xref: /openbmc/linux/drivers/md/dm.c (revision 09d62154)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 			    struct block_device **bdev)
463 	__acquires(md->io_barrier)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		return r;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		return r;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		return r;
482 
483 	if (dm_suspended_md(md))
484 		return -EAGAIN;
485 
486 	r = tgt->type->prepare_ioctl(tgt, bdev);
487 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 		dm_put_live_table(md, *srcu_idx);
489 		msleep(10);
490 		goto retry;
491 	}
492 
493 	return r;
494 }
495 
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 	__releases(md->io_barrier)
498 {
499 	dm_put_live_table(md, srcu_idx);
500 }
501 
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 			unsigned int cmd, unsigned long arg)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 	int r, srcu_idx;
507 
508 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 	if (r < 0)
510 		goto out;
511 
512 	if (r > 0) {
513 		/*
514 		 * Target determined this ioctl is being issued against a
515 		 * subset of the parent bdev; require extra privileges.
516 		 */
517 		if (!capable(CAP_SYS_RAWIO)) {
518 			DMWARN_LIMIT(
519 	"%s: sending ioctl %x to DM device without required privilege.",
520 				current->comm, cmd);
521 			r = -ENOIOCTLCMD;
522 			goto out;
523 		}
524 	}
525 
526 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 	dm_unprepare_ioctl(md, srcu_idx);
529 	return r;
530 }
531 
532 static void start_io_acct(struct dm_io *io);
533 
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535 {
536 	struct dm_io *io;
537 	struct dm_target_io *tio;
538 	struct bio *clone;
539 
540 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
541 	if (!clone)
542 		return NULL;
543 
544 	tio = container_of(clone, struct dm_target_io, clone);
545 	tio->inside_dm_io = true;
546 	tio->io = NULL;
547 
548 	io = container_of(tio, struct dm_io, tio);
549 	io->magic = DM_IO_MAGIC;
550 	io->status = 0;
551 	atomic_set(&io->io_count, 1);
552 	io->orig_bio = bio;
553 	io->md = md;
554 	spin_lock_init(&io->endio_lock);
555 
556 	start_io_acct(io);
557 
558 	return io;
559 }
560 
561 static void free_io(struct mapped_device *md, struct dm_io *io)
562 {
563 	bio_put(&io->tio.clone);
564 }
565 
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 				      unsigned target_bio_nr, gfp_t gfp_mask)
568 {
569 	struct dm_target_io *tio;
570 
571 	if (!ci->io->tio.io) {
572 		/* the dm_target_io embedded in ci->io is available */
573 		tio = &ci->io->tio;
574 	} else {
575 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
576 		if (!clone)
577 			return NULL;
578 
579 		tio = container_of(clone, struct dm_target_io, clone);
580 		tio->inside_dm_io = false;
581 	}
582 
583 	tio->magic = DM_TIO_MAGIC;
584 	tio->io = ci->io;
585 	tio->ti = ti;
586 	tio->target_bio_nr = target_bio_nr;
587 
588 	return tio;
589 }
590 
591 static void free_tio(struct dm_target_io *tio)
592 {
593 	if (tio->inside_dm_io)
594 		return;
595 	bio_put(&tio->clone);
596 }
597 
598 int md_in_flight(struct mapped_device *md)
599 {
600 	return atomic_read(&md->pending[READ]) +
601 	       atomic_read(&md->pending[WRITE]);
602 }
603 
604 static void start_io_acct(struct dm_io *io)
605 {
606 	struct mapped_device *md = io->md;
607 	struct bio *bio = io->orig_bio;
608 	int rw = bio_data_dir(bio);
609 
610 	io->start_time = jiffies;
611 
612 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
613 			      &dm_disk(md)->part0);
614 
615 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
616 		   atomic_inc_return(&md->pending[rw]));
617 
618 	if (unlikely(dm_stats_used(&md->stats)))
619 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
620 				    bio->bi_iter.bi_sector, bio_sectors(bio),
621 				    false, 0, &io->stats_aux);
622 }
623 
624 static void end_io_acct(struct dm_io *io)
625 {
626 	struct mapped_device *md = io->md;
627 	struct bio *bio = io->orig_bio;
628 	unsigned long duration = jiffies - io->start_time;
629 	int pending;
630 	int rw = bio_data_dir(bio);
631 
632 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
633 			    io->start_time);
634 
635 	if (unlikely(dm_stats_used(&md->stats)))
636 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
637 				    bio->bi_iter.bi_sector, bio_sectors(bio),
638 				    true, duration, &io->stats_aux);
639 
640 	/*
641 	 * After this is decremented the bio must not be touched if it is
642 	 * a flush.
643 	 */
644 	pending = atomic_dec_return(&md->pending[rw]);
645 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
646 	pending += atomic_read(&md->pending[rw^0x1]);
647 
648 	/* nudge anyone waiting on suspend queue */
649 	if (!pending)
650 		wake_up(&md->wait);
651 }
652 
653 /*
654  * Add the bio to the list of deferred io.
655  */
656 static void queue_io(struct mapped_device *md, struct bio *bio)
657 {
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&md->deferred_lock, flags);
661 	bio_list_add(&md->deferred, bio);
662 	spin_unlock_irqrestore(&md->deferred_lock, flags);
663 	queue_work(md->wq, &md->work);
664 }
665 
666 /*
667  * Everyone (including functions in this file), should use this
668  * function to access the md->map field, and make sure they call
669  * dm_put_live_table() when finished.
670  */
671 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
672 {
673 	*srcu_idx = srcu_read_lock(&md->io_barrier);
674 
675 	return srcu_dereference(md->map, &md->io_barrier);
676 }
677 
678 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
679 {
680 	srcu_read_unlock(&md->io_barrier, srcu_idx);
681 }
682 
683 void dm_sync_table(struct mapped_device *md)
684 {
685 	synchronize_srcu(&md->io_barrier);
686 	synchronize_rcu_expedited();
687 }
688 
689 /*
690  * A fast alternative to dm_get_live_table/dm_put_live_table.
691  * The caller must not block between these two functions.
692  */
693 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
694 {
695 	rcu_read_lock();
696 	return rcu_dereference(md->map);
697 }
698 
699 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
700 {
701 	rcu_read_unlock();
702 }
703 
704 static char *_dm_claim_ptr = "I belong to device-mapper";
705 
706 /*
707  * Open a table device so we can use it as a map destination.
708  */
709 static int open_table_device(struct table_device *td, dev_t dev,
710 			     struct mapped_device *md)
711 {
712 	struct block_device *bdev;
713 
714 	int r;
715 
716 	BUG_ON(td->dm_dev.bdev);
717 
718 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
719 	if (IS_ERR(bdev))
720 		return PTR_ERR(bdev);
721 
722 	r = bd_link_disk_holder(bdev, dm_disk(md));
723 	if (r) {
724 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 		return r;
726 	}
727 
728 	td->dm_dev.bdev = bdev;
729 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 	return 0;
731 }
732 
733 /*
734  * Close a table device that we've been using.
735  */
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
737 {
738 	if (!td->dm_dev.bdev)
739 		return;
740 
741 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 	put_dax(td->dm_dev.dax_dev);
744 	td->dm_dev.bdev = NULL;
745 	td->dm_dev.dax_dev = NULL;
746 }
747 
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 					      fmode_t mode) {
750 	struct table_device *td;
751 
752 	list_for_each_entry(td, l, list)
753 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 			return td;
755 
756 	return NULL;
757 }
758 
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 			struct dm_dev **result) {
761 	int r;
762 	struct table_device *td;
763 
764 	mutex_lock(&md->table_devices_lock);
765 	td = find_table_device(&md->table_devices, dev, mode);
766 	if (!td) {
767 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 		if (!td) {
769 			mutex_unlock(&md->table_devices_lock);
770 			return -ENOMEM;
771 		}
772 
773 		td->dm_dev.mode = mode;
774 		td->dm_dev.bdev = NULL;
775 
776 		if ((r = open_table_device(td, dev, md))) {
777 			mutex_unlock(&md->table_devices_lock);
778 			kfree(td);
779 			return r;
780 		}
781 
782 		format_dev_t(td->dm_dev.name, dev);
783 
784 		refcount_set(&td->count, 1);
785 		list_add(&td->list, &md->table_devices);
786 	} else {
787 		refcount_inc(&td->count);
788 	}
789 	mutex_unlock(&md->table_devices_lock);
790 
791 	*result = &td->dm_dev;
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
795 
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
797 {
798 	struct table_device *td = container_of(d, struct table_device, dm_dev);
799 
800 	mutex_lock(&md->table_devices_lock);
801 	if (refcount_dec_and_test(&td->count)) {
802 		close_table_device(td, md);
803 		list_del(&td->list);
804 		kfree(td);
805 	}
806 	mutex_unlock(&md->table_devices_lock);
807 }
808 EXPORT_SYMBOL(dm_put_table_device);
809 
810 static void free_table_devices(struct list_head *devices)
811 {
812 	struct list_head *tmp, *next;
813 
814 	list_for_each_safe(tmp, next, devices) {
815 		struct table_device *td = list_entry(tmp, struct table_device, list);
816 
817 		DMWARN("dm_destroy: %s still exists with %d references",
818 		       td->dm_dev.name, refcount_read(&td->count));
819 		kfree(td);
820 	}
821 }
822 
823 /*
824  * Get the geometry associated with a dm device
825  */
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
827 {
828 	*geo = md->geometry;
829 
830 	return 0;
831 }
832 
833 /*
834  * Set the geometry of a device.
835  */
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
837 {
838 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
839 
840 	if (geo->start > sz) {
841 		DMWARN("Start sector is beyond the geometry limits.");
842 		return -EINVAL;
843 	}
844 
845 	md->geometry = *geo;
846 
847 	return 0;
848 }
849 
850 static int __noflush_suspending(struct mapped_device *md)
851 {
852 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
853 }
854 
855 /*
856  * Decrements the number of outstanding ios that a bio has been
857  * cloned into, completing the original io if necc.
