1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 32 #define DM_MSG_PREFIX "core" 33 34 /* 35 * Cookies are numeric values sent with CHANGE and REMOVE 36 * uevents while resuming, removing or renaming the device. 37 */ 38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 39 #define DM_COOKIE_LENGTH 24 40 41 static const char *_name = DM_NAME; 42 43 static unsigned int major = 0; 44 static unsigned int _major = 0; 45 46 static DEFINE_IDR(_minor_idr); 47 48 static DEFINE_SPINLOCK(_minor_lock); 49 50 static void do_deferred_remove(struct work_struct *w); 51 52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 53 54 static struct workqueue_struct *deferred_remove_workqueue; 55 56 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 58 59 void dm_issue_global_event(void) 60 { 61 atomic_inc(&dm_global_event_nr); 62 wake_up(&dm_global_eventq); 63 } 64 65 /* 66 * One of these is allocated (on-stack) per original bio. 67 */ 68 struct clone_info { 69 struct dm_table *map; 70 struct bio *bio; 71 struct dm_io *io; 72 sector_t sector; 73 unsigned sector_count; 74 }; 75 76 /* 77 * One of these is allocated per clone bio. 78 */ 79 #define DM_TIO_MAGIC 7282014 80 struct dm_target_io { 81 unsigned magic; 82 struct dm_io *io; 83 struct dm_target *ti; 84 unsigned target_bio_nr; 85 unsigned *len_ptr; 86 bool inside_dm_io; 87 struct bio clone; 88 }; 89 90 /* 91 * One of these is allocated per original bio. 92 * It contains the first clone used for that original. 93 */ 94 #define DM_IO_MAGIC 5191977 95 struct dm_io { 96 unsigned magic; 97 struct mapped_device *md; 98 blk_status_t status; 99 atomic_t io_count; 100 struct bio *orig_bio; 101 unsigned long start_time; 102 spinlock_t endio_lock; 103 struct dm_stats_aux stats_aux; 104 /* last member of dm_target_io is 'struct bio' */ 105 struct dm_target_io tio; 106 }; 107 108 void *dm_per_bio_data(struct bio *bio, size_t data_size) 109 { 110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 111 if (!tio->inside_dm_io) 112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 114 } 115 EXPORT_SYMBOL_GPL(dm_per_bio_data); 116 117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 118 { 119 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 120 if (io->magic == DM_IO_MAGIC) 121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 122 BUG_ON(io->magic != DM_TIO_MAGIC); 123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 124 } 125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 126 127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 128 { 129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 130 } 131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 132 133 #define MINOR_ALLOCED ((void *)-1) 134 135 /* 136 * Bits for the md->flags field. 137 */ 138 #define DMF_BLOCK_IO_FOR_SUSPEND 0 139 #define DMF_SUSPENDED 1 140 #define DMF_FROZEN 2 141 #define DMF_FREEING 3 142 #define DMF_DELETING 4 143 #define DMF_NOFLUSH_SUSPENDING 5 144 #define DMF_DEFERRED_REMOVE 6 145 #define DMF_SUSPENDED_INTERNALLY 7 146 #define DMF_POST_SUSPENDING 8 147 148 #define DM_NUMA_NODE NUMA_NO_NODE 149 static int dm_numa_node = DM_NUMA_NODE; 150 151 /* 152 * For mempools pre-allocation at the table loading time. 153 */ 154 struct dm_md_mempools { 155 struct bio_set bs; 156 struct bio_set io_bs; 157 }; 158 159 struct table_device { 160 struct list_head list; 161 refcount_t count; 162 struct dm_dev dm_dev; 163 }; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r; 227 228 r = dm_uevent_init(); 229 if (r) 230 return r; 231 232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 233 if (!deferred_remove_workqueue) { 234 r = -ENOMEM; 235 goto out_uevent_exit; 236 } 237 238 _major = major; 239 r = register_blkdev(_major, _name); 240 if (r < 0) 241 goto out_free_workqueue; 242 243 if (!_major) 244 _major = r; 245 246 return 0; 247 248 out_free_workqueue: 249 destroy_workqueue(deferred_remove_workqueue); 250 out_uevent_exit: 251 dm_uevent_exit(); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 flush_scheduled_work(); 259 destroy_workqueue(deferred_remove_workqueue); 260 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 dm_statistics_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 dm_statistics_exit, 289 }; 290 291 static int __init dm_init(void) 292 { 293 const int count = ARRAY_SIZE(_inits); 294 295 int r, i; 296 297 for (i = 0; i < count; i++) { 298 r = _inits[i](); 299 if (r) 300 goto bad; 301 } 302 303 return 0; 304 305 bad: 306 while (i--) 307 _exits[i](); 308 309 return r; 310 } 311 312 static void __exit dm_exit(void) 313 { 314 int i = ARRAY_SIZE(_exits); 315 316 while (i--) 317 _exits[i](); 318 319 /* 320 * Should be empty by this point. 321 */ 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md; 360 361 spin_lock(&_minor_lock); 362 363 md = disk->private_data; 364 if (WARN_ON(!md)) 365 goto out; 366 367 if (atomic_dec_and_test(&md->open_count) && 368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 369 queue_work(deferred_remove_workqueue, &deferred_remove_work); 370 371 dm_put(md); 372 out: 373 spin_unlock(&_minor_lock); 374 } 375 376 int dm_open_count(struct mapped_device *md) 377 { 378 return atomic_read(&md->open_count); 379 } 380 381 /* 382 * Guarantees nothing is using the device before it's deleted. 383 */ 384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (dm_open_count(md)) { 391 r = -EBUSY; 392 if (mark_deferred) 393 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 395 r = -EEXIST; 396 else 397 set_bit(DMF_DELETING, &md->flags); 398 399 spin_unlock(&_minor_lock); 400 401 return r; 402 } 403 404 int dm_cancel_deferred_remove(struct mapped_device *md) 405 { 406 int r = 0; 407 408 spin_lock(&_minor_lock); 409 410 if (test_bit(DMF_DELETING, &md->flags)) 411 r = -EBUSY; 412 else 413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 414 415 spin_unlock(&_minor_lock); 416 417 return r; 418 } 419 420 static void do_deferred_remove(struct work_struct *w) 421 { 422 dm_deferred_remove(); 423 } 424 425 sector_t dm_get_size(struct mapped_device *md) 426 { 427 return get_capacity(md->disk); 428 } 429 430 struct request_queue *dm_get_md_queue(struct mapped_device *md) 431 { 432 return md->queue; 433 } 434 435 struct dm_stats *dm_get_stats(struct mapped_device *md) 436 { 437 return &md->stats; 438 } 439 440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 441 { 442 struct mapped_device *md = bdev->bd_disk->private_data; 443 444 return dm_get_geometry(md, geo); 445 } 446 447 #ifdef CONFIG_BLK_DEV_ZONED 448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 449 { 450 struct dm_report_zones_args *args = data; 451 sector_t sector_diff = args->tgt->begin - args->start; 452 453 /* 454 * Ignore zones beyond the target range. 455 */ 456 if (zone->start >= args->start + args->tgt->len) 457 return 0; 458 459 /* 460 * Remap the start sector and write pointer position of the zone 461 * to match its position in the target range. 462 */ 463 zone->start += sector_diff; 464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 465 if (zone->cond == BLK_ZONE_COND_FULL) 466 zone->wp = zone->start + zone->len; 467 else if (zone->cond == BLK_ZONE_COND_EMPTY) 468 zone->wp = zone->start; 469 else 470 zone->wp += sector_diff; 471 } 472 473 args->next_sector = zone->start + zone->len; 474 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 475 } 476 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 477 478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 479 unsigned int nr_zones, report_zones_cb cb, void *data) 480 { 481 struct mapped_device *md = disk->private_data; 482 struct dm_table *map; 483 int srcu_idx, ret; 484 struct dm_report_zones_args args = { 485 .next_sector = sector, 486 .orig_data = data, 487 .orig_cb = cb, 488 }; 489 490 if (dm_suspended_md(md)) 491 return -EAGAIN; 492 493 map = dm_get_live_table(md, &srcu_idx); 494 if (!map) 495 return -EIO; 496 497 do { 498 struct dm_target *tgt; 499 500 tgt = dm_table_find_target(map, args.next_sector); 501 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 502 ret = -EIO; 503 goto out; 504 } 505 506 args.tgt = tgt; 507 ret = tgt->type->report_zones(tgt, &args, 508 nr_zones - args.zone_idx); 509 if (ret < 0) 510 goto out; 511 } while (args.zone_idx < nr_zones && 512 args.next_sector < get_capacity(disk)); 513 514 ret = args.zone_idx; 515 out: 516 dm_put_live_table(md, srcu_idx); 517 return ret; 518 } 519 #else 520 #define dm_blk_report_zones NULL 521 #endif /* CONFIG_BLK_DEV_ZONED */ 522 523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 524 struct block_device **bdev) 525 __acquires(md->io_barrier) 526 { 527 struct dm_target *tgt; 528 struct dm_table *map; 529 int r; 530 531 retry: 532 r = -ENOTTY; 533 map = dm_get_live_table(md, srcu_idx); 534 if (!map || !dm_table_get_size(map)) 535 return r; 536 537 /* We only support devices that have a single target */ 538 if (dm_table_get_num_targets(map) != 1) 539 return r; 540 541 tgt = dm_table_get_target(map, 0); 542 if (!tgt->type->prepare_ioctl) 543 return r; 544 545 if (dm_suspended_md(md)) 546 return -EAGAIN; 547 548 r = tgt->type->prepare_ioctl(tgt, bdev); 549 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 550 dm_put_live_table(md, *srcu_idx); 551 msleep(10); 552 goto retry; 553 } 554 555 return r; 556 } 557 558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 559 __releases(md->io_barrier) 560 { 561 dm_put_live_table(md, srcu_idx); 562 } 563 564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 565 unsigned int cmd, unsigned long arg) 566 { 567 struct mapped_device *md = bdev->bd_disk->private_data; 568 int r, srcu_idx; 569 570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 571 if (r < 0) 572 goto out; 573 574 if (r > 0) { 575 /* 576 * Target determined this ioctl is being issued against a 577 * subset of the parent bdev; require extra privileges. 