xref: /openbmc/linux/drivers/md/dm.c (revision 089a49b6)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 	struct dm_stats_aux stats_aux;
64 };
65 
66 /*
67  * For request-based dm.
68  * One of these is allocated per request.
69  */
70 struct dm_rq_target_io {
71 	struct mapped_device *md;
72 	struct dm_target *ti;
73 	struct request *orig, clone;
74 	int error;
75 	union map_info info;
76 };
77 
78 /*
79  * For request-based dm - the bio clones we allocate are embedded in these
80  * structs.
81  *
82  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
83  * the bioset is created - this means the bio has to come at the end of the
84  * struct.
85  */
86 struct dm_rq_clone_bio_info {
87 	struct bio *orig;
88 	struct dm_rq_target_io *tio;
89 	struct bio clone;
90 };
91 
92 union map_info *dm_get_mapinfo(struct bio *bio)
93 {
94 	if (bio && bio->bi_private)
95 		return &((struct dm_target_io *)bio->bi_private)->info;
96 	return NULL;
97 }
98 
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 {
101 	if (rq && rq->end_io_data)
102 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 	return NULL;
104 }
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 /*
110  * Bits for the md->flags field.
111  */
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119 
120 /*
121  * A dummy definition to make RCU happy.
122  * struct dm_table should never be dereferenced in this file.
123  */
124 struct dm_table {
125 	int undefined__;
126 };
127 
128 /*
129  * Work processed by per-device workqueue.
130  */
131 struct mapped_device {
132 	struct srcu_struct io_barrier;
133 	struct mutex suspend_lock;
134 	atomic_t holders;
135 	atomic_t open_count;
136 
137 	/*
138 	 * The current mapping.
139 	 * Use dm_get_live_table{_fast} or take suspend_lock for
140 	 * dereference.
141 	 */
142 	struct dm_table *map;
143 
144 	unsigned long flags;
145 
146 	struct request_queue *queue;
147 	unsigned type;
148 	/* Protect queue and type against concurrent access. */
149 	struct mutex type_lock;
150 
151 	struct target_type *immutable_target_type;
152 
153 	struct gendisk *disk;
154 	char name[16];
155 
156 	void *interface_ptr;
157 
158 	/*
159 	 * A list of ios that arrived while we were suspended.
160 	 */
161 	atomic_t pending[2];
162 	wait_queue_head_t wait;
163 	struct work_struct work;
164 	struct bio_list deferred;
165 	spinlock_t deferred_lock;
166 
167 	/*
168 	 * Processing queue (flush)
169 	 */
170 	struct workqueue_struct *wq;
171 
172 	/*
173 	 * io objects are allocated from here.
174 	 */
175 	mempool_t *io_pool;
176 
177 	struct bio_set *bs;
178 
179 	/*
180 	 * Event handling.
181 	 */
182 	atomic_t event_nr;
183 	wait_queue_head_t eventq;
184 	atomic_t uevent_seq;
185 	struct list_head uevent_list;
186 	spinlock_t uevent_lock; /* Protect access to uevent_list */
187 
188 	/*
189 	 * freeze/thaw support require holding onto a super block
190 	 */
191 	struct super_block *frozen_sb;
192 	struct block_device *bdev;
193 
194 	/* forced geometry settings */
195 	struct hd_geometry geometry;
196 
197 	/* sysfs handle */
198 	struct kobject kobj;
199 
200 	/* zero-length flush that will be cloned and submitted to targets */
201 	struct bio flush_bio;
202 
203 	struct dm_stats stats;
204 };
205 
206 /*
207  * For mempools pre-allocation at the table loading time.
208  */
209 struct dm_md_mempools {
210 	mempool_t *io_pool;
211 	struct bio_set *bs;
212 };
213 
214 #define RESERVED_BIO_BASED_IOS		16
215 #define RESERVED_REQUEST_BASED_IOS	256
216 #define RESERVED_MAX_IOS		1024
217 static struct kmem_cache *_io_cache;
218 static struct kmem_cache *_rq_tio_cache;
219 
220 /*
221  * Bio-based DM's mempools' reserved IOs set by the user.
222  */
223 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
224 
225 /*
226  * Request-based DM's mempools' reserved IOs set by the user.
