1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 32 #define DM_MSG_PREFIX "core" 33 34 /* 35 * Cookies are numeric values sent with CHANGE and REMOVE 36 * uevents while resuming, removing or renaming the device. 37 */ 38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 39 #define DM_COOKIE_LENGTH 24 40 41 static const char *_name = DM_NAME; 42 43 static unsigned int major = 0; 44 static unsigned int _major = 0; 45 46 static DEFINE_IDR(_minor_idr); 47 48 static DEFINE_SPINLOCK(_minor_lock); 49 50 static void do_deferred_remove(struct work_struct *w); 51 52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 53 54 static struct workqueue_struct *deferred_remove_workqueue; 55 56 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 58 59 void dm_issue_global_event(void) 60 { 61 atomic_inc(&dm_global_event_nr); 62 wake_up(&dm_global_eventq); 63 } 64 65 /* 66 * One of these is allocated (on-stack) per original bio. 67 */ 68 struct clone_info { 69 struct dm_table *map; 70 struct bio *bio; 71 struct dm_io *io; 72 sector_t sector; 73 unsigned sector_count; 74 }; 75 76 /* 77 * One of these is allocated per clone bio. 78 */ 79 #define DM_TIO_MAGIC 7282014 80 struct dm_target_io { 81 unsigned magic; 82 struct dm_io *io; 83 struct dm_target *ti; 84 unsigned target_bio_nr; 85 unsigned *len_ptr; 86 bool inside_dm_io; 87 struct bio clone; 88 }; 89 90 /* 91 * One of these is allocated per original bio. 92 * It contains the first clone used for that original. 93 */ 94 #define DM_IO_MAGIC 5191977 95 struct dm_io { 96 unsigned magic; 97 struct mapped_device *md; 98 blk_status_t status; 99 atomic_t io_count; 100 struct bio *orig_bio; 101 unsigned long start_time; 102 spinlock_t endio_lock; 103 struct dm_stats_aux stats_aux; 104 /* last member of dm_target_io is 'struct bio' */ 105 struct dm_target_io tio; 106 }; 107 108 void *dm_per_bio_data(struct bio *bio, size_t data_size) 109 { 110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 111 if (!tio->inside_dm_io) 112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 114 } 115 EXPORT_SYMBOL_GPL(dm_per_bio_data); 116 117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 118 { 119 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 120 if (io->magic == DM_IO_MAGIC) 121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 122 BUG_ON(io->magic != DM_TIO_MAGIC); 123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 124 } 125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 126 127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 128 { 129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 130 } 131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 132 133 #define MINOR_ALLOCED ((void *)-1) 134 135 /* 136 * Bits for the md->flags field. 137 */ 138 #define DMF_BLOCK_IO_FOR_SUSPEND 0 139 #define DMF_SUSPENDED 1 140 #define DMF_FROZEN 2 141 #define DMF_FREEING 3 142 #define DMF_DELETING 4 143 #define DMF_NOFLUSH_SUSPENDING 5 144 #define DMF_DEFERRED_REMOVE 6 145 #define DMF_SUSPENDED_INTERNALLY 7 146 #define DMF_POST_SUSPENDING 8 147 148 #define DM_NUMA_NODE NUMA_NO_NODE 149 static int dm_numa_node = DM_NUMA_NODE; 150 151 /* 152 * For mempools pre-allocation at the table loading time. 153 */ 154 struct dm_md_mempools { 155 struct bio_set bs; 156 struct bio_set io_bs; 157 }; 158 159 struct table_device { 160 struct list_head list; 161 refcount_t count; 162 struct dm_dev dm_dev; 163 }; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r; 227 228 r = dm_uevent_init(); 229 if (r) 230 return r; 231 232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 233 if (!deferred_remove_workqueue) { 234 r = -ENOMEM; 235 goto out_uevent_exit; 236 } 237 238 _major = major; 239 r = register_blkdev(_major, _name); 240 if (r < 0) 241 goto out_free_workqueue; 242 243 if (!_major) 244 _major = r; 245 246 return 0; 247 248 out_free_workqueue: 249 destroy_workqueue(deferred_remove_workqueue); 250 out_uevent_exit: 251 dm_uevent_exit(); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 flush_scheduled_work(); 259 destroy_workqueue(deferred_remove_workqueue); 260 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 dm_statistics_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 dm_statistics_exit, 289 }; 290 291 static int __init dm_init(void) 292 { 293 const int count = ARRAY_SIZE(_inits); 294 295 int r, i; 296 297 for (i = 0; i < count; i++) { 298 r = _inits[i](); 299 if (r) 300 goto bad; 301 } 302 303 return 0; 304 305 bad: 306 while (i--) 307 _exits[i](); 308 309 return r; 310 } 311 312 static void __exit dm_exit(void) 313 { 314 int i = ARRAY_SIZE(_exits); 315 316 while (i--) 317 _exits[i](); 318 319 /* 320 * Should be empty by this point. 321 */ 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md; 360 361 spin_lock(&_minor_lock); 362 363 md = disk->private_data; 364 if (WARN_ON(!md)) 365 goto out; 366 367 if (atomic_dec_and_test(&md->open_count) && 368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 369 queue_work(deferred_remove_workqueue, &deferred_remove_work); 370 371 dm_put(md); 372 out: 373 spin_unlock(&_minor_lock); 374 } 375 376 int dm_open_count(struct mapped_device *md) 377 { 378 return atomic_read(&md->open_count); 379 } 380 381 /* 382 * Guarantees nothing is using the device before it's deleted. 383 */ 384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (dm_open_count(md)) { 391 r = -EBUSY; 392 if (mark_deferred) 393 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 395 r = -EEXIST; 396 else 397 set_bit(DMF_DELETING, &md->flags); 398 399 spin_unlock(&_minor_lock); 400 401 return r; 402 } 403 404 int dm_cancel_deferred_remove(struct mapped_device *md) 405 { 406 int r = 0; 407 408 spin_lock(&_minor_lock); 409 410 if (test_bit(DMF_DELETING, &md->flags)) 411 r = -EBUSY; 412 else 413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 414 415 spin_unlock(&_minor_lock); 416 417 return r; 418 } 419 420 static void do_deferred_remove(struct work_struct *w) 421 { 422 dm_deferred_remove(); 423 } 424 425 sector_t dm_get_size(struct mapped_device *md) 426 { 427 return get_capacity(md->disk); 428 } 429 430 struct request_queue *dm_get_md_queue(struct mapped_device *md) 431 { 432 return md->queue; 433 } 434 435 struct dm_stats *dm_get_stats(struct mapped_device *md) 436 { 437 return &md->stats; 438 } 439 440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 441 { 442 struct mapped_device *md = bdev->bd_disk->private_data; 443 444 return dm_get_geometry(md, geo); 445 } 446 447 #ifdef CONFIG_BLK_DEV_ZONED 448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 449 { 450 struct dm_report_zones_args *args = data; 451 sector_t sector_diff = args->tgt->begin - args->start; 452 453 /* 454 * Ignore zones beyond the target range. 455 */ 456 if (zone->start >= args->start + args->tgt->len) 457 return 0; 458 459 /* 460 * Remap the start sector and write pointer position of the zone 461 * to match its position in the target range. 462 */ 463 zone->start += sector_diff; 464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 465 if (zone->cond == BLK_ZONE_COND_FULL) 466 zone->wp = zone->start + zone->len; 467 else if (zone->cond == BLK_ZONE_COND_EMPTY) 468 zone->wp = zone->start; 469 else 470 zone->wp += sector_diff; 471 } 472 473 args->next_sector = zone->start + zone->len; 474 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 475 } 476 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 477 478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 479 unsigned int nr_zones, report_zones_cb cb, void *data) 480 { 481 struct mapped_device *md = disk->private_data; 482 struct dm_table *map; 483 int srcu_idx, ret; 484 struct dm_report_zones_args args = { 485 .next_sector = sector, 486 .orig_data = data, 487 .orig_cb = cb, 488 }; 489 490 if (dm_suspended_md(md)) 491 return -EAGAIN; 492 493 map = dm_get_live_table(md, &srcu_idx); 494 if (!map) 495 return -EIO; 496 497 do { 498 struct dm_target *tgt; 499 500 tgt = dm_table_find_target(map, args.next_sector); 501 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 502 ret = -EIO; 503 goto out; 504 } 505 506 args.tgt = tgt; 507 ret = tgt->type->report_zones(tgt, &args, nr_zones); 508 if (ret < 0) 509 goto out; 510 } while (args.zone_idx < nr_zones && 511 args.next_sector < get_capacity(disk)); 512 513 ret = args.zone_idx; 514 out: 515 dm_put_live_table(md, srcu_idx); 516 return ret; 517 } 518 #else 519 #define dm_blk_report_zones NULL 520 #endif /* CONFIG_BLK_DEV_ZONED */ 521 522 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 523 struct block_device **bdev) 524 __acquires(md->io_barrier) 525 { 526 struct dm_target *tgt; 527 struct dm_table *map; 528 int r; 529 530 retry: 531 r = -ENOTTY; 532 map = dm_get_live_table(md, srcu_idx); 533 if (!map || !dm_table_get_size(map)) 534 return r; 535 536 /* We only support devices that have a single target */ 537 if (dm_table_get_num_targets(map) != 1) 538 return r; 539 540 tgt = dm_table_get_target(map, 0); 541 if (!tgt->type->prepare_ioctl) 542 return r; 543 544 if (dm_suspended_md(md)) 545 return -EAGAIN; 546 547 r = tgt->type->prepare_ioctl(tgt, bdev); 548 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 549 dm_put_live_table(md, *srcu_idx); 550 msleep(10); 551 goto retry; 552 } 553 554 return r; 555 } 556 557 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 558 __releases(md->io_barrier) 559 { 560 dm_put_live_table(md, srcu_idx); 561 } 562 563 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 564 unsigned int cmd, unsigned long arg) 565 { 566 struct mapped_device *md = bdev->bd_disk->private_data; 567 int r, srcu_idx; 568 569 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 570 if (r < 0) 571 goto out; 572 573 if (r > 0) { 574 /* 575 * Target determined this ioctl is being issued against a 576 * subset of the parent bdev; require extra privileges. 