xref: /openbmc/linux/drivers/md/dm.c (revision 160b8e75)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set *bs;
152 	struct bio_set *io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
462 				  struct block_device **bdev,
463 				  fmode_t *mode)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int srcu_idx, r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, &srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		goto out;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		goto out;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		goto out;
482 
483 	if (dm_suspended_md(md)) {
484 		r = -EAGAIN;
485 		goto out;
486 	}
487 
488 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
489 	if (r < 0)
490 		goto out;
491 
492 	bdgrab(*bdev);
493 	dm_put_live_table(md, srcu_idx);
494 	return r;
495 
496 out:
497 	dm_put_live_table(md, srcu_idx);
498 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
499 		msleep(10);
500 		goto retry;
501 	}
502 	return r;
503 }
504 
505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
506 			unsigned int cmd, unsigned long arg)
507 {
508 	struct mapped_device *md = bdev->bd_disk->private_data;
509 	int r;
510 
511 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
512 	if (r < 0)
513 		return r;
514 
515 	if (r > 0) {
516 		/*
517 		 * Target determined this ioctl is being issued against a
518 		 * subset of the parent bdev; require extra privileges.
519 		 */
520 		if (!capable(CAP_SYS_RAWIO)) {
521 			DMWARN_LIMIT(
522 	"%s: sending ioctl %x to DM device without required privilege.",
523 				current->comm, cmd);
524 			r = -ENOIOCTLCMD;
525 			goto out;
526 		}
527 	}
528 
529 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
530 out:
531 	bdput(bdev);
532 	return r;
533 }
534 
535 static void start_io_acct(struct dm_io *io);
536 
537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
538 {
539 	struct dm_io *io;
540 	struct dm_target_io *tio;
541 	struct bio *clone;
542 
543 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
544 	if (!clone)
545 		return NULL;
546 
547 	tio = container_of(clone, struct dm_target_io, clone);
548 	tio->inside_dm_io = true;
549 	tio->io = NULL;
550 
551 	io = container_of(tio, struct dm_io, tio);
552 	io->magic = DM_IO_MAGIC;
553 	io->status = 0;
554 	atomic_set(&io->io_count, 1);
555 	io->orig_bio = bio;
556 	io->md = md;
557 	spin_lock_init(&io->endio_lock);
558 
559 	start_io_acct(io);
560 
561 	return io;
562 }
563 
564 static void free_io(struct mapped_device *md, struct dm_io *io)
565 {
566 	bio_put(&io->tio.clone);
567 }
568 
569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
570 				      unsigned target_bio_nr, gfp_t gfp_mask)
571 {
572 	struct dm_target_io *tio;
573 
574 	if (!ci->io->tio.io) {
575 		/* the dm_target_io embedded in ci->io is available */
576 		tio = &ci->io->tio;
577 	} else {
578 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
579 		if (!clone)
580 			return NULL;
581 
582 		tio = container_of(clone, struct dm_target_io, clone);
583 		tio->inside_dm_io = false;
584 	}
585 
586 	tio->magic = DM_TIO_MAGIC;
587 	tio->io = ci->io;
588 	tio->ti = ti;
589 	tio->target_bio_nr = target_bio_nr;
590 
591 	return tio;
592 }
593 
594 static void free_tio(struct dm_target_io *tio)
595 {
596 	if (tio->inside_dm_io)
597 		return;
598 	bio_put(&tio->clone);
599 }
600 
601 int md_in_flight(struct mapped_device *md)
602 {
603 	return atomic_read(&md->pending[READ]) +
604 	       atomic_read(&md->pending[WRITE]);
605 }
606 
607 static void start_io_acct(struct dm_io *io)
608 {
609 	struct mapped_device *md = io->md;
610 	struct bio *bio = io->orig_bio;
611 	int rw = bio_data_dir(bio);
612 
613 	io->start_time = jiffies;
614 
615 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
616 
617 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
618 		   atomic_inc_return(&md->pending[rw]));
619 
620 	if (unlikely(dm_stats_used(&md->stats)))
621 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
622 				    bio->bi_iter.bi_sector, bio_sectors(bio),
623 				    false, 0, &io->stats_aux);
624 }
625 
626 static void end_io_acct(struct dm_io *io)
627 {
628 	struct mapped_device *md = io->md;
629 	struct bio *bio = io->orig_bio;
630 	unsigned long duration = jiffies - io->start_time;
631 	int pending;
632 	int rw = bio_data_dir(bio);
633 
634 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
635 
636 	if (unlikely(dm_stats_used(&md->stats)))
637 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
638 				    bio->bi_iter.bi_sector, bio_sectors(bio),
639 				    true, duration, &io->stats_aux);
640 
641 	/*
642 	 * After this is decremented the bio must not be touched if it is
643 	 * a flush.
644 	 */
645 	pending = atomic_dec_return(&md->pending[rw]);
646 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
647 	pending += atomic_read(&md->pending[rw^0x1]);
648 
649 	/* nudge anyone waiting on suspend queue */
650 	if (!pending)
651 		wake_up(&md->wait);
652 }
653 
654 /*
655  * Add the bio to the list of deferred io.
656  */
657 static void queue_io(struct mapped_device *md, struct bio *bio)
658 {
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&md->deferred_lock, flags);
662 	bio_list_add(&md->deferred, bio);
663 	spin_unlock_irqrestore(&md->deferred_lock, flags);
664 	queue_work(md->wq, &md->work);
665 }
666 
667 /*
668  * Everyone (including functions in this file), should use this
669  * function to access the md->map field, and make sure they call
670  * dm_put_live_table() when finished.
671  */
672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
673 {
674 	*srcu_idx = srcu_read_lock(&md->io_barrier);
675 
676 	return srcu_dereference(md->map, &md->io_barrier);
677 }
678 
679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
680 {
681 	srcu_read_unlock(&md->io_barrier, srcu_idx);
682 }
683 
684 void dm_sync_table(struct mapped_device *md)
685 {
686 	synchronize_srcu(&md->io_barrier);
687 	synchronize_rcu_expedited();
688 }
689 
690 /*
691  * A fast alternative to dm_get_live_table/dm_put_live_table.
692  * The caller must not block between these two functions.
693  */
694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
695 {
696 	rcu_read_lock();
697 	return rcu_dereference(md->map);
698 }
699 
700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
701 {
702 	rcu_read_unlock();
703 }
704 
705 /*
706  * Open a table device so we can use it as a map destination.
707  */
708 static int open_table_device(struct table_device *td, dev_t dev,
709 			     struct mapped_device *md)
710 {
711 	static char *_claim_ptr = "I belong to device-mapper";
712 	struct block_device *bdev;
713 
714 	int r;
715 
716 	BUG_ON(td->dm_dev.bdev);
717 
718 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
719 	if (IS_ERR(bdev))
720 		return PTR_ERR(bdev);
721 
722 	r = bd_link_disk_holder(bdev, dm_disk(md));
723 	if (r) {
724 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 		return r;
726 	}
727 
728 	td->dm_dev.bdev = bdev;
729 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 	return 0;
731 }
732 
733 /*
734  * Close a table device that we've been using.
735  */
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
737 {
738 	if (!td->dm_dev.bdev)
739 		return;
740 
741 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 	put_dax(td->dm_dev.dax_dev);
744 	td->dm_dev.bdev = NULL;
745 	td->dm_dev.dax_dev = NULL;
746 }
747 
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 					      fmode_t mode) {
750 	struct table_device *td;
751 
752 	list_for_each_entry(td, l, list)
753 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 			return td;
755 
756 	return NULL;
757 }
758 
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 			struct dm_dev **result) {
761 	int r;
762 	struct table_device *td;
763 
764 	mutex_lock(&md->table_devices_lock);
765 	td = find_table_device(&md->table_devices, dev, mode);
766 	if (!td) {
767 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 		if (!td) {
769 			mutex_unlock(&md->table_devices_lock);
770 			return -ENOMEM;
771 		}
772 
773 		td->dm_dev.mode = mode;
774 		td->dm_dev.bdev = NULL;
775 
776 		if ((r = open_table_device(td, dev, md))) {
777 			mutex_unlock(&md->table_devices_lock);
778 			kfree(td);
779 			return r;
780 		}
781 
782 		format_dev_t(td->dm_dev.name, dev);
783 
784 		refcount_set(&td->count, 1);
785 		list_add(&td->list, &md->table_devices);
786 	} else {
787 		refcount_inc(&td->count);
788 	}
789 	mutex_unlock(&md->table_devices_lock);
790 
791 	*result = &td->dm_dev;
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
795 
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
797 {
798 	struct table_device *td = container_of(d, struct table_device, dm_dev);
799 
800 	mutex_lock(&md->table_devices_lock);
801 	if (refcount_dec_and_test(&td->count)) {
802 		close_table_device(td, md);
803 		list_del(&td->list);
804 		kfree(td);
805 	}
806 	mutex_unlock(&md->table_devices_lock);
807 }
808 EXPORT_SYMBOL(dm_put_table_device);
809 
810 static void free_table_devices(struct list_head *devices)
811 {
812 	struct list_head *tmp, *next;
813 
814 	list_for_each_safe(tmp, next, devices) {
815 		struct table_device *td = list_entry(tmp, struct table_device, list);
816 
817 		DMWARN("dm_destroy: %s still exists with %d references",
818 		       td->dm_dev.name, refcount_read(&td->count));
819 		kfree(td);
820 	}
821 }
822 
823 /*
824  * Get the geometry associated with a dm device
825  */
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
827 {
828 	*geo = md->geometry;
829 
830 	return 0;
831 }
832 
833 /*
834  * Set the geometry of a device.