578 */ 579 if (!capable(CAP_SYS_RAWIO)) { 580 DMWARN_LIMIT( 581 "%s: sending ioctl %x to DM device without required privilege.", 582 current->comm, cmd); 583 r = -ENOIOCTLCMD; 584 goto out; 585 } 586 } 587 588 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 589 out: 590 dm_unprepare_ioctl(md, srcu_idx); 591 return r; 592 } 593 594 static void start_io_acct(struct dm_io *io); 595 596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 597 { 598 struct dm_io *io; 599 struct dm_target_io *tio; 600 struct bio *clone; 601 602 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 603 if (!clone) 604 return NULL; 605 606 tio = container_of(clone, struct dm_target_io, clone); 607 tio->inside_dm_io = true; 608 tio->io = NULL; 609 610 io = container_of(tio, struct dm_io, tio); 611 io->magic = DM_IO_MAGIC; 612 io->status = 0; 613 atomic_set(&io->io_count, 1); 614 io->orig_bio = bio; 615 io->md = md; 616 spin_lock_init(&io->endio_lock); 617 618 start_io_acct(io); 619 620 return io; 621 } 622 623 static void free_io(struct mapped_device *md, struct dm_io *io) 624 { 625 bio_put(&io->tio.clone); 626 } 627 628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 629 unsigned target_bio_nr, gfp_t gfp_mask) 630 { 631 struct dm_target_io *tio; 632 633 if (!ci->io->tio.io) { 634 /* the dm_target_io embedded in ci->io is available */ 635 tio = &ci->io->tio; 636 } else { 637 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 638 if (!clone) 639 return NULL; 640 641 tio = container_of(clone, struct dm_target_io, clone); 642 tio->inside_dm_io = false; 643 } 644 645 tio->magic = DM_TIO_MAGIC; 646 tio->io = ci->io; 647 tio->ti = ti; 648 tio->target_bio_nr = target_bio_nr; 649 650 return tio; 651 } 652 653 static void free_tio(struct dm_target_io *tio) 654 { 655 if (tio->inside_dm_io) 656 return; 657 bio_put(&tio->clone); 658 } 659 660 u64 dm_start_time_ns_from_clone(struct bio *bio) 661 { 662 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 663 struct dm_io *io = tio->io; 664 665 return jiffies_to_nsecs(io->start_time); 666 } 667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 668 669 static void start_io_acct(struct dm_io *io) 670 { 671 struct mapped_device *md = io->md; 672 struct bio *bio = io->orig_bio; 673 674 io->start_time = bio_start_io_acct(bio); 675 if (unlikely(dm_stats_used(&md->stats))) 676 dm_stats_account_io(&md->stats, bio_data_dir(bio), 677 bio->bi_iter.bi_sector, bio_sectors(bio), 678 false, 0, &io->stats_aux); 679 } 680 681 static void end_io_acct(struct dm_io *io) 682 { 683 struct mapped_device *md = io->md; 684 struct bio *bio = io->orig_bio; 685 unsigned long duration = jiffies - io->start_time; 686 687 bio_end_io_acct(bio, io->start_time); 688 689 if (unlikely(dm_stats_used(&md->stats))) 690 dm_stats_account_io(&md->stats, bio_data_dir(bio), 691 bio->bi_iter.bi_sector, bio_sectors(bio), 692 true, duration, &io->stats_aux); 693 694 /* nudge anyone waiting on suspend queue */ 695 if (unlikely(wq_has_sleeper(&md->wait))) 696 wake_up(&md->wait); 697 } 698 699 /* 700 * Add the bio to the list of deferred io. 701 */ 702 static void queue_io(struct mapped_device *md, struct bio *bio) 703 { 704 unsigned long flags; 705 706 spin_lock_irqsave(&md->deferred_lock, flags); 707 bio_list_add(&md->deferred, bio); 708 spin_unlock_irqrestore(&md->deferred_lock, flags); 709 queue_work(md->wq, &md->work); 710 } 711 712 /* 713 * Everyone (including functions in this file), should use this 714 * function to access the md->map field, and make sure they call 715 * dm_put_live_table() when finished. 716 */ 717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 718 { 719 *srcu_idx = srcu_read_lock(&md->io_barrier); 720 721 return srcu_dereference(md->map, &md->io_barrier); 722 } 723 724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 725 { 726 srcu_read_unlock(&md->io_barrier, srcu_idx); 727 } 728 729 void dm_sync_table(struct mapped_device *md) 730 { 731 synchronize_srcu(&md->io_barrier); 732 synchronize_rcu_expedited(); 733 } 734 735 /* 736 * A fast alternative to dm_get_live_table/dm_put_live_table. 737 * The caller must not block between these two functions. 738 */ 739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 740 { 741 rcu_read_lock(); 742 return rcu_dereference(md->map); 743 } 744 745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 746 { 747 rcu_read_unlock(); 748 } 749 750 static char *_dm_claim_ptr = "I belong to device-mapper"; 751 752 /* 753 * Open a table device so we can use it as a map destination. 754 */ 755 static int open_table_device(struct table_device *td, dev_t dev, 756 struct mapped_device *md) 757 { 758 struct block_device *bdev; 759 760 int r; 761 762 BUG_ON(td->dm_dev.bdev); 763 764 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 765 if (IS_ERR(bdev)) 766 return PTR_ERR(bdev); 767 768 r = bd_link_disk_holder(bdev, dm_disk(md)); 769 if (r) { 770 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 771 return r; 772 } 773 774 td->dm_dev.bdev = bdev; 775 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 776 return 0; 777 } 778 779 /* 780 * Close a table device that we've been using. 781 */ 782 static void close_table_device(struct table_device *td, struct mapped_device *md) 783 { 784 if (!td->dm_dev.bdev) 785 return; 786 787 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 788 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 789 put_dax(td->dm_dev.dax_dev); 790 td->dm_dev.bdev = NULL; 791 td->dm_dev.dax_dev = NULL; 792 } 793 794 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 795 fmode_t mode) 796 { 797 struct table_device *td; 798 799 list_for_each_entry(td, l, list) 800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 801 return td; 802 803 return NULL; 804 } 805 806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 807 struct dm_dev **result) 808 { 809 int r; 810 struct table_device *td; 811 812 mutex_lock(&md->table_devices_lock); 813 td = find_table_device(&md->table_devices, dev, mode); 814 if (!td) { 815 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 816 if (!td) { 817 mutex_unlock(&md->table_devices_lock); 818 return -ENOMEM; 819 } 820 821 td->dm_dev.mode = mode; 822 td->dm_dev.bdev = NULL; 823 824 if ((r = open_table_device(td, dev, md))) { 825 mutex_unlock(&md->table_devices_lock); 826 kfree(td); 827 return r; 828 } 829 830 format_dev_t(td->dm_dev.name, dev); 831 832 refcount_set(&td->count, 1); 833 list_add(&td->list, &md->table_devices); 834 } else { 835 refcount_inc(&td->count); 836 } 837 mutex_unlock(&md->table_devices_lock); 838 839 *result = &td->dm_dev; 840 return 0; 841 } 842 EXPORT_SYMBOL_GPL(dm_get_table_device); 843 844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 845 { 846 struct table_device *td = container_of(d, struct table_device, dm_dev); 847 848 mutex_lock(&md->table_devices_lock); 849 if (refcount_dec_and_test(&td->count)) { 850 close_table_device(td, md); 851 list_del(&td->list); 852 kfree(td); 853 } 854 mutex_unlock(&md->table_devices_lock); 855 } 856 EXPORT_SYMBOL(dm_put_table_device); 857 858 static void free_table_devices(struct list_head *devices) 859 { 860 struct list_head *tmp, *next; 861 862 list_for_each_safe(tmp, next, devices) { 863 struct table_device *td = list_entry(tmp, struct table_device, list); 864 865 DMWARN("dm_destroy: %s still exists with %d references", 866 td->dm_dev.name, refcount_read(&td->count)); 867 kfree(td); 868 } 869 } 870 871 /* 872 * Get the geometry associated with a dm device 873 */ 874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 875 { 876 *geo = md->geometry; 877 878 return 0; 879 } 880 881 /* 882 * Set the geometry of a device. 883 */ 884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 885 { 886 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 887 888 if (geo->start > sz) { 889 DMWARN("Start sector is beyond the geometry limits."); 890 return -EINVAL; 891 } 892 893 md->geometry = *geo; 894 895 return 0; 896 } 897 898 static int __noflush_suspending(struct mapped_device *md) 899 { 900 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 901 } 902 903 /* 904 * Decrements the number of outstanding ios that a bio has been 905 * cloned into, completing the original io if necc. 906 */ 907 static void dec_pending(struct dm_io *io, blk_status_t error) 908 { 909 unsigned long flags; 910 blk_status_t io_error; 911 struct bio *bio; 912 struct mapped_device *md = io->md; 913 914 /* Push-back supersedes any I/O errors */ 915 if (unlikely(error)) { 916 spin_lock_irqsave(&io->endio_lock, flags); 917 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 918 io->status = error; 919 spin_unlock_irqrestore(&io->endio_lock, flags); 920 } 921 922 if (atomic_dec_and_test(&io->io_count)) { 923 if (io->status == BLK_STS_DM_REQUEUE) { 924 /* 925 * Target requested pushing back the I/O. 926 */ 927 spin_lock_irqsave(&md->deferred_lock, flags); 928 if (__noflush_suspending(md)) 929 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 930 bio_list_add_head(&md->deferred, io->orig_bio); 931 else 932 /* noflush suspend was interrupted. */ 933 io->status = BLK_STS_IOERR; 934 spin_unlock_irqrestore(&md->deferred_lock, flags); 935 } 936 937 io_error = io->status; 938 bio = io->orig_bio; 939 end_io_acct(io); 940 free_io(md, io); 941 942 if (io_error == BLK_STS_DM_REQUEUE) 943 return; 944 945 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 946 /* 947 * Preflush done for flush with data, reissue 948 * without REQ_PREFLUSH. 