858  */
859 static void dec_pending(struct dm_io *io, blk_status_t error)
860 {
861 	unsigned long flags;
862 	blk_status_t io_error;
863 	struct bio *bio;
864 	struct mapped_device *md = io->md;
865 
866 	/* Push-back supersedes any I/O errors */
867 	if (unlikely(error)) {
868 		spin_lock_irqsave(&io->endio_lock, flags);
869 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 			io->status = error;
871 		spin_unlock_irqrestore(&io->endio_lock, flags);
872 	}
873 
874 	if (atomic_dec_and_test(&io->io_count)) {
875 		if (io->status == BLK_STS_DM_REQUEUE) {
876 			/*
877 			 * Target requested pushing back the I/O.
878 			 */
879 			spin_lock_irqsave(&md->deferred_lock, flags);
880 			if (__noflush_suspending(md))
881 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 				bio_list_add_head(&md->deferred, io->orig_bio);
883 			else
884 				/* noflush suspend was interrupted. */
885 				io->status = BLK_STS_IOERR;
886 			spin_unlock_irqrestore(&md->deferred_lock, flags);
887 		}
888 
889 		io_error = io->status;
890 		bio = io->orig_bio;
891 		end_io_acct(io);
892 		free_io(md, io);
893 
894 		if (io_error == BLK_STS_DM_REQUEUE)
895 			return;
896 
897 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
898 			/*
899 			 * Preflush done for flush with data, reissue
900 			 * without REQ_PREFLUSH.
901 			 */
902 			bio->bi_opf &= ~REQ_PREFLUSH;
903 			queue_io(md, bio);
904 		} else {
905 			/* done with normal IO or empty flush */
906 			if (io_error)
907 				bio->bi_status = io_error;
908 			bio_endio(bio);
909 		}
910 	}
911 }
912 
913 void disable_write_same(struct mapped_device *md)
914 {
915 	struct queue_limits *limits = dm_get_queue_limits(md);
916 
917 	/* device doesn't really support WRITE SAME, disable it */
918 	limits->max_write_same_sectors = 0;
919 }
920 
921 void disable_write_zeroes(struct mapped_device *md)
922 {
923 	struct queue_limits *limits = dm_get_queue_limits(md);
924 
925 	/* device doesn't really support WRITE ZEROES, disable it */
926 	limits->max_write_zeroes_sectors = 0;
927 }
928 
929 static void clone_endio(struct bio *bio)
930 {
931 	blk_status_t error = bio->bi_status;
932 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
933 	struct dm_io *io = tio->io;
934 	struct mapped_device *md = tio->io->md;
935 	dm_endio_fn endio = tio->ti->type->end_io;
936 
937 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
938 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
939 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
940 			disable_write_same(md);
941 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
942 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
943 			disable_write_zeroes(md);
944 	}
945 
946 	if (endio) {
947 		int r = endio(tio->ti, bio, &error);
948 		switch (r) {
949 		case DM_ENDIO_REQUEUE:
950 			error = BLK_STS_DM_REQUEUE;
951 			/*FALLTHRU*/
952 		case DM_ENDIO_DONE:
953 			break;
954 		case DM_ENDIO_INCOMPLETE:
955 			/* The target will handle the io */
956 			return;
957 		default:
958 			DMWARN("unimplemented target endio return value: %d", r);
959 			BUG();
960 		}
961 	}
962 
963 	free_tio(tio);
964 	dec_pending(io, error);
965 }
966 
967 /*
968  * Return maximum size of I/O possible at the supplied sector up to the current
969  * target boundary.
970  */
971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
972 {
973 	sector_t target_offset = dm_target_offset(ti, sector);
974 
975 	return ti->len - target_offset;
976 }
977 
978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
979 {
980 	sector_t len = max_io_len_target_boundary(sector, ti);
981 	sector_t offset, max_len;
982 
983 	/*
984 	 * Does the target need to split even further?
985 	 */
986 	if (ti->max_io_len) {
987 		offset = dm_target_offset(ti, sector);
988 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
989 			max_len = sector_div(offset, ti->max_io_len);
990 		else
991 			max_len = offset & (ti->max_io_len - 1);
992 		max_len = ti->max_io_len - max_len;
993 
994 		if (len > max_len)
995 			len = max_len;
996 	}
997 
998 	return len;
999 }
1000 
1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1002 {
1003 	if (len > UINT_MAX) {
1004 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 		      (unsigned long long)len, UINT_MAX);
1006 		ti->error = "Maximum size of target IO is too large";
1007 		return -EINVAL;
1008 	}
1009 
1010 	/*
1011 	 * BIO based queue uses its own splitting. When multipage bvecs
1012 	 * is switched on, size of the incoming bio may be too big to
1013 	 * be handled in some targets, such as crypt.
1014 	 *
1015 	 * When these targets are ready for the big bio, we can remove
1016 	 * the limit.
1017 	 */
1018 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1019 
1020 	return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1023 
1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1025 						sector_t sector, int *srcu_idx)
1026 	__acquires(md->io_barrier)
1027 {
1028 	struct dm_table *map;
1029 	struct dm_target *ti;
1030 
1031 	map = dm_get_live_table(md, srcu_idx);
1032 	if (!map)
1033 		return NULL;
1034 
1035 	ti = dm_table_find_target(map, sector);
1036 	if (!dm_target_is_valid(ti))
1037 		return NULL;
1038 
1039 	return ti;
1040 }
1041 
1042 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1043 				 long nr_pages, void **kaddr, pfn_t *pfn)
1044 {
1045 	struct mapped_device *md = dax_get_private(dax_dev);
1046 	sector_t sector = pgoff * PAGE_SECTORS;
1047 	struct dm_target *ti;
1048 	long len, ret = -EIO;
1049 	int srcu_idx;
1050 
1051 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1052 
1053 	if (!ti)
1054 		goto out;
1055 	if (!ti->type->direct_access)
1056 		goto out;
1057 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1058 	if (len < 1)
1059 		goto out;
1060 	nr_pages = min(len, nr_pages);
1061 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1062 
1063  out:
1064 	dm_put_live_table(md, srcu_idx);
1065 
1066 	return ret;
1067 }
1068 
1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1070 				    void *addr, size_t bytes, struct iov_iter *i)
1071 {
1072 	struct mapped_device *md = dax_get_private(dax_dev);
1073 	sector_t sector = pgoff * PAGE_SECTORS;
1074 	struct dm_target *ti;
1075 	long ret = 0;
1076 	int srcu_idx;
1077 
1078 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1079 
1080 	if (!ti)
1081 		goto out;
1082 	if (!ti->type->dax_copy_from_iter) {
1083 		ret = copy_from_iter(addr, bytes, i);
1084 		goto out;
1085 	}
1086 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1087  out:
1088 	dm_put_live_table(md, srcu_idx);
1089 
1090 	return ret;
1091 }
1092 
1093 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1094 		void *addr, size_t bytes, struct iov_iter *i)
1095 {
1096 	struct mapped_device *md = dax_get_private(dax_dev);
1097 	sector_t sector = pgoff * PAGE_SECTORS;
1098 	struct dm_target *ti;
1099 	long ret = 0;
1100 	int srcu_idx;
1101 
1102 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1103 
1104 	if (!ti)
1105 		goto out;
1106 	if (!ti->type->dax_copy_to_iter) {
1107 		ret = copy_to_iter(addr, bytes, i);
1108 		goto out;
1109 	}
1110 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1111  out:
1112 	dm_put_live_table(md, srcu_idx);
1113 
1114 	return ret;
1115 }
1116 
1117 /*
1118  * A target may call dm_accept_partial_bio only from the map routine.  It is
1119  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1120  *
1121  * dm_accept_partial_bio informs the dm that the target only wants to process
1122  * additional n_sectors sectors of the bio and the rest of the data should be
1123  * sent in a next bio.
1124  *
1125  * A diagram that explains the arithmetics:
1126  * +--------------------+---------------+-------+
1127  * |         1          |       2       |   3   |
1128  * +--------------------+---------------+-------+
1129  *
1130  * <-------------- *tio->len_ptr --------------->
1131  *                      <------- bi_size ------->
1132  *                      <-- n_sectors -->
1133  *
1134  * Region 1 was already iterated over with bio_advance or similar function.
1135  *	(it may be empty if the target doesn't use bio_advance)
1136  * Region 2 is the remaining bio size that the target wants to process.
1137  *	(it may be empty if region 1 is non-empty, although there is no reason
1138  *	 to make it empty)
1139  * The target requires that region 3 is to be sent in the next bio.
1140  *
1141  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1142  * the partially processed part (the sum of regions 1+2) must be the same for all
1143  * copies of the bio.
1144  */
1145 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1146 {
1147 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1148 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1149 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1150 	BUG_ON(bi_size > *tio->len_ptr);
1151 	BUG_ON(n_sectors > bi_size);
1152 	*tio->len_ptr -= bi_size - n_sectors;
1153 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1154 }
1155 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1156 
1157 /*
1158  * The zone descriptors obtained with a zone report indicate zone positions
1159  * within the target backing device, regardless of that device is a partition
1160  * and regardless of the target mapping start sector on the device or partition.
1161  * The zone descriptors start sector and write pointer position must be adjusted
1162  * to match their relative position within the dm device.
1163  * A target may call dm_remap_zone_report() after completion of a
1164  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained from the
1165  * backing device.
1166  */
1167 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1168 {
1169 #ifdef CONFIG_BLK_DEV_ZONED
1170 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1171 	struct bio *report_bio = tio->io->orig_bio;
1172 	struct blk_zone_report_hdr *hdr = NULL;
1173 	struct blk_zone *zone;
1174 	unsigned int nr_rep = 0;
1175 	unsigned int ofst;
1176 	sector_t part_offset;
1177 	struct bio_vec bvec;
1178 	struct bvec_iter iter;
1179 	void *addr;
1180 
1181 	if (bio->bi_status)
1182 		return;
1183 
1184 	/*
1185 	 * bio sector was incremented by the request size on completion. Taking
1186 	 * into account the original request sector, the target start offset on
1187 	 * the backing device and the target mapping offset (ti->begin), the
1188 	 * start sector of the backing device. The partition offset is always 0
1189 	 * if the target uses a whole device.