835  */
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
837 {
838 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
839 
840 	if (geo->start > sz) {
841 		DMWARN("Start sector is beyond the geometry limits.");
842 		return -EINVAL;
843 	}
844 
845 	md->geometry = *geo;
846 
847 	return 0;
848 }
849 
850 static int __noflush_suspending(struct mapped_device *md)
851 {
852 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
853 }
854 
855 /*
856  * Decrements the number of outstanding ios that a bio has been
857  * cloned into, completing the original io if necc.
858  */
859 static void dec_pending(struct dm_io *io, blk_status_t error)
860 {
861 	unsigned long flags;
862 	blk_status_t io_error;
863 	struct bio *bio;
864 	struct mapped_device *md = io->md;
865 
866 	/* Push-back supersedes any I/O errors */
867 	if (unlikely(error)) {
868 		spin_lock_irqsave(&io->endio_lock, flags);
869 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 			io->status = error;
871 		spin_unlock_irqrestore(&io->endio_lock, flags);
872 	}
873 
874 	if (atomic_dec_and_test(&io->io_count)) {
875 		if (io->status == BLK_STS_DM_REQUEUE) {
876 			/*
877 			 * Target requested pushing back the I/O.
878 			 */
879 			spin_lock_irqsave(&md->deferred_lock, flags);
880 			if (__noflush_suspending(md))
881 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 				bio_list_add_head(&md->deferred, io->orig_bio);
883 			else
884 				/* noflush suspend was interrupted. */
885 				io->status = BLK_STS_IOERR;
886 			spin_unlock_irqrestore(&md->deferred_lock, flags);
887 		}
888 
889 		io_error = io->status;
890 		bio = io->orig_bio;
891 		end_io_acct(io);
892 		free_io(md, io);
893 
894 		if (io_error == BLK_STS_DM_REQUEUE)
895 			return;
896 
897 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
898 			/*
899 			 * Preflush done for flush with data, reissue
900 			 * without REQ_PREFLUSH.
901 			 */
902 			bio->bi_opf &= ~REQ_PREFLUSH;
903 			queue_io(md, bio);
904 		} else {
905 			/* done with normal IO or empty flush */
906 			bio->bi_status = io_error;
907 			bio_endio(bio);
908 		}
909 	}
910 }
911 
912 void disable_write_same(struct mapped_device *md)
913 {
914 	struct queue_limits *limits = dm_get_queue_limits(md);
915 
916 	/* device doesn't really support WRITE SAME, disable it */
917 	limits->max_write_same_sectors = 0;
918 }
919 
920 void disable_write_zeroes(struct mapped_device *md)
921 {
922 	struct queue_limits *limits = dm_get_queue_limits(md);
923 
924 	/* device doesn't really support WRITE ZEROES, disable it */
925 	limits->max_write_zeroes_sectors = 0;
926 }
927 
928 static void clone_endio(struct bio *bio)
929 {
930 	blk_status_t error = bio->bi_status;
931 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
932 	struct dm_io *io = tio->io;
933 	struct mapped_device *md = tio->io->md;
934 	dm_endio_fn endio = tio->ti->type->end_io;
935 
936 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
937 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
938 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
939 			disable_write_same(md);
940 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
941 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
942 			disable_write_zeroes(md);
943 	}
944 
945 	if (endio) {
946 		int r = endio(tio->ti, bio, &error);
947 		switch (r) {
948 		case DM_ENDIO_REQUEUE:
949 			error = BLK_STS_DM_REQUEUE;
950 			/*FALLTHRU*/
951 		case DM_ENDIO_DONE:
952 			break;
953 		case DM_ENDIO_INCOMPLETE:
954 			/* The target will handle the io */
955 			return;
956 		default:
957 			DMWARN("unimplemented target endio return value: %d", r);
958 			BUG();
959 		}
960 	}
961 
962 	free_tio(tio);
963 	dec_pending(io, error);
964 }
965 
966 /*
967  * Return maximum size of I/O possible at the supplied sector up to the current
968  * target boundary.
969  */
970 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
971 {
972 	sector_t target_offset = dm_target_offset(ti, sector);
973 
974 	return ti->len - target_offset;
975 }
976 
977 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
978 {
979 	sector_t len = max_io_len_target_boundary(sector, ti);
980 	sector_t offset, max_len;
981 
982 	/*
983 	 * Does the target need to split even further?
984 	 */
985 	if (ti->max_io_len) {
986 		offset = dm_target_offset(ti, sector);
987 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
988 			max_len = sector_div(offset, ti->max_io_len);
989 		else
990 			max_len = offset & (ti->max_io_len - 1);
991 		max_len = ti->max_io_len - max_len;
992 
993 		if (len > max_len)
994 			len = max_len;
995 	}
996 
997 	return len;
998 }
999 
1000 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1001 {
1002 	if (len > UINT_MAX) {
1003 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1004 		      (unsigned long long)len, UINT_MAX);
1005 		ti->error = "Maximum size of target IO is too large";
1006 		return -EINVAL;
1007 	}
1008 
1009 	/*
1010 	 * BIO based queue uses its own splitting. When multipage bvecs
1011 	 * is switched on, size of the incoming bio may be too big to
1012 	 * be handled in some targets, such as crypt.
1013 	 *
1014 	 * When these targets are ready for the big bio, we can remove
1015 	 * the limit.
1016 	 */
1017 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1022 
1023 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1024 		sector_t sector, int *srcu_idx)
1025 {
1026 	struct dm_table *map;
1027 	struct dm_target *ti;
1028 
1029 	map = dm_get_live_table(md, srcu_idx);
1030 	if (!map)
1031 		return NULL;
1032 
1033 	ti = dm_table_find_target(map, sector);
1034 	if (!dm_target_is_valid(ti))
1035 		return NULL;
1036 
1037 	return ti;
1038 }
1039 
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 		long nr_pages, void **kaddr, pfn_t *pfn)
1042 {
1043 	struct mapped_device *md = dax_get_private(dax_dev);
1044 	sector_t sector = pgoff * PAGE_SECTORS;
1045 	struct dm_target *ti;
1046 	long len, ret = -EIO;
1047 	int srcu_idx;
1048 
1049 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050 
1051 	if (!ti)
1052 		goto out;
1053 	if (!ti->type->direct_access)
1054 		goto out;
1055 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 	if (len < 1)
1057 		goto out;
1058 	nr_pages = min(len, nr_pages);
1059 	if (ti->type->direct_access)
1060 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061 
1062  out:
1063 	dm_put_live_table(md, srcu_idx);
1064 
1065 	return ret;
1066 }
1067 
1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 		void *addr, size_t bytes, struct iov_iter *i)
1070 {
1071 	struct mapped_device *md = dax_get_private(dax_dev);
1072 	sector_t sector = pgoff * PAGE_SECTORS;
1073 	struct dm_target *ti;
1074 	long ret = 0;
1075 	int srcu_idx;
1076 
1077 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078 
1079 	if (!ti)
1080 		goto out;
1081 	if (!ti->type->dax_copy_from_iter) {
1082 		ret = copy_from_iter(addr, bytes, i);
1083 		goto out;
1084 	}
1085 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086  out:
1087 	dm_put_live_table(md, srcu_idx);
1088 
1089 	return ret;
1090 }
1091 
1092 /*
1093  * A target may call dm_accept_partial_bio only from the map routine.  It is
1094  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1095  *
1096  * dm_accept_partial_bio informs the dm that the target only wants to process
1097  * additional n_sectors sectors of the bio and the rest of the data should be
1098  * sent in a next bio.
1099  *
1100  * A diagram that explains the arithmetics:
1101  * +--------------------+---------------+-------+
1102  * |         1          |       2       |   3   |
1103  * +--------------------+---------------+-------+
1104  *
1105  * <-------------- *tio->len_ptr --------------->
1106  *                      <------- bi_size ------->
1107  *                      <-- n_sectors -->
1108  *
1109  * Region 1 was already iterated over with bio_advance or similar function.
1110  *	(it may be empty if the target doesn't use bio_advance)
1111  * Region 2 is the remaining bio size that the target wants to process.
1112  *	(it may be empty if region 1 is non-empty, although there is no reason
1113  *	 to make it empty)
1114  * The target requires that region 3 is to be sent in the next bio.
1115  *
1116  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117  * the partially processed part (the sum of regions 1+2) must be the same for all
1118  * copies of the bio.
1119  */
1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121 {
1122 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125 	BUG_ON(bi_size > *tio->len_ptr);
1126 	BUG_ON(n_sectors > bi_size);
1127 	*tio->len_ptr -= bi_size - n_sectors;
1128 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129 }
1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131 
1132 /*
1133  * The zone descriptors obtained with a zone report indicate
1134  * zone positions within the target device. The zone descriptors
1135  * must be remapped to match their position within the dm device.
1136  * A target may call dm_remap_zone_report after completion of a
1137  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138  * from the target device mapping to the dm device.
1139  */
1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141 {
1142 #ifdef CONFIG_BLK_DEV_ZONED
1143 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144 	struct bio *report_bio = tio->io->orig_bio;
1145 	struct blk_zone_report_hdr *hdr = NULL;
1146 	struct blk_zone *zone;
1147 	unsigned int nr_rep = 0;
1148 	unsigned int ofst;
1149 	struct bio_vec bvec;
1150 	struct bvec_iter iter;
1151 	void *addr;
1152 
1153 	if (bio->bi_status)
1154 		return;
1155 
1156 	/*
1157 	 * Remap the start sector of the reported zones. For sequential zones,
1158 	 * also remap the write pointer position.
