xref: /openbmc/linux/drivers/md/dm.c (revision 0936cdfb)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 
147 #define DM_NUMA_NODE NUMA_NO_NODE
148 static int dm_numa_node = DM_NUMA_NODE;
149 
150 /*
151  * For mempools pre-allocation at the table loading time.
152  */
153 struct dm_md_mempools {
154 	struct bio_set bs;
155 	struct bio_set io_bs;
156 };
157 
158 struct table_device {
159 	struct list_head list;
160 	refcount_t count;
161 	struct dm_dev dm_dev;
162 };
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r;
226 
227 	r = dm_uevent_init();
228 	if (r)
229 		return r;
230 
231 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
232 	if (!deferred_remove_workqueue) {
233 		r = -ENOMEM;
234 		goto out_uevent_exit;
235 	}
236 
237 	_major = major;
238 	r = register_blkdev(_major, _name);
239 	if (r < 0)
240 		goto out_free_workqueue;
241 
242 	if (!_major)
243 		_major = r;
244 
245 	return 0;
246 
247 out_free_workqueue:
248 	destroy_workqueue(deferred_remove_workqueue);
249 out_uevent_exit:
250 	dm_uevent_exit();
251 
252 	return r;
253 }
254 
255 static void local_exit(void)
256 {
257 	flush_scheduled_work();
258 	destroy_workqueue(deferred_remove_workqueue);
259 
260 	unregister_blkdev(_major, _name);
261 	dm_uevent_exit();
262 
263 	_major = 0;
264 
265 	DMINFO("cleaned up");
266 }
267 
268 static int (*_inits[])(void) __initdata = {
269 	local_init,
270 	dm_target_init,
271 	dm_linear_init,
272 	dm_stripe_init,
273 	dm_io_init,
274 	dm_kcopyd_init,
275 	dm_interface_init,
276 	dm_statistics_init,
277 };
278 
279 static void (*_exits[])(void) = {
280 	local_exit,
281 	dm_target_exit,
282 	dm_linear_exit,
283 	dm_stripe_exit,
284 	dm_io_exit,
285 	dm_kcopyd_exit,
286 	dm_interface_exit,
287 	dm_statistics_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 
318 	/*
319 	 * Should be empty by this point.
320 	 */
321 	idr_destroy(&_minor_idr);
322 }
323 
324 /*
325  * Block device functions
326  */
327 int dm_deleting_md(struct mapped_device *md)
328 {
329 	return test_bit(DMF_DELETING, &md->flags);
330 }
331 
332 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
333 {
334 	struct mapped_device *md;
335 
336 	spin_lock(&_minor_lock);
337 
338 	md = bdev->bd_disk->private_data;
339 	if (!md)
340 		goto out;
341 
342 	if (test_bit(DMF_FREEING, &md->flags) ||
343 	    dm_deleting_md(md)) {
344 		md = NULL;
345 		goto out;
346 	}
347 
348 	dm_get(md);
349 	atomic_inc(&md->open_count);
350 out:
351 	spin_unlock(&_minor_lock);
352 
353 	return md ? 0 : -ENXIO;
354 }
355 
356 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
357 {
358 	struct mapped_device *md;
359 
360 	spin_lock(&_minor_lock);
361 
362 	md = disk->private_data;
363 	if (WARN_ON(!md))
364 		goto out;
365 
366 	if (atomic_dec_and_test(&md->open_count) &&
367 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
368 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
369 
370 	dm_put(md);
371 out:
372 	spin_unlock(&_minor_lock);
373 }
374 
375 int dm_open_count(struct mapped_device *md)
376 {
377 	return atomic_read(&md->open_count);
378 }
379 
380 /*
381  * Guarantees nothing is using the device before it's deleted.
382  */
383 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
384 {
385 	int r = 0;
386 
387 	spin_lock(&_minor_lock);
388 
389 	if (dm_open_count(md)) {
390 		r = -EBUSY;
391 		if (mark_deferred)
392 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
393 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
394 		r = -EEXIST;
395 	else
396 		set_bit(DMF_DELETING, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
403 int dm_cancel_deferred_remove(struct mapped_device *md)
404 {
405 	int r = 0;
406 
407 	spin_lock(&_minor_lock);
408 
409 	if (test_bit(DMF_DELETING, &md->flags))
410 		r = -EBUSY;
411 	else
412 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
413 
414 	spin_unlock(&_minor_lock);
415 
416 	return r;
417 }
418 
419 static void do_deferred_remove(struct work_struct *w)
420 {
421 	dm_deferred_remove();
422 }
423 
424 sector_t dm_get_size(struct mapped_device *md)
425 {
426 	return get_capacity(md->disk);
427 }
428 
429 struct request_queue *dm_get_md_queue(struct mapped_device *md)
430 {
431 	return md->queue;
432 }
433 
434 struct dm_stats *dm_get_stats(struct mapped_device *md)
435 {
436 	return &md->stats;
437 }
438 
439 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
440 {
441 	struct mapped_device *md = bdev->bd_disk->private_data;
442 
443 	return dm_get_geometry(md, geo);
444 }
445 
446 #ifdef CONFIG_BLK_DEV_ZONED
447 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
448 {
449 	struct dm_report_zones_args *args = data;
450 	sector_t sector_diff = args->tgt->begin - args->start;
451 
452 	/*
453 	 * Ignore zones beyond the target range.
454 	 */
455 	if (zone->start >= args->start + args->tgt->len)
456 		return 0;
457 
458 	/*
459 	 * Remap the start sector and write pointer position of the zone
460 	 * to match its position in the target range.
461 	 */
462 	zone->start += sector_diff;
463 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
464 		if (zone->cond == BLK_ZONE_COND_FULL)
465 			zone->wp = zone->start + zone->len;
466 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
467 			zone->wp = zone->start;
468 		else
469 			zone->wp += sector_diff;
470 	}
471 
472 	args->next_sector = zone->start + zone->len;
473 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
474 }
475 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
476 
477 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
478 		unsigned int nr_zones, report_zones_cb cb, void *data)
479 {
480 	struct mapped_device *md = disk->private_data;
481 	struct dm_table *map;
482 	int srcu_idx, ret;
483 	struct dm_report_zones_args args = {
484 		.next_sector = sector,
485 		.orig_data = data,
486 		.orig_cb = cb,
487 	};
488 
489 	if (dm_suspended_md(md))
490 		return -EAGAIN;
491 
492 	map = dm_get_live_table(md, &srcu_idx);
493 	if (!map)
494 		return -EIO;
495 
496 	do {
497 		struct dm_target *tgt;
498 
499 		tgt = dm_table_find_target(map, args.next_sector);
500 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
501 			ret = -EIO;
502 			goto out;
503 		}
504 
505 		args.tgt = tgt;
506 		ret = tgt->type->report_zones(tgt, &args, nr_zones);
507 		if (ret < 0)
508 			goto out;
509 	} while (args.zone_idx < nr_zones &&
510 		 args.next_sector < get_capacity(disk));
511 
512 	ret = args.zone_idx;
513 out:
514 	dm_put_live_table(md, srcu_idx);
515 	return ret;
516 }
517 #else
518 #define dm_blk_report_zones		NULL
519 #endif /* CONFIG_BLK_DEV_ZONED */
520 
521 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
522 			    struct block_device **bdev)
523 	__acquires(md->io_barrier)
524 {
525 	struct dm_target *tgt;
526 	struct dm_table *map;
527 	int r;
528 
529 retry:
530 	r = -ENOTTY;
531 	map = dm_get_live_table(md, srcu_idx);
532 	if (!map || !dm_table_get_size(map))
533 		return r;
534 
535 	/* We only support devices that have a single target */
536 	if (dm_table_get_num_targets(map) != 1)
537 		return r;
538 
539 	tgt = dm_table_get_target(map, 0);
540 	if (!tgt->type->prepare_ioctl)
541 		return r;
542 
543 	if (dm_suspended_md(md))
544 		return -EAGAIN;
545 
546 	r = tgt->type->prepare_ioctl(tgt, bdev);
547 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
548 		dm_put_live_table(md, *srcu_idx);
549 		msleep(10);
550 		goto retry;
551 	}
552 
553 	return r;
554 }
555 
556 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
557 	__releases(md->io_barrier)
558 {
559 	dm_put_live_table(md, srcu_idx);
560 }
561 
562 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
563 			unsigned int cmd, unsigned long arg)
564 {
565 	struct mapped_device *md = bdev->bd_disk->private_data;
566 	int r, srcu_idx;
567 
568 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
569 	if (r < 0)
570 		goto out;
571 
572 	if (r > 0) {
573 		/*
574 		 * Target determined this ioctl is being issued against a
575 		 * subset of the parent bdev; require extra privileges.
576 		 */
577 		if (!capable(CAP_SYS_RAWIO)) {
578 			DMWARN_LIMIT(
579 	"%s: sending ioctl %x to DM device without required privilege.",
580 				current->comm, cmd);
581 			r = -ENOIOCTLCMD;
582 			goto out;
583 		}
584 	}
585 
586 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
587 out:
588 	dm_unprepare_ioctl(md, srcu_idx);
589 	return r;
590 }
591 
592 static void start_io_acct(struct dm_io *io);
593 
594 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
595 {
596 	struct dm_io *io;
597 	struct dm_target_io *tio;
598 	struct bio *clone;
599 
600 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
601 	if (!clone)
602 		return NULL;
603 
604 	tio = container_of(clone, struct dm_target_io, clone);
605 	tio->inside_dm_io = true;
606 	tio->io = NULL;
607 
608 	io = container_of(tio, struct dm_io, tio);
609 	io->magic = DM_IO_MAGIC;
610 	io->status = 0;
611 	atomic_set(&io->io_count, 1);
612 	io->orig_bio = bio;
613 	io->md = md;
614 	spin_lock_init(&io->endio_lock);
615 
616 	start_io_acct(io);
617 
618 	return io;
619 }
620 
621 static void free_io(struct mapped_device *md, struct dm_io *io)
622 {
623 	bio_put(&io->tio.clone);
624 }
625 
626 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
627 				      unsigned target_bio_nr, gfp_t gfp_mask)
628 {
629 	struct dm_target_io *tio;
630 
631 	if (!ci->io->tio.io) {
632 		/* the dm_target_io embedded in ci->io is available */
633 		tio = &ci->io->tio;
634 	} else {
635 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
636 		if (!clone)
637 			return NULL;
638 
639 		tio = container_of(clone, struct dm_target_io, clone);
640 		tio->inside_dm_io = false;
641 	}
642 
643 	tio->magic = DM_TIO_MAGIC;
644 	tio->io = ci->io;
645 	tio->ti = ti;
646 	tio->target_bio_nr = target_bio_nr;
647 
648 	return tio;
649 }
650 
651 static void free_tio(struct dm_target_io *tio)
652 {
653 	if (tio->inside_dm_io)
654 		return;
655 	bio_put(&tio->clone);
656 }
657 
658 u64 dm_start_time_ns_from_clone(struct bio *bio)
659 {
660 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
661 	struct dm_io *io = tio->io;
662 
663 	return jiffies_to_nsecs(io->start_time);
664 }
665 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
666 
667 static void start_io_acct(struct dm_io *io)
668 {
669 	struct mapped_device *md = io->md;
670 	struct bio *bio = io->orig_bio;
671 
672 	io->start_time = bio_start_io_acct(bio);
673 	if (unlikely(dm_stats_used(&md->stats)))
674 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
675 				    bio->bi_iter.bi_sector, bio_sectors(bio),
676 				    false, 0, &io->stats_aux);
677 }
678 
679 static void end_io_acct(struct dm_io *io)
680 {
681 	struct mapped_device *md = io->md;
682 	struct bio *bio = io->orig_bio;
683 	unsigned long duration = jiffies - io->start_time;
684 
685 	bio_end_io_acct(bio, io->start_time);
686 
687 	if (unlikely(dm_stats_used(&md->stats)))
688 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
689 				    bio->bi_iter.bi_sector, bio_sectors(bio),
690 				    true, duration, &io->stats_aux);
691 
692 	/* nudge anyone waiting on suspend queue */
693 	if (unlikely(wq_has_sleeper(&md->wait)))
694 		wake_up(&md->wait);
695 }
696 
697 /*
698  * Add the bio to the list of deferred io.
