xref: /openbmc/linux/drivers/md/dm.c (revision 0be3ff0c)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 /*
75  * One of these is allocated (on-stack) per original bio.
76  */
77 struct clone_info {
78 	struct dm_table *map;
79 	struct bio *bio;
80 	struct dm_io *io;
81 	sector_t sector;
82 	unsigned sector_count;
83 	bool submit_as_polled;
84 };
85 
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
89 
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
91 {
92 	return container_of(clone, struct dm_target_io, clone);
93 }
94 
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
96 {
97 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
98 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
100 }
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
102 
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
104 {
105 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 	if (io->magic == DM_IO_MAGIC)
107 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 	BUG_ON(io->magic != DM_TIO_MAGIC);
109 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
110 }
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
112 
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
114 {
115 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
116 }
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
118 
119 #define MINOR_ALLOCED ((void *)-1)
120 
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
123 
124 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
127 {
128 	int latch = READ_ONCE(swap_bios);
129 	if (unlikely(latch <= 0))
130 		latch = DEFAULT_SWAP_BIOS;
131 	return latch;
132 }
133 
134 /*
135  * For mempools pre-allocation at the table loading time.
136  */
137 struct dm_md_mempools {
138 	struct bio_set bs;
139 	struct bio_set io_bs;
140 };
141 
142 struct table_device {
143 	struct list_head list;
144 	refcount_t count;
145 	struct dm_dev dm_dev;
146 };
147 
148 /*
149  * Bio-based DM's mempools' reserved IOs set by the user.
150  */
151 #define RESERVED_BIO_BASED_IOS		16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
153 
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
155 {
156 	int param = READ_ONCE(*module_param);
157 	int modified_param = 0;
158 	bool modified = true;
159 
160 	if (param < min)
161 		modified_param = min;
162 	else if (param > max)
163 		modified_param = max;
164 	else
165 		modified = false;
166 
167 	if (modified) {
168 		(void)cmpxchg(module_param, param, modified_param);
169 		param = modified_param;
170 	}
171 
172 	return param;
173 }
174 
175 unsigned __dm_get_module_param(unsigned *module_param,
176 			       unsigned def, unsigned max)
177 {
178 	unsigned param = READ_ONCE(*module_param);
179 	unsigned modified_param = 0;
180 
181 	if (!param)
182 		modified_param = def;
183 	else if (param > max)
184 		modified_param = max;
185 
186 	if (modified_param) {
187 		(void)cmpxchg(module_param, param, modified_param);
188 		param = modified_param;
189 	}
190 
191 	return param;
192 }
193 
194 unsigned dm_get_reserved_bio_based_ios(void)
195 {
196 	return __dm_get_module_param(&reserved_bio_based_ios,
197 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
198 }
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
200 
201 static unsigned dm_get_numa_node(void)
202 {
203 	return __dm_get_module_param_int(&dm_numa_node,
204 					 DM_NUMA_NODE, num_online_nodes() - 1);
205 }
206 
207 static int __init local_init(void)
208 {
209 	int r;
210 
211 	r = dm_uevent_init();
212 	if (r)
213 		return r;
214 
215 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 	if (!deferred_remove_workqueue) {
217 		r = -ENOMEM;
218 		goto out_uevent_exit;
219 	}
220 
221 	_major = major;
222 	r = register_blkdev(_major, _name);
223 	if (r < 0)
224 		goto out_free_workqueue;
225 
226 	if (!_major)
227 		_major = r;
228 
229 	return 0;
230 
231 out_free_workqueue:
232 	destroy_workqueue(deferred_remove_workqueue);
233 out_uevent_exit:
234 	dm_uevent_exit();
235 
236 	return r;
237 }
238 
239 static void local_exit(void)
240 {
241 	flush_scheduled_work();
242 	destroy_workqueue(deferred_remove_workqueue);
243 
244 	unregister_blkdev(_major, _name);
245 	dm_uevent_exit();
246 
247 	_major = 0;
248 
249 	DMINFO("cleaned up");
250 }
251 
252 static int (*_inits[])(void) __initdata = {
253 	local_init,
254 	dm_target_init,
255 	dm_linear_init,
256 	dm_stripe_init,
257 	dm_io_init,
258 	dm_kcopyd_init,
259 	dm_interface_init,
260 	dm_statistics_init,
261 };
262 
263 static void (*_exits[])(void) = {
264 	local_exit,
265 	dm_target_exit,
266 	dm_linear_exit,
267 	dm_stripe_exit,
268 	dm_io_exit,
269 	dm_kcopyd_exit,
270 	dm_interface_exit,
271 	dm_statistics_exit,
272 };
273 
274 static int __init dm_init(void)
275 {
276 	const int count = ARRAY_SIZE(_inits);
277 	int r, i;
278 
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
282 #endif
283 
284 	for (i = 0; i < count; i++) {
285 		r = _inits[i]();
286 		if (r)
287 			goto bad;
288 	}
289 
290 	return 0;
291 bad:
292 	while (i--)
293 		_exits[i]();
294 
295 	return r;
296 }
297 
298 static void __exit dm_exit(void)
299 {
300 	int i = ARRAY_SIZE(_exits);
301 
302 	while (i--)
303 		_exits[i]();
304 
305 	/*
306 	 * Should be empty by this point.
307 	 */
308 	idr_destroy(&_minor_idr);
309 }
310 
311 /*
312  * Block device functions
313  */
314 int dm_deleting_md(struct mapped_device *md)
315 {
316 	return test_bit(DMF_DELETING, &md->flags);
317 }
318 
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
320 {
321 	struct mapped_device *md;
322 
323 	spin_lock(&_minor_lock);
324 
325 	md = bdev->bd_disk->private_data;
326 	if (!md)
327 		goto out;
328 
329 	if (test_bit(DMF_FREEING, &md->flags) ||
330 	    dm_deleting_md(md)) {
331 		md = NULL;
332 		goto out;
333 	}
334 
335 	dm_get(md);
336 	atomic_inc(&md->open_count);
337 out:
338 	spin_unlock(&_minor_lock);
339 
340 	return md ? 0 : -ENXIO;
341 }
342 
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = disk->private_data;
350 	if (WARN_ON(!md))
351 		goto out;
352 
353 	if (atomic_dec_and_test(&md->open_count) &&
354 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 
357 	dm_put(md);
358 out:
359 	spin_unlock(&_minor_lock);
360 }
361 
362 int dm_open_count(struct mapped_device *md)
363 {
364 	return atomic_read(&md->open_count);
365 }
366 
367 /*
368  * Guarantees nothing is using the device before it's deleted.
369  */
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (dm_open_count(md)) {
377 		r = -EBUSY;
378 		if (mark_deferred)
379 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
381 		r = -EEXIST;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 int dm_cancel_deferred_remove(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (test_bit(DMF_DELETING, &md->flags))
397 		r = -EBUSY;
398 	else
399 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static void do_deferred_remove(struct work_struct *w)
407 {
408 	dm_deferred_remove();
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 			    struct block_device **bdev)
420 {
421 	struct dm_target *tgt;
422 	struct dm_table *map;
423 	int r;
424 
425 retry:
426 	r = -ENOTTY;
427 	map = dm_get_live_table(md, srcu_idx);
428 	if (!map || !dm_table_get_size(map))
429 		return r;
430 
431 	/* We only support devices that have a single target */
432 	if (dm_table_get_num_targets(map) != 1)
433 		return r;
434 
435 	tgt = dm_table_get_target(map, 0);
436 	if (!tgt->type->prepare_ioctl)
437 		return r;
438 
439 	if (dm_suspended_md(md))
440 		return -EAGAIN;
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev);
443 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 		dm_put_live_table(md, *srcu_idx);
445 		msleep(10);
446 		goto retry;
447 	}
448 
449 	return r;
450 }
451 
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
453 {
454 	dm_put_live_table(md, srcu_idx);
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r, srcu_idx;
462 
463 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
464 	if (r < 0)
465 		goto out;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMDEBUG_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	if (!bdev->bd_disk->fops->ioctl)
482 		r = -ENOTTY;
483 	else
484 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
485 out:
486 	dm_unprepare_ioctl(md, srcu_idx);
487 	return r;
488 }
489 
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
491 {
492 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
493 }
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
495 
496 static bool bio_is_flush_with_data(struct bio *bio)
497 {
498 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
499 }
500 
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
503 {
504 	bool is_flush_with_data;
505 	unsigned int bi_size;
506 
507 	/* If REQ_PREFLUSH set save any payload but do not account it */
508 	is_flush_with_data = bio_is_flush_with_data(bio);
509 	if (is_flush_with_data) {
510 		bi_size = bio->bi_iter.bi_size;
511 		bio->bi_iter.bi_size = 0;
512 	}
513 
514 	if (!end)
515 		bio_start_io_acct_time(bio, start_time);
516 	else
517 		bio_end_io_acct(bio, start_time);
518 
519 	if (unlikely(dm_stats_used(&md->stats)))
520 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 				    bio->bi_iter.bi_sector, bio_sectors(bio),
522 				    end, start_time, stats_aux);
523 
524 	/* Restore bio's payload so it does get accounted upon requeue */
525 	if (is_flush_with_data)
526 		bio->bi_iter.bi_size = bi_size;
527 }
528 
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
530 {
531 	dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
532 }
533 
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
535 {
536 	/* Must account IO to DM device in terms of orig_bio */
537 	struct bio *bio = io->orig_bio;
538 
539 	/*
540 	 * Ensure IO accounting is only ever started once.
541 	 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO.
542 	 */
543 	if (!clone ||
544 	    likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) {
545 		if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
546 			return;
547 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
548 	} else {
549 		unsigned long flags;
550 		if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 			return;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->lock, flags);
554 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 		spin_unlock_irqrestore(&io->lock, flags);
556 	}
557 
558 	__dm_start_io_acct(io, bio);
559 }
560 
561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
562 {
563 	dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
564 }
565 
566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
567 {
568 	struct dm_io *io;
569 	struct dm_target_io *tio;
570 	struct bio *clone;
571 
572 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
573 
574 	tio = clone_to_tio(clone);
575 	tio->flags = 0;
576 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	this_cpu_inc(*md->pending_io);
584 	io->orig_bio = NULL;
585 	io->md = md;
586 	io->map_task = current;
587 	spin_lock_init(&io->lock);
588 	io->start_time = jiffies;
589 	io->flags = 0;
590 
591 	dm_stats_record_start(&md->stats, &io->stats_aux);
592 
593 	return io;
594 }
595 
596 static void free_io(struct dm_io *io)
597 {
598 	bio_put(&io->tio.clone);
599 }
600 
601 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
602 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
603 {
604 	struct dm_target_io *tio;
605 	struct bio *clone;
606 
607 	if (!ci->io->tio.io) {
608 		/* the dm_target_io embedded in ci->io is available */
609 		tio = &ci->io->tio;
610 		/* alloc_io() already initialized embedded clone */
611 		clone = &tio->clone;
612 	} else {
613 		clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
614 					gfp_mask, &ci->io->md->bs);
615 		if (!clone)
616 			return NULL;
617 
618 		/* REQ_DM_POLL_LIST shouldn't be inherited */
619 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
620 
621 		tio = clone_to_tio(clone);
622 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
623 	}
624 
625 	tio->magic = DM_TIO_MAGIC;
626 	tio->io = ci->io;
627 	tio->ti = ti;
628 	tio->target_bio_nr = target_bio_nr;
629 	tio->len_ptr = len;
630 	tio->old_sector = 0;
631 
632 	if (len) {
633 		clone->bi_iter.bi_size = to_bytes(*len);
634 		if (bio_integrity(clone))
635 			bio_integrity_trim(clone);
636 	}
637 
638 	return clone;
639 }
640 
641 static void free_tio(struct bio *clone)
642 {
643 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
644 		return;
645 	bio_put(clone);
646 }
647 
648 /*
649  * Add the bio to the list of deferred io.