227  */
228 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
229 
230 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
231 				      unsigned def, unsigned max)
232 {
233 	unsigned ios = ACCESS_ONCE(*reserved_ios);
234 	unsigned modified_ios = 0;
235 
236 	if (!ios)
237 		modified_ios = def;
238 	else if (ios > max)
239 		modified_ios = max;
240 
241 	if (modified_ios) {
242 		(void)cmpxchg(reserved_ios, ios, modified_ios);
243 		ios = modified_ios;
244 	}
245 
246 	return ios;
247 }
248 
249 unsigned dm_get_reserved_bio_based_ios(void)
250 {
251 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
252 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
253 }
254 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
255 
256 unsigned dm_get_reserved_rq_based_ios(void)
257 {
258 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
259 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
260 }
261 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
262 
263 static int __init local_init(void)
264 {
265 	int r = -ENOMEM;
266 
267 	/* allocate a slab for the dm_ios */
268 	_io_cache = KMEM_CACHE(dm_io, 0);
269 	if (!_io_cache)
270 		return r;
271 
272 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
273 	if (!_rq_tio_cache)
274 		goto out_free_io_cache;
275 
276 	r = dm_uevent_init();
277 	if (r)
278 		goto out_free_rq_tio_cache;
279 
280 	_major = major;
281 	r = register_blkdev(_major, _name);
282 	if (r < 0)
283 		goto out_uevent_exit;
284 
285 	if (!_major)
286 		_major = r;
287 
288 	return 0;
289 
290 out_uevent_exit:
291 	dm_uevent_exit();
292 out_free_rq_tio_cache:
293 	kmem_cache_destroy(_rq_tio_cache);
294 out_free_io_cache:
295 	kmem_cache_destroy(_io_cache);
296 
297 	return r;
298 }
299 
300 static void local_exit(void)
301 {
302 	kmem_cache_destroy(_rq_tio_cache);
303 	kmem_cache_destroy(_io_cache);
304 	unregister_blkdev(_major, _name);
305 	dm_uevent_exit();
306 
307 	_major = 0;
308 
309 	DMINFO("cleaned up");
310 }
311 
312 static int (*_inits[])(void) __initdata = {
313 	local_init,
314 	dm_target_init,
315 	dm_linear_init,
316 	dm_stripe_init,
317 	dm_io_init,
318 	dm_kcopyd_init,
319 	dm_interface_init,
320 	dm_statistics_init,
321 };
322 
323 static void (*_exits[])(void) = {
324 	local_exit,
325 	dm_target_exit,
326 	dm_linear_exit,
327 	dm_stripe_exit,
328 	dm_io_exit,
329 	dm_kcopyd_exit,
330 	dm_interface_exit,
331 	dm_statistics_exit,
332 };
333 
334 static int __init dm_init(void)
335 {
336 	const int count = ARRAY_SIZE(_inits);
337 
338 	int r, i;
339 
340 	for (i = 0; i < count; i++) {
341 		r = _inits[i]();
342 		if (r)
343 			goto bad;
344 	}
345 
346 	return 0;
347 
348       bad:
349 	while (i--)
350 		_exits[i]();
351 
352 	return r;
353 }
354 
355 static void __exit dm_exit(void)
356 {
357 	int i = ARRAY_SIZE(_exits);
358 
359 	while (i--)
360 		_exits[i]();
361 
362 	/*
363 	 * Should be empty by this point.
364 	 */
365 	idr_destroy(&_minor_idr);
366 }
367 
368 /*
369  * Block device functions
370  */
371 int dm_deleting_md(struct mapped_device *md)
372 {
373 	return test_bit(DMF_DELETING, &md->flags);
374 }
375 
376 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
377 {
378 	struct mapped_device *md;
379 
380 	spin_lock(&_minor_lock);
381 
382 	md = bdev->bd_disk->private_data;
383 	if (!md)
384 		goto out;
385 
386 	if (test_bit(DMF_FREEING, &md->flags) ||
387 	    dm_deleting_md(md)) {
388 		md = NULL;
389 		goto out;
390 	}
391 
392 	dm_get(md);
393 	atomic_inc(&md->open_count);
394 
395 out:
396 	spin_unlock(&_minor_lock);
397 
398 	return md ? 0 : -ENXIO;
399 }
400 
401 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
402 {
403 	struct mapped_device *md = disk->private_data;
404 
405 	spin_lock(&_minor_lock);
406 
407 	atomic_dec(&md->open_count);
408 	dm_put(md);
409 
410 	spin_unlock(&_minor_lock);
411 }
412 
413 int dm_open_count(struct mapped_device *md)
414 {
415 	return atomic_read(&md->open_count);
416 }
417 
418 /*
419  * Guarantees nothing is using the device before it's deleted.
420  */
421 int dm_lock_for_deletion(struct mapped_device *md)
422 {
423 	int r = 0;
424 
425 	spin_lock(&_minor_lock);
426 
427 	if (dm_open_count(md))
428 		r = -EBUSY;
429 	else
430 		set_bit(DMF_DELETING, &md->flags);
431 
432 	spin_unlock(&_minor_lock);
433 
434 	return r;
435 }
436 
437 sector_t dm_get_size(struct mapped_device *md)
438 {
439 	return get_capacity(md->disk);
440 }
441 
442 struct dm_stats *dm_get_stats(struct mapped_device *md)
443 {
444 	return &md->stats;
445 }
446 
447 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
448 {
449 	struct mapped_device *md = bdev->bd_disk->private_data;
450 
451 	return dm_get_geometry(md, geo);
452 }
453 
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int srcu_idx;
459 	struct dm_table *map;
460 	struct dm_target *tgt;
461 	int r = -ENOTTY;
462 
463 retry:
464 	map = dm_get_live_table(md, &srcu_idx);
465 
466 	if (!map || !dm_table_get_size(map))
467 		goto out;
468 
469 	/* We only support devices that have a single target */
470 	if (dm_table_get_num_targets(map) != 1)
471 		goto out;
472 
473 	tgt = dm_table_get_target(map, 0);
474 
475 	if (dm_suspended_md(md)) {
476 		r = -EAGAIN;
477 		goto out;
478 	}
479 
480 	if (tgt->type->ioctl)
481 		r = tgt->type->ioctl(tgt, cmd, arg);
482 
483 out:
484 	dm_put_live_table(md, srcu_idx);
485 
486 	if (r == -ENOTCONN) {
487 		msleep(10);
488 		goto retry;
489 	}
490 
491 	return r;
492 }
493 
494 static struct dm_io *alloc_io(struct mapped_device *md)
495 {
496 	return mempool_alloc(md->io_pool, GFP_NOIO);
497 }
498 
499 static void free_io(struct mapped_device *md, struct dm_io *io)
500 {
501 	mempool_free(io, md->io_pool);
502 }
503 
504 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
505 {
506 	bio_put(&tio->clone);
507 }
508 
509 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
510 					    gfp_t gfp_mask)
511 {
512 	return mempool_alloc(md->io_pool, gfp_mask);
513 }
514 
515 static void free_rq_tio(struct dm_rq_target_io *tio)
516 {
517 	mempool_free(tio, tio->md->io_pool);
518 }
519 
520 static int md_in_flight(struct mapped_device *md)
521 {
522 	return atomic_read(&md->pending[READ]) +
523 	       atomic_read(&md->pending[WRITE]);
524 }
525 
526 static void start_io_acct(struct dm_io *io)
527 {
528 	struct mapped_device *md = io->md;
529 	struct bio *bio = io->bio;
530 	int cpu;
531 	int rw = bio_data_dir(bio);
532 
533 	io->start_time = jiffies;
534 
535 	cpu = part_stat_lock();
536 	part_round_stats(cpu, &dm_disk(md)->part0);
537 	part_stat_unlock();
538 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
539 		atomic_inc_return(&md->pending[rw]));
540 
541 	if (unlikely(dm_stats_used(&md->stats)))
542 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
543 				    bio_sectors(bio), false, 0, &io->stats_aux);
544 }
545 
546 static void end_io_acct(struct dm_io *io)
547 {
548 	struct mapped_device *md = io->md;
549 	struct bio *bio = io->bio;
550 	unsigned long duration = jiffies - io->start_time;
551 	int pending, cpu;
552 	int rw = bio_data_dir(bio);
553 
554 	cpu = part_stat_lock();
555 	part_round_stats(cpu, &dm_disk(md)->part0);
556 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
557 	part_stat_unlock();
558 
559 	if (unlikely(dm_stats_used(&md->stats)))
560 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
561 				    bio_sectors(bio), true, duration, &io->stats_aux);
562 
563 	/*
564 	 * After this is decremented the bio must not be touched if it is
565 	 * a flush.