949 */ 950 bio->bi_opf &= ~REQ_PREFLUSH; 951 queue_io(md, bio); 952 } else { 953 /* done with normal IO or empty flush */ 954 if (io_error) 955 bio->bi_status = io_error; 956 bio_endio(bio); 957 } 958 } 959 } 960 961 void disable_discard(struct mapped_device *md) 962 { 963 struct queue_limits *limits = dm_get_queue_limits(md); 964 965 /* device doesn't really support DISCARD, disable it */ 966 limits->max_discard_sectors = 0; 967 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 968 } 969 970 void disable_write_same(struct mapped_device *md) 971 { 972 struct queue_limits *limits = dm_get_queue_limits(md); 973 974 /* device doesn't really support WRITE SAME, disable it */ 975 limits->max_write_same_sectors = 0; 976 } 977 978 void disable_write_zeroes(struct mapped_device *md) 979 { 980 struct queue_limits *limits = dm_get_queue_limits(md); 981 982 /* device doesn't really support WRITE ZEROES, disable it */ 983 limits->max_write_zeroes_sectors = 0; 984 } 985 986 static void clone_endio(struct bio *bio) 987 { 988 blk_status_t error = bio->bi_status; 989 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 990 struct dm_io *io = tio->io; 991 struct mapped_device *md = tio->io->md; 992 dm_endio_fn endio = tio->ti->type->end_io; 993 struct bio *orig_bio = io->orig_bio; 994 995 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 996 if (bio_op(bio) == REQ_OP_DISCARD && 997 !bio->bi_disk->queue->limits.max_discard_sectors) 998 disable_discard(md); 999 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1000 !bio->bi_disk->queue->limits.max_write_same_sectors) 1001 disable_write_same(md); 1002 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1003 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1004 disable_write_zeroes(md); 1005 } 1006 1007 /* 1008 * For zone-append bios get offset in zone of the written 1009 * sector and add that to the original bio sector pos. 1010 */ 1011 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 1012 sector_t written_sector = bio->bi_iter.bi_sector; 1013 struct request_queue *q = orig_bio->bi_disk->queue; 1014 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 1015 1016 orig_bio->bi_iter.bi_sector += written_sector & mask; 1017 } 1018 1019 if (endio) { 1020 int r = endio(tio->ti, bio, &error); 1021 switch (r) { 1022 case DM_ENDIO_REQUEUE: 1023 error = BLK_STS_DM_REQUEUE; 1024 /*FALLTHRU*/ 1025 case DM_ENDIO_DONE: 1026 break; 1027 case DM_ENDIO_INCOMPLETE: 1028 /* The target will handle the io */ 1029 return; 1030 default: 1031 DMWARN("unimplemented target endio return value: %d", r); 1032 BUG(); 1033 } 1034 } 1035 1036 free_tio(tio); 1037 dec_pending(io, error); 1038 } 1039 1040 /* 1041 * Return maximum size of I/O possible at the supplied sector up to the current 1042 * target boundary. 1043 */ 1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1045 { 1046 sector_t target_offset = dm_target_offset(ti, sector); 1047 1048 return ti->len - target_offset; 1049 } 1050 1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1052 { 1053 sector_t len = max_io_len_target_boundary(sector, ti); 1054 sector_t offset, max_len; 1055 1056 /* 1057 * Does the target need to split even further? 1058 */ 1059 if (ti->max_io_len) { 1060 offset = dm_target_offset(ti, sector); 1061 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1062 max_len = sector_div(offset, ti->max_io_len); 1063 else 1064 max_len = offset & (ti->max_io_len - 1); 1065 max_len = ti->max_io_len - max_len; 1066 1067 if (len > max_len) 1068 len = max_len; 1069 } 1070 1071 return len; 1072 } 1073 1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1075 { 1076 if (len > UINT_MAX) { 1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1078 (unsigned long long)len, UINT_MAX); 1079 ti->error = "Maximum size of target IO is too large"; 1080 return -EINVAL; 1081 } 1082 1083 ti->max_io_len = (uint32_t) len; 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1088 1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1090 sector_t sector, int *srcu_idx) 1091 __acquires(md->io_barrier) 1092 { 1093 struct dm_table *map; 1094 struct dm_target *ti; 1095 1096 map = dm_get_live_table(md, srcu_idx); 1097 if (!map) 1098 return NULL; 1099 1100 ti = dm_table_find_target(map, sector); 1101 if (!ti) 1102 return NULL; 1103 1104 return ti; 1105 } 1106 1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1108 long nr_pages, void **kaddr, pfn_t *pfn) 1109 { 1110 struct mapped_device *md = dax_get_private(dax_dev); 1111 sector_t sector = pgoff * PAGE_SECTORS; 1112 struct dm_target *ti; 1113 long len, ret = -EIO; 1114 int srcu_idx; 1115 1116 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1117 1118 if (!ti) 1119 goto out; 1120 if (!ti->type->direct_access) 1121 goto out; 1122 len = max_io_len(sector, ti) / PAGE_SECTORS; 1123 if (len < 1) 1124 goto out; 1125 nr_pages = min(len, nr_pages); 1126 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1127 1128 out: 1129 dm_put_live_table(md, srcu_idx); 1130 1131 return ret; 1132 } 1133 1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1135 int blocksize, sector_t start, sector_t len) 1136 { 1137 struct mapped_device *md = dax_get_private(dax_dev); 1138 struct dm_table *map; 1139 int srcu_idx; 1140 bool ret; 1141 1142 map = dm_get_live_table(md, &srcu_idx); 1143 if (!map) 1144 return false; 1145 1146 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1147 1148 dm_put_live_table(md, srcu_idx); 1149 1150 return ret; 1151 } 1152 1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1154 void *addr, size_t bytes, struct iov_iter *i) 1155 { 1156 struct mapped_device *md = dax_get_private(dax_dev); 1157 sector_t sector = pgoff * PAGE_SECTORS; 1158 struct dm_target *ti; 1159 long ret = 0; 1160 int srcu_idx; 1161 1162 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1163 1164 if (!ti) 1165 goto out; 1166 if (!ti->type->dax_copy_from_iter) { 1167 ret = copy_from_iter(addr, bytes, i); 1168 goto out; 1169 } 1170 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1171 out: 1172 dm_put_live_table(md, srcu_idx); 1173 1174 return ret; 1175 } 1176 1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1178 void *addr, size_t bytes, struct iov_iter *i) 1179 { 1180 struct mapped_device *md = dax_get_private(dax_dev); 1181 sector_t sector = pgoff * PAGE_SECTORS; 1182 struct dm_target *ti; 1183 long ret = 0; 1184 int srcu_idx; 1185 1186 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1187 1188 if (!ti) 1189 goto out; 1190 if (!ti->type->dax_copy_to_iter) { 1191 ret = copy_to_iter(addr, bytes, i); 1192 goto out; 1193 } 1194 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1195 out: 1196 dm_put_live_table(md, srcu_idx); 1197 1198 return ret; 1199 } 1200 1201 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1202 size_t nr_pages) 1203 { 1204 struct mapped_device *md = dax_get_private(dax_dev); 1205 sector_t sector = pgoff * PAGE_SECTORS; 1206 struct dm_target *ti; 1207 int ret = -EIO; 1208 int srcu_idx; 1209 1210 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1211 1212 if (!ti) 1213 goto out; 1214 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1215 /* 1216 * ->zero_page_range() is mandatory dax operation. If we are 1217 * here, something is wrong. 1218 */ 1219 dm_put_live_table(md, srcu_idx); 1220 goto out; 1221 } 1222 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1223 1224 out: 1225 dm_put_live_table(md, srcu_idx); 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * A target may call dm_accept_partial_bio only from the map routine. It is 1232 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1233 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1234 * 1235 * dm_accept_partial_bio informs the dm that the target only wants to process 1236 * additional n_sectors sectors of the bio and the rest of the data should be 1237 * sent in a next bio. 1238 * 1239 * A diagram that explains the arithmetics: 1240 * +--------------------+---------------+-------+ 1241 * | 1 | 2 | 3 | 1242 * +--------------------+---------------+-------+ 1243 * 1244 * <-------------- *tio->len_ptr ---------------> 1245 * <------- bi_size -------> 1246 * <-- n_sectors --> 1247 * 1248 * Region 1 was already iterated over with bio_advance or similar function. 1249 * (it may be empty if the target doesn't use bio_advance) 1250 * Region 2 is the remaining bio size that the target wants to process. 1251 * (it may be empty if region 1 is non-empty, although there is no reason 1252 * to make it empty) 1253 * The target requires that region 3 is to be sent in the next bio. 1254 * 1255 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1256 * the partially processed part (the sum of regions 1+2) must be the same for all 1257 * copies of the bio. 1258 */ 1259 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1260 { 1261 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1262 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1263 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1264 BUG_ON(bi_size > *tio->len_ptr); 1265 BUG_ON(n_sectors > bi_size); 1266 *tio->len_ptr -= bi_size - n_sectors; 1267 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1268 } 1269 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1270 1271 static blk_qc_t __map_bio(struct dm_target_io *tio) 1272 { 1273 int r; 1274 sector_t sector; 1275 struct bio *clone = &tio->clone; 1276 struct dm_io *io = tio->io; 1277 struct dm_target *ti = tio->ti; 1278 blk_qc_t ret = BLK_QC_T_NONE; 1279 1280 clone->bi_end_io = clone_endio; 1281 1282 /* 1283 * Map the clone. If r == 0 we don't need to do 1284 * anything, the target has assumed ownership of 1285 * this io. 1286 */ 1287 atomic_inc(&io->io_count); 1288 sector = clone->bi_iter.bi_sector; 1289 1290 r = ti->type->map(ti, clone); 1291 switch (r) { 1292 case DM_MAPIO_SUBMITTED: 1293 break; 1294 case DM_MAPIO_REMAPPED: 1295 /* the bio has been remapped so dispatch it */ 1296 trace_block_bio_remap(clone->bi_disk->queue, clone, 1297 bio_dev(io->orig_bio), sector); 1298 ret = submit_bio_noacct(clone); 1299 break; 1300 case DM_MAPIO_KILL: 1301 free_tio(tio); 1302 dec_pending(io, BLK_STS_IOERR); 1303 break; 1304 case DM_MAPIO_REQUEUE: 1305 free_tio(tio); 1306 dec_pending(io, BLK_STS_DM_REQUEUE); 1307 break; 1308 default: 1309 DMWARN("unimplemented target map return value: %d", r); 1310 BUG(); 1311 } 1312 1313 return ret; 1314 } 1315 1316 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1317 { 1318 bio->bi_iter.bi_sector = sector; 1319 bio->bi_iter.bi_size = to_bytes(len); 1320 } 1321 1322 /* 1323 * Creates a bio that consists of range of complete bvecs. 