1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 580 tio = clone_to_tio(clone); 581 tio->flags = 0; 582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 583 tio->io = NULL; 584 585 io = container_of(tio, struct dm_io, tio); 586 io->magic = DM_IO_MAGIC; 587 io->status = BLK_STS_OK; 588 589 /* one ref is for submission, the other is for completion */ 590 atomic_set(&io->io_count, 2); 591 this_cpu_inc(*md->pending_io); 592 io->orig_bio = bio; 593 io->md = md; 594 spin_lock_init(&io->lock); 595 io->start_time = jiffies; 596 io->flags = 0; 597 if (blk_queue_io_stat(md->queue)) 598 dm_io_set_flag(io, DM_IO_BLK_STAT); 599 600 if (static_branch_unlikely(&stats_enabled) && 601 unlikely(dm_stats_used(&md->stats))) 602 dm_stats_record_start(&md->stats, &io->stats_aux); 603 604 return io; 605 } 606 607 static void free_io(struct dm_io *io) 608 { 609 bio_put(&io->tio.clone); 610 } 611 612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 613 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 614 { 615 struct mapped_device *md = ci->io->md; 616 struct dm_target_io *tio; 617 struct bio *clone; 618 619 if (!ci->io->tio.io) { 620 /* the dm_target_io embedded in ci->io is available */ 621 tio = &ci->io->tio; 622 /* alloc_io() already initialized embedded clone */ 623 clone = &tio->clone; 624 } else { 625 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 626 &md->mempools->bs); 627 if (!clone) 628 return NULL; 629 630 /* REQ_DM_POLL_LIST shouldn't be inherited */ 631 clone->bi_opf &= ~REQ_DM_POLL_LIST; 632 633 tio = clone_to_tio(clone); 634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 635 } 636 637 tio->magic = DM_TIO_MAGIC; 638 tio->io = ci->io; 639 tio->ti = ti; 640 tio->target_bio_nr = target_bio_nr; 641 tio->len_ptr = len; 642 tio->old_sector = 0; 643 644 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 645 clone->bi_bdev = md->disk->part0; 646 if (unlikely(ti->needs_bio_set_dev)) 647 bio_set_dev(clone, md->disk->part0); 648 649 if (len) { 650 clone->bi_iter.bi_size = to_bytes(*len); 651 if (bio_integrity(clone)) 652 bio_integrity_trim(clone); 653 } 654 655 return clone; 656 } 657 658 static void free_tio(struct bio *clone) 659 { 660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 661 return; 662 bio_put(clone); 663 } 664 665 /* 666 * Add the bio to the list of deferred io. 667 */ 668 static void queue_io(struct mapped_device *md, struct bio *bio) 669 { 670 unsigned long flags; 671 672 spin_lock_irqsave(&md->deferred_lock, flags); 673 bio_list_add(&md->deferred, bio); 674 spin_unlock_irqrestore(&md->deferred_lock, flags); 675 queue_work(md->wq, &md->work); 676 } 677 678 /* 679 * Everyone (including functions in this file), should use this 680 * function to access the md->map field, and make sure they call 681 * dm_put_live_table() when finished. 682 */ 683 struct dm_table *dm_get_live_table(struct mapped_device *md, 684 int *srcu_idx) __acquires(md->io_barrier) 685 { 686 *srcu_idx = srcu_read_lock(&md->io_barrier); 687 688 return srcu_dereference(md->map, &md->io_barrier); 689 } 690 691 void dm_put_live_table(struct mapped_device *md, 692 int srcu_idx) __releases(md->io_barrier) 693 { 694 srcu_read_unlock(&md->io_barrier, srcu_idx); 695 } 696 697 void dm_sync_table(struct mapped_device *md) 698 { 699 synchronize_srcu(&md->io_barrier); 700 synchronize_rcu_expedited(); 701 } 702 703 /* 704 * A fast alternative to dm_get_live_table/dm_put_live_table. 705 * The caller must not block between these two functions. 706 */ 707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 708 { 709 rcu_read_lock(); 710 return rcu_dereference(md->map); 711 } 712 713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 714 { 715 rcu_read_unlock(); 716 } 717 718 static char *_dm_claim_ptr = "I belong to device-mapper"; 719 720 /* 721 * Open a table device so we can use it as a map destination. 722 */ 723 static struct table_device *open_table_device(struct mapped_device *md, 724 dev_t dev, blk_mode_t mode) 725 { 726 struct table_device *td; 727 struct block_device *bdev; 728 u64 part_off; 729 int r; 730 731 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 732 if (!td) 733 return ERR_PTR(-ENOMEM); 734 refcount_set(&td->count, 1); 735 736 bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL); 737 if (IS_ERR(bdev)) { 738 r = PTR_ERR(bdev); 739 goto out_free_td; 740 } 741 742 /* 743 * We can be called before the dm disk is added. In that case we can't 744 * register the holder relation here. It will be done once add_disk was 745 * called. 746 */ 747 if (md->disk->slave_dir) { 748 r = bd_link_disk_holder(bdev, md->disk); 749 if (r) 750 goto out_blkdev_put; 751 } 752 753 td->dm_dev.mode = mode; 754 td->dm_dev.bdev = bdev; 755 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 756 format_dev_t(td->dm_dev.name, dev); 757 list_add(&td->list, &md->table_devices); 758 return td; 759 760 out_blkdev_put: 761 blkdev_put(bdev, _dm_claim_ptr); 762 out_free_td: 763 kfree(td); 764 return ERR_PTR(r); 765 } 766 767 /* 768 * Close a table device that we've been using. 769 */ 770 static void close_table_device(struct table_device *td, struct mapped_device *md) 771 { 772 if (md->disk->slave_dir) 773 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 774 blkdev_put(td->dm_dev.bdev, _dm_claim_ptr); 775 put_dax(td->dm_dev.dax_dev); 776 list_del(&td->list); 777 kfree(td); 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 blk_mode_t mode) 782 { 783 struct table_device *td; 784 785 list_for_each_entry(td, l, list) 786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 787 return td; 788 789 return NULL; 790 } 791 792 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 793 struct dm_dev **result) 794 { 795 struct table_device *td; 796 797 mutex_lock(&md->table_devices_lock); 798 td = find_table_device(&md->table_devices, dev, mode); 799 if (!td) { 800 td = open_table_device(md, dev, mode); 801 if (IS_ERR(td)) { 802 mutex_unlock(&md->table_devices_lock); 803 return PTR_ERR(td); 804 } 805 } else { 806 refcount_inc(&td->count); 807 } 808 mutex_unlock(&md->table_devices_lock); 809 810 *result = &td->dm_dev; 811 return 0; 812 } 813 814 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 815 { 816 struct table_device *td = container_of(d, struct table_device, dm_dev); 817 818 mutex_lock(&md->table_devices_lock); 819 if (refcount_dec_and_test(&td->count)) 820 close_table_device(td, md); 821 mutex_unlock(&md->table_devices_lock); 822 } 823 824 /* 825 * Get the geometry associated with a dm device 826 */ 827 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 828 { 829 *geo = md->geometry; 830 831 return 0; 832 } 833 834 /* 835 * Set the geometry of a device. 836 */ 837 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 838 { 839 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 840 841 if (geo->start > sz) { 842 DMERR("Start sector is beyond the geometry limits."); 843 return -EINVAL; 844 } 845 846 md->geometry = *geo; 847 848 return 0; 849 } 850 851 static int __noflush_suspending(struct mapped_device *md) 852 { 853 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 854 } 855 856 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 857 { 858 struct mapped_device *md = io->md; 859 860 if (first_stage) { 861 struct dm_io *next = md->requeue_list; 862 863 md->requeue_list = io; 864 io->next = next; 865 } else { 866 bio_list_add_head(&md->deferred, io->orig_bio); 867 } 868 } 869 870 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 871 { 872 if (first_stage) 873 queue_work(md->wq, &md->requeue_work); 874 else 875 queue_work(md->wq, &md->work); 876 } 877 878 /* 879 * Return true if the dm_io's original bio is requeued. 880 * io->status is updated with error if requeue disallowed. 881 */ 882 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 883 { 884 struct bio *bio = io->orig_bio; 885 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 886 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 887 (bio->bi_opf & REQ_POLLED)); 888 struct mapped_device *md = io->md; 889 bool requeued = false; 890 891 if (handle_requeue || handle_polled_eagain) { 892 unsigned long flags; 893 894 if (bio->bi_opf & REQ_POLLED) { 895 /* 896 * Upper layer won't help us poll split bio 897 * (io->orig_bio may only reflect a subset of the 898 * pre-split original) so clear REQ_POLLED. 899 */ 900 bio_clear_polled(bio); 901 } 902 903 /* 904 * Target requested pushing back the I/O or 905 * polled IO hit BLK_STS_AGAIN. 906 */ 907 spin_lock_irqsave(&md->deferred_lock, flags); 908 if ((__noflush_suspending(md) && 909 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 910 handle_polled_eagain || first_stage) { 911 dm_requeue_add_io(io, first_stage); 912 requeued = true; 913 } else { 914 /* 915 * noflush suspend was interrupted or this is 916 * a write to a zoned target. 917 */ 918 io->status = BLK_STS_IOERR; 919 } 920 spin_unlock_irqrestore(&md->deferred_lock, flags); 921 } 922 923 if (requeued) 924 dm_kick_requeue(md, first_stage); 925 926 return requeued; 927 } 928 929 static void __dm_io_complete(struct dm_io *io, bool first_stage) 930 { 931 struct bio *bio = io->orig_bio; 932 struct mapped_device *md = io->md; 933 blk_status_t io_error; 934 bool requeued; 935 936 requeued = dm_handle_requeue(io, first_stage); 937 if (requeued && first_stage) 938 return; 939 940 io_error = io->status; 941 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 942 dm_end_io_acct(io); 943 else if (!io_error) { 944 /* 945 * Must handle target that DM_MAPIO_SUBMITTED only to 946 * then bio_endio() rather than dm_submit_bio_remap() 947 */ 948 __dm_start_io_acct(io); 949 dm_end_io_acct(io); 950 } 951 free_io(io); 952 smp_wmb(); 953 this_cpu_dec(*md->pending_io); 954 955 /* nudge anyone waiting on suspend queue */ 956 if (unlikely(wq_has_sleeper(&md->wait))) 957 wake_up(&md->wait); 958 959 /* Return early if the original bio was requeued */ 960 if (requeued) 961 return; 962 963 if (bio_is_flush_with_data(bio)) { 964 /* 965 * Preflush done for flush with data, reissue 966 * without REQ_PREFLUSH. 