1190 	 */
1191 	part_offset = bio->bi_iter.bi_sector + ti->begin - (start + bio_end_sector(report_bio));
1192 
1193 	/*
1194 	 * Remap the start sector of the reported zones. For sequential zones,
1195 	 * also remap the write pointer position.
1196 	 */
1197 	bio_for_each_segment(bvec, report_bio, iter) {
1198 		addr = kmap_atomic(bvec.bv_page);
1199 
1200 		/* Remember the report header in the first page */
1201 		if (!hdr) {
1202 			hdr = addr;
1203 			ofst = sizeof(struct blk_zone_report_hdr);
1204 		} else
1205 			ofst = 0;
1206 
1207 		/* Set zones start sector */
1208 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1209 			zone = addr + ofst;
1210 			zone->start -= part_offset;
1211 			if (zone->start >= start + ti->len) {
1212 				hdr->nr_zones = 0;
1213 				break;
1214 			}
1215 			zone->start = zone->start + ti->begin - start;
1216 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1217 				if (zone->cond == BLK_ZONE_COND_FULL)
1218 					zone->wp = zone->start + zone->len;
1219 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1220 					zone->wp = zone->start;
1221 				else
1222 					zone->wp = zone->wp + ti->begin - start - part_offset;
1223 			}
1224 			ofst += sizeof(struct blk_zone);
1225 			hdr->nr_zones--;
1226 			nr_rep++;
1227 		}
1228 
1229 		if (addr != hdr)
1230 			kunmap_atomic(addr);
1231 
1232 		if (!hdr->nr_zones)
1233 			break;
1234 	}
1235 
1236 	if (hdr) {
1237 		hdr->nr_zones = nr_rep;
1238 		kunmap_atomic(hdr);
1239 	}
1240 
1241 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1242 
1243 #else /* !CONFIG_BLK_DEV_ZONED */
1244 	bio->bi_status = BLK_STS_NOTSUPP;
1245 #endif
1246 }
1247 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1248 
1249 static blk_qc_t __map_bio(struct dm_target_io *tio)
1250 {
1251 	int r;
1252 	sector_t sector;
1253 	struct bio *clone = &tio->clone;
1254 	struct dm_io *io = tio->io;
1255 	struct mapped_device *md = io->md;
1256 	struct dm_target *ti = tio->ti;
1257 	blk_qc_t ret = BLK_QC_T_NONE;
1258 
1259 	clone->bi_end_io = clone_endio;
1260 
1261 	/*
1262 	 * Map the clone.  If r == 0 we don't need to do
1263 	 * anything, the target has assumed ownership of
1264 	 * this io.
1265 	 */
1266 	atomic_inc(&io->io_count);
1267 	sector = clone->bi_iter.bi_sector;
1268 
1269 	r = ti->type->map(ti, clone);
1270 	switch (r) {
1271 	case DM_MAPIO_SUBMITTED:
1272 		break;
1273 	case DM_MAPIO_REMAPPED:
1274 		/* the bio has been remapped so dispatch it */
1275 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1276 				      bio_dev(io->orig_bio), sector);
1277 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1278 			ret = direct_make_request(clone);
1279 		else
1280 			ret = generic_make_request(clone);
1281 		break;
1282 	case DM_MAPIO_KILL:
1283 		free_tio(tio);
1284 		dec_pending(io, BLK_STS_IOERR);
1285 		break;
1286 	case DM_MAPIO_REQUEUE:
1287 		free_tio(tio);
1288 		dec_pending(io, BLK_STS_DM_REQUEUE);
1289 		break;
1290 	default:
1291 		DMWARN("unimplemented target map return value: %d", r);
1292 		BUG();
1293 	}
1294 
1295 	return ret;
1296 }
1297 
1298 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1299 {
1300 	bio->bi_iter.bi_sector = sector;
1301 	bio->bi_iter.bi_size = to_bytes(len);
1302 }
1303 
1304 /*
1305  * Creates a bio that consists of range of complete bvecs.
1306  */
1307 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1308 		     sector_t sector, unsigned len)
1309 {
1310 	struct bio *clone = &tio->clone;
1311 
1312 	__bio_clone_fast(clone, bio);
1313 
1314 	if (unlikely(bio_integrity(bio) != NULL)) {
1315 		int r;
1316 
1317 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1318 			     !dm_target_passes_integrity(tio->ti->type))) {
1319 			DMWARN("%s: the target %s doesn't support integrity data.",
1320 				dm_device_name(tio->io->md),
1321 				tio->ti->type->name);
1322 			return -EIO;
1323 		}
1324 
1325 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1326 		if (r < 0)
1327 			return r;
1328 	}
1329 
1330 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1331 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1332 	clone->bi_iter.bi_size = to_bytes(len);
1333 
1334 	if (unlikely(bio_integrity(bio) != NULL))
1335 		bio_integrity_trim(clone);
1336 
1337 	return 0;
1338 }
1339 
1340 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1341 				struct dm_target *ti, unsigned num_bios)
1342 {
1343 	struct dm_target_io *tio;
1344 	int try;
1345 
1346 	if (!num_bios)
1347 		return;
1348 
1349 	if (num_bios == 1) {
1350 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1351 		bio_list_add(blist, &tio->clone);
1352 		return;
1353 	}
1354 
1355 	for (try = 0; try < 2; try++) {
1356 		int bio_nr;
1357 		struct bio *bio;
1358 
1359 		if (try)
1360 			mutex_lock(&ci->io->md->table_devices_lock);
1361 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1362 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1363 			if (!tio)
1364 				break;
1365 
1366 			bio_list_add(blist, &tio->clone);
1367 		}
1368 		if (try)
1369 			mutex_unlock(&ci->io->md->table_devices_lock);
1370 		if (bio_nr == num_bios)
1371 			return;
1372 
1373 		while ((bio = bio_list_pop(blist))) {
1374 			tio = container_of(bio, struct dm_target_io, clone);
1375 			free_tio(tio);
1376 		}
1377 	}
1378 }
1379 
1380 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1381 					   struct dm_target_io *tio, unsigned *len)
1382 {
1383 	struct bio *clone = &tio->clone;
1384 
1385 	tio->len_ptr = len;
1386 
1387 	__bio_clone_fast(clone, ci->bio);
1388 	if (len)
1389 		bio_setup_sector(clone, ci->sector, *len);
1390 
1391 	return __map_bio(tio);
1392 }
1393 
1394 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1395 				  unsigned num_bios, unsigned *len)
1396 {
1397 	struct bio_list blist = BIO_EMPTY_LIST;
1398 	struct bio *bio;
1399 	struct dm_target_io *tio;
1400 
1401 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1402 
1403 	while ((bio = bio_list_pop(&blist))) {
1404 		tio = container_of(bio, struct dm_target_io, clone);
1405 		(void) __clone_and_map_simple_bio(ci, tio, len);
1406 	}
1407 }
1408 
1409 static int __send_empty_flush(struct clone_info *ci)
1410 {
1411 	unsigned target_nr = 0;
1412 	struct dm_target *ti;
1413 
1414 	BUG_ON(bio_has_data(ci->bio));
1415 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1416 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1417 
1418 	return 0;
1419 }
1420 
1421 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1422 				    sector_t sector, unsigned *len)
1423 {
1424 	struct bio *bio = ci->bio;
1425 	struct dm_target_io *tio;
1426 	int r;
1427 
1428 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1429 	tio->len_ptr = len;
1430 	r = clone_bio(tio, bio, sector, *len);
1431 	if (r < 0) {
1432 		free_tio(tio);
1433 		return r;
1434 	}
1435 	(void) __map_bio(tio);
1436 
1437 	return 0;
1438 }
1439 
1440 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1441 
1442 static unsigned get_num_discard_bios(struct dm_target *ti)
1443 {
1444 	return ti->num_discard_bios;
1445 }
1446 
1447 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1448 {
1449 	return ti->num_secure_erase_bios;
1450 }
1451 
1452 static unsigned get_num_write_same_bios(struct dm_target *ti)
1453 {
1454 	return ti->num_write_same_bios;
1455 }
1456 
1457 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1458 {
1459 	return ti->num_write_zeroes_bios;
1460 }
1461 
1462 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1463 
1464 static bool is_split_required_for_discard(struct dm_target *ti)
1465 {
1466 	return ti->split_discard_bios;
1467 }
1468 
1469 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1470 				       get_num_bios_fn get_num_bios,
1471 				       is_split_required_fn is_split_required)
1472 {
1473 	unsigned len;
1474 	unsigned num_bios;
1475 
1476 	/*
1477 	 * Even though the device advertised support for this type of
1478 	 * request, that does not mean every target supports it, and
1479 	 * reconfiguration might also have changed that since the
1480 	 * check was performed.
1481 	 */
1482 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1483 	if (!num_bios)
1484 		return -EOPNOTSUPP;
1485 
1486 	if (is_split_required && !is_split_required(ti))
1487 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1488 	else
1489 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1490 
1491 	__send_duplicate_bios(ci, ti, num_bios, &len);
1492 
1493 	ci->sector += len;
1494 	ci->sector_count -= len;
1495 
1496 	return 0;
1497 }
1498 
1499 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1500 {
1501 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1502 					   is_split_required_for_discard);
1503 }
1504 
1505 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1506 {
1507 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1508 }
1509 
1510 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1511 {
1512 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1513 }
1514 
1515 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1518 }
1519 
1520 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1521 				  int *result)
1522 {
1523 	struct bio *bio = ci->bio;
1524 
1525 	if (bio_op(bio) == REQ_OP_DISCARD)
1526 		*result = __send_discard(ci, ti);
1527 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1528 		*result = __send_secure_erase(ci, ti);
1529 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1530 		*result = __send_write_same(ci, ti);
1531 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1532 		*result = __send_write_zeroes(ci, ti);
1533 	else
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 /*
1540  * Select the correct strategy for processing a non-flush bio.