1159 	 */
1160 	bio_for_each_segment(bvec, report_bio, iter) {
1161 		addr = kmap_atomic(bvec.bv_page);
1162 
1163 		/* Remember the report header in the first page */
1164 		if (!hdr) {
1165 			hdr = addr;
1166 			ofst = sizeof(struct blk_zone_report_hdr);
1167 		} else
1168 			ofst = 0;
1169 
1170 		/* Set zones start sector */
1171 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172 			zone = addr + ofst;
1173 			if (zone->start >= start + ti->len) {
1174 				hdr->nr_zones = 0;
1175 				break;
1176 			}
1177 			zone->start = zone->start + ti->begin - start;
1178 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179 				if (zone->cond == BLK_ZONE_COND_FULL)
1180 					zone->wp = zone->start + zone->len;
1181 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182 					zone->wp = zone->start;
1183 				else
1184 					zone->wp = zone->wp + ti->begin - start;
1185 			}
1186 			ofst += sizeof(struct blk_zone);
1187 			hdr->nr_zones--;
1188 			nr_rep++;
1189 		}
1190 
1191 		if (addr != hdr)
1192 			kunmap_atomic(addr);
1193 
1194 		if (!hdr->nr_zones)
1195 			break;
1196 	}
1197 
1198 	if (hdr) {
1199 		hdr->nr_zones = nr_rep;
1200 		kunmap_atomic(hdr);
1201 	}
1202 
1203 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204 
1205 #else /* !CONFIG_BLK_DEV_ZONED */
1206 	bio->bi_status = BLK_STS_NOTSUPP;
1207 #endif
1208 }
1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210 
1211 static blk_qc_t __map_bio(struct dm_target_io *tio)
1212 {
1213 	int r;
1214 	sector_t sector;
1215 	struct bio *clone = &tio->clone;
1216 	struct dm_io *io = tio->io;
1217 	struct mapped_device *md = io->md;
1218 	struct dm_target *ti = tio->ti;
1219 	blk_qc_t ret = BLK_QC_T_NONE;
1220 
1221 	clone->bi_end_io = clone_endio;
1222 
1223 	/*
1224 	 * Map the clone.  If r == 0 we don't need to do
1225 	 * anything, the target has assumed ownership of
1226 	 * this io.
1227 	 */
1228 	atomic_inc(&io->io_count);
1229 	sector = clone->bi_iter.bi_sector;
1230 
1231 	r = ti->type->map(ti, clone);
1232 	switch (r) {
1233 	case DM_MAPIO_SUBMITTED:
1234 		break;
1235 	case DM_MAPIO_REMAPPED:
1236 		/* the bio has been remapped so dispatch it */
1237 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238 				      bio_dev(io->orig_bio), sector);
1239 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240 			ret = direct_make_request(clone);
1241 		else
1242 			ret = generic_make_request(clone);
1243 		break;
1244 	case DM_MAPIO_KILL:
1245 		free_tio(tio);
1246 		dec_pending(io, BLK_STS_IOERR);
1247 		break;
1248 	case DM_MAPIO_REQUEUE:
1249 		free_tio(tio);
1250 		dec_pending(io, BLK_STS_DM_REQUEUE);
1251 		break;
1252 	default:
1253 		DMWARN("unimplemented target map return value: %d", r);
1254 		BUG();
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261 {
1262 	bio->bi_iter.bi_sector = sector;
1263 	bio->bi_iter.bi_size = to_bytes(len);
1264 }
1265 
1266 /*
1267  * Creates a bio that consists of range of complete bvecs.
1268  */
1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270 		     sector_t sector, unsigned len)
1271 {
1272 	struct bio *clone = &tio->clone;
1273 
1274 	__bio_clone_fast(clone, bio);
1275 
1276 	if (unlikely(bio_integrity(bio) != NULL)) {
1277 		int r;
1278 
1279 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280 			     !dm_target_passes_integrity(tio->ti->type))) {
1281 			DMWARN("%s: the target %s doesn't support integrity data.",
1282 				dm_device_name(tio->io->md),
1283 				tio->ti->type->name);
1284 			return -EIO;
1285 		}
1286 
1287 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288 		if (r < 0)
1289 			return r;
1290 	}
1291 
1292 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294 	clone->bi_iter.bi_size = to_bytes(len);
1295 
1296 	if (unlikely(bio_integrity(bio) != NULL))
1297 		bio_integrity_trim(clone);
1298 
1299 	return 0;
1300 }
1301 
1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303 				struct dm_target *ti, unsigned num_bios)
1304 {
1305 	struct dm_target_io *tio;
1306 	int try;
1307 
1308 	if (!num_bios)
1309 		return;
1310 
1311 	if (num_bios == 1) {
1312 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313 		bio_list_add(blist, &tio->clone);
1314 		return;
1315 	}
1316 
1317 	for (try = 0; try < 2; try++) {
1318 		int bio_nr;
1319 		struct bio *bio;
1320 
1321 		if (try)
1322 			mutex_lock(&ci->io->md->table_devices_lock);
1323 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325 			if (!tio)
1326 				break;
1327 
1328 			bio_list_add(blist, &tio->clone);
1329 		}
1330 		if (try)
1331 			mutex_unlock(&ci->io->md->table_devices_lock);
1332 		if (bio_nr == num_bios)
1333 			return;
1334 
1335 		while ((bio = bio_list_pop(blist))) {
1336 			tio = container_of(bio, struct dm_target_io, clone);
1337 			free_tio(tio);
1338 		}
1339 	}
1340 }
1341 
1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343 					   struct dm_target_io *tio, unsigned *len)
1344 {
1345 	struct bio *clone = &tio->clone;
1346 
1347 	tio->len_ptr = len;
1348 
1349 	__bio_clone_fast(clone, ci->bio);
1350 	if (len)
1351 		bio_setup_sector(clone, ci->sector, *len);
1352 
1353 	return __map_bio(tio);
1354 }
1355 
1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357 				  unsigned num_bios, unsigned *len)
1358 {
1359 	struct bio_list blist = BIO_EMPTY_LIST;
1360 	struct bio *bio;
1361 	struct dm_target_io *tio;
1362 
1363 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1364 
1365 	while ((bio = bio_list_pop(&blist))) {
1366 		tio = container_of(bio, struct dm_target_io, clone);
1367 		(void) __clone_and_map_simple_bio(ci, tio, len);
1368 	}
1369 }
1370 
1371 static int __send_empty_flush(struct clone_info *ci)
1372 {
1373 	unsigned target_nr = 0;
1374 	struct dm_target *ti;
1375 
1376 	BUG_ON(bio_has_data(ci->bio));
1377 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379 
1380 	return 0;
1381 }
1382 
1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384 				    sector_t sector, unsigned *len)
1385 {
1386 	struct bio *bio = ci->bio;
1387 	struct dm_target_io *tio;
1388 	int r;
1389 
1390 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391 	tio->len_ptr = len;
1392 	r = clone_bio(tio, bio, sector, *len);
1393 	if (r < 0) {
1394 		free_tio(tio);
1395 		return r;
1396 	}
1397 	(void) __map_bio(tio);
1398 
1399 	return 0;
1400 }
1401 
1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1403 
1404 static unsigned get_num_discard_bios(struct dm_target *ti)
1405 {
1406 	return ti->num_discard_bios;
1407 }
1408 
1409 static unsigned get_num_write_same_bios(struct dm_target *ti)
1410 {
1411 	return ti->num_write_same_bios;
1412 }
1413 
1414 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1415 {
1416 	return ti->num_write_zeroes_bios;
1417 }
1418 
1419 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1420 
1421 static bool is_split_required_for_discard(struct dm_target *ti)
1422 {
1423 	return ti->split_discard_bios;
1424 }
1425 
1426 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1427 				       get_num_bios_fn get_num_bios,
1428 				       is_split_required_fn is_split_required)
1429 {
1430 	unsigned len;
1431 	unsigned num_bios;
1432 
1433 	/*
1434 	 * Even though the device advertised support for this type of
1435 	 * request, that does not mean every target supports it, and
1436 	 * reconfiguration might also have changed that since the
1437 	 * check was performed.
1438 	 */
1439 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1440 	if (!num_bios)
1441 		return -EOPNOTSUPP;
1442 
1443 	if (is_split_required && !is_split_required(ti))
1444 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1445 	else
1446 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1447 
1448 	__send_duplicate_bios(ci, ti, num_bios, &len);
1449 
1450 	ci->sector += len;
1451 	ci->sector_count -= len;
1452 
1453 	return 0;
1454 }
1455 
1456 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1457 {
1458 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1459 					   is_split_required_for_discard);
1460 }
1461 
1462 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1463 {
1464 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1465 }
1466 
1467 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1468 {
1469 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1470 }
1471 
1472 /*
1473  * Select the correct strategy for processing a non-flush bio.
1474  */
1475 static int __split_and_process_non_flush(struct clone_info *ci)
1476 {
1477 	struct bio *bio = ci->bio;
1478 	struct dm_target *ti;
1479 	unsigned len;
1480 	int r;
1481 
1482 	ti = dm_table_find_target(ci->map, ci->sector);
1483 	if (!dm_target_is_valid(ti))
1484 		return -EIO;
1485 
1486 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1487 		return __send_discard(ci, ti);
1488 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1489 		return __send_write_same(ci, ti);
1490 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1491 		return __send_write_zeroes(ci, ti);
1492 
1493 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1494 		len = ci->sector_count;
1495 	else
1496 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1497 			    ci->sector_count);
1498 
1499 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1500 	if (r < 0)
1501 		return r;
1502 
1503 	ci->sector += len;
1504 	ci->sector_count -= len;
1505 
1506 	return 0;
1507 }
1508 
1509 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1510 			    struct dm_table *map, struct bio *bio)
1511 {
1512 	ci->map = map;
1513 	ci->io = alloc_io(md, bio);
1514 	ci->sector = bio->bi_iter.bi_sector;
1515 }
1516 
1517 /*
1518  * Entry point to split a bio into clones and submit them to the targets.