566 	 */
567 	pending = atomic_dec_return(&md->pending[rw]);
568 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
569 	pending += atomic_read(&md->pending[rw^0x1]);
570 
571 	/* nudge anyone waiting on suspend queue */
572 	if (!pending)
573 		wake_up(&md->wait);
574 }
575 
576 /*
577  * Add the bio to the list of deferred io.
578  */
579 static void queue_io(struct mapped_device *md, struct bio *bio)
580 {
581 	unsigned long flags;
582 
583 	spin_lock_irqsave(&md->deferred_lock, flags);
584 	bio_list_add(&md->deferred, bio);
585 	spin_unlock_irqrestore(&md->deferred_lock, flags);
586 	queue_work(md->wq, &md->work);
587 }
588 
589 /*
590  * Everyone (including functions in this file), should use this
591  * function to access the md->map field, and make sure they call
592  * dm_put_live_table() when finished.
593  */
594 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
595 {
596 	*srcu_idx = srcu_read_lock(&md->io_barrier);
597 
598 	return srcu_dereference(md->map, &md->io_barrier);
599 }
600 
601 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
602 {
603 	srcu_read_unlock(&md->io_barrier, srcu_idx);
604 }
605 
606 void dm_sync_table(struct mapped_device *md)
607 {
608 	synchronize_srcu(&md->io_barrier);
609 	synchronize_rcu_expedited();
610 }
611 
612 /*
613  * A fast alternative to dm_get_live_table/dm_put_live_table.
614  * The caller must not block between these two functions.
615  */
616 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
617 {
618 	rcu_read_lock();
619 	return rcu_dereference(md->map);
620 }
621 
622 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
623 {
624 	rcu_read_unlock();
625 }
626 
627 /*
628  * Get the geometry associated with a dm device
629  */
630 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
631 {
632 	*geo = md->geometry;
633 
634 	return 0;
635 }
636 
637 /*
638  * Set the geometry of a device.
639  */
640 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
641 {
642 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
643 
644 	if (geo->start > sz) {
645 		DMWARN("Start sector is beyond the geometry limits.");
646 		return -EINVAL;
647 	}
648 
649 	md->geometry = *geo;
650 
651 	return 0;
652 }
653 
654 /*-----------------------------------------------------------------
655  * CRUD START:
656  *   A more elegant soln is in the works that uses the queue
657  *   merge fn, unfortunately there are a couple of changes to
658  *   the block layer that I want to make for this.  So in the
659  *   interests of getting something for people to use I give
660  *   you this clearly demarcated crap.
661  *---------------------------------------------------------------*/
662 
663 static int __noflush_suspending(struct mapped_device *md)
664 {
665 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
666 }
667 
668 /*
669  * Decrements the number of outstanding ios that a bio has been
670  * cloned into, completing the original io if necc.
671  */
672 static void dec_pending(struct dm_io *io, int error)
673 {
674 	unsigned long flags;
675 	int io_error;
676 	struct bio *bio;
677 	struct mapped_device *md = io->md;
678 
679 	/* Push-back supersedes any I/O errors */
680 	if (unlikely(error)) {
681 		spin_lock_irqsave(&io->endio_lock, flags);
682 		if (!(io->error > 0 && __noflush_suspending(md)))
683 			io->error = error;
684 		spin_unlock_irqrestore(&io->endio_lock, flags);
685 	}
686 
687 	if (atomic_dec_and_test(&io->io_count)) {
688 		if (io->error == DM_ENDIO_REQUEUE) {
689 			/*
690 			 * Target requested pushing back the I/O.
691 			 */
692 			spin_lock_irqsave(&md->deferred_lock, flags);
693 			if (__noflush_suspending(md))
694 				bio_list_add_head(&md->deferred, io->bio);
695 			else
696 				/* noflush suspend was interrupted. */
697 				io->error = -EIO;
698 			spin_unlock_irqrestore(&md->deferred_lock, flags);
699 		}
700 
701 		io_error = io->error;
702 		bio = io->bio;
703 		end_io_acct(io);
704 		free_io(md, io);
705 
706 		if (io_error == DM_ENDIO_REQUEUE)
707 			return;
708 
709 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
710 			/*
711 			 * Preflush done for flush with data, reissue
712 			 * without REQ_FLUSH.
