xref: /openbmc/linux/drivers/md/dm.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 #define MINOR_ALLOCED ((void *)-1)
110 
111 /*
112  * Bits for the md->flags field.
113  */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122 
123 /*
124  * Work processed by per-device workqueue.
125  */
126 struct mapped_device {
127 	struct srcu_struct io_barrier;
128 	struct mutex suspend_lock;
129 
130 	/*
131 	 * The current mapping (struct dm_table *).
132 	 * Use dm_get_live_table{_fast} or take suspend_lock for
133 	 * dereference.
134 	 */
135 	void __rcu *map;
136 
137 	struct list_head table_devices;
138 	struct mutex table_devices_lock;
139 
140 	unsigned long flags;
141 
142 	struct request_queue *queue;
143 	int numa_node_id;
144 
145 	unsigned type;
146 	/* Protect queue and type against concurrent access. */
147 	struct mutex type_lock;
148 
149 	atomic_t holders;
150 	atomic_t open_count;
151 
152 	struct dm_target *immutable_target;
153 	struct target_type *immutable_target_type;
154 
155 	struct gendisk *disk;
156 	char name[16];
157 
158 	void *interface_ptr;
159 
160 	/*
161 	 * A list of ios that arrived while we were suspended.
162 	 */
163 	atomic_t pending[2];
164 	wait_queue_head_t wait;
165 	struct work_struct work;
166 	spinlock_t deferred_lock;
167 	struct bio_list deferred;
168 
169 	/*
170 	 * Event handling.
171 	 */
172 	wait_queue_head_t eventq;
173 	atomic_t event_nr;
174 	atomic_t uevent_seq;
175 	struct list_head uevent_list;
176 	spinlock_t uevent_lock; /* Protect access to uevent_list */
177 
178 	/* the number of internal suspends */
179 	unsigned internal_suspend_count;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * freeze/thaw support require holding onto a super block
196 	 */
197 	struct super_block *frozen_sb;
198 
199 	/* forced geometry settings */
200 	struct hd_geometry geometry;
201 
202 	struct block_device *bdev;
203 
204 	/* kobject and completion */
205 	struct dm_kobject_holder kobj_holder;
206 
207 	/* zero-length flush that will be cloned and submitted to targets */
208 	struct bio flush_bio;
209 
210 	struct dm_stats stats;
211 
212 	struct kthread_worker kworker;
213 	struct task_struct *kworker_task;
214 
215 	/* for request-based merge heuristic in dm_request_fn() */
216 	unsigned seq_rq_merge_deadline_usecs;
217 	int last_rq_rw;
218 	sector_t last_rq_pos;
219 	ktime_t last_rq_start_time;
220 
221 	/* for blk-mq request-based DM support */
222 	struct blk_mq_tag_set *tag_set;
223 	bool use_blk_mq:1;
224 	bool init_tio_pdu:1;
225 };
226 
227 #ifdef CONFIG_DM_MQ_DEFAULT
228 static bool use_blk_mq = true;
229 #else
230 static bool use_blk_mq = false;
231 #endif
232 
233 #define DM_MQ_NR_HW_QUEUES 1
234 #define DM_MQ_QUEUE_DEPTH 2048
235 #define DM_NUMA_NODE NUMA_NO_NODE
236 
237 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
238 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
239 static int dm_numa_node = DM_NUMA_NODE;
240 
241 bool dm_use_blk_mq(struct mapped_device *md)
242 {
243 	return md->use_blk_mq;
244 }
245 EXPORT_SYMBOL_GPL(dm_use_blk_mq);
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static int __dm_get_module_param_int(int *module_param, int min, int max)
280 {
281 	int param = ACCESS_ONCE(*module_param);
282 	int modified_param = 0;
283 	bool modified = true;
284 
285 	if (param < min)
286 		modified_param = min;
287 	else if (param > max)
288 		modified_param = max;
289 	else
290 		modified = false;
291 
292 	if (modified) {
293 		(void)cmpxchg(module_param, param, modified_param);
294 		param = modified_param;
295 	}
296 
297 	return param;
298 }
299 
300 static unsigned __dm_get_module_param(unsigned *module_param,
301 				      unsigned def, unsigned max)
302 {
303 	unsigned param = ACCESS_ONCE(*module_param);
304 	unsigned modified_param = 0;
305 
306 	if (!param)
307 		modified_param = def;
308 	else if (param > max)
309 		modified_param = max;
310 
311 	if (modified_param) {
312 		(void)cmpxchg(module_param, param, modified_param);
313 		param = modified_param;
314 	}
315 
316 	return param;
317 }
318 
319 unsigned dm_get_reserved_bio_based_ios(void)
320 {
321 	return __dm_get_module_param(&reserved_bio_based_ios,
322 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
323 }
324 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
325 
326 unsigned dm_get_reserved_rq_based_ios(void)
327 {
328 	return __dm_get_module_param(&reserved_rq_based_ios,
329 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
330 }
331 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
332 
333 static unsigned dm_get_blk_mq_nr_hw_queues(void)
334 {
335 	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
336 }
337 
338 static unsigned dm_get_blk_mq_queue_depth(void)
339 {
340 	return __dm_get_module_param(&dm_mq_queue_depth,
341 				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
342 }
343 
344 static unsigned dm_get_numa_node(void)
345 {
346 	return __dm_get_module_param_int(&dm_numa_node,
347 					 DM_NUMA_NODE, num_online_nodes() - 1);
348 }
349 
350 static int __init local_init(void)
351 {
352 	int r = -ENOMEM;
353 
354 	/* allocate a slab for the dm_ios */
355 	_io_cache = KMEM_CACHE(dm_io, 0);
356 	if (!_io_cache)
357 		return r;
358 
359 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
360 	if (!_rq_tio_cache)
361 		goto out_free_io_cache;
362 
363 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
364 				      __alignof__(struct request), 0, NULL);
365 	if (!_rq_cache)
366 		goto out_free_rq_tio_cache;
367 
368 	r = dm_uevent_init();
369 	if (r)
370 		goto out_free_rq_cache;
371 
372 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
373 	if (!deferred_remove_workqueue) {
374 		r = -ENOMEM;
375 		goto out_uevent_exit;
376 	}
377 
378 	_major = major;
379 	r = register_blkdev(_major, _name);
380 	if (r < 0)
381 		goto out_free_workqueue;
382 
383 	if (!_major)
384 		_major = r;
385 
386 	return 0;
387 
388 out_free_workqueue:
389 	destroy_workqueue(deferred_remove_workqueue);
390 out_uevent_exit:
391 	dm_uevent_exit();
392 out_free_rq_cache:
393 	kmem_cache_destroy(_rq_cache);
394 out_free_rq_tio_cache:
395 	kmem_cache_destroy(_rq_tio_cache);
396 out_free_io_cache:
397 	kmem_cache_destroy(_io_cache);
398 
399 	return r;
400 }
401 
402 static void local_exit(void)
403 {
404 	flush_scheduled_work();
405 	destroy_workqueue(deferred_remove_workqueue);
406 
407 	kmem_cache_destroy(_rq_cache);
408 	kmem_cache_destroy(_rq_tio_cache);
409 	kmem_cache_destroy(_io_cache);
410 	unregister_blkdev(_major, _name);
411 	dm_uevent_exit();
412 
413 	_major = 0;
414 
415 	DMINFO("cleaned up");
416 }
417 
418 static int (*_inits[])(void) __initdata = {
419 	local_init,
420 	dm_target_init,
421 	dm_linear_init,
422 	dm_stripe_init,
423 	dm_io_init,
424 	dm_kcopyd_init,
425 	dm_interface_init,
426 	dm_statistics_init,
427 };
428 
429 static void (*_exits[])(void) = {
430 	local_exit,
431 	dm_target_exit,
432 	dm_linear_exit,
433 	dm_stripe_exit,
434 	dm_io_exit,
435 	dm_kcopyd_exit,
436 	dm_interface_exit,
437 	dm_statistics_exit,
438 };
439 
440 static int __init dm_init(void)
441 {
442 	const int count = ARRAY_SIZE(_inits);
443 
444 	int r, i;
445 
446 	for (i = 0; i < count; i++) {
447 		r = _inits[i]();
448 		if (r)
449 			goto bad;
450 	}
451 
452 	return 0;
453 
454       bad:
455 	while (i--)
456 		_exits[i]();
457 
458 	return r;
459 }
460 
461 static void __exit dm_exit(void)
462 {
463 	int i = ARRAY_SIZE(_exits);
464 
465 	while (i--)
466 		_exits[i]();
467 
468 	/*
469 	 * Should be empty by this point.
470 	 */
471 	idr_destroy(&_minor_idr);
472 }
473 
474 /*
475  * Block device functions
476  */
477 int dm_deleting_md(struct mapped_device *md)
478 {
479 	return test_bit(DMF_DELETING, &md->flags);
480 }
481 
482 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
483 {
484 	struct mapped_device *md;
485 
486 	spin_lock(&_minor_lock);
487 
488 	md = bdev->bd_disk->private_data;
489 	if (!md)
490 		goto out;
491 
492 	if (test_bit(DMF_FREEING, &md->flags) ||
493 	    dm_deleting_md(md)) {
494 		md = NULL;
495 		goto out;
496 	}
497 
498 	dm_get(md);
499 	atomic_inc(&md->open_count);
500 out:
501 	spin_unlock(&_minor_lock);
502 
503 	return md ? 0 : -ENXIO;
504 }
505 
506 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
507 {
508 	struct mapped_device *md;
509 
510 	spin_lock(&_minor_lock);
511 
512 	md = disk->private_data;
513 	if (WARN_ON(!md))
514 		goto out;
515 
516 	if (atomic_dec_and_test(&md->open_count) &&
517 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
518 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
519 
520 	dm_put(md);
521 out:
522 	spin_unlock(&_minor_lock);
523 }
524 
525 int dm_open_count(struct mapped_device *md)
526 {
527 	return atomic_read(&md->open_count);
528 }
529 
530 /*
531  * Guarantees nothing is using the device before it's deleted.
532  */
533 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
534 {
535 	int r = 0;
536 
537 	spin_lock(&_minor_lock);
538 
539 	if (dm_open_count(md)) {
540 		r = -EBUSY;
541 		if (mark_deferred)
542 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
543 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
544 		r = -EEXIST;
545 	else
546 		set_bit(DMF_DELETING, &md->flags);
547 
548 	spin_unlock(&_minor_lock);
549 
550 	return r;
551 }
552 
553 int dm_cancel_deferred_remove(struct mapped_device *md)
554 {
555 	int r = 0;
556 
557 	spin_lock(&_minor_lock);
558 
559 	if (test_bit(DMF_DELETING, &md->flags))
560 		r = -EBUSY;
561 	else
562 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
563 
564 	spin_unlock(&_minor_lock);
565 
566 	return r;
567 }
568 
569 static void do_deferred_remove(struct work_struct *w)
570 {
571 	dm_deferred_remove();
572 }
573 
574 sector_t dm_get_size(struct mapped_device *md)
575 {
576 	return get_capacity(md->disk);
577 }
578 
579 struct request_queue *dm_get_md_queue(struct mapped_device *md)
580 {
581 	return md->queue;
582 }
583 
584 struct dm_stats *dm_get_stats(struct mapped_device *md)
585 {
586 	return &md->stats;
587 }
588 
589 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
590 {
591 	struct mapped_device *md = bdev->bd_disk->private_data;
592 
593 	return dm_get_geometry(md, geo);
594 }
595 
596 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
597 				  struct block_device **bdev,
598 				  fmode_t *mode)
599 {
600 	struct dm_target *tgt;
601 	struct dm_table *map;
602 	int srcu_idx, r;
603 
604 retry:
605 	r = -ENOTTY;
606 	map = dm_get_live_table(md, &srcu_idx);
607 	if (!map || !dm_table_get_size(map))
608 		goto out;
609 
610 	/* We only support devices that have a single target */
611 	if (dm_table_get_num_targets(map) != 1)
612 		goto out;
613 
614 	tgt = dm_table_get_target(map, 0);
615 	if (!tgt->type->prepare_ioctl)
616 		goto out;
617 
618 	if (dm_suspended_md(md)) {
619 		r = -EAGAIN;
620 		goto out;
621 	}
622 
623 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
624 	if (r < 0)
625 		goto out;
626 
627 	bdgrab(*bdev);
628 	dm_put_live_table(md, srcu_idx);
629 	return r;
630 
631 out:
632 	dm_put_live_table(md, srcu_idx);
633 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
634 		msleep(10);
635 		goto retry;
636 	}
637 	return r;
638 }
639 
640 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
641 			unsigned int cmd, unsigned long arg)
642 {
643 	struct mapped_device *md = bdev->bd_disk->private_data;
644 	int r;
645 
646 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
647 	if (r < 0)
648 		return r;
649 
650 	if (r > 0) {
651 		/*
652 		 * Target determined this ioctl is being issued against
653 		 * a logical partition of the parent bdev; so extra
654 		 * validation is needed.