577 */ 578 if (!capable(CAP_SYS_RAWIO)) { 579 DMWARN_LIMIT( 580 "%s: sending ioctl %x to DM device without required privilege.", 581 current->comm, cmd); 582 r = -ENOIOCTLCMD; 583 goto out; 584 } 585 } 586 587 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 588 out: 589 dm_unprepare_ioctl(md, srcu_idx); 590 return r; 591 } 592 593 static void start_io_acct(struct dm_io *io); 594 595 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 596 { 597 struct dm_io *io; 598 struct dm_target_io *tio; 599 struct bio *clone; 600 601 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 602 if (!clone) 603 return NULL; 604 605 tio = container_of(clone, struct dm_target_io, clone); 606 tio->inside_dm_io = true; 607 tio->io = NULL; 608 609 io = container_of(tio, struct dm_io, tio); 610 io->magic = DM_IO_MAGIC; 611 io->status = 0; 612 atomic_set(&io->io_count, 1); 613 io->orig_bio = bio; 614 io->md = md; 615 spin_lock_init(&io->endio_lock); 616 617 start_io_acct(io); 618 619 return io; 620 } 621 622 static void free_io(struct mapped_device *md, struct dm_io *io) 623 { 624 bio_put(&io->tio.clone); 625 } 626 627 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 628 unsigned target_bio_nr, gfp_t gfp_mask) 629 { 630 struct dm_target_io *tio; 631 632 if (!ci->io->tio.io) { 633 /* the dm_target_io embedded in ci->io is available */ 634 tio = &ci->io->tio; 635 } else { 636 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 637 if (!clone) 638 return NULL; 639 640 tio = container_of(clone, struct dm_target_io, clone); 641 tio->inside_dm_io = false; 642 } 643 644 tio->magic = DM_TIO_MAGIC; 645 tio->io = ci->io; 646 tio->ti = ti; 647 tio->target_bio_nr = target_bio_nr; 648 649 return tio; 650 } 651 652 static void free_tio(struct dm_target_io *tio) 653 { 654 if (tio->inside_dm_io) 655 return; 656 bio_put(&tio->clone); 657 } 658 659 u64 dm_start_time_ns_from_clone(struct bio *bio) 660 { 661 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 662 struct dm_io *io = tio->io; 663 664 return jiffies_to_nsecs(io->start_time); 665 } 666 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 667 668 static void start_io_acct(struct dm_io *io) 669 { 670 struct mapped_device *md = io->md; 671 struct bio *bio = io->orig_bio; 672 673 io->start_time = bio_start_io_acct(bio); 674 if (unlikely(dm_stats_used(&md->stats))) 675 dm_stats_account_io(&md->stats, bio_data_dir(bio), 676 bio->bi_iter.bi_sector, bio_sectors(bio), 677 false, 0, &io->stats_aux); 678 } 679 680 static void end_io_acct(struct dm_io *io) 681 { 682 struct mapped_device *md = io->md; 683 struct bio *bio = io->orig_bio; 684 unsigned long duration = jiffies - io->start_time; 685 686 bio_end_io_acct(bio, io->start_time); 687 688 if (unlikely(dm_stats_used(&md->stats))) 689 dm_stats_account_io(&md->stats, bio_data_dir(bio), 690 bio->bi_iter.bi_sector, bio_sectors(bio), 691 true, duration, &io->stats_aux); 692 693 /* nudge anyone waiting on suspend queue */ 694 if (unlikely(wq_has_sleeper(&md->wait))) 695 wake_up(&md->wait); 696 } 697 698 /* 699 * Add the bio to the list of deferred io. 700 */ 701 static void queue_io(struct mapped_device *md, struct bio *bio) 702 { 703 unsigned long flags; 704 705 spin_lock_irqsave(&md->deferred_lock, flags); 706 bio_list_add(&md->deferred, bio); 707 spin_unlock_irqrestore(&md->deferred_lock, flags); 708 queue_work(md->wq, &md->work); 709 } 710 711 /* 712 * Everyone (including functions in this file), should use this 713 * function to access the md->map field, and make sure they call 714 * dm_put_live_table() when finished. 715 */ 716 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 717 { 718 *srcu_idx = srcu_read_lock(&md->io_barrier); 719 720 return srcu_dereference(md->map, &md->io_barrier); 721 } 722 723 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 724 { 725 srcu_read_unlock(&md->io_barrier, srcu_idx); 726 } 727 728 void dm_sync_table(struct mapped_device *md) 729 { 730 synchronize_srcu(&md->io_barrier); 731 synchronize_rcu_expedited(); 732 } 733 734 /* 735 * A fast alternative to dm_get_live_table/dm_put_live_table. 736 * The caller must not block between these two functions. 737 */ 738 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 739 { 740 rcu_read_lock(); 741 return rcu_dereference(md->map); 742 } 743 744 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 745 { 746 rcu_read_unlock(); 747 } 748 749 static char *_dm_claim_ptr = "I belong to device-mapper"; 750 751 /* 752 * Open a table device so we can use it as a map destination. 753 */ 754 static int open_table_device(struct table_device *td, dev_t dev, 755 struct mapped_device *md) 756 { 757 struct block_device *bdev; 758 759 int r; 760 761 BUG_ON(td->dm_dev.bdev); 762 763 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 764 if (IS_ERR(bdev)) 765 return PTR_ERR(bdev); 766 767 r = bd_link_disk_holder(bdev, dm_disk(md)); 768 if (r) { 769 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 770 return r; 771 } 772 773 td->dm_dev.bdev = bdev; 774 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 775 return 0; 776 } 777 778 /* 779 * Close a table device that we've been using. 780 */ 781 static void close_table_device(struct table_device *td, struct mapped_device *md) 782 { 783 if (!td->dm_dev.bdev) 784 return; 785 786 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 788 put_dax(td->dm_dev.dax_dev); 789 td->dm_dev.bdev = NULL; 790 td->dm_dev.dax_dev = NULL; 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 fmode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 806 struct dm_dev **result) 807 { 808 int r; 809 struct table_device *td; 810 811 mutex_lock(&md->table_devices_lock); 812 td = find_table_device(&md->table_devices, dev, mode); 813 if (!td) { 814 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 815 if (!td) { 816 mutex_unlock(&md->table_devices_lock); 817 return -ENOMEM; 818 } 819 820 td->dm_dev.mode = mode; 821 td->dm_dev.bdev = NULL; 822 823 if ((r = open_table_device(td, dev, md))) { 824 mutex_unlock(&md->table_devices_lock); 825 kfree(td); 826 return r; 827 } 828 829 format_dev_t(td->dm_dev.name, dev); 830 831 refcount_set(&td->count, 1); 832 list_add(&td->list, &md->table_devices); 833 } else { 834 refcount_inc(&td->count); 835 } 836 mutex_unlock(&md->table_devices_lock); 837 838 *result = &td->dm_dev; 839 return 0; 840 } 841 EXPORT_SYMBOL_GPL(dm_get_table_device); 842 843 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 844 { 845 struct table_device *td = container_of(d, struct table_device, dm_dev); 846 847 mutex_lock(&md->table_devices_lock); 848 if (refcount_dec_and_test(&td->count)) { 849 close_table_device(td, md); 850 list_del(&td->list); 851 kfree(td); 852 } 853 mutex_unlock(&md->table_devices_lock); 854 } 855 EXPORT_SYMBOL(dm_put_table_device); 856 857 static void free_table_devices(struct list_head *devices) 858 { 859 struct list_head *tmp, *next; 860 861 list_for_each_safe(tmp, next, devices) { 862 struct table_device *td = list_entry(tmp, struct table_device, list); 863 864 DMWARN("dm_destroy: %s still exists with %d references", 865 td->dm_dev.name, refcount_read(&td->count)); 866 kfree(td); 867 } 868 } 869 870 /* 871 * Get the geometry associated with a dm device 872 */ 873 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 874 { 875 *geo = md->geometry; 876 877 return 0; 878 } 879 880 /* 881 * Set the geometry of a device. 882 */ 883 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 884 { 885 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 886 887 if (geo->start > sz) { 888 DMWARN("Start sector is beyond the geometry limits."); 889 return -EINVAL; 890 } 891 892 md->geometry = *geo; 893 894 return 0; 895 } 896 897 static int __noflush_suspending(struct mapped_device *md) 898 { 899 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 900 } 901 902 /* 903 * Decrements the number of outstanding ios that a bio has been 904 * cloned into, completing the original io if necc. 905 */ 906 static void dec_pending(struct dm_io *io, blk_status_t error) 907 { 908 unsigned long flags; 909 blk_status_t io_error; 910 struct bio *bio; 911 struct mapped_device *md = io->md; 912 913 /* Push-back supersedes any I/O errors */ 914 if (unlikely(error)) { 915 spin_lock_irqsave(&io->endio_lock, flags); 916 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 917 io->status = error; 918 spin_unlock_irqrestore(&io->endio_lock, flags); 919 } 920 921 if (atomic_dec_and_test(&io->io_count)) { 922 if (io->status == BLK_STS_DM_REQUEUE) { 923 /* 924 * Target requested pushing back the I/O. 925 */ 926 spin_lock_irqsave(&md->deferred_lock, flags); 927 if (__noflush_suspending(md)) 928 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 929 bio_list_add_head(&md->deferred, io->orig_bio); 930 else 931 /* noflush suspend was interrupted. */ 932 io->status = BLK_STS_IOERR; 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 io_error = io->status; 937 bio = io->orig_bio; 938 end_io_acct(io); 939 free_io(md, io); 940 941 if (io_error == BLK_STS_DM_REQUEUE) 942 return; 943 944 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 945 /* 946 * Preflush done for flush with data, reissue 947 * without REQ_PREFLUSH. 948 */ 949 bio->bi_opf &= ~REQ_PREFLUSH; 950 queue_io(md, bio); 951 } else { 952 /* done with normal IO or empty flush */ 953 if (io_error) 954 bio->bi_status = io_error; 955 bio_endio(bio); 956 } 957 } 958 } 959 960 void disable_discard(struct mapped_device *md) 961 { 962 struct queue_limits *limits = dm_get_queue_limits(md); 963 964 /* device doesn't really support DISCARD, disable it */ 965 limits->max_discard_sectors = 0; 966 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 967 } 968 969 void disable_write_same(struct mapped_device *md) 970 { 971 struct queue_limits *limits = dm_get_queue_limits(md); 972 973 /* device doesn't really support WRITE SAME, disable it */ 974 limits->max_write_same_sectors = 0; 975 } 976 977 void disable_write_zeroes(struct mapped_device *md) 978 { 979 struct queue_limits *limits = dm_get_queue_limits(md); 980 981 /* device doesn't really support WRITE ZEROES, disable it */ 982 limits->max_write_zeroes_sectors = 0; 983 } 984 985 static void clone_endio(struct bio *bio) 986 { 987 blk_status_t error = bio->bi_status; 988 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 989 struct dm_io *io = tio->io; 990 struct mapped_device *md = tio->io->md; 991 dm_endio_fn endio = tio->ti->type->end_io; 992 struct bio *orig_bio = io->orig_bio; 993 994 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 995 if (bio_op(bio) == REQ_OP_DISCARD && 996 !bio->bi_disk->queue->limits.max_discard_sectors) 997 disable_discard(md); 998 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 999 !bio->bi_disk->queue->limits.max_write_same_sectors) 1000 disable_write_same(md); 1001 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1002 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1003 disable_write_zeroes(md); 1004 } 1005 1006 /* 1007 * For zone-append bios get offset in zone of the written 1008 * sector and add that to the original bio sector pos. 1009 */ 1010 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 1011 sector_t written_sector = bio->bi_iter.bi_sector; 1012 struct request_queue *q = orig_bio->bi_disk->queue; 1013 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 1014 1015 orig_bio->bi_iter.bi_sector += written_sector & mask; 1016 } 1017 1018 if (endio) { 1019 int r = endio(tio->ti, bio, &error); 1020 switch (r) { 1021 case DM_ENDIO_REQUEUE: 1022 error = BLK_STS_DM_REQUEUE; 1023 /*FALLTHRU*/ 1024 case DM_ENDIO_DONE: 1025 break; 1026 case DM_ENDIO_INCOMPLETE: 1027 /* The target will handle the io */ 1028 return; 1029 default: 1030 DMWARN("unimplemented target endio return value: %d", r); 1031 BUG(); 1032 } 1033 } 1034 1035 free_tio(tio); 1036 dec_pending(io, error); 1037 } 1038 1039 /* 1040 * Return maximum size of I/O possible at the supplied sector up to the current 1041 * target boundary. 