1541  */
1542 static int __split_and_process_non_flush(struct clone_info *ci)
1543 {
1544 	struct bio *bio = ci->bio;
1545 	struct dm_target *ti;
1546 	unsigned len;
1547 	int r;
1548 
1549 	ti = dm_table_find_target(ci->map, ci->sector);
1550 	if (!dm_target_is_valid(ti))
1551 		return -EIO;
1552 
1553 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1554 		return r;
1555 
1556 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1557 		len = ci->sector_count;
1558 	else
1559 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1560 			    ci->sector_count);
1561 
1562 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1563 	if (r < 0)
1564 		return r;
1565 
1566 	ci->sector += len;
1567 	ci->sector_count -= len;
1568 
1569 	return 0;
1570 }
1571 
1572 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1573 			    struct dm_table *map, struct bio *bio)
1574 {
1575 	ci->map = map;
1576 	ci->io = alloc_io(md, bio);
1577 	ci->sector = bio->bi_iter.bi_sector;
1578 }
1579 
1580 /*
1581  * Entry point to split a bio into clones and submit them to the targets.
1582  */
1583 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1584 					struct dm_table *map, struct bio *bio)
1585 {
1586 	struct clone_info ci;
1587 	blk_qc_t ret = BLK_QC_T_NONE;
1588 	int error = 0;
1589 
1590 	if (unlikely(!map)) {
1591 		bio_io_error(bio);
1592 		return ret;
1593 	}
1594 
1595 	init_clone_info(&ci, md, map, bio);
1596 
1597 	if (bio->bi_opf & REQ_PREFLUSH) {
1598 		ci.bio = &ci.io->md->flush_bio;
1599 		ci.sector_count = 0;
1600 		error = __send_empty_flush(&ci);
1601 		/* dec_pending submits any data associated with flush */
1602 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1603 		ci.bio = bio;
1604 		ci.sector_count = 0;
1605 		error = __split_and_process_non_flush(&ci);
1606 	} else {
1607 		ci.bio = bio;
1608 		ci.sector_count = bio_sectors(bio);
1609 		while (ci.sector_count && !error) {
1610 			error = __split_and_process_non_flush(&ci);
1611 			if (current->bio_list && ci.sector_count && !error) {
1612 				/*
1613 				 * Remainder must be passed to generic_make_request()
1614 				 * so that it gets handled *after* bios already submitted
1615 				 * have been completely processed.
1616 				 * We take a clone of the original to store in
1617 				 * ci.io->orig_bio to be used by end_io_acct() and
1618 				 * for dec_pending to use for completion handling.
1619 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1620 				 * the usage of io->orig_bio in dm_remap_zone_report()
1621 				 * won't be affected by this reassignment.
1622 				 */
1623 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1624 							  GFP_NOIO, &md->queue->bio_split);
1625 				ci.io->orig_bio = b;
1626 				bio_chain(b, bio);
1627 				ret = generic_make_request(bio);
1628 				break;
1629 			}
1630 		}
1631 	}
1632 
1633 	/* drop the extra reference count */
1634 	dec_pending(ci.io, errno_to_blk_status(error));
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Optimized variant of __split_and_process_bio that leverages the
1640  * fact that targets that use it do _not_ have a need to split bios.
1641  */
1642 static blk_qc_t __process_bio(struct mapped_device *md,
1643 			      struct dm_table *map, struct bio *bio)
1644 {
1645 	struct clone_info ci;
1646 	blk_qc_t ret = BLK_QC_T_NONE;
1647 	int error = 0;
1648 
1649 	if (unlikely(!map)) {
1650 		bio_io_error(bio);
1651 		return ret;
1652 	}
1653 
1654 	init_clone_info(&ci, md, map, bio);
1655 
1656 	if (bio->bi_opf & REQ_PREFLUSH) {
1657 		ci.bio = &ci.io->md->flush_bio;
1658 		ci.sector_count = 0;
1659 		error = __send_empty_flush(&ci);
1660 		/* dec_pending submits any data associated with flush */
1661 	} else {
1662 		struct dm_target *ti = md->immutable_target;
1663 		struct dm_target_io *tio;
1664 
1665 		/*
1666 		 * Defend against IO still getting in during teardown
1667 		 * - as was seen for a time with nvme-fcloop
1668 		 */
1669 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1670 			error = -EIO;
1671 			goto out;
1672 		}
1673 
1674 		ci.bio = bio;
1675 		ci.sector_count = bio_sectors(bio);
1676 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1677 			goto out;
1678 
1679 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1680 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1681 	}
1682 out:
1683 	/* drop the extra reference count */
1684 	dec_pending(ci.io, errno_to_blk_status(error));
1685 	return ret;
1686 }
1687 
1688 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1689 
1690 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1691 				  process_bio_fn process_bio)
1692 {
1693 	struct mapped_device *md = q->queuedata;
1694 	blk_qc_t ret = BLK_QC_T_NONE;
1695 	int srcu_idx;
1696 	struct dm_table *map;
1697 
1698 	map = dm_get_live_table(md, &srcu_idx);
1699 
1700 	/* if we're suspended, we have to queue this io for later */
1701 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1702 		dm_put_live_table(md, srcu_idx);
1703 
1704 		if (!(bio->bi_opf & REQ_RAHEAD))
1705 			queue_io(md, bio);
1706 		else
1707 			bio_io_error(bio);
1708 		return ret;
1709 	}
1710 
1711 	ret = process_bio(md, map, bio);
1712 
1713 	dm_put_live_table(md, srcu_idx);
1714 	return ret;
1715 }
1716 
1717 /*
1718  * The request function that remaps the bio to one target and
1719  * splits off any remainder.
1720  */
1721 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1722 {
1723 	return __dm_make_request(q, bio, __split_and_process_bio);
1724 }
1725 
1726 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1727 {
1728 	return __dm_make_request(q, bio, __process_bio);
1729 }
1730 
1731 static int dm_any_congested(void *congested_data, int bdi_bits)
1732 {
1733 	int r = bdi_bits;
1734 	struct mapped_device *md = congested_data;
1735 	struct dm_table *map;
1736 
1737 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1738 		if (dm_request_based(md)) {
1739 			/*
1740 			 * With request-based DM we only need to check the
1741 			 * top-level queue for congestion.
1742 			 */
1743 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1744 		} else {
1745 			map = dm_get_live_table_fast(md);
1746 			if (map)
1747 				r = dm_table_any_congested(map, bdi_bits);
1748 			dm_put_live_table_fast(md);
1749 		}
1750 	}
1751 
1752 	return r;
1753 }
1754 
1755 /*-----------------------------------------------------------------
1756  * An IDR is used to keep track of allocated minor numbers.
1757  *---------------------------------------------------------------*/
1758 static void free_minor(int minor)
1759 {
1760 	spin_lock(&_minor_lock);
1761 	idr_remove(&_minor_idr, minor);
1762 	spin_unlock(&_minor_lock);
1763 }
1764 
1765 /*
1766  * See if the device with a specific minor # is free.
1767  */
1768 static int specific_minor(int minor)
1769 {
1770 	int r;
1771 
1772 	if (minor >= (1 << MINORBITS))
1773 		return -EINVAL;
1774 
1775 	idr_preload(GFP_KERNEL);
1776 	spin_lock(&_minor_lock);
1777 
1778 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1779 
1780 	spin_unlock(&_minor_lock);
1781 	idr_preload_end();
1782 	if (r < 0)
1783 		return r == -ENOSPC ? -EBUSY : r;
1784 	return 0;
1785 }
1786 
1787 static int next_free_minor(int *minor)
1788 {
1789 	int r;
1790 
1791 	idr_preload(GFP_KERNEL);
1792 	spin_lock(&_minor_lock);
1793 
1794 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1795 
1796 	spin_unlock(&_minor_lock);
1797 	idr_preload_end();
1798 	if (r < 0)
1799 		return r;
1800 	*minor = r;
1801 	return 0;
1802 }
1803 
1804 static const struct block_device_operations dm_blk_dops;
1805 static const struct dax_operations dm_dax_ops;
1806 
1807 static void dm_wq_work(struct work_struct *work);
1808 
1809 static void dm_init_normal_md_queue(struct mapped_device *md)
1810 {
1811 	md->use_blk_mq = false;
1812 
1813 	/*
1814 	 * Initialize aspects of queue that aren't relevant for blk-mq
1815 	 */
1816 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1817 }
1818 
1819 static void cleanup_mapped_device(struct mapped_device *md)
1820 {
1821 	if (md->wq)
1822 		destroy_workqueue(md->wq);
1823 	if (md->kworker_task)
1824 		kthread_stop(md->kworker_task);
1825 	bioset_exit(&md->bs);
1826 	bioset_exit(&md->io_bs);
1827 
1828 	if (md->dax_dev) {
1829 		kill_dax(md->dax_dev);
1830 		put_dax(md->dax_dev);
1831 		md->dax_dev = NULL;
1832 	}
1833 
1834 	if (md->disk) {
1835 		spin_lock(&_minor_lock);
1836 		md->disk->private_data = NULL;
1837 		spin_unlock(&_minor_lock);
1838 		del_gendisk(md->disk);
1839 		put_disk(md->disk);
1840 	}
1841 
1842 	if (md->queue)
1843 		blk_cleanup_queue(md->queue);
1844 
1845 	cleanup_srcu_struct(&md->io_barrier);
1846 
1847 	if (md->bdev) {
1848 		bdput(md->bdev);
1849 		md->bdev = NULL;
1850 	}
1851 
1852 	mutex_destroy(&md->suspend_lock);
1853 	mutex_destroy(&md->type_lock);
1854 	mutex_destroy(&md->table_devices_lock);
1855 
1856 	dm_mq_cleanup_mapped_device(md);
1857 }
1858 
1859 /*
1860  * Allocate and initialise a blank device with a given minor.