650  */
651 static void queue_io(struct mapped_device *md, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&md->deferred_lock, flags);
656 	bio_list_add(&md->deferred, bio);
657 	spin_unlock_irqrestore(&md->deferred_lock, flags);
658 	queue_work(md->wq, &md->work);
659 }
660 
661 /*
662  * Everyone (including functions in this file), should use this
663  * function to access the md->map field, and make sure they call
664  * dm_put_live_table() when finished.
665  */
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
667 {
668 	*srcu_idx = srcu_read_lock(&md->io_barrier);
669 
670 	return srcu_dereference(md->map, &md->io_barrier);
671 }
672 
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
674 {
675 	srcu_read_unlock(&md->io_barrier, srcu_idx);
676 }
677 
678 void dm_sync_table(struct mapped_device *md)
679 {
680 	synchronize_srcu(&md->io_barrier);
681 	synchronize_rcu_expedited();
682 }
683 
684 /*
685  * A fast alternative to dm_get_live_table/dm_put_live_table.
686  * The caller must not block between these two functions.
687  */
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
689 {
690 	rcu_read_lock();
691 	return rcu_dereference(md->map);
692 }
693 
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
695 {
696 	rcu_read_unlock();
697 }
698 
699 static char *_dm_claim_ptr = "I belong to device-mapper";
700 
701 /*
702  * Open a table device so we can use it as a map destination.
703  */
704 static int open_table_device(struct table_device *td, dev_t dev,
705 			     struct mapped_device *md)
706 {
707 	struct block_device *bdev;
708 	u64 part_off;
709 	int r;
710 
711 	BUG_ON(td->dm_dev.bdev);
712 
713 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
714 	if (IS_ERR(bdev))
715 		return PTR_ERR(bdev);
716 
717 	r = bd_link_disk_holder(bdev, dm_disk(md));
718 	if (r) {
719 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
720 		return r;
721 	}
722 
723 	td->dm_dev.bdev = bdev;
724 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
725 	return 0;
726 }
727 
728 /*
729  * Close a table device that we've been using.
730  */
731 static void close_table_device(struct table_device *td, struct mapped_device *md)
732 {
733 	if (!td->dm_dev.bdev)
734 		return;
735 
736 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
737 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
738 	put_dax(td->dm_dev.dax_dev);
739 	td->dm_dev.bdev = NULL;
740 	td->dm_dev.dax_dev = NULL;
741 }
742 
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
744 					      fmode_t mode)
745 {
746 	struct table_device *td;
747 
748 	list_for_each_entry(td, l, list)
749 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
750 			return td;
751 
752 	return NULL;
753 }
754 
755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
756 			struct dm_dev **result)
757 {
758 	int r;
759 	struct table_device *td;
760 
761 	mutex_lock(&md->table_devices_lock);
762 	td = find_table_device(&md->table_devices, dev, mode);
763 	if (!td) {
764 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
765 		if (!td) {
766 			mutex_unlock(&md->table_devices_lock);
767 			return -ENOMEM;
768 		}
769 
770 		td->dm_dev.mode = mode;
771 		td->dm_dev.bdev = NULL;
772 
773 		if ((r = open_table_device(td, dev, md))) {
774 			mutex_unlock(&md->table_devices_lock);
775 			kfree(td);
776 			return r;
777 		}
778 
779 		format_dev_t(td->dm_dev.name, dev);
780 
781 		refcount_set(&td->count, 1);
782 		list_add(&td->list, &md->table_devices);
783 	} else {
784 		refcount_inc(&td->count);
785 	}
786 	mutex_unlock(&md->table_devices_lock);
787 
788 	*result = &td->dm_dev;
789 	return 0;
790 }
791 
792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
793 {
794 	struct table_device *td = container_of(d, struct table_device, dm_dev);
795 
796 	mutex_lock(&md->table_devices_lock);
797 	if (refcount_dec_and_test(&td->count)) {
798 		close_table_device(td, md);
799 		list_del(&td->list);
800 		kfree(td);
801 	}
802 	mutex_unlock(&md->table_devices_lock);
803 }
804 
805 static void free_table_devices(struct list_head *devices)
806 {
807 	struct list_head *tmp, *next;
808 
809 	list_for_each_safe(tmp, next, devices) {
810 		struct table_device *td = list_entry(tmp, struct table_device, list);
811 
812 		DMWARN("dm_destroy: %s still exists with %d references",
813 		       td->dm_dev.name, refcount_read(&td->count));
814 		kfree(td);
815 	}
816 }
817 
818 /*
819  * Get the geometry associated with a dm device
820  */
821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
822 {
823 	*geo = md->geometry;
824 
825 	return 0;
826 }
827 
828 /*
829  * Set the geometry of a device.
830  */
831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
834 
835 	if (geo->start > sz) {
836 		DMWARN("Start sector is beyond the geometry limits.");
837 		return -EINVAL;
838 	}
839 
840 	md->geometry = *geo;
841 
842 	return 0;
843 }
844 
845 static int __noflush_suspending(struct mapped_device *md)
846 {
847 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
848 }
849 
850 static void dm_io_complete(struct dm_io *io)
851 {
852 	blk_status_t io_error;
853 	struct mapped_device *md = io->md;
854 	struct bio *bio = io->orig_bio;
855 
856 	if (io->status == BLK_STS_DM_REQUEUE) {
857 		unsigned long flags;
858 		/*
859 		 * Target requested pushing back the I/O.
860 		 */
861 		spin_lock_irqsave(&md->deferred_lock, flags);
862 		if (__noflush_suspending(md) &&
863 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
864 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
865 			bio_list_add_head(&md->deferred, bio);
866 		} else {
867 			/*
868 			 * noflush suspend was interrupted or this is
869 			 * a write to a zoned target.
870 			 */
871 			io->status = BLK_STS_IOERR;
872 		}
873 		spin_unlock_irqrestore(&md->deferred_lock, flags);
874 	}
875 
876 	io_error = io->status;
877 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
878 		dm_end_io_acct(io, bio);
879 	else if (!io_error) {
880 		/*
881 		 * Must handle target that DM_MAPIO_SUBMITTED only to
882 		 * then bio_endio() rather than dm_submit_bio_remap()
883 		 */
884 		__dm_start_io_acct(io, bio);
885 		dm_end_io_acct(io, bio);
886 	}
887 	free_io(io);
888 	smp_wmb();
889 	this_cpu_dec(*md->pending_io);
890 
891 	/* nudge anyone waiting on suspend queue */
892 	if (unlikely(wq_has_sleeper(&md->wait)))
893 		wake_up(&md->wait);
894 
895 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
896 		if (bio->bi_opf & REQ_POLLED) {
897 			/*
898 			 * Upper layer won't help us poll split bio (io->orig_bio
899 			 * may only reflect a subset of the pre-split original)
900 			 * so clear REQ_POLLED in case of requeue.
901 			 */
902 			bio->bi_opf &= ~REQ_POLLED;
903 			if (io_error == BLK_STS_AGAIN) {
904 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
905 				queue_io(md, bio);
906 			}
907 		}
908 		return;
909 	}
910 
911 	if (bio_is_flush_with_data(bio)) {
912 		/*
913 		 * Preflush done for flush with data, reissue
914 		 * without REQ_PREFLUSH.
915 		 */
916 		bio->bi_opf &= ~REQ_PREFLUSH;
917 		queue_io(md, bio);
918 	} else {
919 		/* done with normal IO or empty flush */
920 		if (io_error)
921 			bio->bi_status = io_error;
922 		bio_endio(bio);
923 	}
924 }
925 
926 static inline bool dm_tio_is_normal(struct dm_target_io *tio)
927 {
928 	return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
929 		!dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
930 }
931 
932 /*
933  * Decrements the number of outstanding ios that a bio has been
934  * cloned into, completing the original io if necc.
935  */
936 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
937 {
938 	/* Push-back supersedes any I/O errors */
939 	if (unlikely(error)) {
940 		unsigned long flags;
941 		spin_lock_irqsave(&io->lock, flags);
942 		if (!(io->status == BLK_STS_DM_REQUEUE &&
943 		      __noflush_suspending(io->md)))
944 			io->status = error;
945 		spin_unlock_irqrestore(&io->lock, flags);
946 	}
947 
948 	if (atomic_dec_and_test(&io->io_count))
949 		dm_io_complete(io);
950 }
951 
952 void disable_discard(struct mapped_device *md)
953 {
954 	struct queue_limits *limits = dm_get_queue_limits(md);
955 
956 	/* device doesn't really support DISCARD, disable it */
957 	limits->max_discard_sectors = 0;
958 }
959 
960 void disable_write_zeroes(struct mapped_device *md)
961 {
962 	struct queue_limits *limits = dm_get_queue_limits(md);
963 
964 	/* device doesn't really support WRITE ZEROES, disable it */
965 	limits->max_write_zeroes_sectors = 0;
966 }
967 
968 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
969 {
970 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
971 }
972 
973 static void clone_endio(struct bio *bio)
974 {
975 	blk_status_t error = bio->bi_status;
976 	struct dm_target_io *tio = clone_to_tio(bio);
977 	struct dm_io *io = tio->io;
978 	struct mapped_device *md = tio->io->md;
979 	dm_endio_fn endio = tio->ti->type->end_io;
980 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
981 
982 	if (unlikely(error == BLK_STS_TARGET)) {
983 		if (bio_op(bio) == REQ_OP_DISCARD &&
984 		    !bdev_max_discard_sectors(bio->bi_bdev))
985 			disable_discard(md);
986 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
987 			 !q->limits.max_write_zeroes_sectors)
988 			disable_write_zeroes(md);
989 	}
990 
991 	if (blk_queue_is_zoned(q))
992 		dm_zone_endio(io, bio);
993 
994 	if (endio) {
995 		int r = endio(tio->ti, bio, &error);
996 		switch (r) {
997 		case DM_ENDIO_REQUEUE:
998 			/*
999 			 * Requeuing writes to a sequential zone of a zoned
1000 			 * target will break the sequential write pattern:
1001 			 * fail such IO.