655 		 */
656 		r = scsi_verify_blk_ioctl(NULL, cmd);
657 		if (r)
658 			goto out;
659 	}
660 
661 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
662 out:
663 	bdput(bdev);
664 	return r;
665 }
666 
667 static struct dm_io *alloc_io(struct mapped_device *md)
668 {
669 	return mempool_alloc(md->io_pool, GFP_NOIO);
670 }
671 
672 static void free_io(struct mapped_device *md, struct dm_io *io)
673 {
674 	mempool_free(io, md->io_pool);
675 }
676 
677 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
678 {
679 	bio_put(&tio->clone);
680 }
681 
682 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
683 						gfp_t gfp_mask)
684 {
685 	return mempool_alloc(md->io_pool, gfp_mask);
686 }
687 
688 static void free_old_rq_tio(struct dm_rq_target_io *tio)
689 {
690 	mempool_free(tio, tio->md->io_pool);
691 }
692 
693 static struct request *alloc_old_clone_request(struct mapped_device *md,
694 					       gfp_t gfp_mask)
695 {
696 	return mempool_alloc(md->rq_pool, gfp_mask);
697 }
698 
699 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
700 {
701 	mempool_free(rq, md->rq_pool);
702 }
703 
704 static int md_in_flight(struct mapped_device *md)
705 {
706 	return atomic_read(&md->pending[READ]) +
707 	       atomic_read(&md->pending[WRITE]);
708 }
709 
710 static void start_io_acct(struct dm_io *io)
711 {
712 	struct mapped_device *md = io->md;
713 	struct bio *bio = io->bio;
714 	int cpu;
715 	int rw = bio_data_dir(bio);
716 
717 	io->start_time = jiffies;
718 
719 	cpu = part_stat_lock();
720 	part_round_stats(cpu, &dm_disk(md)->part0);
721 	part_stat_unlock();
722 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
723 		atomic_inc_return(&md->pending[rw]));
724 
725 	if (unlikely(dm_stats_used(&md->stats)))
726 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
727 				    bio_sectors(bio), false, 0, &io->stats_aux);
728 }
729 
730 static void end_io_acct(struct dm_io *io)
731 {
732 	struct mapped_device *md = io->md;
733 	struct bio *bio = io->bio;
734 	unsigned long duration = jiffies - io->start_time;
735 	int pending;
736 	int rw = bio_data_dir(bio);
737 
738 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
739 
740 	if (unlikely(dm_stats_used(&md->stats)))
741 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
742 				    bio_sectors(bio), true, duration, &io->stats_aux);
743 
744 	/*
745 	 * After this is decremented the bio must not be touched if it is
746 	 * a flush.
747 	 */
748 	pending = atomic_dec_return(&md->pending[rw]);
749 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
750 	pending += atomic_read(&md->pending[rw^0x1]);
751 
752 	/* nudge anyone waiting on suspend queue */
753 	if (!pending)
754 		wake_up(&md->wait);
755 }
756 
757 /*
758  * Add the bio to the list of deferred io.
759  */
760 static void queue_io(struct mapped_device *md, struct bio *bio)
761 {
762 	unsigned long flags;
763 
764 	spin_lock_irqsave(&md->deferred_lock, flags);
765 	bio_list_add(&md->deferred, bio);
766 	spin_unlock_irqrestore(&md->deferred_lock, flags);
767 	queue_work(md->wq, &md->work);
768 }
769 
770 /*
771  * Everyone (including functions in this file), should use this
772  * function to access the md->map field, and make sure they call
773  * dm_put_live_table() when finished.
774  */
775 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
776 {
777 	*srcu_idx = srcu_read_lock(&md->io_barrier);
778 
779 	return srcu_dereference(md->map, &md->io_barrier);
780 }
781 
782 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
783 {
784 	srcu_read_unlock(&md->io_barrier, srcu_idx);
785 }
786 
787 void dm_sync_table(struct mapped_device *md)
788 {
789 	synchronize_srcu(&md->io_barrier);
790 	synchronize_rcu_expedited();
791 }
792 
793 /*
794  * A fast alternative to dm_get_live_table/dm_put_live_table.
795  * The caller must not block between these two functions.
796  */
797 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
798 {
799 	rcu_read_lock();
800 	return rcu_dereference(md->map);
801 }
802 
803 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
804 {
805 	rcu_read_unlock();
806 }
807 
808 /*
809  * Open a table device so we can use it as a map destination.
810  */
811 static int open_table_device(struct table_device *td, dev_t dev,
812 			     struct mapped_device *md)
813 {
814 	static char *_claim_ptr = "I belong to device-mapper";
815 	struct block_device *bdev;
816 
817 	int r;
818 
819 	BUG_ON(td->dm_dev.bdev);
820 
821 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
822 	if (IS_ERR(bdev))
823 		return PTR_ERR(bdev);
824 
825 	r = bd_link_disk_holder(bdev, dm_disk(md));
826 	if (r) {
827 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
828 		return r;
829 	}
830 
831 	td->dm_dev.bdev = bdev;
832 	return 0;
833 }
834 
835 /*
836  * Close a table device that we've been using.
837  */
838 static void close_table_device(struct table_device *td, struct mapped_device *md)
839 {
840 	if (!td->dm_dev.bdev)
841 		return;
842 
843 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
844 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
845 	td->dm_dev.bdev = NULL;
846 }
847 
848 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
849 					      fmode_t mode) {
850 	struct table_device *td;
851 
852 	list_for_each_entry(td, l, list)
853 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
854 			return td;
855 
856 	return NULL;
857 }
858 
859 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
860 			struct dm_dev **result) {
861 	int r;
862 	struct table_device *td;
863 
864 	mutex_lock(&md->table_devices_lock);
865 	td = find_table_device(&md->table_devices, dev, mode);
866 	if (!td) {
867 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
868 		if (!td) {
869 			mutex_unlock(&md->table_devices_lock);
870 			return -ENOMEM;
871 		}
872 
873 		td->dm_dev.mode = mode;
874 		td->dm_dev.bdev = NULL;
875 
876 		if ((r = open_table_device(td, dev, md))) {
877 			mutex_unlock(&md->table_devices_lock);
878 			kfree(td);
879 			return r;
880 		}
881 
882 		format_dev_t(td->dm_dev.name, dev);
883 
884 		atomic_set(&td->count, 0);
885 		list_add(&td->list, &md->table_devices);
886 	}
887 	atomic_inc(&td->count);
888 	mutex_unlock(&md->table_devices_lock);
889 
890 	*result = &td->dm_dev;
891 	return 0;
892 }
893 EXPORT_SYMBOL_GPL(dm_get_table_device);
894 
895 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
896 {
897 	struct table_device *td = container_of(d, struct table_device, dm_dev);
898 
899 	mutex_lock(&md->table_devices_lock);
900 	if (atomic_dec_and_test(&td->count)) {
901 		close_table_device(td, md);
902 		list_del(&td->list);
903 		kfree(td);
904 	}
905 	mutex_unlock(&md->table_devices_lock);
906 }
907 EXPORT_SYMBOL(dm_put_table_device);
908 
909 static void free_table_devices(struct list_head *devices)
910 {
911 	struct list_head *tmp, *next;
912 
913 	list_for_each_safe(tmp, next, devices) {
914 		struct table_device *td = list_entry(tmp, struct table_device, list);
915 
916 		DMWARN("dm_destroy: %s still exists with %d references",
917 		       td->dm_dev.name, atomic_read(&td->count));
918 		kfree(td);
919 	}
920 }
921 
922 /*
923  * Get the geometry associated with a dm device
924  */
925 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
926 {
927 	*geo = md->geometry;
928 
929 	return 0;
930 }
931 
932 /*
933  * Set the geometry of a device.
934  */
935 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
936 {
937 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
938 
939 	if (geo->start > sz) {
940 		DMWARN("Start sector is beyond the geometry limits.");
941 		return -EINVAL;
942 	}
943 
944 	md->geometry = *geo;
945 
946 	return 0;
947 }
948 
949 /*-----------------------------------------------------------------
950  * CRUD START:
951  *   A more elegant soln is in the works that uses the queue
952  *   merge fn, unfortunately there are a couple of changes to
953  *   the block layer that I want to make for this.  So in the
954  *   interests of getting something for people to use I give
955  *   you this clearly demarcated crap.
956  *---------------------------------------------------------------*/
957 
958 static int __noflush_suspending(struct mapped_device *md)
959 {
960 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
961 }
962 
963 /*
964  * Decrements the number of outstanding ios that a bio has been
965  * cloned into, completing the original io if necc.
966  */
967 static void dec_pending(struct dm_io *io, int error)
968 {
969 	unsigned long flags;
970 	int io_error;
971 	struct bio *bio;
972 	struct mapped_device *md = io->md;
973 
974 	/* Push-back supersedes any I/O errors */
975 	if (unlikely(error)) {
976 		spin_lock_irqsave(&io->endio_lock, flags);
977 		if (!(io->error > 0 && __noflush_suspending(md)))
978 			io->error = error;
979 		spin_unlock_irqrestore(&io->endio_lock, flags);
980 	}
981 
982 	if (atomic_dec_and_test(&io->io_count)) {
983 		if (io->error == DM_ENDIO_REQUEUE) {
984 			/*
985 			 * Target requested pushing back the I/O.
986 			 */
987 			spin_lock_irqsave(&md->deferred_lock, flags);
988 			if (__noflush_suspending(md))
989 				bio_list_add_head(&md->deferred, io->bio);
990 			else
991 				/* noflush suspend was interrupted. */
992 				io->error = -EIO;
993 			spin_unlock_irqrestore(&md->deferred_lock, flags);
994 		}
995 
996 		io_error = io->error;
997 		bio = io->bio;
998 		end_io_acct(io);
999 		free_io(md, io);
1000 
1001 		if (io_error == DM_ENDIO_REQUEUE)
1002 			return;
1003 
1004 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005 			/*
1006 			 * Preflush done for flush with data, reissue
1007 			 * without REQ_FLUSH.
1008 			 */
1009 			bio->bi_rw &= ~REQ_FLUSH;
1010 			queue_io(md, bio);
1011 		} else {
1012 			/* done with normal IO or empty flush */
1013 			trace_block_bio_complete(md->queue, bio, io_error);
1014 			bio->bi_error = io_error;
1015 			bio_endio(bio);
1016 		}
1017 	}
1018 }
1019 
1020 static void disable_write_same(struct mapped_device *md)
1021 {
1022 	struct queue_limits *limits = dm_get_queue_limits(md);
1023 
1024 	/* device doesn't really support WRITE SAME, disable it */
1025 	limits->max_write_same_sectors = 0;
1026 }
1027 
1028 static void clone_endio(struct bio *bio)
1029 {
1030 	int error = bio->bi_error;
1031 	int r = error;
1032 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033 	struct dm_io *io = tio->io;
1034 	struct mapped_device *md = tio->io->md;
1035 	dm_endio_fn endio = tio->ti->type->end_io;
1036 
1037 	if (endio) {
1038 		r = endio(tio->ti, bio, error);
1039 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1040 			/*
1041 			 * error and requeue request are handled
1042 			 * in dec_pending().
1043 			 */
1044 			error = r;
1045 		else if (r == DM_ENDIO_INCOMPLETE)
1046 			/* The target will handle the io */
1047 			return;
1048 		else if (r) {
1049 			DMWARN("unimplemented target endio return value: %d", r);
1050 			BUG();
1051 		}
1052 	}
1053 
1054 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056 		disable_write_same(md);
1057 
1058 	free_tio(md, tio);
1059 	dec_pending(io, error);
1060 }
1061 
1062 /*
1063  * Partial completion handling for request-based dm
1064  */
1065 static void end_clone_bio(struct bio *clone)
1066 {
1067 	struct dm_rq_clone_bio_info *info =
1068 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1069 	struct dm_rq_target_io *tio = info->tio;
1070 	struct bio *bio = info->orig;
1071 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072 	int error = clone->bi_error;
1073 
1074 	bio_put(clone);
1075 
1076 	if (tio->error)
1077 		/*
1078 		 * An error has already been detected on the request.
1079 		 * Once error occurred, just let clone->end_io() handle
1080 		 * the remainder.
1081 		 */
1082 		return;
1083 	else if (error) {
1084 		/*
1085 		 * Don't notice the error to the upper layer yet.
1086 		 * The error handling decision is made by the target driver,
1087 		 * when the request is completed.
1088 		 */
1089 		tio->error = error;
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * I/O for the bio successfully completed.
1095 	 * Notice the data completion to the upper layer.
1096 	 */
1097 
1098 	/*
1099 	 * bios are processed from the head of the list.
1100 	 * So the completing bio should always be rq->bio.
1101 	 * If it's not, something wrong is happening.
1102 	 */
1103 	if (tio->orig->bio != bio)
1104 		DMERR("bio completion is going in the middle of the request");
1105 
1106 	/*
1107 	 * Update the original request.
1108 	 * Do not use blk_end_request() here, because it may complete
1109 	 * the original request before the clone, and break the ordering.
1110 	 */
1111 	blk_update_request(tio->orig, 0, nr_bytes);
1112 }
1113 
1114 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115 {
1116 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117 }
1118 
1119 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120 {
1121 	if (unlikely(dm_stats_used(&md->stats))) {
1122 		struct dm_rq_target_io *tio = tio_from_request(orig);
1123 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125 				    tio->n_sectors, true, tio->duration_jiffies,
1126 				    &tio->stats_aux);
1127 	}
1128 }
1129 
1130 /*
1131  * Don't touch any member of the md after calling this function because
1132  * the md may be freed in dm_put() at the end of this function.