1861  */
1862 static struct mapped_device *alloc_dev(int minor)
1863 {
1864 	int r, numa_node_id = dm_get_numa_node();
1865 	struct dax_device *dax_dev = NULL;
1866 	struct mapped_device *md;
1867 	void *old_md;
1868 
1869 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1870 	if (!md) {
1871 		DMWARN("unable to allocate device, out of memory.");
1872 		return NULL;
1873 	}
1874 
1875 	if (!try_module_get(THIS_MODULE))
1876 		goto bad_module_get;
1877 
1878 	/* get a minor number for the dev */
1879 	if (minor == DM_ANY_MINOR)
1880 		r = next_free_minor(&minor);
1881 	else
1882 		r = specific_minor(minor);
1883 	if (r < 0)
1884 		goto bad_minor;
1885 
1886 	r = init_srcu_struct(&md->io_barrier);
1887 	if (r < 0)
1888 		goto bad_io_barrier;
1889 
1890 	md->numa_node_id = numa_node_id;
1891 	md->use_blk_mq = dm_use_blk_mq_default();
1892 	md->init_tio_pdu = false;
1893 	md->type = DM_TYPE_NONE;
1894 	mutex_init(&md->suspend_lock);
1895 	mutex_init(&md->type_lock);
1896 	mutex_init(&md->table_devices_lock);
1897 	spin_lock_init(&md->deferred_lock);
1898 	atomic_set(&md->holders, 1);
1899 	atomic_set(&md->open_count, 0);
1900 	atomic_set(&md->event_nr, 0);
1901 	atomic_set(&md->uevent_seq, 0);
1902 	INIT_LIST_HEAD(&md->uevent_list);
1903 	INIT_LIST_HEAD(&md->table_devices);
1904 	spin_lock_init(&md->uevent_lock);
1905 
1906 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1907 	if (!md->queue)
1908 		goto bad;
1909 	md->queue->queuedata = md;
1910 	md->queue->backing_dev_info->congested_data = md;
1911 
1912 	md->disk = alloc_disk_node(1, md->numa_node_id);
1913 	if (!md->disk)
1914 		goto bad;
1915 
1916 	atomic_set(&md->pending[0], 0);
1917 	atomic_set(&md->pending[1], 0);
1918 	init_waitqueue_head(&md->wait);
1919 	INIT_WORK(&md->work, dm_wq_work);
1920 	init_waitqueue_head(&md->eventq);
1921 	init_completion(&md->kobj_holder.completion);
1922 	md->kworker_task = NULL;
1923 
1924 	md->disk->major = _major;
1925 	md->disk->first_minor = minor;
1926 	md->disk->fops = &dm_blk_dops;
1927 	md->disk->queue = md->queue;
1928 	md->disk->private_data = md;
1929 	sprintf(md->disk->disk_name, "dm-%d", minor);
1930 
1931 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1932 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1933 		if (!dax_dev)
1934 			goto bad;
1935 	}
1936 	md->dax_dev = dax_dev;
1937 
1938 	add_disk_no_queue_reg(md->disk);
1939 	format_dev_t(md->name, MKDEV(_major, minor));
1940 
1941 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1942 	if (!md->wq)
1943 		goto bad;
1944 
1945 	md->bdev = bdget_disk(md->disk, 0);
1946 	if (!md->bdev)
1947 		goto bad;
1948 
1949 	bio_init(&md->flush_bio, NULL, 0);
1950 	bio_set_dev(&md->flush_bio, md->bdev);
1951 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1952 
1953 	dm_stats_init(&md->stats);
1954 
1955 	/* Populate the mapping, nobody knows we exist yet */
1956 	spin_lock(&_minor_lock);
1957 	old_md = idr_replace(&_minor_idr, md, minor);
1958 	spin_unlock(&_minor_lock);
1959 
1960 	BUG_ON(old_md != MINOR_ALLOCED);
1961 
1962 	return md;
1963 
1964 bad:
1965 	cleanup_mapped_device(md);
1966 bad_io_barrier:
1967 	free_minor(minor);
1968 bad_minor:
1969 	module_put(THIS_MODULE);
1970 bad_module_get:
1971 	kvfree(md);
1972 	return NULL;
1973 }
1974 
1975 static void unlock_fs(struct mapped_device *md);
1976 
1977 static void free_dev(struct mapped_device *md)
1978 {
1979 	int minor = MINOR(disk_devt(md->disk));
1980 
1981 	unlock_fs(md);
1982 
1983 	cleanup_mapped_device(md);
1984 
1985 	free_table_devices(&md->table_devices);
1986 	dm_stats_cleanup(&md->stats);
1987 	free_minor(minor);
1988 
1989 	module_put(THIS_MODULE);
1990 	kvfree(md);
1991 }
1992 
1993 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1994 {
1995 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1996 	int ret = 0;
1997 
1998 	if (dm_table_bio_based(t)) {
1999 		/*
2000 		 * The md may already have mempools that need changing.
2001 		 * If so, reload bioset because front_pad may have changed
2002 		 * because a different table was loaded.
2003 		 */
2004 		bioset_exit(&md->bs);
2005 		bioset_exit(&md->io_bs);
2006 
2007 	} else if (bioset_initialized(&md->bs)) {
2008 		/*
2009 		 * There's no need to reload with request-based dm
2010 		 * because the size of front_pad doesn't change.
2011 		 * Note for future: If you are to reload bioset,
2012 		 * prep-ed requests in the queue may refer
2013 		 * to bio from the old bioset, so you must walk
2014 		 * through the queue to unprep.
2015 		 */
2016 		goto out;
2017 	}
2018 
2019 	BUG_ON(!p ||
2020 	       bioset_initialized(&md->bs) ||
2021 	       bioset_initialized(&md->io_bs));
2022 
2023 	ret = bioset_init_from_src(&md->bs, &p->bs);
2024 	if (ret)
2025 		goto out;
2026 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2027 	if (ret)
2028 		bioset_exit(&md->bs);
2029 out:
2030 	/* mempool bind completed, no longer need any mempools in the table */
2031 	dm_table_free_md_mempools(t);
2032 	return ret;
2033 }
2034 
2035 /*
2036  * Bind a table to the device.
2037  */
2038 static void event_callback(void *context)
2039 {
2040 	unsigned long flags;
2041 	LIST_HEAD(uevents);
2042 	struct mapped_device *md = (struct mapped_device *) context;
2043 
2044 	spin_lock_irqsave(&md->uevent_lock, flags);
2045 	list_splice_init(&md->uevent_list, &uevents);
2046 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2047 
2048 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2049 
2050 	atomic_inc(&md->event_nr);
2051 	wake_up(&md->eventq);
2052 	dm_issue_global_event();
2053 }
2054 
2055 /*
2056  * Protected by md->suspend_lock obtained by dm_swap_table().
2057  */
2058 static void __set_size(struct mapped_device *md, sector_t size)
2059 {
2060 	lockdep_assert_held(&md->suspend_lock);
2061 
2062 	set_capacity(md->disk, size);
2063 
2064 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2065 }
2066 
2067 /*
2068  * Returns old map, which caller must destroy.
2069  */
2070 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2071 			       struct queue_limits *limits)
2072 {
2073 	struct dm_table *old_map;
2074 	struct request_queue *q = md->queue;
2075 	bool request_based = dm_table_request_based(t);
2076 	sector_t size;
2077 	int ret;
2078 
2079 	lockdep_assert_held(&md->suspend_lock);
2080 
2081 	size = dm_table_get_size(t);
2082 
2083 	/*
2084 	 * Wipe any geometry if the size of the table changed.
2085 	 */
2086 	if (size != dm_get_size(md))
2087 		memset(&md->geometry, 0, sizeof(md->geometry));
2088 
2089 	__set_size(md, size);
2090 
2091 	dm_table_event_callback(t, event_callback, md);
2092 
2093 	/*
2094 	 * The queue hasn't been stopped yet, if the old table type wasn't
2095 	 * for request-based during suspension.  So stop it to prevent
2096 	 * I/O mapping before resume.
2097 	 * This must be done before setting the queue restrictions,
2098 	 * because request-based dm may be run just after the setting.
2099 	 */
2100 	if (request_based)
2101 		dm_stop_queue(q);
2102 
2103 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2104 		/*
2105 		 * Leverage the fact that request-based DM targets and
2106 		 * NVMe bio based targets are immutable singletons
2107 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2108 		 *   and __process_bio.
2109 		 */
2110 		md->immutable_target = dm_table_get_immutable_target(t);
2111 	}
2112 
2113 	ret = __bind_mempools(md, t);
2114 	if (ret) {
2115 		old_map = ERR_PTR(ret);
2116 		goto out;
2117 	}
2118 
2119 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2120 	rcu_assign_pointer(md->map, (void *)t);
2121 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2122 
2123 	dm_table_set_restrictions(t, q, limits);
2124 	if (old_map)
2125 		dm_sync_table(md);
2126 
2127 out:
2128 	return old_map;
2129 }
2130 
2131 /*
2132  * Returns unbound table for the caller to free.
2133  */
2134 static struct dm_table *__unbind(struct mapped_device *md)
2135 {
2136 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2137 
2138 	if (!map)
2139 		return NULL;
2140 
2141 	dm_table_event_callback(map, NULL, NULL);
2142 	RCU_INIT_POINTER(md->map, NULL);
2143 	dm_sync_table(md);
2144 
2145 	return map;
2146 }
2147 
2148 /*
2149  * Constructor for a new device.
2150  */
2151 int dm_create(int minor, struct mapped_device **result)
2152 {
2153 	int r;
2154 	struct mapped_device *md;
2155 
2156 	md = alloc_dev(minor);
2157 	if (!md)
2158 		return -ENXIO;
2159 
2160 	r = dm_sysfs_init(md);
2161 	if (r) {
2162 		free_dev(md);
2163 		return r;
2164 	}
2165 
2166 	*result = md;
2167 	return 0;
2168 }
2169 
2170 /*
2171  * Functions to manage md->type.