1002 			 */
1003 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1004 				error = BLK_STS_IOERR;
1005 			else
1006 				error = BLK_STS_DM_REQUEUE;
1007 			fallthrough;
1008 		case DM_ENDIO_DONE:
1009 			break;
1010 		case DM_ENDIO_INCOMPLETE:
1011 			/* The target will handle the io */
1012 			return;
1013 		default:
1014 			DMWARN("unimplemented target endio return value: %d", r);
1015 			BUG();
1016 		}
1017 	}
1018 
1019 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1020 		struct mapped_device *md = io->md;
1021 		up(&md->swap_bios_semaphore);
1022 	}
1023 
1024 	free_tio(bio);
1025 	dm_io_dec_pending(io, error);
1026 }
1027 
1028 /*
1029  * Return maximum size of I/O possible at the supplied sector up to the current
1030  * target boundary.
1031  */
1032 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1033 						  sector_t target_offset)
1034 {
1035 	return ti->len - target_offset;
1036 }
1037 
1038 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1039 {
1040 	sector_t target_offset = dm_target_offset(ti, sector);
1041 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1042 	sector_t max_len;
1043 
1044 	/*
1045 	 * Does the target need to split IO even further?
1046 	 * - varied (per target) IO splitting is a tenet of DM; this
1047 	 *   explains why stacked chunk_sectors based splitting via
1048 	 *   blk_max_size_offset() isn't possible here. So pass in
1049 	 *   ti->max_io_len to override stacked chunk_sectors.
1050 	 */
1051 	if (ti->max_io_len) {
1052 		max_len = blk_max_size_offset(ti->table->md->queue,
1053 					      target_offset, ti->max_io_len);
1054 		if (len > max_len)
1055 			len = max_len;
1056 	}
1057 
1058 	return len;
1059 }
1060 
1061 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1062 {
1063 	if (len > UINT_MAX) {
1064 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1065 		      (unsigned long long)len, UINT_MAX);
1066 		ti->error = "Maximum size of target IO is too large";
1067 		return -EINVAL;
1068 	}
1069 
1070 	ti->max_io_len = (uint32_t) len;
1071 
1072 	return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1075 
1076 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1077 						sector_t sector, int *srcu_idx)
1078 	__acquires(md->io_barrier)
1079 {
1080 	struct dm_table *map;
1081 	struct dm_target *ti;
1082 
1083 	map = dm_get_live_table(md, srcu_idx);
1084 	if (!map)
1085 		return NULL;
1086 
1087 	ti = dm_table_find_target(map, sector);
1088 	if (!ti)
1089 		return NULL;
1090 
1091 	return ti;
1092 }
1093 
1094 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1095 				 long nr_pages, void **kaddr, pfn_t *pfn)
1096 {
1097 	struct mapped_device *md = dax_get_private(dax_dev);
1098 	sector_t sector = pgoff * PAGE_SECTORS;
1099 	struct dm_target *ti;
1100 	long len, ret = -EIO;
1101 	int srcu_idx;
1102 
1103 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104 
1105 	if (!ti)
1106 		goto out;
1107 	if (!ti->type->direct_access)
1108 		goto out;
1109 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1110 	if (len < 1)
1111 		goto out;
1112 	nr_pages = min(len, nr_pages);
1113 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1114 
1115  out:
1116 	dm_put_live_table(md, srcu_idx);
1117 
1118 	return ret;
1119 }
1120 
1121 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1122 				  size_t nr_pages)
1123 {
1124 	struct mapped_device *md = dax_get_private(dax_dev);
1125 	sector_t sector = pgoff * PAGE_SECTORS;
1126 	struct dm_target *ti;
1127 	int ret = -EIO;
1128 	int srcu_idx;
1129 
1130 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1131 
1132 	if (!ti)
1133 		goto out;
1134 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1135 		/*
1136 		 * ->zero_page_range() is mandatory dax operation. If we are
1137 		 *  here, something is wrong.
1138 		 */
1139 		goto out;
1140 	}
1141 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1142  out:
1143 	dm_put_live_table(md, srcu_idx);
1144 
1145 	return ret;
1146 }
1147 
1148 /*
1149  * A target may call dm_accept_partial_bio only from the map routine.  It is
1150  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1151  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1152  * __send_duplicate_bios().
1153  *
1154  * dm_accept_partial_bio informs the dm that the target only wants to process
1155  * additional n_sectors sectors of the bio and the rest of the data should be
1156  * sent in a next bio.
1157  *
1158  * A diagram that explains the arithmetics:
1159  * +--------------------+---------------+-------+
1160  * |         1          |       2       |   3   |
1161  * +--------------------+---------------+-------+
1162  *
1163  * <-------------- *tio->len_ptr --------------->
1164  *                      <------- bi_size ------->
1165  *                      <-- n_sectors -->
1166  *
1167  * Region 1 was already iterated over with bio_advance or similar function.
1168  *	(it may be empty if the target doesn't use bio_advance)
1169  * Region 2 is the remaining bio size that the target wants to process.
1170  *	(it may be empty if region 1 is non-empty, although there is no reason
1171  *	 to make it empty)
1172  * The target requires that region 3 is to be sent in the next bio.
1173  *
1174  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1175  * the partially processed part (the sum of regions 1+2) must be the same for all
1176  * copies of the bio.
1177  */
1178 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1179 {
1180 	struct dm_target_io *tio = clone_to_tio(bio);
1181 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1182 
1183 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1184 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1185 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1186 	BUG_ON(bi_size > *tio->len_ptr);
1187 	BUG_ON(n_sectors > bi_size);
1188 
1189 	*tio->len_ptr -= bi_size - n_sectors;
1190 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1191 }
1192 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1193 
1194 static inline void __dm_submit_bio_remap(struct bio *clone,
1195 					 dev_t dev, sector_t old_sector)
1196 {
1197 	trace_block_bio_remap(clone, dev, old_sector);
1198 	submit_bio_noacct(clone);
1199 }
1200 
1201 /*
1202  * @clone: clone bio that DM core passed to target's .map function
1203  * @tgt_clone: clone of @clone bio that target needs submitted
1204  *
1205  * Targets should use this interface to submit bios they take
1206  * ownership of when returning DM_MAPIO_SUBMITTED.
1207  *
1208  * Target should also enable ti->accounts_remapped_io
1209  */
1210 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1211 {
1212 	struct dm_target_io *tio = clone_to_tio(clone);
1213 	struct dm_io *io = tio->io;
1214 
1215 	WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1216 
1217 	/* establish bio that will get submitted */
1218 	if (!tgt_clone)
1219 		tgt_clone = clone;
1220 
1221 	/*
1222 	 * Account io->origin_bio to DM dev on behalf of target
1223 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1224 	 */
1225 	if (io->map_task == current) {
1226 		/* Still in target's map function */
1227 		dm_io_set_flag(io, DM_IO_START_ACCT);
1228 	} else {
1229 		/*
1230 		 * Called by another thread, managed by DM target,
1231 		 * wait for dm_split_and_process_bio() to store
1232 		 * io->orig_bio
1233 		 */
1234 		while (unlikely(!smp_load_acquire(&io->orig_bio)))
1235 			msleep(1);
1236 		dm_start_io_acct(io, clone);
1237 	}
1238 
1239 	__dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1240 			      tio->old_sector);
1241 }
1242 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1243 
1244 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1245 {
1246 	mutex_lock(&md->swap_bios_lock);
1247 	while (latch < md->swap_bios) {
1248 		cond_resched();
1249 		down(&md->swap_bios_semaphore);
1250 		md->swap_bios--;
1251 	}
1252 	while (latch > md->swap_bios) {
1253 		cond_resched();
1254 		up(&md->swap_bios_semaphore);
1255 		md->swap_bios++;
1256 	}
1257 	mutex_unlock(&md->swap_bios_lock);
1258 }
1259 
1260 static void __map_bio(struct bio *clone)
1261 {
1262 	struct dm_target_io *tio = clone_to_tio(clone);
1263 	int r;
1264 	struct dm_io *io = tio->io;
1265 	struct dm_target *ti = tio->ti;
1266 
1267 	clone->bi_end_io = clone_endio;
1268 
1269 	/*
1270 	 * Map the clone.
1271 	 */
1272 	dm_io_inc_pending(io);
1273 	tio->old_sector = clone->bi_iter.bi_sector;
1274 
1275 	if (unlikely(swap_bios_limit(ti, clone))) {
1276 		struct mapped_device *md = io->md;
1277 		int latch = get_swap_bios();
1278 		if (unlikely(latch != md->swap_bios))
1279 			__set_swap_bios_limit(md, latch);
1280 		down(&md->swap_bios_semaphore);
1281 	}
1282 
1283 	/*
1284 	 * Check if the IO needs a special mapping due to zone append emulation
1285 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1286 	 * map operation.
1287 	 */
1288 	if (dm_emulate_zone_append(io->md))
1289 		r = dm_zone_map_bio(tio);
1290 	else
1291 		r = ti->type->map(ti, clone);
1292 
1293 	switch (r) {
1294 	case DM_MAPIO_SUBMITTED:
1295 		/* target has assumed ownership of this io */
1296 		if (!ti->accounts_remapped_io)
1297 			dm_io_set_flag(io, DM_IO_START_ACCT);
1298 		break;
1299 	case DM_MAPIO_REMAPPED:
1300 		/*
1301 		 * the bio has been remapped so dispatch it, but defer
1302 		 * dm_start_io_acct() until after possible bio_split().
