1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 /* 75 * One of these is allocated (on-stack) per original bio. 76 */ 77 struct clone_info { 78 struct dm_table *map; 79 struct bio *bio; 80 struct dm_io *io; 81 sector_t sector; 82 unsigned sector_count; 83 bool submit_as_polled; 84 }; 85 86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 87 #define DM_IO_BIO_OFFSET \ 88 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 89 90 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 91 { 92 return container_of(clone, struct dm_target_io, clone); 93 } 94 95 void *dm_per_bio_data(struct bio *bio, size_t data_size) 96 { 97 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 98 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 99 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 100 } 101 EXPORT_SYMBOL_GPL(dm_per_bio_data); 102 103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 104 { 105 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 106 if (io->magic == DM_IO_MAGIC) 107 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 108 BUG_ON(io->magic != DM_TIO_MAGIC); 109 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 110 } 111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 112 113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 114 { 115 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 116 } 117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 118 119 #define MINOR_ALLOCED ((void *)-1) 120 121 #define DM_NUMA_NODE NUMA_NO_NODE 122 static int dm_numa_node = DM_NUMA_NODE; 123 124 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 125 static int swap_bios = DEFAULT_SWAP_BIOS; 126 static int get_swap_bios(void) 127 { 128 int latch = READ_ONCE(swap_bios); 129 if (unlikely(latch <= 0)) 130 latch = DEFAULT_SWAP_BIOS; 131 return latch; 132 } 133 134 /* 135 * For mempools pre-allocation at the table loading time. 136 */ 137 struct dm_md_mempools { 138 struct bio_set bs; 139 struct bio_set io_bs; 140 }; 141 142 struct table_device { 143 struct list_head list; 144 refcount_t count; 145 struct dm_dev dm_dev; 146 }; 147 148 /* 149 * Bio-based DM's mempools' reserved IOs set by the user. 150 */ 151 #define RESERVED_BIO_BASED_IOS 16 152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 153 154 static int __dm_get_module_param_int(int *module_param, int min, int max) 155 { 156 int param = READ_ONCE(*module_param); 157 int modified_param = 0; 158 bool modified = true; 159 160 if (param < min) 161 modified_param = min; 162 else if (param > max) 163 modified_param = max; 164 else 165 modified = false; 166 167 if (modified) { 168 (void)cmpxchg(module_param, param, modified_param); 169 param = modified_param; 170 } 171 172 return param; 173 } 174 175 unsigned __dm_get_module_param(unsigned *module_param, 176 unsigned def, unsigned max) 177 { 178 unsigned param = READ_ONCE(*module_param); 179 unsigned modified_param = 0; 180 181 if (!param) 182 modified_param = def; 183 else if (param > max) 184 modified_param = max; 185 186 if (modified_param) { 187 (void)cmpxchg(module_param, param, modified_param); 188 param = modified_param; 189 } 190 191 return param; 192 } 193 194 unsigned dm_get_reserved_bio_based_ios(void) 195 { 196 return __dm_get_module_param(&reserved_bio_based_ios, 197 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 198 } 199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 200 201 static unsigned dm_get_numa_node(void) 202 { 203 return __dm_get_module_param_int(&dm_numa_node, 204 DM_NUMA_NODE, num_online_nodes() - 1); 205 } 206 207 static int __init local_init(void) 208 { 209 int r; 210 211 r = dm_uevent_init(); 212 if (r) 213 return r; 214 215 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 216 if (!deferred_remove_workqueue) { 217 r = -ENOMEM; 218 goto out_uevent_exit; 219 } 220 221 _major = major; 222 r = register_blkdev(_major, _name); 223 if (r < 0) 224 goto out_free_workqueue; 225 226 if (!_major) 227 _major = r; 228 229 return 0; 230 231 out_free_workqueue: 232 destroy_workqueue(deferred_remove_workqueue); 233 out_uevent_exit: 234 dm_uevent_exit(); 235 236 return r; 237 } 238 239 static void local_exit(void) 240 { 241 flush_scheduled_work(); 242 destroy_workqueue(deferred_remove_workqueue); 243 244 unregister_blkdev(_major, _name); 245 dm_uevent_exit(); 246 247 _major = 0; 248 249 DMINFO("cleaned up"); 250 } 251 252 static int (*_inits[])(void) __initdata = { 253 local_init, 254 dm_target_init, 255 dm_linear_init, 256 dm_stripe_init, 257 dm_io_init, 258 dm_kcopyd_init, 259 dm_interface_init, 260 dm_statistics_init, 261 }; 262 263 static void (*_exits[])(void) = { 264 local_exit, 265 dm_target_exit, 266 dm_linear_exit, 267 dm_stripe_exit, 268 dm_io_exit, 269 dm_kcopyd_exit, 270 dm_interface_exit, 271 dm_statistics_exit, 272 }; 273 274 static int __init dm_init(void) 275 { 276 const int count = ARRAY_SIZE(_inits); 277 int r, i; 278 279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 280 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 281 " Duplicate IMA measurements will not be recorded in the IMA log."); 282 #endif 283 284 for (i = 0; i < count; i++) { 285 r = _inits[i](); 286 if (r) 287 goto bad; 288 } 289 290 return 0; 291 bad: 292 while (i--) 293 _exits[i](); 294 295 return r; 296 } 297 298 static void __exit dm_exit(void) 299 { 300 int i = ARRAY_SIZE(_exits); 301 302 while (i--) 303 _exits[i](); 304 305 /* 306 * Should be empty by this point. 307 */ 308 idr_destroy(&_minor_idr); 309 } 310 311 /* 312 * Block device functions 313 */ 314 int dm_deleting_md(struct mapped_device *md) 315 { 316 return test_bit(DMF_DELETING, &md->flags); 317 } 318 319 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 320 { 321 struct mapped_device *md; 322 323 spin_lock(&_minor_lock); 324 325 md = bdev->bd_disk->private_data; 326 if (!md) 327 goto out; 328 329 if (test_bit(DMF_FREEING, &md->flags) || 330 dm_deleting_md(md)) { 331 md = NULL; 332 goto out; 333 } 334 335 dm_get(md); 336 atomic_inc(&md->open_count); 337 out: 338 spin_unlock(&_minor_lock); 339 340 return md ? 0 : -ENXIO; 341 } 342 343 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 344 { 345 struct mapped_device *md; 346 347 spin_lock(&_minor_lock); 348 349 md = disk->private_data; 350 if (WARN_ON(!md)) 351 goto out; 352 353 if (atomic_dec_and_test(&md->open_count) && 354 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 355 queue_work(deferred_remove_workqueue, &deferred_remove_work); 356 357 dm_put(md); 358 out: 359 spin_unlock(&_minor_lock); 360 } 361 362 int dm_open_count(struct mapped_device *md) 363 { 364 return atomic_read(&md->open_count); 365 } 366 367 /* 368 * Guarantees nothing is using the device before it's deleted. 369 */ 370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (dm_open_count(md)) { 377 r = -EBUSY; 378 if (mark_deferred) 379 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 381 r = -EEXIST; 382 else 383 set_bit(DMF_DELETING, &md->flags); 384 385 spin_unlock(&_minor_lock); 386 387 return r; 388 } 389 390 int dm_cancel_deferred_remove(struct mapped_device *md) 391 { 392 int r = 0; 393 394 spin_lock(&_minor_lock); 395 396 if (test_bit(DMF_DELETING, &md->flags)) 397 r = -EBUSY; 398 else 399 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 400 401 spin_unlock(&_minor_lock); 402 403 return r; 404 } 405 406 static void do_deferred_remove(struct work_struct *w) 407 { 408 dm_deferred_remove(); 409 } 410 411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 412 { 413 struct mapped_device *md = bdev->bd_disk->private_data; 414 415 return dm_get_geometry(md, geo); 416 } 417 418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 419 struct block_device **bdev) 420 { 421 struct dm_target *tgt; 422 struct dm_table *map; 423 int r; 424 425 retry: 426 r = -ENOTTY; 427 map = dm_get_live_table(md, srcu_idx); 428 if (!map || !dm_table_get_size(map)) 429 return r; 430 431 /* We only support devices that have a single target */ 432 if (dm_table_get_num_targets(map) != 1) 433 return r; 434 435 tgt = dm_table_get_target(map, 0); 436 if (!tgt->type->prepare_ioctl) 437 return r; 438 439 if (dm_suspended_md(md)) 440 return -EAGAIN; 441 442 r = tgt->type->prepare_ioctl(tgt, bdev); 443 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 444 dm_put_live_table(md, *srcu_idx); 445 msleep(10); 446 goto retry; 447 } 448 449 return r; 450 } 451 452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 453 { 454 dm_put_live_table(md, srcu_idx); 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r, srcu_idx; 462 463 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 464 if (r < 0) 465 goto out; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against a 470 * subset of the parent bdev; require extra privileges. 471 */ 472 if (!capable(CAP_SYS_RAWIO)) { 473 DMDEBUG_LIMIT( 474 "%s: sending ioctl %x to DM device without required privilege.", 475 current->comm, cmd); 476 r = -ENOIOCTLCMD; 477 goto out; 478 } 479 } 480 481 if (!bdev->bd_disk->fops->ioctl) 482 r = -ENOTTY; 483 else 484 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 485 out: 486 dm_unprepare_ioctl(md, srcu_idx); 487 return r; 488 } 489 490 u64 dm_start_time_ns_from_clone(struct bio *bio) 491 { 492 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 493 } 494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 495 496 static bool bio_is_flush_with_data(struct bio *bio) 497 { 498 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 499 } 500 501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio, 502 unsigned long start_time, struct dm_stats_aux *stats_aux) 503 { 504 bool is_flush_with_data; 505 unsigned int bi_size; 506 507 /* If REQ_PREFLUSH set save any payload but do not account it */ 508 is_flush_with_data = bio_is_flush_with_data(bio); 509 if (is_flush_with_data) { 510 bi_size = bio->bi_iter.bi_size; 511 bio->bi_iter.bi_size = 0; 512 } 513 514 if (!end) 515 bio_start_io_acct_time(bio, start_time); 516 else 517 bio_end_io_acct(bio, start_time); 518 519 if (unlikely(dm_stats_used(&md->stats))) 520 dm_stats_account_io(&md->stats, bio_data_dir(bio), 521 bio->bi_iter.bi_sector, bio_sectors(bio), 522 end, start_time, stats_aux); 523 524 /* Restore bio's payload so it does get accounted upon requeue */ 525 if (is_flush_with_data) 526 bio->bi_iter.bi_size = bi_size; 527 } 528 529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio) 530 { 531 dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux); 532 } 533 534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 535 { 536 /* Must account IO to DM device in terms of orig_bio */ 537 struct bio *bio = io->orig_bio; 538 539 /* 540 * Ensure IO accounting is only ever started once. 541 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. 