->disk = blk_alloc_disk(md->numa_node_id); 1773 if (!md->disk) 1774 goto bad; 1775 md->queue = md->disk->queue; 1776 1777 init_waitqueue_head(&md->wait); 1778 INIT_WORK(&md->work, dm_wq_work); 1779 init_waitqueue_head(&md->eventq); 1780 init_completion(&md->kobj_holder.completion); 1781 1782 md->swap_bios = get_swap_bios(); 1783 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1784 mutex_init(&md->swap_bios_lock); 1785 1786 md->disk->major = _major; 1787 md->disk->first_minor = minor; 1788 md->disk->minors = 1; 1789 md->disk->fops = &dm_blk_dops; 1790 md->disk->queue = md->queue; 1791 md->disk->private_data = md; 1792 sprintf(md->disk->disk_name, "dm-%d", minor); 1793 1794 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1795 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1796 &dm_dax_ops, 0); 1797 if (IS_ERR(md->dax_dev)) 1798 goto bad; 1799 } 1800 1801 format_dev_t(md->name, MKDEV(_major, minor)); 1802 1803 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1804 if (!md->wq) 1805 goto bad; 1806 1807 dm_stats_init(&md->stats); 1808 1809 /* Populate the mapping, nobody knows we exist yet */ 1810 spin_lock(&_minor_lock); 1811 old_md = idr_replace(&_minor_idr, md, minor); 1812 spin_unlock(&_minor_lock); 1813 1814 BUG_ON(old_md != MINOR_ALLOCED); 1815 1816 return md; 1817 1818 bad: 1819 cleanup_mapped_device(md); 1820 bad_io_barrier: 1821 free_minor(minor); 1822 bad_minor: 1823 module_put(THIS_MODULE); 1824 bad_module_get: 1825 kvfree(md); 1826 return NULL; 1827 } 1828 1829 static void unlock_fs(struct mapped_device *md); 1830 1831 static void free_dev(struct mapped_device *md) 1832 { 1833 int minor = MINOR(disk_devt(md->disk)); 1834 1835 unlock_fs(md); 1836 1837 cleanup_mapped_device(md); 1838 1839 free_table_devices(&md->table_devices); 1840 dm_stats_cleanup(&md->stats); 1841 free_minor(minor); 1842 1843 module_put(THIS_MODULE); 1844 kvfree(md); 1845 } 1846 1847 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1848 { 1849 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1850 int ret = 0; 1851 1852 if (dm_table_bio_based(t)) { 1853 /* 1854 * The md may already have mempools that need changing. 1855 * If so, reload bioset because front_pad may have changed 1856 * because a different table was loaded. 1857 */ 1858 bioset_exit(&md->bs); 1859 bioset_exit(&md->io_bs); 1860 1861 } else if (bioset_initialized(&md->bs)) { 1862 /* 1863 * There's no need to reload with request-based dm 1864 * because the size of front_pad doesn't change. 1865 * Note for future: If you are to reload bioset, 1866 * prep-ed requests in the queue may refer 1867 * to bio from the old bioset, so you must walk 1868 * through the queue to unprep. 1869 */ 1870 goto out; 1871 } 1872 1873 BUG_ON(!p || 1874 bioset_initialized(&md->bs) || 1875 bioset_initialized(&md->io_bs)); 1876 1877 ret = bioset_init_from_src(&md->bs, &p->bs); 1878 if (ret) 1879 goto out; 1880 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1881 if (ret) 1882 bioset_exit(&md->bs); 1883 out: 1884 /* mempool bind completed, no longer need any mempools in the table */ 1885 dm_table_free_md_mempools(t); 1886 return ret; 1887 } 1888 1889 /* 1890 * Bind a table to the device. 1891 */ 1892 static void event_callback(void *context) 1893 { 1894 unsigned long flags; 1895 LIST_HEAD(uevents); 1896 struct mapped_device *md = (struct mapped_device *) context; 1897 1898 spin_lock_irqsave(&md->uevent_lock, flags); 1899 list_splice_init(&md->uevent_list, &uevents); 1900 spin_unlock_irqrestore(&md->uevent_lock, flags); 1901 1902 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1903 1904 atomic_inc(&md->event_nr); 1905 wake_up(&md->eventq); 1906 dm_issue_global_event(); 1907 } 1908 1909 /* 1910 * Returns old map, which caller must destroy. 1911 */ 1912 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1913 struct queue_limits *limits) 1914 { 1915 struct dm_table *old_map; 1916 struct request_queue *q = md->queue; 1917 bool request_based = dm_table_request_based(t); 1918 sector_t size; 1919 int ret; 1920 1921 lockdep_assert_held(&md->suspend_lock); 1922 1923 size = dm_table_get_size(t); 1924 1925 /* 1926 * Wipe any geometry if the size of the table changed. 