1324 */ 1325 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1326 sector_t sector, unsigned len) 1327 { 1328 struct bio *clone = &tio->clone; 1329 1330 __bio_clone_fast(clone, bio); 1331 1332 bio_crypt_clone(clone, bio, GFP_NOIO); 1333 1334 if (bio_integrity(bio)) { 1335 int r; 1336 1337 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1338 !dm_target_passes_integrity(tio->ti->type))) { 1339 DMWARN("%s: the target %s doesn't support integrity data.", 1340 dm_device_name(tio->io->md), 1341 tio->ti->type->name); 1342 return -EIO; 1343 } 1344 1345 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1346 if (r < 0) 1347 return r; 1348 } 1349 1350 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1351 clone->bi_iter.bi_size = to_bytes(len); 1352 1353 if (bio_integrity(bio)) 1354 bio_integrity_trim(clone); 1355 1356 return 0; 1357 } 1358 1359 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1360 struct dm_target *ti, unsigned num_bios) 1361 { 1362 struct dm_target_io *tio; 1363 int try; 1364 1365 if (!num_bios) 1366 return; 1367 1368 if (num_bios == 1) { 1369 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1370 bio_list_add(blist, &tio->clone); 1371 return; 1372 } 1373 1374 for (try = 0; try < 2; try++) { 1375 int bio_nr; 1376 struct bio *bio; 1377 1378 if (try) 1379 mutex_lock(&ci->io->md->table_devices_lock); 1380 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1381 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1382 if (!tio) 1383 break; 1384 1385 bio_list_add(blist, &tio->clone); 1386 } 1387 if (try) 1388 mutex_unlock(&ci->io->md->table_devices_lock); 1389 if (bio_nr == num_bios) 1390 return; 1391 1392 while ((bio = bio_list_pop(blist))) { 1393 tio = container_of(bio, struct dm_target_io, clone); 1394 free_tio(tio); 1395 } 1396 } 1397 } 1398 1399 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1400 struct dm_target_io *tio, unsigned *len) 1401 { 1402 struct bio *clone = &tio->clone; 1403 1404 tio->len_ptr = len; 1405 1406 __bio_clone_fast(clone, ci->bio); 1407 if (len) 1408 bio_setup_sector(clone, ci->sector, *len); 1409 1410 return __map_bio(tio); 1411 } 1412 1413 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1414 unsigned num_bios, unsigned *len) 1415 { 1416 struct bio_list blist = BIO_EMPTY_LIST; 1417 struct bio *bio; 1418 struct dm_target_io *tio; 1419 1420 alloc_multiple_bios(&blist, ci, ti, num_bios); 1421 1422 while ((bio = bio_list_pop(&blist))) { 1423 tio = container_of(bio, struct dm_target_io, clone); 1424 (void) __clone_and_map_simple_bio(ci, tio, len); 1425 } 1426 } 1427 1428 static int __send_empty_flush(struct clone_info *ci) 1429 { 1430 unsigned target_nr = 0; 1431 struct dm_target *ti; 1432 1433 /* 1434 * Empty flush uses a statically initialized bio, as the base for 1435 * cloning. However, blkg association requires that a bdev is 1436 * associated with a gendisk, which doesn't happen until the bdev is 1437 * opened. So, blkg association is done at issue time of the flush 1438 * rather than when the device is created in alloc_dev(). 1439 */ 1440 bio_set_dev(ci->bio, ci->io->md->bdev); 1441 1442 BUG_ON(bio_has_data(ci->bio)); 1443 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1444 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1445 return 0; 1446 } 1447 1448 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1449 sector_t sector, unsigned *len) 1450 { 1451 struct bio *bio = ci->bio; 1452 struct dm_target_io *tio; 1453 int r; 1454 1455 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1456 tio->len_ptr = len; 1457 r = clone_bio(tio, bio, sector, *len); 1458 if (r < 0) { 1459 free_tio(tio); 1460 return r; 1461 } 1462 (void) __map_bio(tio); 1463 1464 return 0; 1465 } 1466 1467 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1468 1469 static unsigned get_num_discard_bios(struct dm_target *ti) 1470 { 1471 return ti->num_discard_bios; 1472 } 1473 1474 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1475 { 1476 return ti->num_secure_erase_bios; 1477 } 1478 1479 static unsigned get_num_write_same_bios(struct dm_target *ti) 1480 { 1481 return ti->num_write_same_bios; 1482 } 1483 1484 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1485 { 1486 return ti->num_write_zeroes_bios; 1487 } 1488 1489 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1490 unsigned num_bios) 1491 { 1492 unsigned len; 1493 1494 /* 1495 * Even though the device advertised support for this type of 1496 * request, that does not mean every target supports it, and 1497 * reconfiguration might also have changed that since the 1498 * check was performed. 1499 */ 1500 if (!num_bios) 1501 return -EOPNOTSUPP; 1502 1503 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1504 1505 __send_duplicate_bios(ci, ti, num_bios, &len); 1506 1507 ci->sector += len; 1508 ci->sector_count -= len; 1509 1510 return 0; 1511 } 1512 1513 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1514 { 1515 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1516 } 1517 1518 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1519 { 1520 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1521 } 1522 1523 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1524 { 1525 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1526 } 1527 1528 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1529 { 1530 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1531 } 1532 1533 static bool is_abnormal_io(struct bio *bio) 1534 { 1535 bool r = false; 1536 1537 switch (bio_op(bio)) { 1538 case REQ_OP_DISCARD: 1539 case REQ_OP_SECURE_ERASE: 1540 case REQ_OP_WRITE_SAME: 1541 case REQ_OP_WRITE_ZEROES: 1542 r = true; 1543 break; 1544 } 1545 1546 return r; 1547 } 1548 1549 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1550 int *result) 1551 { 1552 struct bio *bio = ci->bio; 1553 1554 if (bio_op(bio) == REQ_OP_DISCARD) 1555 *result = __send_discard(ci, ti); 1556 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1557 *result = __send_secure_erase(ci, ti); 1558 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1559 *result = __send_write_same(ci, ti); 1560 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1561 *result = __send_write_zeroes(ci, ti); 1562 else 1563 return false; 1564 1565 return true; 1566 } 1567 1568 /* 1569 * Select the correct strategy for processing a non-flush bio. 1570 */ 1571 static int __split_and_process_non_flush(struct clone_info *ci) 1572 { 1573 struct dm_target *ti; 1574 unsigned len; 1575 int r; 1576 1577 ti = dm_table_find_target(ci->map, ci->sector); 1578 if (!ti) 1579 return -EIO; 1580 1581 if (__process_abnormal_io(ci, ti, &r)) 1582 return r; 1583 1584 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1585 1586 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1587 if (r < 0) 1588 return r; 1589 1590 ci->sector += len; 1591 ci->sector_count -= len; 1592 1593 return 0; 1594 } 1595 1596 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1597 struct dm_table *map, struct bio *bio) 1598 { 1599 ci->map = map; 1600 ci->io = alloc_io(md, bio); 1601 ci->sector = bio->bi_iter.bi_sector; 1602 } 1603 1604 #define __dm_part_stat_sub(part, field, subnd) \ 1605 (part_stat_get(part, field) -= (subnd)) 1606 1607 /* 1608 * Entry point to split a bio into clones and submit them to the targets. 1609 */ 1610 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1611 struct dm_table *map, struct bio *bio) 1612 { 1613 struct clone_info ci; 1614 blk_qc_t ret = BLK_QC_T_NONE; 1615 int error = 0; 1616 1617 init_clone_info(&ci, md, map, bio); 1618 1619 if (bio->bi_opf & REQ_PREFLUSH) { 1620 struct bio flush_bio; 1621 1622 /* 1623 * Use an on-stack bio for this, it's safe since we don't 1624 * need to reference it after submit. It's just used as 1625 * the basis for the clone(s). 1626 */ 1627 bio_init(&flush_bio, NULL, 0); 1628 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1629 ci.bio = &flush_bio; 1630 ci.sector_count = 0; 1631 error = __send_empty_flush(&ci); 1632 bio_uninit(ci.bio); 1633 /* dec_pending submits any data associated with flush */ 1634 } else if (op_is_zone_mgmt(bio_op(bio))) { 1635 ci.bio = bio; 1636 ci.sector_count = 0; 1637 error = __split_and_process_non_flush(&ci); 1638 } else { 1639 ci.bio = bio; 1640 ci.sector_count = bio_sectors(bio); 1641 while (ci.sector_count && !error) { 1642 error = __split_and_process_non_flush(&ci); 1643 if (current->bio_list && ci.sector_count && !error) { 1644 /* 1645 * Remainder must be passed to submit_bio_noacct() 1646 * so that it gets handled *after* bios already submitted 1647 * have been completely processed. 1648 * We take a clone of the original to store in 1649 * ci.io->orig_bio to be used by end_io_acct() and 1650 * for dec_pending to use for completion handling. 1651 */ 1652 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1653 GFP_NOIO, &md->queue->bio_split); 1654 ci.io->orig_bio = b; 1655 1656 /* 1657 * Adjust IO stats for each split, otherwise upon queue 1658 * reentry there will be redundant IO accounting. 1659 * NOTE: this is a stop-gap fix, a proper fix involves 1660 * significant refactoring of DM core's bio splitting 1661 * (by eliminating DM's splitting and just using bio_split) 1662 */ 1663 part_stat_lock(); 1664 __dm_part_stat_sub(&dm_disk(md)->part0, 1665 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1666 part_stat_unlock(); 1667 1668 bio_chain(b, bio); 1669 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1670 ret = submit_bio_noacct(bio); 1671 break; 1672 } 1673 } 1674 } 1675 1676 /* drop the extra reference count */ 1677 dec_pending(ci.io, errno_to_blk_status(error)); 1678 return ret; 1679 } 1680 1681 /* 1682 * Optimized variant of __split_and_process_bio that leverages the 1683 * fact that targets that use it do _not_ have a need to split bios. 1684 */ 1685 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1686 struct bio *bio, struct dm_target *ti) 1687 { 1688 struct clone_info ci; 1689 blk_qc_t ret = BLK_QC_T_NONE; 1690 int error = 0; 1691 1692 init_clone_info(&ci, md, map, bio); 1693 1694 if (bio->bi_opf & REQ_PREFLUSH) { 1695 struct bio flush_bio; 1696 1697 /* 1698 * Use an on-stack bio for this, it's safe since we don't 1699 * need to reference it after submit. It's just used as 1700 * the basis for the clone(s). 