1133  * Or do dm_get() before calling this function and dm_put() later.
1134  */
1135 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136 {
1137 	atomic_dec(&md->pending[rw]);
1138 
1139 	/* nudge anyone waiting on suspend queue */
1140 	if (!md_in_flight(md))
1141 		wake_up(&md->wait);
1142 
1143 	/*
1144 	 * Run this off this callpath, as drivers could invoke end_io while
1145 	 * inside their request_fn (and holding the queue lock). Calling
1146 	 * back into ->request_fn() could deadlock attempting to grab the
1147 	 * queue lock again.
1148 	 */
1149 	if (!md->queue->mq_ops && run_queue)
1150 		blk_run_queue_async(md->queue);
1151 
1152 	/*
1153 	 * dm_put() must be at the end of this function. See the comment above
1154 	 */
1155 	dm_put(md);
1156 }
1157 
1158 static void free_rq_clone(struct request *clone)
1159 {
1160 	struct dm_rq_target_io *tio = clone->end_io_data;
1161 	struct mapped_device *md = tio->md;
1162 
1163 	blk_rq_unprep_clone(clone);
1164 
1165 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166 		/* stacked on blk-mq queue(s) */
1167 		tio->ti->type->release_clone_rq(clone);
1168 	else if (!md->queue->mq_ops)
1169 		/* request_fn queue stacked on request_fn queue(s) */
1170 		free_old_clone_request(md, clone);
1171 
1172 	if (!md->queue->mq_ops)
1173 		free_old_rq_tio(tio);
1174 }
1175 
1176 /*
1177  * Complete the clone and the original request.
1178  * Must be called without clone's queue lock held,
1179  * see end_clone_request() for more details.
1180  */
1181 static void dm_end_request(struct request *clone, int error)
1182 {
1183 	int rw = rq_data_dir(clone);
1184 	struct dm_rq_target_io *tio = clone->end_io_data;
1185 	struct mapped_device *md = tio->md;
1186 	struct request *rq = tio->orig;
1187 
1188 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189 		rq->errors = clone->errors;
1190 		rq->resid_len = clone->resid_len;
1191 
1192 		if (rq->sense)
1193 			/*
1194 			 * We are using the sense buffer of the original
1195 			 * request.
1196 			 * So setting the length of the sense data is enough.
1197 			 */
1198 			rq->sense_len = clone->sense_len;
1199 	}
1200 
1201 	free_rq_clone(clone);
1202 	rq_end_stats(md, rq);
1203 	if (!rq->q->mq_ops)
1204 		blk_end_request_all(rq, error);
1205 	else
1206 		blk_mq_end_request(rq, error);
1207 	rq_completed(md, rw, true);
1208 }
1209 
1210 static void dm_unprep_request(struct request *rq)
1211 {
1212 	struct dm_rq_target_io *tio = tio_from_request(rq);
1213 	struct request *clone = tio->clone;
1214 
1215 	if (!rq->q->mq_ops) {
1216 		rq->special = NULL;
1217 		rq->cmd_flags &= ~REQ_DONTPREP;
1218 	}
1219 
1220 	if (clone)
1221 		free_rq_clone(clone);
1222 	else if (!tio->md->queue->mq_ops)
1223 		free_old_rq_tio(tio);
1224 }
1225 
1226 /*
1227  * Requeue the original request of a clone.
1228  */
1229 static void dm_old_requeue_request(struct request *rq)
1230 {
1231 	struct request_queue *q = rq->q;
1232 	unsigned long flags;
1233 
1234 	spin_lock_irqsave(q->queue_lock, flags);
1235 	blk_requeue_request(q, rq);
1236 	blk_run_queue_async(q);
1237 	spin_unlock_irqrestore(q->queue_lock, flags);
1238 }
1239 
1240 static void dm_mq_requeue_request(struct request *rq)
1241 {
1242 	struct request_queue *q = rq->q;
1243 	unsigned long flags;
1244 
1245 	blk_mq_requeue_request(rq);
1246 	spin_lock_irqsave(q->queue_lock, flags);
1247 	if (!blk_queue_stopped(q))
1248 		blk_mq_kick_requeue_list(q);
1249 	spin_unlock_irqrestore(q->queue_lock, flags);
1250 }
1251 
1252 static void dm_requeue_original_request(struct mapped_device *md,
1253 					struct request *rq)
1254 {
1255 	int rw = rq_data_dir(rq);
1256 
1257 	rq_end_stats(md, rq);
1258 	dm_unprep_request(rq);
1259 
1260 	if (!rq->q->mq_ops)
1261 		dm_old_requeue_request(rq);
1262 	else
1263 		dm_mq_requeue_request(rq);
1264 
1265 	rq_completed(md, rw, false);
1266 }
1267 
1268 static void dm_old_stop_queue(struct request_queue *q)
1269 {
1270 	unsigned long flags;
1271 
1272 	spin_lock_irqsave(q->queue_lock, flags);
1273 	if (blk_queue_stopped(q)) {
1274 		spin_unlock_irqrestore(q->queue_lock, flags);
1275 		return;
1276 	}
1277 
1278 	blk_stop_queue(q);
1279 	spin_unlock_irqrestore(q->queue_lock, flags);
1280 }
1281 
1282 static void dm_stop_queue(struct request_queue *q)
1283 {
1284 	if (!q->mq_ops)
1285 		dm_old_stop_queue(q);
1286 	else
1287 		blk_mq_stop_hw_queues(q);
1288 }
1289 
1290 static void dm_old_start_queue(struct request_queue *q)
1291 {
1292 	unsigned long flags;
1293 
1294 	spin_lock_irqsave(q->queue_lock, flags);
1295 	if (blk_queue_stopped(q))
1296 		blk_start_queue(q);
1297 	spin_unlock_irqrestore(q->queue_lock, flags);
1298 }
1299 
1300 static void dm_start_queue(struct request_queue *q)
1301 {
1302 	if (!q->mq_ops)
1303 		dm_old_start_queue(q);
1304 	else {
1305 		blk_mq_start_stopped_hw_queues(q, true);
1306 		blk_mq_kick_requeue_list(q);
1307 	}
1308 }
1309 
1310 static void dm_done(struct request *clone, int error, bool mapped)
1311 {
1312 	int r = error;
1313 	struct dm_rq_target_io *tio = clone->end_io_data;
1314 	dm_request_endio_fn rq_end_io = NULL;
1315 
1316 	if (tio->ti) {
1317 		rq_end_io = tio->ti->type->rq_end_io;
1318 
1319 		if (mapped && rq_end_io)
1320 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1321 	}
1322 
1323 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324 		     !clone->q->limits.max_write_same_sectors))
1325 		disable_write_same(tio->md);
1326 
1327 	if (r <= 0)
1328 		/* The target wants to complete the I/O */
1329 		dm_end_request(clone, r);
1330 	else if (r == DM_ENDIO_INCOMPLETE)
1331 		/* The target will handle the I/O */
1332 		return;
1333 	else if (r == DM_ENDIO_REQUEUE)
1334 		/* The target wants to requeue the I/O */
1335 		dm_requeue_original_request(tio->md, tio->orig);
1336 	else {
1337 		DMWARN("unimplemented target endio return value: %d", r);
1338 		BUG();
1339 	}
1340 }
1341 
1342 /*
1343  * Request completion handler for request-based dm
1344  */
1345 static void dm_softirq_done(struct request *rq)
1346 {
1347 	bool mapped = true;
1348 	struct dm_rq_target_io *tio = tio_from_request(rq);
1349 	struct request *clone = tio->clone;
1350 	int rw;
1351 
1352 	if (!clone) {
1353 		rq_end_stats(tio->md, rq);
1354 		rw = rq_data_dir(rq);
1355 		if (!rq->q->mq_ops) {
1356 			blk_end_request_all(rq, tio->error);
1357 			rq_completed(tio->md, rw, false);
1358 			free_old_rq_tio(tio);
1359 		} else {
1360 			blk_mq_end_request(rq, tio->error);
1361 			rq_completed(tio->md, rw, false);
1362 		}
1363 		return;
1364 	}
1365 
1366 	if (rq->cmd_flags & REQ_FAILED)
1367 		mapped = false;
1368 
1369 	dm_done(clone, tio->error, mapped);
1370 }
1371 
1372 /*
1373  * Complete the clone and the original request with the error status
1374  * through softirq context.
1375  */
1376 static void dm_complete_request(struct request *rq, int error)
1377 {
1378 	struct dm_rq_target_io *tio = tio_from_request(rq);
1379 
1380 	tio->error = error;
1381 	if (!rq->q->mq_ops)
1382 		blk_complete_request(rq);
1383 	else
1384 		blk_mq_complete_request(rq, error);
1385 }
1386 
1387 /*
1388  * Complete the not-mapped clone and the original request with the error status
1389  * through softirq context.
1390  * Target's rq_end_io() function isn't called.
1391  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392  */
1393 static void dm_kill_unmapped_request(struct request *rq, int error)
1394 {
1395 	rq->cmd_flags |= REQ_FAILED;
1396 	dm_complete_request(rq, error);
1397 }
1398 
1399 /*
1400  * Called with the clone's queue lock held (in the case of .request_fn)
1401  */
1402 static void end_clone_request(struct request *clone, int error)
1403 {
1404 	struct dm_rq_target_io *tio = clone->end_io_data;
1405 
1406 	if (!clone->q->mq_ops) {
1407 		/*
1408 		 * For just cleaning up the information of the queue in which
1409 		 * the clone was dispatched.
1410 		 * The clone is *NOT* freed actually here because it is alloced
1411 		 * from dm own mempool (REQ_ALLOCED isn't set).
1412 		 */
1413 		__blk_put_request(clone->q, clone);
1414 	}
1415 
1416 	/*
1417 	 * Actual request completion is done in a softirq context which doesn't
1418 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1419 	 *     - another request may be submitted by the upper level driver
1420 	 *       of the stacking during the completion
1421 	 *     - the submission which requires queue lock may be done
1422 	 *       against this clone's queue
1423 	 */
1424 	dm_complete_request(tio->orig, error);
1425 }
1426 
1427 /*
1428  * Return maximum size of I/O possible at the supplied sector up to the current
1429  * target boundary.
1430  */
1431 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432 {
1433 	sector_t target_offset = dm_target_offset(ti, sector);
1434 
1435 	return ti->len - target_offset;
1436 }
1437 
1438 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1439 {
1440 	sector_t len = max_io_len_target_boundary(sector, ti);
1441 	sector_t offset, max_len;
1442 
1443 	/*
1444 	 * Does the target need to split even further?
1445 	 */
1446 	if (ti->max_io_len) {
1447 		offset = dm_target_offset(ti, sector);
1448 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449 			max_len = sector_div(offset, ti->max_io_len);
1450 		else
1451 			max_len = offset & (ti->max_io_len - 1);
1452 		max_len = ti->max_io_len - max_len;
1453 
1454 		if (len > max_len)
1455 			len = max_len;
1456 	}
1457 
1458 	return len;
1459 }
1460 
1461 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1462 {
1463 	if (len > UINT_MAX) {
1464 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465 		      (unsigned long long)len, UINT_MAX);
1466 		ti->error = "Maximum size of target IO is too large";
1467 		return -EINVAL;
1468 	}
1469 
1470 	ti->max_io_len = (uint32_t) len;
1471 
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475 
1476 /*
1477  * A target may call dm_accept_partial_bio only from the map routine.  It is
1478  * allowed for all bio types except REQ_FLUSH.
1479  *
1480  * dm_accept_partial_bio informs the dm that the target only wants to process
1481  * additional n_sectors sectors of the bio and the rest of the data should be
1482  * sent in a next bio.
1483  *
1484  * A diagram that explains the arithmetics:
1485  * +--------------------+---------------+-------+
1486  * |         1          |       2       |   3   |
1487  * +--------------------+---------------+-------+
1488  *
1489  * <-------------- *tio->len_ptr --------------->
1490  *                      <------- bi_size ------->
1491  *                      <-- n_sectors -->
1492  *
1493  * Region 1 was already iterated over with bio_advance or similar function.
1494  *	(it may be empty if the target doesn't use bio_advance)
1495  * Region 2 is the remaining bio size that the target wants to process.
1496  *	(it may be empty if region 1 is non-empty, although there is no reason
1497  *	 to make it empty)
1498  * The target requires that region 3 is to be sent in the next bio.
1499  *
1500  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501  * the partially processed part (the sum of regions 1+2) must be the same for all
1502  * copies of the bio.
1503  */
1504 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505 {
1506 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1509 	BUG_ON(bi_size > *tio->len_ptr);
1510 	BUG_ON(n_sectors > bi_size);
1511 	*tio->len_ptr -= bi_size - n_sectors;
1512 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513 }
1514 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515 
1516 static void __map_bio(struct dm_target_io *tio)
1517 {
1518 	int r;
1519 	sector_t sector;
1520 	struct mapped_device *md;
1521 	struct bio *clone = &tio->clone;
1522 	struct dm_target *ti = tio->ti;
1523 
1524 	clone->bi_end_io = clone_endio;
1525 
1526 	/*
1527 	 * Map the clone.  If r == 0 we don't need to do
1528 	 * anything, the target has assumed ownership of
1529 	 * this io.