713 			 */
714 			bio->bi_rw &= ~REQ_FLUSH;
715 			queue_io(md, bio);
716 		} else {
717 			/* done with normal IO or empty flush */
718 			trace_block_bio_complete(md->queue, bio, io_error);
719 			bio_endio(bio, io_error);
720 		}
721 	}
722 }
723 
724 static void clone_endio(struct bio *bio, int error)
725 {
726 	int r = 0;
727 	struct dm_target_io *tio = bio->bi_private;
728 	struct dm_io *io = tio->io;
729 	struct mapped_device *md = tio->io->md;
730 	dm_endio_fn endio = tio->ti->type->end_io;
731 
732 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
733 		error = -EIO;
734 
735 	if (endio) {
736 		r = endio(tio->ti, bio, error);
737 		if (r < 0 || r == DM_ENDIO_REQUEUE)
738 			/*
739 			 * error and requeue request are handled
740 			 * in dec_pending().
741 			 */
742 			error = r;
743 		else if (r == DM_ENDIO_INCOMPLETE)
744 			/* The target will handle the io */
745 			return;
746 		else if (r) {
747 			DMWARN("unimplemented target endio return value: %d", r);
748 			BUG();
749 		}
750 	}
751 
752 	free_tio(md, tio);
753 	dec_pending(io, error);
754 }
755 
756 /*
757  * Partial completion handling for request-based dm
758  */
759 static void end_clone_bio(struct bio *clone, int error)
760 {
761 	struct dm_rq_clone_bio_info *info = clone->bi_private;
762 	struct dm_rq_target_io *tio = info->tio;
763 	struct bio *bio = info->orig;
764 	unsigned int nr_bytes = info->orig->bi_size;
765 
766 	bio_put(clone);
767 
768 	if (tio->error)
769 		/*
770 		 * An error has already been detected on the request.
771 		 * Once error occurred, just let clone->end_io() handle
772 		 * the remainder.
773 		 */
774 		return;
775 	else if (error) {
776 		/*
777 		 * Don't notice the error to the upper layer yet.
778 		 * The error handling decision is made by the target driver,
779 		 * when the request is completed.
780 		 */
781 		tio->error = error;
782 		return;
783 	}
784 
785 	/*
786 	 * I/O for the bio successfully completed.
787 	 * Notice the data completion to the upper layer.
788 	 */
789 
790 	/*
791 	 * bios are processed from the head of the list.
792 	 * So the completing bio should always be rq->bio.
793 	 * If it's not, something wrong is happening.
794 	 */
795 	if (tio->orig->bio != bio)
796 		DMERR("bio completion is going in the middle of the request");
797 
798 	/*
799 	 * Update the original request.
800 	 * Do not use blk_end_request() here, because it may complete
801 	 * the original request before the clone, and break the ordering.
802 	 */
803 	blk_update_request(tio->orig, 0, nr_bytes);
804 }
805 
806 /*
807  * Don't touch any member of the md after calling this function because
808  * the md may be freed in dm_put() at the end of this function.
809  * Or do dm_get() before calling this function and dm_put() later.
810  */
811 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
812 {
813 	atomic_dec(&md->pending[rw]);
814 
815 	/* nudge anyone waiting on suspend queue */
816 	if (!md_in_flight(md))
817 		wake_up(&md->wait);
818 
819 	/*
820 	 * Run this off this callpath, as drivers could invoke end_io while
821 	 * inside their request_fn (and holding the queue lock). Calling
822 	 * back into ->request_fn() could deadlock attempting to grab the
823 	 * queue lock again.
824 	 */
825 	if (run_queue)
826 		blk_run_queue_async(md->queue);
827 
828 	/*
829 	 * dm_put() must be at the end of this function. See the comment above
830 	 */
831 	dm_put(md);
832 }
833 
834 static void free_rq_clone(struct request *clone)
835 {
836 	struct dm_rq_target_io *tio = clone->end_io_data;
837 
838 	blk_rq_unprep_clone(clone);
839 	free_rq_tio(tio);
840 }
841 
842 /*
843  * Complete the clone and the original request.
844  * Must be called without queue lock.
845  */
846 static void dm_end_request(struct request *clone, int error)
847 {
848 	int rw = rq_data_dir(clone);
849 	struct dm_rq_target_io *tio = clone->end_io_data;
850 	struct mapped_device *md = tio->md;
851 	struct request *rq = tio->orig;
852 
853 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
854 		rq->errors = clone->errors;
855 		rq->resid_len = clone->resid_len;
856 
857 		if (rq->sense)
858 			/*
859 			 * We are using the sense buffer of the original
860 			 * request.
861 			 * So setting the length of the sense data is enough.
862 			 */
863 			rq->sense_len = clone->sense_len;
864 	}
865 
866 	free_rq_clone(clone);
867 	blk_end_request_all(rq, error);
868 	rq_completed(md, rw, true);
869 }
870 
871 static void dm_unprep_request(struct request *rq)
872 {
873 	struct request *clone = rq->special;
874 
875 	rq->special = NULL;
876 	rq->cmd_flags &= ~REQ_DONTPREP;
877 
878 	free_rq_clone(clone);
879 }
880 
881 /*
882  * Requeue the original request of a clone.