1927 */ 1928 if (size != dm_get_size(md)) 1929 memset(&md->geometry, 0, sizeof(md->geometry)); 1930 1931 if (!get_capacity(md->disk)) 1932 set_capacity(md->disk, size); 1933 else 1934 set_capacity_and_notify(md->disk, size); 1935 1936 dm_table_event_callback(t, event_callback, md); 1937 1938 /* 1939 * The queue hasn't been stopped yet, if the old table type wasn't 1940 * for request-based during suspension. So stop it to prevent 1941 * I/O mapping before resume. 1942 * This must be done before setting the queue restrictions, 1943 * because request-based dm may be run just after the setting. 1944 */ 1945 if (request_based) 1946 dm_stop_queue(q); 1947 1948 if (request_based) { 1949 /* 1950 * Leverage the fact that request-based DM targets are 1951 * immutable singletons - used to optimize dm_mq_queue_rq. 1952 */ 1953 md->immutable_target = dm_table_get_immutable_target(t); 1954 } 1955 1956 ret = __bind_mempools(md, t); 1957 if (ret) { 1958 old_map = ERR_PTR(ret); 1959 goto out; 1960 } 1961 1962 ret = dm_table_set_restrictions(t, q, limits); 1963 if (ret) { 1964 old_map = ERR_PTR(ret); 1965 goto out; 1966 } 1967 1968 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1969 rcu_assign_pointer(md->map, (void *)t); 1970 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1971 1972 if (old_map) 1973 dm_sync_table(md); 1974 1975 out: 1976 return old_map; 1977 } 1978 1979 /* 1980 * Returns unbound table for the caller to free. 1981 */ 1982 static struct dm_table *__unbind(struct mapped_device *md) 1983 { 1984 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1985 1986 if (!map) 1987 return NULL; 1988 1989 dm_table_event_callback(map, NULL, NULL); 1990 RCU_INIT_POINTER(md->map, NULL); 1991 dm_sync_table(md); 1992 1993 return map; 1994 } 1995 1996 /* 1997 * Constructor for a new device. 1998 */ 1999 int dm_create(int minor, struct mapped_device **result) 2000 { 2001 struct mapped_device *md; 2002 2003 md = alloc_dev(minor); 2004 if (!md) 2005 return -ENXIO; 2006 2007 dm_ima_reset_data(md); 2008 2009 *result = md; 2010 return 0; 2011 } 2012 2013 /* 2014 * Functions to manage md->type. 2015 * All are required to hold md->type_lock. 2016 */ 2017 void dm_lock_md_type(struct mapped_device *md) 2018 { 2019 mutex_lock(&md->type_lock); 2020 } 2021 2022 void dm_unlock_md_type(struct mapped_device *md) 2023 { 2024 mutex_unlock(&md->type_lock); 2025 } 2026 2027 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2028 { 2029 BUG_ON(!mutex_is_locked(&md->type_lock)); 2030 md->type = type; 2031 } 2032 2033 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2034 { 2035 return md->type; 2036 } 2037 2038 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2039 { 2040 return md->immutable_target_type; 2041 } 2042 2043 /* 2044 * The queue_limits are only valid as long as you have a reference 2045 * count on 'md'. 2046 */ 2047 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2048 { 2049 BUG_ON(!atomic_read(&md->holders)); 2050 return &md->queue->limits; 2051 } 2052 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2053 2054 /* 2055 * Setup the DM device's queue based on md's type 2056 */ 2057 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2058 { 2059 enum dm_queue_mode type = dm_table_get_type(t); 2060 struct queue_limits limits; 2061 int r; 2062 2063 switch (type) { 2064 case DM_TYPE_REQUEST_BASED: 2065 md->disk->fops = &dm_rq_blk_dops; 2066 r = dm_mq_init_request_queue(md, t); 2067 if (r) { 2068 DMERR("Cannot initialize queue for request-based dm mapped device"); 2069 return r; 2070 } 2071 break; 2072 case DM_TYPE_BIO_BASED: 2073 case DM_TYPE_DAX_BIO_BASED: 2074 break; 2075 case DM_TYPE_NONE: 2076 WARN_ON_ONCE(true); 2077 break; 2078 } 2079 2080 r = dm_calculate_queue_limits(t, &limits); 2081 if (r) { 2082 DMERR("Cannot calculate initial queue limits"); 2083 return r; 2084 } 2085 r = dm_table_set_restrictions(t, md->queue, &limits); 2086 if (r) 2087 return r; 2088 2089 add_disk(md->disk); 2090 2091 r = dm_sysfs_init(md); 2092 if (r) { 2093 del_gendisk(md->disk); 2094 return r; 2095 } 2096 md->type = type; 2097 return 0; 2098 } 2099 2100 struct mapped_device *dm_get_md(dev_t dev) 2101 { 2102 struct mapped_device *md; 2103 unsigned minor = MINOR(dev); 2104 2105 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2106 return NULL; 2107 2108 spin_lock(&_minor_lock); 2109 2110 md = idr_find(&_minor_idr, minor); 2111 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2112 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2113 