699  */
700 static void queue_io(struct mapped_device *md, struct bio *bio)
701 {
702 	unsigned long flags;
703 
704 	spin_lock_irqsave(&md->deferred_lock, flags);
705 	bio_list_add(&md->deferred, bio);
706 	spin_unlock_irqrestore(&md->deferred_lock, flags);
707 	queue_work(md->wq, &md->work);
708 }
709 
710 /*
711  * Everyone (including functions in this file), should use this
712  * function to access the md->map field, and make sure they call
713  * dm_put_live_table() when finished.
714  */
715 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
716 {
717 	*srcu_idx = srcu_read_lock(&md->io_barrier);
718 
719 	return srcu_dereference(md->map, &md->io_barrier);
720 }
721 
722 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
723 {
724 	srcu_read_unlock(&md->io_barrier, srcu_idx);
725 }
726 
727 void dm_sync_table(struct mapped_device *md)
728 {
729 	synchronize_srcu(&md->io_barrier);
730 	synchronize_rcu_expedited();
731 }
732 
733 /*
734  * A fast alternative to dm_get_live_table/dm_put_live_table.
735  * The caller must not block between these two functions.
736  */
737 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
738 {
739 	rcu_read_lock();
740 	return rcu_dereference(md->map);
741 }
742 
743 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
744 {
745 	rcu_read_unlock();
746 }
747 
748 static char *_dm_claim_ptr = "I belong to device-mapper";
749 
750 /*
751  * Open a table device so we can use it as a map destination.
752  */
753 static int open_table_device(struct table_device *td, dev_t dev,
754 			     struct mapped_device *md)
755 {
756 	struct block_device *bdev;
757 
758 	int r;
759 
760 	BUG_ON(td->dm_dev.bdev);
761 
762 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
763 	if (IS_ERR(bdev))
764 		return PTR_ERR(bdev);
765 
766 	r = bd_link_disk_holder(bdev, dm_disk(md));
767 	if (r) {
768 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
769 		return r;
770 	}
771 
772 	td->dm_dev.bdev = bdev;
773 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
774 	return 0;
775 }
776 
777 /*
778  * Close a table device that we've been using.
779  */
780 static void close_table_device(struct table_device *td, struct mapped_device *md)
781 {
782 	if (!td->dm_dev.bdev)
783 		return;
784 
785 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
786 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
787 	put_dax(td->dm_dev.dax_dev);
788 	td->dm_dev.bdev = NULL;
789 	td->dm_dev.dax_dev = NULL;
790 }
791 
792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 					      fmode_t mode)
794 {
795 	struct table_device *td;
796 
797 	list_for_each_entry(td, l, list)
798 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 			return td;
800 
801 	return NULL;
802 }
803 
804 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
805 			struct dm_dev **result)
806 {
807 	int r;
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
814 		if (!td) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return -ENOMEM;
817 		}
818 
819 		td->dm_dev.mode = mode;
820 		td->dm_dev.bdev = NULL;
821 
822 		if ((r = open_table_device(td, dev, md))) {
823 			mutex_unlock(&md->table_devices_lock);
824 			kfree(td);
825 			return r;
826 		}
827 
828 		format_dev_t(td->dm_dev.name, dev);
829 
830 		refcount_set(&td->count, 1);
831 		list_add(&td->list, &md->table_devices);
832 	} else {
833 		refcount_inc(&td->count);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 
837 	*result = &td->dm_dev;
838 	return 0;
839 }
840 EXPORT_SYMBOL_GPL(dm_get_table_device);
841 
842 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
843 {
844 	struct table_device *td = container_of(d, struct table_device, dm_dev);
845 
846 	mutex_lock(&md->table_devices_lock);
847 	if (refcount_dec_and_test(&td->count)) {
848 		close_table_device(td, md);
849 		list_del(&td->list);
850 		kfree(td);
851 	}
852 	mutex_unlock(&md->table_devices_lock);
853 }
854 EXPORT_SYMBOL(dm_put_table_device);
855 
856 static void free_table_devices(struct list_head *devices)
857 {
858 	struct list_head *tmp, *next;
859 
860 	list_for_each_safe(tmp, next, devices) {
861 		struct table_device *td = list_entry(tmp, struct table_device, list);
862 
863 		DMWARN("dm_destroy: %s still exists with %d references",
864 		       td->dm_dev.name, refcount_read(&td->count));
865 		kfree(td);
866 	}
867 }
868 
869 /*
870  * Get the geometry associated with a dm device
871  */
872 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
873 {
874 	*geo = md->geometry;
875 
876 	return 0;
877 }
878 
879 /*
880  * Set the geometry of a device.
881  */
882 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
883 {
884 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
885 
886 	if (geo->start > sz) {
887 		DMWARN("Start sector is beyond the geometry limits.");
888 		return -EINVAL;
889 	}
890 
891 	md->geometry = *geo;
892 
893 	return 0;
894 }
895 
896 static int __noflush_suspending(struct mapped_device *md)
897 {
898 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
899 }
900 
901 /*
902  * Decrements the number of outstanding ios that a bio has been
903  * cloned into, completing the original io if necc.
904  */
905 static void dec_pending(struct dm_io *io, blk_status_t error)
906 {
907 	unsigned long flags;
908 	blk_status_t io_error;
909 	struct bio *bio;
910 	struct mapped_device *md = io->md;
911 
912 	/* Push-back supersedes any I/O errors */
913 	if (unlikely(error)) {
914 		spin_lock_irqsave(&io->endio_lock, flags);
915 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
916 			io->status = error;
917 		spin_unlock_irqrestore(&io->endio_lock, flags);
918 	}
919 
920 	if (atomic_dec_and_test(&io->io_count)) {
921 		if (io->status == BLK_STS_DM_REQUEUE) {
922 			/*
923 			 * Target requested pushing back the I/O.
924 			 */
925 			spin_lock_irqsave(&md->deferred_lock, flags);
926 			if (__noflush_suspending(md))
927 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
928 				bio_list_add_head(&md->deferred, io->orig_bio);
929 			else
930 				/* noflush suspend was interrupted. */
931 				io->status = BLK_STS_IOERR;
932 			spin_unlock_irqrestore(&md->deferred_lock, flags);
933 		}
934 
935 		io_error = io->status;
936 		bio = io->orig_bio;
937 		end_io_acct(io);
938 		free_io(md, io);
939 
940 		if (io_error == BLK_STS_DM_REQUEUE)
941 			return;
942 
943 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
944 			/*
945 			 * Preflush done for flush with data, reissue
946 			 * without REQ_PREFLUSH.
947 			 */
948 			bio->bi_opf &= ~REQ_PREFLUSH;
949 			queue_io(md, bio);
950 		} else {
951 			/* done with normal IO or empty flush */
952 			if (io_error)
953 				bio->bi_status = io_error;
954 			bio_endio(bio);
955 		}
956 	}
957 }
958 
959 void disable_discard(struct mapped_device *md)
960 {
961 	struct queue_limits *limits = dm_get_queue_limits(md);
962 
963 	/* device doesn't really support DISCARD, disable it */
964 	limits->max_discard_sectors = 0;
965 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
966 }
967 
968 void disable_write_same(struct mapped_device *md)
969 {
970 	struct queue_limits *limits = dm_get_queue_limits(md);
971 
972 	/* device doesn't really support WRITE SAME, disable it */
973 	limits->max_write_same_sectors = 0;
974 }
975 
976 void disable_write_zeroes(struct mapped_device *md)
977 {
978 	struct queue_limits *limits = dm_get_queue_limits(md);
979 
980 	/* device doesn't really support WRITE ZEROES, disable it */
981 	limits->max_write_zeroes_sectors = 0;
982 }
983 
984 static void clone_endio(struct bio *bio)
985 {
986 	blk_status_t error = bio->bi_status;
987 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
988 	struct dm_io *io = tio->io;
989 	struct mapped_device *md = tio->io->md;
990 	dm_endio_fn endio = tio->ti->type->end_io;
991 	struct bio *orig_bio = io->orig_bio;
992 
993 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
994 		if (bio_op(bio) == REQ_OP_DISCARD &&
995 		    !bio->bi_disk->queue->limits.max_discard_sectors)
996 			disable_discard(md);
997 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
998 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
999 			disable_write_same(md);
1000 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1001 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1002 			disable_write_zeroes(md);
1003 	}
1004 
1005 	/*
1006 	 * For zone-append bios get offset in zone of the written
1007 	 * sector and add that to the original bio sector pos.
1008 	 */
1009 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1010 		sector_t written_sector = bio->bi_iter.bi_sector;
1011 		struct request_queue *q = orig_bio->bi_disk->queue;
1012 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1013 
1014 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1015 	}
1016 
1017 	if (endio) {
1018 		int r = endio(tio->ti, bio, &error);
1019 		switch (r) {
1020 		case DM_ENDIO_REQUEUE:
1021 			error = BLK_STS_DM_REQUEUE;
1022 			/*FALLTHRU*/
1023 		case DM_ENDIO_DONE:
1024 			break;
1025 		case DM_ENDIO_INCOMPLETE:
1026 			/* The target will handle the io */
1027 			return;
1028 		default:
1029 			DMWARN("unimplemented target endio return value: %d", r);
1030 			BUG();
1031 		}
1032 	}
1033 
1034 	free_tio(tio);
1035 	dec_pending(io, error);
1036 }
1037 
1038 /*
1039  * Return maximum size of I/O possible at the supplied sector up to the current
1040  * target boundary.
1041  */
1042 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1043 {
1044 	sector_t target_offset = dm_target_offset(ti, sector);
1045 
1046 	return ti->len - target_offset;
1047 }
1048 
1049 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1050 {
1051 	sector_t len = max_io_len_target_boundary(sector, ti);
1052 	sector_t offset, max_len;
1053 
1054 	/*
1055 	 * Does the target need to split even further?