1042 */ 1043 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1044 { 1045 sector_t target_offset = dm_target_offset(ti, sector); 1046 1047 return ti->len - target_offset; 1048 } 1049 1050 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1051 { 1052 sector_t len = max_io_len_target_boundary(sector, ti); 1053 sector_t offset, max_len; 1054 1055 /* 1056 * Does the target need to split even further? 1057 */ 1058 if (ti->max_io_len) { 1059 offset = dm_target_offset(ti, sector); 1060 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1061 max_len = sector_div(offset, ti->max_io_len); 1062 else 1063 max_len = offset & (ti->max_io_len - 1); 1064 max_len = ti->max_io_len - max_len; 1065 1066 if (len > max_len) 1067 len = max_len; 1068 } 1069 1070 return len; 1071 } 1072 1073 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1074 { 1075 if (len > UINT_MAX) { 1076 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1077 (unsigned long long)len, UINT_MAX); 1078 ti->error = "Maximum size of target IO is too large"; 1079 return -EINVAL; 1080 } 1081 1082 ti->max_io_len = (uint32_t) len; 1083 1084 return 0; 1085 } 1086 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1087 1088 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1089 sector_t sector, int *srcu_idx) 1090 __acquires(md->io_barrier) 1091 { 1092 struct dm_table *map; 1093 struct dm_target *ti; 1094 1095 map = dm_get_live_table(md, srcu_idx); 1096 if (!map) 1097 return NULL; 1098 1099 ti = dm_table_find_target(map, sector); 1100 if (!ti) 1101 return NULL; 1102 1103 return ti; 1104 } 1105 1106 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1107 long nr_pages, void **kaddr, pfn_t *pfn) 1108 { 1109 struct mapped_device *md = dax_get_private(dax_dev); 1110 sector_t sector = pgoff * PAGE_SECTORS; 1111 struct dm_target *ti; 1112 long len, ret = -EIO; 1113 int srcu_idx; 1114 1115 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1116 1117 if (!ti) 1118 goto out; 1119 if (!ti->type->direct_access) 1120 goto out; 1121 len = max_io_len(sector, ti) / PAGE_SECTORS; 1122 if (len < 1) 1123 goto out; 1124 nr_pages = min(len, nr_pages); 1125 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1126 1127 out: 1128 dm_put_live_table(md, srcu_idx); 1129 1130 return ret; 1131 } 1132 1133 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1134 int blocksize, sector_t start, sector_t len) 1135 { 1136 struct mapped_device *md = dax_get_private(dax_dev); 1137 struct dm_table *map; 1138 int srcu_idx; 1139 bool ret; 1140 1141 map = dm_get_live_table(md, &srcu_idx); 1142 if (!map) 1143 return false; 1144 1145 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1146 1147 dm_put_live_table(md, srcu_idx); 1148 1149 return ret; 1150 } 1151 1152 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1153 void *addr, size_t bytes, struct iov_iter *i) 1154 { 1155 struct mapped_device *md = dax_get_private(dax_dev); 1156 sector_t sector = pgoff * PAGE_SECTORS; 1157 struct dm_target *ti; 1158 long ret = 0; 1159 int srcu_idx; 1160 1161 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1162 1163 if (!ti) 1164 goto out; 1165 if (!ti->type->dax_copy_from_iter) { 1166 ret = copy_from_iter(addr, bytes, i); 1167 goto out; 1168 } 1169 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1170 out: 1171 dm_put_live_table(md, srcu_idx); 1172 1173 return ret; 1174 } 1175 1176 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1177 void *addr, size_t bytes, struct iov_iter *i) 1178 { 1179 struct mapped_device *md = dax_get_private(dax_dev); 1180 sector_t sector = pgoff * PAGE_SECTORS; 1181 struct dm_target *ti; 1182 long ret = 0; 1183 int srcu_idx; 1184 1185 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1186 1187 if (!ti) 1188 goto out; 1189 if (!ti->type->dax_copy_to_iter) { 1190 ret = copy_to_iter(addr, bytes, i); 1191 goto out; 1192 } 1193 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1194 out: 1195 dm_put_live_table(md, srcu_idx); 1196 1197 return ret; 1198 } 1199 1200 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1201 size_t nr_pages) 1202 { 1203 struct mapped_device *md = dax_get_private(dax_dev); 1204 sector_t sector = pgoff * PAGE_SECTORS; 1205 struct dm_target *ti; 1206 int ret = -EIO; 1207 int srcu_idx; 1208 1209 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1210 1211 if (!ti) 1212 goto out; 1213 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1214 /* 1215 * ->zero_page_range() is mandatory dax operation. If we are 1216 * here, something is wrong. 1217 */ 1218 dm_put_live_table(md, srcu_idx); 1219 goto out; 1220 } 1221 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1222 1223 out: 1224 dm_put_live_table(md, srcu_idx); 1225 1226 return ret; 1227 } 1228 1229 /* 1230 * A target may call dm_accept_partial_bio only from the map routine. It is 1231 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1232 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1233 * 1234 * dm_accept_partial_bio informs the dm that the target only wants to process 1235 * additional n_sectors sectors of the bio and the rest of the data should be 1236 * sent in a next bio. 1237 * 1238 * A diagram that explains the arithmetics: 1239 * +--------------------+---------------+-------+ 1240 * | 1 | 2 | 3 | 1241 * +--------------------+---------------+-------+ 1242 * 1243 * <-------------- *tio->len_ptr ---------------> 1244 * <------- bi_size -------> 1245 * <-- n_sectors --> 1246 * 1247 * Region 1 was already iterated over with bio_advance or similar function. 1248 * (it may be empty if the target doesn't use bio_advance) 1249 * Region 2 is the remaining bio size that the target wants to process. 1250 * (it may be empty if region 1 is non-empty, although there is no reason 1251 * to make it empty) 1252 * The target requires that region 3 is to be sent in the next bio. 1253 * 1254 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1255 * the partially processed part (the sum of regions 1+2) must be the same for all 1256 * copies of the bio. 1257 */ 1258 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1259 { 1260 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1261 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1262 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1263 BUG_ON(bi_size > *tio->len_ptr); 1264 BUG_ON(n_sectors > bi_size); 1265 *tio->len_ptr -= bi_size - n_sectors; 1266 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1267 } 1268 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1269 1270 static blk_qc_t __map_bio(struct dm_target_io *tio) 1271 { 1272 int r; 1273 sector_t sector; 1274 struct bio *clone = &tio->clone; 1275 struct dm_io *io = tio->io; 1276 struct mapped_device *md = io->md; 1277 struct dm_target *ti = tio->ti; 1278 blk_qc_t ret = BLK_QC_T_NONE; 1279 1280 clone->bi_end_io = clone_endio; 1281 1282 /* 1283 * Map the clone. If r == 0 we don't need to do 1284 * anything, the target has assumed ownership of 1285 * this io. 1286 */ 1287 atomic_inc(&io->io_count); 1288 sector = clone->bi_iter.bi_sector; 1289 1290 r = ti->type->map(ti, clone); 1291 switch (r) { 1292 case DM_MAPIO_SUBMITTED: 1293 break; 1294 case DM_MAPIO_REMAPPED: 1295 /* the bio has been remapped so dispatch it */ 1296 trace_block_bio_remap(clone->bi_disk->queue, clone, 1297 bio_dev(io->orig_bio), sector); 1298 if (md->type == DM_TYPE_NVME_BIO_BASED) 1299 ret = direct_make_request(clone); 1300 else 1301 ret = generic_make_request(clone); 1302 break; 1303 case DM_MAPIO_KILL: 1304 free_tio(tio); 1305 dec_pending(io, BLK_STS_IOERR); 1306 break; 1307 case DM_MAPIO_REQUEUE: 1308 free_tio(tio); 1309 dec_pending(io, BLK_STS_DM_REQUEUE); 1310 break; 1311 default: 1312 DMWARN("unimplemented target map return value: %d", r); 1313 BUG(); 1314 } 1315 1316 return ret; 1317 } 1318 1319 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1320 { 1321 bio->bi_iter.bi_sector = sector; 1322 bio->bi_iter.bi_size = to_bytes(len); 1323 } 1324 1325 /* 1326 * Creates a bio that consists of range of complete bvecs. 