md = NULL; 2114 goto out; 2115 } 2116 dm_get(md); 2117 out: 2118 spin_unlock(&_minor_lock); 2119 2120 return md; 2121 } 2122 EXPORT_SYMBOL_GPL(dm_get_md); 2123 2124 void *dm_get_mdptr(struct mapped_device *md) 2125 { 2126 return md->interface_ptr; 2127 } 2128 2129 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2130 { 2131 md->interface_ptr = ptr; 2132 } 2133 2134 void dm_get(struct mapped_device *md) 2135 { 2136 atomic_inc(&md->holders); 2137 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2138 } 2139 2140 int dm_hold(struct mapped_device *md) 2141 { 2142 spin_lock(&_minor_lock); 2143 if (test_bit(DMF_FREEING, &md->flags)) { 2144 spin_unlock(&_minor_lock); 2145 return -EBUSY; 2146 } 2147 dm_get(md); 2148 spin_unlock(&_minor_lock); 2149 return 0; 2150 } 2151 EXPORT_SYMBOL_GPL(dm_hold); 2152 2153 const char *dm_device_name(struct mapped_device *md) 2154 { 2155 return md->name; 2156 } 2157 EXPORT_SYMBOL_GPL(dm_device_name); 2158 2159 static void __dm_destroy(struct mapped_device *md, bool wait) 2160 { 2161 struct dm_table *map; 2162 int srcu_idx; 2163 2164 might_sleep(); 2165 2166 spin_lock(&_minor_lock); 2167 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2168 set_bit(DMF_FREEING, &md->flags); 2169 spin_unlock(&_minor_lock); 2170 2171 blk_set_queue_dying(md->queue); 2172 2173 /* 2174 * Take suspend_lock so that presuspend and postsuspend methods 2175 * do not race with internal suspend. 2176 */ 2177 mutex_lock(&md->suspend_lock); 2178 map = dm_get_live_table(md, &srcu_idx); 2179 if (!dm_suspended_md(md)) { 2180 dm_table_presuspend_targets(map); 2181 set_bit(DMF_SUSPENDED, &md->flags); 2182 set_bit(DMF_POST_SUSPENDING, &md->flags); 2183 dm_table_postsuspend_targets(map); 2184 } 2185 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2186 dm_put_live_table(md, srcu_idx); 2187 mutex_unlock(&md->suspend_lock); 2188 2189 /* 2190 * Rare, but there may be I/O requests still going to complete, 2191 * for example. Wait for all references to disappear. 2192 * No one should increment the reference count of the mapped_device, 2193 * after the mapped_device state becomes DMF_FREEING. 2194 */ 2195 if (wait) 2196 while (atomic_read(&md->holders)) 2197 msleep(1); 2198 else if (atomic_read(&md->holders)) 2199 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2200 dm_device_name(md), atomic_read(&md->holders)); 2201 2202 dm_table_destroy(__unbind(md)); 2203 free_dev(md); 2204 } 2205 2206 void dm_destroy(struct mapped_device *md) 2207 { 2208 __dm_destroy(md, true); 2209 } 2210 2211 void dm_destroy_immediate(struct mapped_device *md) 2212 { 2213 __dm_destroy(md, false); 2214 } 2215 2216 void dm_put(struct mapped_device *md) 2217 { 2218 atomic_dec(&md->holders); 2219 } 2220 EXPORT_SYMBOL_GPL(dm_put); 2221 2222 static bool md_in_flight_bios(struct mapped_device *md) 2223 { 2224 int cpu; 2225 struct block_device *part = dm_disk(md)->part0; 2226 long sum = 0; 2227 2228 for_each_possible_cpu(cpu) { 2229 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2230 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2231 } 2232 2233 return sum != 0; 2234 } 2235 2236 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2237 { 2238 int r = 0; 2239 DEFINE_WAIT(wait); 2240 2241 while (true) { 2242 prepare_to_wait(&md->wait, &wait, task_state); 2243 2244 if (!md_in_flight_bios(md)) 2245 break; 2246 2247 if (signal_pending_state(task_state, current)) { 2248 r = -EINTR; 2249 break; 2250 } 2251 2252 io_schedule(); 2253 } 2254 finish_wait(&md->wait, &wait); 2255 2256 return r; 2257 } 2258 2259 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2260 { 2261 int r = 0; 2262 2263 if (!queue_is_mq(md->queue)) 2264 return dm_wait_for_bios_completion(md, task_state); 2265 2266 while (true) { 2267 if (!blk_mq_queue_inflight(md->queue)) 2268 break; 2269 2270 if (signal_pending_state(task_state, current)) { 2271 r = -EINTR; 2272 break; 2273 } 2274 2275 msleep(5); 2276 } 2277 2278 return r; 2279 } 2280 2281 /* 2282 * Process the deferred bios 2283 */ 2284 static void dm_wq_work(struct work_struct *work) 2285 { 2286 struct mapped_device *md = container_of(work, struct mapped_device, work); 2287 struct bio *bio; 2288 2289 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2290 spin_lock_irq(&md->deferred_lock); 2291 bio = bio_list_pop(&md->deferred); 2292 spin_unlock_irq(&md->deferred_lock); 2293 2294 if (!bio) 2295 break; 2296 2297 submit_bio_noacct(bio); 2298 } 2299 } 2300 2301 static void dm_queue_flush(struct mapped_device *md) 2302 { 2303 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2304 smp_mb__after_atomic(); 2305 queue_work(md->wq, &md->work); 2306 } 2307 2308 /* 2309 * Swap in a new table, returning the old one for the caller to destroy. 