1530 	 */
1531 	atomic_inc(&tio->io->io_count);
1532 	sector = clone->bi_iter.bi_sector;
1533 	r = ti->type->map(ti, clone);
1534 	if (r == DM_MAPIO_REMAPPED) {
1535 		/* the bio has been remapped so dispatch it */
1536 
1537 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538 				      tio->io->bio->bi_bdev->bd_dev, sector);
1539 
1540 		generic_make_request(clone);
1541 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542 		/* error the io and bail out, or requeue it if needed */
1543 		md = tio->io->md;
1544 		dec_pending(tio->io, r);
1545 		free_tio(md, tio);
1546 	} else if (r != DM_MAPIO_SUBMITTED) {
1547 		DMWARN("unimplemented target map return value: %d", r);
1548 		BUG();
1549 	}
1550 }
1551 
1552 struct clone_info {
1553 	struct mapped_device *md;
1554 	struct dm_table *map;
1555 	struct bio *bio;
1556 	struct dm_io *io;
1557 	sector_t sector;
1558 	unsigned sector_count;
1559 };
1560 
1561 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562 {
1563 	bio->bi_iter.bi_sector = sector;
1564 	bio->bi_iter.bi_size = to_bytes(len);
1565 }
1566 
1567 /*
1568  * Creates a bio that consists of range of complete bvecs.
1569  */
1570 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571 		     sector_t sector, unsigned len)
1572 {
1573 	struct bio *clone = &tio->clone;
1574 
1575 	__bio_clone_fast(clone, bio);
1576 
1577 	if (bio_integrity(bio)) {
1578 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579 		if (r < 0)
1580 			return r;
1581 	}
1582 
1583 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584 	clone->bi_iter.bi_size = to_bytes(len);
1585 
1586 	if (bio_integrity(bio))
1587 		bio_integrity_trim(clone, 0, len);
1588 
1589 	return 0;
1590 }
1591 
1592 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593 				      struct dm_target *ti,
1594 				      unsigned target_bio_nr)
1595 {
1596 	struct dm_target_io *tio;
1597 	struct bio *clone;
1598 
1599 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600 	tio = container_of(clone, struct dm_target_io, clone);
1601 
1602 	tio->io = ci->io;
1603 	tio->ti = ti;
1604 	tio->target_bio_nr = target_bio_nr;
1605 
1606 	return tio;
1607 }
1608 
1609 static void __clone_and_map_simple_bio(struct clone_info *ci,
1610 				       struct dm_target *ti,
1611 				       unsigned target_bio_nr, unsigned *len)
1612 {
1613 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614 	struct bio *clone = &tio->clone;
1615 
1616 	tio->len_ptr = len;
1617 
1618 	__bio_clone_fast(clone, ci->bio);
1619 	if (len)
1620 		bio_setup_sector(clone, ci->sector, *len);
1621 
1622 	__map_bio(tio);
1623 }
1624 
1625 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626 				  unsigned num_bios, unsigned *len)
1627 {
1628 	unsigned target_bio_nr;
1629 
1630 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632 }
1633 
1634 static int __send_empty_flush(struct clone_info *ci)
1635 {
1636 	unsigned target_nr = 0;
1637 	struct dm_target *ti;
1638 
1639 	BUG_ON(bio_has_data(ci->bio));
1640 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642 
1643 	return 0;
1644 }
1645 
1646 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647 				     sector_t sector, unsigned *len)
1648 {
1649 	struct bio *bio = ci->bio;
1650 	struct dm_target_io *tio;
1651 	unsigned target_bio_nr;
1652 	unsigned num_target_bios = 1;
1653 	int r = 0;
1654 
1655 	/*
1656 	 * Does the target want to receive duplicate copies of the bio?
1657 	 */
1658 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659 		num_target_bios = ti->num_write_bios(ti, bio);
1660 
1661 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662 		tio = alloc_tio(ci, ti, target_bio_nr);
1663 		tio->len_ptr = len;
1664 		r = clone_bio(tio, bio, sector, *len);
1665 		if (r < 0)
1666 			break;
1667 		__map_bio(tio);
1668 	}
1669 
1670 	return r;
1671 }
1672 
1673 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1674 
1675 static unsigned get_num_discard_bios(struct dm_target *ti)
1676 {
1677 	return ti->num_discard_bios;
1678 }
1679 
1680 static unsigned get_num_write_same_bios(struct dm_target *ti)
1681 {
1682 	return ti->num_write_same_bios;
1683 }
1684 
1685 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1686 
1687 static bool is_split_required_for_discard(struct dm_target *ti)
1688 {
1689 	return ti->split_discard_bios;
1690 }
1691 
1692 static int __send_changing_extent_only(struct clone_info *ci,
1693 				       get_num_bios_fn get_num_bios,
1694 				       is_split_required_fn is_split_required)
1695 {
1696 	struct dm_target *ti;
1697 	unsigned len;
1698 	unsigned num_bios;
1699 
1700 	do {
1701 		ti = dm_table_find_target(ci->map, ci->sector);
1702 		if (!dm_target_is_valid(ti))
1703 			return -EIO;
1704 
1705 		/*
1706 		 * Even though the device advertised support for this type of
1707 		 * request, that does not mean every target supports it, and
1708 		 * reconfiguration might also have changed that since the
1709 		 * check was performed.
1710 		 */
1711 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1712 		if (!num_bios)
1713 			return -EOPNOTSUPP;
1714 
1715 		if (is_split_required && !is_split_required(ti))
1716 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1717 		else
1718 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1719 
1720 		__send_duplicate_bios(ci, ti, num_bios, &len);
1721 
1722 		ci->sector += len;
1723 	} while (ci->sector_count -= len);
1724 
1725 	return 0;
1726 }
1727 
1728 static int __send_discard(struct clone_info *ci)
1729 {
1730 	return __send_changing_extent_only(ci, get_num_discard_bios,
1731 					   is_split_required_for_discard);
1732 }
1733 
1734 static int __send_write_same(struct clone_info *ci)
1735 {
1736 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1737 }
1738 
1739 /*
1740  * Select the correct strategy for processing a non-flush bio.
1741  */
1742 static int __split_and_process_non_flush(struct clone_info *ci)
1743 {
1744 	struct bio *bio = ci->bio;
1745 	struct dm_target *ti;
1746 	unsigned len;
1747 	int r;
1748 
1749 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1750 		return __send_discard(ci);
1751 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1752 		return __send_write_same(ci);
1753 
1754 	ti = dm_table_find_target(ci->map, ci->sector);
1755 	if (!dm_target_is_valid(ti))
1756 		return -EIO;
1757 
1758 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1759 
1760 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1761 	if (r < 0)
1762 		return r;
1763 
1764 	ci->sector += len;
1765 	ci->sector_count -= len;
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Entry point to split a bio into clones and submit them to the targets.
1772  */
1773 static void __split_and_process_bio(struct mapped_device *md,
1774 				    struct dm_table *map, struct bio *bio)
1775 {
1776 	struct clone_info ci;
1777 	int error = 0;
1778 
1779 	if (unlikely(!map)) {
1780 		bio_io_error(bio);
1781 		return;
1782 	}
1783 
1784 	ci.map = map;
1785 	ci.md = md;
1786 	ci.io = alloc_io(md);
1787 	ci.io->error = 0;
1788 	atomic_set(&ci.io->io_count, 1);
1789 	ci.io->bio = bio;
1790 	ci.io->md = md;
1791 	spin_lock_init(&ci.io->endio_lock);
1792 	ci.sector = bio->bi_iter.bi_sector;
1793 
1794 	start_io_acct(ci.io);
1795 
1796 	if (bio->bi_rw & REQ_FLUSH) {
1797 		ci.bio = &ci.md->flush_bio;
1798 		ci.sector_count = 0;
1799 		error = __send_empty_flush(&ci);
1800 		/* dec_pending submits any data associated with flush */
1801 	} else {
1802 		ci.bio = bio;
1803 		ci.sector_count = bio_sectors(bio);
1804 		while (ci.sector_count && !error)
1805 			error = __split_and_process_non_flush(&ci);
1806 	}
1807 
1808 	/* drop the extra reference count */
1809 	dec_pending(ci.io, error);
1810 }
1811 /*-----------------------------------------------------------------
1812  * CRUD END
1813  *---------------------------------------------------------------*/
1814 
1815 /*
1816  * The request function that just remaps the bio built up by
1817  * dm_merge_bvec.
1818  */
1819 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1820 {
1821 	int rw = bio_data_dir(bio);
1822 	struct mapped_device *md = q->queuedata;
1823 	int srcu_idx;
1824 	struct dm_table *map;
1825 
1826 	map = dm_get_live_table(md, &srcu_idx);
1827 
1828 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1829 
1830 	/* if we're suspended, we have to queue this io for later */
1831 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1832 		dm_put_live_table(md, srcu_idx);
1833 
1834 		if (bio_rw(bio) != READA)
1835 			queue_io(md, bio);
1836 		else
1837 			bio_io_error(bio);
1838 		return BLK_QC_T_NONE;
1839 	}
1840 
1841 	__split_and_process_bio(md, map, bio);
1842 	dm_put_live_table(md, srcu_idx);
1843 	return BLK_QC_T_NONE;
1844 }
1845 
1846 int dm_request_based(struct mapped_device *md)
1847 {
1848 	return blk_queue_stackable(md->queue);
1849 }
1850 
1851 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1852 {
1853 	int r;
1854 
1855 	if (blk_queue_io_stat(clone->q))
1856 		clone->cmd_flags |= REQ_IO_STAT;
1857 
1858 	clone->start_time = jiffies;
1859 	r = blk_insert_cloned_request(clone->q, clone);
1860 	if (r)
1861 		/* must complete clone in terms of original request */
1862 		dm_complete_request(rq, r);
1863 }
1864 
1865 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1866 				 void *data)
1867 {
1868 	struct dm_rq_target_io *tio = data;
1869 	struct dm_rq_clone_bio_info *info =
1870 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1871 
1872 	info->orig = bio_orig;
1873 	info->tio = tio;
1874 	bio->bi_end_io = end_clone_bio;
1875 
1876 	return 0;
1877 }
1878 
1879 static int setup_clone(struct request *clone, struct request *rq,
1880 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1881 {
1882 	int r;
1883 
1884 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1885 			      dm_rq_bio_constructor, tio);
1886 	if (r)
1887 		return r;
1888 
1889 	clone->cmd = rq->cmd;
1890 	clone->cmd_len = rq->cmd_len;
1891 	clone->sense = rq->sense;
1892 	clone->end_io = end_clone_request;
1893 	clone->end_io_data = tio;
1894 
1895 	tio->clone = clone;
1896 
1897 	return 0;
1898 }
1899 
1900 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1901 				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1902 {
1903 	/*
1904 	 * Create clone for use with .request_fn request_queue
1905 	 */
1906 	struct request *clone;
1907 
1908 	clone = alloc_old_clone_request(md, gfp_mask);
1909 	if (!clone)
1910 		return NULL;
1911 
1912 	blk_rq_init(NULL, clone);
1913 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1914 		/* -ENOMEM */
1915 		free_old_clone_request(md, clone);
1916 		return NULL;
1917 	}
1918 
1919 	return clone;
1920 }
1921 
1922 static void map_tio_request(struct kthread_work *work);
1923 
1924 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1925 		     struct mapped_device *md)
1926 {
1927 	tio->md = md;
1928 	tio->ti = NULL;
1929 	tio->clone = NULL;
1930 	tio->orig = rq;
1931 	tio->error = 0;
1932 	/*
1933 	 * Avoid initializing info for blk-mq; it passes
1934 	 * target-specific data through info.ptr
1935 	 * (see: dm_mq_init_request)
1936 	 */
1937 	if (!md->init_tio_pdu)
1938 		memset(&tio->info, 0, sizeof(tio->info));
1939 	if (md->kworker_task)
1940 		init_kthread_work(&tio->work, map_tio_request);
1941 }
1942 
1943 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1944 					       struct mapped_device *md,
1945 					       gfp_t gfp_mask)
1946 {
1947 	struct dm_rq_target_io *tio;
1948 	int srcu_idx;
1949 	struct dm_table *table;
1950 
1951 	tio = alloc_old_rq_tio(md, gfp_mask);
1952 	if (!tio)
1953 		return NULL;
1954 
1955 	init_tio(tio, rq, md);
1956 
1957 	table = dm_get_live_table(md, &srcu_idx);
1958 	/*
1959 	 * Must clone a request if this .request_fn DM device
1960 	 * is stacked on .request_fn device(s).
1961 	 */
1962 	if (!dm_table_mq_request_based(table)) {
1963 		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1964 			dm_put_live_table(md, srcu_idx);
1965 			free_old_rq_tio(tio);
1966 			return NULL;
1967 		}
1968 	}
1969 	dm_put_live_table(md, srcu_idx);
1970 
1971 	return tio;
1972 }
1973 
1974 /*
1975  * Called with the queue lock held.