1701 */ 1702 bio_init(&flush_bio, NULL, 0); 1703 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1704 ci.bio = &flush_bio; 1705 ci.sector_count = 0; 1706 error = __send_empty_flush(&ci); 1707 bio_uninit(ci.bio); 1708 /* dec_pending submits any data associated with flush */ 1709 } else { 1710 struct dm_target_io *tio; 1711 1712 ci.bio = bio; 1713 ci.sector_count = bio_sectors(bio); 1714 if (__process_abnormal_io(&ci, ti, &error)) 1715 goto out; 1716 1717 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1718 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1719 } 1720 out: 1721 /* drop the extra reference count */ 1722 dec_pending(ci.io, errno_to_blk_status(error)); 1723 return ret; 1724 } 1725 1726 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1727 { 1728 unsigned len, sector_count; 1729 1730 sector_count = bio_sectors(*bio); 1731 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1732 1733 if (sector_count > len) { 1734 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1735 1736 bio_chain(split, *bio); 1737 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1738 submit_bio_noacct(*bio); 1739 *bio = split; 1740 } 1741 } 1742 1743 static blk_qc_t dm_process_bio(struct mapped_device *md, 1744 struct dm_table *map, struct bio *bio) 1745 { 1746 blk_qc_t ret = BLK_QC_T_NONE; 1747 struct dm_target *ti = md->immutable_target; 1748 1749 if (unlikely(!map)) { 1750 bio_io_error(bio); 1751 return ret; 1752 } 1753 1754 if (!ti) { 1755 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1756 if (unlikely(!ti)) { 1757 bio_io_error(bio); 1758 return ret; 1759 } 1760 } 1761 1762 /* 1763 * If in ->queue_bio we need to use blk_queue_split(), otherwise 1764 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1765 * won't be imposed. 1766 */ 1767 if (current->bio_list) { 1768 if (is_abnormal_io(bio)) 1769 blk_queue_split(&bio); 1770 else 1771 dm_queue_split(md, ti, &bio); 1772 } 1773 1774 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1775 return __process_bio(md, map, bio, ti); 1776 else 1777 return __split_and_process_bio(md, map, bio); 1778 } 1779 1780 static blk_qc_t dm_submit_bio(struct bio *bio) 1781 { 1782 struct mapped_device *md = bio->bi_disk->private_data; 1783 blk_qc_t ret = BLK_QC_T_NONE; 1784 int srcu_idx; 1785 struct dm_table *map; 1786 1787 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1788 /* 1789 * We are called with a live reference on q_usage_counter, but 1790 * that one will be released as soon as we return. Grab an 1791 * extra one as blk_mq_submit_bio expects to be able to consume 1792 * a reference (which lives until the request is freed in case a 1793 * request is allocated). 1794 */ 1795 percpu_ref_get(&bio->bi_disk->queue->q_usage_counter); 1796 return blk_mq_submit_bio(bio); 1797 } 1798 1799 map = dm_get_live_table(md, &srcu_idx); 1800 1801 /* if we're suspended, we have to queue this io for later */ 1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1803 dm_put_live_table(md, srcu_idx); 1804 1805 if (!(bio->bi_opf & REQ_RAHEAD)) 1806 queue_io(md, bio); 1807 else 1808 bio_io_error(bio); 1809 return ret; 1810 } 1811 1812 ret = dm_process_bio(md, map, bio); 1813 1814 dm_put_live_table(md, srcu_idx); 1815 return ret; 1816 } 1817 1818 /*----------------------------------------------------------------- 1819 * An IDR is used to keep track of allocated minor numbers. 1820 *---------------------------------------------------------------*/ 1821 static void free_minor(int minor) 1822 { 1823 spin_lock(&_minor_lock); 1824 idr_remove(&_minor_idr, minor); 1825 spin_unlock(&_minor_lock); 1826 } 1827 1828 /* 1829 * See if the device with a specific minor # is free. 1830 */ 1831 static int specific_minor(int minor) 1832 { 1833 int r; 1834 1835 if (minor >= (1 << MINORBITS)) 1836 return -EINVAL; 1837 1838 idr_preload(GFP_KERNEL); 1839 spin_lock(&_minor_lock); 1840 1841 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1842 1843 spin_unlock(&_minor_lock); 1844 idr_preload_end(); 1845 if (r < 0) 1846 return r == -ENOSPC ? -EBUSY : r; 1847 return 0; 1848 } 1849 1850 static int next_free_minor(int *minor) 1851 { 1852 int r; 1853 1854 idr_preload(GFP_KERNEL); 1855 spin_lock(&_minor_lock); 1856 1857 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1858 1859 spin_unlock(&_minor_lock); 1860 idr_preload_end(); 1861 if (r < 0) 1862 return r; 1863 *minor = r; 1864 return 0; 1865 } 1866 1867 static const struct block_device_operations dm_blk_dops; 1868 static const struct dax_operations dm_dax_ops; 1869 1870 static void dm_wq_work(struct work_struct *work); 1871 1872 static void cleanup_mapped_device(struct mapped_device *md) 1873 { 1874 if (md->wq) 1875 destroy_workqueue(md->wq); 1876 bioset_exit(&md->bs); 1877 bioset_exit(&md->io_bs); 1878 1879 if (md->dax_dev) { 1880 kill_dax(md->dax_dev); 1881 put_dax(md->dax_dev); 1882 md->dax_dev = NULL; 1883 } 1884 1885 if (md->disk) { 1886 spin_lock(&_minor_lock); 1887 md->disk->private_data = NULL; 1888 spin_unlock(&_minor_lock); 1889 del_gendisk(md->disk); 1890 put_disk(md->disk); 1891 } 1892 1893 if (md->queue) 1894 blk_cleanup_queue(md->queue); 1895 1896 cleanup_srcu_struct(&md->io_barrier); 1897 1898 if (md->bdev) { 1899 bdput(md->bdev); 1900 md->bdev = NULL; 1901 } 1902 1903 mutex_destroy(&md->suspend_lock); 1904 mutex_destroy(&md->type_lock); 1905 mutex_destroy(&md->table_devices_lock); 1906 1907 dm_mq_cleanup_mapped_device(md); 1908 } 1909 1910 /* 1911 * Allocate and initialise a blank device with a given minor. 1912 */ 1913 static struct mapped_device *alloc_dev(int minor) 1914 { 1915 int r, numa_node_id = dm_get_numa_node(); 1916 struct mapped_device *md; 1917 void *old_md; 1918 1919 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1920 if (!md) { 1921 DMWARN("unable to allocate device, out of memory."); 1922 return NULL; 1923 } 1924 1925 if (!try_module_get(THIS_MODULE)) 1926 goto bad_module_get; 1927 1928 /* get a minor number for the dev */ 1929 if (minor == DM_ANY_MINOR) 1930 r = next_free_minor(&minor); 1931 else 1932 r = specific_minor(minor); 1933 if (r < 0) 1934 goto bad_minor; 1935 1936 r = init_srcu_struct(&md->io_barrier); 1937 if (r < 0) 1938 goto bad_io_barrier; 1939 1940 md->numa_node_id = numa_node_id; 1941 md->init_tio_pdu = false; 1942 md->type = DM_TYPE_NONE; 1943 mutex_init(&md->suspend_lock); 1944 mutex_init(&md->type_lock); 1945 mutex_init(&md->table_devices_lock); 1946 spin_lock_init(&md->deferred_lock); 1947 atomic_set(&md->holders, 1); 1948 atomic_set(&md->open_count, 0); 1949 atomic_set(&md->event_nr, 0); 1950 atomic_set(&md->uevent_seq, 0); 1951 INIT_LIST_HEAD(&md->uevent_list); 1952 INIT_LIST_HEAD(&md->table_devices); 1953 spin_lock_init(&md->uevent_lock); 1954 1955 /* 1956 * default to bio-based until DM table is loaded and md->type 1957 * established. If request-based table is loaded: blk-mq will 1958 * override accordingly. 1959 */ 1960 md->queue = blk_alloc_queue(numa_node_id); 1961 if (!md->queue) 1962 goto bad; 1963 1964 md->disk = alloc_disk_node(1, md->numa_node_id); 1965 if (!md->disk) 1966 goto bad; 1967 1968 init_waitqueue_head(&md->wait); 1969 INIT_WORK(&md->work, dm_wq_work); 1970 init_waitqueue_head(&md->eventq); 1971 init_completion(&md->kobj_holder.completion); 1972 1973 md->disk->major = _major; 1974 md->disk->first_minor = minor; 1975 md->disk->fops = &dm_blk_dops; 1976 md->disk->queue = md->queue; 1977 md->disk->private_data = md; 1978 sprintf(md->disk->disk_name, "dm-%d", minor); 1979 1980 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1981 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1982 &dm_dax_ops, 0); 1983 if (IS_ERR(md->dax_dev)) 1984 goto bad; 1985 } 1986 1987 add_disk_no_queue_reg(md->disk); 1988 format_dev_t(md->name, MKDEV(_major, minor)); 1989 1990 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1991 if (!md->wq) 1992 goto bad; 1993 1994 md->bdev = bdget_disk(md->disk, 0); 1995 if (!md->bdev) 1996 goto bad; 1997 1998 dm_stats_init(&md->stats); 1999 2000 /* Populate the mapping, nobody knows we exist yet */ 2001 spin_lock(&_minor_lock); 2002 old_md = idr_replace(&_minor_idr, md, minor); 2003 spin_unlock(&_minor_lock); 2004 2005 BUG_ON(old_md != MINOR_ALLOCED); 2006 2007 return md; 2008 2009 bad: 2010 cleanup_mapped_device(md); 2011 bad_io_barrier: 2012 free_minor(minor); 2013 bad_minor: 2014 module_put(THIS_MODULE); 2015 bad_module_get: 2016 kvfree(md); 2017 return NULL; 2018 } 2019 2020 static void unlock_fs(struct mapped_device *md); 2021 2022 static void free_dev(struct mapped_device *md) 2023 { 2024 int minor = MINOR(disk_devt(md->disk)); 2025 2026 unlock_fs(md); 2027 2028 cleanup_mapped_device(md); 2029 2030 free_table_devices(&md->table_devices); 2031 dm_stats_cleanup(&md->stats); 2032 free_minor(minor); 2033 2034 module_put(THIS_MODULE); 2035 kvfree(md); 2036 } 2037 2038 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2039 { 2040 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2041 int ret = 0; 2042 2043 if (dm_table_bio_based(t)) { 2044 /* 2045 * The md may already have mempools that need changing. 2046 * If so, reload bioset because front_pad may have changed 2047 * because a different table was loaded. 2048 */ 2049 bioset_exit(&md->bs); 2050 bioset_exit(&md->io_bs); 2051 2052 } else if (bioset_initialized(&md->bs)) { 2053 /* 2054 * There's no need to reload with request-based dm 2055 * because the size of front_pad doesn't change. 2056 * Note for future: If you are to reload bioset, 2057 * prep-ed requests in the queue may refer 2058 * to bio from the old bioset, so you must walk 2059 * through the queue to unprep. 2060 */ 2061 goto out; 2062 } 2063 2064 BUG_ON(!p || 2065 bioset_initialized(&md->bs) || 2066 bioset_initialized(&md->io_bs)); 2067 2068 ret = bioset_init_from_src(&md->bs, &p->bs); 2069 if (ret) 2070 goto out; 2071 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2072 if (ret) 2073 bioset_exit(&md->bs); 2074 out: 2075 /* mempool bind completed, no longer need any mempools in the table */ 2076 dm_table_free_md_mempools(t); 2077 return ret; 2078 } 2079 2080 /* 2081 * Bind a table to the device. 2082 */ 2083 static void event_callback(void *context) 2084 { 2085 unsigned long flags; 2086 LIST_HEAD(uevents); 2087 struct mapped_device *md = (struct mapped_device *) context; 2088 2089 spin_lock_irqsave(&md->uevent_lock, flags); 2090 list_splice_init(&md->uevent_list, &uevents); 2091 spin_unlock_irqrestore(&md->uevent_lock, flags); 2092 2093 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2094 2095 atomic_inc(&md->event_nr); 2096 wake_up(&md->eventq); 2097 dm_issue_global_event(); 2098 } 2099 2100 /* 2101 * Protected by md->suspend_lock obtained by dm_swap_table(). 2102 */ 2103 static void __set_size(struct mapped_device *md, sector_t size) 2104 { 2105 lockdep_assert_held(&md->suspend_lock); 2106 2107 set_capacity(md->disk, size); 2108 2109 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2110 } 2111 2112 /* 2113 * Returns old map, which caller must destroy. 