2310 */ 2311 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2312 { 2313 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2314 struct queue_limits limits; 2315 int r; 2316 2317 mutex_lock(&md->suspend_lock); 2318 2319 /* device must be suspended */ 2320 if (!dm_suspended_md(md)) 2321 goto out; 2322 2323 /* 2324 * If the new table has no data devices, retain the existing limits. 2325 * This helps multipath with queue_if_no_path if all paths disappear, 2326 * then new I/O is queued based on these limits, and then some paths 2327 * reappear. 2328 */ 2329 if (dm_table_has_no_data_devices(table)) { 2330 live_map = dm_get_live_table_fast(md); 2331 if (live_map) 2332 limits = md->queue->limits; 2333 dm_put_live_table_fast(md); 2334 } 2335 2336 if (!live_map) { 2337 r = dm_calculate_queue_limits(table, &limits); 2338 if (r) { 2339 map = ERR_PTR(r); 2340 goto out; 2341 } 2342 } 2343 2344 map = __bind(md, table, &limits); 2345 dm_issue_global_event(); 2346 2347 out: 2348 mutex_unlock(&md->suspend_lock); 2349 return map; 2350 } 2351 2352 /* 2353 * Functions to lock and unlock any filesystem running on the 2354 * device. 2355 */ 2356 static int lock_fs(struct mapped_device *md) 2357 { 2358 int r; 2359 2360 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2361 2362 r = freeze_bdev(md->disk->part0); 2363 if (!r) 2364 set_bit(DMF_FROZEN, &md->flags); 2365 return r; 2366 } 2367 2368 static void unlock_fs(struct mapped_device *md) 2369 { 2370 if (!test_bit(DMF_FROZEN, &md->flags)) 2371 return; 2372 thaw_bdev(md->disk->part0); 2373 clear_bit(DMF_FROZEN, &md->flags); 2374 } 2375 2376 /* 2377 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2378 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2379 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2380 * 2381 * If __dm_suspend returns 0, the device is completely quiescent 2382 * now. There is no request-processing activity. All new requests 2383 * are being added to md->deferred list. 2384 */ 2385 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2386 unsigned suspend_flags, unsigned int task_state, 2387 int dmf_suspended_flag) 2388 { 2389 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2390 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2391 int r; 2392 2393 lockdep_assert_held(&md->suspend_lock); 2394 2395 /* 2396 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2397 * This flag is cleared before dm_suspend returns. 2398 */ 2399 if (noflush) 2400 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2401 else 2402 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2403 2404 /* 2405 * This gets reverted if there's an error later and the targets 2406 * provide the .presuspend_undo hook. 2407 */ 2408 dm_table_presuspend_targets(map); 2409 2410 /* 2411 * Flush I/O to the device. 2412 * Any I/O submitted after lock_fs() may not be flushed. 2413 * noflush takes precedence over do_lockfs. 2414 * (lock_fs() flushes I/Os and waits for them to complete.) 2415 */ 2416 if (!noflush && do_lockfs) { 2417 r = lock_fs(md); 2418 if (r) { 2419 dm_table_presuspend_undo_targets(map); 2420 return r; 2421 } 2422 } 2423 2424 /* 2425 * Here we must make sure that no processes are submitting requests 2426 * to target drivers i.e. no one may be executing 2427 * __split_and_process_bio from dm_submit_bio. 2428 * 2429 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2430 * we take the write lock. To prevent any process from reentering 2431 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2432 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2433 * flush_workqueue(md->wq). 2434 */ 2435 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2436 if (map) 2437 synchronize_srcu(&md->io_barrier); 2438 2439 /* 2440 * Stop md->queue before flushing md->wq in case request-based 2441 * dm defers requests to md->wq from md->queue. 