1519  */
1520 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1521 					struct dm_table *map, struct bio *bio)
1522 {
1523 	struct clone_info ci;
1524 	blk_qc_t ret = BLK_QC_T_NONE;
1525 	int error = 0;
1526 
1527 	if (unlikely(!map)) {
1528 		bio_io_error(bio);
1529 		return ret;
1530 	}
1531 
1532 	init_clone_info(&ci, md, map, bio);
1533 
1534 	if (bio->bi_opf & REQ_PREFLUSH) {
1535 		ci.bio = &ci.io->md->flush_bio;
1536 		ci.sector_count = 0;
1537 		error = __send_empty_flush(&ci);
1538 		/* dec_pending submits any data associated with flush */
1539 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1540 		ci.bio = bio;
1541 		ci.sector_count = 0;
1542 		error = __split_and_process_non_flush(&ci);
1543 	} else {
1544 		ci.bio = bio;
1545 		ci.sector_count = bio_sectors(bio);
1546 		while (ci.sector_count && !error) {
1547 			error = __split_and_process_non_flush(&ci);
1548 			if (current->bio_list && ci.sector_count && !error) {
1549 				/*
1550 				 * Remainder must be passed to generic_make_request()
1551 				 * so that it gets handled *after* bios already submitted
1552 				 * have been completely processed.
1553 				 * We take a clone of the original to store in
1554 				 * ci.io->orig_bio to be used by end_io_acct() and
1555 				 * for dec_pending to use for completion handling.
1556 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1557 				 * the usage of io->orig_bio in dm_remap_zone_report()
1558 				 * won't be affected by this reassignment.
1559 				 */
1560 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1561 								 md->queue->bio_split);
1562 				ci.io->orig_bio = b;
1563 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1564 				bio_chain(b, bio);
1565 				ret = generic_make_request(bio);
1566 				break;
1567 			}
1568 		}
1569 	}
1570 
1571 	/* drop the extra reference count */
1572 	dec_pending(ci.io, errno_to_blk_status(error));
1573 	return ret;
1574 }
1575 
1576 /*
1577  * Optimized variant of __split_and_process_bio that leverages the
1578  * fact that targets that use it do _not_ have a need to split bios.
1579  */
1580 static blk_qc_t __process_bio(struct mapped_device *md,
1581 			      struct dm_table *map, struct bio *bio)
1582 {
1583 	struct clone_info ci;
1584 	blk_qc_t ret = BLK_QC_T_NONE;
1585 	int error = 0;
1586 
1587 	if (unlikely(!map)) {
1588 		bio_io_error(bio);
1589 		return ret;
1590 	}
1591 
1592 	init_clone_info(&ci, md, map, bio);
1593 
1594 	if (bio->bi_opf & REQ_PREFLUSH) {
1595 		ci.bio = &ci.io->md->flush_bio;
1596 		ci.sector_count = 0;
1597 		error = __send_empty_flush(&ci);
1598 		/* dec_pending submits any data associated with flush */
1599 	} else {
1600 		struct dm_target *ti = md->immutable_target;
1601 		struct dm_target_io *tio;
1602 
1603 		/*
1604 		 * Defend against IO still getting in during teardown
1605 		 * - as was seen for a time with nvme-fcloop
1606 		 */
1607 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1608 			error = -EIO;
1609 			goto out;
1610 		}
1611 
1612 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1613 		ci.bio = bio;
1614 		ci.sector_count = bio_sectors(bio);
1615 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1616 	}
1617 out:
1618 	/* drop the extra reference count */
1619 	dec_pending(ci.io, errno_to_blk_status(error));
1620 	return ret;
1621 }
1622 
1623 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1624 
1625 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1626 				  process_bio_fn process_bio)
1627 {
1628 	struct mapped_device *md = q->queuedata;
1629 	blk_qc_t ret = BLK_QC_T_NONE;
1630 	int srcu_idx;
1631 	struct dm_table *map;
1632 
1633 	map = dm_get_live_table(md, &srcu_idx);
1634 
1635 	/* if we're suspended, we have to queue this io for later */
1636 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1637 		dm_put_live_table(md, srcu_idx);
1638 
1639 		if (!(bio->bi_opf & REQ_RAHEAD))
1640 			queue_io(md, bio);
1641 		else
1642 			bio_io_error(bio);
1643 		return ret;
1644 	}
1645 
1646 	ret = process_bio(md, map, bio);
1647 
1648 	dm_put_live_table(md, srcu_idx);
1649 	return ret;
1650 }
1651 
1652 /*
1653  * The request function that remaps the bio to one target and
1654  * splits off any remainder.
1655  */
1656 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1657 {
1658 	return __dm_make_request(q, bio, __split_and_process_bio);
1659 }
1660 
1661 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1662 {
1663 	return __dm_make_request(q, bio, __process_bio);
1664 }
1665 
1666 static int dm_any_congested(void *congested_data, int bdi_bits)
1667 {
1668 	int r = bdi_bits;
1669 	struct mapped_device *md = congested_data;
1670 	struct dm_table *map;
1671 
1672 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1673 		if (dm_request_based(md)) {
1674 			/*
1675 			 * With request-based DM we only need to check the
1676 			 * top-level queue for congestion.
1677 			 */
1678 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1679 		} else {
1680 			map = dm_get_live_table_fast(md);
1681 			if (map)
1682 				r = dm_table_any_congested(map, bdi_bits);
1683 			dm_put_live_table_fast(md);
1684 		}
1685 	}
1686 
1687 	return r;
1688 }
1689 
1690 /*-----------------------------------------------------------------
1691  * An IDR is used to keep track of allocated minor numbers.
1692  *---------------------------------------------------------------*/
1693 static void free_minor(int minor)
1694 {
1695 	spin_lock(&_minor_lock);
1696 	idr_remove(&_minor_idr, minor);
1697 	spin_unlock(&_minor_lock);
1698 }
1699 
1700 /*
1701  * See if the device with a specific minor # is free.
1702  */
1703 static int specific_minor(int minor)
1704 {
1705 	int r;
1706 
1707 	if (minor >= (1 << MINORBITS))
1708 		return -EINVAL;
1709 
1710 	idr_preload(GFP_KERNEL);
1711 	spin_lock(&_minor_lock);
1712 
1713 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1714 
1715 	spin_unlock(&_minor_lock);
1716 	idr_preload_end();
1717 	if (r < 0)
1718 		return r == -ENOSPC ? -EBUSY : r;
1719 	return 0;
1720 }
1721 
1722 static int next_free_minor(int *minor)
1723 {
1724 	int r;
1725 
1726 	idr_preload(GFP_KERNEL);
1727 	spin_lock(&_minor_lock);
1728 
1729 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1730 
1731 	spin_unlock(&_minor_lock);
1732 	idr_preload_end();
1733 	if (r < 0)
1734 		return r;
1735 	*minor = r;
1736 	return 0;
1737 }
1738 
1739 static const struct block_device_operations dm_blk_dops;
1740 static const struct dax_operations dm_dax_ops;
1741 
1742 static void dm_wq_work(struct work_struct *work);
1743 
1744 static void dm_init_normal_md_queue(struct mapped_device *md)
1745 {
1746 	md->use_blk_mq = false;
1747 
1748 	/*
1749 	 * Initialize aspects of queue that aren't relevant for blk-mq
1750 	 */
1751 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1752 }
1753 
1754 static void cleanup_mapped_device(struct mapped_device *md)
1755 {
1756 	if (md->wq)
1757 		destroy_workqueue(md->wq);
1758 	if (md->kworker_task)
1759 		kthread_stop(md->kworker_task);
1760 	if (md->bs)
1761 		bioset_free(md->bs);
1762 	if (md->io_bs)
1763 		bioset_free(md->io_bs);
1764 
1765 	if (md->dax_dev) {
1766 		kill_dax(md->dax_dev);
1767 		put_dax(md->dax_dev);
1768 		md->dax_dev = NULL;
1769 	}
1770 
1771 	if (md->disk) {
1772 		spin_lock(&_minor_lock);
1773 		md->disk->private_data = NULL;
1774 		spin_unlock(&_minor_lock);
1775 		del_gendisk(md->disk);
1776 		put_disk(md->disk);
1777 	}
1778 
1779 	if (md->queue)
1780 		blk_cleanup_queue(md->queue);
1781 
1782 	cleanup_srcu_struct(&md->io_barrier);
1783 
1784 	if (md->bdev) {
1785 		bdput(md->bdev);
1786 		md->bdev = NULL;
1787 	}
1788 
1789 	mutex_destroy(&md->suspend_lock);
1790 	mutex_destroy(&md->type_lock);
1791 	mutex_destroy(&md->table_devices_lock);
1792 
1793 	dm_mq_cleanup_mapped_device(md);
1794 }
1795 
1796 /*
1797  * Allocate and initialise a blank device with a given minor.