1056 	 */
1057 	if (ti->max_io_len) {
1058 		offset = dm_target_offset(ti, sector);
1059 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1060 			max_len = sector_div(offset, ti->max_io_len);
1061 		else
1062 			max_len = offset & (ti->max_io_len - 1);
1063 		max_len = ti->max_io_len - max_len;
1064 
1065 		if (len > max_len)
1066 			len = max_len;
1067 	}
1068 
1069 	return len;
1070 }
1071 
1072 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1073 {
1074 	if (len > UINT_MAX) {
1075 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1076 		      (unsigned long long)len, UINT_MAX);
1077 		ti->error = "Maximum size of target IO is too large";
1078 		return -EINVAL;
1079 	}
1080 
1081 	ti->max_io_len = (uint32_t) len;
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1086 
1087 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1088 						sector_t sector, int *srcu_idx)
1089 	__acquires(md->io_barrier)
1090 {
1091 	struct dm_table *map;
1092 	struct dm_target *ti;
1093 
1094 	map = dm_get_live_table(md, srcu_idx);
1095 	if (!map)
1096 		return NULL;
1097 
1098 	ti = dm_table_find_target(map, sector);
1099 	if (!ti)
1100 		return NULL;
1101 
1102 	return ti;
1103 }
1104 
1105 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1106 				 long nr_pages, void **kaddr, pfn_t *pfn)
1107 {
1108 	struct mapped_device *md = dax_get_private(dax_dev);
1109 	sector_t sector = pgoff * PAGE_SECTORS;
1110 	struct dm_target *ti;
1111 	long len, ret = -EIO;
1112 	int srcu_idx;
1113 
1114 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1115 
1116 	if (!ti)
1117 		goto out;
1118 	if (!ti->type->direct_access)
1119 		goto out;
1120 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1121 	if (len < 1)
1122 		goto out;
1123 	nr_pages = min(len, nr_pages);
1124 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1125 
1126  out:
1127 	dm_put_live_table(md, srcu_idx);
1128 
1129 	return ret;
1130 }
1131 
1132 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1133 		int blocksize, sector_t start, sector_t len)
1134 {
1135 	struct mapped_device *md = dax_get_private(dax_dev);
1136 	struct dm_table *map;
1137 	int srcu_idx;
1138 	bool ret;
1139 
1140 	map = dm_get_live_table(md, &srcu_idx);
1141 	if (!map)
1142 		return false;
1143 
1144 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1145 
1146 	dm_put_live_table(md, srcu_idx);
1147 
1148 	return ret;
1149 }
1150 
1151 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152 				    void *addr, size_t bytes, struct iov_iter *i)
1153 {
1154 	struct mapped_device *md = dax_get_private(dax_dev);
1155 	sector_t sector = pgoff * PAGE_SECTORS;
1156 	struct dm_target *ti;
1157 	long ret = 0;
1158 	int srcu_idx;
1159 
1160 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161 
1162 	if (!ti)
1163 		goto out;
1164 	if (!ti->type->dax_copy_from_iter) {
1165 		ret = copy_from_iter(addr, bytes, i);
1166 		goto out;
1167 	}
1168 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1169  out:
1170 	dm_put_live_table(md, srcu_idx);
1171 
1172 	return ret;
1173 }
1174 
1175 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1176 		void *addr, size_t bytes, struct iov_iter *i)
1177 {
1178 	struct mapped_device *md = dax_get_private(dax_dev);
1179 	sector_t sector = pgoff * PAGE_SECTORS;
1180 	struct dm_target *ti;
1181 	long ret = 0;
1182 	int srcu_idx;
1183 
1184 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1185 
1186 	if (!ti)
1187 		goto out;
1188 	if (!ti->type->dax_copy_to_iter) {
1189 		ret = copy_to_iter(addr, bytes, i);
1190 		goto out;
1191 	}
1192 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1193  out:
1194 	dm_put_live_table(md, srcu_idx);
1195 
1196 	return ret;
1197 }
1198 
1199 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1200 				  size_t nr_pages)
1201 {
1202 	struct mapped_device *md = dax_get_private(dax_dev);
1203 	sector_t sector = pgoff * PAGE_SECTORS;
1204 	struct dm_target *ti;
1205 	int ret = -EIO;
1206 	int srcu_idx;
1207 
1208 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1209 
1210 	if (!ti)
1211 		goto out;
1212 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1213 		/*
1214 		 * ->zero_page_range() is mandatory dax operation. If we are
1215 		 *  here, something is wrong.
1216 		 */
1217 		dm_put_live_table(md, srcu_idx);
1218 		goto out;
1219 	}
1220 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1221 
1222  out:
1223 	dm_put_live_table(md, srcu_idx);
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * A target may call dm_accept_partial_bio only from the map routine.  It is
1230  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1231  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1232  *
1233  * dm_accept_partial_bio informs the dm that the target only wants to process
1234  * additional n_sectors sectors of the bio and the rest of the data should be
1235  * sent in a next bio.
1236  *
1237  * A diagram that explains the arithmetics:
1238  * +--------------------+---------------+-------+
1239  * |         1          |       2       |   3   |
1240  * +--------------------+---------------+-------+
1241  *
1242  * <-------------- *tio->len_ptr --------------->
1243  *                      <------- bi_size ------->
1244  *                      <-- n_sectors -->
1245  *
1246  * Region 1 was already iterated over with bio_advance or similar function.
1247  *	(it may be empty if the target doesn't use bio_advance)
1248  * Region 2 is the remaining bio size that the target wants to process.
1249  *	(it may be empty if region 1 is non-empty, although there is no reason
1250  *	 to make it empty)
1251  * The target requires that region 3 is to be sent in the next bio.
1252  *
1253  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1254  * the partially processed part (the sum of regions 1+2) must be the same for all
1255  * copies of the bio.
1256  */
1257 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1258 {
1259 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1260 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1261 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1262 	BUG_ON(bi_size > *tio->len_ptr);
1263 	BUG_ON(n_sectors > bi_size);
1264 	*tio->len_ptr -= bi_size - n_sectors;
1265 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1266 }
1267 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1268 
1269 static blk_qc_t __map_bio(struct dm_target_io *tio)
1270 {
1271 	int r;
1272 	sector_t sector;
1273 	struct bio *clone = &tio->clone;
1274 	struct dm_io *io = tio->io;
1275 	struct mapped_device *md = io->md;
1276 	struct dm_target *ti = tio->ti;
1277 	blk_qc_t ret = BLK_QC_T_NONE;
1278 
1279 	clone->bi_end_io = clone_endio;
1280 
1281 	/*
1282 	 * Map the clone.  If r == 0 we don't need to do
1283 	 * anything, the target has assumed ownership of
1284 	 * this io.
1285 	 */
1286 	atomic_inc(&io->io_count);
1287 	sector = clone->bi_iter.bi_sector;
1288 
1289 	r = ti->type->map(ti, clone);
1290 	switch (r) {
1291 	case DM_MAPIO_SUBMITTED:
1292 		break;
1293 	case DM_MAPIO_REMAPPED:
1294 		/* the bio has been remapped so dispatch it */
1295 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1296 				      bio_dev(io->orig_bio), sector);
1297 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1298 			ret = direct_make_request(clone);
1299 		else
1300 			ret = generic_make_request(clone);
1301 		break;
1302 	case DM_MAPIO_KILL:
1303 		free_tio(tio);
1304 		dec_pending(io, BLK_STS_IOERR);
1305 		break;
1306 	case DM_MAPIO_REQUEUE:
1307 		free_tio(tio);
1308 		dec_pending(io, BLK_STS_DM_REQUEUE);
1309 		break;
1310 	default:
1311 		DMWARN("unimplemented target map return value: %d", r);
1312 		BUG();
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1319 {
1320 	bio->bi_iter.bi_sector = sector;
1321 	bio->bi_iter.bi_size = to_bytes(len);
1322 }
1323 
1324 /*
1325  * Creates a bio that consists of range of complete bvecs.
1326  */
1327 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1328 		     sector_t sector, unsigned len)
1329 {
1330 	struct bio *clone = &tio->clone;
1331 
1332 	__bio_clone_fast(clone, bio);
1333 
1334 	bio_crypt_clone(clone, bio, GFP_NOIO);
1335 
1336 	if (bio_integrity(bio)) {
1337 		int r;
1338 
1339 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1340 			     !dm_target_passes_integrity(tio->ti->type))) {
1341 			DMWARN("%s: the target %s doesn't support integrity data.",
1342 				dm_device_name(tio->io->md),
1343 				tio->ti->type->name);
1344 			return -EIO;
1345 		}
1346 
1347 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1348 		if (r < 0)
1349 			return r;
1350 	}
1351 
1352 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1353 	clone->bi_iter.bi_size = to_bytes(len);
1354 
1355 	if (bio_integrity(bio))
1356 		bio_integrity_trim(clone);
1357 
1358 	return 0;
1359 }
1360 
1361 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1362 				struct dm_target *ti, unsigned num_bios)
1363 {
1364 	struct dm_target_io *tio;
1365 	int try;
1366 
1367 	if (!num_bios)
1368 		return;
1369 
1370 	if (num_bios == 1) {
1371 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1372 		bio_list_add(blist, &tio->clone);
1373 		return;
1374 	}
1375 
1376 	for (try = 0; try < 2; try++) {
1377 		int bio_nr;
1378 		struct bio *bio;
1379 
1380 		if (try)
1381 			mutex_lock(&ci->io->md->table_devices_lock);
1382 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1383 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1384 			if (!tio)
1385 				break;
1386 
1387 			bio_list_add(blist, &tio->clone);
1388 		}
1389 		if (try)
1390 			mutex_unlock(&ci->io->md->table_devices_lock);
1391 		if (bio_nr == num_bios)
1392 			return;
1393 
1394 		while ((bio = bio_list_pop(blist))) {
1395 			tio = container_of(bio, struct dm_target_io, clone);
1396 			free_tio(tio);
1397 		}
1398 	}
1399 }
1400 
1401 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1402 					   struct dm_target_io *tio, unsigned *len)
1403 {
1404 	struct bio *clone = &tio->clone;
1405 
1406 	tio->len_ptr = len;
1407 
1408 	__bio_clone_fast(clone, ci->bio);
1409 	if (len)
1410 		bio_setup_sector(clone, ci->sector, *len);
1411 
1412 	return __map_bio(tio);
1413 }
1414 
1415 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1416 				  unsigned num_bios, unsigned *len)
1417 {
1418 	struct bio_list blist = BIO_EMPTY_LIST;
1419 	struct bio *bio;
1420 	struct dm_target_io *tio;
1421 
1422 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1423 
1424 	while ((bio = bio_list_pop(&blist))) {
1425 		tio = container_of(bio, struct dm_target_io, clone);
1426 		(void) __clone_and_map_simple_bio(ci, tio, len);
1427 	}
1428 }
1429 
1430 static int __send_empty_flush(struct clone_info *ci)
1431 {
1432 	unsigned target_nr = 0;
1433 	struct dm_target *ti;
1434 
1435 	/*
1436 	 * Empty flush uses a statically initialized bio, as the base for
1437 	 * cloning.  However, blkg association requires that a bdev is
1438 	 * associated with a gendisk, which doesn't happen until the bdev is
1439 	 * opened.  So, blkg association is done at issue time of the flush
1440 	 * rather than when the device is created in alloc_dev().