967 */ 968 bio->bi_opf &= ~REQ_PREFLUSH; 969 queue_io(md, bio); 970 } else { 971 /* done with normal IO or empty flush */ 972 if (io_error) 973 bio->bi_status = io_error; 974 bio_endio(bio); 975 } 976 } 977 978 static void dm_wq_requeue_work(struct work_struct *work) 979 { 980 struct mapped_device *md = container_of(work, struct mapped_device, 981 requeue_work); 982 unsigned long flags; 983 struct dm_io *io; 984 985 /* reuse deferred lock to simplify dm_handle_requeue */ 986 spin_lock_irqsave(&md->deferred_lock, flags); 987 io = md->requeue_list; 988 md->requeue_list = NULL; 989 spin_unlock_irqrestore(&md->deferred_lock, flags); 990 991 while (io) { 992 struct dm_io *next = io->next; 993 994 dm_io_rewind(io, &md->disk->bio_split); 995 996 io->next = NULL; 997 __dm_io_complete(io, false); 998 io = next; 999 cond_resched(); 1000 } 1001 } 1002 1003 /* 1004 * Two staged requeue: 1005 * 1006 * 1) io->orig_bio points to the real original bio, and the part mapped to 1007 * this io must be requeued, instead of other parts of the original bio. 1008 * 1009 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1010 */ 1011 static void dm_io_complete(struct dm_io *io) 1012 { 1013 bool first_requeue; 1014 1015 /* 1016 * Only dm_io that has been split needs two stage requeue, otherwise 1017 * we may run into long bio clone chain during suspend and OOM could 1018 * be triggered. 1019 * 1020 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1021 * also aren't handled via the first stage requeue. 1022 */ 1023 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1024 first_requeue = true; 1025 else 1026 first_requeue = false; 1027 1028 __dm_io_complete(io, first_requeue); 1029 } 1030 1031 /* 1032 * Decrements the number of outstanding ios that a bio has been 1033 * cloned into, completing the original io if necc. 1034 */ 1035 static inline void __dm_io_dec_pending(struct dm_io *io) 1036 { 1037 if (atomic_dec_and_test(&io->io_count)) 1038 dm_io_complete(io); 1039 } 1040 1041 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1042 { 1043 unsigned long flags; 1044 1045 /* Push-back supersedes any I/O errors */ 1046 spin_lock_irqsave(&io->lock, flags); 1047 if (!(io->status == BLK_STS_DM_REQUEUE && 1048 __noflush_suspending(io->md))) { 1049 io->status = error; 1050 } 1051 spin_unlock_irqrestore(&io->lock, flags); 1052 } 1053 1054 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1055 { 1056 if (unlikely(error)) 1057 dm_io_set_error(io, error); 1058 1059 __dm_io_dec_pending(io); 1060 } 1061 1062 /* 1063 * The queue_limits are only valid as long as you have a reference 1064 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1065 */ 1066 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1067 { 1068 return &md->queue->limits; 1069 } 1070 1071 void disable_discard(struct mapped_device *md) 1072 { 1073 struct queue_limits *limits = dm_get_queue_limits(md); 1074 1075 /* device doesn't really support DISCARD, disable it */ 1076 limits->max_discard_sectors = 0; 1077 } 1078 1079 void disable_write_zeroes(struct mapped_device *md) 1080 { 1081 struct queue_limits *limits = dm_get_queue_limits(md); 1082 1083 /* device doesn't really support WRITE ZEROES, disable it */ 1084 limits->max_write_zeroes_sectors = 0; 1085 } 1086 1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1088 { 1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1090 } 1091 1092 static void clone_endio(struct bio *bio) 1093 { 1094 blk_status_t error = bio->bi_status; 1095 struct dm_target_io *tio = clone_to_tio(bio); 1096 struct dm_target *ti = tio->ti; 1097 dm_endio_fn endio = ti->type->end_io; 1098 struct dm_io *io = tio->io; 1099 struct mapped_device *md = io->md; 1100 1101 if (unlikely(error == BLK_STS_TARGET)) { 1102 if (bio_op(bio) == REQ_OP_DISCARD && 1103 !bdev_max_discard_sectors(bio->bi_bdev)) 1104 disable_discard(md); 1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1106 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1107 disable_write_zeroes(md); 1108 } 1109 1110 if (static_branch_unlikely(&zoned_enabled) && 1111 unlikely(bdev_is_zoned(bio->bi_bdev))) 1112 dm_zone_endio(io, bio); 1113 1114 if (endio) { 1115 int r = endio(ti, bio, &error); 1116 1117 switch (r) { 1118 case DM_ENDIO_REQUEUE: 1119 if (static_branch_unlikely(&zoned_enabled)) { 1120 /* 1121 * Requeuing writes to a sequential zone of a zoned 1122 * target will break the sequential write pattern: 1123 * fail such IO. 1124 */ 1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1126 error = BLK_STS_IOERR; 1127 else 1128 error = BLK_STS_DM_REQUEUE; 1129 } else 1130 error = BLK_STS_DM_REQUEUE; 1131 fallthrough; 1132 case DM_ENDIO_DONE: 1133 break; 1134 case DM_ENDIO_INCOMPLETE: 1135 /* The target will handle the io */ 1136 return; 1137 default: 1138 DMCRIT("unimplemented target endio return value: %d", r); 1139 BUG(); 1140 } 1141 } 1142 1143 if (static_branch_unlikely(&swap_bios_enabled) && 1144 unlikely(swap_bios_limit(ti, bio))) 1145 up(&md->swap_bios_semaphore); 1146 1147 free_tio(bio); 1148 dm_io_dec_pending(io, error); 1149 } 1150 1151 /* 1152 * Return maximum size of I/O possible at the supplied sector up to the current 1153 * target boundary. 1154 */ 1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1156 sector_t target_offset) 1157 { 1158 return ti->len - target_offset; 1159 } 1160 1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1162 unsigned int max_granularity, 1163 unsigned int max_sectors) 1164 { 1165 sector_t target_offset = dm_target_offset(ti, sector); 1166 sector_t len = max_io_len_target_boundary(ti, target_offset); 1167 1168 /* 1169 * Does the target need to split IO even further? 1170 * - varied (per target) IO splitting is a tenet of DM; this 1171 * explains why stacked chunk_sectors based splitting via 1172 * bio_split_to_limits() isn't possible here. 1173 */ 1174 if (!max_granularity) 1175 return len; 1176 return min_t(sector_t, len, 1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1178 blk_chunk_sectors_left(target_offset, max_granularity))); 1179 } 1180 1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1182 { 1183 return __max_io_len(ti, sector, ti->max_io_len, 0); 1184 } 1185 1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1187 { 1188 if (len > UINT_MAX) { 1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1190 (unsigned long long)len, UINT_MAX); 1191 ti->error = "Maximum size of target IO is too large"; 1192 return -EINVAL; 1193 } 1194 1195 ti->max_io_len = (uint32_t) len; 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1200 1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1202 sector_t sector, int *srcu_idx) 1203 __acquires(md->io_barrier) 1204 { 1205 struct dm_table *map; 1206 struct dm_target *ti; 1207 1208 map = dm_get_live_table(md, srcu_idx); 1209 if (!map) 1210 return NULL; 1211 1212 ti = dm_table_find_target(map, sector); 1213 if (!ti) 1214 return NULL; 1215 1216 return ti; 1217 } 1218 1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1220 long nr_pages, enum dax_access_mode mode, void **kaddr, 1221 pfn_t *pfn) 1222 { 1223 struct mapped_device *md = dax_get_private(dax_dev); 1224 sector_t sector = pgoff * PAGE_SECTORS; 1225 struct dm_target *ti; 1226 long len, ret = -EIO; 1227 int srcu_idx; 1228 1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1230 1231 if (!ti) 1232 goto out; 1233 if (!ti->type->direct_access) 1234 goto out; 1235 len = max_io_len(ti, sector) / PAGE_SECTORS; 1236 if (len < 1) 1237 goto out; 1238 nr_pages = min(len, nr_pages); 1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1240 1241 out: 1242 dm_put_live_table(md, srcu_idx); 1243 1244 return ret; 1245 } 1246 1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1248 size_t nr_pages) 1249 { 1250 struct mapped_device *md = dax_get_private(dax_dev); 1251 sector_t sector = pgoff * PAGE_SECTORS; 1252 struct dm_target *ti; 1253 int ret = -EIO; 1254 int srcu_idx; 1255 1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1257 1258 if (!ti) 1259 goto out; 1260 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1261 /* 1262 * ->zero_page_range() is mandatory dax operation. If we are 1263 * here, something is wrong. 1264 */ 1265 goto out; 1266 } 1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1268 out: 1269 dm_put_live_table(md, srcu_idx); 1270 1271 return ret; 1272 } 1273 1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1275 void *addr, size_t bytes, struct iov_iter *i) 1276 { 1277 struct mapped_device *md = dax_get_private(dax_dev); 1278 sector_t sector = pgoff * PAGE_SECTORS; 1279 struct dm_target *ti; 1280 int srcu_idx; 1281 long ret = 0; 1282 1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1284 if (!ti || !ti->type->dax_recovery_write) 1285 goto out; 1286 1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1288 out: 1289 dm_put_live_table(md, srcu_idx); 1290 return ret; 1291 } 1292 1293 /* 1294 * A target may call dm_accept_partial_bio only from the map routine. It is 1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1297 * __send_duplicate_bios(). 1298 * 1299 * dm_accept_partial_bio informs the dm that the target only wants to process 1300 * additional n_sectors sectors of the bio and the rest of the data should be 1301 * sent in a next bio. 1302 * 1303 * A diagram that explains the arithmetics: 1304 * +--------------------+---------------+-------+ 1305 * | 1 | 2 | 3 | 1306 * +--------------------+---------------+-------+ 1307 * 1308 * <-------------- *tio->len_ptr ---------------> 1309 * <----- bio_sectors -----> 1310 * <-- n_sectors --> 1311 * 1312 * Region 1 was already iterated over with bio_advance or similar function. 