2114 */ 2115 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2116 struct queue_limits *limits) 2117 { 2118 struct dm_table *old_map; 2119 struct request_queue *q = md->queue; 2120 bool request_based = dm_table_request_based(t); 2121 sector_t size; 2122 int ret; 2123 2124 lockdep_assert_held(&md->suspend_lock); 2125 2126 size = dm_table_get_size(t); 2127 2128 /* 2129 * Wipe any geometry if the size of the table changed. 2130 */ 2131 if (size != dm_get_size(md)) 2132 memset(&md->geometry, 0, sizeof(md->geometry)); 2133 2134 __set_size(md, size); 2135 2136 dm_table_event_callback(t, event_callback, md); 2137 2138 /* 2139 * The queue hasn't been stopped yet, if the old table type wasn't 2140 * for request-based during suspension. So stop it to prevent 2141 * I/O mapping before resume. 2142 * This must be done before setting the queue restrictions, 2143 * because request-based dm may be run just after the setting. 2144 */ 2145 if (request_based) 2146 dm_stop_queue(q); 2147 2148 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2149 /* 2150 * Leverage the fact that request-based DM targets and 2151 * NVMe bio based targets are immutable singletons 2152 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2153 * and __process_bio. 2154 */ 2155 md->immutable_target = dm_table_get_immutable_target(t); 2156 } 2157 2158 ret = __bind_mempools(md, t); 2159 if (ret) { 2160 old_map = ERR_PTR(ret); 2161 goto out; 2162 } 2163 2164 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2165 rcu_assign_pointer(md->map, (void *)t); 2166 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2167 2168 dm_table_set_restrictions(t, q, limits); 2169 if (old_map) 2170 dm_sync_table(md); 2171 2172 out: 2173 return old_map; 2174 } 2175 2176 /* 2177 * Returns unbound table for the caller to free. 2178 */ 2179 static struct dm_table *__unbind(struct mapped_device *md) 2180 { 2181 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2182 2183 if (!map) 2184 return NULL; 2185 2186 dm_table_event_callback(map, NULL, NULL); 2187 RCU_INIT_POINTER(md->map, NULL); 2188 dm_sync_table(md); 2189 2190 return map; 2191 } 2192 2193 /* 2194 * Constructor for a new device. 2195 */ 2196 int dm_create(int minor, struct mapped_device **result) 2197 { 2198 int r; 2199 struct mapped_device *md; 2200 2201 md = alloc_dev(minor); 2202 if (!md) 2203 return -ENXIO; 2204 2205 r = dm_sysfs_init(md); 2206 if (r) { 2207 free_dev(md); 2208 return r; 2209 } 2210 2211 *result = md; 2212 return 0; 2213 } 2214 2215 /* 2216 * Functions to manage md->type. 2217 * All are required to hold md->type_lock. 2218 */ 2219 void dm_lock_md_type(struct mapped_device *md) 2220 { 2221 mutex_lock(&md->type_lock); 2222 } 2223 2224 void dm_unlock_md_type(struct mapped_device *md) 2225 { 2226 mutex_unlock(&md->type_lock); 2227 } 2228 2229 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2230 { 2231 BUG_ON(!mutex_is_locked(&md->type_lock)); 2232 md->type = type; 2233 } 2234 2235 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2236 { 2237 return md->type; 2238 } 2239 2240 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2241 { 2242 return md->immutable_target_type; 2243 } 2244 2245 /* 2246 * The queue_limits are only valid as long as you have a reference 2247 * count on 'md'. 2248 */ 2249 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2250 { 2251 BUG_ON(!atomic_read(&md->holders)); 2252 return &md->queue->limits; 2253 } 2254 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2255 2256 /* 2257 * Setup the DM device's queue based on md's type 2258 */ 2259 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2260 { 2261 int r; 2262 struct queue_limits limits; 2263 enum dm_queue_mode type = dm_get_md_type(md); 2264 2265 switch (type) { 2266 case DM_TYPE_REQUEST_BASED: 2267 r = dm_mq_init_request_queue(md, t); 2268 if (r) { 2269 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2270 return r; 2271 } 2272 break; 2273 case DM_TYPE_BIO_BASED: 2274 case DM_TYPE_DAX_BIO_BASED: 2275 case DM_TYPE_NVME_BIO_BASED: 2276 break; 2277 case DM_TYPE_NONE: 2278 WARN_ON_ONCE(true); 2279 break; 2280 } 2281 2282 r = dm_calculate_queue_limits(t, &limits); 2283 if (r) { 2284 DMERR("Cannot calculate initial queue limits"); 2285 return r; 2286 } 2287 dm_table_set_restrictions(t, md->queue, &limits); 2288 blk_register_queue(md->disk); 2289 2290 return 0; 2291 } 2292 2293 struct mapped_device *dm_get_md(dev_t dev) 2294 { 2295 struct mapped_device *md; 2296 unsigned minor = MINOR(dev); 2297 2298 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2299 return NULL; 2300 2301 spin_lock(&_minor_lock); 2302 2303 md = idr_find(&_minor_idr, minor); 2304 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2305 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2306 md = NULL; 2307 goto out; 2308 } 2309 dm_get(md); 2310 out: 2311 spin_unlock(&_minor_lock); 2312 2313 return md; 2314 } 2315 EXPORT_SYMBOL_GPL(dm_get_md); 2316 2317 void *dm_get_mdptr(struct mapped_device *md) 2318 { 2319 return md->interface_ptr; 2320 } 2321 2322 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2323 { 2324 md->interface_ptr = ptr; 2325 } 2326 2327 void dm_get(struct mapped_device *md) 2328 { 2329 atomic_inc(&md->holders); 2330 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2331 } 2332 2333 int dm_hold(struct mapped_device *md) 2334 { 2335 spin_lock(&_minor_lock); 2336 if (test_bit(DMF_FREEING, &md->flags)) { 2337 spin_unlock(&_minor_lock); 2338 return -EBUSY; 2339 } 2340 dm_get(md); 2341 spin_unlock(&_minor_lock); 2342 return 0; 2343 } 2344 EXPORT_SYMBOL_GPL(dm_hold); 2345 2346 const char *dm_device_name(struct mapped_device *md) 2347 { 2348 return md->name; 2349 } 2350 EXPORT_SYMBOL_GPL(dm_device_name); 2351 2352 static void __dm_destroy(struct mapped_device *md, bool wait) 2353 { 2354 struct dm_table *map; 2355 int srcu_idx; 2356 2357 might_sleep(); 2358 2359 spin_lock(&_minor_lock); 2360 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2361 set_bit(DMF_FREEING, &md->flags); 2362 spin_unlock(&_minor_lock); 2363 2364 blk_set_queue_dying(md->queue); 2365 2366 /* 2367 * Take suspend_lock so that presuspend and postsuspend methods 2368 * do not race with internal suspend. 2369 */ 2370 mutex_lock(&md->suspend_lock); 2371 map = dm_get_live_table(md, &srcu_idx); 2372 if (!dm_suspended_md(md)) { 2373 dm_table_presuspend_targets(map); 2374 set_bit(DMF_SUSPENDED, &md->flags); 2375 set_bit(DMF_POST_SUSPENDING, &md->flags); 2376 dm_table_postsuspend_targets(map); 2377 } 2378 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2379 dm_put_live_table(md, srcu_idx); 2380 mutex_unlock(&md->suspend_lock); 2381 2382 /* 2383 * Rare, but there may be I/O requests still going to complete, 2384 * for example. Wait for all references to disappear. 2385 * No one should increment the reference count of the mapped_device, 2386 * after the mapped_device state becomes DMF_FREEING. 2387 */ 2388 if (wait) 2389 while (atomic_read(&md->holders)) 2390 msleep(1); 2391 else if (atomic_read(&md->holders)) 2392 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2393 dm_device_name(md), atomic_read(&md->holders)); 2394 2395 dm_sysfs_exit(md); 2396 dm_table_destroy(__unbind(md)); 2397 free_dev(md); 2398 } 2399 2400 void dm_destroy(struct mapped_device *md) 2401 { 2402 __dm_destroy(md, true); 2403 } 2404 2405 void dm_destroy_immediate(struct mapped_device *md) 2406 { 2407 __dm_destroy(md, false); 2408 } 2409 2410 void dm_put(struct mapped_device *md) 2411 { 2412 atomic_dec(&md->holders); 2413 } 2414 EXPORT_SYMBOL_GPL(dm_put); 2415 2416 static bool md_in_flight_bios(struct mapped_device *md) 2417 { 2418 int cpu; 2419 struct hd_struct *part = &dm_disk(md)->part0; 2420 long sum = 0; 2421 2422 for_each_possible_cpu(cpu) { 2423 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2424 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2425 } 2426 2427 return sum != 0; 2428 } 2429 2430 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state) 2431 { 2432 int r = 0; 2433 DEFINE_WAIT(wait); 2434 2435 while (true) { 2436 prepare_to_wait(&md->wait, &wait, task_state); 2437 2438 if (!md_in_flight_bios(md)) 2439 break; 2440 2441 if (signal_pending_state(task_state, current)) { 2442 r = -EINTR; 2443 break; 2444 } 2445 2446 io_schedule(); 2447 } 2448 finish_wait(&md->wait, &wait); 2449 2450 return r; 2451 } 2452 2453 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2454 { 2455 int r = 0; 2456 2457 if (!queue_is_mq(md->queue)) 2458 return dm_wait_for_bios_completion(md, task_state); 2459 2460 while (true) { 2461 if (!blk_mq_queue_inflight(md->queue)) 2462 break; 2463 2464 if (signal_pending_state(task_state, current)) { 2465 r = -EINTR; 2466 break; 2467 } 2468 2469 msleep(5); 2470 } 2471 2472 return r; 2473 } 2474 2475 /* 2476 * Process the deferred bios 2477 */ 2478 static void dm_wq_work(struct work_struct *work) 2479 { 2480 struct mapped_device *md = container_of(work, struct mapped_device, 2481 work); 2482 struct bio *c; 2483 int srcu_idx; 2484 struct dm_table *map; 2485 2486 map = dm_get_live_table(md, &srcu_idx); 2487 2488 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2489 spin_lock_irq(&md->deferred_lock); 2490 c = bio_list_pop(&md->deferred); 2491 spin_unlock_irq(&md->deferred_lock); 2492 2493 if (!c) 2494 break; 2495 2496 if (dm_request_based(md)) 2497 (void) submit_bio_noacct(c); 2498 else 2499 (void) dm_process_bio(md, map, c); 2500 } 2501 2502 dm_put_live_table(md, srcu_idx); 2503 } 2504 2505 static void dm_queue_flush(struct mapped_device *md) 2506 { 2507 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2508 smp_mb__after_atomic(); 2509 queue_work(md->wq, &md->work); 2510 } 2511 2512 /* 2513 * Swap in a new table, returning the old one for the caller to destroy. 2514 */ 2515 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2516 { 2517 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2518 struct queue_limits limits; 2519 int r; 2520 2521 mutex_lock(&md->suspend_lock); 2522 2523 /* device must be suspended */ 2524 if (!dm_suspended_md(md)) 2525 goto out; 2526 2527 /* 2528 * If the new table has no data devices, retain the existing limits. 2529 * This helps multipath with queue_if_no_path if all paths disappear, 2530 * then new I/O is queued based on these limits, and then some paths 2531 * reappear. 