883  */
884 void dm_requeue_unmapped_request(struct request *clone)
885 {
886 	int rw = rq_data_dir(clone);
887 	struct dm_rq_target_io *tio = clone->end_io_data;
888 	struct mapped_device *md = tio->md;
889 	struct request *rq = tio->orig;
890 	struct request_queue *q = rq->q;
891 	unsigned long flags;
892 
893 	dm_unprep_request(rq);
894 
895 	spin_lock_irqsave(q->queue_lock, flags);
896 	blk_requeue_request(q, rq);
897 	spin_unlock_irqrestore(q->queue_lock, flags);
898 
899 	rq_completed(md, rw, 0);
900 }
901 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
902 
903 static void __stop_queue(struct request_queue *q)
904 {
905 	blk_stop_queue(q);
906 }
907 
908 static void stop_queue(struct request_queue *q)
909 {
910 	unsigned long flags;
911 
912 	spin_lock_irqsave(q->queue_lock, flags);
913 	__stop_queue(q);
914 	spin_unlock_irqrestore(q->queue_lock, flags);
915 }
916 
917 static void __start_queue(struct request_queue *q)
918 {
919 	if (blk_queue_stopped(q))
920 		blk_start_queue(q);
921 }
922 
923 static void start_queue(struct request_queue *q)
924 {
925 	unsigned long flags;
926 
927 	spin_lock_irqsave(q->queue_lock, flags);
928 	__start_queue(q);
929 	spin_unlock_irqrestore(q->queue_lock, flags);
930 }
931 
932 static void dm_done(struct request *clone, int error, bool mapped)
933 {
934 	int r = error;
935 	struct dm_rq_target_io *tio = clone->end_io_data;
936 	dm_request_endio_fn rq_end_io = NULL;
937 
938 	if (tio->ti) {
939 		rq_end_io = tio->ti->type->rq_end_io;
940 
941 		if (mapped && rq_end_io)
942 			r = rq_end_io(tio->ti, clone, error, &tio->info);
943 	}
944 
945 	if (r <= 0)
946 		/* The target wants to complete the I/O */
947 		dm_end_request(clone, r);
948 	else if (r == DM_ENDIO_INCOMPLETE)
949 		/* The target will handle the I/O */
950 		return;
951 	else if (r == DM_ENDIO_REQUEUE)
952 		/* The target wants to requeue the I/O */
953 		dm_requeue_unmapped_request(clone);
954 	else {
955 		DMWARN("unimplemented target endio return value: %d", r);
956 		BUG();
957 	}
958 }
959 
960 /*
961  * Request completion handler for request-based dm
962  */
963 static void dm_softirq_done(struct request *rq)
964 {
965 	bool mapped = true;
966 	struct request *clone = rq->completion_data;
967 	struct dm_rq_target_io *tio = clone->end_io_data;
968 
969 	if (rq->cmd_flags & REQ_FAILED)
970 		mapped = false;
971 
972 	dm_done(clone, tio->error, mapped);
973 }
974 
975 /*
976  * Complete the clone and the original request with the error status
977  * through softirq context.
978  */
979 static void dm_complete_request(struct request *clone, int error)
980 {
981 	struct dm_rq_target_io *tio = clone->end_io_data;
982 	struct request *rq = tio->orig;
983 
984 	tio->error = error;
985 	rq->completion_data = clone;
986 	blk_complete_request(rq);
987 }
988 
989 /*
990  * Complete the not-mapped clone and the original request with the error status
991  * through softirq context.
992  * Target's rq_end_io() function isn't called.
993  * This may be used when the target's map_rq() function fails.
994  */
995 void dm_kill_unmapped_request(struct request *clone, int error)
996 {
997 	struct dm_rq_target_io *tio = clone->end_io_data;
998 	struct request *rq = tio->orig;
999 
1000 	rq->cmd_flags |= REQ_FAILED;
1001 	dm_complete_request(clone, error);
1002 }
1003 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1004 
1005 /*
1006  * Called with the queue lock held
1007  */
1008 static void end_clone_request(struct request *clone, int error)
1009 {
1010 	/*
1011 	 * For just cleaning up the information of the queue in which
1012 	 * the clone was dispatched.
1013 	 * The clone is *NOT* freed actually here because it is alloced from
1014 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1015 	 */
1016 	__blk_put_request(clone->q, clone);
1017 
1018 	/*
1019 	 * Actual request completion is done in a softirq context which doesn't
1020 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1021 	 *     - another request may be submitted by the upper level driver
1022 	 *       of the stacking during the completion
1023 	 *     - the submission which requires queue lock may be done
1024 	 *       against this queue
1025 	 */
1026 	dm_complete_request(clone, error);
1027 }
1028 
1029 /*
1030  * Return maximum size of I/O possible at the supplied sector up to the current
1031  * target boundary.
1032  */
1033 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1034 {
1035 	sector_t target_offset = dm_target_offset(ti, sector);
1036 
1037 	return ti->len - target_offset;
1038 }
1039 
1040 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1041 {
1042 	sector_t len = max_io_len_target_boundary(sector, ti);
1043 	sector_t offset, max_len;
1044 
1045 	/*
1046 	 * Does the target need to split even further?
1047 	 */
1048 	if (ti->max_io_len) {
1049 		offset = dm_target_offset(ti, sector);
1050 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1051 			max_len = sector_div(offset, ti->max_io_len);
1052 		else
1053 			max_len = offset & (ti->max_io_len - 1);
1054 		max_len = ti->max_io_len - max_len;
1055 
1056 		if (len > max_len)
1057 			len = max_len;
1058 	}
1059 
1060 	return len;
1061 }
1062 
1063 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1064 {
1065 	if (len > UINT_MAX) {
1066 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1067 		      (unsigned long long)len, UINT_MAX);
1068 		ti->error = "Maximum size of target IO is too large";
1069 		return -EINVAL;
1070 	}
1071 
1072 	ti->max_io_len = (uint32_t) len;
1073 
1074 	return 0;
1075 }
1076 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1077 
1078 static void __map_bio(struct dm_target_io *tio)
1079 {
1080 	int r;
1081 	sector_t sector;
1082 	struct mapped_device *md;
1083 	struct bio *clone = &tio->clone;
1084 	struct dm_target *ti = tio->ti;
1085 
1086 	clone->bi_end_io = clone_endio;
1087 	clone->bi_private = tio;
1088 
1089 	/*
1090 	 * Map the clone.  If r == 0 we don't need to do
1091 	 * anything, the target has assumed ownership of
1092 	 * this io.