2172  * All are required to hold md->type_lock.
2173  */
2174 void dm_lock_md_type(struct mapped_device *md)
2175 {
2176 	mutex_lock(&md->type_lock);
2177 }
2178 
2179 void dm_unlock_md_type(struct mapped_device *md)
2180 {
2181 	mutex_unlock(&md->type_lock);
2182 }
2183 
2184 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2185 {
2186 	BUG_ON(!mutex_is_locked(&md->type_lock));
2187 	md->type = type;
2188 }
2189 
2190 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2191 {
2192 	return md->type;
2193 }
2194 
2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2196 {
2197 	return md->immutable_target_type;
2198 }
2199 
2200 /*
2201  * The queue_limits are only valid as long as you have a reference
2202  * count on 'md'.
2203  */
2204 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2205 {
2206 	BUG_ON(!atomic_read(&md->holders));
2207 	return &md->queue->limits;
2208 }
2209 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2210 
2211 /*
2212  * Setup the DM device's queue based on md's type
2213  */
2214 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2215 {
2216 	int r;
2217 	struct queue_limits limits;
2218 	enum dm_queue_mode type = dm_get_md_type(md);
2219 
2220 	switch (type) {
2221 	case DM_TYPE_REQUEST_BASED:
2222 		dm_init_normal_md_queue(md);
2223 		r = dm_old_init_request_queue(md, t);
2224 		if (r) {
2225 			DMERR("Cannot initialize queue for request-based mapped device");
2226 			return r;
2227 		}
2228 		break;
2229 	case DM_TYPE_MQ_REQUEST_BASED:
2230 		r = dm_mq_init_request_queue(md, t);
2231 		if (r) {
2232 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2233 			return r;
2234 		}
2235 		break;
2236 	case DM_TYPE_BIO_BASED:
2237 	case DM_TYPE_DAX_BIO_BASED:
2238 		dm_init_normal_md_queue(md);
2239 		blk_queue_make_request(md->queue, dm_make_request);
2240 		break;
2241 	case DM_TYPE_NVME_BIO_BASED:
2242 		dm_init_normal_md_queue(md);
2243 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2244 		break;
2245 	case DM_TYPE_NONE:
2246 		WARN_ON_ONCE(true);
2247 		break;
2248 	}
2249 
2250 	r = dm_calculate_queue_limits(t, &limits);
2251 	if (r) {
2252 		DMERR("Cannot calculate initial queue limits");
2253 		return r;
2254 	}
2255 	dm_table_set_restrictions(t, md->queue, &limits);
2256 	blk_register_queue(md->disk);
2257 
2258 	return 0;
2259 }
2260 
2261 struct mapped_device *dm_get_md(dev_t dev)
2262 {
2263 	struct mapped_device *md;
2264 	unsigned minor = MINOR(dev);
2265 
2266 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2267 		return NULL;
2268 
2269 	spin_lock(&_minor_lock);
2270 
2271 	md = idr_find(&_minor_idr, minor);
2272 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2273 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2274 		md = NULL;
2275 		goto out;
2276 	}
2277 	dm_get(md);
2278 out:
2279 	spin_unlock(&_minor_lock);
2280 
2281 	return md;
2282 }
2283 EXPORT_SYMBOL_GPL(dm_get_md);
2284 
2285 void *dm_get_mdptr(struct mapped_device *md)
2286 {
2287 	return md->interface_ptr;
2288 }
2289 
2290 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2291 {
2292 	md->interface_ptr = ptr;
2293 }
2294 
2295 void dm_get(struct mapped_device *md)
2296 {
2297 	atomic_inc(&md->holders);
2298 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2299 }
2300 
2301 int dm_hold(struct mapped_device *md)
2302 {
2303 	spin_lock(&_minor_lock);
2304 	if (test_bit(DMF_FREEING, &md->flags)) {
2305 		spin_unlock(&_minor_lock);
2306 		return -EBUSY;
2307 	}
2308 	dm_get(md);
2309 	spin_unlock(&_minor_lock);
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL_GPL(dm_hold);
2313 
2314 const char *dm_device_name(struct mapped_device *md)
2315 {
2316 	return md->name;
2317 }
2318 EXPORT_SYMBOL_GPL(dm_device_name);
2319 
2320 static void __dm_destroy(struct mapped_device *md, bool wait)
2321 {
2322 	struct dm_table *map;
2323 	int srcu_idx;
2324 
2325 	might_sleep();
2326 
2327 	spin_lock(&_minor_lock);
2328 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2329 	set_bit(DMF_FREEING, &md->flags);
2330 	spin_unlock(&_minor_lock);
2331 
2332 	blk_set_queue_dying(md->queue);
2333 
2334 	if (dm_request_based(md) && md->kworker_task)
2335 		kthread_flush_worker(&md->kworker);
2336 
2337 	/*
2338 	 * Take suspend_lock so that presuspend and postsuspend methods
2339 	 * do not race with internal suspend.
2340 	 */
2341 	mutex_lock(&md->suspend_lock);
2342 	map = dm_get_live_table(md, &srcu_idx);
2343 	if (!dm_suspended_md(md)) {
2344 		dm_table_presuspend_targets(map);
2345 		dm_table_postsuspend_targets(map);
2346 	}
2347 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2348 	dm_put_live_table(md, srcu_idx);
2349 	mutex_unlock(&md->suspend_lock);
2350 
2351 	/*
2352 	 * Rare, but there may be I/O requests still going to complete,
2353 	 * for example.  Wait for all references to disappear.
2354 	 * No one should increment the reference count of the mapped_device,
2355 	 * after the mapped_device state becomes DMF_FREEING.
2356 	 */
2357 	if (wait)
2358 		while (atomic_read(&md->holders))
2359 			msleep(1);
2360 	else if (atomic_read(&md->holders))
2361 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2362 		       dm_device_name(md), atomic_read(&md->holders));
2363 
2364 	dm_sysfs_exit(md);
2365 	dm_table_destroy(__unbind(md));
2366 	free_dev(md);
2367 }
2368 
2369 void dm_destroy(struct mapped_device *md)
2370 {
2371 	__dm_destroy(md, true);
2372 }
2373 
2374 void dm_destroy_immediate(struct mapped_device *md)
2375 {
2376 	__dm_destroy(md, false);
2377 }
2378 
2379 void dm_put(struct mapped_device *md)
2380 {
2381 	atomic_dec(&md->holders);
2382 }
2383 EXPORT_SYMBOL_GPL(dm_put);
2384 
2385 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2386 {
2387 	int r = 0;
2388 	DEFINE_WAIT(wait);
2389 
2390 	while (1) {
2391 		prepare_to_wait(&md->wait, &wait, task_state);
2392 
2393 		if (!md_in_flight(md))
2394 			break;
2395 
2396 		if (signal_pending_state(task_state, current)) {
2397 			r = -EINTR;
2398 			break;
2399 		}
2400 
2401 		io_schedule();
2402 	}
2403 	finish_wait(&md->wait, &wait);
2404 
2405 	return r;
2406 }
2407 
2408 /*
2409  * Process the deferred bios
2410  */
2411 static void dm_wq_work(struct work_struct *work)
2412 {
2413 	struct mapped_device *md = container_of(work, struct mapped_device,
2414 						work);
2415 	struct bio *c;
2416 	int srcu_idx;
2417 	struct dm_table *map;
2418 
2419 	map = dm_get_live_table(md, &srcu_idx);
2420 
2421 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2422 		spin_lock_irq(&md->deferred_lock);
2423 		c = bio_list_pop(&md->deferred);
2424 		spin_unlock_irq(&md->deferred_lock);
2425 
2426 		if (!c)
2427 			break;
2428 
2429 		if (dm_request_based(md))
2430 			generic_make_request(c);
2431 		else
2432 			__split_and_process_bio(md, map, c);
2433 	}
2434 
2435 	dm_put_live_table(md, srcu_idx);
2436 }
2437 
2438 static void dm_queue_flush(struct mapped_device *md)
2439 {
2440 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2441 	smp_mb__after_atomic();
2442 	queue_work(md->wq, &md->work);
2443 }
2444 
2445 /*
2446  * Swap in a new table, returning the old one for the caller to destroy.
2447  */
2448 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2449 {
2450 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2451 	struct queue_limits limits;
2452 	int r;
2453 
2454 	mutex_lock(&md->suspend_lock);
2455 
2456 	/* device must be suspended */
2457 	if (!dm_suspended_md(md))
2458 		goto out;
2459 
2460 	/*
2461 	 * If the new table has no data devices, retain the existing limits.
2462 	 * This helps multipath with queue_if_no_path if all paths disappear,
2463 	 * then new I/O is queued based on these limits, and then some paths
2464 	 * reappear.
2465 	 */
2466 	if (dm_table_has_no_data_devices(table)) {
2467 		live_map = dm_get_live_table_fast(md);
2468 		if (live_map)
2469 			limits = md->queue->limits;
2470 		dm_put_live_table_fast(md);
2471 	}
2472 
2473 	if (!live_map) {
2474 		r = dm_calculate_queue_limits(table, &limits);
2475 		if (r) {
2476 			map = ERR_PTR(r);
2477 			goto out;
2478 		}
2479 	}
2480 
2481 	map = __bind(md, table, &limits);
2482 	dm_issue_global_event();
2483 
2484 out:
2485 	mutex_unlock(&md->suspend_lock);
2486 	return map;
2487 }
2488 
2489 /*
2490  * Functions to lock and unlock any filesystem running on the
2491  * device.