542 */ 543 if (!clone || 544 likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) { 545 if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED))) 546 return; 547 dm_io_set_flag(io, DM_IO_ACCOUNTED); 548 } else { 549 unsigned long flags; 550 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 551 return; 552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 553 spin_lock_irqsave(&io->lock, flags); 554 dm_io_set_flag(io, DM_IO_ACCOUNTED); 555 spin_unlock_irqrestore(&io->lock, flags); 556 } 557 558 __dm_start_io_acct(io, bio); 559 } 560 561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio) 562 { 563 dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux); 564 } 565 566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 567 { 568 struct dm_io *io; 569 struct dm_target_io *tio; 570 struct bio *clone; 571 572 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 573 574 tio = clone_to_tio(clone); 575 tio->flags = 0; 576 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 577 tio->io = NULL; 578 579 io = container_of(tio, struct dm_io, tio); 580 io->magic = DM_IO_MAGIC; 581 io->status = 0; 582 atomic_set(&io->io_count, 1); 583 this_cpu_inc(*md->pending_io); 584 io->orig_bio = NULL; 585 io->md = md; 586 io->map_task = current; 587 spin_lock_init(&io->lock); 588 io->start_time = jiffies; 589 io->flags = 0; 590 591 dm_stats_record_start(&md->stats, &io->stats_aux); 592 593 return io; 594 } 595 596 static void free_io(struct dm_io *io) 597 { 598 bio_put(&io->tio.clone); 599 } 600 601 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 602 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 603 { 604 struct dm_target_io *tio; 605 struct bio *clone; 606 607 if (!ci->io->tio.io) { 608 /* the dm_target_io embedded in ci->io is available */ 609 tio = &ci->io->tio; 610 /* alloc_io() already initialized embedded clone */ 611 clone = &tio->clone; 612 } else { 613 clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 614 gfp_mask, &ci->io->md->bs); 615 if (!clone) 616 return NULL; 617 618 /* REQ_DM_POLL_LIST shouldn't be inherited */ 619 clone->bi_opf &= ~REQ_DM_POLL_LIST; 620 621 tio = clone_to_tio(clone); 622 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 623 } 624 625 tio->magic = DM_TIO_MAGIC; 626 tio->io = ci->io; 627 tio->ti = ti; 628 tio->target_bio_nr = target_bio_nr; 629 tio->len_ptr = len; 630 tio->old_sector = 0; 631 632 if (len) { 633 clone->bi_iter.bi_size = to_bytes(*len); 634 if (bio_integrity(clone)) 635 bio_integrity_trim(clone); 636 } 637 638 return clone; 639 } 640 641 static void free_tio(struct bio *clone) 642 { 643 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 644 return; 645 bio_put(clone); 646 } 647 648 /* 649 * Add the bio to the list of deferred io. 650 */ 651 static void queue_io(struct mapped_device *md, struct bio *bio) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&md->deferred_lock, flags); 656 bio_list_add(&md->deferred, bio); 657 spin_unlock_irqrestore(&md->deferred_lock, flags); 658 queue_work(md->wq, &md->work); 659 } 660 661 /* 662 * Everyone (including functions in this file), should use this 663 * function to access the md->map field, and make sure they call 664 * dm_put_live_table() when finished. 665 */ 666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 667 { 668 *srcu_idx = srcu_read_lock(&md->io_barrier); 669 670 return srcu_dereference(md->map, &md->io_barrier); 671 } 672 673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 674 { 675 srcu_read_unlock(&md->io_barrier, srcu_idx); 676 } 677 678 void dm_sync_table(struct mapped_device *md) 679 { 680 synchronize_srcu(&md->io_barrier); 681 synchronize_rcu_expedited(); 682 } 683 684 /* 685 * A fast alternative to dm_get_live_table/dm_put_live_table. 686 * The caller must not block between these two functions. 687 */ 688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 689 { 690 rcu_read_lock(); 691 return rcu_dereference(md->map); 692 } 693 694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 695 { 696 rcu_read_unlock(); 697 } 698 699 static char *_dm_claim_ptr = "I belong to device-mapper"; 700 701 /* 702 * Open a table device so we can use it as a map destination. 703 */ 704 static int open_table_device(struct table_device *td, dev_t dev, 705 struct mapped_device *md) 706 { 707 struct block_device *bdev; 708 u64 part_off; 709 int r; 710 711 BUG_ON(td->dm_dev.bdev); 712 713 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 714 if (IS_ERR(bdev)) 715 return PTR_ERR(bdev); 716 717 r = bd_link_disk_holder(bdev, dm_disk(md)); 718 if (r) { 719 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 720 return r; 721 } 722 723 td->dm_dev.bdev = bdev; 724 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 725 return 0; 726 } 727 728 /* 729 * Close a table device that we've been using. 730 */ 731 static void close_table_device(struct table_device *td, struct mapped_device *md) 732 { 733 if (!td->dm_dev.bdev) 734 return; 735 736 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 737 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 738 put_dax(td->dm_dev.dax_dev); 739 td->dm_dev.bdev = NULL; 740 td->dm_dev.dax_dev = NULL; 741 } 742 743 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 744 fmode_t mode) 745 { 746 struct table_device *td; 747 748 list_for_each_entry(td, l, list) 749 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 750 return td; 751 752 return NULL; 753 } 754 755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 756 struct dm_dev **result) 757 { 758 int r; 759 struct table_device *td; 760 761 mutex_lock(&md->table_devices_lock); 762 td = find_table_device(&md->table_devices, dev, mode); 763 if (!td) { 764 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 765 if (!td) { 766 mutex_unlock(&md->table_devices_lock); 767 return -ENOMEM; 768 } 769 770 td->dm_dev.mode = mode; 771 td->dm_dev.bdev = NULL; 772 773 if ((r = open_table_device(td, dev, md))) { 774 mutex_unlock(&md->table_devices_lock); 775 kfree(td); 776 return r; 777 } 778 779 format_dev_t(td->dm_dev.name, dev); 780 781 refcount_set(&td->count, 1); 782 list_add(&td->list, &md->table_devices); 783 } else { 784 refcount_inc(&td->count); 785 } 786 mutex_unlock(&md->table_devices_lock); 787 788 *result = &td->dm_dev; 789 return 0; 790 } 791 792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 793 { 794 struct table_device *td = container_of(d, struct table_device, dm_dev); 795 796 mutex_lock(&md->table_devices_lock); 797 if (refcount_dec_and_test(&td->count)) { 798 close_table_device(td, md); 799 list_del(&td->list); 800 kfree(td); 801 } 802 mutex_unlock(&md->table_devices_lock); 803 } 804 805 static void free_table_devices(struct list_head *devices) 806 { 807 struct list_head *tmp, *next; 808 809 list_for_each_safe(tmp, next, devices) { 810 struct table_device *td = list_entry(tmp, struct table_device, list); 811 812 DMWARN("dm_destroy: %s still exists with %d references", 813 td->dm_dev.name, refcount_read(&td->count)); 814 kfree(td); 815 } 816 } 817 818 /* 819 * Get the geometry associated with a dm device 820 */ 821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 822 { 823 *geo = md->geometry; 824 825 return 0; 826 } 827 828 /* 829 * Set the geometry of a device. 830 */ 831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 832 { 833 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 834 835 if (geo->start > sz) { 836 DMWARN("Start sector is beyond the geometry limits."); 837 return -EINVAL; 838 } 839 840 md->geometry = *geo; 841 842 return 0; 843 } 844 845 static int __noflush_suspending(struct mapped_device *md) 846 { 847 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 848 } 849 850 static void dm_io_complete(struct dm_io *io) 851 { 852 blk_status_t io_error; 853 struct mapped_device *md = io->md; 854 struct bio *bio = io->orig_bio; 855 856 if (io->status == BLK_STS_DM_REQUEUE) { 857 unsigned long flags; 858 /* 859 * Target requested pushing back the I/O. 860 */ 861 spin_lock_irqsave(&md->deferred_lock, flags); 862 if (__noflush_suspending(md) && 863 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 864 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 865 bio_list_add_head(&md->deferred, bio); 866 } else { 867 /* 868 * noflush suspend was interrupted or this is 869 * a write to a zoned target. 870 */ 871 io->status = BLK_STS_IOERR; 872 } 873 spin_unlock_irqrestore(&md->deferred_lock, flags); 874 } 875 876 io_error = io->status; 877 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 878 dm_end_io_acct(io, bio); 879 else if (!io_error) { 880 /* 881 * Must handle target that DM_MAPIO_SUBMITTED only to 882 * then bio_endio() rather than dm_submit_bio_remap() 883 */ 884 __dm_start_io_acct(io, bio); 885 dm_end_io_acct(io, bio); 886 } 887 free_io(io); 888 smp_wmb(); 889 this_cpu_dec(*md->pending_io); 890 891 /* nudge anyone waiting on suspend queue */ 892 if (unlikely(wq_has_sleeper(&md->wait))) 893 wake_up(&md->wait); 894 895 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 896 if (bio->bi_opf & REQ_POLLED) { 897 /* 898 * Upper layer won't help us poll split bio (io->orig_bio 899 * may only reflect a subset of the pre-split original) 900 * so clear REQ_POLLED in case of requeue. 901 */ 902 bio->bi_opf &= ~REQ_POLLED; 903 if (io_error == BLK_STS_AGAIN) { 904 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 905 queue_io(md, bio); 906 } 907 } 908 return; 909 } 910 911 if (bio_is_flush_with_data(bio)) { 912 /* 913 * Preflush done for flush with data, reissue 914 * without REQ_PREFLUSH. 