1327 */ 1328 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1329 sector_t sector, unsigned len) 1330 { 1331 struct bio *clone = &tio->clone; 1332 1333 __bio_clone_fast(clone, bio); 1334 1335 bio_crypt_clone(clone, bio, GFP_NOIO); 1336 1337 if (bio_integrity(bio)) { 1338 int r; 1339 1340 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1341 !dm_target_passes_integrity(tio->ti->type))) { 1342 DMWARN("%s: the target %s doesn't support integrity data.", 1343 dm_device_name(tio->io->md), 1344 tio->ti->type->name); 1345 return -EIO; 1346 } 1347 1348 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1349 if (r < 0) 1350 return r; 1351 } 1352 1353 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1354 clone->bi_iter.bi_size = to_bytes(len); 1355 1356 if (bio_integrity(bio)) 1357 bio_integrity_trim(clone); 1358 1359 return 0; 1360 } 1361 1362 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1363 struct dm_target *ti, unsigned num_bios) 1364 { 1365 struct dm_target_io *tio; 1366 int try; 1367 1368 if (!num_bios) 1369 return; 1370 1371 if (num_bios == 1) { 1372 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1373 bio_list_add(blist, &tio->clone); 1374 return; 1375 } 1376 1377 for (try = 0; try < 2; try++) { 1378 int bio_nr; 1379 struct bio *bio; 1380 1381 if (try) 1382 mutex_lock(&ci->io->md->table_devices_lock); 1383 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1384 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1385 if (!tio) 1386 break; 1387 1388 bio_list_add(blist, &tio->clone); 1389 } 1390 if (try) 1391 mutex_unlock(&ci->io->md->table_devices_lock); 1392 if (bio_nr == num_bios) 1393 return; 1394 1395 while ((bio = bio_list_pop(blist))) { 1396 tio = container_of(bio, struct dm_target_io, clone); 1397 free_tio(tio); 1398 } 1399 } 1400 } 1401 1402 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1403 struct dm_target_io *tio, unsigned *len) 1404 { 1405 struct bio *clone = &tio->clone; 1406 1407 tio->len_ptr = len; 1408 1409 __bio_clone_fast(clone, ci->bio); 1410 if (len) 1411 bio_setup_sector(clone, ci->sector, *len); 1412 1413 return __map_bio(tio); 1414 } 1415 1416 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1417 unsigned num_bios, unsigned *len) 1418 { 1419 struct bio_list blist = BIO_EMPTY_LIST; 1420 struct bio *bio; 1421 struct dm_target_io *tio; 1422 1423 alloc_multiple_bios(&blist, ci, ti, num_bios); 1424 1425 while ((bio = bio_list_pop(&blist))) { 1426 tio = container_of(bio, struct dm_target_io, clone); 1427 (void) __clone_and_map_simple_bio(ci, tio, len); 1428 } 1429 } 1430 1431 static int __send_empty_flush(struct clone_info *ci) 1432 { 1433 unsigned target_nr = 0; 1434 struct dm_target *ti; 1435 1436 /* 1437 * Empty flush uses a statically initialized bio, as the base for 1438 * cloning. However, blkg association requires that a bdev is 1439 * associated with a gendisk, which doesn't happen until the bdev is 1440 * opened. So, blkg association is done at issue time of the flush 1441 * rather than when the device is created in alloc_dev(). 1442 */ 1443 bio_set_dev(ci->bio, ci->io->md->bdev); 1444 1445 BUG_ON(bio_has_data(ci->bio)); 1446 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1447 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1448 return 0; 1449 } 1450 1451 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1452 sector_t sector, unsigned *len) 1453 { 1454 struct bio *bio = ci->bio; 1455 struct dm_target_io *tio; 1456 int r; 1457 1458 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1459 tio->len_ptr = len; 1460 r = clone_bio(tio, bio, sector, *len); 1461 if (r < 0) { 1462 free_tio(tio); 1463 return r; 1464 } 1465 (void) __map_bio(tio); 1466 1467 return 0; 1468 } 1469 1470 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1471 1472 static unsigned get_num_discard_bios(struct dm_target *ti) 1473 { 1474 return ti->num_discard_bios; 1475 } 1476 1477 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1478 { 1479 return ti->num_secure_erase_bios; 1480 } 1481 1482 static unsigned get_num_write_same_bios(struct dm_target *ti) 1483 { 1484 return ti->num_write_same_bios; 1485 } 1486 1487 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1488 { 1489 return ti->num_write_zeroes_bios; 1490 } 1491 1492 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1493 unsigned num_bios) 1494 { 1495 unsigned len; 1496 1497 /* 1498 * Even though the device advertised support for this type of 1499 * request, that does not mean every target supports it, and 1500 * reconfiguration might also have changed that since the 1501 * check was performed. 1502 */ 1503 if (!num_bios) 1504 return -EOPNOTSUPP; 1505 1506 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1507 1508 __send_duplicate_bios(ci, ti, num_bios, &len); 1509 1510 ci->sector += len; 1511 ci->sector_count -= len; 1512 1513 return 0; 1514 } 1515 1516 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1517 { 1518 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1519 } 1520 1521 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1522 { 1523 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1524 } 1525 1526 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1527 { 1528 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1529 } 1530 1531 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1532 { 1533 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1534 } 1535 1536 static bool is_abnormal_io(struct bio *bio) 1537 { 1538 bool r = false; 1539 1540 switch (bio_op(bio)) { 1541 case REQ_OP_DISCARD: 1542 case REQ_OP_SECURE_ERASE: 1543 case REQ_OP_WRITE_SAME: 1544 case REQ_OP_WRITE_ZEROES: 1545 r = true; 1546 break; 1547 } 1548 1549 return r; 1550 } 1551 1552 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1553 int *result) 1554 { 1555 struct bio *bio = ci->bio; 1556 1557 if (bio_op(bio) == REQ_OP_DISCARD) 1558 *result = __send_discard(ci, ti); 1559 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1560 *result = __send_secure_erase(ci, ti); 1561 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1562 *result = __send_write_same(ci, ti); 1563 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1564 *result = __send_write_zeroes(ci, ti); 1565 else 1566 return false; 1567 1568 return true; 1569 } 1570 1571 /* 1572 * Select the correct strategy for processing a non-flush bio. 1573 */ 1574 static int __split_and_process_non_flush(struct clone_info *ci) 1575 { 1576 struct dm_target *ti; 1577 unsigned len; 1578 int r; 1579 1580 ti = dm_table_find_target(ci->map, ci->sector); 1581 if (!ti) 1582 return -EIO; 1583 1584 if (__process_abnormal_io(ci, ti, &r)) 1585 return r; 1586 1587 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1588 1589 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1590 if (r < 0) 1591 return r; 1592 1593 ci->sector += len; 1594 ci->sector_count -= len; 1595 1596 return 0; 1597 } 1598 1599 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1600 struct dm_table *map, struct bio *bio) 1601 { 1602 ci->map = map; 1603 ci->io = alloc_io(md, bio); 1604 ci->sector = bio->bi_iter.bi_sector; 1605 } 1606 1607 #define __dm_part_stat_sub(part, field, subnd) \ 1608 (part_stat_get(part, field) -= (subnd)) 1609 1610 /* 1611 * Entry point to split a bio into clones and submit them to the targets. 1612 */ 1613 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1614 struct dm_table *map, struct bio *bio) 1615 { 1616 struct clone_info ci; 1617 blk_qc_t ret = BLK_QC_T_NONE; 1618 int error = 0; 1619 1620 init_clone_info(&ci, md, map, bio); 1621 1622 if (bio->bi_opf & REQ_PREFLUSH) { 1623 struct bio flush_bio; 1624 1625 /* 1626 * Use an on-stack bio for this, it's safe since we don't 1627 * need to reference it after submit. It's just used as 1628 * the basis for the clone(s). 1629 */ 1630 bio_init(&flush_bio, NULL, 0); 1631 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1632 ci.bio = &flush_bio; 1633 ci.sector_count = 0; 1634 error = __send_empty_flush(&ci); 1635 bio_uninit(ci.bio); 1636 /* dec_pending submits any data associated with flush */ 1637 } else if (op_is_zone_mgmt(bio_op(bio))) { 1638 ci.bio = bio; 1639 ci.sector_count = 0; 1640 error = __split_and_process_non_flush(&ci); 1641 } else { 1642 ci.bio = bio; 1643 ci.sector_count = bio_sectors(bio); 1644 while (ci.sector_count && !error) { 1645 error = __split_and_process_non_flush(&ci); 1646 if (current->bio_list && ci.sector_count && !error) { 1647 /* 1648 * Remainder must be passed to generic_make_request() 1649 * so that it gets handled *after* bios already submitted 1650 * have been completely processed. 1651 * We take a clone of the original to store in 1652 * ci.io->orig_bio to be used by end_io_acct() and 1653 * for dec_pending to use for completion handling. 1654 */ 1655 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1656 GFP_NOIO, &md->queue->bio_split); 1657 ci.io->orig_bio = b; 1658 1659 /* 1660 * Adjust IO stats for each split, otherwise upon queue 1661 * reentry there will be redundant IO accounting. 1662 * NOTE: this is a stop-gap fix, a proper fix involves 1663 * significant refactoring of DM core's bio splitting 1664 * (by eliminating DM's splitting and just using bio_split) 1665 */ 1666 part_stat_lock(); 1667 __dm_part_stat_sub(&dm_disk(md)->part0, 1668 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1669 part_stat_unlock(); 1670 1671 bio_chain(b, bio); 1672 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1673 ret = generic_make_request(bio); 1674 break; 1675 } 1676 } 1677 } 1678 1679 /* drop the extra reference count */ 1680 dec_pending(ci.io, errno_to_blk_status(error)); 1681 return ret; 1682 } 1683 1684 /* 1685 * Optimized variant of __split_and_process_bio that leverages the 1686 * fact that targets that use it do _not_ have a need to split bios. 1687 */ 1688 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1689 struct bio *bio, struct dm_target *ti) 1690 { 1691 struct clone_info ci; 1692 blk_qc_t ret = BLK_QC_T_NONE; 1693 int error = 0; 1694 1695 init_clone_info(&ci, md, map, bio); 1696 1697 if (bio->bi_opf & REQ_PREFLUSH) { 1698 struct bio flush_bio; 1699 1700 /* 1701 * Use an on-stack bio for this, it's safe since we don't 1702 * need to reference it after submit. It's just used as 1703 * the basis for the clone(s). 1704 */ 1705 bio_init(&flush_bio, NULL, 0); 1706 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1707 ci.bio = &flush_bio; 1708 ci.sector_count = 0; 1709 error = __send_empty_flush(&ci); 1710 bio_uninit(ci.bio); 1711 /* dec_pending submits any data associated with flush */ 1712 } else { 1713 struct dm_target_io *tio; 1714 1715 ci.bio = bio; 1716 ci.sector_count = bio_sectors(bio); 1717 if (__process_abnormal_io(&ci, ti, &error)) 1718 goto out; 1719 1720 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1721 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1722 } 1723 out: 1724 /* drop the extra reference count */ 1725 dec_pending(ci.io, errno_to_blk_status(error)); 1726 return ret; 1727 } 1728 1729 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1730 { 1731 unsigned len, sector_count; 1732 1733 sector_count = bio_sectors(*bio); 1734 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1735 1736 if (sector_count > len) { 1737 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1738 1739 bio_chain(split, *bio); 1740 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1741 generic_make_request(*bio); 1742 *bio = split; 1743 } 1744 } 1745 1746 static blk_qc_t dm_process_bio(struct mapped_device *md, 1747 struct dm_table *map, struct bio *bio) 1748 { 1749 blk_qc_t ret = BLK_QC_T_NONE; 1750 struct dm_target *ti = md->immutable_target; 1751 1752 if (unlikely(!map)) { 1753 bio_io_error(bio); 1754 return ret; 1755 } 1756 1757 if (!ti) { 1758 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1759 if (unlikely(!ti)) { 1760 bio_io_error(bio); 1761 return ret; 1762 } 1763 } 1764 1765 /* 1766 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1767 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1768 * won't be imposed. 