1976  */
1977 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1978 {
1979 	struct mapped_device *md = q->queuedata;
1980 	struct dm_rq_target_io *tio;
1981 
1982 	if (unlikely(rq->special)) {
1983 		DMWARN("Already has something in rq->special.");
1984 		return BLKPREP_KILL;
1985 	}
1986 
1987 	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1988 	if (!tio)
1989 		return BLKPREP_DEFER;
1990 
1991 	rq->special = tio;
1992 	rq->cmd_flags |= REQ_DONTPREP;
1993 
1994 	return BLKPREP_OK;
1995 }
1996 
1997 /*
1998  * Returns:
1999  * 0                : the request has been processed
2000  * DM_MAPIO_REQUEUE : the original request needs to be requeued
2001  * < 0              : the request was completed due to failure
2002  */
2003 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2004 		       struct mapped_device *md)
2005 {
2006 	int r;
2007 	struct dm_target *ti = tio->ti;
2008 	struct request *clone = NULL;
2009 
2010 	if (tio->clone) {
2011 		clone = tio->clone;
2012 		r = ti->type->map_rq(ti, clone, &tio->info);
2013 	} else {
2014 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2015 		if (r < 0) {
2016 			/* The target wants to complete the I/O */
2017 			dm_kill_unmapped_request(rq, r);
2018 			return r;
2019 		}
2020 		if (r != DM_MAPIO_REMAPPED)
2021 			return r;
2022 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2023 			/* -ENOMEM */
2024 			ti->type->release_clone_rq(clone);
2025 			return DM_MAPIO_REQUEUE;
2026 		}
2027 	}
2028 
2029 	switch (r) {
2030 	case DM_MAPIO_SUBMITTED:
2031 		/* The target has taken the I/O to submit by itself later */
2032 		break;
2033 	case DM_MAPIO_REMAPPED:
2034 		/* The target has remapped the I/O so dispatch it */
2035 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2036 				     blk_rq_pos(rq));
2037 		dm_dispatch_clone_request(clone, rq);
2038 		break;
2039 	case DM_MAPIO_REQUEUE:
2040 		/* The target wants to requeue the I/O */
2041 		dm_requeue_original_request(md, tio->orig);
2042 		break;
2043 	default:
2044 		if (r > 0) {
2045 			DMWARN("unimplemented target map return value: %d", r);
2046 			BUG();
2047 		}
2048 
2049 		/* The target wants to complete the I/O */
2050 		dm_kill_unmapped_request(rq, r);
2051 		return r;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 static void map_tio_request(struct kthread_work *work)
2058 {
2059 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2060 	struct request *rq = tio->orig;
2061 	struct mapped_device *md = tio->md;
2062 
2063 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2064 		dm_requeue_original_request(md, rq);
2065 }
2066 
2067 static void dm_start_request(struct mapped_device *md, struct request *orig)
2068 {
2069 	if (!orig->q->mq_ops)
2070 		blk_start_request(orig);
2071 	else
2072 		blk_mq_start_request(orig);
2073 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2074 
2075 	if (md->seq_rq_merge_deadline_usecs) {
2076 		md->last_rq_pos = rq_end_sector(orig);
2077 		md->last_rq_rw = rq_data_dir(orig);
2078 		md->last_rq_start_time = ktime_get();
2079 	}
2080 
2081 	if (unlikely(dm_stats_used(&md->stats))) {
2082 		struct dm_rq_target_io *tio = tio_from_request(orig);
2083 		tio->duration_jiffies = jiffies;
2084 		tio->n_sectors = blk_rq_sectors(orig);
2085 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2086 				    tio->n_sectors, false, 0, &tio->stats_aux);
2087 	}
2088 
2089 	/*
2090 	 * Hold the md reference here for the in-flight I/O.
2091 	 * We can't rely on the reference count by device opener,
2092 	 * because the device may be closed during the request completion
2093 	 * when all bios are completed.
2094 	 * See the comment in rq_completed() too.
2095 	 */
2096 	dm_get(md);
2097 }
2098 
2099 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2100 
2101 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2102 {
2103 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2104 }
2105 
2106 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2107 						     const char *buf, size_t count)
2108 {
2109 	unsigned deadline;
2110 
2111 	if (!dm_request_based(md) || md->use_blk_mq)
2112 		return count;
2113 
2114 	if (kstrtouint(buf, 10, &deadline))
2115 		return -EINVAL;
2116 
2117 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2118 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2119 
2120 	md->seq_rq_merge_deadline_usecs = deadline;
2121 
2122 	return count;
2123 }
2124 
2125 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2126 {
2127 	ktime_t kt_deadline;
2128 
2129 	if (!md->seq_rq_merge_deadline_usecs)
2130 		return false;
2131 
2132 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2133 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2134 
2135 	return !ktime_after(ktime_get(), kt_deadline);
2136 }
2137 
2138 /*
2139  * q->request_fn for request-based dm.
2140  * Called with the queue lock held.
2141  */
2142 static void dm_request_fn(struct request_queue *q)
2143 {
2144 	struct mapped_device *md = q->queuedata;
2145 	struct dm_target *ti = md->immutable_target;
2146 	struct request *rq;
2147 	struct dm_rq_target_io *tio;
2148 	sector_t pos = 0;
2149 
2150 	if (unlikely(!ti)) {
2151 		int srcu_idx;
2152 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2153 
2154 		ti = dm_table_find_target(map, pos);
2155 		dm_put_live_table(md, srcu_idx);
2156 	}
2157 
2158 	/*
2159 	 * For suspend, check blk_queue_stopped() and increment
2160 	 * ->pending within a single queue_lock not to increment the
2161 	 * number of in-flight I/Os after the queue is stopped in
2162 	 * dm_suspend().
2163 	 */
2164 	while (!blk_queue_stopped(q)) {
2165 		rq = blk_peek_request(q);
2166 		if (!rq)
2167 			return;
2168 
2169 		/* always use block 0 to find the target for flushes for now */
2170 		pos = 0;
2171 		if (!(rq->cmd_flags & REQ_FLUSH))
2172 			pos = blk_rq_pos(rq);
2173 
2174 		if ((dm_request_peeked_before_merge_deadline(md) &&
2175 		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2176 		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2177 		    (ti->type->busy && ti->type->busy(ti))) {
2178 			blk_delay_queue(q, HZ / 100);
2179 			return;
2180 		}
2181 
2182 		dm_start_request(md, rq);
2183 
2184 		tio = tio_from_request(rq);
2185 		/* Establish tio->ti before queuing work (map_tio_request) */
2186 		tio->ti = ti;
2187 		queue_kthread_work(&md->kworker, &tio->work);
2188 		BUG_ON(!irqs_disabled());
2189 	}
2190 }
2191 
2192 static int dm_any_congested(void *congested_data, int bdi_bits)
2193 {
2194 	int r = bdi_bits;
2195 	struct mapped_device *md = congested_data;
2196 	struct dm_table *map;
2197 
2198 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2199 		if (dm_request_based(md)) {
2200 			/*
2201 			 * With request-based DM we only need to check the
2202 			 * top-level queue for congestion.
2203 			 */
2204 			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2205 		} else {
2206 			map = dm_get_live_table_fast(md);
2207 			if (map)
2208 				r = dm_table_any_congested(map, bdi_bits);
2209 			dm_put_live_table_fast(md);
2210 		}
2211 	}
2212 
2213 	return r;
2214 }
2215 
2216 /*-----------------------------------------------------------------
2217  * An IDR is used to keep track of allocated minor numbers.
2218  *---------------------------------------------------------------*/
2219 static void free_minor(int minor)
2220 {
2221 	spin_lock(&_minor_lock);
2222 	idr_remove(&_minor_idr, minor);
2223 	spin_unlock(&_minor_lock);
2224 }
2225 
2226 /*
2227  * See if the device with a specific minor # is free.
2228  */
2229 static int specific_minor(int minor)
2230 {
2231 	int r;
2232 
2233 	if (minor >= (1 << MINORBITS))
2234 		return -EINVAL;
2235 
2236 	idr_preload(GFP_KERNEL);
2237 	spin_lock(&_minor_lock);
2238 
2239 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2240 
2241 	spin_unlock(&_minor_lock);
2242 	idr_preload_end();
2243 	if (r < 0)
2244 		return r == -ENOSPC ? -EBUSY : r;
2245 	return 0;
2246 }
2247 
2248 static int next_free_minor(int *minor)
2249 {
2250 	int r;
2251 
2252 	idr_preload(GFP_KERNEL);
2253 	spin_lock(&_minor_lock);
2254 
2255 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2256 
2257 	spin_unlock(&_minor_lock);
2258 	idr_preload_end();
2259 	if (r < 0)
2260 		return r;
2261 	*minor = r;
2262 	return 0;
2263 }
2264 
2265 static const struct block_device_operations dm_blk_dops;
2266 
2267 static void dm_wq_work(struct work_struct *work);
2268 
2269 static void dm_init_md_queue(struct mapped_device *md)
2270 {
2271 	/*
2272 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2273 	 * devices.  The type of this dm device may not have been decided yet.
2274 	 * The type is decided at the first table loading time.
2275 	 * To prevent problematic device stacking, clear the queue flag
2276 	 * for request stacking support until then.
2277 	 *
2278 	 * This queue is new, so no concurrency on the queue_flags.
2279 	 */
2280 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2281 
2282 	/*
2283 	 * Initialize data that will only be used by a non-blk-mq DM queue
2284 	 * - must do so here (in alloc_dev callchain) before queue is used
2285 	 */
2286 	md->queue->queuedata = md;
2287 	md->queue->backing_dev_info.congested_data = md;
2288 }
2289 
2290 static void dm_init_normal_md_queue(struct mapped_device *md)
2291 {
2292 	md->use_blk_mq = false;
2293 	dm_init_md_queue(md);
2294 
2295 	/*
2296 	 * Initialize aspects of queue that aren't relevant for blk-mq
2297 	 */
2298 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2299 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2300 }
2301 
2302 static void cleanup_mapped_device(struct mapped_device *md)
2303 {
2304 	if (md->wq)
2305 		destroy_workqueue(md->wq);
2306 	if (md->kworker_task)
2307 		kthread_stop(md->kworker_task);
2308 	mempool_destroy(md->io_pool);
2309 	mempool_destroy(md->rq_pool);
2310 	if (md->bs)
2311 		bioset_free(md->bs);
2312 
2313 	cleanup_srcu_struct(&md->io_barrier);
2314 
2315 	if (md->disk) {
2316 		spin_lock(&_minor_lock);
2317 		md->disk->private_data = NULL;
2318 		spin_unlock(&_minor_lock);
2319 		del_gendisk(md->disk);
2320 		put_disk(md->disk);
2321 	}
2322 
2323 	if (md->queue)
2324 		blk_cleanup_queue(md->queue);
2325 
2326 	if (md->bdev) {
2327 		bdput(md->bdev);
2328 		md->bdev = NULL;
2329 	}
2330 }
2331 
2332 /*
2333  * Allocate and initialise a blank device with a given minor.