2532 */ 2533 if (dm_table_has_no_data_devices(table)) { 2534 live_map = dm_get_live_table_fast(md); 2535 if (live_map) 2536 limits = md->queue->limits; 2537 dm_put_live_table_fast(md); 2538 } 2539 2540 if (!live_map) { 2541 r = dm_calculate_queue_limits(table, &limits); 2542 if (r) { 2543 map = ERR_PTR(r); 2544 goto out; 2545 } 2546 } 2547 2548 map = __bind(md, table, &limits); 2549 dm_issue_global_event(); 2550 2551 out: 2552 mutex_unlock(&md->suspend_lock); 2553 return map; 2554 } 2555 2556 /* 2557 * Functions to lock and unlock any filesystem running on the 2558 * device. 2559 */ 2560 static int lock_fs(struct mapped_device *md) 2561 { 2562 int r; 2563 2564 WARN_ON(md->frozen_sb); 2565 2566 md->frozen_sb = freeze_bdev(md->bdev); 2567 if (IS_ERR(md->frozen_sb)) { 2568 r = PTR_ERR(md->frozen_sb); 2569 md->frozen_sb = NULL; 2570 return r; 2571 } 2572 2573 set_bit(DMF_FROZEN, &md->flags); 2574 2575 return 0; 2576 } 2577 2578 static void unlock_fs(struct mapped_device *md) 2579 { 2580 if (!test_bit(DMF_FROZEN, &md->flags)) 2581 return; 2582 2583 thaw_bdev(md->bdev, md->frozen_sb); 2584 md->frozen_sb = NULL; 2585 clear_bit(DMF_FROZEN, &md->flags); 2586 } 2587 2588 /* 2589 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2590 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2591 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2592 * 2593 * If __dm_suspend returns 0, the device is completely quiescent 2594 * now. There is no request-processing activity. All new requests 2595 * are being added to md->deferred list. 2596 */ 2597 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2598 unsigned suspend_flags, long task_state, 2599 int dmf_suspended_flag) 2600 { 2601 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2602 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2603 int r; 2604 2605 lockdep_assert_held(&md->suspend_lock); 2606 2607 /* 2608 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2609 * This flag is cleared before dm_suspend returns. 2610 */ 2611 if (noflush) 2612 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2613 else 2614 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2615 2616 /* 2617 * This gets reverted if there's an error later and the targets 2618 * provide the .presuspend_undo hook. 2619 */ 2620 dm_table_presuspend_targets(map); 2621 2622 /* 2623 * Flush I/O to the device. 2624 * Any I/O submitted after lock_fs() may not be flushed. 2625 * noflush takes precedence over do_lockfs. 2626 * (lock_fs() flushes I/Os and waits for them to complete.) 2627 */ 2628 if (!noflush && do_lockfs) { 2629 r = lock_fs(md); 2630 if (r) { 2631 dm_table_presuspend_undo_targets(map); 2632 return r; 2633 } 2634 } 2635 2636 /* 2637 * Here we must make sure that no processes are submitting requests 2638 * to target drivers i.e. no one may be executing 2639 * __split_and_process_bio. This is called from dm_request and 2640 * dm_wq_work. 2641 * 2642 * To get all processes out of __split_and_process_bio in dm_request, 2643 * we take the write lock. To prevent any process from reentering 2644 * __split_and_process_bio from dm_request and quiesce the thread 2645 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2646 * flush_workqueue(md->wq). 2647 */ 2648 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2649 if (map) 2650 synchronize_srcu(&md->io_barrier); 2651 2652 /* 2653 * Stop md->queue before flushing md->wq in case request-based 2654 * dm defers requests to md->wq from md->queue. 2655 */ 2656 if (dm_request_based(md)) 2657 dm_stop_queue(md->queue); 2658 2659 flush_workqueue(md->wq); 2660 2661 /* 2662 * At this point no more requests are entering target request routines. 2663 * We call dm_wait_for_completion to wait for all existing requests 2664 * to finish. 2665 */ 2666 r = dm_wait_for_completion(md, task_state); 2667 if (!r) 2668 set_bit(dmf_suspended_flag, &md->flags); 2669 2670 if (noflush) 2671 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2672 if (map) 2673 synchronize_srcu(&md->io_barrier); 2674 2675 /* were we interrupted ? */ 2676 if (r < 0) { 2677 dm_queue_flush(md); 2678 2679 if (dm_request_based(md)) 2680 dm_start_queue(md->queue); 2681 2682 unlock_fs(md); 2683 dm_table_presuspend_undo_targets(map); 2684 /* pushback list is already flushed, so skip flush */ 2685 } 2686 2687 return r; 2688 } 2689 2690 /* 2691 * We need to be able to change a mapping table under a mounted 2692 * filesystem. For example we might want to move some data in 2693 * the background. Before the table can be swapped with 2694 * dm_bind_table, dm_suspend must be called to flush any in 2695 * flight bios and ensure that any further io gets deferred. 2696 */ 2697 /* 2698 * Suspend mechanism in request-based dm. 2699 * 2700 * 1. Flush all I/Os by lock_fs() if needed. 2701 * 2. Stop dispatching any I/O by stopping the request_queue. 2702 * 3. Wait for all in-flight I/Os to be completed or requeued. 2703 * 2704 * To abort suspend, start the request_queue. 2705 */ 2706 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2707 { 2708 struct dm_table *map = NULL; 2709 int r = 0; 2710 2711 retry: 2712 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2713 2714 if (dm_suspended_md(md)) { 2715 r = -EINVAL; 2716 goto out_unlock; 2717 } 2718 2719 if (dm_suspended_internally_md(md)) { 2720 /* already internally suspended, wait for internal resume */ 2721 mutex_unlock(&md->suspend_lock); 2722 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2723 if (r) 2724 return r; 2725 goto retry; 2726 } 2727 2728 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2729 2730 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2731 if (r) 2732 goto out_unlock; 2733 2734 set_bit(DMF_POST_SUSPENDING, &md->flags); 2735 dm_table_postsuspend_targets(map); 2736 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2737 2738 out_unlock: 2739 mutex_unlock(&md->suspend_lock); 2740 return r; 2741 } 2742 2743 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2744 { 2745 if (map) { 2746 int r = dm_table_resume_targets(map); 2747 if (r) 2748 return r; 2749 } 2750 2751 dm_queue_flush(md); 2752 2753 /* 2754 * Flushing deferred I/Os must be done after targets are resumed 2755 * so that mapping of targets can work correctly. 2756 * Request-based dm is queueing the deferred I/Os in its request_queue. 2757 */ 2758 if (dm_request_based(md)) 2759 dm_start_queue(md->queue); 2760 2761 unlock_fs(md); 2762 2763 return 0; 2764 } 2765 2766 int dm_resume(struct mapped_device *md) 2767 { 2768 int r; 2769 struct dm_table *map = NULL; 2770 2771 retry: 2772 r = -EINVAL; 2773 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2774 2775 if (!dm_suspended_md(md)) 2776 goto out; 2777 2778 if (dm_suspended_internally_md(md)) { 2779 /* already internally suspended, wait for internal resume */ 2780 mutex_unlock(&md->suspend_lock); 2781 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2782 if (r) 2783 return r; 2784 goto retry; 2785 } 2786 2787 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2788 if (!map || !dm_table_get_size(map)) 2789 goto out; 2790 2791 r = __dm_resume(md, map); 2792 if (r) 2793 goto out; 2794 2795 clear_bit(DMF_SUSPENDED, &md->flags); 2796 out: 2797 mutex_unlock(&md->suspend_lock); 2798 2799 return r; 2800 } 2801 2802 /* 2803 * Internal suspend/resume works like userspace-driven suspend. It waits 2804 * until all bios finish and prevents issuing new bios to the target drivers. 2805 * It may be used only from the kernel. 2806 */ 2807 2808 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2809 { 2810 struct dm_table *map = NULL; 2811 2812 lockdep_assert_held(&md->suspend_lock); 2813 2814 if (md->internal_suspend_count++) 2815 return; /* nested internal suspend */ 2816 2817 if (dm_suspended_md(md)) { 2818 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2819 return; /* nest suspend */ 2820 } 2821 2822 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2823 2824 /* 2825 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2826 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2827 * would require changing .presuspend to return an error -- avoid this 2828 * until there is a need for more elaborate variants of internal suspend. 2829 */ 2830 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2831 DMF_SUSPENDED_INTERNALLY); 2832 2833 set_bit(DMF_POST_SUSPENDING, &md->flags); 2834 dm_table_postsuspend_targets(map); 2835 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2836 } 2837 2838 static void __dm_internal_resume(struct mapped_device *md) 2839 { 2840 BUG_ON(!md->internal_suspend_count); 2841 2842 if (--md->internal_suspend_count) 2843 return; /* resume from nested internal suspend */ 2844 2845 if (dm_suspended_md(md)) 2846 goto done; /* resume from nested suspend */ 2847 2848 /* 2849 * NOTE: existing callers don't need to call dm_table_resume_targets 2850 * (which may fail -- so best to avoid it for now by passing NULL map) 2851 */ 2852 (void) __dm_resume(md, NULL); 2853 2854 done: 2855 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2856 smp_mb__after_atomic(); 2857 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2858 } 2859 2860 void dm_internal_suspend_noflush(struct mapped_device *md) 2861 { 2862 mutex_lock(&md->suspend_lock); 2863 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2864 mutex_unlock(&md->suspend_lock); 2865 } 2866 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2867 2868 void dm_internal_resume(struct mapped_device *md) 2869 { 2870 mutex_lock(&md->suspend_lock); 2871 __dm_internal_resume(md); 2872 mutex_unlock(&md->suspend_lock); 2873 } 2874 EXPORT_SYMBOL_GPL(dm_internal_resume); 2875 2876 /* 2877 * Fast variants of internal suspend/resume hold md->suspend_lock, 2878 * which prevents interaction with userspace-driven suspend. 2879 */ 2880 2881 void dm_internal_suspend_fast(struct mapped_device *md) 2882 { 2883 mutex_lock(&md->suspend_lock); 2884 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2885 return; 2886 2887 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2888 synchronize_srcu(&md->io_barrier); 2889 flush_workqueue(md->wq); 2890 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2891 } 2892 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2893 2894 void dm_internal_resume_fast(struct mapped_device *md) 2895 { 2896 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2897 goto done; 2898 2899 dm_queue_flush(md); 2900 2901 done: 2902 mutex_unlock(&md->suspend_lock); 2903 } 2904 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2905 2906 /*----------------------------------------------------------------- 2907 * Event notification. 