1313 * (it may be empty if the target doesn't use bio_advance) 1314 * Region 2 is the remaining bio size that the target wants to process. 1315 * (it may be empty if region 1 is non-empty, although there is no reason 1316 * to make it empty) 1317 * The target requires that region 3 is to be sent in the next bio. 1318 * 1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1320 * the partially processed part (the sum of regions 1+2) must be the same for all 1321 * copies of the bio. 1322 */ 1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1324 { 1325 struct dm_target_io *tio = clone_to_tio(bio); 1326 struct dm_io *io = tio->io; 1327 unsigned int bio_sectors = bio_sectors(bio); 1328 1329 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1330 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1331 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1332 BUG_ON(bio_sectors > *tio->len_ptr); 1333 BUG_ON(n_sectors > bio_sectors); 1334 1335 *tio->len_ptr -= bio_sectors - n_sectors; 1336 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1337 1338 /* 1339 * __split_and_process_bio() may have already saved mapped part 1340 * for accounting but it is being reduced so update accordingly. 1341 */ 1342 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1343 io->sectors = n_sectors; 1344 io->sector_offset = bio_sectors(io->orig_bio); 1345 } 1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1347 1348 /* 1349 * @clone: clone bio that DM core passed to target's .map function 1350 * @tgt_clone: clone of @clone bio that target needs submitted 1351 * 1352 * Targets should use this interface to submit bios they take 1353 * ownership of when returning DM_MAPIO_SUBMITTED. 1354 * 1355 * Target should also enable ti->accounts_remapped_io 1356 */ 1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1358 { 1359 struct dm_target_io *tio = clone_to_tio(clone); 1360 struct dm_io *io = tio->io; 1361 1362 /* establish bio that will get submitted */ 1363 if (!tgt_clone) 1364 tgt_clone = clone; 1365 1366 /* 1367 * Account io->origin_bio to DM dev on behalf of target 1368 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1369 */ 1370 dm_start_io_acct(io, clone); 1371 1372 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1373 tio->old_sector); 1374 submit_bio_noacct(tgt_clone); 1375 } 1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1377 1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1379 { 1380 mutex_lock(&md->swap_bios_lock); 1381 while (latch < md->swap_bios) { 1382 cond_resched(); 1383 down(&md->swap_bios_semaphore); 1384 md->swap_bios--; 1385 } 1386 while (latch > md->swap_bios) { 1387 cond_resched(); 1388 up(&md->swap_bios_semaphore); 1389 md->swap_bios++; 1390 } 1391 mutex_unlock(&md->swap_bios_lock); 1392 } 1393 1394 static void __map_bio(struct bio *clone) 1395 { 1396 struct dm_target_io *tio = clone_to_tio(clone); 1397 struct dm_target *ti = tio->ti; 1398 struct dm_io *io = tio->io; 1399 struct mapped_device *md = io->md; 1400 int r; 1401 1402 clone->bi_end_io = clone_endio; 1403 1404 /* 1405 * Map the clone. 1406 */ 1407 tio->old_sector = clone->bi_iter.bi_sector; 1408 1409 if (static_branch_unlikely(&swap_bios_enabled) && 1410 unlikely(swap_bios_limit(ti, clone))) { 1411 int latch = get_swap_bios(); 1412 1413 if (unlikely(latch != md->swap_bios)) 1414 __set_swap_bios_limit(md, latch); 1415 down(&md->swap_bios_semaphore); 1416 } 1417 1418 if (static_branch_unlikely(&zoned_enabled)) { 1419 /* 1420 * Check if the IO needs a special mapping due to zone append 1421 * emulation on zoned target. In this case, dm_zone_map_bio() 1422 * calls the target map operation. 1423 */ 1424 if (unlikely(dm_emulate_zone_append(md))) 1425 r = dm_zone_map_bio(tio); 1426 else 1427 r = ti->type->map(ti, clone); 1428 } else 1429 r = ti->type->map(ti, clone); 1430 1431 switch (r) { 1432 case DM_MAPIO_SUBMITTED: 1433 /* target has assumed ownership of this io */ 1434 if (!ti->accounts_remapped_io) 1435 dm_start_io_acct(io, clone); 1436 break; 1437 case DM_MAPIO_REMAPPED: 1438 dm_submit_bio_remap(clone, NULL); 1439 break; 1440 case DM_MAPIO_KILL: 1441 case DM_MAPIO_REQUEUE: 1442 if (static_branch_unlikely(&swap_bios_enabled) && 1443 unlikely(swap_bios_limit(ti, clone))) 1444 up(&md->swap_bios_semaphore); 1445 free_tio(clone); 1446 if (r == DM_MAPIO_KILL) 1447 dm_io_dec_pending(io, BLK_STS_IOERR); 1448 else 1449 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1450 break; 1451 default: 1452 DMCRIT("unimplemented target map return value: %d", r); 1453 BUG(); 1454 } 1455 } 1456 1457 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1458 { 1459 struct dm_io *io = ci->io; 1460 1461 if (ci->sector_count > len) { 1462 /* 1463 * Split needed, save the mapped part for accounting. 1464 * NOTE: dm_accept_partial_bio() will update accordingly. 1465 */ 1466 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1467 io->sectors = len; 1468 io->sector_offset = bio_sectors(ci->bio); 1469 } 1470 } 1471 1472 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1473 struct dm_target *ti, unsigned int num_bios, 1474 unsigned *len) 1475 { 1476 struct bio *bio; 1477 int try; 1478 1479 for (try = 0; try < 2; try++) { 1480 int bio_nr; 1481 1482 if (try) 1483 mutex_lock(&ci->io->md->table_devices_lock); 1484 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1485 bio = alloc_tio(ci, ti, bio_nr, len, 1486 try ? GFP_NOIO : GFP_NOWAIT); 1487 if (!bio) 1488 break; 1489 1490 bio_list_add(blist, bio); 1491 } 1492 if (try) 1493 mutex_unlock(&ci->io->md->table_devices_lock); 1494 if (bio_nr == num_bios) 1495 return; 1496 1497 while ((bio = bio_list_pop(blist))) 1498 free_tio(bio); 1499 } 1500 } 1501 1502 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1503 unsigned int num_bios, unsigned int *len) 1504 { 1505 struct bio_list blist = BIO_EMPTY_LIST; 1506 struct bio *clone; 1507 unsigned int ret = 0; 1508 1509 switch (num_bios) { 1510 case 0: 1511 break; 1512 case 1: 1513 if (len) 1514 setup_split_accounting(ci, *len); 1515 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1516 __map_bio(clone); 1517 ret = 1; 1518 break; 1519 default: 1520 if (len) 1521 setup_split_accounting(ci, *len); 1522 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1523 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1524 while ((clone = bio_list_pop(&blist))) { 1525 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1526 __map_bio(clone); 1527 ret += 1; 1528 } 1529 break; 1530 } 1531 1532 return ret; 1533 } 1534 1535 static void __send_empty_flush(struct clone_info *ci) 1536 { 1537 struct dm_table *t = ci->map; 1538 struct bio flush_bio; 1539 1540 /* 1541 * Use an on-stack bio for this, it's safe since we don't 1542 * need to reference it after submit. It's just used as 1543 * the basis for the clone(s). 1544 */ 1545 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1546 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1547 1548 ci->bio = &flush_bio; 1549 ci->sector_count = 0; 1550 ci->io->tio.clone.bi_iter.bi_size = 0; 1551 1552 for (unsigned int i = 0; i < t->num_targets; i++) { 1553 unsigned int bios; 1554 struct dm_target *ti = dm_table_get_target(t, i); 1555 1556 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1557 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1558 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1559 } 1560 1561 /* 1562 * alloc_io() takes one extra reference for submission, so the 1563 * reference won't reach 0 without the following subtraction 1564 */ 1565 atomic_sub(1, &ci->io->io_count); 1566 1567 bio_uninit(ci->bio); 1568 } 1569 1570 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1571 unsigned int num_bios, 1572 unsigned int max_granularity, 1573 unsigned int max_sectors) 1574 { 1575 unsigned int len, bios; 1576 1577 len = min_t(sector_t, ci->sector_count, 1578 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1579 1580 atomic_add(num_bios, &ci->io->io_count); 1581 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1582 /* 1583 * alloc_io() takes one extra reference for submission, so the 1584 * reference won't reach 0 without the following (+1) subtraction 1585 */ 1586 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1587 1588 ci->sector += len; 1589 ci->sector_count -= len; 1590 } 1591 1592 static bool is_abnormal_io(struct bio *bio) 1593 { 1594 enum req_op op = bio_op(bio); 1595 1596 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1597 switch (op) { 1598 case REQ_OP_DISCARD: 1599 case REQ_OP_SECURE_ERASE: 1600 case REQ_OP_WRITE_ZEROES: 1601 return true; 1602 default: 1603 break; 1604 } 1605 } 1606 1607 return false; 1608 } 1609 1610 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1611 struct dm_target *ti) 1612 { 1613 unsigned int num_bios = 0; 1614 unsigned int max_granularity = 0; 1615 unsigned int max_sectors = 0; 1616 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1617 1618 switch (bio_op(ci->bio)) { 1619 case REQ_OP_DISCARD: 1620 num_bios = ti->num_discard_bios; 1621 max_sectors = limits->max_discard_sectors; 1622 if (ti->max_discard_granularity) 1623 max_granularity = max_sectors; 1624 break; 1625 case REQ_OP_SECURE_ERASE: 1626 num_bios = ti->num_secure_erase_bios; 1627 max_sectors = limits->max_secure_erase_sectors; 1628 if (ti->max_secure_erase_granularity) 1629 max_granularity = max_sectors; 1630 break; 1631 case REQ_OP_WRITE_ZEROES: 1632 num_bios = ti->num_write_zeroes_bios; 1633 max_sectors = limits->max_write_zeroes_sectors; 1634 if (ti->max_write_zeroes_granularity) 1635 max_granularity = max_sectors; 1636 break; 1637 default: 1638 break; 1639 } 1640 1641 /* 1642 * Even though the device advertised support for this type of 1643 * request, that does not mean every target supports it, and 1644 * reconfiguration might also have changed that since the 1645 * check was performed. 