915 */ 916 bio->bi_opf &= ~REQ_PREFLUSH; 917 queue_io(md, bio); 918 } else { 919 /* done with normal IO or empty flush */ 920 if (io_error) 921 bio->bi_status = io_error; 922 bio_endio(bio); 923 } 924 } 925 926 static inline bool dm_tio_is_normal(struct dm_target_io *tio) 927 { 928 return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) && 929 !dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 930 } 931 932 /* 933 * Decrements the number of outstanding ios that a bio has been 934 * cloned into, completing the original io if necc. 935 */ 936 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 937 { 938 /* Push-back supersedes any I/O errors */ 939 if (unlikely(error)) { 940 unsigned long flags; 941 spin_lock_irqsave(&io->lock, flags); 942 if (!(io->status == BLK_STS_DM_REQUEUE && 943 __noflush_suspending(io->md))) 944 io->status = error; 945 spin_unlock_irqrestore(&io->lock, flags); 946 } 947 948 if (atomic_dec_and_test(&io->io_count)) 949 dm_io_complete(io); 950 } 951 952 void disable_discard(struct mapped_device *md) 953 { 954 struct queue_limits *limits = dm_get_queue_limits(md); 955 956 /* device doesn't really support DISCARD, disable it */ 957 limits->max_discard_sectors = 0; 958 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 959 } 960 961 void disable_write_zeroes(struct mapped_device *md) 962 { 963 struct queue_limits *limits = dm_get_queue_limits(md); 964 965 /* device doesn't really support WRITE ZEROES, disable it */ 966 limits->max_write_zeroes_sectors = 0; 967 } 968 969 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 970 { 971 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 972 } 973 974 static void clone_endio(struct bio *bio) 975 { 976 blk_status_t error = bio->bi_status; 977 struct dm_target_io *tio = clone_to_tio(bio); 978 struct dm_io *io = tio->io; 979 struct mapped_device *md = tio->io->md; 980 dm_endio_fn endio = tio->ti->type->end_io; 981 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 982 983 if (unlikely(error == BLK_STS_TARGET)) { 984 if (bio_op(bio) == REQ_OP_DISCARD && 985 !q->limits.max_discard_sectors) 986 disable_discard(md); 987 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 988 !q->limits.max_write_zeroes_sectors) 989 disable_write_zeroes(md); 990 } 991 992 if (blk_queue_is_zoned(q)) 993 dm_zone_endio(io, bio); 994 995 if (endio) { 996 int r = endio(tio->ti, bio, &error); 997 switch (r) { 998 case DM_ENDIO_REQUEUE: 999 /* 1000 * Requeuing writes to a sequential zone of a zoned 1001 * target will break the sequential write pattern: 1002 * fail such IO. 1003 */ 1004 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1005 error = BLK_STS_IOERR; 1006 else 1007 error = BLK_STS_DM_REQUEUE; 1008 fallthrough; 1009 case DM_ENDIO_DONE: 1010 break; 1011 case DM_ENDIO_INCOMPLETE: 1012 /* The target will handle the io */ 1013 return; 1014 default: 1015 DMWARN("unimplemented target endio return value: %d", r); 1016 BUG(); 1017 } 1018 } 1019 1020 if (unlikely(swap_bios_limit(tio->ti, bio))) { 1021 struct mapped_device *md = io->md; 1022 up(&md->swap_bios_semaphore); 1023 } 1024 1025 free_tio(bio); 1026 dm_io_dec_pending(io, error); 1027 } 1028 1029 /* 1030 * Return maximum size of I/O possible at the supplied sector up to the current 1031 * target boundary. 1032 */ 1033 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1034 sector_t target_offset) 1035 { 1036 return ti->len - target_offset; 1037 } 1038 1039 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1040 { 1041 sector_t target_offset = dm_target_offset(ti, sector); 1042 sector_t len = max_io_len_target_boundary(ti, target_offset); 1043 sector_t max_len; 1044 1045 /* 1046 * Does the target need to split IO even further? 1047 * - varied (per target) IO splitting is a tenet of DM; this 1048 * explains why stacked chunk_sectors based splitting via 1049 * blk_max_size_offset() isn't possible here. So pass in 1050 * ti->max_io_len to override stacked chunk_sectors. 1051 */ 1052 if (ti->max_io_len) { 1053 max_len = blk_max_size_offset(ti->table->md->queue, 1054 target_offset, ti->max_io_len); 1055 if (len > max_len) 1056 len = max_len; 1057 } 1058 1059 return len; 1060 } 1061 1062 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1063 { 1064 if (len > UINT_MAX) { 1065 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1066 (unsigned long long)len, UINT_MAX); 1067 ti->error = "Maximum size of target IO is too large"; 1068 return -EINVAL; 1069 } 1070 1071 ti->max_io_len = (uint32_t) len; 1072 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1076 1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1078 sector_t sector, int *srcu_idx) 1079 __acquires(md->io_barrier) 1080 { 1081 struct dm_table *map; 1082 struct dm_target *ti; 1083 1084 map = dm_get_live_table(md, srcu_idx); 1085 if (!map) 1086 return NULL; 1087 1088 ti = dm_table_find_target(map, sector); 1089 if (!ti) 1090 return NULL; 1091 1092 return ti; 1093 } 1094 1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1096 long nr_pages, void **kaddr, pfn_t *pfn) 1097 { 1098 struct mapped_device *md = dax_get_private(dax_dev); 1099 sector_t sector = pgoff * PAGE_SECTORS; 1100 struct dm_target *ti; 1101 long len, ret = -EIO; 1102 int srcu_idx; 1103 1104 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1105 1106 if (!ti) 1107 goto out; 1108 if (!ti->type->direct_access) 1109 goto out; 1110 len = max_io_len(ti, sector) / PAGE_SECTORS; 1111 if (len < 1) 1112 goto out; 1113 nr_pages = min(len, nr_pages); 1114 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1115 1116 out: 1117 dm_put_live_table(md, srcu_idx); 1118 1119 return ret; 1120 } 1121 1122 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1123 size_t nr_pages) 1124 { 1125 struct mapped_device *md = dax_get_private(dax_dev); 1126 sector_t sector = pgoff * PAGE_SECTORS; 1127 struct dm_target *ti; 1128 int ret = -EIO; 1129 int srcu_idx; 1130 1131 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1132 1133 if (!ti) 1134 goto out; 1135 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1136 /* 1137 * ->zero_page_range() is mandatory dax operation. If we are 1138 * here, something is wrong. 1139 */ 1140 goto out; 1141 } 1142 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1143 out: 1144 dm_put_live_table(md, srcu_idx); 1145 1146 return ret; 1147 } 1148 1149 /* 1150 * A target may call dm_accept_partial_bio only from the map routine. It is 1151 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1152 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1153 * __send_duplicate_bios(). 1154 * 1155 * dm_accept_partial_bio informs the dm that the target only wants to process 1156 * additional n_sectors sectors of the bio and the rest of the data should be 1157 * sent in a next bio. 1158 * 1159 * A diagram that explains the arithmetics: 1160 * +--------------------+---------------+-------+ 1161 * | 1 | 2 | 3 | 1162 * +--------------------+---------------+-------+ 1163 * 1164 * <-------------- *tio->len_ptr ---------------> 1165 * <------- bi_size -------> 1166 * <-- n_sectors --> 1167 * 1168 * Region 1 was already iterated over with bio_advance or similar function. 1169 * (it may be empty if the target doesn't use bio_advance) 1170 * Region 2 is the remaining bio size that the target wants to process. 1171 * (it may be empty if region 1 is non-empty, although there is no reason 1172 * to make it empty) 1173 * The target requires that region 3 is to be sent in the next bio. 1174 * 1175 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1176 * the partially processed part (the sum of regions 1+2) must be the same for all 1177 * copies of the bio. 1178 */ 1179 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1180 { 1181 struct dm_target_io *tio = clone_to_tio(bio); 1182 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1183 1184 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1185 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1186 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1187 BUG_ON(bi_size > *tio->len_ptr); 1188 BUG_ON(n_sectors > bi_size); 1189 1190 *tio->len_ptr -= bi_size - n_sectors; 1191 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1192 } 1193 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1194 1195 static inline void __dm_submit_bio_remap(struct bio *clone, 1196 dev_t dev, sector_t old_sector) 1197 { 1198 trace_block_bio_remap(clone, dev, old_sector); 1199 submit_bio_noacct(clone); 1200 } 1201 1202 /* 1203 * @clone: clone bio that DM core passed to target's .map function 1204 * @tgt_clone: clone of @clone bio that target needs submitted 1205 * 1206 * Targets should use this interface to submit bios they take 1207 * ownership of when returning DM_MAPIO_SUBMITTED. 1208 * 1209 * Target should also enable ti->accounts_remapped_io 1210 */ 1211 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1212 { 1213 struct dm_target_io *tio = clone_to_tio(clone); 1214 struct dm_io *io = tio->io; 1215 1216 WARN_ON_ONCE(!tio->ti->accounts_remapped_io); 1217 1218 /* establish bio that will get submitted */ 1219 if (!tgt_clone) 1220 tgt_clone = clone; 1221 1222 /* 1223 * Account io->origin_bio to DM dev on behalf of target 1224 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1225 */ 1226 if (io->map_task == current) { 1227 /* Still in target's map function */ 1228 dm_io_set_flag(io, DM_IO_START_ACCT); 1229 } else { 1230 /* 1231 * Called by another thread, managed by DM target, 1232 * wait for dm_split_and_process_bio() to store 1233 * io->orig_bio 1234 */ 1235 while (unlikely(!smp_load_acquire(&io->orig_bio))) 1236 msleep(1); 1237 dm_start_io_acct(io, clone); 1238 } 1239 1240 __dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk), 1241 tio->old_sector); 1242 } 1243 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1244 1245 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1246 { 1247 mutex_lock(&md->swap_bios_lock); 1248 while (latch < md->swap_bios) { 1249 cond_resched(); 1250 down(&md->swap_bios_semaphore); 1251 md->swap_bios--; 1252 } 1253 while (latch > md->swap_bios) { 1254 cond_resched(); 1255 up(&md->swap_bios_semaphore); 1256 md->swap_bios++; 1257 } 1258 mutex_unlock(&md->swap_bios_lock); 1259 } 1260 1261 static void __map_bio(struct bio *clone) 1262 { 1263 struct dm_target_io *tio = clone_to_tio(clone); 1264 int r; 1265 struct dm_io *io = tio->io; 1266 struct dm_target *ti = tio->ti; 1267 1268 clone->bi_end_io = clone_endio; 1269 1270 /* 1271 * Map the clone. 