2334  */
2335 static struct mapped_device *alloc_dev(int minor)
2336 {
2337 	int r, numa_node_id = dm_get_numa_node();
2338 	struct mapped_device *md;
2339 	void *old_md;
2340 
2341 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2342 	if (!md) {
2343 		DMWARN("unable to allocate device, out of memory.");
2344 		return NULL;
2345 	}
2346 
2347 	if (!try_module_get(THIS_MODULE))
2348 		goto bad_module_get;
2349 
2350 	/* get a minor number for the dev */
2351 	if (minor == DM_ANY_MINOR)
2352 		r = next_free_minor(&minor);
2353 	else
2354 		r = specific_minor(minor);
2355 	if (r < 0)
2356 		goto bad_minor;
2357 
2358 	r = init_srcu_struct(&md->io_barrier);
2359 	if (r < 0)
2360 		goto bad_io_barrier;
2361 
2362 	md->numa_node_id = numa_node_id;
2363 	md->use_blk_mq = use_blk_mq;
2364 	md->init_tio_pdu = false;
2365 	md->type = DM_TYPE_NONE;
2366 	mutex_init(&md->suspend_lock);
2367 	mutex_init(&md->type_lock);
2368 	mutex_init(&md->table_devices_lock);
2369 	spin_lock_init(&md->deferred_lock);
2370 	atomic_set(&md->holders, 1);
2371 	atomic_set(&md->open_count, 0);
2372 	atomic_set(&md->event_nr, 0);
2373 	atomic_set(&md->uevent_seq, 0);
2374 	INIT_LIST_HEAD(&md->uevent_list);
2375 	INIT_LIST_HEAD(&md->table_devices);
2376 	spin_lock_init(&md->uevent_lock);
2377 
2378 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2379 	if (!md->queue)
2380 		goto bad;
2381 
2382 	dm_init_md_queue(md);
2383 
2384 	md->disk = alloc_disk_node(1, numa_node_id);
2385 	if (!md->disk)
2386 		goto bad;
2387 
2388 	atomic_set(&md->pending[0], 0);
2389 	atomic_set(&md->pending[1], 0);
2390 	init_waitqueue_head(&md->wait);
2391 	INIT_WORK(&md->work, dm_wq_work);
2392 	init_waitqueue_head(&md->eventq);
2393 	init_completion(&md->kobj_holder.completion);
2394 	md->kworker_task = NULL;
2395 
2396 	md->disk->major = _major;
2397 	md->disk->first_minor = minor;
2398 	md->disk->fops = &dm_blk_dops;
2399 	md->disk->queue = md->queue;
2400 	md->disk->private_data = md;
2401 	sprintf(md->disk->disk_name, "dm-%d", minor);
2402 	add_disk(md->disk);
2403 	format_dev_t(md->name, MKDEV(_major, minor));
2404 
2405 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2406 	if (!md->wq)
2407 		goto bad;
2408 
2409 	md->bdev = bdget_disk(md->disk, 0);
2410 	if (!md->bdev)
2411 		goto bad;
2412 
2413 	bio_init(&md->flush_bio);
2414 	md->flush_bio.bi_bdev = md->bdev;
2415 	md->flush_bio.bi_rw = WRITE_FLUSH;
2416 
2417 	dm_stats_init(&md->stats);
2418 
2419 	/* Populate the mapping, nobody knows we exist yet */
2420 	spin_lock(&_minor_lock);
2421 	old_md = idr_replace(&_minor_idr, md, minor);
2422 	spin_unlock(&_minor_lock);
2423 
2424 	BUG_ON(old_md != MINOR_ALLOCED);
2425 
2426 	return md;
2427 
2428 bad:
2429 	cleanup_mapped_device(md);
2430 bad_io_barrier:
2431 	free_minor(minor);
2432 bad_minor:
2433 	module_put(THIS_MODULE);
2434 bad_module_get:
2435 	kfree(md);
2436 	return NULL;
2437 }
2438 
2439 static void unlock_fs(struct mapped_device *md);
2440 
2441 static void free_dev(struct mapped_device *md)
2442 {
2443 	int minor = MINOR(disk_devt(md->disk));
2444 
2445 	unlock_fs(md);
2446 
2447 	cleanup_mapped_device(md);
2448 	if (md->tag_set) {
2449 		blk_mq_free_tag_set(md->tag_set);
2450 		kfree(md->tag_set);
2451 	}
2452 
2453 	free_table_devices(&md->table_devices);
2454 	dm_stats_cleanup(&md->stats);
2455 	free_minor(minor);
2456 
2457 	module_put(THIS_MODULE);
2458 	kfree(md);
2459 }
2460 
2461 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2462 {
2463 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2464 
2465 	if (md->bs) {
2466 		/* The md already has necessary mempools. */
2467 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2468 			/*
2469 			 * Reload bioset because front_pad may have changed
2470 			 * because a different table was loaded.
2471 			 */
2472 			bioset_free(md->bs);
2473 			md->bs = p->bs;
2474 			p->bs = NULL;
2475 		}
2476 		/*
2477 		 * There's no need to reload with request-based dm
2478 		 * because the size of front_pad doesn't change.
2479 		 * Note for future: If you are to reload bioset,
2480 		 * prep-ed requests in the queue may refer
2481 		 * to bio from the old bioset, so you must walk
2482 		 * through the queue to unprep.
2483 		 */
2484 		goto out;
2485 	}
2486 
2487 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2488 
2489 	md->io_pool = p->io_pool;
2490 	p->io_pool = NULL;
2491 	md->rq_pool = p->rq_pool;
2492 	p->rq_pool = NULL;
2493 	md->bs = p->bs;
2494 	p->bs = NULL;
2495 
2496 out:
2497 	/* mempool bind completed, no longer need any mempools in the table */
2498 	dm_table_free_md_mempools(t);
2499 }
2500 
2501 /*
2502  * Bind a table to the device.
2503  */
2504 static void event_callback(void *context)
2505 {
2506 	unsigned long flags;
2507 	LIST_HEAD(uevents);
2508 	struct mapped_device *md = (struct mapped_device *) context;
2509 
2510 	spin_lock_irqsave(&md->uevent_lock, flags);
2511 	list_splice_init(&md->uevent_list, &uevents);
2512 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2513 
2514 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2515 
2516 	atomic_inc(&md->event_nr);
2517 	wake_up(&md->eventq);
2518 }
2519 
2520 /*
2521  * Protected by md->suspend_lock obtained by dm_swap_table().
2522  */
2523 static void __set_size(struct mapped_device *md, sector_t size)
2524 {
2525 	set_capacity(md->disk, size);
2526 
2527 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2528 }
2529 
2530 /*
2531  * Returns old map, which caller must destroy.
2532  */
2533 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2534 			       struct queue_limits *limits)
2535 {
2536 	struct dm_table *old_map;
2537 	struct request_queue *q = md->queue;
2538 	sector_t size;
2539 
2540 	size = dm_table_get_size(t);
2541 
2542 	/*
2543 	 * Wipe any geometry if the size of the table changed.
2544 	 */
2545 	if (size != dm_get_size(md))
2546 		memset(&md->geometry, 0, sizeof(md->geometry));
2547 
2548 	__set_size(md, size);
2549 
2550 	dm_table_event_callback(t, event_callback, md);
2551 
2552 	/*
2553 	 * The queue hasn't been stopped yet, if the old table type wasn't
2554 	 * for request-based during suspension.  So stop it to prevent
2555 	 * I/O mapping before resume.
2556 	 * This must be done before setting the queue restrictions,
2557 	 * because request-based dm may be run just after the setting.
2558 	 */
2559 	if (dm_table_request_based(t)) {
2560 		dm_stop_queue(q);
2561 		/*
2562 		 * Leverage the fact that request-based DM targets are
2563 		 * immutable singletons and establish md->immutable_target
2564 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2565 		 */
2566 		md->immutable_target = dm_table_get_immutable_target(t);
2567 	}
2568 
2569 	__bind_mempools(md, t);
2570 
2571 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2572 	rcu_assign_pointer(md->map, (void *)t);
2573 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2574 
2575 	dm_table_set_restrictions(t, q, limits);
2576 	if (old_map)
2577 		dm_sync_table(md);
2578 
2579 	return old_map;
2580 }
2581 
2582 /*
2583  * Returns unbound table for the caller to free.
2584  */
2585 static struct dm_table *__unbind(struct mapped_device *md)
2586 {
2587 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2588 
2589 	if (!map)
2590 		return NULL;
2591 
2592 	dm_table_event_callback(map, NULL, NULL);
2593 	RCU_INIT_POINTER(md->map, NULL);
2594 	dm_sync_table(md);
2595 
2596 	return map;
2597 }
2598 
2599 /*
2600  * Constructor for a new device.
2601  */
2602 int dm_create(int minor, struct mapped_device **result)
2603 {
2604 	struct mapped_device *md;
2605 
2606 	md = alloc_dev(minor);
2607 	if (!md)
2608 		return -ENXIO;
2609 
2610 	dm_sysfs_init(md);
2611 
2612 	*result = md;
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Functions to manage md->type.
2618  * All are required to hold md->type_lock.
2619  */
2620 void dm_lock_md_type(struct mapped_device *md)
2621 {
2622 	mutex_lock(&md->type_lock);
2623 }
2624 
2625 void dm_unlock_md_type(struct mapped_device *md)
2626 {
2627 	mutex_unlock(&md->type_lock);
2628 }
2629 
2630 void dm_set_md_type(struct mapped_device *md, unsigned type)
2631 {
2632 	BUG_ON(!mutex_is_locked(&md->type_lock));
2633 	md->type = type;
2634 }
2635 
2636 unsigned dm_get_md_type(struct mapped_device *md)
2637 {
2638 	return md->type;
2639 }
2640 
2641 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2642 {
2643 	return md->immutable_target_type;
2644 }
2645 
2646 /*
2647  * The queue_limits are only valid as long as you have a reference
2648  * count on 'md'.
2649  */
2650 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2651 {
2652 	BUG_ON(!atomic_read(&md->holders));
2653 	return &md->queue->limits;
2654 }
2655 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2656 
2657 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2658 {
2659 	/* Initialize the request-based DM worker thread */
2660 	init_kthread_worker(&md->kworker);
2661 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2662 				       "kdmwork-%s", dm_device_name(md));
2663 }
2664 
2665 /*
2666  * Fully initialize a .request_fn request-based queue.
2667  */
2668 static int dm_old_init_request_queue(struct mapped_device *md)
2669 {
2670 	/* Fully initialize the queue */
2671 	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2672 		return -EINVAL;
2673 
2674 	/* disable dm_request_fn's merge heuristic by default */
2675 	md->seq_rq_merge_deadline_usecs = 0;
2676 
2677 	dm_init_normal_md_queue(md);
2678 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2679 	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2680 
2681 	dm_old_init_rq_based_worker_thread(md);
2682 
2683 	elv_register_queue(md->queue);
2684 
2685 	return 0;
2686 }
2687 
2688 static int dm_mq_init_request(void *data, struct request *rq,
2689 			      unsigned int hctx_idx, unsigned int request_idx,
2690 			      unsigned int numa_node)
2691 {
2692 	struct mapped_device *md = data;
2693 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2694 
2695 	/*
2696 	 * Must initialize md member of tio, otherwise it won't
2697 	 * be available in dm_mq_queue_rq.
2698 	 */
2699 	tio->md = md;
2700 
2701 	if (md->init_tio_pdu) {
2702 		/* target-specific per-io data is immediately after the tio */
2703 		tio->info.ptr = tio + 1;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2710 			  const struct blk_mq_queue_data *bd)
2711 {
2712 	struct request *rq = bd->rq;
2713 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2714 	struct mapped_device *md = tio->md;
2715 	struct dm_target *ti = md->immutable_target;
2716 
2717 	if (unlikely(!ti)) {
2718 		int srcu_idx;
2719 		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2720 
2721 		ti = dm_table_find_target(map, 0);
2722 		dm_put_live_table(md, srcu_idx);
2723 	}
2724 
2725 	if (ti->type->busy && ti->type->busy(ti))
2726 		return BLK_MQ_RQ_QUEUE_BUSY;
2727 
2728 	dm_start_request(md, rq);
2729 
2730 	/* Init tio using md established in .init_request */
2731 	init_tio(tio, rq, md);
2732 
2733 	/*
2734 	 * Establish tio->ti before queuing work (map_tio_request)
2735 	 * or making direct call to map_request().
2736 	 */
2737 	tio->ti = ti;
2738 
2739 	/* Direct call is fine since .queue_rq allows allocations */
2740 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2741 		/* Undo dm_start_request() before requeuing */
2742 		rq_end_stats(md, rq);
2743 		rq_completed(md, rq_data_dir(rq), false);
2744 		return BLK_MQ_RQ_QUEUE_BUSY;
2745 	}
2746 
2747 	return BLK_MQ_RQ_QUEUE_OK;
2748 }
2749 
2750 static struct blk_mq_ops dm_mq_ops = {
2751 	.queue_rq = dm_mq_queue_rq,
2752 	.map_queue = blk_mq_map_queue,
2753 	.complete = dm_softirq_done,
2754 	.init_request = dm_mq_init_request,
2755 };
2756 
2757 static int dm_mq_init_request_queue(struct mapped_device *md,
2758 				    struct dm_target *immutable_tgt)
2759 {
2760 	struct request_queue *q;
2761 	int err;
2762 
2763 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2764 		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2765 		return -EINVAL;
2766 	}
2767 
2768 	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2769 	if (!md->tag_set)
2770 		return -ENOMEM;
2771 
2772 	md->tag_set->ops = &dm_mq_ops;
2773 	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2774 	md->tag_set->numa_node = md->numa_node_id;
2775 	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2776 	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2777 	md->tag_set->driver_data = md;
2778 
2779 	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2780 	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2781 		/* any target-specific per-io data is immediately after the tio */
2782 		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2783 		md->init_tio_pdu = true;
2784 	}
2785 
2786 	err = blk_mq_alloc_tag_set(md->tag_set);
2787 	if (err)
2788 		goto out_kfree_tag_set;
2789 
2790 	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2791 	if (IS_ERR(q)) {
2792 		err = PTR_ERR(q);
2793 		goto out_tag_set;
2794 	}
2795 	dm_init_md_queue(md);
2796 
2797 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2798 	blk_mq_register_disk(md->disk);
2799 
2800 	return 0;
2801 
2802 out_tag_set:
2803 	blk_mq_free_tag_set(md->tag_set);
2804 out_kfree_tag_set:
2805 	kfree(md->tag_set);
2806 
2807 	return err;
2808 }
2809 
2810 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2811 {
2812 	if (type == DM_TYPE_BIO_BASED)
2813 		return type;
2814 
2815 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2816 }
2817 
2818 /*
2819  * Setup the DM device's queue based on md's type
2820  */
2821 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2822 {
2823 	int r;
2824 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2825 
2826 	switch (md_type) {
2827 	case DM_TYPE_REQUEST_BASED:
2828 		r = dm_old_init_request_queue(md);
2829 		if (r) {
2830 			DMERR("Cannot initialize queue for request-based mapped device");
2831 			return r;
2832 		}
2833 		break;
2834 	case DM_TYPE_MQ_REQUEST_BASED:
2835 		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2836 		if (r) {
2837 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2838 			return r;
2839 		}
2840 		break;
2841 	case DM_TYPE_BIO_BASED:
2842 		dm_init_normal_md_queue(md);
2843 		blk_queue_make_request(md->queue, dm_make_request);
2844 		/*
2845 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2846 		 * since it won't be used (saves 1 process per bio-based DM device).