2492  */
2493 static int lock_fs(struct mapped_device *md)
2494 {
2495 	int r;
2496 
2497 	WARN_ON(md->frozen_sb);
2498 
2499 	md->frozen_sb = freeze_bdev(md->bdev);
2500 	if (IS_ERR(md->frozen_sb)) {
2501 		r = PTR_ERR(md->frozen_sb);
2502 		md->frozen_sb = NULL;
2503 		return r;
2504 	}
2505 
2506 	set_bit(DMF_FROZEN, &md->flags);
2507 
2508 	return 0;
2509 }
2510 
2511 static void unlock_fs(struct mapped_device *md)
2512 {
2513 	if (!test_bit(DMF_FROZEN, &md->flags))
2514 		return;
2515 
2516 	thaw_bdev(md->bdev, md->frozen_sb);
2517 	md->frozen_sb = NULL;
2518 	clear_bit(DMF_FROZEN, &md->flags);
2519 }
2520 
2521 /*
2522  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2523  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2524  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2525  *
2526  * If __dm_suspend returns 0, the device is completely quiescent
2527  * now. There is no request-processing activity. All new requests
2528  * are being added to md->deferred list.
2529  */
2530 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2531 			unsigned suspend_flags, long task_state,
2532 			int dmf_suspended_flag)
2533 {
2534 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2535 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2536 	int r;
2537 
2538 	lockdep_assert_held(&md->suspend_lock);
2539 
2540 	/*
2541 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2542 	 * This flag is cleared before dm_suspend returns.
2543 	 */
2544 	if (noflush)
2545 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2546 	else
2547 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2548 
2549 	/*
2550 	 * This gets reverted if there's an error later and the targets
2551 	 * provide the .presuspend_undo hook.
2552 	 */
2553 	dm_table_presuspend_targets(map);
2554 
2555 	/*
2556 	 * Flush I/O to the device.
2557 	 * Any I/O submitted after lock_fs() may not be flushed.
2558 	 * noflush takes precedence over do_lockfs.
2559 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2560 	 */
2561 	if (!noflush && do_lockfs) {
2562 		r = lock_fs(md);
2563 		if (r) {
2564 			dm_table_presuspend_undo_targets(map);
2565 			return r;
2566 		}
2567 	}
2568 
2569 	/*
2570 	 * Here we must make sure that no processes are submitting requests
2571 	 * to target drivers i.e. no one may be executing
2572 	 * __split_and_process_bio. This is called from dm_request and
2573 	 * dm_wq_work.
2574 	 *
2575 	 * To get all processes out of __split_and_process_bio in dm_request,
2576 	 * we take the write lock. To prevent any process from reentering
2577 	 * __split_and_process_bio from dm_request and quiesce the thread
2578 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2579 	 * flush_workqueue(md->wq).
2580 	 */
2581 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2582 	if (map)
2583 		synchronize_srcu(&md->io_barrier);
2584 
2585 	/*
2586 	 * Stop md->queue before flushing md->wq in case request-based
2587 	 * dm defers requests to md->wq from md->queue.
2588 	 */
2589 	if (dm_request_based(md)) {
2590 		dm_stop_queue(md->queue);
2591 		if (md->kworker_task)
2592 			kthread_flush_worker(&md->kworker);
2593 	}
2594 
2595 	flush_workqueue(md->wq);
2596 
2597 	/*
2598 	 * At this point no more requests are entering target request routines.
2599 	 * We call dm_wait_for_completion to wait for all existing requests
2600 	 * to finish.
2601 	 */
2602 	r = dm_wait_for_completion(md, task_state);
2603 	if (!r)
2604 		set_bit(dmf_suspended_flag, &md->flags);
2605 
2606 	if (noflush)
2607 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2608 	if (map)
2609 		synchronize_srcu(&md->io_barrier);
2610 
2611 	/* were we interrupted ? */
2612 	if (r < 0) {
2613 		dm_queue_flush(md);
2614 
2615 		if (dm_request_based(md))
2616 			dm_start_queue(md->queue);
2617 
2618 		unlock_fs(md);
2619 		dm_table_presuspend_undo_targets(map);
2620 		/* pushback list is already flushed, so skip flush */
2621 	}
2622 
2623 	return r;
2624 }
2625 
2626 /*
2627  * We need to be able to change a mapping table under a mounted
2628  * filesystem.  For example we might want to move some data in
2629  * the background.  Before the table can be swapped with
2630  * dm_bind_table, dm_suspend must be called to flush any in
2631  * flight bios and ensure that any further io gets deferred.
2632  */
2633 /*
2634  * Suspend mechanism in request-based dm.
2635  *
2636  * 1. Flush all I/Os by lock_fs() if needed.
2637  * 2. Stop dispatching any I/O by stopping the request_queue.
2638  * 3. Wait for all in-flight I/Os to be completed or requeued.
2639  *
2640  * To abort suspend, start the request_queue.
2641  */
2642 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2643 {
2644 	struct dm_table *map = NULL;
2645 	int r = 0;
2646 
2647 retry:
2648 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2649 
2650 	if (dm_suspended_md(md)) {
2651 		r = -EINVAL;
2652 		goto out_unlock;
2653 	}
2654 
2655 	if (dm_suspended_internally_md(md)) {
2656 		/* already internally suspended, wait for internal resume */
2657 		mutex_unlock(&md->suspend_lock);
2658 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2659 		if (r)
2660 			return r;
2661 		goto retry;
2662 	}
2663 
2664 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2665 
2666 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2667 	if (r)
2668 		goto out_unlock;
2669 
2670 	dm_table_postsuspend_targets(map);
2671 
2672 out_unlock:
2673 	mutex_unlock(&md->suspend_lock);
2674 	return r;
2675 }
2676 
2677 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2678 {
2679 	if (map) {
2680 		int r = dm_table_resume_targets(map);
2681 		if (r)
2682 			return r;
2683 	}
2684 
2685 	dm_queue_flush(md);
2686 
2687 	/*
2688 	 * Flushing deferred I/Os must be done after targets are resumed
2689 	 * so that mapping of targets can work correctly.
2690 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2691 	 */
2692 	if (dm_request_based(md))
2693 		dm_start_queue(md->queue);
2694 
2695 	unlock_fs(md);
2696 
2697 	return 0;
2698 }
2699 
2700 int dm_resume(struct mapped_device *md)
2701 {
2702 	int r;
2703 	struct dm_table *map = NULL;
2704 
2705 retry:
2706 	r = -EINVAL;
2707 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2708 
2709 	if (!dm_suspended_md(md))
2710 		goto out;
2711 
2712 	if (dm_suspended_internally_md(md)) {
2713 		/* already internally suspended, wait for internal resume */
2714 		mutex_unlock(&md->suspend_lock);
2715 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2716 		if (r)
2717 			return r;
2718 		goto retry;
2719 	}
2720 
2721 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2722 	if (!map || !dm_table_get_size(map))
2723 		goto out;
2724 
2725 	r = __dm_resume(md, map);
2726 	if (r)
2727 		goto out;
2728 
2729 	clear_bit(DMF_SUSPENDED, &md->flags);
2730 out:
2731 	mutex_unlock(&md->suspend_lock);
2732 
2733 	return r;
2734 }
2735 
2736 /*
2737  * Internal suspend/resume works like userspace-driven suspend. It waits
2738  * until all bios finish and prevents issuing new bios to the target drivers.
2739  * It may be used only from the kernel.
2740  */
2741 
2742 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2743 {
2744 	struct dm_table *map = NULL;
2745 
2746 	lockdep_assert_held(&md->suspend_lock);
2747 
2748 	if (md->internal_suspend_count++)
2749 		return; /* nested internal suspend */
2750 
2751 	if (dm_suspended_md(md)) {
2752 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2753 		return; /* nest suspend */
2754 	}
2755 
2756 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2757 
2758 	/*
2759 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2760 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2761 	 * would require changing .presuspend to return an error -- avoid this
2762 	 * until there is a need for more elaborate variants of internal suspend.
2763 	 */
2764 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2765 			    DMF_SUSPENDED_INTERNALLY);
2766 
2767 	dm_table_postsuspend_targets(map);
2768 }
2769 
2770 static void __dm_internal_resume(struct mapped_device *md)
2771 {
2772 	BUG_ON(!md->internal_suspend_count);
2773 
2774 	if (--md->internal_suspend_count)
2775 		return; /* resume from nested internal suspend */
2776 
2777 	if (dm_suspended_md(md))
2778 		goto done; /* resume from nested suspend */
2779 
2780 	/*
2781 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2782 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2783 	 */
2784 	(void) __dm_resume(md, NULL);
2785 
2786 done:
2787 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2788 	smp_mb__after_atomic();
2789 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2790 }
2791 
2792 void dm_internal_suspend_noflush(struct mapped_device *md)
2793 {
2794 	mutex_lock(&md->suspend_lock);
2795 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2796 	mutex_unlock(&md->suspend_lock);
2797 }
2798 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2799 
2800 void dm_internal_resume(struct mapped_device *md)
2801 {
2802 	mutex_lock(&md->suspend_lock);
2803 	__dm_internal_resume(md);
2804 	mutex_unlock(&md->suspend_lock);
2805 }
2806 EXPORT_SYMBOL_GPL(dm_internal_resume);
2807 
2808 /*
2809  * Fast variants of internal suspend/resume hold md->suspend_lock,
2810  * which prevents interaction with userspace-driven suspend.
2811  */
2812 
2813 void dm_internal_suspend_fast(struct mapped_device *md)
2814 {
2815 	mutex_lock(&md->suspend_lock);
2816 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2817 		return;
2818 
2819 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2820 	synchronize_srcu(&md->io_barrier);
2821 	flush_workqueue(md->wq);
2822 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2823 }
2824 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2825 
2826 void dm_internal_resume_fast(struct mapped_device *md)
2827 {
2828 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2829 		goto done;
2830 
2831 	dm_queue_flush(md);
2832 
2833 done:
2834 	mutex_unlock(&md->suspend_lock);
2835 }
2836 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2837 
2838 /*-----------------------------------------------------------------
2839  * Event notification.