1441 	 */
1442 	bio_set_dev(ci->bio, ci->io->md->bdev);
1443 
1444 	BUG_ON(bio_has_data(ci->bio));
1445 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1446 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1447 	return 0;
1448 }
1449 
1450 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1451 				    sector_t sector, unsigned *len)
1452 {
1453 	struct bio *bio = ci->bio;
1454 	struct dm_target_io *tio;
1455 	int r;
1456 
1457 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1458 	tio->len_ptr = len;
1459 	r = clone_bio(tio, bio, sector, *len);
1460 	if (r < 0) {
1461 		free_tio(tio);
1462 		return r;
1463 	}
1464 	(void) __map_bio(tio);
1465 
1466 	return 0;
1467 }
1468 
1469 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1470 
1471 static unsigned get_num_discard_bios(struct dm_target *ti)
1472 {
1473 	return ti->num_discard_bios;
1474 }
1475 
1476 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1477 {
1478 	return ti->num_secure_erase_bios;
1479 }
1480 
1481 static unsigned get_num_write_same_bios(struct dm_target *ti)
1482 {
1483 	return ti->num_write_same_bios;
1484 }
1485 
1486 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1487 {
1488 	return ti->num_write_zeroes_bios;
1489 }
1490 
1491 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1492 				       unsigned num_bios)
1493 {
1494 	unsigned len;
1495 
1496 	/*
1497 	 * Even though the device advertised support for this type of
1498 	 * request, that does not mean every target supports it, and
1499 	 * reconfiguration might also have changed that since the
1500 	 * check was performed.
1501 	 */
1502 	if (!num_bios)
1503 		return -EOPNOTSUPP;
1504 
1505 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1506 
1507 	__send_duplicate_bios(ci, ti, num_bios, &len);
1508 
1509 	ci->sector += len;
1510 	ci->sector_count -= len;
1511 
1512 	return 0;
1513 }
1514 
1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1518 }
1519 
1520 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1521 {
1522 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1523 }
1524 
1525 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1526 {
1527 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1528 }
1529 
1530 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1531 {
1532 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1533 }
1534 
1535 static bool is_abnormal_io(struct bio *bio)
1536 {
1537 	bool r = false;
1538 
1539 	switch (bio_op(bio)) {
1540 	case REQ_OP_DISCARD:
1541 	case REQ_OP_SECURE_ERASE:
1542 	case REQ_OP_WRITE_SAME:
1543 	case REQ_OP_WRITE_ZEROES:
1544 		r = true;
1545 		break;
1546 	}
1547 
1548 	return r;
1549 }
1550 
1551 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1552 				  int *result)
1553 {
1554 	struct bio *bio = ci->bio;
1555 
1556 	if (bio_op(bio) == REQ_OP_DISCARD)
1557 		*result = __send_discard(ci, ti);
1558 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1559 		*result = __send_secure_erase(ci, ti);
1560 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1561 		*result = __send_write_same(ci, ti);
1562 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1563 		*result = __send_write_zeroes(ci, ti);
1564 	else
1565 		return false;
1566 
1567 	return true;
1568 }
1569 
1570 /*
1571  * Select the correct strategy for processing a non-flush bio.
1572  */
1573 static int __split_and_process_non_flush(struct clone_info *ci)
1574 {
1575 	struct dm_target *ti;
1576 	unsigned len;
1577 	int r;
1578 
1579 	ti = dm_table_find_target(ci->map, ci->sector);
1580 	if (!ti)
1581 		return -EIO;
1582 
1583 	if (__process_abnormal_io(ci, ti, &r))
1584 		return r;
1585 
1586 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1587 
1588 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1589 	if (r < 0)
1590 		return r;
1591 
1592 	ci->sector += len;
1593 	ci->sector_count -= len;
1594 
1595 	return 0;
1596 }
1597 
1598 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1599 			    struct dm_table *map, struct bio *bio)
1600 {
1601 	ci->map = map;
1602 	ci->io = alloc_io(md, bio);
1603 	ci->sector = bio->bi_iter.bi_sector;
1604 }
1605 
1606 #define __dm_part_stat_sub(part, field, subnd)	\
1607 	(part_stat_get(part, field) -= (subnd))
1608 
1609 /*
1610  * Entry point to split a bio into clones and submit them to the targets.
1611  */
1612 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1613 					struct dm_table *map, struct bio *bio)
1614 {
1615 	struct clone_info ci;
1616 	blk_qc_t ret = BLK_QC_T_NONE;
1617 	int error = 0;
1618 
1619 	init_clone_info(&ci, md, map, bio);
1620 
1621 	if (bio->bi_opf & REQ_PREFLUSH) {
1622 		struct bio flush_bio;
1623 
1624 		/*
1625 		 * Use an on-stack bio for this, it's safe since we don't
1626 		 * need to reference it after submit. It's just used as
1627 		 * the basis for the clone(s).
1628 		 */
1629 		bio_init(&flush_bio, NULL, 0);
1630 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1631 		ci.bio = &flush_bio;
1632 		ci.sector_count = 0;
1633 		error = __send_empty_flush(&ci);
1634 		bio_uninit(ci.bio);
1635 		/* dec_pending submits any data associated with flush */
1636 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1637 		ci.bio = bio;
1638 		ci.sector_count = 0;
1639 		error = __split_and_process_non_flush(&ci);
1640 	} else {
1641 		ci.bio = bio;
1642 		ci.sector_count = bio_sectors(bio);
1643 		while (ci.sector_count && !error) {
1644 			error = __split_and_process_non_flush(&ci);
1645 			if (current->bio_list && ci.sector_count && !error) {
1646 				/*
1647 				 * Remainder must be passed to generic_make_request()
1648 				 * so that it gets handled *after* bios already submitted
1649 				 * have been completely processed.
1650 				 * We take a clone of the original to store in
1651 				 * ci.io->orig_bio to be used by end_io_acct() and
1652 				 * for dec_pending to use for completion handling.
1653 				 */
1654 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1655 							  GFP_NOIO, &md->queue->bio_split);
1656 				ci.io->orig_bio = b;
1657 
1658 				/*
1659 				 * Adjust IO stats for each split, otherwise upon queue
1660 				 * reentry there will be redundant IO accounting.
1661 				 * NOTE: this is a stop-gap fix, a proper fix involves
1662 				 * significant refactoring of DM core's bio splitting
1663 				 * (by eliminating DM's splitting and just using bio_split)
1664 				 */
1665 				part_stat_lock();
1666 				__dm_part_stat_sub(&dm_disk(md)->part0,
1667 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1668 				part_stat_unlock();
1669 
1670 				bio_chain(b, bio);
1671 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1672 				ret = generic_make_request(bio);
1673 				break;
1674 			}
1675 		}
1676 	}
1677 
1678 	/* drop the extra reference count */
1679 	dec_pending(ci.io, errno_to_blk_status(error));
1680 	return ret;
1681 }
1682 
1683 /*
1684  * Optimized variant of __split_and_process_bio that leverages the
1685  * fact that targets that use it do _not_ have a need to split bios.
1686  */
1687 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1688 			      struct bio *bio, struct dm_target *ti)
1689 {
1690 	struct clone_info ci;
1691 	blk_qc_t ret = BLK_QC_T_NONE;
1692 	int error = 0;
1693 
1694 	init_clone_info(&ci, md, map, bio);
1695 
1696 	if (bio->bi_opf & REQ_PREFLUSH) {
1697 		struct bio flush_bio;
1698 
1699 		/*
1700 		 * Use an on-stack bio for this, it's safe since we don't
1701 		 * need to reference it after submit. It's just used as
1702 		 * the basis for the clone(s).
1703 		 */
1704 		bio_init(&flush_bio, NULL, 0);
1705 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1706 		ci.bio = &flush_bio;
1707 		ci.sector_count = 0;
1708 		error = __send_empty_flush(&ci);
1709 		bio_uninit(ci.bio);
1710 		/* dec_pending submits any data associated with flush */
1711 	} else {
1712 		struct dm_target_io *tio;
1713 
1714 		ci.bio = bio;
1715 		ci.sector_count = bio_sectors(bio);
1716 		if (__process_abnormal_io(&ci, ti, &error))
1717 			goto out;
1718 
1719 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1720 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1721 	}
1722 out:
1723 	/* drop the extra reference count */
1724 	dec_pending(ci.io, errno_to_blk_status(error));
1725 	return ret;
1726 }
1727 
1728 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1729 {
1730 	unsigned len, sector_count;
1731 
1732 	sector_count = bio_sectors(*bio);
1733 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1734 
1735 	if (sector_count > len) {
1736 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1737 
1738 		bio_chain(split, *bio);
1739 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1740 		generic_make_request(*bio);
1741 		*bio = split;
1742 	}
1743 }
1744 
1745 static blk_qc_t dm_process_bio(struct mapped_device *md,
1746 			       struct dm_table *map, struct bio *bio)
1747 {
1748 	blk_qc_t ret = BLK_QC_T_NONE;
1749 	struct dm_target *ti = md->immutable_target;
1750 
1751 	if (unlikely(!map)) {
1752 		bio_io_error(bio);
1753 		return ret;
1754 	}
1755 
1756 	if (!ti) {
1757 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1758 		if (unlikely(!ti)) {
1759 			bio_io_error(bio);
1760 			return ret;
1761 		}
1762 	}
1763 
1764 	/*
1765 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1766 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1767 	 * won't be imposed.
1768 	 */
1769 	if (current->bio_list) {
1770 		if (is_abnormal_io(bio))
1771 			blk_queue_split(md->queue, &bio);
1772 		else
1773 			dm_queue_split(md, ti, &bio);
1774 	}
1775 
1776 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1777 		return __process_bio(md, map, bio, ti);
1778 	else
1779 		return __split_and_process_bio(md, map, bio);
1780 }
1781 
1782 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1783 {
1784 	struct mapped_device *md = q->queuedata;
1785 	blk_qc_t ret = BLK_QC_T_NONE;
1786 	int srcu_idx;
1787 	struct dm_table *map;
1788 
1789 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1790 		/*
1791 		 * We are called with a live reference on q_usage_counter, but
1792 		 * that one will be released as soon as we return.  Grab an
1793 		 * extra one as blk_mq_make_request expects to be able to
1794 		 * consume a reference (which lives until the request is freed
1795 		 * in case a request is allocated).