1798  */
1799 static struct mapped_device *alloc_dev(int minor)
1800 {
1801 	int r, numa_node_id = dm_get_numa_node();
1802 	struct dax_device *dax_dev;
1803 	struct mapped_device *md;
1804 	void *old_md;
1805 
1806 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1807 	if (!md) {
1808 		DMWARN("unable to allocate device, out of memory.");
1809 		return NULL;
1810 	}
1811 
1812 	if (!try_module_get(THIS_MODULE))
1813 		goto bad_module_get;
1814 
1815 	/* get a minor number for the dev */
1816 	if (minor == DM_ANY_MINOR)
1817 		r = next_free_minor(&minor);
1818 	else
1819 		r = specific_minor(minor);
1820 	if (r < 0)
1821 		goto bad_minor;
1822 
1823 	r = init_srcu_struct(&md->io_barrier);
1824 	if (r < 0)
1825 		goto bad_io_barrier;
1826 
1827 	md->numa_node_id = numa_node_id;
1828 	md->use_blk_mq = dm_use_blk_mq_default();
1829 	md->init_tio_pdu = false;
1830 	md->type = DM_TYPE_NONE;
1831 	mutex_init(&md->suspend_lock);
1832 	mutex_init(&md->type_lock);
1833 	mutex_init(&md->table_devices_lock);
1834 	spin_lock_init(&md->deferred_lock);
1835 	atomic_set(&md->holders, 1);
1836 	atomic_set(&md->open_count, 0);
1837 	atomic_set(&md->event_nr, 0);
1838 	atomic_set(&md->uevent_seq, 0);
1839 	INIT_LIST_HEAD(&md->uevent_list);
1840 	INIT_LIST_HEAD(&md->table_devices);
1841 	spin_lock_init(&md->uevent_lock);
1842 
1843 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1844 	if (!md->queue)
1845 		goto bad;
1846 	md->queue->queuedata = md;
1847 	md->queue->backing_dev_info->congested_data = md;
1848 
1849 	md->disk = alloc_disk_node(1, md->numa_node_id);
1850 	if (!md->disk)
1851 		goto bad;
1852 
1853 	atomic_set(&md->pending[0], 0);
1854 	atomic_set(&md->pending[1], 0);
1855 	init_waitqueue_head(&md->wait);
1856 	INIT_WORK(&md->work, dm_wq_work);
1857 	init_waitqueue_head(&md->eventq);
1858 	init_completion(&md->kobj_holder.completion);
1859 	md->kworker_task = NULL;
1860 
1861 	md->disk->major = _major;
1862 	md->disk->first_minor = minor;
1863 	md->disk->fops = &dm_blk_dops;
1864 	md->disk->queue = md->queue;
1865 	md->disk->private_data = md;
1866 	sprintf(md->disk->disk_name, "dm-%d", minor);
1867 
1868 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1869 	if (!dax_dev)
1870 		goto bad;
1871 	md->dax_dev = dax_dev;
1872 
1873 	add_disk_no_queue_reg(md->disk);
1874 	format_dev_t(md->name, MKDEV(_major, minor));
1875 
1876 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1877 	if (!md->wq)
1878 		goto bad;
1879 
1880 	md->bdev = bdget_disk(md->disk, 0);
1881 	if (!md->bdev)
1882 		goto bad;
1883 
1884 	bio_init(&md->flush_bio, NULL, 0);
1885 	bio_set_dev(&md->flush_bio, md->bdev);
1886 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1887 
1888 	dm_stats_init(&md->stats);
1889 
1890 	/* Populate the mapping, nobody knows we exist yet */
1891 	spin_lock(&_minor_lock);
1892 	old_md = idr_replace(&_minor_idr, md, minor);
1893 	spin_unlock(&_minor_lock);
1894 
1895 	BUG_ON(old_md != MINOR_ALLOCED);
1896 
1897 	return md;
1898 
1899 bad:
1900 	cleanup_mapped_device(md);
1901 bad_io_barrier:
1902 	free_minor(minor);
1903 bad_minor:
1904 	module_put(THIS_MODULE);
1905 bad_module_get:
1906 	kvfree(md);
1907 	return NULL;
1908 }
1909 
1910 static void unlock_fs(struct mapped_device *md);
1911 
1912 static void free_dev(struct mapped_device *md)
1913 {
1914 	int minor = MINOR(disk_devt(md->disk));
1915 
1916 	unlock_fs(md);
1917 
1918 	cleanup_mapped_device(md);
1919 
1920 	free_table_devices(&md->table_devices);
1921 	dm_stats_cleanup(&md->stats);
1922 	free_minor(minor);
1923 
1924 	module_put(THIS_MODULE);
1925 	kvfree(md);
1926 }
1927 
1928 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1929 {
1930 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1931 
1932 	if (dm_table_bio_based(t)) {
1933 		/*
1934 		 * The md may already have mempools that need changing.
1935 		 * If so, reload bioset because front_pad may have changed
1936 		 * because a different table was loaded.
1937 		 */
1938 		if (md->bs) {
1939 			bioset_free(md->bs);
1940 			md->bs = NULL;
1941 		}
1942 		if (md->io_bs) {
1943 			bioset_free(md->io_bs);
1944 			md->io_bs = NULL;
1945 		}
1946 
1947 	} else if (md->bs) {
1948 		/*
1949 		 * There's no need to reload with request-based dm
1950 		 * because the size of front_pad doesn't change.
1951 		 * Note for future: If you are to reload bioset,
1952 		 * prep-ed requests in the queue may refer
1953 		 * to bio from the old bioset, so you must walk
1954 		 * through the queue to unprep.
1955 		 */
1956 		goto out;
1957 	}
1958 
1959 	BUG_ON(!p || md->bs || md->io_bs);
1960 
1961 	md->bs = p->bs;
1962 	p->bs = NULL;
1963 	md->io_bs = p->io_bs;
1964 	p->io_bs = NULL;
1965 out:
1966 	/* mempool bind completed, no longer need any mempools in the table */
1967 	dm_table_free_md_mempools(t);
1968 }
1969 
1970 /*
1971  * Bind a table to the device.
1972  */
1973 static void event_callback(void *context)
1974 {
1975 	unsigned long flags;
1976 	LIST_HEAD(uevents);
1977 	struct mapped_device *md = (struct mapped_device *) context;
1978 
1979 	spin_lock_irqsave(&md->uevent_lock, flags);
1980 	list_splice_init(&md->uevent_list, &uevents);
1981 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1982 
1983 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1984 
1985 	atomic_inc(&md->event_nr);
1986 	wake_up(&md->eventq);
1987 	dm_issue_global_event();
1988 }
1989 
1990 /*
1991  * Protected by md->suspend_lock obtained by dm_swap_table().
1992  */
1993 static void __set_size(struct mapped_device *md, sector_t size)
1994 {
1995 	lockdep_assert_held(&md->suspend_lock);
1996 
1997 	set_capacity(md->disk, size);
1998 
1999 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2000 }
2001 
2002 /*
2003  * Returns old map, which caller must destroy.
2004  */
2005 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2006 			       struct queue_limits *limits)
2007 {
2008 	struct dm_table *old_map;
2009 	struct request_queue *q = md->queue;
2010 	bool request_based = dm_table_request_based(t);
2011 	sector_t size;
2012 
2013 	lockdep_assert_held(&md->suspend_lock);
2014 
2015 	size = dm_table_get_size(t);
2016 
2017 	/*
2018 	 * Wipe any geometry if the size of the table changed.
2019 	 */
2020 	if (size != dm_get_size(md))
2021 		memset(&md->geometry, 0, sizeof(md->geometry));
2022 
2023 	__set_size(md, size);
2024 
2025 	dm_table_event_callback(t, event_callback, md);
2026 
2027 	/*
2028 	 * The queue hasn't been stopped yet, if the old table type wasn't
2029 	 * for request-based during suspension.  So stop it to prevent
2030 	 * I/O mapping before resume.
2031 	 * This must be done before setting the queue restrictions,
2032 	 * because request-based dm may be run just after the setting.
2033 	 */
2034 	if (request_based)
2035 		dm_stop_queue(q);
2036 
2037 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2038 		/*
2039 		 * Leverage the fact that request-based DM targets and
2040 		 * NVMe bio based targets are immutable singletons
2041 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2042 		 *   and __process_bio.
2043 		 */
2044 		md->immutable_target = dm_table_get_immutable_target(t);
2045 	}
2046 
2047 	__bind_mempools(md, t);
2048 
2049 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2050 	rcu_assign_pointer(md->map, (void *)t);
2051 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2052 
2053 	dm_table_set_restrictions(t, q, limits);
2054 	if (old_map)
2055 		dm_sync_table(md);
2056 
2057 	return old_map;
2058 }
2059 
2060 /*
2061  * Returns unbound table for the caller to free.
2062  */
2063 static struct dm_table *__unbind(struct mapped_device *md)
2064 {
2065 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2066 
2067 	if (!map)
2068 		return NULL;
2069 
2070 	dm_table_event_callback(map, NULL, NULL);
2071 	RCU_INIT_POINTER(md->map, NULL);
2072 	dm_sync_table(md);
2073 
2074 	return map;
2075 }
2076 
2077 /*
2078  * Constructor for a new device.
2079  */
2080 int dm_create(int minor, struct mapped_device **result)
2081 {
2082 	int r;
2083 	struct mapped_device *md;
2084 
2085 	md = alloc_dev(minor);
2086 	if (!md)
2087 		return -ENXIO;
2088 
2089 	r = dm_sysfs_init(md);
2090 	if (r) {
2091 		free_dev(md);
2092 		return r;
2093 	}
2094 
2095 	*result = md;
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Functions to manage md->type.
2101  * All are required to hold md->type_lock.
2102  */
2103 void dm_lock_md_type(struct mapped_device *md)
2104 {
2105 	mutex_lock(&md->type_lock);
2106 }
2107 
2108 void dm_unlock_md_type(struct mapped_device *md)
2109 {
2110 	mutex_unlock(&md->type_lock);
2111 }
2112 
2113 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2114 {
2115 	BUG_ON(!mutex_is_locked(&md->type_lock));
2116 	md->type = type;
2117 }
2118 
2119 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2120 {
2121 	return md->type;
2122 }
2123 
2124 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2125 {
2126 	return md->immutable_target_type;
2127 }
2128 
2129 /*
2130  * The queue_limits are only valid as long as you have a reference
2131  * count on 'md'.