1272 */ 1273 dm_io_inc_pending(io); 1274 tio->old_sector = clone->bi_iter.bi_sector; 1275 1276 if (unlikely(swap_bios_limit(ti, clone))) { 1277 struct mapped_device *md = io->md; 1278 int latch = get_swap_bios(); 1279 if (unlikely(latch != md->swap_bios)) 1280 __set_swap_bios_limit(md, latch); 1281 down(&md->swap_bios_semaphore); 1282 } 1283 1284 /* 1285 * Check if the IO needs a special mapping due to zone append emulation 1286 * on zoned target. In this case, dm_zone_map_bio() calls the target 1287 * map operation. 1288 */ 1289 if (dm_emulate_zone_append(io->md)) 1290 r = dm_zone_map_bio(tio); 1291 else 1292 r = ti->type->map(ti, clone); 1293 1294 switch (r) { 1295 case DM_MAPIO_SUBMITTED: 1296 /* target has assumed ownership of this io */ 1297 if (!ti->accounts_remapped_io) 1298 dm_io_set_flag(io, DM_IO_START_ACCT); 1299 break; 1300 case DM_MAPIO_REMAPPED: 1301 /* 1302 * the bio has been remapped so dispatch it, but defer 1303 * dm_start_io_acct() until after possible bio_split(). 1304 */ 1305 __dm_submit_bio_remap(clone, disk_devt(io->md->disk), 1306 tio->old_sector); 1307 dm_io_set_flag(io, DM_IO_START_ACCT); 1308 break; 1309 case DM_MAPIO_KILL: 1310 case DM_MAPIO_REQUEUE: 1311 if (unlikely(swap_bios_limit(ti, clone))) 1312 up(&io->md->swap_bios_semaphore); 1313 free_tio(clone); 1314 if (r == DM_MAPIO_KILL) 1315 dm_io_dec_pending(io, BLK_STS_IOERR); 1316 else 1317 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1318 break; 1319 default: 1320 DMWARN("unimplemented target map return value: %d", r); 1321 BUG(); 1322 } 1323 } 1324 1325 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1326 struct dm_target *ti, unsigned num_bios) 1327 { 1328 struct bio *bio; 1329 int try; 1330 1331 for (try = 0; try < 2; try++) { 1332 int bio_nr; 1333 1334 if (try) 1335 mutex_lock(&ci->io->md->table_devices_lock); 1336 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1337 bio = alloc_tio(ci, ti, bio_nr, NULL, 1338 try ? GFP_NOIO : GFP_NOWAIT); 1339 if (!bio) 1340 break; 1341 1342 bio_list_add(blist, bio); 1343 } 1344 if (try) 1345 mutex_unlock(&ci->io->md->table_devices_lock); 1346 if (bio_nr == num_bios) 1347 return; 1348 1349 while ((bio = bio_list_pop(blist))) 1350 free_tio(bio); 1351 } 1352 } 1353 1354 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1355 unsigned num_bios, unsigned *len) 1356 { 1357 struct bio_list blist = BIO_EMPTY_LIST; 1358 struct bio *clone; 1359 1360 switch (num_bios) { 1361 case 0: 1362 break; 1363 case 1: 1364 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1365 __map_bio(clone); 1366 break; 1367 default: 1368 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1369 alloc_multiple_bios(&blist, ci, ti, num_bios); 1370 while ((clone = bio_list_pop(&blist))) { 1371 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1372 __map_bio(clone); 1373 } 1374 break; 1375 } 1376 } 1377 1378 static void __send_empty_flush(struct clone_info *ci) 1379 { 1380 unsigned target_nr = 0; 1381 struct dm_target *ti; 1382 struct bio flush_bio; 1383 1384 /* 1385 * Use an on-stack bio for this, it's safe since we don't 1386 * need to reference it after submit. It's just used as 1387 * the basis for the clone(s). 1388 */ 1389 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1390 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1391 1392 ci->bio = &flush_bio; 1393 ci->sector_count = 0; 1394 ci->io->tio.clone.bi_iter.bi_size = 0; 1395 1396 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1397 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1398 1399 bio_uninit(ci->bio); 1400 } 1401 1402 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1403 unsigned num_bios) 1404 { 1405 unsigned len; 1406 1407 len = min_t(sector_t, ci->sector_count, 1408 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1409 1410 __send_duplicate_bios(ci, ti, num_bios, &len); 1411 1412 ci->sector += len; 1413 ci->sector_count -= len; 1414 } 1415 1416 static bool is_abnormal_io(struct bio *bio) 1417 { 1418 bool r = false; 1419 1420 switch (bio_op(bio)) { 1421 case REQ_OP_DISCARD: 1422 case REQ_OP_SECURE_ERASE: 1423 case REQ_OP_WRITE_ZEROES: 1424 r = true; 1425 break; 1426 } 1427 1428 return r; 1429 } 1430 1431 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1432 int *result) 1433 { 1434 unsigned num_bios = 0; 1435 1436 switch (bio_op(ci->bio)) { 1437 case REQ_OP_DISCARD: 1438 num_bios = ti->num_discard_bios; 1439 break; 1440 case REQ_OP_SECURE_ERASE: 1441 num_bios = ti->num_secure_erase_bios; 1442 break; 1443 case REQ_OP_WRITE_ZEROES: 1444 num_bios = ti->num_write_zeroes_bios; 1445 break; 1446 default: 1447 return false; 1448 } 1449 1450 /* 1451 * Even though the device advertised support for this type of 1452 * request, that does not mean every target supports it, and 1453 * reconfiguration might also have changed that since the 1454 * check was performed. 1455 */ 1456 if (!num_bios) 1457 *result = -EOPNOTSUPP; 1458 else { 1459 __send_changing_extent_only(ci, ti, num_bios); 1460 *result = 0; 1461 } 1462 return true; 1463 } 1464 1465 /* 1466 * Reuse ->bi_private as hlist head for storing all dm_io instances 1467 * associated with this bio, and this bio's bi_private needs to be 1468 * stored in dm_io->data before the reuse. 1469 * 1470 * bio->bi_private is owned by fs or upper layer, so block layer won't 1471 * touch it after splitting. Meantime it won't be changed by anyone after 1472 * bio is submitted. So this reuse is safe. 1473 */ 1474 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio) 1475 { 1476 return (struct hlist_head *)&bio->bi_private; 1477 } 1478 1479 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1480 { 1481 struct hlist_head *head = dm_get_bio_hlist_head(bio); 1482 1483 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1484 bio->bi_opf |= REQ_DM_POLL_LIST; 1485 /* 1486 * Save .bi_private into dm_io, so that we can reuse 1487 * .bi_private as hlist head for storing dm_io list 1488 */ 1489 io->data = bio->bi_private; 1490 1491 INIT_HLIST_HEAD(head); 1492 1493 /* tell block layer to poll for completion */ 1494 bio->bi_cookie = ~BLK_QC_T_NONE; 1495 } else { 1496 /* 1497 * bio recursed due to split, reuse original poll list, 1498 * and save bio->bi_private too. 1499 */ 1500 io->data = hlist_entry(head->first, struct dm_io, node)->data; 1501 } 1502 1503 hlist_add_head(&io->node, head); 1504 } 1505 1506 /* 1507 * Select the correct strategy for processing a non-flush bio. 1508 */ 1509 static int __split_and_process_bio(struct clone_info *ci) 1510 { 1511 struct bio *clone; 1512 struct dm_target *ti; 1513 unsigned len; 1514 int r; 1515 1516 ti = dm_table_find_target(ci->map, ci->sector); 1517 if (!ti) 1518 return -EIO; 1519 1520 if (__process_abnormal_io(ci, ti, &r)) 1521 return r; 1522 1523 /* 1524 * Only support bio polling for normal IO, and the target io is 1525 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1526 */ 1527 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1528 1529 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1530 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1531 __map_bio(clone); 1532 1533 ci->sector += len; 1534 ci->sector_count -= len; 1535 1536 return 0; 1537 } 1538 1539 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1540 struct dm_table *map, struct bio *bio) 1541 { 1542 ci->map = map; 1543 ci->io = alloc_io(md, bio); 1544 ci->bio = bio; 1545 ci->submit_as_polled = false; 1546 ci->sector = bio->bi_iter.bi_sector; 1547 ci->sector_count = bio_sectors(bio); 1548 1549 /* Shouldn't happen but sector_count was being set to 0 so... */ 1550 if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1551 ci->sector_count = 0; 1552 } 1553 1554 /* 1555 * Entry point to split a bio into clones and submit them to the targets. 1556 */ 1557 static void dm_split_and_process_bio(struct mapped_device *md, 1558 struct dm_table *map, struct bio *bio) 1559 { 1560 struct clone_info ci; 1561 struct bio *orig_bio = NULL; 1562 int error = 0; 1563 1564 init_clone_info(&ci, md, map, bio); 1565 1566 if (bio->bi_opf & REQ_PREFLUSH) { 1567 __send_empty_flush(&ci); 1568 /* dm_io_complete submits any data associated with flush */ 1569 goto out; 1570 } 1571 1572 error = __split_and_process_bio(&ci); 1573 ci.io->map_task = NULL; 1574 if (error || !ci.sector_count) 1575 goto out; 1576 1577 /* 1578 * Remainder must be passed to submit_bio_noacct() so it gets handled 1579 * *after* bios already submitted have been completely processed. 1580 * We take a clone of the original to store in ci.io->orig_bio to be 1581 * used by dm_end_io_acct() and for dm_io_complete() to use for 1582 * completion handling. 1583 */ 1584 orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1585 GFP_NOIO, &md->queue->bio_split); 1586 bio_chain(orig_bio, bio); 1587 trace_block_split(orig_bio, bio->bi_iter.bi_sector); 1588 submit_bio_noacct(bio); 1589 out: 1590 if (!orig_bio) 1591 orig_bio = bio; 1592 smp_store_release(&ci.io->orig_bio, orig_bio); 1593 if (dm_io_flagged(ci.io, DM_IO_START_ACCT)) 1594 dm_start_io_acct(ci.io, NULL); 1595 1596 /* 1597 * Drop the extra reference count for non-POLLED bio, and hold one 1598 * reference for POLLED bio, which will be released in dm_poll_bio 1599 * 1600 * Add every dm_io instance into the hlist_head which is stored in 1601 * bio->bi_private, so that dm_poll_bio can poll them all. 1602 */ 1603 if (error || !ci.submit_as_polled) 1604 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1605 else 1606 dm_queue_poll_io(bio, ci.io); 1607 } 1608 1609 static void dm_submit_bio(struct bio *bio) 1610 { 1611 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1612 int srcu_idx; 1613 struct dm_table *map; 1614 1615 map = dm_get_live_table(md, &srcu_idx); 1616 1617 /* If suspended, or map not yet available, queue this IO for later */ 1618 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1619 unlikely(!map)) { 1620 if (bio->bi_opf & REQ_NOWAIT) 1621 bio_wouldblock_error(bio); 1622 else if (bio->bi_opf & REQ_RAHEAD) 1623 bio_io_error(bio); 1624 else 1625 queue_io(md, bio); 1626 goto out; 1627 } 1628 1629 /* 1630 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1631 * otherwise associated queue_limits won't be imposed. 