1646 */ 1647 if (unlikely(!num_bios)) 1648 return BLK_STS_NOTSUPP; 1649 1650 __send_changing_extent_only(ci, ti, num_bios, 1651 max_granularity, max_sectors); 1652 return BLK_STS_OK; 1653 } 1654 1655 /* 1656 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1657 * associated with this bio, and this bio's bi_private needs to be 1658 * stored in dm_io->data before the reuse. 1659 * 1660 * bio->bi_private is owned by fs or upper layer, so block layer won't 1661 * touch it after splitting. Meantime it won't be changed by anyone after 1662 * bio is submitted. So this reuse is safe. 1663 */ 1664 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1665 { 1666 return (struct dm_io **)&bio->bi_private; 1667 } 1668 1669 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1670 { 1671 struct dm_io **head = dm_poll_list_head(bio); 1672 1673 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1674 bio->bi_opf |= REQ_DM_POLL_LIST; 1675 /* 1676 * Save .bi_private into dm_io, so that we can reuse 1677 * .bi_private as dm_io list head for storing dm_io list 1678 */ 1679 io->data = bio->bi_private; 1680 1681 /* tell block layer to poll for completion */ 1682 bio->bi_cookie = ~BLK_QC_T_NONE; 1683 1684 io->next = NULL; 1685 } else { 1686 /* 1687 * bio recursed due to split, reuse original poll list, 1688 * and save bio->bi_private too. 1689 */ 1690 io->data = (*head)->data; 1691 io->next = *head; 1692 } 1693 1694 *head = io; 1695 } 1696 1697 /* 1698 * Select the correct strategy for processing a non-flush bio. 1699 */ 1700 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1701 { 1702 struct bio *clone; 1703 struct dm_target *ti; 1704 unsigned int len; 1705 1706 ti = dm_table_find_target(ci->map, ci->sector); 1707 if (unlikely(!ti)) 1708 return BLK_STS_IOERR; 1709 1710 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1711 unlikely(!dm_target_supports_nowait(ti->type))) 1712 return BLK_STS_NOTSUPP; 1713 1714 if (unlikely(ci->is_abnormal_io)) 1715 return __process_abnormal_io(ci, ti); 1716 1717 /* 1718 * Only support bio polling for normal IO, and the target io is 1719 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1720 */ 1721 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1722 1723 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1724 setup_split_accounting(ci, len); 1725 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1726 __map_bio(clone); 1727 1728 ci->sector += len; 1729 ci->sector_count -= len; 1730 1731 return BLK_STS_OK; 1732 } 1733 1734 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1735 struct dm_table *map, struct bio *bio, bool is_abnormal) 1736 { 1737 ci->map = map; 1738 ci->io = alloc_io(md, bio); 1739 ci->bio = bio; 1740 ci->is_abnormal_io = is_abnormal; 1741 ci->submit_as_polled = false; 1742 ci->sector = bio->bi_iter.bi_sector; 1743 ci->sector_count = bio_sectors(bio); 1744 1745 /* Shouldn't happen but sector_count was being set to 0 so... */ 1746 if (static_branch_unlikely(&zoned_enabled) && 1747 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1748 ci->sector_count = 0; 1749 } 1750 1751 /* 1752 * Entry point to split a bio into clones and submit them to the targets. 1753 */ 1754 static void dm_split_and_process_bio(struct mapped_device *md, 1755 struct dm_table *map, struct bio *bio) 1756 { 1757 struct clone_info ci; 1758 struct dm_io *io; 1759 blk_status_t error = BLK_STS_OK; 1760 bool is_abnormal; 1761 1762 is_abnormal = is_abnormal_io(bio); 1763 if (unlikely(is_abnormal)) { 1764 /* 1765 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1766 * otherwise associated queue_limits won't be imposed. 1767 */ 1768 bio = bio_split_to_limits(bio); 1769 if (!bio) 1770 return; 1771 } 1772 1773 init_clone_info(&ci, md, map, bio, is_abnormal); 1774 io = ci.io; 1775 1776 if (bio->bi_opf & REQ_PREFLUSH) { 1777 __send_empty_flush(&ci); 1778 /* dm_io_complete submits any data associated with flush */ 1779 goto out; 1780 } 1781 1782 error = __split_and_process_bio(&ci); 1783 if (error || !ci.sector_count) 1784 goto out; 1785 /* 1786 * Remainder must be passed to submit_bio_noacct() so it gets handled 1787 * *after* bios already submitted have been completely processed. 1788 */ 1789 bio_trim(bio, io->sectors, ci.sector_count); 1790 trace_block_split(bio, bio->bi_iter.bi_sector); 1791 bio_inc_remaining(bio); 1792 submit_bio_noacct(bio); 1793 out: 1794 /* 1795 * Drop the extra reference count for non-POLLED bio, and hold one 1796 * reference for POLLED bio, which will be released in dm_poll_bio 1797 * 1798 * Add every dm_io instance into the dm_io list head which is stored 1799 * in bio->bi_private, so that dm_poll_bio can poll them all. 1800 */ 1801 if (error || !ci.submit_as_polled) { 1802 /* 1803 * In case of submission failure, the extra reference for 1804 * submitting io isn't consumed yet 1805 */ 1806 if (error) 1807 atomic_dec(&io->io_count); 1808 dm_io_dec_pending(io, error); 1809 } else 1810 dm_queue_poll_io(bio, io); 1811 } 1812 1813 static void dm_submit_bio(struct bio *bio) 1814 { 1815 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1816 int srcu_idx; 1817 struct dm_table *map; 1818 1819 map = dm_get_live_table(md, &srcu_idx); 1820 1821 /* If suspended, or map not yet available, queue this IO for later */ 1822 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1823 unlikely(!map)) { 1824 if (bio->bi_opf & REQ_NOWAIT) 1825 bio_wouldblock_error(bio); 1826 else if (bio->bi_opf & REQ_RAHEAD) 1827 bio_io_error(bio); 1828 else 1829 queue_io(md, bio); 1830 goto out; 1831 } 1832 1833 dm_split_and_process_bio(md, map, bio); 1834 out: 1835 dm_put_live_table(md, srcu_idx); 1836 } 1837 1838 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1839 unsigned int flags) 1840 { 1841 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1842 1843 /* don't poll if the mapped io is done */ 1844 if (atomic_read(&io->io_count) > 1) 1845 bio_poll(&io->tio.clone, iob, flags); 1846 1847 /* bio_poll holds the last reference */ 1848 return atomic_read(&io->io_count) == 1; 1849 } 1850 1851 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1852 unsigned int flags) 1853 { 1854 struct dm_io **head = dm_poll_list_head(bio); 1855 struct dm_io *list = *head; 1856 struct dm_io *tmp = NULL; 1857 struct dm_io *curr, *next; 1858 1859 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1860 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1861 return 0; 1862 1863 WARN_ON_ONCE(!list); 1864 1865 /* 1866 * Restore .bi_private before possibly completing dm_io. 1867 * 1868 * bio_poll() is only possible once @bio has been completely 1869 * submitted via submit_bio_noacct()'s depth-first submission. 1870 * So there is no dm_queue_poll_io() race associated with 1871 * clearing REQ_DM_POLL_LIST here. 1872 */ 1873 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1874 bio->bi_private = list->data; 1875 1876 for (curr = list, next = curr->next; curr; curr = next, next = 1877 curr ? curr->next : NULL) { 1878 if (dm_poll_dm_io(curr, iob, flags)) { 1879 /* 1880 * clone_endio() has already occurred, so no 1881 * error handling is needed here. 1882 */ 1883 __dm_io_dec_pending(curr); 1884 } else { 1885 curr->next = tmp; 1886 tmp = curr; 1887 } 1888 } 1889 1890 /* Not done? */ 1891 if (tmp) { 1892 bio->bi_opf |= REQ_DM_POLL_LIST; 1893 /* Reset bio->bi_private to dm_io list head */ 1894 *head = tmp; 1895 return 0; 1896 } 1897 return 1; 1898 } 1899 1900 /* 1901 *--------------------------------------------------------------- 1902 * An IDR is used to keep track of allocated minor numbers. 1903 *--------------------------------------------------------------- 1904 */ 1905 static void free_minor(int minor) 1906 { 1907 spin_lock(&_minor_lock); 1908 idr_remove(&_minor_idr, minor); 1909 spin_unlock(&_minor_lock); 1910 } 1911 1912 /* 1913 * See if the device with a specific minor # is free. 1914 */ 1915 static int specific_minor(int minor) 1916 { 1917 int r; 1918 1919 if (minor >= (1 << MINORBITS)) 1920 return -EINVAL; 1921 1922 idr_preload(GFP_KERNEL); 1923 spin_lock(&_minor_lock); 1924 1925 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1926 1927 spin_unlock(&_minor_lock); 1928 idr_preload_end(); 1929 if (r < 0) 1930 return r == -ENOSPC ? -EBUSY : r; 1931 return 0; 1932 } 1933 1934 static int next_free_minor(int *minor) 1935 { 1936 int r; 1937 1938 idr_preload(GFP_KERNEL); 1939 spin_lock(&_minor_lock); 1940 1941 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1942 1943 spin_unlock(&_minor_lock); 1944 idr_preload_end(); 1945 if (r < 0) 1946 return r; 1947 *minor = r; 1948 return 0; 1949 } 1950 1951 static const struct block_device_operations dm_blk_dops; 1952 static const struct block_device_operations dm_rq_blk_dops; 1953 static const struct dax_operations dm_dax_ops; 1954 1955 static void dm_wq_work(struct work_struct *work); 1956 1957 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1958 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1959 { 1960 dm_destroy_crypto_profile(q->crypto_profile); 1961 } 1962 1963 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1964 1965 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1966 { 1967 } 1968 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1969 1970 static void cleanup_mapped_device(struct mapped_device *md) 1971 { 1972 if (md->wq) 1973 destroy_workqueue(md->wq); 1974 dm_free_md_mempools(md->mempools); 1975 1976 if (md->dax_dev) { 1977 dax_remove_host(md->disk); 1978 kill_dax(md->dax_dev); 1979 put_dax(md->dax_dev); 1980 md->dax_dev = NULL; 1981 } 1982 1983 dm_cleanup_zoned_dev(md); 1984 if (md->disk) { 1985 spin_lock(&_minor_lock); 1986 md->disk->private_data = NULL; 1987 spin_unlock(&_minor_lock); 1988 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1989 struct table_device *td; 1990 1991 dm_sysfs_exit(md); 1992 list_for_each_entry(td, &md->table_devices, list) { 1993 bd_unlink_disk_holder(td->dm_dev.bdev, 1994 md->disk); 1995 } 1996 1997 /* 1998 * Hold lock to make sure del_gendisk() won't concurrent 1999 * with open/close_table_device(). 