1796 		 */
1797 		percpu_ref_get(&q->q_usage_counter);
1798 		return blk_mq_make_request(q, bio);
1799 	}
1800 
1801 	map = dm_get_live_table(md, &srcu_idx);
1802 
1803 	/* if we're suspended, we have to queue this io for later */
1804 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1805 		dm_put_live_table(md, srcu_idx);
1806 
1807 		if (!(bio->bi_opf & REQ_RAHEAD))
1808 			queue_io(md, bio);
1809 		else
1810 			bio_io_error(bio);
1811 		return ret;
1812 	}
1813 
1814 	ret = dm_process_bio(md, map, bio);
1815 
1816 	dm_put_live_table(md, srcu_idx);
1817 	return ret;
1818 }
1819 
1820 static int dm_any_congested(void *congested_data, int bdi_bits)
1821 {
1822 	int r = bdi_bits;
1823 	struct mapped_device *md = congested_data;
1824 	struct dm_table *map;
1825 
1826 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1827 		if (dm_request_based(md)) {
1828 			/*
1829 			 * With request-based DM we only need to check the
1830 			 * top-level queue for congestion.
1831 			 */
1832 			struct backing_dev_info *bdi = md->queue->backing_dev_info;
1833 			r = bdi->wb.congested->state & bdi_bits;
1834 		} else {
1835 			map = dm_get_live_table_fast(md);
1836 			if (map)
1837 				r = dm_table_any_congested(map, bdi_bits);
1838 			dm_put_live_table_fast(md);
1839 		}
1840 	}
1841 
1842 	return r;
1843 }
1844 
1845 /*-----------------------------------------------------------------
1846  * An IDR is used to keep track of allocated minor numbers.
1847  *---------------------------------------------------------------*/
1848 static void free_minor(int minor)
1849 {
1850 	spin_lock(&_minor_lock);
1851 	idr_remove(&_minor_idr, minor);
1852 	spin_unlock(&_minor_lock);
1853 }
1854 
1855 /*
1856  * See if the device with a specific minor # is free.
1857  */
1858 static int specific_minor(int minor)
1859 {
1860 	int r;
1861 
1862 	if (minor >= (1 << MINORBITS))
1863 		return -EINVAL;
1864 
1865 	idr_preload(GFP_KERNEL);
1866 	spin_lock(&_minor_lock);
1867 
1868 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1869 
1870 	spin_unlock(&_minor_lock);
1871 	idr_preload_end();
1872 	if (r < 0)
1873 		return r == -ENOSPC ? -EBUSY : r;
1874 	return 0;
1875 }
1876 
1877 static int next_free_minor(int *minor)
1878 {
1879 	int r;
1880 
1881 	idr_preload(GFP_KERNEL);
1882 	spin_lock(&_minor_lock);
1883 
1884 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1885 
1886 	spin_unlock(&_minor_lock);
1887 	idr_preload_end();
1888 	if (r < 0)
1889 		return r;
1890 	*minor = r;
1891 	return 0;
1892 }
1893 
1894 static const struct block_device_operations dm_blk_dops;
1895 static const struct dax_operations dm_dax_ops;
1896 
1897 static void dm_wq_work(struct work_struct *work);
1898 
1899 static void cleanup_mapped_device(struct mapped_device *md)
1900 {
1901 	if (md->wq)
1902 		destroy_workqueue(md->wq);
1903 	bioset_exit(&md->bs);
1904 	bioset_exit(&md->io_bs);
1905 
1906 	if (md->dax_dev) {
1907 		kill_dax(md->dax_dev);
1908 		put_dax(md->dax_dev);
1909 		md->dax_dev = NULL;
1910 	}
1911 
1912 	if (md->disk) {
1913 		spin_lock(&_minor_lock);
1914 		md->disk->private_data = NULL;
1915 		spin_unlock(&_minor_lock);
1916 		del_gendisk(md->disk);
1917 		put_disk(md->disk);
1918 	}
1919 
1920 	if (md->queue)
1921 		blk_cleanup_queue(md->queue);
1922 
1923 	cleanup_srcu_struct(&md->io_barrier);
1924 
1925 	if (md->bdev) {
1926 		bdput(md->bdev);
1927 		md->bdev = NULL;
1928 	}
1929 
1930 	mutex_destroy(&md->suspend_lock);
1931 	mutex_destroy(&md->type_lock);
1932 	mutex_destroy(&md->table_devices_lock);
1933 
1934 	dm_mq_cleanup_mapped_device(md);
1935 }
1936 
1937 /*
1938  * Allocate and initialise a blank device with a given minor.
1939  */
1940 static struct mapped_device *alloc_dev(int minor)
1941 {
1942 	int r, numa_node_id = dm_get_numa_node();
1943 	struct mapped_device *md;
1944 	void *old_md;
1945 
1946 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1947 	if (!md) {
1948 		DMWARN("unable to allocate device, out of memory.");
1949 		return NULL;
1950 	}
1951 
1952 	if (!try_module_get(THIS_MODULE))
1953 		goto bad_module_get;
1954 
1955 	/* get a minor number for the dev */
1956 	if (minor == DM_ANY_MINOR)
1957 		r = next_free_minor(&minor);
1958 	else
1959 		r = specific_minor(minor);
1960 	if (r < 0)
1961 		goto bad_minor;
1962 
1963 	r = init_srcu_struct(&md->io_barrier);
1964 	if (r < 0)
1965 		goto bad_io_barrier;
1966 
1967 	md->numa_node_id = numa_node_id;
1968 	md->init_tio_pdu = false;
1969 	md->type = DM_TYPE_NONE;
1970 	mutex_init(&md->suspend_lock);
1971 	mutex_init(&md->type_lock);
1972 	mutex_init(&md->table_devices_lock);
1973 	spin_lock_init(&md->deferred_lock);
1974 	atomic_set(&md->holders, 1);
1975 	atomic_set(&md->open_count, 0);
1976 	atomic_set(&md->event_nr, 0);
1977 	atomic_set(&md->uevent_seq, 0);
1978 	INIT_LIST_HEAD(&md->uevent_list);
1979 	INIT_LIST_HEAD(&md->table_devices);
1980 	spin_lock_init(&md->uevent_lock);
1981 
1982 	/*
1983 	 * default to bio-based required ->make_request_fn until DM
1984 	 * table is loaded and md->type established. If request-based
1985 	 * table is loaded: blk-mq will override accordingly.
1986 	 */
1987 	md->queue = blk_alloc_queue(dm_make_request, numa_node_id);
1988 	if (!md->queue)
1989 		goto bad;
1990 	md->queue->queuedata = md;
1991 
1992 	md->disk = alloc_disk_node(1, md->numa_node_id);
1993 	if (!md->disk)
1994 		goto bad;
1995 
1996 	init_waitqueue_head(&md->wait);
1997 	INIT_WORK(&md->work, dm_wq_work);
1998 	init_waitqueue_head(&md->eventq);
1999 	init_completion(&md->kobj_holder.completion);
2000 
2001 	md->disk->major = _major;
2002 	md->disk->first_minor = minor;
2003 	md->disk->fops = &dm_blk_dops;
2004 	md->disk->queue = md->queue;
2005 	md->disk->private_data = md;
2006 	sprintf(md->disk->disk_name, "dm-%d", minor);
2007 
2008 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
2009 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
2010 					&dm_dax_ops, 0);
2011 		if (IS_ERR(md->dax_dev))
2012 			goto bad;
2013 	}
2014 
2015 	add_disk_no_queue_reg(md->disk);
2016 	format_dev_t(md->name, MKDEV(_major, minor));
2017 
2018 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2019 	if (!md->wq)
2020 		goto bad;
2021 
2022 	md->bdev = bdget_disk(md->disk, 0);
2023 	if (!md->bdev)
2024 		goto bad;
2025 
2026 	dm_stats_init(&md->stats);
2027 
2028 	/* Populate the mapping, nobody knows we exist yet */
2029 	spin_lock(&_minor_lock);
2030 	old_md = idr_replace(&_minor_idr, md, minor);
2031 	spin_unlock(&_minor_lock);
2032 
2033 	BUG_ON(old_md != MINOR_ALLOCED);
2034 
2035 	return md;
2036 
2037 bad:
2038 	cleanup_mapped_device(md);
2039 bad_io_barrier:
2040 	free_minor(minor);
2041 bad_minor:
2042 	module_put(THIS_MODULE);
2043 bad_module_get:
2044 	kvfree(md);
2045 	return NULL;
2046 }
2047 
2048 static void unlock_fs(struct mapped_device *md);
2049 
2050 static void free_dev(struct mapped_device *md)
2051 {
2052 	int minor = MINOR(disk_devt(md->disk));
2053 
2054 	unlock_fs(md);
2055 
2056 	cleanup_mapped_device(md);
2057 
2058 	free_table_devices(&md->table_devices);
2059 	dm_stats_cleanup(&md->stats);
2060 	free_minor(minor);
2061 
2062 	module_put(THIS_MODULE);
2063 	kvfree(md);
2064 }
2065 
2066 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2067 {
2068 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2069 	int ret = 0;
2070 
2071 	if (dm_table_bio_based(t)) {
2072 		/*
2073 		 * The md may already have mempools that need changing.
2074 		 * If so, reload bioset because front_pad may have changed
2075 		 * because a different table was loaded.
2076 		 */
2077 		bioset_exit(&md->bs);
2078 		bioset_exit(&md->io_bs);
2079 
2080 	} else if (bioset_initialized(&md->bs)) {
2081 		/*
2082 		 * There's no need to reload with request-based dm
2083 		 * because the size of front_pad doesn't change.
2084 		 * Note for future: If you are to reload bioset,
2085 		 * prep-ed requests in the queue may refer
2086 		 * to bio from the old bioset, so you must walk
2087 		 * through the queue to unprep.
2088 		 */
2089 		goto out;
2090 	}
2091 
2092 	BUG_ON(!p ||
2093 	       bioset_initialized(&md->bs) ||
2094 	       bioset_initialized(&md->io_bs));
2095 
2096 	ret = bioset_init_from_src(&md->bs, &p->bs);
2097 	if (ret)
2098 		goto out;
2099 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2100 	if (ret)
2101 		bioset_exit(&md->bs);
2102 out:
2103 	/* mempool bind completed, no longer need any mempools in the table */
2104 	dm_table_free_md_mempools(t);
2105 	return ret;
2106 }
2107 
2108 /*
2109  * Bind a table to the device.
2110  */
2111 static void event_callback(void *context)
2112 {
2113 	unsigned long flags;
2114 	LIST_HEAD(uevents);
2115 	struct mapped_device *md = (struct mapped_device *) context;
2116 
2117 	spin_lock_irqsave(&md->uevent_lock, flags);
2118 	list_splice_init(&md->uevent_list, &uevents);
2119 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2120 
2121 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2122 
2123 	atomic_inc(&md->event_nr);
2124 	wake_up(&md->eventq);
2125 	dm_issue_global_event();
2126 }
2127 
2128 /*
2129  * Protected by md->suspend_lock obtained by dm_swap_table().
2130  */
2131 static void __set_size(struct mapped_device *md, sector_t size)
2132 {
2133 	lockdep_assert_held(&md->suspend_lock);
2134 
2135 	set_capacity(md->disk, size);
2136 
2137 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2138 }
2139 
2140 /*
2141  * Returns old map, which caller must destroy.
2142  */
2143 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2144 			       struct queue_limits *limits)
2145 {
2146 	struct dm_table *old_map;
2147 	struct request_queue *q = md->queue;
2148 	bool request_based = dm_table_request_based(t);
2149 	sector_t size;
2150 	int ret;
2151 
2152 	lockdep_assert_held(&md->suspend_lock);
2153 
2154 	size = dm_table_get_size(t);
2155 
2156 	/*
2157 	 * Wipe any geometry if the size of the table changed.