1093 	 */
1094 	atomic_inc(&tio->io->io_count);
1095 	sector = clone->bi_sector;
1096 	r = ti->type->map(ti, clone);
1097 	if (r == DM_MAPIO_REMAPPED) {
1098 		/* the bio has been remapped so dispatch it */
1099 
1100 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1101 				      tio->io->bio->bi_bdev->bd_dev, sector);
1102 
1103 		generic_make_request(clone);
1104 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1105 		/* error the io and bail out, or requeue it if needed */
1106 		md = tio->io->md;
1107 		dec_pending(tio->io, r);
1108 		free_tio(md, tio);
1109 	} else if (r) {
1110 		DMWARN("unimplemented target map return value: %d", r);
1111 		BUG();
1112 	}
1113 }
1114 
1115 struct clone_info {
1116 	struct mapped_device *md;
1117 	struct dm_table *map;
1118 	struct bio *bio;
1119 	struct dm_io *io;
1120 	sector_t sector;
1121 	sector_t sector_count;
1122 	unsigned short idx;
1123 };
1124 
1125 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1126 {
1127 	bio->bi_sector = sector;
1128 	bio->bi_size = to_bytes(len);
1129 }
1130 
1131 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1132 {
1133 	bio->bi_idx = idx;
1134 	bio->bi_vcnt = idx + bv_count;
1135 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1136 }
1137 
1138 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1139 				unsigned short idx, unsigned len, unsigned offset,
1140 				unsigned trim)
1141 {
1142 	if (!bio_integrity(bio))
1143 		return;
1144 
1145 	bio_integrity_clone(clone, bio, GFP_NOIO);
1146 
1147 	if (trim)
1148 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1149 }
1150 
1151 /*
1152  * Creates a little bio that just does part of a bvec.
1153  */
1154 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1155 			    sector_t sector, unsigned short idx,
1156 			    unsigned offset, unsigned len)
1157 {
1158 	struct bio *clone = &tio->clone;
1159 	struct bio_vec *bv = bio->bi_io_vec + idx;
1160 
1161 	*clone->bi_io_vec = *bv;
1162 
1163 	bio_setup_sector(clone, sector, len);
1164 
1165 	clone->bi_bdev = bio->bi_bdev;
1166 	clone->bi_rw = bio->bi_rw;
1167 	clone->bi_vcnt = 1;
1168 	clone->bi_io_vec->bv_offset = offset;
1169 	clone->bi_io_vec->bv_len = clone->bi_size;
1170 	clone->bi_flags |= 1 << BIO_CLONED;
1171 
1172 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1173 }
1174 
1175 /*
1176  * Creates a bio that consists of range of complete bvecs.
1177  */
1178 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1179 		      sector_t sector, unsigned short idx,
1180 		      unsigned short bv_count, unsigned len)
1181 {
1182 	struct bio *clone = &tio->clone;
1183 	unsigned trim = 0;
1184 
1185 	__bio_clone(clone, bio);
1186 	bio_setup_sector(clone, sector, len);
1187 	bio_setup_bv(clone, idx, bv_count);
1188 
1189 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1190 		trim = 1;
1191 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1192 }
1193 
1194 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1195 				      struct dm_target *ti, int nr_iovecs,
1196 				      unsigned target_bio_nr)
1197 {
1198 	struct dm_target_io *tio;
1199 	struct bio *clone;
1200 
1201 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1202 	tio = container_of(clone, struct dm_target_io, clone);
1203 
1204 	tio->io = ci->io;
1205 	tio->ti = ti;
1206 	memset(&tio->info, 0, sizeof(tio->info));
1207 	tio->target_bio_nr = target_bio_nr;
1208 
1209 	return tio;
1210 }
1211 
1212 static void __clone_and_map_simple_bio(struct clone_info *ci,
1213 				       struct dm_target *ti,
1214 				       unsigned target_bio_nr, sector_t len)
1215 {
1216 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1217 	struct bio *clone = &tio->clone;
1218 
1219 	/*
1220 	 * Discard requests require the bio's inline iovecs be initialized.
1221 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1222 	 * and discard, so no need for concern about wasted bvec allocations.
1223 	 */
1224 	 __bio_clone(clone, ci->bio);
1225 	if (len)
1226 		bio_setup_sector(clone, ci->sector, len);
1227 
1228 	__map_bio(tio);
1229 }
1230 
1231 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1232 				  unsigned num_bios, sector_t len)
1233 {
1234 	unsigned target_bio_nr;
1235 
1236 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1237 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1238 }
1239 
1240 static int __send_empty_flush(struct clone_info *ci)
1241 {
1242 	unsigned target_nr = 0;
1243 	struct dm_target *ti;
1244 
1245 	BUG_ON(bio_has_data(ci->bio));
1246 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1247 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1248 
1249 	return 0;
1250 }
1251 
1252 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1253 				     sector_t sector, int nr_iovecs,
1254 				     unsigned short idx, unsigned short bv_count,
1255 				     unsigned offset, unsigned len,
1256 				     unsigned split_bvec)
1257 {
1258 	struct bio *bio = ci->bio;
1259 	struct dm_target_io *tio;
1260 	unsigned target_bio_nr;
1261 	unsigned num_target_bios = 1;
1262 
1263 	/*
1264 	 * Does the target want to receive duplicate copies of the bio?