1632 */ 1633 if (is_abnormal_io(bio)) 1634 blk_queue_split(&bio); 1635 1636 dm_split_and_process_bio(md, map, bio); 1637 out: 1638 dm_put_live_table(md, srcu_idx); 1639 } 1640 1641 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1642 unsigned int flags) 1643 { 1644 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1645 1646 /* don't poll if the mapped io is done */ 1647 if (atomic_read(&io->io_count) > 1) 1648 bio_poll(&io->tio.clone, iob, flags); 1649 1650 /* bio_poll holds the last reference */ 1651 return atomic_read(&io->io_count) == 1; 1652 } 1653 1654 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1655 unsigned int flags) 1656 { 1657 struct hlist_head *head = dm_get_bio_hlist_head(bio); 1658 struct hlist_head tmp = HLIST_HEAD_INIT; 1659 struct hlist_node *next; 1660 struct dm_io *io; 1661 1662 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1663 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1664 return 0; 1665 1666 WARN_ON_ONCE(hlist_empty(head)); 1667 1668 hlist_move_list(head, &tmp); 1669 1670 /* 1671 * Restore .bi_private before possibly completing dm_io. 1672 * 1673 * bio_poll() is only possible once @bio has been completely 1674 * submitted via submit_bio_noacct()'s depth-first submission. 1675 * So there is no dm_queue_poll_io() race associated with 1676 * clearing REQ_DM_POLL_LIST here. 1677 */ 1678 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1679 bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data; 1680 1681 hlist_for_each_entry_safe(io, next, &tmp, node) { 1682 if (dm_poll_dm_io(io, iob, flags)) { 1683 hlist_del_init(&io->node); 1684 /* 1685 * clone_endio() has already occurred, so passing 1686 * error as 0 here doesn't override io->status 1687 */ 1688 dm_io_dec_pending(io, 0); 1689 } 1690 } 1691 1692 /* Not done? */ 1693 if (!hlist_empty(&tmp)) { 1694 bio->bi_opf |= REQ_DM_POLL_LIST; 1695 /* Reset bio->bi_private to dm_io list head */ 1696 hlist_move_list(&tmp, head); 1697 return 0; 1698 } 1699 return 1; 1700 } 1701 1702 /*----------------------------------------------------------------- 1703 * An IDR is used to keep track of allocated minor numbers. 1704 *---------------------------------------------------------------*/ 1705 static void free_minor(int minor) 1706 { 1707 spin_lock(&_minor_lock); 1708 idr_remove(&_minor_idr, minor); 1709 spin_unlock(&_minor_lock); 1710 } 1711 1712 /* 1713 * See if the device with a specific minor # is free. 1714 */ 1715 static int specific_minor(int minor) 1716 { 1717 int r; 1718 1719 if (minor >= (1 << MINORBITS)) 1720 return -EINVAL; 1721 1722 idr_preload(GFP_KERNEL); 1723 spin_lock(&_minor_lock); 1724 1725 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1726 1727 spin_unlock(&_minor_lock); 1728 idr_preload_end(); 1729 if (r < 0) 1730 return r == -ENOSPC ? -EBUSY : r; 1731 return 0; 1732 } 1733 1734 static int next_free_minor(int *minor) 1735 { 1736 int r; 1737 1738 idr_preload(GFP_KERNEL); 1739 spin_lock(&_minor_lock); 1740 1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1742 1743 spin_unlock(&_minor_lock); 1744 idr_preload_end(); 1745 if (r < 0) 1746 return r; 1747 *minor = r; 1748 return 0; 1749 } 1750 1751 static const struct block_device_operations dm_blk_dops; 1752 static const struct block_device_operations dm_rq_blk_dops; 1753 static const struct dax_operations dm_dax_ops; 1754 1755 static void dm_wq_work(struct work_struct *work); 1756 1757 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1758 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1759 { 1760 dm_destroy_crypto_profile(q->crypto_profile); 1761 } 1762 1763 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1764 1765 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1766 { 1767 } 1768 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1769 1770 static void cleanup_mapped_device(struct mapped_device *md) 1771 { 1772 if (md->wq) 1773 destroy_workqueue(md->wq); 1774 bioset_exit(&md->bs); 1775 bioset_exit(&md->io_bs); 1776 1777 if (md->dax_dev) { 1778 dax_remove_host(md->disk); 1779 kill_dax(md->dax_dev); 1780 put_dax(md->dax_dev); 1781 md->dax_dev = NULL; 1782 } 1783 1784 dm_cleanup_zoned_dev(md); 1785 if (md->disk) { 1786 spin_lock(&_minor_lock); 1787 md->disk->private_data = NULL; 1788 spin_unlock(&_minor_lock); 1789 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1790 dm_sysfs_exit(md); 1791 del_gendisk(md->disk); 1792 } 1793 dm_queue_destroy_crypto_profile(md->queue); 1794 blk_cleanup_disk(md->disk); 1795 } 1796 1797 if (md->pending_io) { 1798 free_percpu(md->pending_io); 1799 md->pending_io = NULL; 1800 } 1801 1802 cleanup_srcu_struct(&md->io_barrier); 1803 1804 mutex_destroy(&md->suspend_lock); 1805 mutex_destroy(&md->type_lock); 1806 mutex_destroy(&md->table_devices_lock); 1807 mutex_destroy(&md->swap_bios_lock); 1808 1809 dm_mq_cleanup_mapped_device(md); 1810 } 1811 1812 /* 1813 * Allocate and initialise a blank device with a given minor. 1814 */ 1815 static struct mapped_device *alloc_dev(int minor) 1816 { 1817 int r, numa_node_id = dm_get_numa_node(); 1818 struct mapped_device *md; 1819 void *old_md; 1820 1821 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1822 if (!md) { 1823 DMWARN("unable to allocate device, out of memory."); 1824 return NULL; 1825 } 1826 1827 if (!try_module_get(THIS_MODULE)) 1828 goto bad_module_get; 1829 1830 /* get a minor number for the dev */ 1831 if (minor == DM_ANY_MINOR) 1832 r = next_free_minor(&minor); 1833 else 1834 r = specific_minor(minor); 1835 if (r < 0) 1836 goto bad_minor; 1837 1838 r = init_srcu_struct(&md->io_barrier); 1839 if (r < 0) 1840 goto bad_io_barrier; 1841 1842 md->numa_node_id = numa_node_id; 1843 md->init_tio_pdu = false; 1844 md->type = DM_TYPE_NONE; 1845 mutex_init(&md->suspend_lock); 1846 mutex_init(&md->type_lock); 1847 mutex_init(&md->table_devices_lock); 1848 spin_lock_init(&md->deferred_lock); 1849 atomic_set(&md->holders, 1); 1850 atomic_set(&md->open_count, 0); 1851 atomic_set(&md->event_nr, 0); 1852 atomic_set(&md->uevent_seq, 0); 1853 INIT_LIST_HEAD(&md->uevent_list); 1854 INIT_LIST_HEAD(&md->table_devices); 1855 spin_lock_init(&md->uevent_lock); 1856 1857 /* 1858 * default to bio-based until DM table is loaded and md->type 1859 * established. If request-based table is loaded: blk-mq will 1860 * override accordingly. 1861 */ 1862 md->disk = blk_alloc_disk(md->numa_node_id); 1863 if (!md->disk) 1864 goto bad; 1865 md->queue = md->disk->queue; 1866 1867 init_waitqueue_head(&md->wait); 1868 INIT_WORK(&md->work, dm_wq_work); 1869 init_waitqueue_head(&md->eventq); 1870 init_completion(&md->kobj_holder.completion); 1871 1872 md->swap_bios = get_swap_bios(); 1873 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1874 mutex_init(&md->swap_bios_lock); 1875 1876 md->disk->major = _major; 1877 md->disk->first_minor = minor; 1878 md->disk->minors = 1; 1879 md->disk->flags |= GENHD_FL_NO_PART; 1880 md->disk->fops = &dm_blk_dops; 1881 md->disk->queue = md->queue; 1882 md->disk->private_data = md; 1883 sprintf(md->disk->disk_name, "dm-%d", minor); 1884 1885 if (IS_ENABLED(CONFIG_FS_DAX)) { 1886 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1887 if (IS_ERR(md->dax_dev)) { 1888 md->dax_dev = NULL; 1889 goto bad; 1890 } 1891 set_dax_nocache(md->dax_dev); 1892 set_dax_nomc(md->dax_dev); 1893 if (dax_add_host(md->dax_dev, md->disk)) 1894 goto bad; 1895 } 1896 1897 format_dev_t(md->name, MKDEV(_major, minor)); 1898 1899 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1900 if (!md->wq) 1901 goto bad; 1902 1903 md->pending_io = alloc_percpu(unsigned long); 1904 if (!md->pending_io) 1905 goto bad; 1906 1907 dm_stats_init(&md->stats); 1908 1909 /* Populate the mapping, nobody knows we exist yet */ 1910 spin_lock(&_minor_lock); 1911 old_md = idr_replace(&_minor_idr, md, minor); 1912 spin_unlock(&_minor_lock); 1913 1914 BUG_ON(old_md != MINOR_ALLOCED); 1915 1916 return md; 1917 1918 bad: 1919 cleanup_mapped_device(md); 1920 bad_io_barrier: 1921 free_minor(minor); 1922 bad_minor: 1923 module_put(THIS_MODULE); 1924 bad_module_get: 1925 kvfree(md); 1926 return NULL; 1927 } 1928 1929 static void unlock_fs(struct mapped_device *md); 1930 1931 static void free_dev(struct mapped_device *md) 1932 { 1933 int minor = MINOR(disk_devt(md->disk)); 1934 1935 unlock_fs(md); 1936 1937 cleanup_mapped_device(md); 1938 1939 free_table_devices(&md->table_devices); 1940 dm_stats_cleanup(&md->stats); 1941 free_minor(minor); 1942 1943 module_put(THIS_MODULE); 1944 kvfree(md); 1945 } 1946 1947 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1948 { 1949 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1950 int ret = 0; 1951 1952 if (dm_table_bio_based(t)) { 1953 /* 1954 * The md may already have mempools that need changing. 1955 * If so, reload bioset because front_pad may have changed 1956 * because a different table was loaded. 1957 */ 1958 bioset_exit(&md->bs); 1959 bioset_exit(&md->io_bs); 1960 1961 } else if (bioset_initialized(&md->bs)) { 1962 /* 1963 * There's no need to reload with request-based dm 1964 * because the size of front_pad doesn't change. 1965 * Note for future: If you are to reload bioset, 1966 * prep-ed requests in the queue may refer 1967 * to bio from the old bioset, so you must walk 1968 * through the queue to unprep. 1969 */ 1970 goto out; 1971 } 1972 1973 BUG_ON(!p || 1974 bioset_initialized(&md->bs) || 1975 bioset_initialized(&md->io_bs)); 1976 1977 ret = bioset_init_from_src(&md->bs, &p->bs); 1978 if (ret) 1979 goto out; 1980 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1981 if (ret) 1982 bioset_exit(&md->bs); 1983 out: 1984 /* mempool bind completed, no longer need any mempools in the table */ 1985 dm_table_free_md_mempools(t); 1986 return ret; 1987 } 1988 1989 /* 1990 * Bind a table to the device. 1991 */ 1992 static void event_callback(void *context) 1993 { 1994 unsigned long flags; 1995 LIST_HEAD(uevents); 1996 struct mapped_device *md = (struct mapped_device *) context; 1997 1998 spin_lock_irqsave(&md->uevent_lock, flags); 1999 list_splice_init(&md->uevent_list, &uevents); 2000 spin_unlock_irqrestore(&md->uevent_lock, flags); 2001 2002 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2003 2004 atomic_inc(&md->event_nr); 2005 wake_up(&md->eventq); 2006 dm_issue_global_event(); 2007 } 2008 2009 /* 2010 * Returns old map, which caller must destroy. 