1303 		 */
1304 		__dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1305 				      tio->old_sector);
1306 		dm_io_set_flag(io, DM_IO_START_ACCT);
1307 		break;
1308 	case DM_MAPIO_KILL:
1309 	case DM_MAPIO_REQUEUE:
1310 		if (unlikely(swap_bios_limit(ti, clone)))
1311 			up(&io->md->swap_bios_semaphore);
1312 		free_tio(clone);
1313 		if (r == DM_MAPIO_KILL)
1314 			dm_io_dec_pending(io, BLK_STS_IOERR);
1315 		else
1316 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1317 		break;
1318 	default:
1319 		DMWARN("unimplemented target map return value: %d", r);
1320 		BUG();
1321 	}
1322 }
1323 
1324 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1325 				struct dm_target *ti, unsigned num_bios)
1326 {
1327 	struct bio *bio;
1328 	int try;
1329 
1330 	for (try = 0; try < 2; try++) {
1331 		int bio_nr;
1332 
1333 		if (try)
1334 			mutex_lock(&ci->io->md->table_devices_lock);
1335 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1336 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1337 					try ? GFP_NOIO : GFP_NOWAIT);
1338 			if (!bio)
1339 				break;
1340 
1341 			bio_list_add(blist, bio);
1342 		}
1343 		if (try)
1344 			mutex_unlock(&ci->io->md->table_devices_lock);
1345 		if (bio_nr == num_bios)
1346 			return;
1347 
1348 		while ((bio = bio_list_pop(blist)))
1349 			free_tio(bio);
1350 	}
1351 }
1352 
1353 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1354 				  unsigned num_bios, unsigned *len)
1355 {
1356 	struct bio_list blist = BIO_EMPTY_LIST;
1357 	struct bio *clone;
1358 
1359 	switch (num_bios) {
1360 	case 0:
1361 		break;
1362 	case 1:
1363 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1364 		__map_bio(clone);
1365 		break;
1366 	default:
1367 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1368 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1369 		while ((clone = bio_list_pop(&blist))) {
1370 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1371 			__map_bio(clone);
1372 		}
1373 		break;
1374 	}
1375 }
1376 
1377 static void __send_empty_flush(struct clone_info *ci)
1378 {
1379 	unsigned target_nr = 0;
1380 	struct dm_target *ti;
1381 	struct bio flush_bio;
1382 
1383 	/*
1384 	 * Use an on-stack bio for this, it's safe since we don't
1385 	 * need to reference it after submit. It's just used as
1386 	 * the basis for the clone(s).
1387 	 */
1388 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1389 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1390 
1391 	ci->bio = &flush_bio;
1392 	ci->sector_count = 0;
1393 	ci->io->tio.clone.bi_iter.bi_size = 0;
1394 
1395 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1396 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1397 
1398 	bio_uninit(ci->bio);
1399 }
1400 
1401 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1402 					unsigned num_bios)
1403 {
1404 	unsigned len;
1405 
1406 	len = min_t(sector_t, ci->sector_count,
1407 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1408 
1409 	__send_duplicate_bios(ci, ti, num_bios, &len);
1410 
1411 	ci->sector += len;
1412 	ci->sector_count -= len;
1413 }
1414 
1415 static bool is_abnormal_io(struct bio *bio)
1416 {
1417 	bool r = false;
1418 
1419 	switch (bio_op(bio)) {
1420 	case REQ_OP_DISCARD:
1421 	case REQ_OP_SECURE_ERASE:
1422 	case REQ_OP_WRITE_ZEROES:
1423 		r = true;
1424 		break;
1425 	}
1426 
1427 	return r;
1428 }
1429 
1430 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1431 				  int *result)
1432 {
1433 	unsigned num_bios = 0;
1434 
1435 	switch (bio_op(ci->bio)) {
1436 	case REQ_OP_DISCARD:
1437 		num_bios = ti->num_discard_bios;
1438 		break;
1439 	case REQ_OP_SECURE_ERASE:
1440 		num_bios = ti->num_secure_erase_bios;
1441 		break;
1442 	case REQ_OP_WRITE_ZEROES:
1443 		num_bios = ti->num_write_zeroes_bios;
1444 		break;
1445 	default:
1446 		return false;
1447 	}
1448 
1449 	/*
1450 	 * Even though the device advertised support for this type of
1451 	 * request, that does not mean every target supports it, and
1452 	 * reconfiguration might also have changed that since the
1453 	 * check was performed.
1454 	 */
1455 	if (!num_bios)
1456 		*result = -EOPNOTSUPP;
1457 	else {
1458 		__send_changing_extent_only(ci, ti, num_bios);
1459 		*result = 0;
1460 	}
1461 	return true;
1462 }
1463 
1464 /*
1465  * Reuse ->bi_private as hlist head for storing all dm_io instances
1466  * associated with this bio, and this bio's bi_private needs to be
1467  * stored in dm_io->data before the reuse.
1468  *
1469  * bio->bi_private is owned by fs or upper layer, so block layer won't
1470  * touch it after splitting. Meantime it won't be changed by anyone after
1471  * bio is submitted. So this reuse is safe.
1472  */
1473 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1474 {
1475 	return (struct hlist_head *)&bio->bi_private;
1476 }
1477 
1478 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1479 {
1480 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1481 
1482 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1483 		bio->bi_opf |= REQ_DM_POLL_LIST;
1484 		/*
1485 		 * Save .bi_private into dm_io, so that we can reuse
1486 		 * .bi_private as hlist head for storing dm_io list
1487 		 */
1488 		io->data = bio->bi_private;
1489 
1490 		INIT_HLIST_HEAD(head);
1491 
1492 		/* tell block layer to poll for completion */
1493 		bio->bi_cookie = ~BLK_QC_T_NONE;
1494 	} else {
1495 		/*
1496 		 * bio recursed due to split, reuse original poll list,
1497 		 * and save bio->bi_private too.
1498 		 */
1499 		io->data = hlist_entry(head->first, struct dm_io, node)->data;
1500 	}
1501 
1502 	hlist_add_head(&io->node, head);
1503 }
1504 
1505 /*
1506  * Select the correct strategy for processing a non-flush bio.
1507  */
1508 static int __split_and_process_bio(struct clone_info *ci)
1509 {
1510 	struct bio *clone;
1511 	struct dm_target *ti;
1512 	unsigned len;
1513 	int r;
1514 
1515 	ti = dm_table_find_target(ci->map, ci->sector);
1516 	if (!ti)
1517 		return -EIO;
1518 
1519 	if (__process_abnormal_io(ci, ti, &r))
1520 		return r;
1521 
1522 	/*
1523 	 * Only support bio polling for normal IO, and the target io is
1524 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1525 	 */
1526 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1527 
1528 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1529 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1530 	__map_bio(clone);
1531 
1532 	ci->sector += len;
1533 	ci->sector_count -= len;
1534 
1535 	return 0;
1536 }
1537 
1538 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1539 			    struct dm_table *map, struct bio *bio)
1540 {
1541 	ci->map = map;
1542 	ci->io = alloc_io(md, bio);
1543 	ci->bio = bio;
1544 	ci->submit_as_polled = false;
1545 	ci->sector = bio->bi_iter.bi_sector;
1546 	ci->sector_count = bio_sectors(bio);
1547 
1548 	/* Shouldn't happen but sector_count was being set to 0 so... */
1549 	if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1550 		ci->sector_count = 0;
1551 }
1552 
1553 /*
1554  * Entry point to split a bio into clones and submit them to the targets.
1555  */
1556 static void dm_split_and_process_bio(struct mapped_device *md,
1557 				     struct dm_table *map, struct bio *bio)
1558 {
1559 	struct clone_info ci;
1560 	struct bio *orig_bio = NULL;
1561 	int error = 0;
1562 
1563 	init_clone_info(&ci, md, map, bio);
1564 
1565 	if (bio->bi_opf & REQ_PREFLUSH) {
1566 		__send_empty_flush(&ci);
1567 		/* dm_io_complete submits any data associated with flush */
1568 		goto out;
1569 	}
1570 
1571 	error = __split_and_process_bio(&ci);
1572 	ci.io->map_task = NULL;
1573 	if (error || !ci.sector_count)
1574 		goto out;
1575 
1576 	/*
1577 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1578 	 * *after* bios already submitted have been completely processed.
1579 	 * We take a clone of the original to store in ci.io->orig_bio to be
1580 	 * used by dm_end_io_acct() and for dm_io_complete() to use for
1581 	 * completion handling.
1582 	 */
1583 	orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1584 			     GFP_NOIO, &md->queue->bio_split);
1585 	bio_chain(orig_bio, bio);
1586 	trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1587 	submit_bio_noacct(bio);
1588 out:
1589 	if (!orig_bio)
1590 		orig_bio = bio;
1591 	smp_store_release(&ci.io->orig_bio, orig_bio);
1592 	if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1593 		dm_start_io_acct(ci.io, NULL);
1594 
1595 	/*
1596 	 * Drop the extra reference count for non-POLLED bio, and hold one
1597 	 * reference for POLLED bio, which will be released in dm_poll_bio
1598 	 *
1599 	 * Add every dm_io instance into the hlist_head which is stored in
1600 	 * bio->bi_private, so that dm_poll_bio can poll them all.
1601 	 */
1602 	if (error || !ci.submit_as_polled)
1603 		dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1604 	else
1605 		dm_queue_poll_io(bio, ci.io);
1606 }
1607 
1608 static void dm_submit_bio(struct bio *bio)
1609 {
1610 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1611 	int srcu_idx;
1612 	struct dm_table *map;
1613 
1614 	map = dm_get_live_table(md, &srcu_idx);
1615 
1616 	/* If suspended, or map not yet available, queue this IO for later */
1617 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1618 	    unlikely(!map)) {
1619 		if (bio->bi_opf & REQ_NOWAIT)
1620 			bio_wouldblock_error(bio);
1621 		else if (bio->bi_opf & REQ_RAHEAD)
1622 			bio_io_error(bio);
1623 		else
1624 			queue_io(md, bio);
1625 		goto out;
1626 	}
1627 
1628 	/*
1629 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1630 	 * otherwise associated queue_limits won't be imposed.
1631 	 */
1632 	if (is_abnormal_io(bio))
1633 		blk_queue_split(&bio);
1634 
1635 	dm_split_and_process_bio(md, map, bio);
1636 out:
1637 	dm_put_live_table(md, srcu_idx);
1638 }
1639 
1640 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1641 			  unsigned int flags)
1642 {
1643 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1644 
1645 	/* don't poll if the mapped io is done */
1646 	if (atomic_read(&io->io_count) > 1)
1647 		bio_poll(&io->tio.clone, iob, flags);
1648 
1649 	/* bio_poll holds the last reference */
1650 	return atomic_read(&io->io_count) == 1;
1651 }
1652 
1653 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1654 		       unsigned int flags)
1655 {
1656 	struct hlist_head *head = dm_get_bio_hlist_head(bio);
1657 	struct hlist_head tmp = HLIST_HEAD_INIT;
1658 	struct hlist_node *next;
1659 	struct dm_io *io;
1660 
1661 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1662 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1663 		return 0;
1664 
1665 	WARN_ON_ONCE(hlist_empty(head));
1666 
1667 	hlist_move_list(head, &tmp);
1668 
1669 	/*
1670 	 * Restore .bi_private before possibly completing dm_io.
1671 	 *
1672 	 * bio_poll() is only possible once @bio has been completely
1673 	 * submitted via submit_bio_noacct()'s depth-first submission.
1674 	 * So there is no dm_queue_poll_io() race associated with
1675 	 * clearing REQ_DM_POLL_LIST here.