1265 	 */
1266 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1267 		num_target_bios = ti->num_write_bios(ti, bio);
1268 
1269 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1270 		tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1271 		if (split_bvec)
1272 			clone_split_bio(tio, bio, sector, idx, offset, len);
1273 		else
1274 			clone_bio(tio, bio, sector, idx, bv_count, len);
1275 		__map_bio(tio);
1276 	}
1277 }
1278 
1279 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1280 
1281 static unsigned get_num_discard_bios(struct dm_target *ti)
1282 {
1283 	return ti->num_discard_bios;
1284 }
1285 
1286 static unsigned get_num_write_same_bios(struct dm_target *ti)
1287 {
1288 	return ti->num_write_same_bios;
1289 }
1290 
1291 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1292 
1293 static bool is_split_required_for_discard(struct dm_target *ti)
1294 {
1295 	return ti->split_discard_bios;
1296 }
1297 
1298 static int __send_changing_extent_only(struct clone_info *ci,
1299 				       get_num_bios_fn get_num_bios,
1300 				       is_split_required_fn is_split_required)
1301 {
1302 	struct dm_target *ti;
1303 	sector_t len;
1304 	unsigned num_bios;
1305 
1306 	do {
1307 		ti = dm_table_find_target(ci->map, ci->sector);
1308 		if (!dm_target_is_valid(ti))
1309 			return -EIO;
1310 
1311 		/*
1312 		 * Even though the device advertised support for this type of
1313 		 * request, that does not mean every target supports it, and
1314 		 * reconfiguration might also have changed that since the
1315 		 * check was performed.
1316 		 */
1317 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1318 		if (!num_bios)
1319 			return -EOPNOTSUPP;
1320 
1321 		if (is_split_required && !is_split_required(ti))
1322 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1323 		else
1324 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1325 
1326 		__send_duplicate_bios(ci, ti, num_bios, len);
1327 
1328 		ci->sector += len;
1329 	} while (ci->sector_count -= len);
1330 
1331 	return 0;
1332 }
1333 
1334 static int __send_discard(struct clone_info *ci)
1335 {
1336 	return __send_changing_extent_only(ci, get_num_discard_bios,
1337 					   is_split_required_for_discard);
1338 }
1339 
1340 static int __send_write_same(struct clone_info *ci)
1341 {
1342 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1343 }
1344 
1345 /*
1346  * Find maximum number of sectors / bvecs we can process with a single bio.
1347  */
1348 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1349 {
1350 	struct bio *bio = ci->bio;
1351 	sector_t bv_len, total_len = 0;
1352 
1353 	for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1354 		bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1355 
1356 		if (bv_len > max)
1357 			break;
1358 
1359 		max -= bv_len;
1360 		total_len += bv_len;
1361 	}
1362 
1363 	return total_len;
1364 }
1365 
1366 static int __split_bvec_across_targets(struct clone_info *ci,
1367 				       struct dm_target *ti, sector_t max)
1368 {
1369 	struct bio *bio = ci->bio;
1370 	struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1371 	sector_t remaining = to_sector(bv->bv_len);
1372 	unsigned offset = 0;
1373 	sector_t len;
1374 
1375 	do {
1376 		if (offset) {
1377 			ti = dm_table_find_target(ci->map, ci->sector);
1378 			if (!dm_target_is_valid(ti))
1379 				return -EIO;
1380 
1381 			max = max_io_len(ci->sector, ti);
1382 		}
1383 
1384 		len = min(remaining, max);
1385 
1386 		__clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1387 					 bv->bv_offset + offset, len, 1);
1388 
1389 		ci->sector += len;
1390 		ci->sector_count -= len;
1391 		offset += to_bytes(len);
1392 	} while (remaining -= len);
1393 
1394 	ci->idx++;
1395 
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Select the correct strategy for processing a non-flush bio.
1401  */
1402 static int __split_and_process_non_flush(struct clone_info *ci)
1403 {
1404 	struct bio *bio = ci->bio;
1405 	struct dm_target *ti;
1406 	sector_t len, max;
1407 	int idx;
1408 
1409 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1410 		return __send_discard(ci);
1411 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1412 		return __send_write_same(ci);
1413 
1414 	ti = dm_table_find_target(ci->map, ci->sector);
1415 	if (!dm_target_is_valid(ti))
1416 		return -EIO;
1417 
1418 	max = max_io_len(ci->sector, ti);
1419 
1420 	/*
1421 	 * Optimise for the simple case where we can do all of
1422 	 * the remaining io with a single clone.
1423 	 */
1424 	if (ci->sector_count <= max) {
1425 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1426 					 ci->idx, bio->bi_vcnt - ci->idx, 0,
1427 					 ci->sector_count, 0);
1428 		ci->sector_count = 0;
1429 		return 0;
1430 	}
1431 
1432 	/*
1433 	 * There are some bvecs that don't span targets.
1434 	 * Do as many of these as possible.
1435 	 */
1436 	if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1437 		len = __len_within_target(ci, max, &idx);
1438 
1439 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1440 					 ci->idx, idx - ci->idx, 0, len, 0);
1441 
1442 		ci->sector += len;
1443 		ci->sector_count -= len;
1444 		ci->idx = idx;
1445 
1446 		return 0;
1447 	}
1448 
1449 	/*
1450 	 * Handle a bvec that must be split between two or more targets.
1451 	 */
1452 	return __split_bvec_across_targets(ci, ti, max);
1453 }
1454 
1455 /*
1456  * Entry point to split a bio into clones and submit them to the targets.