2847 		 */
2848 		bioset_free(md->queue->bio_split);
2849 		md->queue->bio_split = NULL;
2850 		break;
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 struct mapped_device *dm_get_md(dev_t dev)
2857 {
2858 	struct mapped_device *md;
2859 	unsigned minor = MINOR(dev);
2860 
2861 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2862 		return NULL;
2863 
2864 	spin_lock(&_minor_lock);
2865 
2866 	md = idr_find(&_minor_idr, minor);
2867 	if (md) {
2868 		if ((md == MINOR_ALLOCED ||
2869 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2870 		     dm_deleting_md(md) ||
2871 		     test_bit(DMF_FREEING, &md->flags))) {
2872 			md = NULL;
2873 			goto out;
2874 		}
2875 		dm_get(md);
2876 	}
2877 
2878 out:
2879 	spin_unlock(&_minor_lock);
2880 
2881 	return md;
2882 }
2883 EXPORT_SYMBOL_GPL(dm_get_md);
2884 
2885 void *dm_get_mdptr(struct mapped_device *md)
2886 {
2887 	return md->interface_ptr;
2888 }
2889 
2890 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2891 {
2892 	md->interface_ptr = ptr;
2893 }
2894 
2895 void dm_get(struct mapped_device *md)
2896 {
2897 	atomic_inc(&md->holders);
2898 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2899 }
2900 
2901 int dm_hold(struct mapped_device *md)
2902 {
2903 	spin_lock(&_minor_lock);
2904 	if (test_bit(DMF_FREEING, &md->flags)) {
2905 		spin_unlock(&_minor_lock);
2906 		return -EBUSY;
2907 	}
2908 	dm_get(md);
2909 	spin_unlock(&_minor_lock);
2910 	return 0;
2911 }
2912 EXPORT_SYMBOL_GPL(dm_hold);
2913 
2914 const char *dm_device_name(struct mapped_device *md)
2915 {
2916 	return md->name;
2917 }
2918 EXPORT_SYMBOL_GPL(dm_device_name);
2919 
2920 static void __dm_destroy(struct mapped_device *md, bool wait)
2921 {
2922 	struct dm_table *map;
2923 	int srcu_idx;
2924 
2925 	might_sleep();
2926 
2927 	spin_lock(&_minor_lock);
2928 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2929 	set_bit(DMF_FREEING, &md->flags);
2930 	spin_unlock(&_minor_lock);
2931 
2932 	if (dm_request_based(md) && md->kworker_task)
2933 		flush_kthread_worker(&md->kworker);
2934 
2935 	/*
2936 	 * Take suspend_lock so that presuspend and postsuspend methods
2937 	 * do not race with internal suspend.
2938 	 */
2939 	mutex_lock(&md->suspend_lock);
2940 	map = dm_get_live_table(md, &srcu_idx);
2941 	if (!dm_suspended_md(md)) {
2942 		dm_table_presuspend_targets(map);
2943 		dm_table_postsuspend_targets(map);
2944 	}
2945 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2946 	dm_put_live_table(md, srcu_idx);
2947 	mutex_unlock(&md->suspend_lock);
2948 
2949 	/*
2950 	 * Rare, but there may be I/O requests still going to complete,
2951 	 * for example.  Wait for all references to disappear.
2952 	 * No one should increment the reference count of the mapped_device,
2953 	 * after the mapped_device state becomes DMF_FREEING.
2954 	 */
2955 	if (wait)
2956 		while (atomic_read(&md->holders))
2957 			msleep(1);
2958 	else if (atomic_read(&md->holders))
2959 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2960 		       dm_device_name(md), atomic_read(&md->holders));
2961 
2962 	dm_sysfs_exit(md);
2963 	dm_table_destroy(__unbind(md));
2964 	free_dev(md);
2965 }
2966 
2967 void dm_destroy(struct mapped_device *md)
2968 {
2969 	__dm_destroy(md, true);
2970 }
2971 
2972 void dm_destroy_immediate(struct mapped_device *md)
2973 {
2974 	__dm_destroy(md, false);
2975 }
2976 
2977 void dm_put(struct mapped_device *md)
2978 {
2979 	atomic_dec(&md->holders);
2980 }
2981 EXPORT_SYMBOL_GPL(dm_put);
2982 
2983 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2984 {
2985 	int r = 0;
2986 	DECLARE_WAITQUEUE(wait, current);
2987 
2988 	add_wait_queue(&md->wait, &wait);
2989 
2990 	while (1) {
2991 		set_current_state(interruptible);
2992 
2993 		if (!md_in_flight(md))
2994 			break;
2995 
2996 		if (interruptible == TASK_INTERRUPTIBLE &&
2997 		    signal_pending(current)) {
2998 			r = -EINTR;
2999 			break;
3000 		}
3001 
3002 		io_schedule();
3003 	}
3004 	set_current_state(TASK_RUNNING);
3005 
3006 	remove_wait_queue(&md->wait, &wait);
3007 
3008 	return r;
3009 }
3010 
3011 /*
3012  * Process the deferred bios
3013  */
3014 static void dm_wq_work(struct work_struct *work)
3015 {
3016 	struct mapped_device *md = container_of(work, struct mapped_device,
3017 						work);
3018 	struct bio *c;
3019 	int srcu_idx;
3020 	struct dm_table *map;
3021 
3022 	map = dm_get_live_table(md, &srcu_idx);
3023 
3024 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3025 		spin_lock_irq(&md->deferred_lock);
3026 		c = bio_list_pop(&md->deferred);
3027 		spin_unlock_irq(&md->deferred_lock);
3028 
3029 		if (!c)
3030 			break;
3031 
3032 		if (dm_request_based(md))
3033 			generic_make_request(c);
3034 		else
3035 			__split_and_process_bio(md, map, c);
3036 	}
3037 
3038 	dm_put_live_table(md, srcu_idx);
3039 }
3040 
3041 static void dm_queue_flush(struct mapped_device *md)
3042 {
3043 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3044 	smp_mb__after_atomic();
3045 	queue_work(md->wq, &md->work);
3046 }
3047 
3048 /*
3049  * Swap in a new table, returning the old one for the caller to destroy.
3050  */
3051 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3052 {
3053 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3054 	struct queue_limits limits;
3055 	int r;
3056 
3057 	mutex_lock(&md->suspend_lock);
3058 
3059 	/* device must be suspended */
3060 	if (!dm_suspended_md(md))
3061 		goto out;
3062 
3063 	/*
3064 	 * If the new table has no data devices, retain the existing limits.
3065 	 * This helps multipath with queue_if_no_path if all paths disappear,
3066 	 * then new I/O is queued based on these limits, and then some paths
3067 	 * reappear.
3068 	 */
3069 	if (dm_table_has_no_data_devices(table)) {
3070 		live_map = dm_get_live_table_fast(md);
3071 		if (live_map)
3072 			limits = md->queue->limits;
3073 		dm_put_live_table_fast(md);
3074 	}
3075 
3076 	if (!live_map) {
3077 		r = dm_calculate_queue_limits(table, &limits);
3078 		if (r) {
3079 			map = ERR_PTR(r);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	map = __bind(md, table, &limits);
3085 
3086 out:
3087 	mutex_unlock(&md->suspend_lock);
3088 	return map;
3089 }
3090 
3091 /*
3092  * Functions to lock and unlock any filesystem running on the
3093  * device.
3094  */
3095 static int lock_fs(struct mapped_device *md)
3096 {
3097 	int r;
3098 
3099 	WARN_ON(md->frozen_sb);
3100 
3101 	md->frozen_sb = freeze_bdev(md->bdev);
3102 	if (IS_ERR(md->frozen_sb)) {
3103 		r = PTR_ERR(md->frozen_sb);
3104 		md->frozen_sb = NULL;
3105 		return r;
3106 	}
3107 
3108 	set_bit(DMF_FROZEN, &md->flags);
3109 
3110 	return 0;
3111 }
3112 
3113 static void unlock_fs(struct mapped_device *md)
3114 {
3115 	if (!test_bit(DMF_FROZEN, &md->flags))
3116 		return;
3117 
3118 	thaw_bdev(md->bdev, md->frozen_sb);
3119 	md->frozen_sb = NULL;
3120 	clear_bit(DMF_FROZEN, &md->flags);
3121 }
3122 
3123 /*
3124  * If __dm_suspend returns 0, the device is completely quiescent
3125  * now. There is no request-processing activity. All new requests
3126  * are being added to md->deferred list.
3127  *
3128  * Caller must hold md->suspend_lock
3129  */
3130 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3131 			unsigned suspend_flags, int interruptible)
3132 {
3133 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3134 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3135 	int r;
3136 
3137 	/*
3138 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3139 	 * This flag is cleared before dm_suspend returns.
3140 	 */
3141 	if (noflush)
3142 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3143 
3144 	/*
3145 	 * This gets reverted if there's an error later and the targets
3146 	 * provide the .presuspend_undo hook.
3147 	 */
3148 	dm_table_presuspend_targets(map);
3149 
3150 	/*
3151 	 * Flush I/O to the device.
3152 	 * Any I/O submitted after lock_fs() may not be flushed.
3153 	 * noflush takes precedence over do_lockfs.
3154 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3155 	 */
3156 	if (!noflush && do_lockfs) {
3157 		r = lock_fs(md);
3158 		if (r) {
3159 			dm_table_presuspend_undo_targets(map);
3160 			return r;
3161 		}
3162 	}
3163 
3164 	/*
3165 	 * Here we must make sure that no processes are submitting requests
3166 	 * to target drivers i.e. no one may be executing
3167 	 * __split_and_process_bio. This is called from dm_request and
3168 	 * dm_wq_work.
3169 	 *
3170 	 * To get all processes out of __split_and_process_bio in dm_request,
3171 	 * we take the write lock. To prevent any process from reentering
3172 	 * __split_and_process_bio from dm_request and quiesce the thread
3173 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3174 	 * flush_workqueue(md->wq).
3175 	 */
3176 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3177 	if (map)
3178 		synchronize_srcu(&md->io_barrier);
3179 
3180 	/*
3181 	 * Stop md->queue before flushing md->wq in case request-based
3182 	 * dm defers requests to md->wq from md->queue.
3183 	 */
3184 	if (dm_request_based(md)) {
3185 		dm_stop_queue(md->queue);
3186 		if (md->kworker_task)
3187 			flush_kthread_worker(&md->kworker);
3188 	}
3189 
3190 	flush_workqueue(md->wq);
3191 
3192 	/*
3193 	 * At this point no more requests are entering target request routines.
3194 	 * We call dm_wait_for_completion to wait for all existing requests
3195 	 * to finish.
3196 	 */
3197 	r = dm_wait_for_completion(md, interruptible);
3198 
3199 	if (noflush)
3200 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3201 	if (map)
3202 		synchronize_srcu(&md->io_barrier);
3203 
3204 	/* were we interrupted ? */
3205 	if (r < 0) {
3206 		dm_queue_flush(md);
3207 
3208 		if (dm_request_based(md))
3209 			dm_start_queue(md->queue);
3210 
3211 		unlock_fs(md);
3212 		dm_table_presuspend_undo_targets(map);
3213 		/* pushback list is already flushed, so skip flush */
3214 	}
3215 
3216 	return r;
3217 }
3218 
3219 /*
3220  * We need to be able to change a mapping table under a mounted
3221  * filesystem.  For example we might want to move some data in
3222  * the background.  Before the table can be swapped with
3223  * dm_bind_table, dm_suspend must be called to flush any in
3224  * flight bios and ensure that any further io gets deferred.
3225  */
3226 /*
3227  * Suspend mechanism in request-based dm.
3228  *
3229  * 1. Flush all I/Os by lock_fs() if needed.
3230  * 2. Stop dispatching any I/O by stopping the request_queue.
3231  * 3. Wait for all in-flight I/Os to be completed or requeued.
3232  *
3233  * To abort suspend, start the request_queue.
3234  */
3235 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3236 {
3237 	struct dm_table *map = NULL;
3238 	int r = 0;
3239 
3240 retry:
3241 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3242 
3243 	if (dm_suspended_md(md)) {
3244 		r = -EINVAL;
3245 		goto out_unlock;
3246 	}
3247 
3248 	if (dm_suspended_internally_md(md)) {
3249 		/* already internally suspended, wait for internal resume */
3250 		mutex_unlock(&md->suspend_lock);
3251 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3252 		if (r)
3253 			return r;
3254 		goto retry;
3255 	}
3256 
3257 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3258 
3259 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3260 	if (r)
3261 		goto out_unlock;
3262 
3263 	set_bit(DMF_SUSPENDED, &md->flags);
3264 
3265 	dm_table_postsuspend_targets(map);
3266 
3267 out_unlock:
3268 	mutex_unlock(&md->suspend_lock);
3269 	return r;
3270 }
3271 
3272 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3273 {
3274 	if (map) {
3275 		int r = dm_table_resume_targets(map);
3276 		if (r)
3277 			return r;
3278 	}
3279 
3280 	dm_queue_flush(md);
3281 
3282 	/*
3283 	 * Flushing deferred I/Os must be done after targets are resumed
3284 	 * so that mapping of targets can work correctly.