2011 */ 2012 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2013 struct queue_limits *limits) 2014 { 2015 struct dm_table *old_map; 2016 sector_t size; 2017 int ret; 2018 2019 lockdep_assert_held(&md->suspend_lock); 2020 2021 size = dm_table_get_size(t); 2022 2023 /* 2024 * Wipe any geometry if the size of the table changed. 2025 */ 2026 if (size != dm_get_size(md)) 2027 memset(&md->geometry, 0, sizeof(md->geometry)); 2028 2029 if (!get_capacity(md->disk)) 2030 set_capacity(md->disk, size); 2031 else 2032 set_capacity_and_notify(md->disk, size); 2033 2034 dm_table_event_callback(t, event_callback, md); 2035 2036 if (dm_table_request_based(t)) { 2037 /* 2038 * Leverage the fact that request-based DM targets are 2039 * immutable singletons - used to optimize dm_mq_queue_rq. 2040 */ 2041 md->immutable_target = dm_table_get_immutable_target(t); 2042 } 2043 2044 ret = __bind_mempools(md, t); 2045 if (ret) { 2046 old_map = ERR_PTR(ret); 2047 goto out; 2048 } 2049 2050 ret = dm_table_set_restrictions(t, md->queue, limits); 2051 if (ret) { 2052 old_map = ERR_PTR(ret); 2053 goto out; 2054 } 2055 2056 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2057 rcu_assign_pointer(md->map, (void *)t); 2058 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2059 2060 if (old_map) 2061 dm_sync_table(md); 2062 out: 2063 return old_map; 2064 } 2065 2066 /* 2067 * Returns unbound table for the caller to free. 2068 */ 2069 static struct dm_table *__unbind(struct mapped_device *md) 2070 { 2071 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2072 2073 if (!map) 2074 return NULL; 2075 2076 dm_table_event_callback(map, NULL, NULL); 2077 RCU_INIT_POINTER(md->map, NULL); 2078 dm_sync_table(md); 2079 2080 return map; 2081 } 2082 2083 /* 2084 * Constructor for a new device. 2085 */ 2086 int dm_create(int minor, struct mapped_device **result) 2087 { 2088 struct mapped_device *md; 2089 2090 md = alloc_dev(minor); 2091 if (!md) 2092 return -ENXIO; 2093 2094 dm_ima_reset_data(md); 2095 2096 *result = md; 2097 return 0; 2098 } 2099 2100 /* 2101 * Functions to manage md->type. 2102 * All are required to hold md->type_lock. 2103 */ 2104 void dm_lock_md_type(struct mapped_device *md) 2105 { 2106 mutex_lock(&md->type_lock); 2107 } 2108 2109 void dm_unlock_md_type(struct mapped_device *md) 2110 { 2111 mutex_unlock(&md->type_lock); 2112 } 2113 2114 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2115 { 2116 BUG_ON(!mutex_is_locked(&md->type_lock)); 2117 md->type = type; 2118 } 2119 2120 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2121 { 2122 return md->type; 2123 } 2124 2125 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2126 { 2127 return md->immutable_target_type; 2128 } 2129 2130 /* 2131 * The queue_limits are only valid as long as you have a reference 2132 * count on 'md'. 2133 */ 2134 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2135 { 2136 BUG_ON(!atomic_read(&md->holders)); 2137 return &md->queue->limits; 2138 } 2139 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2140 2141 /* 2142 * Setup the DM device's queue based on md's type 2143 */ 2144 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2145 { 2146 enum dm_queue_mode type = dm_table_get_type(t); 2147 struct queue_limits limits; 2148 int r; 2149 2150 switch (type) { 2151 case DM_TYPE_REQUEST_BASED: 2152 md->disk->fops = &dm_rq_blk_dops; 2153 r = dm_mq_init_request_queue(md, t); 2154 if (r) { 2155 DMERR("Cannot initialize queue for request-based dm mapped device"); 2156 return r; 2157 } 2158 break; 2159 case DM_TYPE_BIO_BASED: 2160 case DM_TYPE_DAX_BIO_BASED: 2161 break; 2162 case DM_TYPE_NONE: 2163 WARN_ON_ONCE(true); 2164 break; 2165 } 2166 2167 r = dm_calculate_queue_limits(t, &limits); 2168 if (r) { 2169 DMERR("Cannot calculate initial queue limits"); 2170 return r; 2171 } 2172 r = dm_table_set_restrictions(t, md->queue, &limits); 2173 if (r) 2174 return r; 2175 2176 r = add_disk(md->disk); 2177 if (r) 2178 return r; 2179 2180 r = dm_sysfs_init(md); 2181 if (r) { 2182 del_gendisk(md->disk); 2183 return r; 2184 } 2185 md->type = type; 2186 return 0; 2187 } 2188 2189 struct mapped_device *dm_get_md(dev_t dev) 2190 { 2191 struct mapped_device *md; 2192 unsigned minor = MINOR(dev); 2193 2194 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2195 return NULL; 2196 2197 spin_lock(&_minor_lock); 2198 2199 md = idr_find(&_minor_idr, minor); 2200 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2201 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2202 md = NULL; 2203 goto out; 2204 } 2205 dm_get(md); 2206 out: 2207 spin_unlock(&_minor_lock); 2208 2209 return md; 2210 } 2211 EXPORT_SYMBOL_GPL(dm_get_md); 2212 2213 void *dm_get_mdptr(struct mapped_device *md) 2214 { 2215 return md->interface_ptr; 2216 } 2217 2218 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2219 { 2220 md->interface_ptr = ptr; 2221 } 2222 2223 void dm_get(struct mapped_device *md) 2224 { 2225 atomic_inc(&md->holders); 2226 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2227 } 2228 2229 int dm_hold(struct mapped_device *md) 2230 { 2231 spin_lock(&_minor_lock); 2232 if (test_bit(DMF_FREEING, &md->flags)) { 2233 spin_unlock(&_minor_lock); 2234 return -EBUSY; 2235 } 2236 dm_get(md); 2237 spin_unlock(&_minor_lock); 2238 return 0; 2239 } 2240 EXPORT_SYMBOL_GPL(dm_hold); 2241 2242 const char *dm_device_name(struct mapped_device *md) 2243 { 2244 return md->name; 2245 } 2246 EXPORT_SYMBOL_GPL(dm_device_name); 2247 2248 static void __dm_destroy(struct mapped_device *md, bool wait) 2249 { 2250 struct dm_table *map; 2251 int srcu_idx; 2252 2253 might_sleep(); 2254 2255 spin_lock(&_minor_lock); 2256 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2257 set_bit(DMF_FREEING, &md->flags); 2258 spin_unlock(&_minor_lock); 2259 2260 blk_mark_disk_dead(md->disk); 2261 2262 /* 2263 * Take suspend_lock so that presuspend and postsuspend methods 2264 * do not race with internal suspend. 2265 */ 2266 mutex_lock(&md->suspend_lock); 2267 map = dm_get_live_table(md, &srcu_idx); 2268 if (!dm_suspended_md(md)) { 2269 dm_table_presuspend_targets(map); 2270 set_bit(DMF_SUSPENDED, &md->flags); 2271 set_bit(DMF_POST_SUSPENDING, &md->flags); 2272 dm_table_postsuspend_targets(map); 2273 } 2274 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2275 dm_put_live_table(md, srcu_idx); 2276 mutex_unlock(&md->suspend_lock); 2277 2278 /* 2279 * Rare, but there may be I/O requests still going to complete, 2280 * for example. Wait for all references to disappear. 2281 * No one should increment the reference count of the mapped_device, 2282 * after the mapped_device state becomes DMF_FREEING. 2283 */ 2284 if (wait) 2285 while (atomic_read(&md->holders)) 2286 msleep(1); 2287 else if (atomic_read(&md->holders)) 2288 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2289 dm_device_name(md), atomic_read(&md->holders)); 2290 2291 dm_table_destroy(__unbind(md)); 2292 free_dev(md); 2293 } 2294 2295 void dm_destroy(struct mapped_device *md) 2296 { 2297 __dm_destroy(md, true); 2298 } 2299 2300 void dm_destroy_immediate(struct mapped_device *md) 2301 { 2302 __dm_destroy(md, false); 2303 } 2304 2305 void dm_put(struct mapped_device *md) 2306 { 2307 atomic_dec(&md->holders); 2308 } 2309 EXPORT_SYMBOL_GPL(dm_put); 2310 2311 static bool dm_in_flight_bios(struct mapped_device *md) 2312 { 2313 int cpu; 2314 unsigned long sum = 0; 2315 2316 for_each_possible_cpu(cpu) 2317 sum += *per_cpu_ptr(md->pending_io, cpu); 2318 2319 return sum != 0; 2320 } 2321 2322 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2323 { 2324 int r = 0; 2325 DEFINE_WAIT(wait); 2326 2327 while (true) { 2328 prepare_to_wait(&md->wait, &wait, task_state); 2329 2330 if (!dm_in_flight_bios(md)) 2331 break; 2332 2333 if (signal_pending_state(task_state, current)) { 2334 r = -EINTR; 2335 break; 2336 } 2337 2338 io_schedule(); 2339 } 2340 finish_wait(&md->wait, &wait); 2341 2342 smp_rmb(); 2343 2344 return r; 2345 } 2346 2347 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2348 { 2349 int r = 0; 2350 2351 if (!queue_is_mq(md->queue)) 2352 return dm_wait_for_bios_completion(md, task_state); 2353 2354 while (true) { 2355 if (!blk_mq_queue_inflight(md->queue)) 2356 break; 2357 2358 if (signal_pending_state(task_state, current)) { 2359 r = -EINTR; 2360 break; 2361 } 2362 2363 msleep(5); 2364 } 2365 2366 return r; 2367 } 2368 2369 /* 2370 * Process the deferred bios 2371 */ 2372 static void dm_wq_work(struct work_struct *work) 2373 { 2374 struct mapped_device *md = container_of(work, struct mapped_device, work); 2375 struct bio *bio; 2376 2377 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2378 spin_lock_irq(&md->deferred_lock); 2379 bio = bio_list_pop(&md->deferred); 2380 spin_unlock_irq(&md->deferred_lock); 2381 2382 if (!bio) 2383 break; 2384 2385 submit_bio_noacct(bio); 2386 } 2387 } 2388 2389 static void dm_queue_flush(struct mapped_device *md) 2390 { 2391 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2392 smp_mb__after_atomic(); 2393 queue_work(md->wq, &md->work); 2394 } 2395 2396 /* 2397 * Swap in a new table, returning the old one for the caller to destroy. 2398 */ 2399 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2400 { 2401 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2402 struct queue_limits limits; 2403 int r; 2404 2405 mutex_lock(&md->suspend_lock); 2406 2407 /* device must be suspended */ 2408 if (!dm_suspended_md(md)) 2409 goto out; 2410 2411 /* 2412 * If the new table has no data devices, retain the existing limits. 2413 * This helps multipath with queue_if_no_path if all paths disappear, 2414 * then new I/O is queued based on these limits, and then some paths 2415 * reappear. 