2132  */
2133 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2134 {
2135 	BUG_ON(!atomic_read(&md->holders));
2136 	return &md->queue->limits;
2137 }
2138 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2139 
2140 /*
2141  * Setup the DM device's queue based on md's type
2142  */
2143 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2144 {
2145 	int r;
2146 	struct queue_limits limits;
2147 	enum dm_queue_mode type = dm_get_md_type(md);
2148 
2149 	switch (type) {
2150 	case DM_TYPE_REQUEST_BASED:
2151 		dm_init_normal_md_queue(md);
2152 		r = dm_old_init_request_queue(md, t);
2153 		if (r) {
2154 			DMERR("Cannot initialize queue for request-based mapped device");
2155 			return r;
2156 		}
2157 		break;
2158 	case DM_TYPE_MQ_REQUEST_BASED:
2159 		r = dm_mq_init_request_queue(md, t);
2160 		if (r) {
2161 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2162 			return r;
2163 		}
2164 		break;
2165 	case DM_TYPE_BIO_BASED:
2166 	case DM_TYPE_DAX_BIO_BASED:
2167 		dm_init_normal_md_queue(md);
2168 		blk_queue_make_request(md->queue, dm_make_request);
2169 		break;
2170 	case DM_TYPE_NVME_BIO_BASED:
2171 		dm_init_normal_md_queue(md);
2172 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2173 		break;
2174 	case DM_TYPE_NONE:
2175 		WARN_ON_ONCE(true);
2176 		break;
2177 	}
2178 
2179 	r = dm_calculate_queue_limits(t, &limits);
2180 	if (r) {
2181 		DMERR("Cannot calculate initial queue limits");
2182 		return r;
2183 	}
2184 	dm_table_set_restrictions(t, md->queue, &limits);
2185 	blk_register_queue(md->disk);
2186 
2187 	return 0;
2188 }
2189 
2190 struct mapped_device *dm_get_md(dev_t dev)
2191 {
2192 	struct mapped_device *md;
2193 	unsigned minor = MINOR(dev);
2194 
2195 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2196 		return NULL;
2197 
2198 	spin_lock(&_minor_lock);
2199 
2200 	md = idr_find(&_minor_idr, minor);
2201 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2202 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2203 		md = NULL;
2204 		goto out;
2205 	}
2206 	dm_get(md);
2207 out:
2208 	spin_unlock(&_minor_lock);
2209 
2210 	return md;
2211 }
2212 EXPORT_SYMBOL_GPL(dm_get_md);
2213 
2214 void *dm_get_mdptr(struct mapped_device *md)
2215 {
2216 	return md->interface_ptr;
2217 }
2218 
2219 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2220 {
2221 	md->interface_ptr = ptr;
2222 }
2223 
2224 void dm_get(struct mapped_device *md)
2225 {
2226 	atomic_inc(&md->holders);
2227 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2228 }
2229 
2230 int dm_hold(struct mapped_device *md)
2231 {
2232 	spin_lock(&_minor_lock);
2233 	if (test_bit(DMF_FREEING, &md->flags)) {
2234 		spin_unlock(&_minor_lock);
2235 		return -EBUSY;
2236 	}
2237 	dm_get(md);
2238 	spin_unlock(&_minor_lock);
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL_GPL(dm_hold);
2242 
2243 const char *dm_device_name(struct mapped_device *md)
2244 {
2245 	return md->name;
2246 }
2247 EXPORT_SYMBOL_GPL(dm_device_name);
2248 
2249 static void __dm_destroy(struct mapped_device *md, bool wait)
2250 {
2251 	struct dm_table *map;
2252 	int srcu_idx;
2253 
2254 	might_sleep();
2255 
2256 	spin_lock(&_minor_lock);
2257 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2258 	set_bit(DMF_FREEING, &md->flags);
2259 	spin_unlock(&_minor_lock);
2260 
2261 	blk_set_queue_dying(md->queue);
2262 
2263 	if (dm_request_based(md) && md->kworker_task)
2264 		kthread_flush_worker(&md->kworker);
2265 
2266 	/*
2267 	 * Take suspend_lock so that presuspend and postsuspend methods
2268 	 * do not race with internal suspend.
2269 	 */
2270 	mutex_lock(&md->suspend_lock);
2271 	map = dm_get_live_table(md, &srcu_idx);
2272 	if (!dm_suspended_md(md)) {
2273 		dm_table_presuspend_targets(map);
2274 		dm_table_postsuspend_targets(map);
2275 	}
2276 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2277 	dm_put_live_table(md, srcu_idx);
2278 	mutex_unlock(&md->suspend_lock);
2279 
2280 	/*
2281 	 * Rare, but there may be I/O requests still going to complete,
2282 	 * for example.  Wait for all references to disappear.
2283 	 * No one should increment the reference count of the mapped_device,
2284 	 * after the mapped_device state becomes DMF_FREEING.
2285 	 */
2286 	if (wait)
2287 		while (atomic_read(&md->holders))
2288 			msleep(1);
2289 	else if (atomic_read(&md->holders))
2290 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2291 		       dm_device_name(md), atomic_read(&md->holders));
2292 
2293 	dm_sysfs_exit(md);
2294 	dm_table_destroy(__unbind(md));
2295 	free_dev(md);
2296 }
2297 
2298 void dm_destroy(struct mapped_device *md)
2299 {
2300 	__dm_destroy(md, true);
2301 }
2302 
2303 void dm_destroy_immediate(struct mapped_device *md)
2304 {
2305 	__dm_destroy(md, false);
2306 }
2307 
2308 void dm_put(struct mapped_device *md)
2309 {
2310 	atomic_dec(&md->holders);
2311 }
2312 EXPORT_SYMBOL_GPL(dm_put);
2313 
2314 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2315 {
2316 	int r = 0;
2317 	DEFINE_WAIT(wait);
2318 
2319 	while (1) {
2320 		prepare_to_wait(&md->wait, &wait, task_state);
2321 
2322 		if (!md_in_flight(md))
2323 			break;
2324 
2325 		if (signal_pending_state(task_state, current)) {
2326 			r = -EINTR;
2327 			break;
2328 		}
2329 
2330 		io_schedule();
2331 	}
2332 	finish_wait(&md->wait, &wait);
2333 
2334 	return r;
2335 }
2336 
2337 /*
2338  * Process the deferred bios
2339  */
2340 static void dm_wq_work(struct work_struct *work)
2341 {
2342 	struct mapped_device *md = container_of(work, struct mapped_device,
2343 						work);
2344 	struct bio *c;
2345 	int srcu_idx;
2346 	struct dm_table *map;
2347 
2348 	map = dm_get_live_table(md, &srcu_idx);
2349 
2350 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2351 		spin_lock_irq(&md->deferred_lock);
2352 		c = bio_list_pop(&md->deferred);
2353 		spin_unlock_irq(&md->deferred_lock);
2354 
2355 		if (!c)
2356 			break;
2357 
2358 		if (dm_request_based(md))
2359 			generic_make_request(c);
2360 		else
2361 			__split_and_process_bio(md, map, c);
2362 	}
2363 
2364 	dm_put_live_table(md, srcu_idx);
2365 }
2366 
2367 static void dm_queue_flush(struct mapped_device *md)
2368 {
2369 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2370 	smp_mb__after_atomic();
2371 	queue_work(md->wq, &md->work);
2372 }
2373 
2374 /*
2375  * Swap in a new table, returning the old one for the caller to destroy.
2376  */
2377 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2378 {
2379 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2380 	struct queue_limits limits;
2381 	int r;
2382 
2383 	mutex_lock(&md->suspend_lock);
2384 
2385 	/* device must be suspended */
2386 	if (!dm_suspended_md(md))
2387 		goto out;
2388 
2389 	/*
2390 	 * If the new table has no data devices, retain the existing limits.
2391 	 * This helps multipath with queue_if_no_path if all paths disappear,
2392 	 * then new I/O is queued based on these limits, and then some paths
2393 	 * reappear.
2394 	 */
2395 	if (dm_table_has_no_data_devices(table)) {
2396 		live_map = dm_get_live_table_fast(md);
2397 		if (live_map)
2398 			limits = md->queue->limits;
2399 		dm_put_live_table_fast(md);
2400 	}
2401 
2402 	if (!live_map) {
2403 		r = dm_calculate_queue_limits(table, &limits);
2404 		if (r) {
2405 			map = ERR_PTR(r);
2406 			goto out;
2407 		}
2408 	}
2409 
2410 	map = __bind(md, table, &limits);
2411 	dm_issue_global_event();
2412 
2413 out:
2414 	mutex_unlock(&md->suspend_lock);
2415 	return map;
2416 }
2417 
2418 /*
2419  * Functions to lock and unlock any filesystem running on the
2420  * device.
2421  */
2422 static int lock_fs(struct mapped_device *md)
2423 {
2424 	int r;
2425 
2426 	WARN_ON(md->frozen_sb);
2427 
2428 	md->frozen_sb = freeze_bdev(md->bdev);
2429 	if (IS_ERR(md->frozen_sb)) {
2430 		r = PTR_ERR(md->frozen_sb);
2431 		md->frozen_sb = NULL;
2432 		return r;
2433 	}
2434 
2435 	set_bit(DMF_FROZEN, &md->flags);
2436 
2437 	return 0;
2438 }
2439 
2440 static void unlock_fs(struct mapped_device *md)
2441 {
2442 	if (!test_bit(DMF_FROZEN, &md->flags))
2443 		return;
2444 
2445 	thaw_bdev(md->bdev, md->frozen_sb);
2446 	md->frozen_sb = NULL;
2447 	clear_bit(DMF_FROZEN, &md->flags);
2448 }
2449 
2450 /*
2451  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2452  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2453  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2454  *
2455  * If __dm_suspend returns 0, the device is completely quiescent
2456  * now. There is no request-processing activity. All new requests
2457  * are being added to md->deferred list.