2158 	 */
2159 	if (size != dm_get_size(md))
2160 		memset(&md->geometry, 0, sizeof(md->geometry));
2161 
2162 	__set_size(md, size);
2163 
2164 	dm_table_event_callback(t, event_callback, md);
2165 
2166 	/*
2167 	 * The queue hasn't been stopped yet, if the old table type wasn't
2168 	 * for request-based during suspension.  So stop it to prevent
2169 	 * I/O mapping before resume.
2170 	 * This must be done before setting the queue restrictions,
2171 	 * because request-based dm may be run just after the setting.
2172 	 */
2173 	if (request_based)
2174 		dm_stop_queue(q);
2175 
2176 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2177 		/*
2178 		 * Leverage the fact that request-based DM targets and
2179 		 * NVMe bio based targets are immutable singletons
2180 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2181 		 *   and __process_bio.
2182 		 */
2183 		md->immutable_target = dm_table_get_immutable_target(t);
2184 	}
2185 
2186 	ret = __bind_mempools(md, t);
2187 	if (ret) {
2188 		old_map = ERR_PTR(ret);
2189 		goto out;
2190 	}
2191 
2192 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2193 	rcu_assign_pointer(md->map, (void *)t);
2194 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2195 
2196 	dm_table_set_restrictions(t, q, limits);
2197 	if (old_map)
2198 		dm_sync_table(md);
2199 
2200 out:
2201 	return old_map;
2202 }
2203 
2204 /*
2205  * Returns unbound table for the caller to free.
2206  */
2207 static struct dm_table *__unbind(struct mapped_device *md)
2208 {
2209 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2210 
2211 	if (!map)
2212 		return NULL;
2213 
2214 	dm_table_event_callback(map, NULL, NULL);
2215 	RCU_INIT_POINTER(md->map, NULL);
2216 	dm_sync_table(md);
2217 
2218 	return map;
2219 }
2220 
2221 /*
2222  * Constructor for a new device.
2223  */
2224 int dm_create(int minor, struct mapped_device **result)
2225 {
2226 	int r;
2227 	struct mapped_device *md;
2228 
2229 	md = alloc_dev(minor);
2230 	if (!md)
2231 		return -ENXIO;
2232 
2233 	r = dm_sysfs_init(md);
2234 	if (r) {
2235 		free_dev(md);
2236 		return r;
2237 	}
2238 
2239 	*result = md;
2240 	return 0;
2241 }
2242 
2243 /*
2244  * Functions to manage md->type.
2245  * All are required to hold md->type_lock.
2246  */
2247 void dm_lock_md_type(struct mapped_device *md)
2248 {
2249 	mutex_lock(&md->type_lock);
2250 }
2251 
2252 void dm_unlock_md_type(struct mapped_device *md)
2253 {
2254 	mutex_unlock(&md->type_lock);
2255 }
2256 
2257 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2258 {
2259 	BUG_ON(!mutex_is_locked(&md->type_lock));
2260 	md->type = type;
2261 }
2262 
2263 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2264 {
2265 	return md->type;
2266 }
2267 
2268 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2269 {
2270 	return md->immutable_target_type;
2271 }
2272 
2273 /*
2274  * The queue_limits are only valid as long as you have a reference
2275  * count on 'md'.
2276  */
2277 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2278 {
2279 	BUG_ON(!atomic_read(&md->holders));
2280 	return &md->queue->limits;
2281 }
2282 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2283 
2284 static void dm_init_congested_fn(struct mapped_device *md)
2285 {
2286 	md->queue->backing_dev_info->congested_data = md;
2287 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
2288 }
2289 
2290 /*
2291  * Setup the DM device's queue based on md's type
2292  */
2293 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2294 {
2295 	int r;
2296 	struct queue_limits limits;
2297 	enum dm_queue_mode type = dm_get_md_type(md);
2298 
2299 	switch (type) {
2300 	case DM_TYPE_REQUEST_BASED:
2301 		r = dm_mq_init_request_queue(md, t);
2302 		if (r) {
2303 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2304 			return r;
2305 		}
2306 		dm_init_congested_fn(md);
2307 		break;
2308 	case DM_TYPE_BIO_BASED:
2309 	case DM_TYPE_DAX_BIO_BASED:
2310 	case DM_TYPE_NVME_BIO_BASED:
2311 		dm_init_congested_fn(md);
2312 		break;
2313 	case DM_TYPE_NONE:
2314 		WARN_ON_ONCE(true);
2315 		break;
2316 	}
2317 
2318 	r = dm_calculate_queue_limits(t, &limits);
2319 	if (r) {
2320 		DMERR("Cannot calculate initial queue limits");
2321 		return r;
2322 	}
2323 	dm_table_set_restrictions(t, md->queue, &limits);
2324 	blk_register_queue(md->disk);
2325 
2326 	return 0;
2327 }
2328 
2329 struct mapped_device *dm_get_md(dev_t dev)
2330 {
2331 	struct mapped_device *md;
2332 	unsigned minor = MINOR(dev);
2333 
2334 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2335 		return NULL;
2336 
2337 	spin_lock(&_minor_lock);
2338 
2339 	md = idr_find(&_minor_idr, minor);
2340 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2341 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2342 		md = NULL;
2343 		goto out;
2344 	}
2345 	dm_get(md);
2346 out:
2347 	spin_unlock(&_minor_lock);
2348 
2349 	return md;
2350 }
2351 EXPORT_SYMBOL_GPL(dm_get_md);
2352 
2353 void *dm_get_mdptr(struct mapped_device *md)
2354 {
2355 	return md->interface_ptr;
2356 }
2357 
2358 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2359 {
2360 	md->interface_ptr = ptr;
2361 }
2362 
2363 void dm_get(struct mapped_device *md)
2364 {
2365 	atomic_inc(&md->holders);
2366 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2367 }
2368 
2369 int dm_hold(struct mapped_device *md)
2370 {
2371 	spin_lock(&_minor_lock);
2372 	if (test_bit(DMF_FREEING, &md->flags)) {
2373 		spin_unlock(&_minor_lock);
2374 		return -EBUSY;
2375 	}
2376 	dm_get(md);
2377 	spin_unlock(&_minor_lock);
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL_GPL(dm_hold);
2381 
2382 const char *dm_device_name(struct mapped_device *md)
2383 {
2384 	return md->name;
2385 }
2386 EXPORT_SYMBOL_GPL(dm_device_name);
2387 
2388 static void __dm_destroy(struct mapped_device *md, bool wait)
2389 {
2390 	struct dm_table *map;
2391 	int srcu_idx;
2392 
2393 	might_sleep();
2394 
2395 	spin_lock(&_minor_lock);
2396 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2397 	set_bit(DMF_FREEING, &md->flags);
2398 	spin_unlock(&_minor_lock);
2399 
2400 	blk_set_queue_dying(md->queue);
2401 
2402 	/*
2403 	 * Take suspend_lock so that presuspend and postsuspend methods
2404 	 * do not race with internal suspend.
2405 	 */
2406 	mutex_lock(&md->suspend_lock);
2407 	map = dm_get_live_table(md, &srcu_idx);
2408 	if (!dm_suspended_md(md)) {
2409 		dm_table_presuspend_targets(map);
2410 		set_bit(DMF_SUSPENDED, &md->flags);
2411 		dm_table_postsuspend_targets(map);
2412 	}
2413 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2414 	dm_put_live_table(md, srcu_idx);
2415 	mutex_unlock(&md->suspend_lock);
2416 
2417 	/*
2418 	 * Rare, but there may be I/O requests still going to complete,
2419 	 * for example.  Wait for all references to disappear.
2420 	 * No one should increment the reference count of the mapped_device,
2421 	 * after the mapped_device state becomes DMF_FREEING.
2422 	 */
2423 	if (wait)
2424 		while (atomic_read(&md->holders))
2425 			msleep(1);
2426 	else if (atomic_read(&md->holders))
2427 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2428 		       dm_device_name(md), atomic_read(&md->holders));
2429 
2430 	dm_sysfs_exit(md);
2431 	dm_table_destroy(__unbind(md));
2432 	free_dev(md);
2433 }
2434 
2435 void dm_destroy(struct mapped_device *md)
2436 {
2437 	__dm_destroy(md, true);
2438 }
2439 
2440 void dm_destroy_immediate(struct mapped_device *md)
2441 {
2442 	__dm_destroy(md, false);
2443 }
2444 
2445 void dm_put(struct mapped_device *md)
2446 {
2447 	atomic_dec(&md->holders);
2448 }
2449 EXPORT_SYMBOL_GPL(dm_put);
2450 
2451 static bool md_in_flight_bios(struct mapped_device *md)
2452 {
2453 	int cpu;
2454 	struct hd_struct *part = &dm_disk(md)->part0;
2455 	long sum = 0;
2456 
2457 	for_each_possible_cpu(cpu) {
2458 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2459 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2460 	}
2461 
2462 	return sum != 0;
2463 }
2464 
2465 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2466 {
2467 	int r = 0;
2468 	DEFINE_WAIT(wait);
2469 
2470 	while (true) {
2471 		prepare_to_wait(&md->wait, &wait, task_state);
2472 
2473 		if (!md_in_flight_bios(md))
2474 			break;
2475 
2476 		if (signal_pending_state(task_state, current)) {
2477 			r = -EINTR;
2478 			break;
2479 		}
2480 
2481 		io_schedule();
2482 	}
2483 	finish_wait(&md->wait, &wait);
2484 
2485 	return r;
2486 }
2487 
2488 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2489 {
2490 	int r = 0;
2491 
2492 	if (!queue_is_mq(md->queue))
2493 		return dm_wait_for_bios_completion(md, task_state);
2494 
2495 	while (true) {
2496 		if (!blk_mq_queue_inflight(md->queue))
2497 			break;
2498 
2499 		if (signal_pending_state(task_state, current)) {
2500 			r = -EINTR;
2501 			break;
2502 		}
2503 
2504 		msleep(5);
2505 	}
2506 
2507 	return r;
2508 }
2509 
2510 /*
2511  * Process the deferred bios
2512  */
2513 static void dm_wq_work(struct work_struct *work)
2514 {
2515 	struct mapped_device *md = container_of(work, struct mapped_device,
2516 						work);
2517 	struct bio *c;
2518 	int srcu_idx;
2519 	struct dm_table *map;
2520 
2521 	map = dm_get_live_table(md, &srcu_idx);
2522 
2523 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2524 		spin_lock_irq(&md->deferred_lock);
2525 		c = bio_list_pop(&md->deferred);
2526 		spin_unlock_irq(&md->deferred_lock);
2527 
2528 		if (!c)
2529 			break;
2530 
2531 		if (dm_request_based(md))
2532 			(void) generic_make_request(c);
2533 		else
2534 			(void) dm_process_bio(md, map, c);
2535 	}
2536 
2537 	dm_put_live_table(md, srcu_idx);
2538 }
2539 
2540 static void dm_queue_flush(struct mapped_device *md)
2541 {
2542 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2543 	smp_mb__after_atomic();
2544 	queue_work(md->wq, &md->work);
2545 }
2546 
2547 /*
2548  * Swap in a new table, returning the old one for the caller to destroy.