2442 */ 2443 if (dm_request_based(md)) 2444 dm_stop_queue(md->queue); 2445 2446 flush_workqueue(md->wq); 2447 2448 /* 2449 * At this point no more requests are entering target request routines. 2450 * We call dm_wait_for_completion to wait for all existing requests 2451 * to finish. 2452 */ 2453 r = dm_wait_for_completion(md, task_state); 2454 if (!r) 2455 set_bit(dmf_suspended_flag, &md->flags); 2456 2457 if (noflush) 2458 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2459 if (map) 2460 synchronize_srcu(&md->io_barrier); 2461 2462 /* were we interrupted ? */ 2463 if (r < 0) { 2464 dm_queue_flush(md); 2465 2466 if (dm_request_based(md)) 2467 dm_start_queue(md->queue); 2468 2469 unlock_fs(md); 2470 dm_table_presuspend_undo_targets(map); 2471 /* pushback list is already flushed, so skip flush */ 2472 } 2473 2474 return r; 2475 } 2476 2477 /* 2478 * We need to be able to change a mapping table under a mounted 2479 * filesystem. For example we might want to move some data in 2480 * the background. Before the table can be swapped with 2481 * dm_bind_table, dm_suspend must be called to flush any in 2482 * flight bios and ensure that any further io gets deferred. 2483 */ 2484 /* 2485 * Suspend mechanism in request-based dm. 2486 * 2487 * 1. Flush all I/Os by lock_fs() if needed. 2488 * 2. Stop dispatching any I/O by stopping the request_queue. 2489 * 3. Wait for all in-flight I/Os to be completed or requeued. 2490 * 2491 * To abort suspend, start the request_queue. 2492 */ 2493 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2494 { 2495 struct dm_table *map = NULL; 2496 int r = 0; 2497 2498 retry: 2499 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2500 2501 if (dm_suspended_md(md)) { 2502 r = -EINVAL; 2503 goto out_unlock; 2504 } 2505 2506 if (dm_suspended_internally_md(md)) { 2507 /* already internally suspended, wait for internal resume */ 2508 mutex_unlock(&md->suspend_lock); 2509 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2510 if (r) 2511 return r; 2512 goto retry; 2513 } 2514 2515 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2516 2517 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2518 if (r) 2519 goto out_unlock; 2520 2521 set_bit(DMF_POST_SUSPENDING, &md->flags); 2522 dm_table_postsuspend_targets(map); 2523 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2524 2525 out_unlock: 2526 mutex_unlock(&md->suspend_lock); 2527 return r; 2528 } 2529 2530 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2531 { 2532 if (map) { 2533 int r = dm_table_resume_targets(map); 2534 if (r) 2535 return r; 2536 } 2537 2538 dm_queue_flush(md); 2539 2540 /* 2541 * Flushing deferred I/Os must be done after targets are resumed 2542 * so that mapping of targets can work correctly. 2543 * Request-based dm is queueing the deferred I/Os in its request_queue. 2544 */ 2545 if (dm_request_based(md)) 2546 dm_start_queue(md->queue); 2547 2548 unlock_fs(md); 2549 2550 return 0; 2551 } 2552 2553 int dm_resume(struct mapped_device *md) 2554 { 2555 int r; 2556 struct dm_table *map = NULL; 2557 2558 retry: 2559 r = -EINVAL; 2560 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2561 2562 if (!dm_suspended_md(md)) 2563 goto out; 2564 2565 if (dm_suspended_internally_md(md)) { 2566 /* already internally suspended, wait for internal resume */ 2567 mutex_unlock(&md->suspend_lock); 2568 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2569 if (r) 2570 return r; 2571 goto retry; 2572 } 2573 2574 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2575 if (!map || !dm_table_get_size(map)) 2576 goto out; 2577 2578 r = __dm_resume(md, map); 2579 if (r) 2580 goto out; 2581 2582 clear_bit(DMF_SUSPENDED, &md->flags); 2583 out: 2584 mutex_unlock(&md->suspend_lock); 2585 2586 return r; 2587 } 2588 2589 /* 2590 * Internal suspend/resume works like userspace-driven suspend. It waits 2591 * until all bios finish and prevents issuing new bios to the target drivers. 2592 * It may be used only from the kernel. 2593 */ 2594 2595 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2596 { 2597 struct dm_table *map = NULL; 2598 2599 lockdep_assert_held(&md->suspend_lock); 2600 2601 if (md->internal_suspend_count++) 2602 return; /* nested internal suspend */ 2603 2604 if (dm_suspended_md(md)) { 2605 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2606 return; /* nest suspend */ 2607 } 2608 2609 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2610 2611 /* 2612 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2613 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2614 * would require changing .presuspend to return an error -- avoid this 2615 * until there is a need for more elaborate variants of internal suspend. 