2000 */ 2001 mutex_lock(&md->table_devices_lock); 2002 del_gendisk(md->disk); 2003 mutex_unlock(&md->table_devices_lock); 2004 } 2005 dm_queue_destroy_crypto_profile(md->queue); 2006 put_disk(md->disk); 2007 } 2008 2009 if (md->pending_io) { 2010 free_percpu(md->pending_io); 2011 md->pending_io = NULL; 2012 } 2013 2014 cleanup_srcu_struct(&md->io_barrier); 2015 2016 mutex_destroy(&md->suspend_lock); 2017 mutex_destroy(&md->type_lock); 2018 mutex_destroy(&md->table_devices_lock); 2019 mutex_destroy(&md->swap_bios_lock); 2020 2021 dm_mq_cleanup_mapped_device(md); 2022 } 2023 2024 /* 2025 * Allocate and initialise a blank device with a given minor. 2026 */ 2027 static struct mapped_device *alloc_dev(int minor) 2028 { 2029 int r, numa_node_id = dm_get_numa_node(); 2030 struct mapped_device *md; 2031 void *old_md; 2032 2033 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2034 if (!md) { 2035 DMERR("unable to allocate device, out of memory."); 2036 return NULL; 2037 } 2038 2039 if (!try_module_get(THIS_MODULE)) 2040 goto bad_module_get; 2041 2042 /* get a minor number for the dev */ 2043 if (minor == DM_ANY_MINOR) 2044 r = next_free_minor(&minor); 2045 else 2046 r = specific_minor(minor); 2047 if (r < 0) 2048 goto bad_minor; 2049 2050 r = init_srcu_struct(&md->io_barrier); 2051 if (r < 0) 2052 goto bad_io_barrier; 2053 2054 md->numa_node_id = numa_node_id; 2055 md->init_tio_pdu = false; 2056 md->type = DM_TYPE_NONE; 2057 mutex_init(&md->suspend_lock); 2058 mutex_init(&md->type_lock); 2059 mutex_init(&md->table_devices_lock); 2060 spin_lock_init(&md->deferred_lock); 2061 atomic_set(&md->holders, 1); 2062 atomic_set(&md->open_count, 0); 2063 atomic_set(&md->event_nr, 0); 2064 atomic_set(&md->uevent_seq, 0); 2065 INIT_LIST_HEAD(&md->uevent_list); 2066 INIT_LIST_HEAD(&md->table_devices); 2067 spin_lock_init(&md->uevent_lock); 2068 2069 /* 2070 * default to bio-based until DM table is loaded and md->type 2071 * established. If request-based table is loaded: blk-mq will 2072 * override accordingly. 2073 */ 2074 md->disk = blk_alloc_disk(md->numa_node_id); 2075 if (!md->disk) 2076 goto bad; 2077 md->queue = md->disk->queue; 2078 2079 init_waitqueue_head(&md->wait); 2080 INIT_WORK(&md->work, dm_wq_work); 2081 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2082 init_waitqueue_head(&md->eventq); 2083 init_completion(&md->kobj_holder.completion); 2084 2085 md->requeue_list = NULL; 2086 md->swap_bios = get_swap_bios(); 2087 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2088 mutex_init(&md->swap_bios_lock); 2089 2090 md->disk->major = _major; 2091 md->disk->first_minor = minor; 2092 md->disk->minors = 1; 2093 md->disk->flags |= GENHD_FL_NO_PART; 2094 md->disk->fops = &dm_blk_dops; 2095 md->disk->private_data = md; 2096 sprintf(md->disk->disk_name, "dm-%d", minor); 2097 2098 if (IS_ENABLED(CONFIG_FS_DAX)) { 2099 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2100 if (IS_ERR(md->dax_dev)) { 2101 md->dax_dev = NULL; 2102 goto bad; 2103 } 2104 set_dax_nocache(md->dax_dev); 2105 set_dax_nomc(md->dax_dev); 2106 if (dax_add_host(md->dax_dev, md->disk)) 2107 goto bad; 2108 } 2109 2110 format_dev_t(md->name, MKDEV(_major, minor)); 2111 2112 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2113 if (!md->wq) 2114 goto bad; 2115 2116 md->pending_io = alloc_percpu(unsigned long); 2117 if (!md->pending_io) 2118 goto bad; 2119 2120 r = dm_stats_init(&md->stats); 2121 if (r < 0) 2122 goto bad; 2123 2124 /* Populate the mapping, nobody knows we exist yet */ 2125 spin_lock(&_minor_lock); 2126 old_md = idr_replace(&_minor_idr, md, minor); 2127 spin_unlock(&_minor_lock); 2128 2129 BUG_ON(old_md != MINOR_ALLOCED); 2130 2131 return md; 2132 2133 bad: 2134 cleanup_mapped_device(md); 2135 bad_io_barrier: 2136 free_minor(minor); 2137 bad_minor: 2138 module_put(THIS_MODULE); 2139 bad_module_get: 2140 kvfree(md); 2141 return NULL; 2142 } 2143 2144 static void unlock_fs(struct mapped_device *md); 2145 2146 static void free_dev(struct mapped_device *md) 2147 { 2148 int minor = MINOR(disk_devt(md->disk)); 2149 2150 unlock_fs(md); 2151 2152 cleanup_mapped_device(md); 2153 2154 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2155 dm_stats_cleanup(&md->stats); 2156 free_minor(minor); 2157 2158 module_put(THIS_MODULE); 2159 kvfree(md); 2160 } 2161 2162 /* 2163 * Bind a table to the device. 2164 */ 2165 static void event_callback(void *context) 2166 { 2167 unsigned long flags; 2168 LIST_HEAD(uevents); 2169 struct mapped_device *md = context; 2170 2171 spin_lock_irqsave(&md->uevent_lock, flags); 2172 list_splice_init(&md->uevent_list, &uevents); 2173 spin_unlock_irqrestore(&md->uevent_lock, flags); 2174 2175 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2176 2177 atomic_inc(&md->event_nr); 2178 wake_up(&md->eventq); 2179 dm_issue_global_event(); 2180 } 2181 2182 /* 2183 * Returns old map, which caller must destroy. 2184 */ 2185 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2186 struct queue_limits *limits) 2187 { 2188 struct dm_table *old_map; 2189 sector_t size; 2190 int ret; 2191 2192 lockdep_assert_held(&md->suspend_lock); 2193 2194 size = dm_table_get_size(t); 2195 2196 /* 2197 * Wipe any geometry if the size of the table changed. 2198 */ 2199 if (size != dm_get_size(md)) 2200 memset(&md->geometry, 0, sizeof(md->geometry)); 2201 2202 set_capacity(md->disk, size); 2203 2204 dm_table_event_callback(t, event_callback, md); 2205 2206 if (dm_table_request_based(t)) { 2207 /* 2208 * Leverage the fact that request-based DM targets are 2209 * immutable singletons - used to optimize dm_mq_queue_rq. 2210 */ 2211 md->immutable_target = dm_table_get_immutable_target(t); 2212 2213 /* 2214 * There is no need to reload with request-based dm because the 2215 * size of front_pad doesn't change. 2216 * 2217 * Note for future: If you are to reload bioset, prep-ed 2218 * requests in the queue may refer to bio from the old bioset, 2219 * so you must walk through the queue to unprep. 2220 */ 2221 if (!md->mempools) { 2222 md->mempools = t->mempools; 2223 t->mempools = NULL; 2224 } 2225 } else { 2226 /* 2227 * The md may already have mempools that need changing. 2228 * If so, reload bioset because front_pad may have changed 2229 * because a different table was loaded. 2230 */ 2231 dm_free_md_mempools(md->mempools); 2232 md->mempools = t->mempools; 2233 t->mempools = NULL; 2234 } 2235 2236 ret = dm_table_set_restrictions(t, md->queue, limits); 2237 if (ret) { 2238 old_map = ERR_PTR(ret); 2239 goto out; 2240 } 2241 2242 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2243 rcu_assign_pointer(md->map, (void *)t); 2244 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2245 2246 if (old_map) 2247 dm_sync_table(md); 2248 out: 2249 return old_map; 2250 } 2251 2252 /* 2253 * Returns unbound table for the caller to free. 2254 */ 2255 static struct dm_table *__unbind(struct mapped_device *md) 2256 { 2257 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2258 2259 if (!map) 2260 return NULL; 2261 2262 dm_table_event_callback(map, NULL, NULL); 2263 RCU_INIT_POINTER(md->map, NULL); 2264 dm_sync_table(md); 2265 2266 return map; 2267 } 2268 2269 /* 2270 * Constructor for a new device. 2271 */ 2272 int dm_create(int minor, struct mapped_device **result) 2273 { 2274 struct mapped_device *md; 2275 2276 md = alloc_dev(minor); 2277 if (!md) 2278 return -ENXIO; 2279 2280 dm_ima_reset_data(md); 2281 2282 *result = md; 2283 return 0; 2284 } 2285 2286 /* 2287 * Functions to manage md->type. 2288 * All are required to hold md->type_lock. 2289 */ 2290 void dm_lock_md_type(struct mapped_device *md) 2291 { 2292 mutex_lock(&md->type_lock); 2293 } 2294 2295 void dm_unlock_md_type(struct mapped_device *md) 2296 { 2297 mutex_unlock(&md->type_lock); 2298 } 2299 2300 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2301 { 2302 BUG_ON(!mutex_is_locked(&md->type_lock)); 2303 md->type = type; 2304 } 2305 2306 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2307 { 2308 return md->type; 2309 } 2310 2311 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2312 { 2313 return md->immutable_target_type; 2314 } 2315 2316 /* 2317 * Setup the DM device's queue based on md's type 2318 */ 2319 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2320 { 2321 enum dm_queue_mode type = dm_table_get_type(t); 2322 struct queue_limits limits; 2323 struct table_device *td; 2324 int r; 2325 2326 switch (type) { 2327 case DM_TYPE_REQUEST_BASED: 2328 md->disk->fops = &dm_rq_blk_dops; 2329 r = dm_mq_init_request_queue(md, t); 2330 if (r) { 2331 DMERR("Cannot initialize queue for request-based dm mapped device"); 2332 return r; 2333 } 2334 break; 2335 case DM_TYPE_BIO_BASED: 2336 case DM_TYPE_DAX_BIO_BASED: 2337 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); 2338 break; 2339 case DM_TYPE_NONE: 2340 WARN_ON_ONCE(true); 2341 break; 2342 } 2343 2344 r = dm_calculate_queue_limits(t, &limits); 2345 if (r) { 2346 DMERR("Cannot calculate initial queue limits"); 2347 return r; 2348 } 2349 r = dm_table_set_restrictions(t, md->queue, &limits); 2350 if (r) 2351 return r; 2352 2353 /* 2354 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2355 * with open_table_device() and close_table_device(). 