2549  */
2550 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2551 {
2552 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2553 	struct queue_limits limits;
2554 	int r;
2555 
2556 	mutex_lock(&md->suspend_lock);
2557 
2558 	/* device must be suspended */
2559 	if (!dm_suspended_md(md))
2560 		goto out;
2561 
2562 	/*
2563 	 * If the new table has no data devices, retain the existing limits.
2564 	 * This helps multipath with queue_if_no_path if all paths disappear,
2565 	 * then new I/O is queued based on these limits, and then some paths
2566 	 * reappear.
2567 	 */
2568 	if (dm_table_has_no_data_devices(table)) {
2569 		live_map = dm_get_live_table_fast(md);
2570 		if (live_map)
2571 			limits = md->queue->limits;
2572 		dm_put_live_table_fast(md);
2573 	}
2574 
2575 	if (!live_map) {
2576 		r = dm_calculate_queue_limits(table, &limits);
2577 		if (r) {
2578 			map = ERR_PTR(r);
2579 			goto out;
2580 		}
2581 	}
2582 
2583 	map = __bind(md, table, &limits);
2584 	dm_issue_global_event();
2585 
2586 out:
2587 	mutex_unlock(&md->suspend_lock);
2588 	return map;
2589 }
2590 
2591 /*
2592  * Functions to lock and unlock any filesystem running on the
2593  * device.
2594  */
2595 static int lock_fs(struct mapped_device *md)
2596 {
2597 	int r;
2598 
2599 	WARN_ON(md->frozen_sb);
2600 
2601 	md->frozen_sb = freeze_bdev(md->bdev);
2602 	if (IS_ERR(md->frozen_sb)) {
2603 		r = PTR_ERR(md->frozen_sb);
2604 		md->frozen_sb = NULL;
2605 		return r;
2606 	}
2607 
2608 	set_bit(DMF_FROZEN, &md->flags);
2609 
2610 	return 0;
2611 }
2612 
2613 static void unlock_fs(struct mapped_device *md)
2614 {
2615 	if (!test_bit(DMF_FROZEN, &md->flags))
2616 		return;
2617 
2618 	thaw_bdev(md->bdev, md->frozen_sb);
2619 	md->frozen_sb = NULL;
2620 	clear_bit(DMF_FROZEN, &md->flags);
2621 }
2622 
2623 /*
2624  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2625  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2626  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2627  *
2628  * If __dm_suspend returns 0, the device is completely quiescent
2629  * now. There is no request-processing activity. All new requests
2630  * are being added to md->deferred list.
2631  */
2632 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2633 			unsigned suspend_flags, long task_state,
2634 			int dmf_suspended_flag)
2635 {
2636 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2637 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2638 	int r;
2639 
2640 	lockdep_assert_held(&md->suspend_lock);
2641 
2642 	/*
2643 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2644 	 * This flag is cleared before dm_suspend returns.
2645 	 */
2646 	if (noflush)
2647 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2648 	else
2649 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2650 
2651 	/*
2652 	 * This gets reverted if there's an error later and the targets
2653 	 * provide the .presuspend_undo hook.
2654 	 */
2655 	dm_table_presuspend_targets(map);
2656 
2657 	/*
2658 	 * Flush I/O to the device.
2659 	 * Any I/O submitted after lock_fs() may not be flushed.
2660 	 * noflush takes precedence over do_lockfs.
2661 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2662 	 */
2663 	if (!noflush && do_lockfs) {
2664 		r = lock_fs(md);
2665 		if (r) {
2666 			dm_table_presuspend_undo_targets(map);
2667 			return r;
2668 		}
2669 	}
2670 
2671 	/*
2672 	 * Here we must make sure that no processes are submitting requests
2673 	 * to target drivers i.e. no one may be executing
2674 	 * __split_and_process_bio. This is called from dm_request and
2675 	 * dm_wq_work.
2676 	 *
2677 	 * To get all processes out of __split_and_process_bio in dm_request,
2678 	 * we take the write lock. To prevent any process from reentering
2679 	 * __split_and_process_bio from dm_request and quiesce the thread
2680 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2681 	 * flush_workqueue(md->wq).
2682 	 */
2683 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2684 	if (map)
2685 		synchronize_srcu(&md->io_barrier);
2686 
2687 	/*
2688 	 * Stop md->queue before flushing md->wq in case request-based
2689 	 * dm defers requests to md->wq from md->queue.
2690 	 */
2691 	if (dm_request_based(md))
2692 		dm_stop_queue(md->queue);
2693 
2694 	flush_workqueue(md->wq);
2695 
2696 	/*
2697 	 * At this point no more requests are entering target request routines.
2698 	 * We call dm_wait_for_completion to wait for all existing requests
2699 	 * to finish.
2700 	 */
2701 	r = dm_wait_for_completion(md, task_state);
2702 	if (!r)
2703 		set_bit(dmf_suspended_flag, &md->flags);
2704 
2705 	if (noflush)
2706 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2707 	if (map)
2708 		synchronize_srcu(&md->io_barrier);
2709 
2710 	/* were we interrupted ? */
2711 	if (r < 0) {
2712 		dm_queue_flush(md);
2713 
2714 		if (dm_request_based(md))
2715 			dm_start_queue(md->queue);
2716 
2717 		unlock_fs(md);
2718 		dm_table_presuspend_undo_targets(map);
2719 		/* pushback list is already flushed, so skip flush */
2720 	}
2721 
2722 	return r;
2723 }
2724 
2725 /*
2726  * We need to be able to change a mapping table under a mounted
2727  * filesystem.  For example we might want to move some data in
2728  * the background.  Before the table can be swapped with
2729  * dm_bind_table, dm_suspend must be called to flush any in
2730  * flight bios and ensure that any further io gets deferred.
2731  */
2732 /*
2733  * Suspend mechanism in request-based dm.
2734  *
2735  * 1. Flush all I/Os by lock_fs() if needed.
2736  * 2. Stop dispatching any I/O by stopping the request_queue.
2737  * 3. Wait for all in-flight I/Os to be completed or requeued.
2738  *
2739  * To abort suspend, start the request_queue.
2740  */
2741 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2742 {
2743 	struct dm_table *map = NULL;
2744 	int r = 0;
2745 
2746 retry:
2747 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2748 
2749 	if (dm_suspended_md(md)) {
2750 		r = -EINVAL;
2751 		goto out_unlock;
2752 	}
2753 
2754 	if (dm_suspended_internally_md(md)) {
2755 		/* already internally suspended, wait for internal resume */
2756 		mutex_unlock(&md->suspend_lock);
2757 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2758 		if (r)
2759 			return r;
2760 		goto retry;
2761 	}
2762 
2763 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2764 
2765 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2766 	if (r)
2767 		goto out_unlock;
2768 
2769 	dm_table_postsuspend_targets(map);
2770 
2771 out_unlock:
2772 	mutex_unlock(&md->suspend_lock);
2773 	return r;
2774 }
2775 
2776 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2777 {
2778 	if (map) {
2779 		int r = dm_table_resume_targets(map);
2780 		if (r)
2781 			return r;
2782 	}
2783 
2784 	dm_queue_flush(md);
2785 
2786 	/*
2787 	 * Flushing deferred I/Os must be done after targets are resumed
2788 	 * so that mapping of targets can work correctly.
2789 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2790 	 */
2791 	if (dm_request_based(md))
2792 		dm_start_queue(md->queue);
2793 
2794 	unlock_fs(md);
2795 
2796 	return 0;
2797 }
2798 
2799 int dm_resume(struct mapped_device *md)
2800 {
2801 	int r;
2802 	struct dm_table *map = NULL;
2803 
2804 retry:
2805 	r = -EINVAL;
2806 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2807 
2808 	if (!dm_suspended_md(md))
2809 		goto out;
2810 
2811 	if (dm_suspended_internally_md(md)) {
2812 		/* already internally suspended, wait for internal resume */
2813 		mutex_unlock(&md->suspend_lock);
2814 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2815 		if (r)
2816 			return r;
2817 		goto retry;
2818 	}
2819 
2820 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2821 	if (!map || !dm_table_get_size(map))
2822 		goto out;
2823 
2824 	r = __dm_resume(md, map);
2825 	if (r)
2826 		goto out;
2827 
2828 	clear_bit(DMF_SUSPENDED, &md->flags);
2829 out:
2830 	mutex_unlock(&md->suspend_lock);
2831 
2832 	return r;
2833 }
2834 
2835 /*
2836  * Internal suspend/resume works like userspace-driven suspend. It waits
2837  * until all bios finish and prevents issuing new bios to the target drivers.
2838  * It may be used only from the kernel.
2839  */
2840 
2841 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2842 {
2843 	struct dm_table *map = NULL;
2844 
2845 	lockdep_assert_held(&md->suspend_lock);
2846 
2847 	if (md->internal_suspend_count++)
2848 		return; /* nested internal suspend */
2849 
2850 	if (dm_suspended_md(md)) {
2851 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2852 		return; /* nest suspend */
2853 	}
2854 
2855 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2856 
2857 	/*
2858 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2859 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2860 	 * would require changing .presuspend to return an error -- avoid this
2861 	 * until there is a need for more elaborate variants of internal suspend.
2862 	 */
2863 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2864 			    DMF_SUSPENDED_INTERNALLY);
2865 
2866 	dm_table_postsuspend_targets(map);
2867 }
2868 
2869 static void __dm_internal_resume(struct mapped_device *md)
2870 {
2871 	BUG_ON(!md->internal_suspend_count);
2872 
2873 	if (--md->internal_suspend_count)
2874 		return; /* resume from nested internal suspend */
2875 
2876 	if (dm_suspended_md(md))
2877 		goto done; /* resume from nested suspend */
2878 
2879 	/*
2880 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2881 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2882 	 */
2883 	(void) __dm_resume(md, NULL);
2884 
2885 done:
2886 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2887 	smp_mb__after_atomic();
2888 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2889 }
2890 
2891 void dm_internal_suspend_noflush(struct mapped_device *md)
2892 {
2893 	mutex_lock(&md->suspend_lock);
2894 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2895 	mutex_unlock(&md->suspend_lock);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2898 
2899 void dm_internal_resume(struct mapped_device *md)
2900 {
2901 	mutex_lock(&md->suspend_lock);
2902 	__dm_internal_resume(md);
2903 	mutex_unlock(&md->suspend_lock);
2904 }
2905 EXPORT_SYMBOL_GPL(dm_internal_resume);
2906 
2907 /*
2908  * Fast variants of internal suspend/resume hold md->suspend_lock,
2909  * which prevents interaction with userspace-driven suspend.