2840  *---------------------------------------------------------------*/
2841 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2842 		       unsigned cookie)
2843 {
2844 	char udev_cookie[DM_COOKIE_LENGTH];
2845 	char *envp[] = { udev_cookie, NULL };
2846 
2847 	if (!cookie)
2848 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2849 	else {
2850 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2851 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2852 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2853 					  action, envp);
2854 	}
2855 }
2856 
2857 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2858 {
2859 	return atomic_add_return(1, &md->uevent_seq);
2860 }
2861 
2862 uint32_t dm_get_event_nr(struct mapped_device *md)
2863 {
2864 	return atomic_read(&md->event_nr);
2865 }
2866 
2867 int dm_wait_event(struct mapped_device *md, int event_nr)
2868 {
2869 	return wait_event_interruptible(md->eventq,
2870 			(event_nr != atomic_read(&md->event_nr)));
2871 }
2872 
2873 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2874 {
2875 	unsigned long flags;
2876 
2877 	spin_lock_irqsave(&md->uevent_lock, flags);
2878 	list_add(elist, &md->uevent_list);
2879 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2880 }
2881 
2882 /*
2883  * The gendisk is only valid as long as you have a reference
2884  * count on 'md'.
2885  */
2886 struct gendisk *dm_disk(struct mapped_device *md)
2887 {
2888 	return md->disk;
2889 }
2890 EXPORT_SYMBOL_GPL(dm_disk);
2891 
2892 struct kobject *dm_kobject(struct mapped_device *md)
2893 {
2894 	return &md->kobj_holder.kobj;
2895 }
2896 
2897 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2898 {
2899 	struct mapped_device *md;
2900 
2901 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2902 
2903 	spin_lock(&_minor_lock);
2904 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2905 		md = NULL;
2906 		goto out;
2907 	}
2908 	dm_get(md);
2909 out:
2910 	spin_unlock(&_minor_lock);
2911 
2912 	return md;
2913 }
2914 
2915 int dm_suspended_md(struct mapped_device *md)
2916 {
2917 	return test_bit(DMF_SUSPENDED, &md->flags);
2918 }
2919 
2920 int dm_suspended_internally_md(struct mapped_device *md)
2921 {
2922 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2923 }
2924 
2925 int dm_test_deferred_remove_flag(struct mapped_device *md)
2926 {
2927 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2928 }
2929 
2930 int dm_suspended(struct dm_target *ti)
2931 {
2932 	return dm_suspended_md(dm_table_get_md(ti->table));
2933 }
2934 EXPORT_SYMBOL_GPL(dm_suspended);
2935 
2936 int dm_noflush_suspending(struct dm_target *ti)
2937 {
2938 	return __noflush_suspending(dm_table_get_md(ti->table));
2939 }
2940 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2941 
2942 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2943 					    unsigned integrity, unsigned per_io_data_size,
2944 					    unsigned min_pool_size)
2945 {
2946 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2947 	unsigned int pool_size = 0;
2948 	unsigned int front_pad, io_front_pad;
2949 	int ret;
2950 
2951 	if (!pools)
2952 		return NULL;
2953 
2954 	switch (type) {
2955 	case DM_TYPE_BIO_BASED:
2956 	case DM_TYPE_DAX_BIO_BASED:
2957 	case DM_TYPE_NVME_BIO_BASED:
2958 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2959 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2960 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2961 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2962 		if (ret)
2963 			goto out;
2964 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2965 			goto out;
2966 		break;
2967 	case DM_TYPE_REQUEST_BASED:
2968 	case DM_TYPE_MQ_REQUEST_BASED:
2969 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2970 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2971 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2972 		break;
2973 	default:
2974 		BUG();
2975 	}
2976 
2977 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2978 	if (ret)
2979 		goto out;
2980 
2981 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2982 		goto out;
2983 
2984 	return pools;
2985 
2986 out:
2987 	dm_free_md_mempools(pools);
2988 
2989 	return NULL;
2990 }
2991 
2992 void dm_free_md_mempools(struct dm_md_mempools *pools)
2993 {
2994 	if (!pools)
2995 		return;
2996 
2997 	bioset_exit(&pools->bs);
2998 	bioset_exit(&pools->io_bs);
2999 
3000 	kfree(pools);
3001 }
3002 
3003 struct dm_pr {
3004 	u64	old_key;
3005 	u64	new_key;
3006 	u32	flags;
3007 	bool	fail_early;
3008 };
3009 
3010 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3011 		      void *data)
3012 {
3013 	struct mapped_device *md = bdev->bd_disk->private_data;
3014 	struct dm_table *table;
3015 	struct dm_target *ti;
3016 	int ret = -ENOTTY, srcu_idx;
3017 
3018 	table = dm_get_live_table(md, &srcu_idx);
3019 	if (!table || !dm_table_get_size(table))
3020 		goto out;
3021 
3022 	/* We only support devices that have a single target */
3023 	if (dm_table_get_num_targets(table) != 1)
3024 		goto out;
3025 	ti = dm_table_get_target(table, 0);
3026 
3027 	ret = -EINVAL;
3028 	if (!ti->type->iterate_devices)
3029 		goto out;
3030 
3031 	ret = ti->type->iterate_devices(ti, fn, data);
3032 out:
3033 	dm_put_live_table(md, srcu_idx);
3034 	return ret;
3035 }
3036 
3037 /*
3038  * For register / unregister we need to manually call out to every path.
3039  */
3040 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3041 			    sector_t start, sector_t len, void *data)
3042 {
3043 	struct dm_pr *pr = data;
3044 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3045 
3046 	if (!ops || !ops->pr_register)
3047 		return -EOPNOTSUPP;
3048 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3049 }
3050 
3051 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3052 			  u32 flags)
3053 {
3054 	struct dm_pr pr = {
3055 		.old_key	= old_key,
3056 		.new_key	= new_key,
3057 		.flags		= flags,
3058 		.fail_early	= true,
3059 	};
3060 	int ret;
3061 
3062 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3063 	if (ret && new_key) {
3064 		/* unregister all paths if we failed to register any path */
3065 		pr.old_key = new_key;
3066 		pr.new_key = 0;
3067 		pr.flags = 0;
3068 		pr.fail_early = false;
3069 		dm_call_pr(bdev, __dm_pr_register, &pr);
3070 	}
3071 
3072 	return ret;
3073 }
3074 
3075 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3076 			 u32 flags)
3077 {
3078 	struct mapped_device *md = bdev->bd_disk->private_data;
3079 	const struct pr_ops *ops;
3080 	int r, srcu_idx;
3081 
3082 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3083 	if (r < 0)
3084 		goto out;
3085 
3086 	ops = bdev->bd_disk->fops->pr_ops;
3087 	if (ops && ops->pr_reserve)
3088 		r = ops->pr_reserve(bdev, key, type, flags);
3089 	else
3090 		r = -EOPNOTSUPP;
3091 out:
3092 	dm_unprepare_ioctl(md, srcu_idx);
3093 	return r;
3094 }
3095 
3096 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3097 {
3098 	struct mapped_device *md = bdev->bd_disk->private_data;
3099 	const struct pr_ops *ops;
3100 	int r, srcu_idx;
3101 
3102 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3103 	if (r < 0)
3104 		goto out;
3105 
3106 	ops = bdev->bd_disk->fops->pr_ops;
3107 	if (ops && ops->pr_release)
3108 		r = ops->pr_release(bdev, key, type);
3109 	else
3110 		r = -EOPNOTSUPP;
3111 out:
3112 	dm_unprepare_ioctl(md, srcu_idx);
3113 	return r;
3114 }
3115 
3116 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3117 			 enum pr_type type, bool abort)
3118 {
3119 	struct mapped_device *md = bdev->bd_disk->private_data;
3120 	const struct pr_ops *ops;
3121 	int r, srcu_idx;
3122 
3123 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3124 	if (r < 0)
3125 		goto out;
3126 
3127 	ops = bdev->bd_disk->fops->pr_ops;
3128 	if (ops && ops->pr_preempt)
3129 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3130 	else
3131 		r = -EOPNOTSUPP;
3132 out:
3133 	dm_unprepare_ioctl(md, srcu_idx);
3134 	return r;
3135 }
3136 
3137 static int dm_pr_clear(struct block_device *bdev, u64 key)
3138 {
3139 	struct mapped_device *md = bdev->bd_disk->private_data;
3140 	const struct pr_ops *ops;
3141 	int r, srcu_idx;
3142 
3143 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3144 	if (r < 0)
3145 		goto out;
3146 
3147 	ops = bdev->bd_disk->fops->pr_ops;
3148 	if (ops && ops->pr_clear)
3149 		r = ops->pr_clear(bdev, key);
3150 	else
3151 		r = -EOPNOTSUPP;
3152 out:
3153 	dm_unprepare_ioctl(md, srcu_idx);
3154 	return r;
3155 }
3156 
3157 static const struct pr_ops dm_pr_ops = {
3158 	.pr_register	= dm_pr_register,
3159 	.pr_reserve	= dm_pr_reserve,
3160 	.pr_release	= dm_pr_release,
3161 	.pr_preempt	= dm_pr_preempt,
3162 	.pr_clear	= dm_pr_clear,
3163 };
3164 
3165 static const struct block_device_operations dm_blk_dops = {
3166 	.open = dm_blk_open,
3167 	.release = dm_blk_close,
3168 	.ioctl = dm_blk_ioctl,
3169 	.getgeo = dm_blk_getgeo,
3170 	.pr_ops = &dm_pr_ops,
3171 	.owner = THIS_MODULE
3172 };
3173 
3174 static const struct dax_operations dm_dax_ops = {
3175 	.direct_access = dm_dax_direct_access,
3176 	.copy_from_iter = dm_dax_copy_from_iter,
3177 	.copy_to_iter = dm_dax_copy_to_iter,
3178 };
3179 
3180 /*
3181  * module hooks
3182  */
3183 module_init(dm_init);
3184 module_exit(dm_exit);
3185 
3186 module_param(major, uint, 0);
3187 MODULE_PARM_DESC(major, "The major number of the device mapper");
3188 
3189 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3190 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3191 
3192 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3193 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3194 
3195 MODULE_DESCRIPTION(DM_NAME " driver");
3196 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3197 MODULE_LICENSE("GPL");
3198