2458  */
2459 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2460 			unsigned suspend_flags, long task_state,
2461 			int dmf_suspended_flag)
2462 {
2463 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2464 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2465 	int r;
2466 
2467 	lockdep_assert_held(&md->suspend_lock);
2468 
2469 	/*
2470 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 	 * This flag is cleared before dm_suspend returns.
2472 	 */
2473 	if (noflush)
2474 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475 	else
2476 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2477 
2478 	/*
2479 	 * This gets reverted if there's an error later and the targets
2480 	 * provide the .presuspend_undo hook.
2481 	 */
2482 	dm_table_presuspend_targets(map);
2483 
2484 	/*
2485 	 * Flush I/O to the device.
2486 	 * Any I/O submitted after lock_fs() may not be flushed.
2487 	 * noflush takes precedence over do_lockfs.
2488 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2489 	 */
2490 	if (!noflush && do_lockfs) {
2491 		r = lock_fs(md);
2492 		if (r) {
2493 			dm_table_presuspend_undo_targets(map);
2494 			return r;
2495 		}
2496 	}
2497 
2498 	/*
2499 	 * Here we must make sure that no processes are submitting requests
2500 	 * to target drivers i.e. no one may be executing
2501 	 * __split_and_process_bio. This is called from dm_request and
2502 	 * dm_wq_work.
2503 	 *
2504 	 * To get all processes out of __split_and_process_bio in dm_request,
2505 	 * we take the write lock. To prevent any process from reentering
2506 	 * __split_and_process_bio from dm_request and quiesce the thread
2507 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2508 	 * flush_workqueue(md->wq).
2509 	 */
2510 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2511 	if (map)
2512 		synchronize_srcu(&md->io_barrier);
2513 
2514 	/*
2515 	 * Stop md->queue before flushing md->wq in case request-based
2516 	 * dm defers requests to md->wq from md->queue.
2517 	 */
2518 	if (dm_request_based(md)) {
2519 		dm_stop_queue(md->queue);
2520 		if (md->kworker_task)
2521 			kthread_flush_worker(&md->kworker);
2522 	}
2523 
2524 	flush_workqueue(md->wq);
2525 
2526 	/*
2527 	 * At this point no more requests are entering target request routines.
2528 	 * We call dm_wait_for_completion to wait for all existing requests
2529 	 * to finish.
2530 	 */
2531 	r = dm_wait_for_completion(md, task_state);
2532 	if (!r)
2533 		set_bit(dmf_suspended_flag, &md->flags);
2534 
2535 	if (noflush)
2536 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2537 	if (map)
2538 		synchronize_srcu(&md->io_barrier);
2539 
2540 	/* were we interrupted ? */
2541 	if (r < 0) {
2542 		dm_queue_flush(md);
2543 
2544 		if (dm_request_based(md))
2545 			dm_start_queue(md->queue);
2546 
2547 		unlock_fs(md);
2548 		dm_table_presuspend_undo_targets(map);
2549 		/* pushback list is already flushed, so skip flush */
2550 	}
2551 
2552 	return r;
2553 }
2554 
2555 /*
2556  * We need to be able to change a mapping table under a mounted
2557  * filesystem.  For example we might want to move some data in
2558  * the background.  Before the table can be swapped with
2559  * dm_bind_table, dm_suspend must be called to flush any in
2560  * flight bios and ensure that any further io gets deferred.
2561  */
2562 /*
2563  * Suspend mechanism in request-based dm.
2564  *
2565  * 1. Flush all I/Os by lock_fs() if needed.
2566  * 2. Stop dispatching any I/O by stopping the request_queue.
2567  * 3. Wait for all in-flight I/Os to be completed or requeued.
2568  *
2569  * To abort suspend, start the request_queue.
2570  */
2571 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2572 {
2573 	struct dm_table *map = NULL;
2574 	int r = 0;
2575 
2576 retry:
2577 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2578 
2579 	if (dm_suspended_md(md)) {
2580 		r = -EINVAL;
2581 		goto out_unlock;
2582 	}
2583 
2584 	if (dm_suspended_internally_md(md)) {
2585 		/* already internally suspended, wait for internal resume */
2586 		mutex_unlock(&md->suspend_lock);
2587 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2588 		if (r)
2589 			return r;
2590 		goto retry;
2591 	}
2592 
2593 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2594 
2595 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2596 	if (r)
2597 		goto out_unlock;
2598 
2599 	dm_table_postsuspend_targets(map);
2600 
2601 out_unlock:
2602 	mutex_unlock(&md->suspend_lock);
2603 	return r;
2604 }
2605 
2606 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2607 {
2608 	if (map) {
2609 		int r = dm_table_resume_targets(map);
2610 		if (r)
2611 			return r;
2612 	}
2613 
2614 	dm_queue_flush(md);
2615 
2616 	/*
2617 	 * Flushing deferred I/Os must be done after targets are resumed
2618 	 * so that mapping of targets can work correctly.
2619 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2620 	 */
2621 	if (dm_request_based(md))
2622 		dm_start_queue(md->queue);
2623 
2624 	unlock_fs(md);
2625 
2626 	return 0;
2627 }
2628 
2629 int dm_resume(struct mapped_device *md)
2630 {
2631 	int r;
2632 	struct dm_table *map = NULL;
2633 
2634 retry:
2635 	r = -EINVAL;
2636 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2637 
2638 	if (!dm_suspended_md(md))
2639 		goto out;
2640 
2641 	if (dm_suspended_internally_md(md)) {
2642 		/* already internally suspended, wait for internal resume */
2643 		mutex_unlock(&md->suspend_lock);
2644 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2645 		if (r)
2646 			return r;
2647 		goto retry;
2648 	}
2649 
2650 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2651 	if (!map || !dm_table_get_size(map))
2652 		goto out;
2653 
2654 	r = __dm_resume(md, map);
2655 	if (r)
2656 		goto out;
2657 
2658 	clear_bit(DMF_SUSPENDED, &md->flags);
2659 out:
2660 	mutex_unlock(&md->suspend_lock);
2661 
2662 	return r;
2663 }
2664 
2665 /*
2666  * Internal suspend/resume works like userspace-driven suspend. It waits
2667  * until all bios finish and prevents issuing new bios to the target drivers.
2668  * It may be used only from the kernel.
2669  */
2670 
2671 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2672 {
2673 	struct dm_table *map = NULL;
2674 
2675 	lockdep_assert_held(&md->suspend_lock);
2676 
2677 	if (md->internal_suspend_count++)
2678 		return; /* nested internal suspend */
2679 
2680 	if (dm_suspended_md(md)) {
2681 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2682 		return; /* nest suspend */
2683 	}
2684 
2685 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2686 
2687 	/*
2688 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2689 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2690 	 * would require changing .presuspend to return an error -- avoid this
2691 	 * until there is a need for more elaborate variants of internal suspend.
2692 	 */
2693 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2694 			    DMF_SUSPENDED_INTERNALLY);
2695 
2696 	dm_table_postsuspend_targets(map);
2697 }
2698 
2699 static void __dm_internal_resume(struct mapped_device *md)
2700 {
2701 	BUG_ON(!md->internal_suspend_count);
2702 
2703 	if (--md->internal_suspend_count)
2704 		return; /* resume from nested internal suspend */
2705 
2706 	if (dm_suspended_md(md))
2707 		goto done; /* resume from nested suspend */
2708 
2709 	/*
2710 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2711 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2712 	 */
2713 	(void) __dm_resume(md, NULL);
2714 
2715 done:
2716 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2717 	smp_mb__after_atomic();
2718 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2719 }
2720 
2721 void dm_internal_suspend_noflush(struct mapped_device *md)
2722 {
2723 	mutex_lock(&md->suspend_lock);
2724 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2725 	mutex_unlock(&md->suspend_lock);
2726 }
2727 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2728 
2729 void dm_internal_resume(struct mapped_device *md)
2730 {
2731 	mutex_lock(&md->suspend_lock);
2732 	__dm_internal_resume(md);
2733 	mutex_unlock(&md->suspend_lock);
2734 }
2735 EXPORT_SYMBOL_GPL(dm_internal_resume);
2736 
2737 /*
2738  * Fast variants of internal suspend/resume hold md->suspend_lock,
2739  * which prevents interaction with userspace-driven suspend.
2740  */
2741 
2742 void dm_internal_suspend_fast(struct mapped_device *md)
2743 {
2744 	mutex_lock(&md->suspend_lock);
2745 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2746 		return;
2747 
2748 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2749 	synchronize_srcu(&md->io_barrier);
2750 	flush_workqueue(md->wq);
2751 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2752 }
2753 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2754 
2755 void dm_internal_resume_fast(struct mapped_device *md)
2756 {
2757 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2758 		goto done;
2759 
2760 	dm_queue_flush(md);
2761 
2762 done:
2763 	mutex_unlock(&md->suspend_lock);
2764 }
2765 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2766 
2767 /*-----------------------------------------------------------------
2768  * Event notification.