1676 	 */
1677 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1678 	bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1679 
1680 	hlist_for_each_entry_safe(io, next, &tmp, node) {
1681 		if (dm_poll_dm_io(io, iob, flags)) {
1682 			hlist_del_init(&io->node);
1683 			/*
1684 			 * clone_endio() has already occurred, so passing
1685 			 * error as 0 here doesn't override io->status
1686 			 */
1687 			dm_io_dec_pending(io, 0);
1688 		}
1689 	}
1690 
1691 	/* Not done? */
1692 	if (!hlist_empty(&tmp)) {
1693 		bio->bi_opf |= REQ_DM_POLL_LIST;
1694 		/* Reset bio->bi_private to dm_io list head */
1695 		hlist_move_list(&tmp, head);
1696 		return 0;
1697 	}
1698 	return 1;
1699 }
1700 
1701 /*-----------------------------------------------------------------
1702  * An IDR is used to keep track of allocated minor numbers.
1703  *---------------------------------------------------------------*/
1704 static void free_minor(int minor)
1705 {
1706 	spin_lock(&_minor_lock);
1707 	idr_remove(&_minor_idr, minor);
1708 	spin_unlock(&_minor_lock);
1709 }
1710 
1711 /*
1712  * See if the device with a specific minor # is free.
1713  */
1714 static int specific_minor(int minor)
1715 {
1716 	int r;
1717 
1718 	if (minor >= (1 << MINORBITS))
1719 		return -EINVAL;
1720 
1721 	idr_preload(GFP_KERNEL);
1722 	spin_lock(&_minor_lock);
1723 
1724 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1725 
1726 	spin_unlock(&_minor_lock);
1727 	idr_preload_end();
1728 	if (r < 0)
1729 		return r == -ENOSPC ? -EBUSY : r;
1730 	return 0;
1731 }
1732 
1733 static int next_free_minor(int *minor)
1734 {
1735 	int r;
1736 
1737 	idr_preload(GFP_KERNEL);
1738 	spin_lock(&_minor_lock);
1739 
1740 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1741 
1742 	spin_unlock(&_minor_lock);
1743 	idr_preload_end();
1744 	if (r < 0)
1745 		return r;
1746 	*minor = r;
1747 	return 0;
1748 }
1749 
1750 static const struct block_device_operations dm_blk_dops;
1751 static const struct block_device_operations dm_rq_blk_dops;
1752 static const struct dax_operations dm_dax_ops;
1753 
1754 static void dm_wq_work(struct work_struct *work);
1755 
1756 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1757 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1758 {
1759 	dm_destroy_crypto_profile(q->crypto_profile);
1760 }
1761 
1762 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1763 
1764 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1765 {
1766 }
1767 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1768 
1769 static void cleanup_mapped_device(struct mapped_device *md)
1770 {
1771 	if (md->wq)
1772 		destroy_workqueue(md->wq);
1773 	bioset_exit(&md->bs);
1774 	bioset_exit(&md->io_bs);
1775 
1776 	if (md->dax_dev) {
1777 		dax_remove_host(md->disk);
1778 		kill_dax(md->dax_dev);
1779 		put_dax(md->dax_dev);
1780 		md->dax_dev = NULL;
1781 	}
1782 
1783 	dm_cleanup_zoned_dev(md);
1784 	if (md->disk) {
1785 		spin_lock(&_minor_lock);
1786 		md->disk->private_data = NULL;
1787 		spin_unlock(&_minor_lock);
1788 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1789 			dm_sysfs_exit(md);
1790 			del_gendisk(md->disk);
1791 		}
1792 		dm_queue_destroy_crypto_profile(md->queue);
1793 		blk_cleanup_disk(md->disk);
1794 	}
1795 
1796 	if (md->pending_io) {
1797 		free_percpu(md->pending_io);
1798 		md->pending_io = NULL;
1799 	}
1800 
1801 	cleanup_srcu_struct(&md->io_barrier);
1802 
1803 	mutex_destroy(&md->suspend_lock);
1804 	mutex_destroy(&md->type_lock);
1805 	mutex_destroy(&md->table_devices_lock);
1806 	mutex_destroy(&md->swap_bios_lock);
1807 
1808 	dm_mq_cleanup_mapped_device(md);
1809 }
1810 
1811 /*
1812  * Allocate and initialise a blank device with a given minor.
1813  */
1814 static struct mapped_device *alloc_dev(int minor)
1815 {
1816 	int r, numa_node_id = dm_get_numa_node();
1817 	struct mapped_device *md;
1818 	void *old_md;
1819 
1820 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1821 	if (!md) {
1822 		DMWARN("unable to allocate device, out of memory.");
1823 		return NULL;
1824 	}
1825 
1826 	if (!try_module_get(THIS_MODULE))
1827 		goto bad_module_get;
1828 
1829 	/* get a minor number for the dev */
1830 	if (minor == DM_ANY_MINOR)
1831 		r = next_free_minor(&minor);
1832 	else
1833 		r = specific_minor(minor);
1834 	if (r < 0)
1835 		goto bad_minor;
1836 
1837 	r = init_srcu_struct(&md->io_barrier);
1838 	if (r < 0)
1839 		goto bad_io_barrier;
1840 
1841 	md->numa_node_id = numa_node_id;
1842 	md->init_tio_pdu = false;
1843 	md->type = DM_TYPE_NONE;
1844 	mutex_init(&md->suspend_lock);
1845 	mutex_init(&md->type_lock);
1846 	mutex_init(&md->table_devices_lock);
1847 	spin_lock_init(&md->deferred_lock);
1848 	atomic_set(&md->holders, 1);
1849 	atomic_set(&md->open_count, 0);
1850 	atomic_set(&md->event_nr, 0);
1851 	atomic_set(&md->uevent_seq, 0);
1852 	INIT_LIST_HEAD(&md->uevent_list);
1853 	INIT_LIST_HEAD(&md->table_devices);
1854 	spin_lock_init(&md->uevent_lock);
1855 
1856 	/*
1857 	 * default to bio-based until DM table is loaded and md->type
1858 	 * established. If request-based table is loaded: blk-mq will
1859 	 * override accordingly.
1860 	 */
1861 	md->disk = blk_alloc_disk(md->numa_node_id);
1862 	if (!md->disk)
1863 		goto bad;
1864 	md->queue = md->disk->queue;
1865 
1866 	init_waitqueue_head(&md->wait);
1867 	INIT_WORK(&md->work, dm_wq_work);
1868 	init_waitqueue_head(&md->eventq);
1869 	init_completion(&md->kobj_holder.completion);
1870 
1871 	md->swap_bios = get_swap_bios();
1872 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1873 	mutex_init(&md->swap_bios_lock);
1874 
1875 	md->disk->major = _major;
1876 	md->disk->first_minor = minor;
1877 	md->disk->minors = 1;
1878 	md->disk->flags |= GENHD_FL_NO_PART;
1879 	md->disk->fops = &dm_blk_dops;
1880 	md->disk->queue = md->queue;
1881 	md->disk->private_data = md;
1882 	sprintf(md->disk->disk_name, "dm-%d", minor);
1883 
1884 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1885 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1886 		if (IS_ERR(md->dax_dev)) {
1887 			md->dax_dev = NULL;
1888 			goto bad;
1889 		}
1890 		set_dax_nocache(md->dax_dev);
1891 		set_dax_nomc(md->dax_dev);
1892 		if (dax_add_host(md->dax_dev, md->disk))
1893 			goto bad;
1894 	}
1895 
1896 	format_dev_t(md->name, MKDEV(_major, minor));
1897 
1898 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1899 	if (!md->wq)
1900 		goto bad;
1901 
1902 	md->pending_io = alloc_percpu(unsigned long);
1903 	if (!md->pending_io)
1904 		goto bad;
1905 
1906 	dm_stats_init(&md->stats);
1907 
1908 	/* Populate the mapping, nobody knows we exist yet */
1909 	spin_lock(&_minor_lock);
1910 	old_md = idr_replace(&_minor_idr, md, minor);
1911 	spin_unlock(&_minor_lock);
1912 
1913 	BUG_ON(old_md != MINOR_ALLOCED);
1914 
1915 	return md;
1916 
1917 bad:
1918 	cleanup_mapped_device(md);
1919 bad_io_barrier:
1920 	free_minor(minor);
1921 bad_minor:
1922 	module_put(THIS_MODULE);
1923 bad_module_get:
1924 	kvfree(md);
1925 	return NULL;
1926 }
1927 
1928 static void unlock_fs(struct mapped_device *md);
1929 
1930 static void free_dev(struct mapped_device *md)
1931 {
1932 	int minor = MINOR(disk_devt(md->disk));
1933 
1934 	unlock_fs(md);
1935 
1936 	cleanup_mapped_device(md);
1937 
1938 	free_table_devices(&md->table_devices);
1939 	dm_stats_cleanup(&md->stats);
1940 	free_minor(minor);
1941 
1942 	module_put(THIS_MODULE);
1943 	kvfree(md);
1944 }
1945 
1946 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1947 {
1948 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1949 	int ret = 0;
1950 
1951 	if (dm_table_bio_based(t)) {
1952 		/*
1953 		 * The md may already have mempools that need changing.
1954 		 * If so, reload bioset because front_pad may have changed
1955 		 * because a different table was loaded.
1956 		 */
1957 		bioset_exit(&md->bs);
1958 		bioset_exit(&md->io_bs);
1959 
1960 	} else if (bioset_initialized(&md->bs)) {
1961 		/*
1962 		 * There's no need to reload with request-based dm
1963 		 * because the size of front_pad doesn't change.
1964 		 * Note for future: If you are to reload bioset,
1965 		 * prep-ed requests in the queue may refer
1966 		 * to bio from the old bioset, so you must walk
1967 		 * through the queue to unprep.
1968 		 */
1969 		goto out;
1970 	}
1971 
1972 	BUG_ON(!p ||
1973 	       bioset_initialized(&md->bs) ||
1974 	       bioset_initialized(&md->io_bs));
1975 
1976 	ret = bioset_init_from_src(&md->bs, &p->bs);
1977 	if (ret)
1978 		goto out;
1979 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1980 	if (ret)
1981 		bioset_exit(&md->bs);
1982 out:
1983 	/* mempool bind completed, no longer need any mempools in the table */
1984 	dm_table_free_md_mempools(t);
1985 	return ret;
1986 }
1987 
1988 /*
1989  * Bind a table to the device.
1990  */
1991 static void event_callback(void *context)
1992 {
1993 	unsigned long flags;
1994 	LIST_HEAD(uevents);
1995 	struct mapped_device *md = (struct mapped_device *) context;
1996 
1997 	spin_lock_irqsave(&md->uevent_lock, flags);
1998 	list_splice_init(&md->uevent_list, &uevents);
1999 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2000 
2001 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002 
2003 	atomic_inc(&md->event_nr);
2004 	wake_up(&md->eventq);
2005 	dm_issue_global_event();
2006 }
2007 
2008 /*
2009  * Returns old map, which caller must destroy.
2010  */
2011 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2012 			       struct queue_limits *limits)
2013 {
2014 	struct dm_table *old_map;
2015 	sector_t size;
2016 	int ret;
2017 
2018 	lockdep_assert_held(&md->suspend_lock);
2019 
2020 	size = dm_table_get_size(t);
2021 
2022 	/*
2023 	 * Wipe any geometry if the size of the table changed.