2356 */ 2357 mutex_lock(&md->table_devices_lock); 2358 r = add_disk(md->disk); 2359 mutex_unlock(&md->table_devices_lock); 2360 if (r) 2361 return r; 2362 2363 /* 2364 * Register the holder relationship for devices added before the disk 2365 * was live. 2366 */ 2367 list_for_each_entry(td, &md->table_devices, list) { 2368 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2369 if (r) 2370 goto out_undo_holders; 2371 } 2372 2373 r = dm_sysfs_init(md); 2374 if (r) 2375 goto out_undo_holders; 2376 2377 md->type = type; 2378 return 0; 2379 2380 out_undo_holders: 2381 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2382 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2383 mutex_lock(&md->table_devices_lock); 2384 del_gendisk(md->disk); 2385 mutex_unlock(&md->table_devices_lock); 2386 return r; 2387 } 2388 2389 struct mapped_device *dm_get_md(dev_t dev) 2390 { 2391 struct mapped_device *md; 2392 unsigned int minor = MINOR(dev); 2393 2394 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2395 return NULL; 2396 2397 spin_lock(&_minor_lock); 2398 2399 md = idr_find(&_minor_idr, minor); 2400 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2401 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2402 md = NULL; 2403 goto out; 2404 } 2405 dm_get(md); 2406 out: 2407 spin_unlock(&_minor_lock); 2408 2409 return md; 2410 } 2411 EXPORT_SYMBOL_GPL(dm_get_md); 2412 2413 void *dm_get_mdptr(struct mapped_device *md) 2414 { 2415 return md->interface_ptr; 2416 } 2417 2418 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2419 { 2420 md->interface_ptr = ptr; 2421 } 2422 2423 void dm_get(struct mapped_device *md) 2424 { 2425 atomic_inc(&md->holders); 2426 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2427 } 2428 2429 int dm_hold(struct mapped_device *md) 2430 { 2431 spin_lock(&_minor_lock); 2432 if (test_bit(DMF_FREEING, &md->flags)) { 2433 spin_unlock(&_minor_lock); 2434 return -EBUSY; 2435 } 2436 dm_get(md); 2437 spin_unlock(&_minor_lock); 2438 return 0; 2439 } 2440 EXPORT_SYMBOL_GPL(dm_hold); 2441 2442 const char *dm_device_name(struct mapped_device *md) 2443 { 2444 return md->name; 2445 } 2446 EXPORT_SYMBOL_GPL(dm_device_name); 2447 2448 static void __dm_destroy(struct mapped_device *md, bool wait) 2449 { 2450 struct dm_table *map; 2451 int srcu_idx; 2452 2453 might_sleep(); 2454 2455 spin_lock(&_minor_lock); 2456 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2457 set_bit(DMF_FREEING, &md->flags); 2458 spin_unlock(&_minor_lock); 2459 2460 blk_mark_disk_dead(md->disk); 2461 2462 /* 2463 * Take suspend_lock so that presuspend and postsuspend methods 2464 * do not race with internal suspend. 2465 */ 2466 mutex_lock(&md->suspend_lock); 2467 map = dm_get_live_table(md, &srcu_idx); 2468 if (!dm_suspended_md(md)) { 2469 dm_table_presuspend_targets(map); 2470 set_bit(DMF_SUSPENDED, &md->flags); 2471 set_bit(DMF_POST_SUSPENDING, &md->flags); 2472 dm_table_postsuspend_targets(map); 2473 } 2474 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2475 dm_put_live_table(md, srcu_idx); 2476 mutex_unlock(&md->suspend_lock); 2477 2478 /* 2479 * Rare, but there may be I/O requests still going to complete, 2480 * for example. Wait for all references to disappear. 2481 * No one should increment the reference count of the mapped_device, 2482 * after the mapped_device state becomes DMF_FREEING. 2483 */ 2484 if (wait) 2485 while (atomic_read(&md->holders)) 2486 fsleep(1000); 2487 else if (atomic_read(&md->holders)) 2488 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2489 dm_device_name(md), atomic_read(&md->holders)); 2490 2491 dm_table_destroy(__unbind(md)); 2492 free_dev(md); 2493 } 2494 2495 void dm_destroy(struct mapped_device *md) 2496 { 2497 __dm_destroy(md, true); 2498 } 2499 2500 void dm_destroy_immediate(struct mapped_device *md) 2501 { 2502 __dm_destroy(md, false); 2503 } 2504 2505 void dm_put(struct mapped_device *md) 2506 { 2507 atomic_dec(&md->holders); 2508 } 2509 EXPORT_SYMBOL_GPL(dm_put); 2510 2511 static bool dm_in_flight_bios(struct mapped_device *md) 2512 { 2513 int cpu; 2514 unsigned long sum = 0; 2515 2516 for_each_possible_cpu(cpu) 2517 sum += *per_cpu_ptr(md->pending_io, cpu); 2518 2519 return sum != 0; 2520 } 2521 2522 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2523 { 2524 int r = 0; 2525 DEFINE_WAIT(wait); 2526 2527 while (true) { 2528 prepare_to_wait(&md->wait, &wait, task_state); 2529 2530 if (!dm_in_flight_bios(md)) 2531 break; 2532 2533 if (signal_pending_state(task_state, current)) { 2534 r = -EINTR; 2535 break; 2536 } 2537 2538 io_schedule(); 2539 } 2540 finish_wait(&md->wait, &wait); 2541 2542 smp_rmb(); 2543 2544 return r; 2545 } 2546 2547 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2548 { 2549 int r = 0; 2550 2551 if (!queue_is_mq(md->queue)) 2552 return dm_wait_for_bios_completion(md, task_state); 2553 2554 while (true) { 2555 if (!blk_mq_queue_inflight(md->queue)) 2556 break; 2557 2558 if (signal_pending_state(task_state, current)) { 2559 r = -EINTR; 2560 break; 2561 } 2562 2563 fsleep(5000); 2564 } 2565 2566 return r; 2567 } 2568 2569 /* 2570 * Process the deferred bios 2571 */ 2572 static void dm_wq_work(struct work_struct *work) 2573 { 2574 struct mapped_device *md = container_of(work, struct mapped_device, work); 2575 struct bio *bio; 2576 2577 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2578 spin_lock_irq(&md->deferred_lock); 2579 bio = bio_list_pop(&md->deferred); 2580 spin_unlock_irq(&md->deferred_lock); 2581 2582 if (!bio) 2583 break; 2584 2585 submit_bio_noacct(bio); 2586 cond_resched(); 2587 } 2588 } 2589 2590 static void dm_queue_flush(struct mapped_device *md) 2591 { 2592 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2593 smp_mb__after_atomic(); 2594 queue_work(md->wq, &md->work); 2595 } 2596 2597 /* 2598 * Swap in a new table, returning the old one for the caller to destroy. 2599 */ 2600 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2601 { 2602 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2603 struct queue_limits limits; 2604 int r; 2605 2606 mutex_lock(&md->suspend_lock); 2607 2608 /* device must be suspended */ 2609 if (!dm_suspended_md(md)) 2610 goto out; 2611 2612 /* 2613 * If the new table has no data devices, retain the existing limits. 2614 * This helps multipath with queue_if_no_path if all paths disappear, 2615 * then new I/O is queued based on these limits, and then some paths 2616 * reappear. 2617 */ 2618 if (dm_table_has_no_data_devices(table)) { 2619 live_map = dm_get_live_table_fast(md); 2620 if (live_map) 2621 limits = md->queue->limits; 2622 dm_put_live_table_fast(md); 2623 } 2624 2625 if (!live_map) { 2626 r = dm_calculate_queue_limits(table, &limits); 2627 if (r) { 2628 map = ERR_PTR(r); 2629 goto out; 2630 } 2631 } 2632 2633 map = __bind(md, table, &limits); 2634 dm_issue_global_event(); 2635 2636 out: 2637 mutex_unlock(&md->suspend_lock); 2638 return map; 2639 } 2640 2641 /* 2642 * Functions to lock and unlock any filesystem running on the 2643 * device. 2644 */ 2645 static int lock_fs(struct mapped_device *md) 2646 { 2647 int r; 2648 2649 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2650 2651 r = freeze_bdev(md->disk->part0); 2652 if (!r) 2653 set_bit(DMF_FROZEN, &md->flags); 2654 return r; 2655 } 2656 2657 static void unlock_fs(struct mapped_device *md) 2658 { 2659 if (!test_bit(DMF_FROZEN, &md->flags)) 2660 return; 2661 thaw_bdev(md->disk->part0); 2662 clear_bit(DMF_FROZEN, &md->flags); 2663 } 2664 2665 /* 2666 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2667 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2668 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2669 * 2670 * If __dm_suspend returns 0, the device is completely quiescent 2671 * now. There is no request-processing activity. All new requests 2672 * are being added to md->deferred list. 2673 */ 2674 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2675 unsigned int suspend_flags, unsigned int task_state, 2676 int dmf_suspended_flag) 2677 { 2678 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2679 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2680 int r; 2681 2682 lockdep_assert_held(&md->suspend_lock); 2683 2684 /* 2685 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2686 * This flag is cleared before dm_suspend returns. 2687 */ 2688 if (noflush) 2689 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2690 else 2691 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2692 2693 /* 2694 * This gets reverted if there's an error later and the targets 2695 * provide the .presuspend_undo hook. 2696 */ 2697 dm_table_presuspend_targets(map); 2698 2699 /* 2700 * Flush I/O to the device. 2701 * Any I/O submitted after lock_fs() may not be flushed. 2702 * noflush takes precedence over do_lockfs. 2703 * (lock_fs() flushes I/Os and waits for them to complete.) 2704 */ 2705 if (!noflush && do_lockfs) { 2706 r = lock_fs(md); 2707 if (r) { 2708 dm_table_presuspend_undo_targets(map); 2709 return r; 2710 } 2711 } 2712 2713 /* 2714 * Here we must make sure that no processes are submitting requests 2715 * to target drivers i.e. no one may be executing 2716 * dm_split_and_process_bio from dm_submit_bio. 2717 * 2718 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2719 * we take the write lock. To prevent any process from reentering 2720 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2721 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2722 * flush_workqueue(md->wq). 2723 */ 2724 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2725 if (map) 2726 synchronize_srcu(&md->io_barrier); 2727 2728 /* 2729 * Stop md->queue before flushing md->wq in case request-based 2730 * dm defers requests to md->wq from md->queue. 