2416 */ 2417 if (dm_table_has_no_data_devices(table)) { 2418 live_map = dm_get_live_table_fast(md); 2419 if (live_map) 2420 limits = md->queue->limits; 2421 dm_put_live_table_fast(md); 2422 } 2423 2424 if (!live_map) { 2425 r = dm_calculate_queue_limits(table, &limits); 2426 if (r) { 2427 map = ERR_PTR(r); 2428 goto out; 2429 } 2430 } 2431 2432 map = __bind(md, table, &limits); 2433 dm_issue_global_event(); 2434 2435 out: 2436 mutex_unlock(&md->suspend_lock); 2437 return map; 2438 } 2439 2440 /* 2441 * Functions to lock and unlock any filesystem running on the 2442 * device. 2443 */ 2444 static int lock_fs(struct mapped_device *md) 2445 { 2446 int r; 2447 2448 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2449 2450 r = freeze_bdev(md->disk->part0); 2451 if (!r) 2452 set_bit(DMF_FROZEN, &md->flags); 2453 return r; 2454 } 2455 2456 static void unlock_fs(struct mapped_device *md) 2457 { 2458 if (!test_bit(DMF_FROZEN, &md->flags)) 2459 return; 2460 thaw_bdev(md->disk->part0); 2461 clear_bit(DMF_FROZEN, &md->flags); 2462 } 2463 2464 /* 2465 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2466 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2467 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2468 * 2469 * If __dm_suspend returns 0, the device is completely quiescent 2470 * now. There is no request-processing activity. All new requests 2471 * are being added to md->deferred list. 2472 */ 2473 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2474 unsigned suspend_flags, unsigned int task_state, 2475 int dmf_suspended_flag) 2476 { 2477 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2478 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2479 int r; 2480 2481 lockdep_assert_held(&md->suspend_lock); 2482 2483 /* 2484 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2485 * This flag is cleared before dm_suspend returns. 2486 */ 2487 if (noflush) 2488 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2489 else 2490 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2491 2492 /* 2493 * This gets reverted if there's an error later and the targets 2494 * provide the .presuspend_undo hook. 2495 */ 2496 dm_table_presuspend_targets(map); 2497 2498 /* 2499 * Flush I/O to the device. 2500 * Any I/O submitted after lock_fs() may not be flushed. 2501 * noflush takes precedence over do_lockfs. 2502 * (lock_fs() flushes I/Os and waits for them to complete.) 2503 */ 2504 if (!noflush && do_lockfs) { 2505 r = lock_fs(md); 2506 if (r) { 2507 dm_table_presuspend_undo_targets(map); 2508 return r; 2509 } 2510 } 2511 2512 /* 2513 * Here we must make sure that no processes are submitting requests 2514 * to target drivers i.e. no one may be executing 2515 * dm_split_and_process_bio from dm_submit_bio. 2516 * 2517 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2518 * we take the write lock. To prevent any process from reentering 2519 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2520 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2521 * flush_workqueue(md->wq). 2522 */ 2523 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2524 if (map) 2525 synchronize_srcu(&md->io_barrier); 2526 2527 /* 2528 * Stop md->queue before flushing md->wq in case request-based 2529 * dm defers requests to md->wq from md->queue. 2530 */ 2531 if (dm_request_based(md)) 2532 dm_stop_queue(md->queue); 2533 2534 flush_workqueue(md->wq); 2535 2536 /* 2537 * At this point no more requests are entering target request routines. 2538 * We call dm_wait_for_completion to wait for all existing requests 2539 * to finish. 2540 */ 2541 r = dm_wait_for_completion(md, task_state); 2542 if (!r) 2543 set_bit(dmf_suspended_flag, &md->flags); 2544 2545 if (noflush) 2546 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2547 if (map) 2548 synchronize_srcu(&md->io_barrier); 2549 2550 /* were we interrupted ? */ 2551 if (r < 0) { 2552 dm_queue_flush(md); 2553 2554 if (dm_request_based(md)) 2555 dm_start_queue(md->queue); 2556 2557 unlock_fs(md); 2558 dm_table_presuspend_undo_targets(map); 2559 /* pushback list is already flushed, so skip flush */ 2560 } 2561 2562 return r; 2563 } 2564 2565 /* 2566 * We need to be able to change a mapping table under a mounted 2567 * filesystem. For example we might want to move some data in 2568 * the background. Before the table can be swapped with 2569 * dm_bind_table, dm_suspend must be called to flush any in 2570 * flight bios and ensure that any further io gets deferred. 2571 */ 2572 /* 2573 * Suspend mechanism in request-based dm. 2574 * 2575 * 1. Flush all I/Os by lock_fs() if needed. 2576 * 2. Stop dispatching any I/O by stopping the request_queue. 2577 * 3. Wait for all in-flight I/Os to be completed or requeued. 2578 * 2579 * To abort suspend, start the request_queue. 2580 */ 2581 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2582 { 2583 struct dm_table *map = NULL; 2584 int r = 0; 2585 2586 retry: 2587 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2588 2589 if (dm_suspended_md(md)) { 2590 r = -EINVAL; 2591 goto out_unlock; 2592 } 2593 2594 if (dm_suspended_internally_md(md)) { 2595 /* already internally suspended, wait for internal resume */ 2596 mutex_unlock(&md->suspend_lock); 2597 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2598 if (r) 2599 return r; 2600 goto retry; 2601 } 2602 2603 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2604 2605 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2606 if (r) 2607 goto out_unlock; 2608 2609 set_bit(DMF_POST_SUSPENDING, &md->flags); 2610 dm_table_postsuspend_targets(map); 2611 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2612 2613 out_unlock: 2614 mutex_unlock(&md->suspend_lock); 2615 return r; 2616 } 2617 2618 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2619 { 2620 if (map) { 2621 int r = dm_table_resume_targets(map); 2622 if (r) 2623 return r; 2624 } 2625 2626 dm_queue_flush(md); 2627 2628 /* 2629 * Flushing deferred I/Os must be done after targets are resumed 2630 * so that mapping of targets can work correctly. 2631 * Request-based dm is queueing the deferred I/Os in its request_queue. 2632 */ 2633 if (dm_request_based(md)) 2634 dm_start_queue(md->queue); 2635 2636 unlock_fs(md); 2637 2638 return 0; 2639 } 2640 2641 int dm_resume(struct mapped_device *md) 2642 { 2643 int r; 2644 struct dm_table *map = NULL; 2645 2646 retry: 2647 r = -EINVAL; 2648 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2649 2650 if (!dm_suspended_md(md)) 2651 goto out; 2652 2653 if (dm_suspended_internally_md(md)) { 2654 /* already internally suspended, wait for internal resume */ 2655 mutex_unlock(&md->suspend_lock); 2656 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2657 if (r) 2658 return r; 2659 goto retry; 2660 } 2661 2662 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2663 if (!map || !dm_table_get_size(map)) 2664 goto out; 2665 2666 r = __dm_resume(md, map); 2667 if (r) 2668 goto out; 2669 2670 clear_bit(DMF_SUSPENDED, &md->flags); 2671 out: 2672 mutex_unlock(&md->suspend_lock); 2673 2674 return r; 2675 } 2676 2677 /* 2678 * Internal suspend/resume works like userspace-driven suspend. It waits 2679 * until all bios finish and prevents issuing new bios to the target drivers. 2680 * It may be used only from the kernel. 2681 */ 2682 2683 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2684 { 2685 struct dm_table *map = NULL; 2686 2687 lockdep_assert_held(&md->suspend_lock); 2688 2689 if (md->internal_suspend_count++) 2690 return; /* nested internal suspend */ 2691 2692 if (dm_suspended_md(md)) { 2693 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2694 return; /* nest suspend */ 2695 } 2696 2697 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2698 2699 /* 2700 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2701 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2702 * would require changing .presuspend to return an error -- avoid this 2703 * until there is a need for more elaborate variants of internal suspend. 2704 */ 2705 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2706 DMF_SUSPENDED_INTERNALLY); 2707 2708 set_bit(DMF_POST_SUSPENDING, &md->flags); 2709 dm_table_postsuspend_targets(map); 2710 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2711 } 2712 2713 static void __dm_internal_resume(struct mapped_device *md) 2714 { 2715 BUG_ON(!md->internal_suspend_count); 2716 2717 if (--md->internal_suspend_count) 2718 return; /* resume from nested internal suspend */ 2719 2720 if (dm_suspended_md(md)) 2721 goto done; /* resume from nested suspend */ 2722 2723 /* 2724 * NOTE: existing callers don't need to call dm_table_resume_targets 2725 * (which may fail -- so best to avoid it for now by passing NULL map) 2726 */ 2727 (void) __dm_resume(md, NULL); 2728 2729 done: 2730 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2731 smp_mb__after_atomic(); 2732 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2733 } 2734 2735 void dm_internal_suspend_noflush(struct mapped_device *md) 2736 { 2737 mutex_lock(&md->suspend_lock); 2738 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2739 mutex_unlock(&md->suspend_lock); 2740 } 2741 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2742 2743 void dm_internal_resume(struct mapped_device *md) 2744 { 2745 mutex_lock(&md->suspend_lock); 2746 __dm_internal_resume(md); 2747 mutex_unlock(&md->suspend_lock); 2748 } 2749 EXPORT_SYMBOL_GPL(dm_internal_resume); 2750 2751 /* 2752 * Fast variants of internal suspend/resume hold md->suspend_lock, 2753 * which prevents interaction with userspace-driven suspend. 2754 */ 2755 2756 void dm_internal_suspend_fast(struct mapped_device *md) 2757 { 2758 mutex_lock(&md->suspend_lock); 2759 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2760 return; 2761 2762 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2763 synchronize_srcu(&md->io_barrier); 2764 flush_workqueue(md->wq); 2765 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2766 } 2767 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2768 2769 void dm_internal_resume_fast(struct mapped_device *md) 2770 { 2771 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2772 goto done; 2773 2774 dm_queue_flush(md); 2775 2776 done: 2777 mutex_unlock(&md->suspend_lock); 2778 } 2779 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2780 2781 /*----------------------------------------------------------------- 2782 * Event notification. 