2616 */ 2617 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2618 DMF_SUSPENDED_INTERNALLY); 2619 2620 set_bit(DMF_POST_SUSPENDING, &md->flags); 2621 dm_table_postsuspend_targets(map); 2622 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2623 } 2624 2625 static void __dm_internal_resume(struct mapped_device *md) 2626 { 2627 BUG_ON(!md->internal_suspend_count); 2628 2629 if (--md->internal_suspend_count) 2630 return; /* resume from nested internal suspend */ 2631 2632 if (dm_suspended_md(md)) 2633 goto done; /* resume from nested suspend */ 2634 2635 /* 2636 * NOTE: existing callers don't need to call dm_table_resume_targets 2637 * (which may fail -- so best to avoid it for now by passing NULL map) 2638 */ 2639 (void) __dm_resume(md, NULL); 2640 2641 done: 2642 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2643 smp_mb__after_atomic(); 2644 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2645 } 2646 2647 void dm_internal_suspend_noflush(struct mapped_device *md) 2648 { 2649 mutex_lock(&md->suspend_lock); 2650 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2651 mutex_unlock(&md->suspend_lock); 2652 } 2653 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2654 2655 void dm_internal_resume(struct mapped_device *md) 2656 { 2657 mutex_lock(&md->suspend_lock); 2658 __dm_internal_resume(md); 2659 mutex_unlock(&md->suspend_lock); 2660 } 2661 EXPORT_SYMBOL_GPL(dm_internal_resume); 2662 2663 /* 2664 * Fast variants of internal suspend/resume hold md->suspend_lock, 2665 * which prevents interaction with userspace-driven suspend. 2666 */ 2667 2668 void dm_internal_suspend_fast(struct mapped_device *md) 2669 { 2670 mutex_lock(&md->suspend_lock); 2671 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2672 return; 2673 2674 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2675 synchronize_srcu(&md->io_barrier); 2676 flush_workqueue(md->wq); 2677 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2678 } 2679 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2680 2681 void dm_internal_resume_fast(struct mapped_device *md) 2682 { 2683 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2684 goto done; 2685 2686 dm_queue_flush(md); 2687 2688 done: 2689 mutex_unlock(&md->suspend_lock); 2690 } 2691 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2692 2693 /*----------------------------------------------------------------- 2694 * Event notification. 2695 *---------------------------------------------------------------*/ 2696 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2697 unsigned cookie) 2698 { 2699 int r; 2700 unsigned noio_flag; 2701 char udev_cookie[DM_COOKIE_LENGTH]; 2702 char *envp[] = { udev_cookie, NULL }; 2703 2704 noio_flag = memalloc_noio_save(); 2705 2706 if (!cookie) 2707 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2708 else { 2709 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2710 DM_COOKIE_ENV_VAR_NAME, cookie); 2711 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2712 action, envp); 2713 } 2714 2715 memalloc_noio_restore(noio_flag); 2716 2717 return r; 2718 } 2719 2720 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2721 { 2722 return atomic_add_return(1, &md->uevent_seq); 2723 } 2724 2725 uint32_t dm_get_event_nr(struct mapped_device *md) 2726 { 2727 return atomic_read(&md->event_nr); 2728 } 2729 2730 int dm_wait_event(struct mapped_device *md, int event_nr) 2731 { 2732 return wait_event_interruptible(md->eventq, 2733 (event_nr != atomic_read(&md->event_nr))); 2734 } 2735 2736 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2737 { 2738 unsigned long flags; 2739 2740 spin_lock_irqsave(&md->uevent_lock, flags); 2741 list_add(elist, &md->uevent_list); 2742 spin_unlock_irqrestore(&md->uevent_lock, flags); 2743 } 2744 2745 /* 2746 * The gendisk is only valid as long as you have a reference 2747 * count on 'md'. 