2024 	 */
2025 	if (size != dm_get_size(md))
2026 		memset(&md->geometry, 0, sizeof(md->geometry));
2027 
2028 	if (!get_capacity(md->disk))
2029 		set_capacity(md->disk, size);
2030 	else
2031 		set_capacity_and_notify(md->disk, size);
2032 
2033 	dm_table_event_callback(t, event_callback, md);
2034 
2035 	if (dm_table_request_based(t)) {
2036 		/*
2037 		 * Leverage the fact that request-based DM targets are
2038 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2039 		 */
2040 		md->immutable_target = dm_table_get_immutable_target(t);
2041 	}
2042 
2043 	ret = __bind_mempools(md, t);
2044 	if (ret) {
2045 		old_map = ERR_PTR(ret);
2046 		goto out;
2047 	}
2048 
2049 	ret = dm_table_set_restrictions(t, md->queue, limits);
2050 	if (ret) {
2051 		old_map = ERR_PTR(ret);
2052 		goto out;
2053 	}
2054 
2055 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2056 	rcu_assign_pointer(md->map, (void *)t);
2057 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2058 
2059 	if (old_map)
2060 		dm_sync_table(md);
2061 out:
2062 	return old_map;
2063 }
2064 
2065 /*
2066  * Returns unbound table for the caller to free.
2067  */
2068 static struct dm_table *__unbind(struct mapped_device *md)
2069 {
2070 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2071 
2072 	if (!map)
2073 		return NULL;
2074 
2075 	dm_table_event_callback(map, NULL, NULL);
2076 	RCU_INIT_POINTER(md->map, NULL);
2077 	dm_sync_table(md);
2078 
2079 	return map;
2080 }
2081 
2082 /*
2083  * Constructor for a new device.
2084  */
2085 int dm_create(int minor, struct mapped_device **result)
2086 {
2087 	struct mapped_device *md;
2088 
2089 	md = alloc_dev(minor);
2090 	if (!md)
2091 		return -ENXIO;
2092 
2093 	dm_ima_reset_data(md);
2094 
2095 	*result = md;
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Functions to manage md->type.
2101  * All are required to hold md->type_lock.
2102  */
2103 void dm_lock_md_type(struct mapped_device *md)
2104 {
2105 	mutex_lock(&md->type_lock);
2106 }
2107 
2108 void dm_unlock_md_type(struct mapped_device *md)
2109 {
2110 	mutex_unlock(&md->type_lock);
2111 }
2112 
2113 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2114 {
2115 	BUG_ON(!mutex_is_locked(&md->type_lock));
2116 	md->type = type;
2117 }
2118 
2119 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2120 {
2121 	return md->type;
2122 }
2123 
2124 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2125 {
2126 	return md->immutable_target_type;
2127 }
2128 
2129 /*
2130  * The queue_limits are only valid as long as you have a reference
2131  * count on 'md'.
2132  */
2133 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2134 {
2135 	BUG_ON(!atomic_read(&md->holders));
2136 	return &md->queue->limits;
2137 }
2138 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2139 
2140 /*
2141  * Setup the DM device's queue based on md's type
2142  */
2143 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2144 {
2145 	enum dm_queue_mode type = dm_table_get_type(t);
2146 	struct queue_limits limits;
2147 	int r;
2148 
2149 	switch (type) {
2150 	case DM_TYPE_REQUEST_BASED:
2151 		md->disk->fops = &dm_rq_blk_dops;
2152 		r = dm_mq_init_request_queue(md, t);
2153 		if (r) {
2154 			DMERR("Cannot initialize queue for request-based dm mapped device");
2155 			return r;
2156 		}
2157 		break;
2158 	case DM_TYPE_BIO_BASED:
2159 	case DM_TYPE_DAX_BIO_BASED:
2160 		break;
2161 	case DM_TYPE_NONE:
2162 		WARN_ON_ONCE(true);
2163 		break;
2164 	}
2165 
2166 	r = dm_calculate_queue_limits(t, &limits);
2167 	if (r) {
2168 		DMERR("Cannot calculate initial queue limits");
2169 		return r;
2170 	}
2171 	r = dm_table_set_restrictions(t, md->queue, &limits);
2172 	if (r)
2173 		return r;
2174 
2175 	r = add_disk(md->disk);
2176 	if (r)
2177 		return r;
2178 
2179 	r = dm_sysfs_init(md);
2180 	if (r) {
2181 		del_gendisk(md->disk);
2182 		return r;
2183 	}
2184 	md->type = type;
2185 	return 0;
2186 }
2187 
2188 struct mapped_device *dm_get_md(dev_t dev)
2189 {
2190 	struct mapped_device *md;
2191 	unsigned minor = MINOR(dev);
2192 
2193 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2194 		return NULL;
2195 
2196 	spin_lock(&_minor_lock);
2197 
2198 	md = idr_find(&_minor_idr, minor);
2199 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2200 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2201 		md = NULL;
2202 		goto out;
2203 	}
2204 	dm_get(md);
2205 out:
2206 	spin_unlock(&_minor_lock);
2207 
2208 	return md;
2209 }
2210 EXPORT_SYMBOL_GPL(dm_get_md);
2211 
2212 void *dm_get_mdptr(struct mapped_device *md)
2213 {
2214 	return md->interface_ptr;
2215 }
2216 
2217 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2218 {
2219 	md->interface_ptr = ptr;
2220 }
2221 
2222 void dm_get(struct mapped_device *md)
2223 {
2224 	atomic_inc(&md->holders);
2225 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2226 }
2227 
2228 int dm_hold(struct mapped_device *md)
2229 {
2230 	spin_lock(&_minor_lock);
2231 	if (test_bit(DMF_FREEING, &md->flags)) {
2232 		spin_unlock(&_minor_lock);
2233 		return -EBUSY;
2234 	}
2235 	dm_get(md);
2236 	spin_unlock(&_minor_lock);
2237 	return 0;
2238 }
2239 EXPORT_SYMBOL_GPL(dm_hold);
2240 
2241 const char *dm_device_name(struct mapped_device *md)
2242 {
2243 	return md->name;
2244 }
2245 EXPORT_SYMBOL_GPL(dm_device_name);
2246 
2247 static void __dm_destroy(struct mapped_device *md, bool wait)
2248 {
2249 	struct dm_table *map;
2250 	int srcu_idx;
2251 
2252 	might_sleep();
2253 
2254 	spin_lock(&_minor_lock);
2255 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2256 	set_bit(DMF_FREEING, &md->flags);
2257 	spin_unlock(&_minor_lock);
2258 
2259 	blk_mark_disk_dead(md->disk);
2260 
2261 	/*
2262 	 * Take suspend_lock so that presuspend and postsuspend methods
2263 	 * do not race with internal suspend.
2264 	 */
2265 	mutex_lock(&md->suspend_lock);
2266 	map = dm_get_live_table(md, &srcu_idx);
2267 	if (!dm_suspended_md(md)) {
2268 		dm_table_presuspend_targets(map);
2269 		set_bit(DMF_SUSPENDED, &md->flags);
2270 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2271 		dm_table_postsuspend_targets(map);
2272 	}
2273 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2274 	dm_put_live_table(md, srcu_idx);
2275 	mutex_unlock(&md->suspend_lock);
2276 
2277 	/*
2278 	 * Rare, but there may be I/O requests still going to complete,
2279 	 * for example.  Wait for all references to disappear.
2280 	 * No one should increment the reference count of the mapped_device,
2281 	 * after the mapped_device state becomes DMF_FREEING.
2282 	 */
2283 	if (wait)
2284 		while (atomic_read(&md->holders))
2285 			msleep(1);
2286 	else if (atomic_read(&md->holders))
2287 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2288 		       dm_device_name(md), atomic_read(&md->holders));
2289 
2290 	dm_table_destroy(__unbind(md));
2291 	free_dev(md);
2292 }
2293 
2294 void dm_destroy(struct mapped_device *md)
2295 {
2296 	__dm_destroy(md, true);
2297 }
2298 
2299 void dm_destroy_immediate(struct mapped_device *md)
2300 {
2301 	__dm_destroy(md, false);
2302 }
2303 
2304 void dm_put(struct mapped_device *md)
2305 {
2306 	atomic_dec(&md->holders);
2307 }
2308 EXPORT_SYMBOL_GPL(dm_put);
2309 
2310 static bool dm_in_flight_bios(struct mapped_device *md)
2311 {
2312 	int cpu;
2313 	unsigned long sum = 0;
2314 
2315 	for_each_possible_cpu(cpu)
2316 		sum += *per_cpu_ptr(md->pending_io, cpu);
2317 
2318 	return sum != 0;
2319 }
2320 
2321 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2322 {
2323 	int r = 0;
2324 	DEFINE_WAIT(wait);
2325 
2326 	while (true) {
2327 		prepare_to_wait(&md->wait, &wait, task_state);
2328 
2329 		if (!dm_in_flight_bios(md))
2330 			break;
2331 
2332 		if (signal_pending_state(task_state, current)) {
2333 			r = -EINTR;
2334 			break;
2335 		}
2336 
2337 		io_schedule();
2338 	}
2339 	finish_wait(&md->wait, &wait);
2340 
2341 	smp_rmb();
2342 
2343 	return r;
2344 }
2345 
2346 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2347 {
2348 	int r = 0;
2349 
2350 	if (!queue_is_mq(md->queue))
2351 		return dm_wait_for_bios_completion(md, task_state);
2352 
2353 	while (true) {
2354 		if (!blk_mq_queue_inflight(md->queue))
2355 			break;
2356 
2357 		if (signal_pending_state(task_state, current)) {
2358 			r = -EINTR;
2359 			break;
2360 		}
2361 
2362 		msleep(5);
2363 	}
2364 
2365 	return r;
2366 }
2367 
2368 /*
2369  * Process the deferred bios
2370  */
2371 static void dm_wq_work(struct work_struct *work)
2372 {
2373 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2374 	struct bio *bio;
2375 
2376 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2377 		spin_lock_irq(&md->deferred_lock);
2378 		bio = bio_list_pop(&md->deferred);
2379 		spin_unlock_irq(&md->deferred_lock);
2380 
2381 		if (!bio)
2382 			break;
2383 
2384 		submit_bio_noacct(bio);
2385 	}
2386 }
2387 
2388 static void dm_queue_flush(struct mapped_device *md)
2389 {
2390 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 	smp_mb__after_atomic();
2392 	queue_work(md->wq, &md->work);
2393 }
2394 
2395 /*
2396  * Swap in a new table, returning the old one for the caller to destroy.