2910  */
2911 
2912 void dm_internal_suspend_fast(struct mapped_device *md)
2913 {
2914 	mutex_lock(&md->suspend_lock);
2915 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2916 		return;
2917 
2918 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2919 	synchronize_srcu(&md->io_barrier);
2920 	flush_workqueue(md->wq);
2921 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2922 }
2923 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2924 
2925 void dm_internal_resume_fast(struct mapped_device *md)
2926 {
2927 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2928 		goto done;
2929 
2930 	dm_queue_flush(md);
2931 
2932 done:
2933 	mutex_unlock(&md->suspend_lock);
2934 }
2935 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2936 
2937 /*-----------------------------------------------------------------
2938  * Event notification.
2939  *---------------------------------------------------------------*/
2940 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2941 		       unsigned cookie)
2942 {
2943 	int r;
2944 	unsigned noio_flag;
2945 	char udev_cookie[DM_COOKIE_LENGTH];
2946 	char *envp[] = { udev_cookie, NULL };
2947 
2948 	noio_flag = memalloc_noio_save();
2949 
2950 	if (!cookie)
2951 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2952 	else {
2953 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2954 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2955 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2956 				       action, envp);
2957 	}
2958 
2959 	memalloc_noio_restore(noio_flag);
2960 
2961 	return r;
2962 }
2963 
2964 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2965 {
2966 	return atomic_add_return(1, &md->uevent_seq);
2967 }
2968 
2969 uint32_t dm_get_event_nr(struct mapped_device *md)
2970 {
2971 	return atomic_read(&md->event_nr);
2972 }
2973 
2974 int dm_wait_event(struct mapped_device *md, int event_nr)
2975 {
2976 	return wait_event_interruptible(md->eventq,
2977 			(event_nr != atomic_read(&md->event_nr)));
2978 }
2979 
2980 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2981 {
2982 	unsigned long flags;
2983 
2984 	spin_lock_irqsave(&md->uevent_lock, flags);
2985 	list_add(elist, &md->uevent_list);
2986 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2987 }
2988 
2989 /*
2990  * The gendisk is only valid as long as you have a reference
2991  * count on 'md'.
2992  */
2993 struct gendisk *dm_disk(struct mapped_device *md)
2994 {
2995 	return md->disk;
2996 }
2997 EXPORT_SYMBOL_GPL(dm_disk);
2998 
2999 struct kobject *dm_kobject(struct mapped_device *md)
3000 {
3001 	return &md->kobj_holder.kobj;
3002 }
3003 
3004 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3005 {
3006 	struct mapped_device *md;
3007 
3008 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3009 
3010 	spin_lock(&_minor_lock);
3011 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3012 		md = NULL;
3013 		goto out;
3014 	}
3015 	dm_get(md);
3016 out:
3017 	spin_unlock(&_minor_lock);
3018 
3019 	return md;
3020 }
3021 
3022 int dm_suspended_md(struct mapped_device *md)
3023 {
3024 	return test_bit(DMF_SUSPENDED, &md->flags);
3025 }
3026 
3027 int dm_suspended_internally_md(struct mapped_device *md)
3028 {
3029 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3030 }
3031 
3032 int dm_test_deferred_remove_flag(struct mapped_device *md)
3033 {
3034 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3035 }
3036 
3037 int dm_suspended(struct dm_target *ti)
3038 {
3039 	return dm_suspended_md(dm_table_get_md(ti->table));
3040 }
3041 EXPORT_SYMBOL_GPL(dm_suspended);
3042 
3043 int dm_noflush_suspending(struct dm_target *ti)
3044 {
3045 	return __noflush_suspending(dm_table_get_md(ti->table));
3046 }
3047 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3048 
3049 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3050 					    unsigned integrity, unsigned per_io_data_size,
3051 					    unsigned min_pool_size)
3052 {
3053 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3054 	unsigned int pool_size = 0;
3055 	unsigned int front_pad, io_front_pad;
3056 	int ret;
3057 
3058 	if (!pools)
3059 		return NULL;
3060 
3061 	switch (type) {
3062 	case DM_TYPE_BIO_BASED:
3063 	case DM_TYPE_DAX_BIO_BASED:
3064 	case DM_TYPE_NVME_BIO_BASED:
3065 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3066 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3067 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3068 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3069 		if (ret)
3070 			goto out;
3071 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3072 			goto out;
3073 		break;
3074 	case DM_TYPE_REQUEST_BASED:
3075 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3076 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3077 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3078 		break;
3079 	default:
3080 		BUG();
3081 	}
3082 
3083 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3084 	if (ret)
3085 		goto out;
3086 
3087 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3088 		goto out;
3089 
3090 	return pools;
3091 
3092 out:
3093 	dm_free_md_mempools(pools);
3094 
3095 	return NULL;
3096 }
3097 
3098 void dm_free_md_mempools(struct dm_md_mempools *pools)
3099 {
3100 	if (!pools)
3101 		return;
3102 
3103 	bioset_exit(&pools->bs);
3104 	bioset_exit(&pools->io_bs);
3105 
3106 	kfree(pools);
3107 }
3108 
3109 struct dm_pr {
3110 	u64	old_key;
3111 	u64	new_key;
3112 	u32	flags;
3113 	bool	fail_early;
3114 };
3115 
3116 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3117 		      void *data)
3118 {
3119 	struct mapped_device *md = bdev->bd_disk->private_data;
3120 	struct dm_table *table;
3121 	struct dm_target *ti;
3122 	int ret = -ENOTTY, srcu_idx;
3123 
3124 	table = dm_get_live_table(md, &srcu_idx);
3125 	if (!table || !dm_table_get_size(table))
3126 		goto out;
3127 
3128 	/* We only support devices that have a single target */
3129 	if (dm_table_get_num_targets(table) != 1)
3130 		goto out;
3131 	ti = dm_table_get_target(table, 0);
3132 
3133 	ret = -EINVAL;
3134 	if (!ti->type->iterate_devices)
3135 		goto out;
3136 
3137 	ret = ti->type->iterate_devices(ti, fn, data);
3138 out:
3139 	dm_put_live_table(md, srcu_idx);
3140 	return ret;
3141 }
3142 
3143 /*
3144  * For register / unregister we need to manually call out to every path.
3145  */
3146 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3147 			    sector_t start, sector_t len, void *data)
3148 {
3149 	struct dm_pr *pr = data;
3150 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3151 
3152 	if (!ops || !ops->pr_register)
3153 		return -EOPNOTSUPP;
3154 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3155 }
3156 
3157 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3158 			  u32 flags)
3159 {
3160 	struct dm_pr pr = {
3161 		.old_key	= old_key,
3162 		.new_key	= new_key,
3163 		.flags		= flags,
3164 		.fail_early	= true,
3165 	};
3166 	int ret;
3167 
3168 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3169 	if (ret && new_key) {
3170 		/* unregister all paths if we failed to register any path */
3171 		pr.old_key = new_key;
3172 		pr.new_key = 0;
3173 		pr.flags = 0;
3174 		pr.fail_early = false;
3175 		dm_call_pr(bdev, __dm_pr_register, &pr);
3176 	}
3177 
3178 	return ret;
3179 }
3180 
3181 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3182 			 u32 flags)
3183 {
3184 	struct mapped_device *md = bdev->bd_disk->private_data;
3185 	const struct pr_ops *ops;
3186 	int r, srcu_idx;
3187 
3188 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3189 	if (r < 0)
3190 		goto out;
3191 
3192 	ops = bdev->bd_disk->fops->pr_ops;
3193 	if (ops && ops->pr_reserve)
3194 		r = ops->pr_reserve(bdev, key, type, flags);
3195 	else
3196 		r = -EOPNOTSUPP;
3197 out:
3198 	dm_unprepare_ioctl(md, srcu_idx);
3199 	return r;
3200 }
3201 
3202 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3203 {
3204 	struct mapped_device *md = bdev->bd_disk->private_data;
3205 	const struct pr_ops *ops;
3206 	int r, srcu_idx;
3207 
3208 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3209 	if (r < 0)
3210 		goto out;
3211 
3212 	ops = bdev->bd_disk->fops->pr_ops;
3213 	if (ops && ops->pr_release)
3214 		r = ops->pr_release(bdev, key, type);
3215 	else
3216 		r = -EOPNOTSUPP;
3217 out:
3218 	dm_unprepare_ioctl(md, srcu_idx);
3219 	return r;
3220 }
3221 
3222 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3223 			 enum pr_type type, bool abort)
3224 {
3225 	struct mapped_device *md = bdev->bd_disk->private_data;
3226 	const struct pr_ops *ops;
3227 	int r, srcu_idx;
3228 
3229 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3230 	if (r < 0)
3231 		goto out;
3232 
3233 	ops = bdev->bd_disk->fops->pr_ops;
3234 	if (ops && ops->pr_preempt)
3235 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3236 	else
3237 		r = -EOPNOTSUPP;
3238 out:
3239 	dm_unprepare_ioctl(md, srcu_idx);
3240 	return r;
3241 }
3242 
3243 static int dm_pr_clear(struct block_device *bdev, u64 key)
3244 {
3245 	struct mapped_device *md = bdev->bd_disk->private_data;
3246 	const struct pr_ops *ops;
3247 	int r, srcu_idx;
3248 
3249 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3250 	if (r < 0)
3251 		goto out;
3252 
3253 	ops = bdev->bd_disk->fops->pr_ops;
3254 	if (ops && ops->pr_clear)
3255 		r = ops->pr_clear(bdev, key);
3256 	else
3257 		r = -EOPNOTSUPP;
3258 out:
3259 	dm_unprepare_ioctl(md, srcu_idx);
3260 	return r;
3261 }
3262 
3263 static const struct pr_ops dm_pr_ops = {
3264 	.pr_register	= dm_pr_register,
3265 	.pr_reserve	= dm_pr_reserve,
3266 	.pr_release	= dm_pr_release,
3267 	.pr_preempt	= dm_pr_preempt,
3268 	.pr_clear	= dm_pr_clear,
3269 };
3270 
3271 static const struct block_device_operations dm_blk_dops = {
3272 	.open = dm_blk_open,
3273 	.release = dm_blk_close,
3274 	.ioctl = dm_blk_ioctl,
3275 	.getgeo = dm_blk_getgeo,
3276 	.report_zones = dm_blk_report_zones,
3277 	.pr_ops = &dm_pr_ops,
3278 	.owner = THIS_MODULE
3279 };
3280 
3281 static const struct dax_operations dm_dax_ops = {
3282 	.direct_access = dm_dax_direct_access,
3283 	.dax_supported = dm_dax_supported,
3284 	.copy_from_iter = dm_dax_copy_from_iter,
3285 	.copy_to_iter = dm_dax_copy_to_iter,
3286 	.zero_page_range = dm_dax_zero_page_range,
3287 };
3288 
3289 /*
3290  * module hooks
3291  */
3292 module_init(dm_init);
3293 module_exit(dm_exit);
3294 
3295 module_param(major, uint, 0);
3296 MODULE_PARM_DESC(major, "The major number of the device mapper");
3297 
3298 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3299 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3300 
3301 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3302 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3303 
3304 MODULE_DESCRIPTION(DM_NAME " driver");
3305 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3306 MODULE_LICENSE("GPL");
3307