2748 */ 2749 struct gendisk *dm_disk(struct mapped_device *md) 2750 { 2751 return md->disk; 2752 } 2753 EXPORT_SYMBOL_GPL(dm_disk); 2754 2755 struct kobject *dm_kobject(struct mapped_device *md) 2756 { 2757 return &md->kobj_holder.kobj; 2758 } 2759 2760 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2761 { 2762 struct mapped_device *md; 2763 2764 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2765 2766 spin_lock(&_minor_lock); 2767 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2768 md = NULL; 2769 goto out; 2770 } 2771 dm_get(md); 2772 out: 2773 spin_unlock(&_minor_lock); 2774 2775 return md; 2776 } 2777 2778 int dm_suspended_md(struct mapped_device *md) 2779 { 2780 return test_bit(DMF_SUSPENDED, &md->flags); 2781 } 2782 2783 static int dm_post_suspending_md(struct mapped_device *md) 2784 { 2785 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2786 } 2787 2788 int dm_suspended_internally_md(struct mapped_device *md) 2789 { 2790 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2791 } 2792 2793 int dm_test_deferred_remove_flag(struct mapped_device *md) 2794 { 2795 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2796 } 2797 2798 int dm_suspended(struct dm_target *ti) 2799 { 2800 return dm_suspended_md(ti->table->md); 2801 } 2802 EXPORT_SYMBOL_GPL(dm_suspended); 2803 2804 int dm_post_suspending(struct dm_target *ti) 2805 { 2806 return dm_post_suspending_md(ti->table->md); 2807 } 2808 EXPORT_SYMBOL_GPL(dm_post_suspending); 2809 2810 int dm_noflush_suspending(struct dm_target *ti) 2811 { 2812 return __noflush_suspending(ti->table->md); 2813 } 2814 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2815 2816 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2817 unsigned integrity, unsigned per_io_data_size, 2818 unsigned min_pool_size) 2819 { 2820 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2821 unsigned int pool_size = 0; 2822 unsigned int front_pad, io_front_pad; 2823 int ret; 2824 2825 if (!pools) 2826 return NULL; 2827 2828 switch (type) { 2829 case DM_TYPE_BIO_BASED: 2830 case DM_TYPE_DAX_BIO_BASED: 2831 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2832 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2833 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2834 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2835 if (ret) 2836 goto out; 2837 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2838 goto out; 2839 break; 2840 case DM_TYPE_REQUEST_BASED: 2841 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2842 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2843 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2844 break; 2845 default: 2846 BUG(); 2847 } 2848 2849 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2850 if (ret) 2851 goto out; 2852 2853 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2854 goto out; 2855 2856 return pools; 2857 2858 out: 2859 dm_free_md_mempools(pools); 2860 2861 return NULL; 2862 } 2863 2864 void dm_free_md_mempools(struct dm_md_mempools *pools) 2865 { 2866 if (!pools) 2867 return; 2868 2869 bioset_exit(&pools->bs); 2870 bioset_exit(&pools->io_bs); 2871 2872 kfree(pools); 2873 } 2874 2875 struct dm_pr { 2876 u64 old_key; 2877 u64 new_key; 2878 u32 flags; 2879 bool fail_early; 2880 }; 2881 2882 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2883 void *data) 2884 { 2885 struct mapped_device *md = bdev->bd_disk->private_data; 2886 struct dm_table *table; 2887 struct dm_target *ti; 2888 int ret = -ENOTTY, srcu_idx; 2889 2890 table = dm_get_live_table(md, &srcu_idx); 2891 if (!table || !dm_table_get_size(table)) 2892 goto out; 2893 2894 /* We only support devices that have a single target */ 2895 if (dm_table_get_num_targets(table) != 1) 2896 goto out; 2897 ti = dm_table_get_target(table, 0); 2898 2899 ret = -EINVAL; 2900 if (!ti->type->iterate_devices) 2901 goto out; 2902 2903 ret = ti->type->iterate_devices(ti, fn, data); 2904 out: 2905 dm_put_live_table(md, srcu_idx); 2906 return ret; 2907 } 2908 2909 /* 2910 * For register / unregister we need to manually call out to every path. 2911 */ 2912 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2913 sector_t start, sector_t len, void *data) 2914 { 2915 struct dm_pr *pr = data; 2916 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2917 2918 if (!ops || !ops->pr_register) 2919 return -EOPNOTSUPP; 2920 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2921 } 2922 2923 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2924 u32 flags) 2925 { 