2731 */ 2732 if (dm_request_based(md)) 2733 dm_stop_queue(md->queue); 2734 2735 flush_workqueue(md->wq); 2736 2737 /* 2738 * At this point no more requests are entering target request routines. 2739 * We call dm_wait_for_completion to wait for all existing requests 2740 * to finish. 2741 */ 2742 r = dm_wait_for_completion(md, task_state); 2743 if (!r) 2744 set_bit(dmf_suspended_flag, &md->flags); 2745 2746 if (noflush) 2747 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2748 if (map) 2749 synchronize_srcu(&md->io_barrier); 2750 2751 /* were we interrupted ? */ 2752 if (r < 0) { 2753 dm_queue_flush(md); 2754 2755 if (dm_request_based(md)) 2756 dm_start_queue(md->queue); 2757 2758 unlock_fs(md); 2759 dm_table_presuspend_undo_targets(map); 2760 /* pushback list is already flushed, so skip flush */ 2761 } 2762 2763 return r; 2764 } 2765 2766 /* 2767 * We need to be able to change a mapping table under a mounted 2768 * filesystem. For example we might want to move some data in 2769 * the background. Before the table can be swapped with 2770 * dm_bind_table, dm_suspend must be called to flush any in 2771 * flight bios and ensure that any further io gets deferred. 2772 */ 2773 /* 2774 * Suspend mechanism in request-based dm. 2775 * 2776 * 1. Flush all I/Os by lock_fs() if needed. 2777 * 2. Stop dispatching any I/O by stopping the request_queue. 2778 * 3. Wait for all in-flight I/Os to be completed or requeued. 2779 * 2780 * To abort suspend, start the request_queue. 2781 */ 2782 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2783 { 2784 struct dm_table *map = NULL; 2785 int r = 0; 2786 2787 retry: 2788 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2789 2790 if (dm_suspended_md(md)) { 2791 r = -EINVAL; 2792 goto out_unlock; 2793 } 2794 2795 if (dm_suspended_internally_md(md)) { 2796 /* already internally suspended, wait for internal resume */ 2797 mutex_unlock(&md->suspend_lock); 2798 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2799 if (r) 2800 return r; 2801 goto retry; 2802 } 2803 2804 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2805 if (!map) { 2806 /* avoid deadlock with fs/namespace.c:do_mount() */ 2807 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2808 } 2809 2810 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2811 if (r) 2812 goto out_unlock; 2813 2814 set_bit(DMF_POST_SUSPENDING, &md->flags); 2815 dm_table_postsuspend_targets(map); 2816 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2817 2818 out_unlock: 2819 mutex_unlock(&md->suspend_lock); 2820 return r; 2821 } 2822 2823 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2824 { 2825 if (map) { 2826 int r = dm_table_resume_targets(map); 2827 2828 if (r) 2829 return r; 2830 } 2831 2832 dm_queue_flush(md); 2833 2834 /* 2835 * Flushing deferred I/Os must be done after targets are resumed 2836 * so that mapping of targets can work correctly. 2837 * Request-based dm is queueing the deferred I/Os in its request_queue. 2838 */ 2839 if (dm_request_based(md)) 2840 dm_start_queue(md->queue); 2841 2842 unlock_fs(md); 2843 2844 return 0; 2845 } 2846 2847 int dm_resume(struct mapped_device *md) 2848 { 2849 int r; 2850 struct dm_table *map = NULL; 2851 2852 retry: 2853 r = -EINVAL; 2854 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2855 2856 if (!dm_suspended_md(md)) 2857 goto out; 2858 2859 if (dm_suspended_internally_md(md)) { 2860 /* already internally suspended, wait for internal resume */ 2861 mutex_unlock(&md->suspend_lock); 2862 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2863 if (r) 2864 return r; 2865 goto retry; 2866 } 2867 2868 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2869 if (!map || !dm_table_get_size(map)) 2870 goto out; 2871 2872 r = __dm_resume(md, map); 2873 if (r) 2874 goto out; 2875 2876 clear_bit(DMF_SUSPENDED, &md->flags); 2877 out: 2878 mutex_unlock(&md->suspend_lock); 2879 2880 return r; 2881 } 2882 2883 /* 2884 * Internal suspend/resume works like userspace-driven suspend. It waits 2885 * until all bios finish and prevents issuing new bios to the target drivers. 2886 * It may be used only from the kernel. 2887 */ 2888 2889 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2890 { 2891 struct dm_table *map = NULL; 2892 2893 lockdep_assert_held(&md->suspend_lock); 2894 2895 if (md->internal_suspend_count++) 2896 return; /* nested internal suspend */ 2897 2898 if (dm_suspended_md(md)) { 2899 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2900 return; /* nest suspend */ 2901 } 2902 2903 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2904 2905 /* 2906 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2907 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2908 * would require changing .presuspend to return an error -- avoid this 2909 * until there is a need for more elaborate variants of internal suspend. 2910 */ 2911 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2912 DMF_SUSPENDED_INTERNALLY); 2913 2914 set_bit(DMF_POST_SUSPENDING, &md->flags); 2915 dm_table_postsuspend_targets(map); 2916 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2917 } 2918 2919 static void __dm_internal_resume(struct mapped_device *md) 2920 { 2921 BUG_ON(!md->internal_suspend_count); 2922 2923 if (--md->internal_suspend_count) 2924 return; /* resume from nested internal suspend */ 2925 2926 if (dm_suspended_md(md)) 2927 goto done; /* resume from nested suspend */ 2928 2929 /* 2930 * NOTE: existing callers don't need to call dm_table_resume_targets 2931 * (which may fail -- so best to avoid it for now by passing NULL map) 2932 */ 2933 (void) __dm_resume(md, NULL); 2934 2935 done: 2936 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2937 smp_mb__after_atomic(); 2938 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2939 } 2940 2941 void dm_internal_suspend_noflush(struct mapped_device *md) 2942 { 2943 mutex_lock(&md->suspend_lock); 2944 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2945 mutex_unlock(&md->suspend_lock); 2946 } 2947 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2948 2949 void dm_internal_resume(struct mapped_device *md) 2950 { 2951 mutex_lock(&md->suspend_lock); 2952 __dm_internal_resume(md); 2953 mutex_unlock(&md->suspend_lock); 2954 } 2955 EXPORT_SYMBOL_GPL(dm_internal_resume); 2956 2957 /* 2958 * Fast variants of internal suspend/resume hold md->suspend_lock, 2959 * which prevents interaction with userspace-driven suspend. 2960 */ 2961 2962 void dm_internal_suspend_fast(struct mapped_device *md) 2963 { 2964 mutex_lock(&md->suspend_lock); 2965 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2966 return; 2967 2968 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2969 synchronize_srcu(&md->io_barrier); 2970 flush_workqueue(md->wq); 2971 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2972 } 2973 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2974 2975 void dm_internal_resume_fast(struct mapped_device *md) 2976 { 2977 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2978 goto done; 2979 2980 dm_queue_flush(md); 2981 2982 done: 2983 mutex_unlock(&md->suspend_lock); 2984 } 2985 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2986 2987 /* 2988 *--------------------------------------------------------------- 2989 * Event notification. 2990 *--------------------------------------------------------------- 2991 */ 2992 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2993 unsigned int cookie, bool need_resize_uevent) 2994 { 2995 int r; 2996 unsigned int noio_flag; 2997 char udev_cookie[DM_COOKIE_LENGTH]; 2998 char *envp[3] = { NULL, NULL, NULL }; 2999 char **envpp = envp; 3000 if (cookie) { 3001 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3002 DM_COOKIE_ENV_VAR_NAME, cookie); 3003 *envpp++ = udev_cookie; 3004 } 3005 if (need_resize_uevent) { 3006 *envpp++ = "RESIZE=1"; 3007 } 3008 3009 noio_flag = memalloc_noio_save(); 3010 3011 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3012 3013 memalloc_noio_restore(noio_flag); 3014 3015 return r; 3016 } 3017 3018 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3019 { 3020 return atomic_add_return(1, &md->uevent_seq); 3021 } 3022 3023 uint32_t dm_get_event_nr(struct mapped_device *md) 3024 { 3025 return atomic_read(&md->event_nr); 3026 } 3027 3028 int dm_wait_event(struct mapped_device *md, int event_nr) 3029 { 3030 return wait_event_interruptible(md->eventq, 3031 (event_nr != atomic_read(&md->event_nr))); 3032 } 3033 3034 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3035 { 3036 unsigned long flags; 3037 3038 spin_lock_irqsave(&md->uevent_lock, flags); 3039 list_add(elist, &md->uevent_list); 3040 spin_unlock_irqrestore(&md->uevent_lock, flags); 3041 } 3042 3043 /* 3044 * The gendisk is only valid as long as you have a reference 3045 * count on 'md'. 