3285 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3286 	 */
3287 	if (dm_request_based(md))
3288 		dm_start_queue(md->queue);
3289 
3290 	unlock_fs(md);
3291 
3292 	return 0;
3293 }
3294 
3295 int dm_resume(struct mapped_device *md)
3296 {
3297 	int r = -EINVAL;
3298 	struct dm_table *map = NULL;
3299 
3300 retry:
3301 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3302 
3303 	if (!dm_suspended_md(md))
3304 		goto out;
3305 
3306 	if (dm_suspended_internally_md(md)) {
3307 		/* already internally suspended, wait for internal resume */
3308 		mutex_unlock(&md->suspend_lock);
3309 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3310 		if (r)
3311 			return r;
3312 		goto retry;
3313 	}
3314 
3315 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3316 	if (!map || !dm_table_get_size(map))
3317 		goto out;
3318 
3319 	r = __dm_resume(md, map);
3320 	if (r)
3321 		goto out;
3322 
3323 	clear_bit(DMF_SUSPENDED, &md->flags);
3324 
3325 	r = 0;
3326 out:
3327 	mutex_unlock(&md->suspend_lock);
3328 
3329 	return r;
3330 }
3331 
3332 /*
3333  * Internal suspend/resume works like userspace-driven suspend. It waits
3334  * until all bios finish and prevents issuing new bios to the target drivers.
3335  * It may be used only from the kernel.
3336  */
3337 
3338 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3339 {
3340 	struct dm_table *map = NULL;
3341 
3342 	if (md->internal_suspend_count++)
3343 		return; /* nested internal suspend */
3344 
3345 	if (dm_suspended_md(md)) {
3346 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3347 		return; /* nest suspend */
3348 	}
3349 
3350 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3351 
3352 	/*
3353 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3354 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3355 	 * would require changing .presuspend to return an error -- avoid this
3356 	 * until there is a need for more elaborate variants of internal suspend.
3357 	 */
3358 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3359 
3360 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3361 
3362 	dm_table_postsuspend_targets(map);
3363 }
3364 
3365 static void __dm_internal_resume(struct mapped_device *md)
3366 {
3367 	BUG_ON(!md->internal_suspend_count);
3368 
3369 	if (--md->internal_suspend_count)
3370 		return; /* resume from nested internal suspend */
3371 
3372 	if (dm_suspended_md(md))
3373 		goto done; /* resume from nested suspend */
3374 
3375 	/*
3376 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3377 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3378 	 */
3379 	(void) __dm_resume(md, NULL);
3380 
3381 done:
3382 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3383 	smp_mb__after_atomic();
3384 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3385 }
3386 
3387 void dm_internal_suspend_noflush(struct mapped_device *md)
3388 {
3389 	mutex_lock(&md->suspend_lock);
3390 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3391 	mutex_unlock(&md->suspend_lock);
3392 }
3393 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3394 
3395 void dm_internal_resume(struct mapped_device *md)
3396 {
3397 	mutex_lock(&md->suspend_lock);
3398 	__dm_internal_resume(md);
3399 	mutex_unlock(&md->suspend_lock);
3400 }
3401 EXPORT_SYMBOL_GPL(dm_internal_resume);
3402 
3403 /*
3404  * Fast variants of internal suspend/resume hold md->suspend_lock,
3405  * which prevents interaction with userspace-driven suspend.
3406  */
3407 
3408 void dm_internal_suspend_fast(struct mapped_device *md)
3409 {
3410 	mutex_lock(&md->suspend_lock);
3411 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3412 		return;
3413 
3414 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3415 	synchronize_srcu(&md->io_barrier);
3416 	flush_workqueue(md->wq);
3417 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3418 }
3419 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3420 
3421 void dm_internal_resume_fast(struct mapped_device *md)
3422 {
3423 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3424 		goto done;
3425 
3426 	dm_queue_flush(md);
3427 
3428 done:
3429 	mutex_unlock(&md->suspend_lock);
3430 }
3431 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3432 
3433 /*-----------------------------------------------------------------
3434  * Event notification.
3435  *---------------------------------------------------------------*/
3436 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3437 		       unsigned cookie)
3438 {
3439 	char udev_cookie[DM_COOKIE_LENGTH];
3440 	char *envp[] = { udev_cookie, NULL };
3441 
3442 	if (!cookie)
3443 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3444 	else {
3445 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3446 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3447 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3448 					  action, envp);
3449 	}
3450 }
3451 
3452 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3453 {
3454 	return atomic_add_return(1, &md->uevent_seq);
3455 }
3456 
3457 uint32_t dm_get_event_nr(struct mapped_device *md)
3458 {
3459 	return atomic_read(&md->event_nr);
3460 }
3461 
3462 int dm_wait_event(struct mapped_device *md, int event_nr)
3463 {
3464 	return wait_event_interruptible(md->eventq,
3465 			(event_nr != atomic_read(&md->event_nr)));
3466 }
3467 
3468 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3469 {
3470 	unsigned long flags;
3471 
3472 	spin_lock_irqsave(&md->uevent_lock, flags);
3473 	list_add(elist, &md->uevent_list);
3474 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3475 }
3476 
3477 /*
3478  * The gendisk is only valid as long as you have a reference
3479  * count on 'md'.
3480  */
3481 struct gendisk *dm_disk(struct mapped_device *md)
3482 {
3483 	return md->disk;
3484 }
3485 EXPORT_SYMBOL_GPL(dm_disk);
3486 
3487 struct kobject *dm_kobject(struct mapped_device *md)
3488 {
3489 	return &md->kobj_holder.kobj;
3490 }
3491 
3492 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3493 {
3494 	struct mapped_device *md;
3495 
3496 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3497 
3498 	if (test_bit(DMF_FREEING, &md->flags) ||
3499 	    dm_deleting_md(md))
3500 		return NULL;
3501 
3502 	dm_get(md);
3503 	return md;
3504 }
3505 
3506 int dm_suspended_md(struct mapped_device *md)
3507 {
3508 	return test_bit(DMF_SUSPENDED, &md->flags);
3509 }
3510 
3511 int dm_suspended_internally_md(struct mapped_device *md)
3512 {
3513 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3514 }
3515 
3516 int dm_test_deferred_remove_flag(struct mapped_device *md)
3517 {
3518 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3519 }
3520 
3521 int dm_suspended(struct dm_target *ti)
3522 {
3523 	return dm_suspended_md(dm_table_get_md(ti->table));
3524 }
3525 EXPORT_SYMBOL_GPL(dm_suspended);
3526 
3527 int dm_noflush_suspending(struct dm_target *ti)
3528 {
3529 	return __noflush_suspending(dm_table_get_md(ti->table));
3530 }
3531 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3532 
3533 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3534 					    unsigned integrity, unsigned per_io_data_size)
3535 {
3536 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3537 	struct kmem_cache *cachep = NULL;
3538 	unsigned int pool_size = 0;
3539 	unsigned int front_pad;
3540 
3541 	if (!pools)
3542 		return NULL;
3543 
3544 	type = filter_md_type(type, md);
3545 
3546 	switch (type) {
3547 	case DM_TYPE_BIO_BASED:
3548 		cachep = _io_cache;
3549 		pool_size = dm_get_reserved_bio_based_ios();
3550 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3551 		break;
3552 	case DM_TYPE_REQUEST_BASED:
3553 		cachep = _rq_tio_cache;
3554 		pool_size = dm_get_reserved_rq_based_ios();
3555 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3556 		if (!pools->rq_pool)
3557 			goto out;
3558 		/* fall through to setup remaining rq-based pools */
3559 	case DM_TYPE_MQ_REQUEST_BASED:
3560 		if (!pool_size)
3561 			pool_size = dm_get_reserved_rq_based_ios();
3562 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3563 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3564 		break;
3565 	default:
3566 		BUG();
3567 	}
3568 
3569 	if (cachep) {
3570 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3571 		if (!pools->io_pool)
3572 			goto out;
3573 	}
3574 
3575 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3576 	if (!pools->bs)
3577 		goto out;
3578 
3579 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3580 		goto out;
3581 
3582 	return pools;
3583 
3584 out:
3585 	dm_free_md_mempools(pools);
3586 
3587 	return NULL;
3588 }
3589 
3590 void dm_free_md_mempools(struct dm_md_mempools *pools)
3591 {
3592 	if (!pools)
3593 		return;
3594 
3595 	mempool_destroy(pools->io_pool);
3596 	mempool_destroy(pools->rq_pool);
3597 
3598 	if (pools->bs)
3599 		bioset_free(pools->bs);
3600 
3601 	kfree(pools);
3602 }
3603 
3604 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3605 			  u32 flags)
3606 {
3607 	struct mapped_device *md = bdev->bd_disk->private_data;
3608 	const struct pr_ops *ops;
3609 	fmode_t mode;
3610 	int r;
3611 
3612 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3613 	if (r < 0)
3614 		return r;
3615 
3616 	ops = bdev->bd_disk->fops->pr_ops;
3617 	if (ops && ops->pr_register)
3618 		r = ops->pr_register(bdev, old_key, new_key, flags);
3619 	else
3620 		r = -EOPNOTSUPP;
3621 
3622 	bdput(bdev);
3623 	return r;
3624 }
3625 
3626 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3627 			 u32 flags)
3628 {
3629 	struct mapped_device *md = bdev->bd_disk->private_data;
3630 	const struct pr_ops *ops;
3631 	fmode_t mode;
3632 	int r;
3633 
3634 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3635 	if (r < 0)
3636 		return r;
3637 
3638 	ops = bdev->bd_disk->fops->pr_ops;
3639 	if (ops && ops->pr_reserve)
3640 		r = ops->pr_reserve(bdev, key, type, flags);
3641 	else
3642 		r = -EOPNOTSUPP;
3643 
3644 	bdput(bdev);
3645 	return r;
3646 }
3647 
3648 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3649 {
3650 	struct mapped_device *md = bdev->bd_disk->private_data;
3651 	const struct pr_ops *ops;
3652 	fmode_t mode;
3653 	int r;
3654 
3655 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3656 	if (r < 0)
3657 		return r;
3658 
3659 	ops = bdev->bd_disk->fops->pr_ops;
3660 	if (ops && ops->pr_release)
3661 		r = ops->pr_release(bdev, key, type);
3662 	else
3663 		r = -EOPNOTSUPP;
3664 
3665 	bdput(bdev);
3666 	return r;
3667 }
3668 
3669 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3670 			 enum pr_type type, bool abort)
3671 {
3672 	struct mapped_device *md = bdev->bd_disk->private_data;
3673 	const struct pr_ops *ops;
3674 	fmode_t mode;
3675 	int r;
3676 
3677 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3678 	if (r < 0)
3679 		return r;
3680 
3681 	ops = bdev->bd_disk->fops->pr_ops;
3682 	if (ops && ops->pr_preempt)
3683 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3684 	else
3685 		r = -EOPNOTSUPP;
3686 
3687 	bdput(bdev);
3688 	return r;
3689 }
3690 
3691 static int dm_pr_clear(struct block_device *bdev, u64 key)
3692 {
3693 	struct mapped_device *md = bdev->bd_disk->private_data;
3694 	const struct pr_ops *ops;
3695 	fmode_t mode;
3696 	int r;
3697 
3698 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3699 	if (r < 0)
3700 		return r;
3701 
3702 	ops = bdev->bd_disk->fops->pr_ops;
3703 	if (ops && ops->pr_clear)
3704 		r = ops->pr_clear(bdev, key);
3705 	else
3706 		r = -EOPNOTSUPP;
3707 
3708 	bdput(bdev);
3709 	return r;
3710 }
3711 
3712 static const struct pr_ops dm_pr_ops = {
3713 	.pr_register	= dm_pr_register,
3714 	.pr_reserve	= dm_pr_reserve,
3715 	.pr_release	= dm_pr_release,
3716 	.pr_preempt	= dm_pr_preempt,
3717 	.pr_clear	= dm_pr_clear,
3718 };
3719 
3720 static const struct block_device_operations dm_blk_dops = {
3721 	.open = dm_blk_open,
3722 	.release = dm_blk_close,
3723 	.ioctl = dm_blk_ioctl,
3724 	.getgeo = dm_blk_getgeo,
3725 	.pr_ops = &dm_pr_ops,
3726 	.owner = THIS_MODULE
3727 };
3728 
3729 /*
3730  * module hooks
3731  */
3732 module_init(dm_init);
3733 module_exit(dm_exit);
3734 
3735 module_param(major, uint, 0);
3736 MODULE_PARM_DESC(major, "The major number of the device mapper");
3737 
3738 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3739 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3740 
3741 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3742 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3743 
3744 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3745 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3746 
3747 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3748 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3749 
3750 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3751 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3752 
3753 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3754 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3755 
3756 MODULE_DESCRIPTION(DM_NAME " driver");
3757 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3758 MODULE_LICENSE("GPL");
3759