2769  *---------------------------------------------------------------*/
2770 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2771 		       unsigned cookie)
2772 {
2773 	char udev_cookie[DM_COOKIE_LENGTH];
2774 	char *envp[] = { udev_cookie, NULL };
2775 
2776 	if (!cookie)
2777 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2778 	else {
2779 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2780 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2781 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2782 					  action, envp);
2783 	}
2784 }
2785 
2786 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2787 {
2788 	return atomic_add_return(1, &md->uevent_seq);
2789 }
2790 
2791 uint32_t dm_get_event_nr(struct mapped_device *md)
2792 {
2793 	return atomic_read(&md->event_nr);
2794 }
2795 
2796 int dm_wait_event(struct mapped_device *md, int event_nr)
2797 {
2798 	return wait_event_interruptible(md->eventq,
2799 			(event_nr != atomic_read(&md->event_nr)));
2800 }
2801 
2802 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2803 {
2804 	unsigned long flags;
2805 
2806 	spin_lock_irqsave(&md->uevent_lock, flags);
2807 	list_add(elist, &md->uevent_list);
2808 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2809 }
2810 
2811 /*
2812  * The gendisk is only valid as long as you have a reference
2813  * count on 'md'.
2814  */
2815 struct gendisk *dm_disk(struct mapped_device *md)
2816 {
2817 	return md->disk;
2818 }
2819 EXPORT_SYMBOL_GPL(dm_disk);
2820 
2821 struct kobject *dm_kobject(struct mapped_device *md)
2822 {
2823 	return &md->kobj_holder.kobj;
2824 }
2825 
2826 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2827 {
2828 	struct mapped_device *md;
2829 
2830 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2831 
2832 	spin_lock(&_minor_lock);
2833 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2834 		md = NULL;
2835 		goto out;
2836 	}
2837 	dm_get(md);
2838 out:
2839 	spin_unlock(&_minor_lock);
2840 
2841 	return md;
2842 }
2843 
2844 int dm_suspended_md(struct mapped_device *md)
2845 {
2846 	return test_bit(DMF_SUSPENDED, &md->flags);
2847 }
2848 
2849 int dm_suspended_internally_md(struct mapped_device *md)
2850 {
2851 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2852 }
2853 
2854 int dm_test_deferred_remove_flag(struct mapped_device *md)
2855 {
2856 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2857 }
2858 
2859 int dm_suspended(struct dm_target *ti)
2860 {
2861 	return dm_suspended_md(dm_table_get_md(ti->table));
2862 }
2863 EXPORT_SYMBOL_GPL(dm_suspended);
2864 
2865 int dm_noflush_suspending(struct dm_target *ti)
2866 {
2867 	return __noflush_suspending(dm_table_get_md(ti->table));
2868 }
2869 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2870 
2871 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2872 					    unsigned integrity, unsigned per_io_data_size,
2873 					    unsigned min_pool_size)
2874 {
2875 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2876 	unsigned int pool_size = 0;
2877 	unsigned int front_pad, io_front_pad;
2878 
2879 	if (!pools)
2880 		return NULL;
2881 
2882 	switch (type) {
2883 	case DM_TYPE_BIO_BASED:
2884 	case DM_TYPE_DAX_BIO_BASED:
2885 	case DM_TYPE_NVME_BIO_BASED:
2886 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2887 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2888 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2889 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2890 		if (!pools->io_bs)
2891 			goto out;
2892 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2893 			goto out;
2894 		break;
2895 	case DM_TYPE_REQUEST_BASED:
2896 	case DM_TYPE_MQ_REQUEST_BASED:
2897 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2898 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2899 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2900 		break;
2901 	default:
2902 		BUG();
2903 	}
2904 
2905 	pools->bs = bioset_create(pool_size, front_pad, 0);
2906 	if (!pools->bs)
2907 		goto out;
2908 
2909 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2910 		goto out;
2911 
2912 	return pools;
2913 
2914 out:
2915 	dm_free_md_mempools(pools);
2916 
2917 	return NULL;
2918 }
2919 
2920 void dm_free_md_mempools(struct dm_md_mempools *pools)
2921 {
2922 	if (!pools)
2923 		return;
2924 
2925 	if (pools->bs)
2926 		bioset_free(pools->bs);
2927 	if (pools->io_bs)
2928 		bioset_free(pools->io_bs);
2929 
2930 	kfree(pools);
2931 }
2932 
2933 struct dm_pr {
2934 	u64	old_key;
2935 	u64	new_key;
2936 	u32	flags;
2937 	bool	fail_early;
2938 };
2939 
2940 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2941 		      void *data)
2942 {
2943 	struct mapped_device *md = bdev->bd_disk->private_data;
2944 	struct dm_table *table;
2945 	struct dm_target *ti;
2946 	int ret = -ENOTTY, srcu_idx;
2947 
2948 	table = dm_get_live_table(md, &srcu_idx);
2949 	if (!table || !dm_table_get_size(table))
2950 		goto out;
2951 
2952 	/* We only support devices that have a single target */
2953 	if (dm_table_get_num_targets(table) != 1)
2954 		goto out;
2955 	ti = dm_table_get_target(table, 0);
2956 
2957 	ret = -EINVAL;
2958 	if (!ti->type->iterate_devices)
2959 		goto out;
2960 
2961 	ret = ti->type->iterate_devices(ti, fn, data);
2962 out:
2963 	dm_put_live_table(md, srcu_idx);
2964 	return ret;
2965 }
2966 
2967 /*
2968  * For register / unregister we need to manually call out to every path.
2969  */
2970 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2971 			    sector_t start, sector_t len, void *data)
2972 {
2973 	struct dm_pr *pr = data;
2974 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2975 
2976 	if (!ops || !ops->pr_register)
2977 		return -EOPNOTSUPP;
2978 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2979 }
2980 
2981 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2982 			  u32 flags)
2983 {
2984 	struct dm_pr pr = {
2985 		.old_key	= old_key,
2986 		.new_key	= new_key,
2987 		.flags		= flags,
2988 		.fail_early	= true,
2989 	};
2990 	int ret;
2991 
2992 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2993 	if (ret && new_key) {
2994 		/* unregister all paths if we failed to register any path */
2995 		pr.old_key = new_key;
2996 		pr.new_key = 0;
2997 		pr.flags = 0;
2998 		pr.fail_early = false;
2999 		dm_call_pr(bdev, __dm_pr_register, &pr);
3000 	}
3001 
3002 	return ret;
3003 }
3004 
3005 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3006 			 u32 flags)
3007 {
3008 	struct mapped_device *md = bdev->bd_disk->private_data;
3009 	const struct pr_ops *ops;
3010 	fmode_t mode;
3011 	int r;
3012 
3013 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3014 	if (r < 0)
3015 		return r;
3016 
3017 	ops = bdev->bd_disk->fops->pr_ops;
3018 	if (ops && ops->pr_reserve)
3019 		r = ops->pr_reserve(bdev, key, type, flags);
3020 	else
3021 		r = -EOPNOTSUPP;
3022 
3023 	bdput(bdev);
3024 	return r;
3025 }
3026 
3027 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3028 {
3029 	struct mapped_device *md = bdev->bd_disk->private_data;
3030 	const struct pr_ops *ops;
3031 	fmode_t mode;
3032 	int r;
3033 
3034 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3035 	if (r < 0)
3036 		return r;
3037 
3038 	ops = bdev->bd_disk->fops->pr_ops;
3039 	if (ops && ops->pr_release)
3040 		r = ops->pr_release(bdev, key, type);
3041 	else
3042 		r = -EOPNOTSUPP;
3043 
3044 	bdput(bdev);
3045 	return r;
3046 }
3047 
3048 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3049 			 enum pr_type type, bool abort)
3050 {
3051 	struct mapped_device *md = bdev->bd_disk->private_data;
3052 	const struct pr_ops *ops;
3053 	fmode_t mode;
3054 	int r;
3055 
3056 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3057 	if (r < 0)
3058 		return r;
3059 
3060 	ops = bdev->bd_disk->fops->pr_ops;
3061 	if (ops && ops->pr_preempt)
3062 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3063 	else
3064 		r = -EOPNOTSUPP;
3065 
3066 	bdput(bdev);
3067 	return r;
3068 }
3069 
3070 static int dm_pr_clear(struct block_device *bdev, u64 key)
3071 {
3072 	struct mapped_device *md = bdev->bd_disk->private_data;
3073 	const struct pr_ops *ops;
3074 	fmode_t mode;
3075 	int r;
3076 
3077 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3078 	if (r < 0)
3079 		return r;
3080 
3081 	ops = bdev->bd_disk->fops->pr_ops;
3082 	if (ops && ops->pr_clear)
3083 		r = ops->pr_clear(bdev, key);
3084 	else
3085 		r = -EOPNOTSUPP;
3086 
3087 	bdput(bdev);
3088 	return r;
3089 }
3090 
3091 static const struct pr_ops dm_pr_ops = {
3092 	.pr_register	= dm_pr_register,
3093 	.pr_reserve	= dm_pr_reserve,
3094 	.pr_release	= dm_pr_release,
3095 	.pr_preempt	= dm_pr_preempt,
3096 	.pr_clear	= dm_pr_clear,
3097 };
3098 
3099 static const struct block_device_operations dm_blk_dops = {
3100 	.open = dm_blk_open,
3101 	.release = dm_blk_close,
3102 	.ioctl = dm_blk_ioctl,
3103 	.getgeo = dm_blk_getgeo,
3104 	.pr_ops = &dm_pr_ops,
3105 	.owner = THIS_MODULE
3106 };
3107 
3108 static const struct dax_operations dm_dax_ops = {
3109 	.direct_access = dm_dax_direct_access,
3110 	.copy_from_iter = dm_dax_copy_from_iter,
3111 };
3112 
3113 /*
3114  * module hooks
3115  */
3116 module_init(dm_init);
3117 module_exit(dm_exit);
3118 
3119 module_param(major, uint, 0);
3120 MODULE_PARM_DESC(major, "The major number of the device mapper");
3121 
3122 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3123 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3124 
3125 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3126 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3127 
3128 MODULE_DESCRIPTION(DM_NAME " driver");
3129 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3130 MODULE_LICENSE("GPL");
3131