3046 */ 3047 struct gendisk *dm_disk(struct mapped_device *md) 3048 { 3049 return md->disk; 3050 } 3051 EXPORT_SYMBOL_GPL(dm_disk); 3052 3053 struct kobject *dm_kobject(struct mapped_device *md) 3054 { 3055 return &md->kobj_holder.kobj; 3056 } 3057 3058 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3059 { 3060 struct mapped_device *md; 3061 3062 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3063 3064 spin_lock(&_minor_lock); 3065 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3066 md = NULL; 3067 goto out; 3068 } 3069 dm_get(md); 3070 out: 3071 spin_unlock(&_minor_lock); 3072 3073 return md; 3074 } 3075 3076 int dm_suspended_md(struct mapped_device *md) 3077 { 3078 return test_bit(DMF_SUSPENDED, &md->flags); 3079 } 3080 3081 static int dm_post_suspending_md(struct mapped_device *md) 3082 { 3083 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3084 } 3085 3086 int dm_suspended_internally_md(struct mapped_device *md) 3087 { 3088 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3089 } 3090 3091 int dm_test_deferred_remove_flag(struct mapped_device *md) 3092 { 3093 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3094 } 3095 3096 int dm_suspended(struct dm_target *ti) 3097 { 3098 return dm_suspended_md(ti->table->md); 3099 } 3100 EXPORT_SYMBOL_GPL(dm_suspended); 3101 3102 int dm_post_suspending(struct dm_target *ti) 3103 { 3104 return dm_post_suspending_md(ti->table->md); 3105 } 3106 EXPORT_SYMBOL_GPL(dm_post_suspending); 3107 3108 int dm_noflush_suspending(struct dm_target *ti) 3109 { 3110 return __noflush_suspending(ti->table->md); 3111 } 3112 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3113 3114 void dm_free_md_mempools(struct dm_md_mempools *pools) 3115 { 3116 if (!pools) 3117 return; 3118 3119 bioset_exit(&pools->bs); 3120 bioset_exit(&pools->io_bs); 3121 3122 kfree(pools); 3123 } 3124 3125 struct dm_pr { 3126 u64 old_key; 3127 u64 new_key; 3128 u32 flags; 3129 bool abort; 3130 bool fail_early; 3131 int ret; 3132 enum pr_type type; 3133 struct pr_keys *read_keys; 3134 struct pr_held_reservation *rsv; 3135 }; 3136 3137 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3138 struct dm_pr *pr) 3139 { 3140 struct mapped_device *md = bdev->bd_disk->private_data; 3141 struct dm_table *table; 3142 struct dm_target *ti; 3143 int ret = -ENOTTY, srcu_idx; 3144 3145 table = dm_get_live_table(md, &srcu_idx); 3146 if (!table || !dm_table_get_size(table)) 3147 goto out; 3148 3149 /* We only support devices that have a single target */ 3150 if (table->num_targets != 1) 3151 goto out; 3152 ti = dm_table_get_target(table, 0); 3153 3154 if (dm_suspended_md(md)) { 3155 ret = -EAGAIN; 3156 goto out; 3157 } 3158 3159 ret = -EINVAL; 3160 if (!ti->type->iterate_devices) 3161 goto out; 3162 3163 ti->type->iterate_devices(ti, fn, pr); 3164 ret = 0; 3165 out: 3166 dm_put_live_table(md, srcu_idx); 3167 return ret; 3168 } 3169 3170 /* 3171 * For register / unregister we need to manually call out to every path. 3172 */ 3173 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3174 sector_t start, sector_t len, void *data) 3175 { 3176 struct dm_pr *pr = data; 3177 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3178 int ret; 3179 3180 if (!ops || !ops->pr_register) { 3181 pr->ret = -EOPNOTSUPP; 3182 return -1; 3183 } 3184 3185 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3186 if (!ret) 3187 return 0; 3188 3189 if (!pr->ret) 3190 pr->ret = ret; 3191 3192 if (pr->fail_early) 3193 return -1; 3194 3195 return 0; 3196 } 3197 3198 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3199 u32 flags) 3200 { 3201 struct dm_pr pr = { 3202 .old_key = old_key, 3203 .new_key = new_key, 3204 .flags = flags, 3205 .fail_early = true, 3206 .ret = 0, 3207 }; 3208 int ret; 3209 3210 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3211 if (ret) { 3212 /* Didn't even get to register a path */ 3213 return ret; 3214 } 3215 3216 if (!pr.ret) 3217 return 0; 3218 ret = pr.ret; 3219 3220 if (!new_key) 3221 return ret; 3222 3223 /* unregister all paths if we failed to register any path */ 3224 pr.old_key = new_key; 3225 pr.new_key = 0; 3226 pr.flags = 0; 3227 pr.fail_early = false; 3228 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3229 return ret; 3230 } 3231 3232 3233 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3234 sector_t start, sector_t len, void *data) 3235 { 3236 struct dm_pr *pr = data; 3237 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3238 3239 if (!ops || !ops->pr_reserve) { 3240 pr->ret = -EOPNOTSUPP; 3241 return -1; 3242 } 3243 3244 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3245 if (!pr->ret) 3246 return -1; 3247 3248 return 0; 3249 } 3250 3251 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3252 u32 flags) 3253 { 3254 struct dm_pr pr = { 3255 .old_key = key, 3256 .flags = flags, 3257 .type = type, 3258 .fail_early = false, 3259 .ret = 0, 3260 }; 3261 int ret; 3262 3263 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3264 if (ret) 3265 return ret; 3266 3267 return pr.ret; 3268 } 3269 3270 /* 3271 * If there is a non-All Registrants type of reservation, the release must be 3272 * sent down the holding path. For the cases where there is no reservation or 3273 * the path is not the holder the device will also return success, so we must 3274 * try each path to make sure we got the correct path. 3275 */ 3276 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3277 sector_t start, sector_t len, void *data) 3278 { 3279 struct dm_pr *pr = data; 3280 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3281 3282 if (!ops || !ops->pr_release) { 3283 pr->ret = -EOPNOTSUPP; 3284 return -1; 3285 } 3286 3287 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3288 if (pr->ret) 3289 return -1; 3290 3291 return 0; 3292 } 3293 3294 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3295 { 3296 struct dm_pr pr = { 3297 .old_key = key, 3298 .type = type, 3299 .fail_early = false, 3300 }; 3301 int ret; 3302 3303 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3304 if (ret) 3305 return ret; 3306 3307 return pr.ret; 3308 } 3309 3310 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3311 sector_t start, sector_t len, void *data) 3312 { 3313 struct dm_pr *pr = data; 3314 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3315 3316 if (!ops || !ops->pr_preempt) { 3317 pr->ret = -EOPNOTSUPP; 3318 return -1; 3319 } 3320 3321 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3322 pr->abort); 3323 if (!pr->ret) 3324 return -1; 3325 3326 return 0; 3327 } 3328 3329 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3330 enum pr_type type, bool abort) 3331 { 3332 struct dm_pr pr = { 3333 .new_key = new_key, 3334 .old_key = old_key, 3335 .type = type, 3336 .fail_early = false, 3337 }; 3338 int ret; 3339 3340 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3341 if (ret) 3342 return ret; 3343 3344 return pr.ret; 3345 } 3346 3347 static int dm_pr_clear(struct block_device *bdev, u64 key) 3348 { 3349 struct mapped_device *md = bdev->bd_disk->private_data; 3350 const struct pr_ops *ops; 3351 int r, srcu_idx; 3352 3353 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3354 if (r < 0) 3355 goto out; 3356 3357 ops = bdev->bd_disk->fops->pr_ops; 3358 if (ops && ops->pr_clear) 3359 r = ops->pr_clear(bdev, key); 3360 else 3361 r = -EOPNOTSUPP; 3362 out: 3363 dm_unprepare_ioctl(md, srcu_idx); 3364 return r; 3365 } 3366 3367 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3368 sector_t start, sector_t len, void *data) 3369 { 3370 struct dm_pr *pr = data; 3371 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3372 3373 if (!ops || !ops->pr_read_keys) { 3374 pr->ret = -EOPNOTSUPP; 3375 return -1; 3376 } 3377 3378 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3379 if (!pr->ret) 3380 return -1; 3381 3382 return 0; 3383 } 3384 3385 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3386 { 3387 struct dm_pr pr = { 3388 .read_keys = keys, 3389 }; 3390 int ret; 3391 3392 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3393 if (ret) 3394 return ret; 3395 3396 return pr.ret; 3397 } 3398 3399 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3400 sector_t start, sector_t len, void *data) 3401 { 3402 struct dm_pr *pr = data; 3403 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3404 3405 if (!ops || !ops->pr_read_reservation) { 3406 pr->ret = -EOPNOTSUPP; 3407 return -1; 3408 } 3409 3410 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3411 if (!pr->ret) 3412 return -1; 3413 3414 return 0; 3415 } 3416 3417 static int dm_pr_read_reservation(struct block_device *bdev, 3418 struct pr_held_reservation *rsv) 3419 { 3420 struct dm_pr pr = { 3421 .rsv = rsv, 3422 }; 3423 int ret; 3424 3425 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3426 if (ret) 3427 return ret; 3428 3429 return pr.ret; 3430 } 3431 3432 static const struct pr_ops dm_pr_ops = { 3433 .pr_register = dm_pr_register, 3434 .pr_reserve = dm_pr_reserve, 3435 .pr_release = dm_pr_release, 3436 .pr_preempt = dm_pr_preempt, 3437 .pr_clear = dm_pr_clear, 3438 .pr_read_keys = dm_pr_read_keys, 3439 .pr_read_reservation = dm_pr_read_reservation, 3440 }; 3441 3442 static const struct block_device_operations dm_blk_dops = { 3443 .submit_bio = dm_submit_bio, 3444 .poll_bio = dm_poll_bio, 3445 .open = dm_blk_open, 3446 .release = dm_blk_close, 3447 .ioctl = dm_blk_ioctl, 3448 .getgeo = dm_blk_getgeo, 3449 .report_zones = dm_blk_report_zones, 3450 .pr_ops = &dm_pr_ops, 3451 .owner = THIS_MODULE 3452 }; 3453 3454 static const struct block_device_operations dm_rq_blk_dops = { 3455 .open = dm_blk_open, 3456 .release = dm_blk_close, 3457 .ioctl = dm_blk_ioctl, 3458 .getgeo = dm_blk_getgeo, 3459 .pr_ops = &dm_pr_ops, 3460 .owner = THIS_MODULE 3461 }; 3462 3463 static const struct dax_operations dm_dax_ops = { 3464 .direct_access = dm_dax_direct_access, 3465 .zero_page_range = dm_dax_zero_page_range, 3466 .recovery_write = dm_dax_recovery_write, 3467 }; 3468 3469 /* 3470 * module hooks 3471 */ 3472 module_init(dm_init); 3473 module_exit(dm_exit); 3474 3475 module_param(major, uint, 0); 3476 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3477 3478 module_param(reserved_bio_based_ios, uint, 0644); 3479 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3480 3481 module_param(dm_numa_node, int, 0644); 3482 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3483 3484 module_param(swap_bios, int, 0644); 3485 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3486 3487 MODULE_DESCRIPTION(DM_NAME " driver"); 3488 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3489 MODULE_LICENSE("GPL"); 3490