2783 *---------------------------------------------------------------*/ 2784 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2785 unsigned cookie) 2786 { 2787 int r; 2788 unsigned noio_flag; 2789 char udev_cookie[DM_COOKIE_LENGTH]; 2790 char *envp[] = { udev_cookie, NULL }; 2791 2792 noio_flag = memalloc_noio_save(); 2793 2794 if (!cookie) 2795 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2796 else { 2797 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2798 DM_COOKIE_ENV_VAR_NAME, cookie); 2799 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2800 action, envp); 2801 } 2802 2803 memalloc_noio_restore(noio_flag); 2804 2805 return r; 2806 } 2807 2808 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2809 { 2810 return atomic_add_return(1, &md->uevent_seq); 2811 } 2812 2813 uint32_t dm_get_event_nr(struct mapped_device *md) 2814 { 2815 return atomic_read(&md->event_nr); 2816 } 2817 2818 int dm_wait_event(struct mapped_device *md, int event_nr) 2819 { 2820 return wait_event_interruptible(md->eventq, 2821 (event_nr != atomic_read(&md->event_nr))); 2822 } 2823 2824 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2825 { 2826 unsigned long flags; 2827 2828 spin_lock_irqsave(&md->uevent_lock, flags); 2829 list_add(elist, &md->uevent_list); 2830 spin_unlock_irqrestore(&md->uevent_lock, flags); 2831 } 2832 2833 /* 2834 * The gendisk is only valid as long as you have a reference 2835 * count on 'md'. 2836 */ 2837 struct gendisk *dm_disk(struct mapped_device *md) 2838 { 2839 return md->disk; 2840 } 2841 EXPORT_SYMBOL_GPL(dm_disk); 2842 2843 struct kobject *dm_kobject(struct mapped_device *md) 2844 { 2845 return &md->kobj_holder.kobj; 2846 } 2847 2848 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2849 { 2850 struct mapped_device *md; 2851 2852 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2853 2854 spin_lock(&_minor_lock); 2855 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2856 md = NULL; 2857 goto out; 2858 } 2859 dm_get(md); 2860 out: 2861 spin_unlock(&_minor_lock); 2862 2863 return md; 2864 } 2865 2866 int dm_suspended_md(struct mapped_device *md) 2867 { 2868 return test_bit(DMF_SUSPENDED, &md->flags); 2869 } 2870 2871 static int dm_post_suspending_md(struct mapped_device *md) 2872 { 2873 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2874 } 2875 2876 int dm_suspended_internally_md(struct mapped_device *md) 2877 { 2878 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2879 } 2880 2881 int dm_test_deferred_remove_flag(struct mapped_device *md) 2882 { 2883 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2884 } 2885 2886 int dm_suspended(struct dm_target *ti) 2887 { 2888 return dm_suspended_md(ti->table->md); 2889 } 2890 EXPORT_SYMBOL_GPL(dm_suspended); 2891 2892 int dm_post_suspending(struct dm_target *ti) 2893 { 2894 return dm_post_suspending_md(ti->table->md); 2895 } 2896 EXPORT_SYMBOL_GPL(dm_post_suspending); 2897 2898 int dm_noflush_suspending(struct dm_target *ti) 2899 { 2900 return __noflush_suspending(ti->table->md); 2901 } 2902 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2903 2904 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2905 unsigned integrity, unsigned per_io_data_size, 2906 unsigned min_pool_size) 2907 { 2908 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2909 unsigned int pool_size = 0; 2910 unsigned int front_pad, io_front_pad; 2911 int ret; 2912 2913 if (!pools) 2914 return NULL; 2915 2916 switch (type) { 2917 case DM_TYPE_BIO_BASED: 2918 case DM_TYPE_DAX_BIO_BASED: 2919 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2920 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2921 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2922 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2923 if (ret) 2924 goto out; 2925 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2926 goto out; 2927 break; 2928 case DM_TYPE_REQUEST_BASED: 2929 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2930 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2931 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2932 break; 2933 default: 2934 BUG(); 2935 } 2936 2937 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2938 if (ret) 2939 goto out; 2940 2941 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2942 goto out; 2943 2944 return pools; 2945 2946 out: 2947 dm_free_md_mempools(pools); 2948 2949 return NULL; 2950 } 2951 2952 void dm_free_md_mempools(struct dm_md_mempools *pools) 2953 { 2954 if (!pools) 2955 return; 2956 2957 bioset_exit(&pools->bs); 2958 bioset_exit(&pools->io_bs); 2959 2960 kfree(pools); 2961 } 2962 2963 struct dm_pr { 2964 u64 old_key; 2965 u64 new_key; 2966 u32 flags; 2967 bool fail_early; 2968 }; 2969 2970 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2971 void *data) 2972 { 2973 struct mapped_device *md = bdev->bd_disk->private_data; 2974 struct dm_table *table; 2975 struct dm_target *ti; 2976 int ret = -ENOTTY, srcu_idx; 2977 2978 table = dm_get_live_table(md, &srcu_idx); 2979 if (!table || !dm_table_get_size(table)) 2980 goto out; 2981 2982 /* We only support devices that have a single target */ 2983 if (dm_table_get_num_targets(table) != 1) 2984 goto out; 2985 ti = dm_table_get_target(table, 0); 2986 2987 ret = -EINVAL; 2988 if (!ti->type->iterate_devices) 2989 goto out; 2990 2991 ret = ti->type->iterate_devices(ti, fn, data); 2992 out: 2993 dm_put_live_table(md, srcu_idx); 2994 return ret; 2995 } 2996 2997 /* 2998 * For register / unregister we need to manually call out to every path. 2999 */ 3000 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3001 sector_t start, sector_t len, void *data) 3002 { 3003 struct dm_pr *pr = data; 3004 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3005 3006 if (!ops || !ops->pr_register) 3007 return -EOPNOTSUPP; 3008 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3009 } 3010 3011 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3012 u32 flags) 3013 { 3014 struct dm_pr pr = { 3015 .old_key = old_key, 3016 .new_key = new_key, 3017 .flags = flags, 3018 .fail_early = true, 3019 }; 3020 int ret; 3021 3022 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3023 if (ret && new_key) { 3024 /* unregister all paths if we failed to register any path */ 3025 pr.old_key = new_key; 3026 pr.new_key = 0; 3027 pr.flags = 0; 3028 pr.fail_early = false; 3029 dm_call_pr(bdev, __dm_pr_register, &pr); 3030 } 3031 3032 return ret; 3033 } 3034 3035 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3036 u32 flags) 3037 { 3038 struct mapped_device *md = bdev->bd_disk->private_data; 3039 const struct pr_ops *ops; 3040 int r, srcu_idx; 3041 3042 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3043 if (r < 0) 3044 goto out; 3045 3046 ops = bdev->bd_disk->fops->pr_ops; 3047 if (ops && ops->pr_reserve) 3048 r = ops->pr_reserve(bdev, key, type, flags); 3049 else 3050 r = -EOPNOTSUPP; 3051 out: 3052 dm_unprepare_ioctl(md, srcu_idx); 3053 return r; 3054 } 3055 3056 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3057 { 3058 struct mapped_device *md = bdev->bd_disk->private_data; 3059 const struct pr_ops *ops; 3060 int r, srcu_idx; 3061 3062 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3063 if (r < 0) 3064 goto out; 3065 3066 ops = bdev->bd_disk->fops->pr_ops; 3067 if (ops && ops->pr_release) 3068 r = ops->pr_release(bdev, key, type); 3069 else 3070 r = -EOPNOTSUPP; 3071 out: 3072 dm_unprepare_ioctl(md, srcu_idx); 3073 return r; 3074 } 3075 3076 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3077 enum pr_type type, bool abort) 3078 { 3079 struct mapped_device *md = bdev->bd_disk->private_data; 3080 const struct pr_ops *ops; 3081 int r, srcu_idx; 3082 3083 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3084 if (r < 0) 3085 goto out; 3086 3087 ops = bdev->bd_disk->fops->pr_ops; 3088 if (ops && ops->pr_preempt) 3089 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3090 else 3091 r = -EOPNOTSUPP; 3092 out: 3093 dm_unprepare_ioctl(md, srcu_idx); 3094 return r; 3095 } 3096 3097 static int dm_pr_clear(struct block_device *bdev, u64 key) 3098 { 3099 struct mapped_device *md = bdev->bd_disk->private_data; 3100 const struct pr_ops *ops; 3101 int r, srcu_idx; 3102 3103 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3104 if (r < 0) 3105 goto out; 3106 3107 ops = bdev->bd_disk->fops->pr_ops; 3108 if (ops && ops->pr_clear) 3109 r = ops->pr_clear(bdev, key); 3110 else 3111 r = -EOPNOTSUPP; 3112 out: 3113 dm_unprepare_ioctl(md, srcu_idx); 3114 return r; 3115 } 3116 3117 static const struct pr_ops dm_pr_ops = { 3118 .pr_register = dm_pr_register, 3119 .pr_reserve = dm_pr_reserve, 3120 .pr_release = dm_pr_release, 3121 .pr_preempt = dm_pr_preempt, 3122 .pr_clear = dm_pr_clear, 3123 }; 3124 3125 static const struct block_device_operations dm_blk_dops = { 3126 .submit_bio = dm_submit_bio, 3127 .poll_bio = dm_poll_bio, 3128 .open = dm_blk_open, 3129 .release = dm_blk_close, 3130 .ioctl = dm_blk_ioctl, 3131 .getgeo = dm_blk_getgeo, 3132 .report_zones = dm_blk_report_zones, 3133 .pr_ops = &dm_pr_ops, 3134 .owner = THIS_MODULE 3135 }; 3136 3137 static const struct block_device_operations dm_rq_blk_dops = { 3138 .open = dm_blk_open, 3139 .release = dm_blk_close, 3140 .ioctl = dm_blk_ioctl, 3141 .getgeo = dm_blk_getgeo, 3142 .pr_ops = &dm_pr_ops, 3143 .owner = THIS_MODULE 3144 }; 3145 3146 static const struct dax_operations dm_dax_ops = { 3147 .direct_access = dm_dax_direct_access, 3148 .zero_page_range = dm_dax_zero_page_range, 3149 }; 3150 3151 /* 3152 * module hooks 3153 */ 3154 module_init(dm_init); 3155 module_exit(dm_exit); 3156 3157 module_param(major, uint, 0); 3158 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3159 3160 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3161 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3162 3163 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3164 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3165 3166 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3167 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3168 3169 MODULE_DESCRIPTION(DM_NAME " driver"); 3170 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3171 MODULE_LICENSE("GPL"); 3172