1769 */ 1770 if (current->bio_list) { 1771 if (is_abnormal_io(bio)) 1772 blk_queue_split(md->queue, &bio); 1773 else 1774 dm_queue_split(md, ti, &bio); 1775 } 1776 1777 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1778 return __process_bio(md, map, bio, ti); 1779 else 1780 return __split_and_process_bio(md, map, bio); 1781 } 1782 1783 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1784 { 1785 struct mapped_device *md = q->queuedata; 1786 blk_qc_t ret = BLK_QC_T_NONE; 1787 int srcu_idx; 1788 struct dm_table *map; 1789 1790 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1791 /* 1792 * We are called with a live reference on q_usage_counter, but 1793 * that one will be released as soon as we return. Grab an 1794 * extra one as blk_mq_make_request expects to be able to 1795 * consume a reference (which lives until the request is freed 1796 * in case a request is allocated). 1797 */ 1798 percpu_ref_get(&q->q_usage_counter); 1799 return blk_mq_make_request(q, bio); 1800 } 1801 1802 map = dm_get_live_table(md, &srcu_idx); 1803 1804 /* if we're suspended, we have to queue this io for later */ 1805 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1806 dm_put_live_table(md, srcu_idx); 1807 1808 if (!(bio->bi_opf & REQ_RAHEAD)) 1809 queue_io(md, bio); 1810 else 1811 bio_io_error(bio); 1812 return ret; 1813 } 1814 1815 ret = dm_process_bio(md, map, bio); 1816 1817 dm_put_live_table(md, srcu_idx); 1818 return ret; 1819 } 1820 1821 static int dm_any_congested(void *congested_data, int bdi_bits) 1822 { 1823 int r = bdi_bits; 1824 struct mapped_device *md = congested_data; 1825 struct dm_table *map; 1826 1827 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1828 if (dm_request_based(md)) { 1829 /* 1830 * With request-based DM we only need to check the 1831 * top-level queue for congestion. 1832 */ 1833 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1834 r = bdi->wb.congested->state & bdi_bits; 1835 } else { 1836 map = dm_get_live_table_fast(md); 1837 if (map) 1838 r = dm_table_any_congested(map, bdi_bits); 1839 dm_put_live_table_fast(md); 1840 } 1841 } 1842 1843 return r; 1844 } 1845 1846 /*----------------------------------------------------------------- 1847 * An IDR is used to keep track of allocated minor numbers. 1848 *---------------------------------------------------------------*/ 1849 static void free_minor(int minor) 1850 { 1851 spin_lock(&_minor_lock); 1852 idr_remove(&_minor_idr, minor); 1853 spin_unlock(&_minor_lock); 1854 } 1855 1856 /* 1857 * See if the device with a specific minor # is free. 1858 */ 1859 static int specific_minor(int minor) 1860 { 1861 int r; 1862 1863 if (minor >= (1 << MINORBITS)) 1864 return -EINVAL; 1865 1866 idr_preload(GFP_KERNEL); 1867 spin_lock(&_minor_lock); 1868 1869 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1870 1871 spin_unlock(&_minor_lock); 1872 idr_preload_end(); 1873 if (r < 0) 1874 return r == -ENOSPC ? -EBUSY : r; 1875 return 0; 1876 } 1877 1878 static int next_free_minor(int *minor) 1879 { 1880 int r; 1881 1882 idr_preload(GFP_KERNEL); 1883 spin_lock(&_minor_lock); 1884 1885 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1886 1887 spin_unlock(&_minor_lock); 1888 idr_preload_end(); 1889 if (r < 0) 1890 return r; 1891 *minor = r; 1892 return 0; 1893 } 1894 1895 static const struct block_device_operations dm_blk_dops; 1896 static const struct dax_operations dm_dax_ops; 1897 1898 static void dm_wq_work(struct work_struct *work); 1899 1900 static void cleanup_mapped_device(struct mapped_device *md) 1901 { 1902 if (md->wq) 1903 destroy_workqueue(md->wq); 1904 bioset_exit(&md->bs); 1905 bioset_exit(&md->io_bs); 1906 1907 if (md->dax_dev) { 1908 kill_dax(md->dax_dev); 1909 put_dax(md->dax_dev); 1910 md->dax_dev = NULL; 1911 } 1912 1913 if (md->disk) { 1914 spin_lock(&_minor_lock); 1915 md->disk->private_data = NULL; 1916 spin_unlock(&_minor_lock); 1917 del_gendisk(md->disk); 1918 put_disk(md->disk); 1919 } 1920 1921 if (md->queue) 1922 blk_cleanup_queue(md->queue); 1923 1924 cleanup_srcu_struct(&md->io_barrier); 1925 1926 if (md->bdev) { 1927 bdput(md->bdev); 1928 md->bdev = NULL; 1929 } 1930 1931 mutex_destroy(&md->suspend_lock); 1932 mutex_destroy(&md->type_lock); 1933 mutex_destroy(&md->table_devices_lock); 1934 1935 dm_mq_cleanup_mapped_device(md); 1936 } 1937 1938 /* 1939 * Allocate and initialise a blank device with a given minor. 1940 */ 1941 static struct mapped_device *alloc_dev(int minor) 1942 { 1943 int r, numa_node_id = dm_get_numa_node(); 1944 struct mapped_device *md; 1945 void *old_md; 1946 1947 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1948 if (!md) { 1949 DMWARN("unable to allocate device, out of memory."); 1950 return NULL; 1951 } 1952 1953 if (!try_module_get(THIS_MODULE)) 1954 goto bad_module_get; 1955 1956 /* get a minor number for the dev */ 1957 if (minor == DM_ANY_MINOR) 1958 r = next_free_minor(&minor); 1959 else 1960 r = specific_minor(minor); 1961 if (r < 0) 1962 goto bad_minor; 1963 1964 r = init_srcu_struct(&md->io_barrier); 1965 if (r < 0) 1966 goto bad_io_barrier; 1967 1968 md->numa_node_id = numa_node_id; 1969 md->init_tio_pdu = false; 1970 md->type = DM_TYPE_NONE; 1971 mutex_init(&md->suspend_lock); 1972 mutex_init(&md->type_lock); 1973 mutex_init(&md->table_devices_lock); 1974 spin_lock_init(&md->deferred_lock); 1975 atomic_set(&md->holders, 1); 1976 atomic_set(&md->open_count, 0); 1977 atomic_set(&md->event_nr, 0); 1978 atomic_set(&md->uevent_seq, 0); 1979 INIT_LIST_HEAD(&md->uevent_list); 1980 INIT_LIST_HEAD(&md->table_devices); 1981 spin_lock_init(&md->uevent_lock); 1982 1983 /* 1984 * default to bio-based required ->make_request_fn until DM 1985 * table is loaded and md->type established. If request-based 1986 * table is loaded: blk-mq will override accordingly. 1987 */ 1988 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 1989 if (!md->queue) 1990 goto bad; 1991 md->queue->queuedata = md; 1992 1993 md->disk = alloc_disk_node(1, md->numa_node_id); 1994 if (!md->disk) 1995 goto bad; 1996 1997 init_waitqueue_head(&md->wait); 1998 INIT_WORK(&md->work, dm_wq_work); 1999 init_waitqueue_head(&md->eventq); 2000 init_completion(&md->kobj_holder.completion); 2001 2002 md->disk->major = _major; 2003 md->disk->first_minor = minor; 2004 md->disk->fops = &dm_blk_dops; 2005 md->disk->queue = md->queue; 2006 md->disk->private_data = md; 2007 sprintf(md->disk->disk_name, "dm-%d", minor); 2008 2009 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2010 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2011 &dm_dax_ops, 0); 2012 if (IS_ERR(md->dax_dev)) 2013 goto bad; 2014 } 2015 2016 add_disk_no_queue_reg(md->disk); 2017 format_dev_t(md->name, MKDEV(_major, minor)); 2018 2019 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2020 if (!md->wq) 2021 goto bad; 2022 2023 md->bdev = bdget_disk(md->disk, 0); 2024 if (!md->bdev) 2025 goto bad; 2026 2027 dm_stats_init(&md->stats); 2028 2029 /* Populate the mapping, nobody knows we exist yet */ 2030 spin_lock(&_minor_lock); 2031 old_md = idr_replace(&_minor_idr, md, minor); 2032 spin_unlock(&_minor_lock); 2033 2034 BUG_ON(old_md != MINOR_ALLOCED); 2035 2036 return md; 2037 2038 bad: 2039 cleanup_mapped_device(md); 2040 bad_io_barrier: 2041 free_minor(minor); 2042 bad_minor: 2043 module_put(THIS_MODULE); 2044 bad_module_get: 2045 kvfree(md); 2046 return NULL; 2047 } 2048 2049 static void unlock_fs(struct mapped_device *md); 2050 2051 static void free_dev(struct mapped_device *md) 2052 { 2053 int minor = MINOR(disk_devt(md->disk)); 2054 2055 unlock_fs(md); 2056 2057 cleanup_mapped_device(md); 2058 2059 free_table_devices(&md->table_devices); 2060 dm_stats_cleanup(&md->stats); 2061 free_minor(minor); 2062 2063 module_put(THIS_MODULE); 2064 kvfree(md); 2065 } 2066 2067 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2068 { 2069 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2070 int ret = 0; 2071 2072 if (dm_table_bio_based(t)) { 2073 /* 2074 * The md may already have mempools that need changing. 2075 * If so, reload bioset because front_pad may have changed 2076 * because a different table was loaded. 2077 */ 2078 bioset_exit(&md->bs); 2079 bioset_exit(&md->io_bs); 2080 2081 } else if (bioset_initialized(&md->bs)) { 2082 /* 2083 * There's no need to reload with request-based dm 2084 * because the size of front_pad doesn't change. 2085 * Note for future: If you are to reload bioset, 2086 * prep-ed requests in the queue may refer 2087 * to bio from the old bioset, so you must walk 2088 * through the queue to unprep. 2089 */ 2090 goto out; 2091 } 2092 2093 BUG_ON(!p || 2094 bioset_initialized(&md->bs) || 2095 bioset_initialized(&md->io_bs)); 2096 2097 ret = bioset_init_from_src(&md->bs, &p->bs); 2098 if (ret) 2099 goto out; 2100 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2101 if (ret) 2102 bioset_exit(&md->bs); 2103 out: 2104 /* mempool bind completed, no longer need any mempools in the table */ 2105 dm_table_free_md_mempools(t); 2106 return ret; 2107 } 2108 2109 /* 2110 * Bind a table to the device. 2111 */ 2112 static void event_callback(void *context) 2113 { 2114 unsigned long flags; 2115 LIST_HEAD(uevents); 2116 struct mapped_device *md = (struct mapped_device *) context; 2117 2118 spin_lock_irqsave(&md->uevent_lock, flags); 2119 list_splice_init(&md->uevent_list, &uevents); 2120 spin_unlock_irqrestore(&md->uevent_lock, flags); 2121 2122 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2123 2124 atomic_inc(&md->event_nr); 2125 wake_up(&md->eventq); 2126 dm_issue_global_event(); 2127 } 2128 2129 /* 2130 * Protected by md->suspend_lock obtained by dm_swap_table(). 2131 */ 2132 static void __set_size(struct mapped_device *md, sector_t size) 2133 { 2134 lockdep_assert_held(&md->suspend_lock); 2135 2136 set_capacity(md->disk, size); 2137 2138 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2139 } 2140 2141 /* 2142 * Returns old map, which caller must destroy. 