2397  */
2398 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2399 {
2400 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2401 	struct queue_limits limits;
2402 	int r;
2403 
2404 	mutex_lock(&md->suspend_lock);
2405 
2406 	/* device must be suspended */
2407 	if (!dm_suspended_md(md))
2408 		goto out;
2409 
2410 	/*
2411 	 * If the new table has no data devices, retain the existing limits.
2412 	 * This helps multipath with queue_if_no_path if all paths disappear,
2413 	 * then new I/O is queued based on these limits, and then some paths
2414 	 * reappear.
2415 	 */
2416 	if (dm_table_has_no_data_devices(table)) {
2417 		live_map = dm_get_live_table_fast(md);
2418 		if (live_map)
2419 			limits = md->queue->limits;
2420 		dm_put_live_table_fast(md);
2421 	}
2422 
2423 	if (!live_map) {
2424 		r = dm_calculate_queue_limits(table, &limits);
2425 		if (r) {
2426 			map = ERR_PTR(r);
2427 			goto out;
2428 		}
2429 	}
2430 
2431 	map = __bind(md, table, &limits);
2432 	dm_issue_global_event();
2433 
2434 out:
2435 	mutex_unlock(&md->suspend_lock);
2436 	return map;
2437 }
2438 
2439 /*
2440  * Functions to lock and unlock any filesystem running on the
2441  * device.
2442  */
2443 static int lock_fs(struct mapped_device *md)
2444 {
2445 	int r;
2446 
2447 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2448 
2449 	r = freeze_bdev(md->disk->part0);
2450 	if (!r)
2451 		set_bit(DMF_FROZEN, &md->flags);
2452 	return r;
2453 }
2454 
2455 static void unlock_fs(struct mapped_device *md)
2456 {
2457 	if (!test_bit(DMF_FROZEN, &md->flags))
2458 		return;
2459 	thaw_bdev(md->disk->part0);
2460 	clear_bit(DMF_FROZEN, &md->flags);
2461 }
2462 
2463 /*
2464  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2465  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2466  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2467  *
2468  * If __dm_suspend returns 0, the device is completely quiescent
2469  * now. There is no request-processing activity. All new requests
2470  * are being added to md->deferred list.
2471  */
2472 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2473 			unsigned suspend_flags, unsigned int task_state,
2474 			int dmf_suspended_flag)
2475 {
2476 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2477 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2478 	int r;
2479 
2480 	lockdep_assert_held(&md->suspend_lock);
2481 
2482 	/*
2483 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2484 	 * This flag is cleared before dm_suspend returns.
2485 	 */
2486 	if (noflush)
2487 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2488 	else
2489 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2490 
2491 	/*
2492 	 * This gets reverted if there's an error later and the targets
2493 	 * provide the .presuspend_undo hook.
2494 	 */
2495 	dm_table_presuspend_targets(map);
2496 
2497 	/*
2498 	 * Flush I/O to the device.
2499 	 * Any I/O submitted after lock_fs() may not be flushed.
2500 	 * noflush takes precedence over do_lockfs.
2501 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2502 	 */
2503 	if (!noflush && do_lockfs) {
2504 		r = lock_fs(md);
2505 		if (r) {
2506 			dm_table_presuspend_undo_targets(map);
2507 			return r;
2508 		}
2509 	}
2510 
2511 	/*
2512 	 * Here we must make sure that no processes are submitting requests
2513 	 * to target drivers i.e. no one may be executing
2514 	 * dm_split_and_process_bio from dm_submit_bio.
2515 	 *
2516 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2517 	 * we take the write lock. To prevent any process from reentering
2518 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2519 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2520 	 * flush_workqueue(md->wq).
2521 	 */
2522 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2523 	if (map)
2524 		synchronize_srcu(&md->io_barrier);
2525 
2526 	/*
2527 	 * Stop md->queue before flushing md->wq in case request-based
2528 	 * dm defers requests to md->wq from md->queue.
2529 	 */
2530 	if (dm_request_based(md))
2531 		dm_stop_queue(md->queue);
2532 
2533 	flush_workqueue(md->wq);
2534 
2535 	/*
2536 	 * At this point no more requests are entering target request routines.
2537 	 * We call dm_wait_for_completion to wait for all existing requests
2538 	 * to finish.
2539 	 */
2540 	r = dm_wait_for_completion(md, task_state);
2541 	if (!r)
2542 		set_bit(dmf_suspended_flag, &md->flags);
2543 
2544 	if (noflush)
2545 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2546 	if (map)
2547 		synchronize_srcu(&md->io_barrier);
2548 
2549 	/* were we interrupted ? */
2550 	if (r < 0) {
2551 		dm_queue_flush(md);
2552 
2553 		if (dm_request_based(md))
2554 			dm_start_queue(md->queue);
2555 
2556 		unlock_fs(md);
2557 		dm_table_presuspend_undo_targets(map);
2558 		/* pushback list is already flushed, so skip flush */
2559 	}
2560 
2561 	return r;
2562 }
2563 
2564 /*
2565  * We need to be able to change a mapping table under a mounted
2566  * filesystem.  For example we might want to move some data in
2567  * the background.  Before the table can be swapped with
2568  * dm_bind_table, dm_suspend must be called to flush any in
2569  * flight bios and ensure that any further io gets deferred.
2570  */
2571 /*
2572  * Suspend mechanism in request-based dm.
2573  *
2574  * 1. Flush all I/Os by lock_fs() if needed.
2575  * 2. Stop dispatching any I/O by stopping the request_queue.
2576  * 3. Wait for all in-flight I/Os to be completed or requeued.
2577  *
2578  * To abort suspend, start the request_queue.
2579  */
2580 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2581 {
2582 	struct dm_table *map = NULL;
2583 	int r = 0;
2584 
2585 retry:
2586 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2587 
2588 	if (dm_suspended_md(md)) {
2589 		r = -EINVAL;
2590 		goto out_unlock;
2591 	}
2592 
2593 	if (dm_suspended_internally_md(md)) {
2594 		/* already internally suspended, wait for internal resume */
2595 		mutex_unlock(&md->suspend_lock);
2596 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2597 		if (r)
2598 			return r;
2599 		goto retry;
2600 	}
2601 
2602 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2603 
2604 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2605 	if (r)
2606 		goto out_unlock;
2607 
2608 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2609 	dm_table_postsuspend_targets(map);
2610 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2611 
2612 out_unlock:
2613 	mutex_unlock(&md->suspend_lock);
2614 	return r;
2615 }
2616 
2617 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2618 {
2619 	if (map) {
2620 		int r = dm_table_resume_targets(map);
2621 		if (r)
2622 			return r;
2623 	}
2624 
2625 	dm_queue_flush(md);
2626 
2627 	/*
2628 	 * Flushing deferred I/Os must be done after targets are resumed
2629 	 * so that mapping of targets can work correctly.
2630 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2631 	 */
2632 	if (dm_request_based(md))
2633 		dm_start_queue(md->queue);
2634 
2635 	unlock_fs(md);
2636 
2637 	return 0;
2638 }
2639 
2640 int dm_resume(struct mapped_device *md)
2641 {
2642 	int r;
2643 	struct dm_table *map = NULL;
2644 
2645 retry:
2646 	r = -EINVAL;
2647 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2648 
2649 	if (!dm_suspended_md(md))
2650 		goto out;
2651 
2652 	if (dm_suspended_internally_md(md)) {
2653 		/* already internally suspended, wait for internal resume */
2654 		mutex_unlock(&md->suspend_lock);
2655 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2656 		if (r)
2657 			return r;
2658 		goto retry;
2659 	}
2660 
2661 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2662 	if (!map || !dm_table_get_size(map))
2663 		goto out;
2664 
2665 	r = __dm_resume(md, map);
2666 	if (r)
2667 		goto out;
2668 
2669 	clear_bit(DMF_SUSPENDED, &md->flags);
2670 out:
2671 	mutex_unlock(&md->suspend_lock);
2672 
2673 	return r;
2674 }
2675 
2676 /*
2677  * Internal suspend/resume works like userspace-driven suspend. It waits
2678  * until all bios finish and prevents issuing new bios to the target drivers.
2679  * It may be used only from the kernel.
2680  */
2681 
2682 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2683 {
2684 	struct dm_table *map = NULL;
2685 
2686 	lockdep_assert_held(&md->suspend_lock);
2687 
2688 	if (md->internal_suspend_count++)
2689 		return; /* nested internal suspend */
2690 
2691 	if (dm_suspended_md(md)) {
2692 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2693 		return; /* nest suspend */
2694 	}
2695 
2696 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2697 
2698 	/*
2699 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2700 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2701 	 * would require changing .presuspend to return an error -- avoid this
2702 	 * until there is a need for more elaborate variants of internal suspend.
2703 	 */
2704 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2705 			    DMF_SUSPENDED_INTERNALLY);
2706 
2707 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2708 	dm_table_postsuspend_targets(map);
2709 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2710 }
2711 
2712 static void __dm_internal_resume(struct mapped_device *md)
2713 {
2714 	BUG_ON(!md->internal_suspend_count);
2715 
2716 	if (--md->internal_suspend_count)
2717 		return; /* resume from nested internal suspend */
2718 
2719 	if (dm_suspended_md(md))
2720 		goto done; /* resume from nested suspend */
2721 
2722 	/*
2723 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2724 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2725 	 */
2726 	(void) __dm_resume(md, NULL);
2727 
2728 done:
2729 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2730 	smp_mb__after_atomic();
2731 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2732 }
2733 
2734 void dm_internal_suspend_noflush(struct mapped_device *md)
2735 {
2736 	mutex_lock(&md->suspend_lock);
2737 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2738 	mutex_unlock(&md->suspend_lock);
2739 }
2740 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2741 
2742 void dm_internal_resume(struct mapped_device *md)
2743 {
2744 	mutex_lock(&md->suspend_lock);
2745 	__dm_internal_resume(md);
2746 	mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_resume);
2749 
2750 /*
2751  * Fast variants of internal suspend/resume hold md->suspend_lock,
2752  * which prevents interaction with userspace-driven suspend.
2753  */
2754 
2755 void dm_internal_suspend_fast(struct mapped_device *md)
2756 {
2757 	mutex_lock(&md->suspend_lock);
2758 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2759 		return;
2760 
2761 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2762 	synchronize_srcu(&md->io_barrier);
2763 	flush_workqueue(md->wq);
2764 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2765 }
2766 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2767 
2768 void dm_internal_resume_fast(struct mapped_device *md)
2769 {
2770 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2771 		goto done;
2772 
2773 	dm_queue_flush(md);
2774 
2775 done:
2776 	mutex_unlock(&md->suspend_lock);
2777 }
2778 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2779 
2780 /*-----------------------------------------------------------------
2781  * Event notification.