2926 struct dm_pr pr = { 2927 .old_key = old_key, 2928 .new_key = new_key, 2929 .flags = flags, 2930 .fail_early = true, 2931 }; 2932 int ret; 2933 2934 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2935 if (ret && new_key) { 2936 /* unregister all paths if we failed to register any path */ 2937 pr.old_key = new_key; 2938 pr.new_key = 0; 2939 pr.flags = 0; 2940 pr.fail_early = false; 2941 dm_call_pr(bdev, __dm_pr_register, &pr); 2942 } 2943 2944 return ret; 2945 } 2946 2947 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2948 u32 flags) 2949 { 2950 struct mapped_device *md = bdev->bd_disk->private_data; 2951 const struct pr_ops *ops; 2952 int r, srcu_idx; 2953 2954 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2955 if (r < 0) 2956 goto out; 2957 2958 ops = bdev->bd_disk->fops->pr_ops; 2959 if (ops && ops->pr_reserve) 2960 r = ops->pr_reserve(bdev, key, type, flags); 2961 else 2962 r = -EOPNOTSUPP; 2963 out: 2964 dm_unprepare_ioctl(md, srcu_idx); 2965 return r; 2966 } 2967 2968 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2969 { 2970 struct mapped_device *md = bdev->bd_disk->private_data; 2971 const struct pr_ops *ops; 2972 int r, srcu_idx; 2973 2974 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2975 if (r < 0) 2976 goto out; 2977 2978 ops = bdev->bd_disk->fops->pr_ops; 2979 if (ops && ops->pr_release) 2980 r = ops->pr_release(bdev, key, type); 2981 else 2982 r = -EOPNOTSUPP; 2983 out: 2984 dm_unprepare_ioctl(md, srcu_idx); 2985 return r; 2986 } 2987 2988 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2989 enum pr_type type, bool abort) 2990 { 2991 struct mapped_device *md = bdev->bd_disk->private_data; 2992 const struct pr_ops *ops; 2993 int r, srcu_idx; 2994 2995 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2996 if (r < 0) 2997 goto out; 2998 2999 ops = bdev->bd_disk->fops->pr_ops; 3000 if (ops && ops->pr_preempt) 3001 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3002 else 3003 r = -EOPNOTSUPP; 3004 out: 3005 dm_unprepare_ioctl(md, srcu_idx); 3006 return r; 3007 } 3008 3009 static int dm_pr_clear(struct block_device *bdev, u64 key) 3010 { 3011 struct mapped_device *md = bdev->bd_disk->private_data; 3012 const struct pr_ops *ops; 3013 int r, srcu_idx; 3014 3015 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3016 if (r < 0) 3017 goto out; 3018 3019 ops = bdev->bd_disk->fops->pr_ops; 3020 if (ops && ops->pr_clear) 3021 r = ops->pr_clear(bdev, key); 3022 else 3023 r = -EOPNOTSUPP; 3024 out: 3025 dm_unprepare_ioctl(md, srcu_idx); 3026 return r; 3027 } 3028 3029 static const struct pr_ops dm_pr_ops = { 3030 .pr_register = dm_pr_register, 3031 .pr_reserve = dm_pr_reserve, 3032 .pr_release = dm_pr_release, 3033 .pr_preempt = dm_pr_preempt, 3034 .pr_clear = dm_pr_clear, 3035 }; 3036 3037 static const struct block_device_operations dm_blk_dops = { 3038 .submit_bio = dm_submit_bio, 3039 .open = dm_blk_open, 3040 .release = dm_blk_close, 3041 .ioctl = dm_blk_ioctl, 3042 .getgeo = dm_blk_getgeo, 3043 .report_zones = dm_blk_report_zones, 3044 .pr_ops = &dm_pr_ops, 3045 .owner = THIS_MODULE 3046 }; 3047 3048 static const struct block_device_operations dm_rq_blk_dops = { 3049 .open = dm_blk_open, 3050 .release = dm_blk_close, 3051 .ioctl = dm_blk_ioctl, 3052 .getgeo = dm_blk_getgeo, 3053 .pr_ops = &dm_pr_ops, 3054 .owner = THIS_MODULE 3055 }; 3056 3057 static const struct dax_operations dm_dax_ops = { 3058 .direct_access = dm_dax_direct_access, 3059 .dax_supported = dm_dax_supported, 3060 .copy_from_iter = dm_dax_copy_from_iter, 3061 .copy_to_iter = dm_dax_copy_to_iter, 3062 .zero_page_range = dm_dax_zero_page_range, 3063 }; 3064 3065 /* 3066 * module hooks 3067 */ 3068 module_init(dm_init); 3069 module_exit(dm_exit); 3070 3071 module_param(major, uint, 0); 3072 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3073 3074 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3075 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3076 3077 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3078 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3079 3080 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3081 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3082 3083 MODULE_DESCRIPTION(DM_NAME " driver"); 3084 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3085 MODULE_LICENSE("GPL"); 3086