2143 */ 2144 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2145 struct queue_limits *limits) 2146 { 2147 struct dm_table *old_map; 2148 struct request_queue *q = md->queue; 2149 bool request_based = dm_table_request_based(t); 2150 sector_t size; 2151 int ret; 2152 2153 lockdep_assert_held(&md->suspend_lock); 2154 2155 size = dm_table_get_size(t); 2156 2157 /* 2158 * Wipe any geometry if the size of the table changed. 2159 */ 2160 if (size != dm_get_size(md)) 2161 memset(&md->geometry, 0, sizeof(md->geometry)); 2162 2163 __set_size(md, size); 2164 2165 dm_table_event_callback(t, event_callback, md); 2166 2167 /* 2168 * The queue hasn't been stopped yet, if the old table type wasn't 2169 * for request-based during suspension. So stop it to prevent 2170 * I/O mapping before resume. 2171 * This must be done before setting the queue restrictions, 2172 * because request-based dm may be run just after the setting. 2173 */ 2174 if (request_based) 2175 dm_stop_queue(q); 2176 2177 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2178 /* 2179 * Leverage the fact that request-based DM targets and 2180 * NVMe bio based targets are immutable singletons 2181 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2182 * and __process_bio. 2183 */ 2184 md->immutable_target = dm_table_get_immutable_target(t); 2185 } 2186 2187 ret = __bind_mempools(md, t); 2188 if (ret) { 2189 old_map = ERR_PTR(ret); 2190 goto out; 2191 } 2192 2193 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2194 rcu_assign_pointer(md->map, (void *)t); 2195 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2196 2197 dm_table_set_restrictions(t, q, limits); 2198 if (old_map) 2199 dm_sync_table(md); 2200 2201 out: 2202 return old_map; 2203 } 2204 2205 /* 2206 * Returns unbound table for the caller to free. 2207 */ 2208 static struct dm_table *__unbind(struct mapped_device *md) 2209 { 2210 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2211 2212 if (!map) 2213 return NULL; 2214 2215 dm_table_event_callback(map, NULL, NULL); 2216 RCU_INIT_POINTER(md->map, NULL); 2217 dm_sync_table(md); 2218 2219 return map; 2220 } 2221 2222 /* 2223 * Constructor for a new device. 2224 */ 2225 int dm_create(int minor, struct mapped_device **result) 2226 { 2227 int r; 2228 struct mapped_device *md; 2229 2230 md = alloc_dev(minor); 2231 if (!md) 2232 return -ENXIO; 2233 2234 r = dm_sysfs_init(md); 2235 if (r) { 2236 free_dev(md); 2237 return r; 2238 } 2239 2240 *result = md; 2241 return 0; 2242 } 2243 2244 /* 2245 * Functions to manage md->type. 2246 * All are required to hold md->type_lock. 2247 */ 2248 void dm_lock_md_type(struct mapped_device *md) 2249 { 2250 mutex_lock(&md->type_lock); 2251 } 2252 2253 void dm_unlock_md_type(struct mapped_device *md) 2254 { 2255 mutex_unlock(&md->type_lock); 2256 } 2257 2258 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2259 { 2260 BUG_ON(!mutex_is_locked(&md->type_lock)); 2261 md->type = type; 2262 } 2263 2264 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2265 { 2266 return md->type; 2267 } 2268 2269 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2270 { 2271 return md->immutable_target_type; 2272 } 2273 2274 /* 2275 * The queue_limits are only valid as long as you have a reference 2276 * count on 'md'. 2277 */ 2278 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2279 { 2280 BUG_ON(!atomic_read(&md->holders)); 2281 return &md->queue->limits; 2282 } 2283 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2284 2285 static void dm_init_congested_fn(struct mapped_device *md) 2286 { 2287 md->queue->backing_dev_info->congested_data = md; 2288 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2289 } 2290 2291 /* 2292 * Setup the DM device's queue based on md's type 2293 */ 2294 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2295 { 2296 int r; 2297 struct queue_limits limits; 2298 enum dm_queue_mode type = dm_get_md_type(md); 2299 2300 switch (type) { 2301 case DM_TYPE_REQUEST_BASED: 2302 r = dm_mq_init_request_queue(md, t); 2303 if (r) { 2304 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2305 return r; 2306 } 2307 dm_init_congested_fn(md); 2308 break; 2309 case DM_TYPE_BIO_BASED: 2310 case DM_TYPE_DAX_BIO_BASED: 2311 case DM_TYPE_NVME_BIO_BASED: 2312 dm_init_congested_fn(md); 2313 break; 2314 case DM_TYPE_NONE: 2315 WARN_ON_ONCE(true); 2316 break; 2317 } 2318 2319 r = dm_calculate_queue_limits(t, &limits); 2320 if (r) { 2321 DMERR("Cannot calculate initial queue limits"); 2322 return r; 2323 } 2324 dm_table_set_restrictions(t, md->queue, &limits); 2325 blk_register_queue(md->disk); 2326 2327 return 0; 2328 } 2329 2330 struct mapped_device *dm_get_md(dev_t dev) 2331 { 2332 struct mapped_device *md; 2333 unsigned minor = MINOR(dev); 2334 2335 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2336 return NULL; 2337 2338 spin_lock(&_minor_lock); 2339 2340 md = idr_find(&_minor_idr, minor); 2341 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2342 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2343 md = NULL; 2344 goto out; 2345 } 2346 dm_get(md); 2347 out: 2348 spin_unlock(&_minor_lock); 2349 2350 return md; 2351 } 2352 EXPORT_SYMBOL_GPL(dm_get_md); 2353 2354 void *dm_get_mdptr(struct mapped_device *md) 2355 { 2356 return md->interface_ptr; 2357 } 2358 2359 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2360 { 2361 md->interface_ptr = ptr; 2362 } 2363 2364 void dm_get(struct mapped_device *md) 2365 { 2366 atomic_inc(&md->holders); 2367 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2368 } 2369 2370 int dm_hold(struct mapped_device *md) 2371 { 2372 spin_lock(&_minor_lock); 2373 if (test_bit(DMF_FREEING, &md->flags)) { 2374 spin_unlock(&_minor_lock); 2375 return -EBUSY; 2376 } 2377 dm_get(md); 2378 spin_unlock(&_minor_lock); 2379 return 0; 2380 } 2381 EXPORT_SYMBOL_GPL(dm_hold); 2382 2383 const char *dm_device_name(struct mapped_device *md) 2384 { 2385 return md->name; 2386 } 2387 EXPORT_SYMBOL_GPL(dm_device_name); 2388 2389 static void __dm_destroy(struct mapped_device *md, bool wait) 2390 { 2391 struct dm_table *map; 2392 int srcu_idx; 2393 2394 might_sleep(); 2395 2396 spin_lock(&_minor_lock); 2397 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2398 set_bit(DMF_FREEING, &md->flags); 2399 spin_unlock(&_minor_lock); 2400 2401 blk_set_queue_dying(md->queue); 2402 2403 /* 2404 * Take suspend_lock so that presuspend and postsuspend methods 2405 * do not race with internal suspend. 2406 */ 2407 mutex_lock(&md->suspend_lock); 2408 map = dm_get_live_table(md, &srcu_idx); 2409 if (!dm_suspended_md(md)) { 2410 dm_table_presuspend_targets(map); 2411 set_bit(DMF_SUSPENDED, &md->flags); 2412 set_bit(DMF_POST_SUSPENDING, &md->flags); 2413 dm_table_postsuspend_targets(map); 2414 } 2415 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2416 dm_put_live_table(md, srcu_idx); 2417 mutex_unlock(&md->suspend_lock); 2418 2419 /* 2420 * Rare, but there may be I/O requests still going to complete, 2421 * for example. Wait for all references to disappear. 2422 * No one should increment the reference count of the mapped_device, 2423 * after the mapped_device state becomes DMF_FREEING. 2424 */ 2425 if (wait) 2426 while (atomic_read(&md->holders)) 2427 msleep(1); 2428 else if (atomic_read(&md->holders)) 2429 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2430 dm_device_name(md), atomic_read(&md->holders)); 2431 2432 dm_sysfs_exit(md); 2433 dm_table_destroy(__unbind(md)); 2434 free_dev(md); 2435 } 2436 2437 void dm_destroy(struct mapped_device *md) 2438 { 2439 __dm_destroy(md, true); 2440 } 2441 2442 void dm_destroy_immediate(struct mapped_device *md) 2443 { 2444 __dm_destroy(md, false); 2445 } 2446 2447 void dm_put(struct mapped_device *md) 2448 { 2449 atomic_dec(&md->holders); 2450 } 2451 EXPORT_SYMBOL_GPL(dm_put); 2452 2453 static bool md_in_flight_bios(struct mapped_device *md) 2454 { 2455 int cpu; 2456 struct hd_struct *part = &dm_disk(md)->part0; 2457 long sum = 0; 2458 2459 for_each_possible_cpu(cpu) { 2460 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2461 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2462 } 2463 2464 return sum != 0; 2465 } 2466 2467 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state) 2468 { 2469 int r = 0; 2470 DEFINE_WAIT(wait); 2471 2472 while (true) { 2473 prepare_to_wait(&md->wait, &wait, task_state); 2474 2475 if (!md_in_flight_bios(md)) 2476 break; 2477 2478 if (signal_pending_state(task_state, current)) { 2479 r = -EINTR; 2480 break; 2481 } 2482 2483 io_schedule(); 2484 } 2485 finish_wait(&md->wait, &wait); 2486 2487 return r; 2488 } 2489 2490 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2491 { 2492 int r = 0; 2493 2494 if (!queue_is_mq(md->queue)) 2495 return dm_wait_for_bios_completion(md, task_state); 2496 2497 while (true) { 2498 if (!blk_mq_queue_inflight(md->queue)) 2499 break; 2500 2501 if (signal_pending_state(task_state, current)) { 2502 r = -EINTR; 2503 break; 2504 } 2505 2506 msleep(5); 2507 } 2508 2509 return r; 2510 } 2511 2512 /* 2513 * Process the deferred bios 2514 */ 2515 static void dm_wq_work(struct work_struct *work) 2516 { 2517 struct mapped_device *md = container_of(work, struct mapped_device, 2518 work); 2519 struct bio *c; 2520 int srcu_idx; 2521 struct dm_table *map; 2522 2523 map = dm_get_live_table(md, &srcu_idx); 2524 2525 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2526 spin_lock_irq(&md->deferred_lock); 2527 c = bio_list_pop(&md->deferred); 2528 spin_unlock_irq(&md->deferred_lock); 2529 2530 if (!c) 2531 break; 2532 2533 if (dm_request_based(md)) 2534 (void) generic_make_request(c); 2535 else 2536 (void) dm_process_bio(md, map, c); 2537 } 2538 2539 dm_put_live_table(md, srcu_idx); 2540 } 2541 2542 static void dm_queue_flush(struct mapped_device *md) 2543 { 2544 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2545 smp_mb__after_atomic(); 2546 queue_work(md->wq, &md->work); 2547 } 2548 2549 /* 2550 * Swap in a new table, returning the old one for the caller to destroy. 2551 */ 2552 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2553 { 2554 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2555 struct queue_limits limits; 2556 int r; 2557 2558 mutex_lock(&md->suspend_lock); 2559 2560 /* device must be suspended */ 2561 if (!dm_suspended_md(md)) 2562 goto out; 2563 2564 /* 2565 * If the new table has no data devices, retain the existing limits. 