2782  *---------------------------------------------------------------*/
2783 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2784 		       unsigned cookie)
2785 {
2786 	int r;
2787 	unsigned noio_flag;
2788 	char udev_cookie[DM_COOKIE_LENGTH];
2789 	char *envp[] = { udev_cookie, NULL };
2790 
2791 	noio_flag = memalloc_noio_save();
2792 
2793 	if (!cookie)
2794 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2795 	else {
2796 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2797 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2798 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2799 				       action, envp);
2800 	}
2801 
2802 	memalloc_noio_restore(noio_flag);
2803 
2804 	return r;
2805 }
2806 
2807 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2808 {
2809 	return atomic_add_return(1, &md->uevent_seq);
2810 }
2811 
2812 uint32_t dm_get_event_nr(struct mapped_device *md)
2813 {
2814 	return atomic_read(&md->event_nr);
2815 }
2816 
2817 int dm_wait_event(struct mapped_device *md, int event_nr)
2818 {
2819 	return wait_event_interruptible(md->eventq,
2820 			(event_nr != atomic_read(&md->event_nr)));
2821 }
2822 
2823 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2824 {
2825 	unsigned long flags;
2826 
2827 	spin_lock_irqsave(&md->uevent_lock, flags);
2828 	list_add(elist, &md->uevent_list);
2829 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2830 }
2831 
2832 /*
2833  * The gendisk is only valid as long as you have a reference
2834  * count on 'md'.
2835  */
2836 struct gendisk *dm_disk(struct mapped_device *md)
2837 {
2838 	return md->disk;
2839 }
2840 EXPORT_SYMBOL_GPL(dm_disk);
2841 
2842 struct kobject *dm_kobject(struct mapped_device *md)
2843 {
2844 	return &md->kobj_holder.kobj;
2845 }
2846 
2847 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2848 {
2849 	struct mapped_device *md;
2850 
2851 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2852 
2853 	spin_lock(&_minor_lock);
2854 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2855 		md = NULL;
2856 		goto out;
2857 	}
2858 	dm_get(md);
2859 out:
2860 	spin_unlock(&_minor_lock);
2861 
2862 	return md;
2863 }
2864 
2865 int dm_suspended_md(struct mapped_device *md)
2866 {
2867 	return test_bit(DMF_SUSPENDED, &md->flags);
2868 }
2869 
2870 static int dm_post_suspending_md(struct mapped_device *md)
2871 {
2872 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2873 }
2874 
2875 int dm_suspended_internally_md(struct mapped_device *md)
2876 {
2877 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2878 }
2879 
2880 int dm_test_deferred_remove_flag(struct mapped_device *md)
2881 {
2882 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2883 }
2884 
2885 int dm_suspended(struct dm_target *ti)
2886 {
2887 	return dm_suspended_md(ti->table->md);
2888 }
2889 EXPORT_SYMBOL_GPL(dm_suspended);
2890 
2891 int dm_post_suspending(struct dm_target *ti)
2892 {
2893 	return dm_post_suspending_md(ti->table->md);
2894 }
2895 EXPORT_SYMBOL_GPL(dm_post_suspending);
2896 
2897 int dm_noflush_suspending(struct dm_target *ti)
2898 {
2899 	return __noflush_suspending(ti->table->md);
2900 }
2901 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2902 
2903 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2904 					    unsigned integrity, unsigned per_io_data_size,
2905 					    unsigned min_pool_size)
2906 {
2907 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2908 	unsigned int pool_size = 0;
2909 	unsigned int front_pad, io_front_pad;
2910 	int ret;
2911 
2912 	if (!pools)
2913 		return NULL;
2914 
2915 	switch (type) {
2916 	case DM_TYPE_BIO_BASED:
2917 	case DM_TYPE_DAX_BIO_BASED:
2918 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2919 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2920 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2921 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2922 		if (ret)
2923 			goto out;
2924 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2925 			goto out;
2926 		break;
2927 	case DM_TYPE_REQUEST_BASED:
2928 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2929 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2930 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2931 		break;
2932 	default:
2933 		BUG();
2934 	}
2935 
2936 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2937 	if (ret)
2938 		goto out;
2939 
2940 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2941 		goto out;
2942 
2943 	return pools;
2944 
2945 out:
2946 	dm_free_md_mempools(pools);
2947 
2948 	return NULL;
2949 }
2950 
2951 void dm_free_md_mempools(struct dm_md_mempools *pools)
2952 {
2953 	if (!pools)
2954 		return;
2955 
2956 	bioset_exit(&pools->bs);
2957 	bioset_exit(&pools->io_bs);
2958 
2959 	kfree(pools);
2960 }
2961 
2962 struct dm_pr {
2963 	u64	old_key;
2964 	u64	new_key;
2965 	u32	flags;
2966 	bool	fail_early;
2967 };
2968 
2969 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2970 		      void *data)
2971 {
2972 	struct mapped_device *md = bdev->bd_disk->private_data;
2973 	struct dm_table *table;
2974 	struct dm_target *ti;
2975 	int ret = -ENOTTY, srcu_idx;
2976 
2977 	table = dm_get_live_table(md, &srcu_idx);
2978 	if (!table || !dm_table_get_size(table))
2979 		goto out;
2980 
2981 	/* We only support devices that have a single target */
2982 	if (dm_table_get_num_targets(table) != 1)
2983 		goto out;
2984 	ti = dm_table_get_target(table, 0);
2985 
2986 	ret = -EINVAL;
2987 	if (!ti->type->iterate_devices)
2988 		goto out;
2989 
2990 	ret = ti->type->iterate_devices(ti, fn, data);
2991 out:
2992 	dm_put_live_table(md, srcu_idx);
2993 	return ret;
2994 }
2995 
2996 /*
2997  * For register / unregister we need to manually call out to every path.
2998  */
2999 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3000 			    sector_t start, sector_t len, void *data)
3001 {
3002 	struct dm_pr *pr = data;
3003 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3004 
3005 	if (!ops || !ops->pr_register)
3006 		return -EOPNOTSUPP;
3007 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3008 }
3009 
3010 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3011 			  u32 flags)
3012 {
3013 	struct dm_pr pr = {
3014 		.old_key	= old_key,
3015 		.new_key	= new_key,
3016 		.flags		= flags,
3017 		.fail_early	= true,
3018 	};
3019 	int ret;
3020 
3021 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3022 	if (ret && new_key) {
3023 		/* unregister all paths if we failed to register any path */
3024 		pr.old_key = new_key;
3025 		pr.new_key = 0;
3026 		pr.flags = 0;
3027 		pr.fail_early = false;
3028 		dm_call_pr(bdev, __dm_pr_register, &pr);
3029 	}
3030 
3031 	return ret;
3032 }
3033 
3034 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3035 			 u32 flags)
3036 {
3037 	struct mapped_device *md = bdev->bd_disk->private_data;
3038 	const struct pr_ops *ops;
3039 	int r, srcu_idx;
3040 
3041 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3042 	if (r < 0)
3043 		goto out;
3044 
3045 	ops = bdev->bd_disk->fops->pr_ops;
3046 	if (ops && ops->pr_reserve)
3047 		r = ops->pr_reserve(bdev, key, type, flags);
3048 	else
3049 		r = -EOPNOTSUPP;
3050 out:
3051 	dm_unprepare_ioctl(md, srcu_idx);
3052 	return r;
3053 }
3054 
3055 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3056 {
3057 	struct mapped_device *md = bdev->bd_disk->private_data;
3058 	const struct pr_ops *ops;
3059 	int r, srcu_idx;
3060 
3061 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3062 	if (r < 0)
3063 		goto out;
3064 
3065 	ops = bdev->bd_disk->fops->pr_ops;
3066 	if (ops && ops->pr_release)
3067 		r = ops->pr_release(bdev, key, type);
3068 	else
3069 		r = -EOPNOTSUPP;
3070 out:
3071 	dm_unprepare_ioctl(md, srcu_idx);
3072 	return r;
3073 }
3074 
3075 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3076 			 enum pr_type type, bool abort)
3077 {
3078 	struct mapped_device *md = bdev->bd_disk->private_data;
3079 	const struct pr_ops *ops;
3080 	int r, srcu_idx;
3081 
3082 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3083 	if (r < 0)
3084 		goto out;
3085 
3086 	ops = bdev->bd_disk->fops->pr_ops;
3087 	if (ops && ops->pr_preempt)
3088 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3089 	else
3090 		r = -EOPNOTSUPP;
3091 out:
3092 	dm_unprepare_ioctl(md, srcu_idx);
3093 	return r;
3094 }
3095 
3096 static int dm_pr_clear(struct block_device *bdev, u64 key)
3097 {
3098 	struct mapped_device *md = bdev->bd_disk->private_data;
3099 	const struct pr_ops *ops;
3100 	int r, srcu_idx;
3101 
3102 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3103 	if (r < 0)
3104 		goto out;
3105 
3106 	ops = bdev->bd_disk->fops->pr_ops;
3107 	if (ops && ops->pr_clear)
3108 		r = ops->pr_clear(bdev, key);
3109 	else
3110 		r = -EOPNOTSUPP;
3111 out:
3112 	dm_unprepare_ioctl(md, srcu_idx);
3113 	return r;
3114 }
3115 
3116 static const struct pr_ops dm_pr_ops = {
3117 	.pr_register	= dm_pr_register,
3118 	.pr_reserve	= dm_pr_reserve,
3119 	.pr_release	= dm_pr_release,
3120 	.pr_preempt	= dm_pr_preempt,
3121 	.pr_clear	= dm_pr_clear,
3122 };
3123 
3124 static const struct block_device_operations dm_blk_dops = {
3125 	.submit_bio = dm_submit_bio,
3126 	.poll_bio = dm_poll_bio,
3127 	.open = dm_blk_open,
3128 	.release = dm_blk_close,
3129 	.ioctl = dm_blk_ioctl,
3130 	.getgeo = dm_blk_getgeo,
3131 	.report_zones = dm_blk_report_zones,
3132 	.pr_ops = &dm_pr_ops,
3133 	.owner = THIS_MODULE
3134 };
3135 
3136 static const struct block_device_operations dm_rq_blk_dops = {
3137 	.open = dm_blk_open,
3138 	.release = dm_blk_close,
3139 	.ioctl = dm_blk_ioctl,
3140 	.getgeo = dm_blk_getgeo,
3141 	.pr_ops = &dm_pr_ops,
3142 	.owner = THIS_MODULE
3143 };
3144 
3145 static const struct dax_operations dm_dax_ops = {
3146 	.direct_access = dm_dax_direct_access,
3147 	.zero_page_range = dm_dax_zero_page_range,
3148 };
3149 
3150 /*
3151  * module hooks
3152  */
3153 module_init(dm_init);
3154 module_exit(dm_exit);
3155 
3156 module_param(major, uint, 0);
3157 MODULE_PARM_DESC(major, "The major number of the device mapper");
3158 
3159 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3160 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3161 
3162 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3163 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3164 
3165 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3166 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3167 
3168 MODULE_DESCRIPTION(DM_NAME " driver");
3169 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3170 MODULE_LICENSE("GPL");
3171