2908 *---------------------------------------------------------------*/ 2909 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2910 unsigned cookie) 2911 { 2912 int r; 2913 unsigned noio_flag; 2914 char udev_cookie[DM_COOKIE_LENGTH]; 2915 char *envp[] = { udev_cookie, NULL }; 2916 2917 noio_flag = memalloc_noio_save(); 2918 2919 if (!cookie) 2920 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2921 else { 2922 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2923 DM_COOKIE_ENV_VAR_NAME, cookie); 2924 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2925 action, envp); 2926 } 2927 2928 memalloc_noio_restore(noio_flag); 2929 2930 return r; 2931 } 2932 2933 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2934 { 2935 return atomic_add_return(1, &md->uevent_seq); 2936 } 2937 2938 uint32_t dm_get_event_nr(struct mapped_device *md) 2939 { 2940 return atomic_read(&md->event_nr); 2941 } 2942 2943 int dm_wait_event(struct mapped_device *md, int event_nr) 2944 { 2945 return wait_event_interruptible(md->eventq, 2946 (event_nr != atomic_read(&md->event_nr))); 2947 } 2948 2949 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2950 { 2951 unsigned long flags; 2952 2953 spin_lock_irqsave(&md->uevent_lock, flags); 2954 list_add(elist, &md->uevent_list); 2955 spin_unlock_irqrestore(&md->uevent_lock, flags); 2956 } 2957 2958 /* 2959 * The gendisk is only valid as long as you have a reference 2960 * count on 'md'. 2961 */ 2962 struct gendisk *dm_disk(struct mapped_device *md) 2963 { 2964 return md->disk; 2965 } 2966 EXPORT_SYMBOL_GPL(dm_disk); 2967 2968 struct kobject *dm_kobject(struct mapped_device *md) 2969 { 2970 return &md->kobj_holder.kobj; 2971 } 2972 2973 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2974 { 2975 struct mapped_device *md; 2976 2977 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2978 2979 spin_lock(&_minor_lock); 2980 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2981 md = NULL; 2982 goto out; 2983 } 2984 dm_get(md); 2985 out: 2986 spin_unlock(&_minor_lock); 2987 2988 return md; 2989 } 2990 2991 int dm_suspended_md(struct mapped_device *md) 2992 { 2993 return test_bit(DMF_SUSPENDED, &md->flags); 2994 } 2995 2996 static int dm_post_suspending_md(struct mapped_device *md) 2997 { 2998 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2999 } 3000 3001 int dm_suspended_internally_md(struct mapped_device *md) 3002 { 3003 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3004 } 3005 3006 int dm_test_deferred_remove_flag(struct mapped_device *md) 3007 { 3008 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3009 } 3010 3011 int dm_suspended(struct dm_target *ti) 3012 { 3013 return dm_suspended_md(dm_table_get_md(ti->table)); 3014 } 3015 EXPORT_SYMBOL_GPL(dm_suspended); 3016 3017 int dm_post_suspending(struct dm_target *ti) 3018 { 3019 return dm_post_suspending_md(dm_table_get_md(ti->table)); 3020 } 3021 EXPORT_SYMBOL_GPL(dm_post_suspending); 3022 3023 int dm_noflush_suspending(struct dm_target *ti) 3024 { 3025 return __noflush_suspending(dm_table_get_md(ti->table)); 3026 } 3027 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3028 3029 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3030 unsigned integrity, unsigned per_io_data_size, 3031 unsigned min_pool_size) 3032 { 3033 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3034 unsigned int pool_size = 0; 3035 unsigned int front_pad, io_front_pad; 3036 int ret; 3037 3038 if (!pools) 3039 return NULL; 3040 3041 switch (type) { 3042 case DM_TYPE_BIO_BASED: 3043 case DM_TYPE_DAX_BIO_BASED: 3044 case DM_TYPE_NVME_BIO_BASED: 3045 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3046 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3047 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3048 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3049 if (ret) 3050 goto out; 3051 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3052 goto out; 3053 break; 3054 case DM_TYPE_REQUEST_BASED: 3055 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3056 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3057 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3058 break; 3059 default: 3060 BUG(); 3061 } 3062 3063 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3064 if (ret) 3065 goto out; 3066 3067 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3068 goto out; 3069 3070 return pools; 3071 3072 out: 3073 dm_free_md_mempools(pools); 3074 3075 return NULL; 3076 } 3077 3078 void dm_free_md_mempools(struct dm_md_mempools *pools) 3079 { 3080 if (!pools) 3081 return; 3082 3083 bioset_exit(&pools->bs); 3084 bioset_exit(&pools->io_bs); 3085 3086 kfree(pools); 3087 } 3088 3089 struct dm_pr { 3090 u64 old_key; 3091 u64 new_key; 3092 u32 flags; 3093 bool fail_early; 3094 }; 3095 3096 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3097 void *data) 3098 { 3099 struct mapped_device *md = bdev->bd_disk->private_data; 3100 struct dm_table *table; 3101 struct dm_target *ti; 3102 int ret = -ENOTTY, srcu_idx; 3103 3104 table = dm_get_live_table(md, &srcu_idx); 3105 if (!table || !dm_table_get_size(table)) 3106 goto out; 3107 3108 /* We only support devices that have a single target */ 3109 if (dm_table_get_num_targets(table) != 1) 3110 goto out; 3111 ti = dm_table_get_target(table, 0); 3112 3113 ret = -EINVAL; 3114 if (!ti->type->iterate_devices) 3115 goto out; 3116 3117 ret = ti->type->iterate_devices(ti, fn, data); 3118 out: 3119 dm_put_live_table(md, srcu_idx); 3120 return ret; 3121 } 3122 3123 /* 3124 * For register / unregister we need to manually call out to every path. 3125 */ 3126 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3127 sector_t start, sector_t len, void *data) 3128 { 3129 struct dm_pr *pr = data; 3130 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3131 3132 if (!ops || !ops->pr_register) 3133 return -EOPNOTSUPP; 3134 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3135 } 3136 3137 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3138 u32 flags) 3139 { 3140 struct dm_pr pr = { 3141 .old_key = old_key, 3142 .new_key = new_key, 3143 .flags = flags, 3144 .fail_early = true, 3145 }; 3146 int ret; 3147 3148 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3149 if (ret && new_key) { 3150 /* unregister all paths if we failed to register any path */ 3151 pr.old_key = new_key; 3152 pr.new_key = 0; 3153 pr.flags = 0; 3154 pr.fail_early = false; 3155 dm_call_pr(bdev, __dm_pr_register, &pr); 3156 } 3157 3158 return ret; 3159 } 3160 3161 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3162 u32 flags) 3163 { 3164 struct mapped_device *md = bdev->bd_disk->private_data; 3165 const struct pr_ops *ops; 3166 int r, srcu_idx; 3167 3168 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3169 if (r < 0) 3170 goto out; 3171 3172 ops = bdev->bd_disk->fops->pr_ops; 3173 if (ops && ops->pr_reserve) 3174 r = ops->pr_reserve(bdev, key, type, flags); 3175 else 3176 r = -EOPNOTSUPP; 3177 out: 3178 dm_unprepare_ioctl(md, srcu_idx); 3179 return r; 3180 } 3181 3182 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3183 { 3184 struct mapped_device *md = bdev->bd_disk->private_data; 3185 const struct pr_ops *ops; 3186 int r, srcu_idx; 3187 3188 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3189 if (r < 0) 3190 goto out; 3191 3192 ops = bdev->bd_disk->fops->pr_ops; 3193 if (ops && ops->pr_release) 3194 r = ops->pr_release(bdev, key, type); 3195 else 3196 r = -EOPNOTSUPP; 3197 out: 3198 dm_unprepare_ioctl(md, srcu_idx); 3199 return r; 3200 } 3201 3202 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3203 enum pr_type type, bool abort) 3204 { 3205 struct mapped_device *md = bdev->bd_disk->private_data; 3206 const struct pr_ops *ops; 3207 int r, srcu_idx; 3208 3209 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3210 if (r < 0) 3211 goto out; 3212 3213 ops = bdev->bd_disk->fops->pr_ops; 3214 if (ops && ops->pr_preempt) 3215 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3216 else 3217 r = -EOPNOTSUPP; 3218 out: 3219 dm_unprepare_ioctl(md, srcu_idx); 3220 return r; 3221 } 3222 3223 static int dm_pr_clear(struct block_device *bdev, u64 key) 3224 { 3225 struct mapped_device *md = bdev->bd_disk->private_data; 3226 const struct pr_ops *ops; 3227 int r, srcu_idx; 3228 3229 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3230 if (r < 0) 3231 goto out; 3232 3233 ops = bdev->bd_disk->fops->pr_ops; 3234 if (ops && ops->pr_clear) 3235 r = ops->pr_clear(bdev, key); 3236 else 3237 r = -EOPNOTSUPP; 3238 out: 3239 dm_unprepare_ioctl(md, srcu_idx); 3240 return r; 3241 } 3242 3243 static const struct pr_ops dm_pr_ops = { 3244 .pr_register = dm_pr_register, 3245 .pr_reserve = dm_pr_reserve, 3246 .pr_release = dm_pr_release, 3247 .pr_preempt = dm_pr_preempt, 3248 .pr_clear = dm_pr_clear, 3249 }; 3250 3251 static const struct block_device_operations dm_blk_dops = { 3252 .submit_bio = dm_submit_bio, 3253 .open = dm_blk_open, 3254 .release = dm_blk_close, 3255 .ioctl = dm_blk_ioctl, 3256 .getgeo = dm_blk_getgeo, 3257 .report_zones = dm_blk_report_zones, 3258 .pr_ops = &dm_pr_ops, 3259 .owner = THIS_MODULE 3260 }; 3261 3262 static const struct dax_operations dm_dax_ops = { 3263 .direct_access = dm_dax_direct_access, 3264 .dax_supported = dm_dax_supported, 3265 .copy_from_iter = dm_dax_copy_from_iter, 3266 .copy_to_iter = dm_dax_copy_to_iter, 3267 .zero_page_range = dm_dax_zero_page_range, 3268 }; 3269 3270 /* 3271 * module hooks 3272 */ 3273 module_init(dm_init); 3274 module_exit(dm_exit); 3275 3276 module_param(major, uint, 0); 3277 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3278 3279 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3280 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3281 3282 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3283 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3284 3285 MODULE_DESCRIPTION(DM_NAME " driver"); 3286 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3287 MODULE_LICENSE("GPL"); 3288