2566 * This helps multipath with queue_if_no_path if all paths disappear, 2567 * then new I/O is queued based on these limits, and then some paths 2568 * reappear. 2569 */ 2570 if (dm_table_has_no_data_devices(table)) { 2571 live_map = dm_get_live_table_fast(md); 2572 if (live_map) 2573 limits = md->queue->limits; 2574 dm_put_live_table_fast(md); 2575 } 2576 2577 if (!live_map) { 2578 r = dm_calculate_queue_limits(table, &limits); 2579 if (r) { 2580 map = ERR_PTR(r); 2581 goto out; 2582 } 2583 } 2584 2585 map = __bind(md, table, &limits); 2586 dm_issue_global_event(); 2587 2588 out: 2589 mutex_unlock(&md->suspend_lock); 2590 return map; 2591 } 2592 2593 /* 2594 * Functions to lock and unlock any filesystem running on the 2595 * device. 2596 */ 2597 static int lock_fs(struct mapped_device *md) 2598 { 2599 int r; 2600 2601 WARN_ON(md->frozen_sb); 2602 2603 md->frozen_sb = freeze_bdev(md->bdev); 2604 if (IS_ERR(md->frozen_sb)) { 2605 r = PTR_ERR(md->frozen_sb); 2606 md->frozen_sb = NULL; 2607 return r; 2608 } 2609 2610 set_bit(DMF_FROZEN, &md->flags); 2611 2612 return 0; 2613 } 2614 2615 static void unlock_fs(struct mapped_device *md) 2616 { 2617 if (!test_bit(DMF_FROZEN, &md->flags)) 2618 return; 2619 2620 thaw_bdev(md->bdev, md->frozen_sb); 2621 md->frozen_sb = NULL; 2622 clear_bit(DMF_FROZEN, &md->flags); 2623 } 2624 2625 /* 2626 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2627 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2628 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2629 * 2630 * If __dm_suspend returns 0, the device is completely quiescent 2631 * now. There is no request-processing activity. All new requests 2632 * are being added to md->deferred list. 2633 */ 2634 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2635 unsigned suspend_flags, long task_state, 2636 int dmf_suspended_flag) 2637 { 2638 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2639 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2640 int r; 2641 2642 lockdep_assert_held(&md->suspend_lock); 2643 2644 /* 2645 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2646 * This flag is cleared before dm_suspend returns. 2647 */ 2648 if (noflush) 2649 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2650 else 2651 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2652 2653 /* 2654 * This gets reverted if there's an error later and the targets 2655 * provide the .presuspend_undo hook. 2656 */ 2657 dm_table_presuspend_targets(map); 2658 2659 /* 2660 * Flush I/O to the device. 2661 * Any I/O submitted after lock_fs() may not be flushed. 2662 * noflush takes precedence over do_lockfs. 2663 * (lock_fs() flushes I/Os and waits for them to complete.) 2664 */ 2665 if (!noflush && do_lockfs) { 2666 r = lock_fs(md); 2667 if (r) { 2668 dm_table_presuspend_undo_targets(map); 2669 return r; 2670 } 2671 } 2672 2673 /* 2674 * Here we must make sure that no processes are submitting requests 2675 * to target drivers i.e. no one may be executing 2676 * __split_and_process_bio. This is called from dm_request and 2677 * dm_wq_work. 2678 * 2679 * To get all processes out of __split_and_process_bio in dm_request, 2680 * we take the write lock. To prevent any process from reentering 2681 * __split_and_process_bio from dm_request and quiesce the thread 2682 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2683 * flush_workqueue(md->wq). 2684 */ 2685 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2686 if (map) 2687 synchronize_srcu(&md->io_barrier); 2688 2689 /* 2690 * Stop md->queue before flushing md->wq in case request-based 2691 * dm defers requests to md->wq from md->queue. 2692 */ 2693 if (dm_request_based(md)) 2694 dm_stop_queue(md->queue); 2695 2696 flush_workqueue(md->wq); 2697 2698 /* 2699 * At this point no more requests are entering target request routines. 2700 * We call dm_wait_for_completion to wait for all existing requests 2701 * to finish. 2702 */ 2703 r = dm_wait_for_completion(md, task_state); 2704 if (!r) 2705 set_bit(dmf_suspended_flag, &md->flags); 2706 2707 if (noflush) 2708 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2709 if (map) 2710 synchronize_srcu(&md->io_barrier); 2711 2712 /* were we interrupted ? */ 2713 if (r < 0) { 2714 dm_queue_flush(md); 2715 2716 if (dm_request_based(md)) 2717 dm_start_queue(md->queue); 2718 2719 unlock_fs(md); 2720 dm_table_presuspend_undo_targets(map); 2721 /* pushback list is already flushed, so skip flush */ 2722 } 2723 2724 return r; 2725 } 2726 2727 /* 2728 * We need to be able to change a mapping table under a mounted 2729 * filesystem. For example we might want to move some data in 2730 * the background. Before the table can be swapped with 2731 * dm_bind_table, dm_suspend must be called to flush any in 2732 * flight bios and ensure that any further io gets deferred. 2733 */ 2734 /* 2735 * Suspend mechanism in request-based dm. 2736 * 2737 * 1. Flush all I/Os by lock_fs() if needed. 2738 * 2. Stop dispatching any I/O by stopping the request_queue. 2739 * 3. Wait for all in-flight I/Os to be completed or requeued. 2740 * 2741 * To abort suspend, start the request_queue. 2742 */ 2743 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2744 { 2745 struct dm_table *map = NULL; 2746 int r = 0; 2747 2748 retry: 2749 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2750 2751 if (dm_suspended_md(md)) { 2752 r = -EINVAL; 2753 goto out_unlock; 2754 } 2755 2756 if (dm_suspended_internally_md(md)) { 2757 /* already internally suspended, wait for internal resume */ 2758 mutex_unlock(&md->suspend_lock); 2759 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2760 if (r) 2761 return r; 2762 goto retry; 2763 } 2764 2765 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2766 2767 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2768 if (r) 2769 goto out_unlock; 2770 2771 set_bit(DMF_POST_SUSPENDING, &md->flags); 2772 dm_table_postsuspend_targets(map); 2773 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2774 2775 out_unlock: 2776 mutex_unlock(&md->suspend_lock); 2777 return r; 2778 } 2779 2780 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2781 { 2782 if (map) { 2783 int r = dm_table_resume_targets(map); 2784 if (r) 2785 return r; 2786 } 2787 2788 dm_queue_flush(md); 2789 2790 /* 2791 * Flushing deferred I/Os must be done after targets are resumed 2792 * so that mapping of targets can work correctly. 2793 * Request-based dm is queueing the deferred I/Os in its request_queue. 2794 */ 2795 if (dm_request_based(md)) 2796 dm_start_queue(md->queue); 2797 2798 unlock_fs(md); 2799 2800 return 0; 2801 } 2802 2803 int dm_resume(struct mapped_device *md) 2804 { 2805 int r; 2806 struct dm_table *map = NULL; 2807 2808 retry: 2809 r = -EINVAL; 2810 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2811 2812 if (!dm_suspended_md(md)) 2813 goto out; 2814 2815 if (dm_suspended_internally_md(md)) { 2816 /* already internally suspended, wait for internal resume */ 2817 mutex_unlock(&md->suspend_lock); 2818 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2819 if (r) 2820 return r; 2821 goto retry; 2822 } 2823 2824 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2825 if (!map || !dm_table_get_size(map)) 2826 goto out; 2827 2828 r = __dm_resume(md, map); 2829 if (r) 2830 goto out; 2831 2832 clear_bit(DMF_SUSPENDED, &md->flags); 2833 out: 2834 mutex_unlock(&md->suspend_lock); 2835 2836 return r; 2837 } 2838 2839 /* 2840 * Internal suspend/resume works like userspace-driven suspend. It waits 2841 * until all bios finish and prevents issuing new bios to the target drivers. 2842 * It may be used only from the kernel. 2843 */ 2844 2845 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2846 { 2847 struct dm_table *map = NULL; 2848 2849 lockdep_assert_held(&md->suspend_lock); 2850 2851 if (md->internal_suspend_count++) 2852 return; /* nested internal suspend */ 2853 2854 if (dm_suspended_md(md)) { 2855 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2856 return; /* nest suspend */ 2857 } 2858 2859 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2860 2861 /* 2862 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2863 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2864 * would require changing .presuspend to return an error -- avoid this 2865 * until there is a need for more elaborate variants of internal suspend. 2866 */ 2867 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2868 DMF_SUSPENDED_INTERNALLY); 2869 2870 set_bit(DMF_POST_SUSPENDING, &md->flags); 2871 dm_table_postsuspend_targets(map); 2872 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2873 } 2874 2875 static void __dm_internal_resume(struct mapped_device *md) 2876 { 2877 BUG_ON(!md->internal_suspend_count); 2878 2879 if (--md->internal_suspend_count) 2880 return; /* resume from nested internal suspend */ 2881 2882 if (dm_suspended_md(md)) 2883 goto done; /* resume from nested suspend */ 2884 2885 /* 2886 * NOTE: existing callers don't need to call dm_table_resume_targets 2887 * (which may fail -- so best to avoid it for now by passing NULL map) 2888 */ 2889 (void) __dm_resume(md, NULL); 2890 2891 done: 2892 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2893 smp_mb__after_atomic(); 2894 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2895 } 2896 2897 void dm_internal_suspend_noflush(struct mapped_device *md) 2898 { 2899 mutex_lock(&md->suspend_lock); 2900 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2901 mutex_unlock(&md->suspend_lock); 2902 } 2903 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2904 2905 void dm_internal_resume(struct mapped_device *md) 2906 { 2907 mutex_lock(&md->suspend_lock); 2908 __dm_internal_resume(md); 2909 mutex_unlock(&md->suspend_lock); 2910 } 2911 EXPORT_SYMBOL_GPL(dm_internal_resume); 2912 2913 /* 2914 * Fast variants of internal suspend/resume hold md->suspend_lock, 2915 * which prevents interaction with userspace-driven suspend. 2916 */ 2917 2918 void dm_internal_suspend_fast(struct mapped_device *md) 2919 { 2920 mutex_lock(&md->suspend_lock); 2921 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2922 return; 2923 2924 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2925 synchronize_srcu(&md->io_barrier); 2926 flush_workqueue(md->wq); 2927 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2928 } 2929 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2930 2931 void dm_internal_resume_fast(struct mapped_device *md) 2932 { 2933 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2934 goto done; 2935 2936 dm_queue_flush(md); 2937 2938 done: 2939 mutex_unlock(&md->suspend_lock); 2940 } 2941 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2942 2943 /*----------------------------------------------------------------- 2944 * Event notification. 2945 *---------------------------------------------------------------*/ 2946 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2947 unsigned cookie) 2948 { 2949 int r; 2950 unsigned noio_flag; 2951 char udev_cookie[DM_COOKIE_LENGTH]; 2952 char *envp[] = { udev_cookie, NULL }; 2953 2954 noio_flag = memalloc_noio_save(); 2955 2956 if (!cookie) 2957 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2958 else { 2959 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2960 DM_COOKIE_ENV_VAR_NAME, cookie); 2961 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2962 action, envp); 2963 } 2964 2965 memalloc_noio_restore(noio_flag); 2966 2967 return r; 2968 } 2969 2970 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2971 { 2972 return atomic_add_return(1, &md->uevent_seq); 2973 } 2974 2975 uint32_t dm_get_event_nr(struct mapped_device *md) 2976 { 2977 return atomic_read(&md->event_nr); 2978 } 2979 2980 int dm_wait_event(struct mapped_device *md, int event_nr) 2981 { 2982 return wait_event_interruptible(md->eventq, 2983 (event_nr != atomic_read(&md->event_nr))); 2984 } 2985 2986 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2987 { 2988 unsigned long flags; 2989 2990 spin_lock_irqsave(&md->uevent_lock, flags); 2991 list_add(elist, &md->uevent_list); 2992 spin_unlock_irqrestore(&md->uevent_lock, flags); 2993 } 2994 2995 /* 2996 * The gendisk is only valid as long as you have a reference 2997 * count on 'md'. 2998 */ 2999 struct gendisk *dm_disk(struct mapped_device *md) 3000 { 3001 return md->disk; 3002 } 3003 EXPORT_SYMBOL_GPL(dm_disk); 3004 3005 struct kobject *dm_kobject(struct mapped_device *md) 3006 { 3007 return &md->kobj_holder.kobj; 3008 } 3009 3010 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3011 { 3012 struct mapped_device *md; 3013 3014 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3015 3016 spin_lock(&_minor_lock); 3017 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3018 md = NULL; 3019 goto out; 3020 } 3021 dm_get(md); 3022 out: 3023 spin_unlock(&_minor_lock); 3024 3025 return md; 3026 } 3027 3028 int dm_suspended_md(struct mapped_device *md) 3029 { 3030 return test_bit(DMF_SUSPENDED, &md->flags); 3031 } 3032 3033 static int dm_post_suspending_md(struct mapped_device *md) 3034 { 3035 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3036 } 3037 3038 int dm_suspended_internally_md(struct mapped_device *md) 3039 { 3040 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3041 } 3042 3043 int dm_test_deferred_remove_flag(struct mapped_device *md) 3044 { 3045 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3046 } 3047 3048 int dm_suspended(struct dm_target *ti) 3049 { 3050 return dm_suspended_md(dm_table_get_md(ti->table)); 3051 } 3052 EXPORT_SYMBOL_GPL(dm_suspended); 3053 3054 int dm_post_suspending(struct dm_target *ti) 3055 { 3056 return dm_post_suspending_md(dm_table_get_md(ti->table)); 3057 } 3058 EXPORT_SYMBOL_GPL(dm_post_suspending); 3059 3060 int dm_noflush_suspending(struct dm_target *ti) 3061 { 3062 return __noflush_suspending(dm_table_get_md(ti->table)); 3063 } 3064 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3065 3066 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3067 unsigned integrity, unsigned per_io_data_size, 3068 unsigned min_pool_size) 3069 { 3070 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3071 unsigned int pool_size = 0; 3072 unsigned int front_pad, io_front_pad; 3073 int ret; 3074 3075 if (!pools) 3076 return NULL; 3077 3078 switch (type) { 3079 case DM_TYPE_BIO_BASED: 3080 case DM_TYPE_DAX_BIO_BASED: 3081 case DM_TYPE_NVME_BIO_BASED: 3082 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3083 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3084 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3085 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3086 if (ret) 3087 goto out; 3088 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3089 goto out; 3090 break; 3091 case DM_TYPE_REQUEST_BASED: 3092 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3093 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3094 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3095 break; 3096 default: 3097 BUG(); 3098 } 3099 3100 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3101 if (ret) 3102 goto out; 3103 3104 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3105 goto out; 3106 3107 return pools; 3108 3109 out: 3110 dm_free_md_mempools(pools); 3111 3112 return NULL; 3113 } 3114 3115 void dm_free_md_mempools(struct dm_md_mempools *pools) 3116 { 3117 if (!pools) 3118 return; 3119 3120 bioset_exit(&pools->bs); 3121 bioset_exit(&pools->io_bs); 3122 3123 kfree(pools); 3124 } 3125 3126 struct dm_pr { 3127 u64 old_key; 3128 u64 new_key; 3129 u32 flags; 3130 bool fail_early; 3131 }; 3132 3133 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3134 void *data) 3135 { 3136 struct mapped_device *md = bdev->bd_disk->private_data; 3137 struct dm_table *table; 3138 struct dm_target *ti; 3139 int ret = -ENOTTY, srcu_idx; 3140 3141 table = dm_get_live_table(md, &srcu_idx); 3142 if (!table || !dm_table_get_size(table)) 3143 goto out; 3144 3145 /* We only support devices that have a single target */ 3146 if (dm_table_get_num_targets(table) != 1) 3147 goto out; 3148 ti = dm_table_get_target(table, 0); 3149 3150 ret = -EINVAL; 3151 if (!ti->type->iterate_devices) 3152 goto out; 3153 3154 ret = ti->type->iterate_devices(ti, fn, data); 3155 out: 3156 dm_put_live_table(md, srcu_idx); 3157 return ret; 3158 } 3159 3160 /* 3161 * For register / unregister we need to manually call out to every path. 3162 */ 3163 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3164 sector_t start, sector_t len, void *data) 3165 { 3166 struct dm_pr *pr = data; 3167 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3168 3169 if (!ops || !ops->pr_register) 3170 return -EOPNOTSUPP; 3171 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3172 } 3173 3174 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3175 u32 flags) 3176 { 3177 struct dm_pr pr = { 3178 .old_key = old_key, 3179 .new_key = new_key, 3180 .flags = flags, 3181 .fail_early = true, 3182 }; 3183 int ret; 3184 3185 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3186 if (ret && new_key) { 3187 /* unregister all paths if we failed to register any path */ 3188 pr.old_key = new_key; 3189 pr.new_key = 0; 3190 pr.flags = 0; 3191 pr.fail_early = false; 3192 dm_call_pr(bdev, __dm_pr_register, &pr); 3193 } 3194 3195 return ret; 3196 } 3197 3198 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3199 u32 flags) 3200 { 3201 struct mapped_device *md = bdev->bd_disk->private_data; 3202 const struct pr_ops *ops; 3203 int r, srcu_idx; 3204 3205 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3206 if (r < 0) 3207 goto out; 3208 3209 ops = bdev->bd_disk->fops->pr_ops; 3210 if (ops && ops->pr_reserve) 3211 r = ops->pr_reserve(bdev, key, type, flags); 3212 else 3213 r = -EOPNOTSUPP; 3214 out: 3215 dm_unprepare_ioctl(md, srcu_idx); 3216 return r; 3217 } 3218 3219 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3220 { 3221 struct mapped_device *md = bdev->bd_disk->private_data; 3222 const struct pr_ops *ops; 3223 int r, srcu_idx; 3224 3225 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3226 if (r < 0) 3227 goto out; 3228 3229 ops = bdev->bd_disk->fops->pr_ops; 3230 if (ops && ops->pr_release) 3231 r = ops->pr_release(bdev, key, type); 3232 else 3233 r = -EOPNOTSUPP; 3234 out: 3235 dm_unprepare_ioctl(md, srcu_idx); 3236 return r; 3237 } 3238 3239 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3240 enum pr_type type, bool abort) 3241 { 3242 struct mapped_device *md = bdev->bd_disk->private_data; 3243 const struct pr_ops *ops; 3244 int r, srcu_idx; 3245 3246 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3247 if (r < 0) 3248 goto out; 3249 3250 ops = bdev->bd_disk->fops->pr_ops; 3251 if (ops && ops->pr_preempt) 3252 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3253 else 3254 r = -EOPNOTSUPP; 3255 out: 3256 dm_unprepare_ioctl(md, srcu_idx); 3257 return r; 3258 } 3259 3260 static int dm_pr_clear(struct block_device *bdev, u64 key) 3261 { 3262 struct mapped_device *md = bdev->bd_disk->private_data; 3263 const struct pr_ops *ops; 3264 int r, srcu_idx; 3265 3266 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3267 if (r < 0) 3268 goto out; 3269 3270 ops = bdev->bd_disk->fops->pr_ops; 3271 if (ops && ops->pr_clear) 3272 r = ops->pr_clear(bdev, key); 3273 else 3274 r = -EOPNOTSUPP; 3275 out: 3276 dm_unprepare_ioctl(md, srcu_idx); 3277 return r; 3278 } 3279 3280 static const struct pr_ops dm_pr_ops = { 3281 .pr_register = dm_pr_register, 3282 .pr_reserve = dm_pr_reserve, 3283 .pr_release = dm_pr_release, 3284 .pr_preempt = dm_pr_preempt, 3285 .pr_clear = dm_pr_clear, 3286 }; 3287 3288 static const struct block_device_operations dm_blk_dops = { 3289 .open = dm_blk_open, 3290 .release = dm_blk_close, 3291 .ioctl = dm_blk_ioctl, 3292 .getgeo = dm_blk_getgeo, 3293 .report_zones = dm_blk_report_zones, 3294 .pr_ops = &dm_pr_ops, 3295 .owner = THIS_MODULE 3296 }; 3297 3298 static const struct dax_operations dm_dax_ops = { 3299 .direct_access = dm_dax_direct_access, 3300 .dax_supported = dm_dax_supported, 3301 .copy_from_iter = dm_dax_copy_from_iter, 3302 .copy_to_iter = dm_dax_copy_to_iter, 3303 .zero_page_range = dm_dax_zero_page_range, 3304 }; 3305 3306 /* 3307 * module hooks 3308 */ 3309 module_init(dm_init); 3310 module_exit(dm_exit); 3311 3312 module_param(major, uint, 0); 3313 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3314 3315 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3316 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3317 3318 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3319 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3320 3321 MODULE_DESCRIPTION(DM_NAME " driver"); 3322 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3323 MODULE_LICENSE("GPL"); 3324