1457  */
1458 static void __split_and_process_bio(struct mapped_device *md,
1459 				    struct dm_table *map, struct bio *bio)
1460 {
1461 	struct clone_info ci;
1462 	int error = 0;
1463 
1464 	if (unlikely(!map)) {
1465 		bio_io_error(bio);
1466 		return;
1467 	}
1468 
1469 	ci.map = map;
1470 	ci.md = md;
1471 	ci.io = alloc_io(md);
1472 	ci.io->error = 0;
1473 	atomic_set(&ci.io->io_count, 1);
1474 	ci.io->bio = bio;
1475 	ci.io->md = md;
1476 	spin_lock_init(&ci.io->endio_lock);
1477 	ci.sector = bio->bi_sector;
1478 	ci.idx = bio->bi_idx;
1479 
1480 	start_io_acct(ci.io);
1481 
1482 	if (bio->bi_rw & REQ_FLUSH) {
1483 		ci.bio = &ci.md->flush_bio;
1484 		ci.sector_count = 0;
1485 		error = __send_empty_flush(&ci);
1486 		/* dec_pending submits any data associated with flush */
1487 	} else {
1488 		ci.bio = bio;
1489 		ci.sector_count = bio_sectors(bio);
1490 		while (ci.sector_count && !error)
1491 			error = __split_and_process_non_flush(&ci);
1492 	}
1493 
1494 	/* drop the extra reference count */
1495 	dec_pending(ci.io, error);
1496 }
1497 /*-----------------------------------------------------------------
1498  * CRUD END
1499  *---------------------------------------------------------------*/
1500 
1501 static int dm_merge_bvec(struct request_queue *q,
1502 			 struct bvec_merge_data *bvm,
1503 			 struct bio_vec *biovec)
1504 {
1505 	struct mapped_device *md = q->queuedata;
1506 	struct dm_table *map = dm_get_live_table_fast(md);
1507 	struct dm_target *ti;
1508 	sector_t max_sectors;
1509 	int max_size = 0;
1510 
1511 	if (unlikely(!map))
1512 		goto out;
1513 
1514 	ti = dm_table_find_target(map, bvm->bi_sector);
1515 	if (!dm_target_is_valid(ti))
1516 		goto out;
1517 
1518 	/*
1519 	 * Find maximum amount of I/O that won't need splitting
1520 	 */
1521 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1522 			  (sector_t) BIO_MAX_SECTORS);
1523 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1524 	if (max_size < 0)
1525 		max_size = 0;
1526 
1527 	/*
1528 	 * merge_bvec_fn() returns number of bytes
1529 	 * it can accept at this offset
1530 	 * max is precomputed maximal io size
1531 	 */
1532 	if (max_size && ti->type->merge)
1533 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1534 	/*
1535 	 * If the target doesn't support merge method and some of the devices
1536 	 * provided their merge_bvec method (we know this by looking at
1537 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1538 	 * entries.  So always set max_size to 0, and the code below allows
1539 	 * just one page.
1540 	 */
1541 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1542 
1543 		max_size = 0;
1544 
1545 out:
1546 	dm_put_live_table_fast(md);
1547 	/*
1548 	 * Always allow an entire first page
1549 	 */
1550 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1551 		max_size = biovec->bv_len;
1552 
1553 	return max_size;
1554 }
1555 
1556 /*
1557  * The request function that just remaps the bio built up by
1558  * dm_merge_bvec.
1559  */
1560 static void _dm_request(struct request_queue *q, struct bio *bio)
1561 {
1562 	int rw = bio_data_dir(bio);
1563 	struct mapped_device *md = q->queuedata;
1564 	int cpu;
1565 	int srcu_idx;
1566 	struct dm_table *map;
1567 
1568 	map = dm_get_live_table(md, &srcu_idx);
1569 
1570 	cpu = part_stat_lock();
1571 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1572 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1573 	part_stat_unlock();
1574 
1575 	/* if we're suspended, we have to queue this io for later */
1576 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1577 		dm_put_live_table(md, srcu_idx);
1578 
1579 		if (bio_rw(bio) != READA)
1580 			queue_io(md, bio);
1581 		else
1582 			bio_io_error(bio);
1583 		return;
1584 	}
1585 
1586 	__split_and_process_bio(md, map, bio);
1587 	dm_put_live_table(md, srcu_idx);
1588 	return;
1589 }
1590 
1591 int dm_request_based(struct mapped_device *md)
1592 {
1593 	return blk_queue_stackable(md->queue);
1594 }
1595 
1596 static void dm_request(struct request_queue *q, struct bio *bio)
1597 {
1598 	struct mapped_device *md = q->queuedata;
1599 
1600 	if (dm_request_based(md))
1601 		blk_queue_bio(q, bio);
1602 	else
1603 		_dm_request(q, bio);
1604 }
1605 
1606 void dm_dispatch_request(struct request *rq)
1607 {
1608 	int r;
1609 
1610 	if (blk_queue_io_stat(rq->q))
1611 		rq->cmd_flags |= REQ_IO_STAT;
1612 
1613 	rq->start_time = jiffies;
1614 	r = blk_insert_cloned_request(rq->q, rq);
1615 	if (r)
1616 		dm_complete_request(rq, r);
1617 }
1618 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1619 
1620 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1621 				 void *data)
1622 {
1623 	struct dm_rq_target_io *tio = data;
1624 	struct dm_rq_clone_bio_info *info =
1625 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1626 
1627 	info->orig = bio_orig;
1628 	info->tio = tio;
1629 	bio->bi_end_io = end_clone_bio;
1630 	bio->bi_private = info;
1631 
1632 	return 0;
1633 }
1634 
1635 static int setup_clone(struct request *clone, struct request *rq,
1636 		       struct dm_rq_target_io *tio)
1637 {
1638 	int r;
1639 
1640 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1641 			      dm_rq_bio_constructor, tio);
1642 	if (r)
1643 		return r;
1644 
1645 	clone->cmd = rq->cmd;
1646 	clone->cmd_len = rq->cmd_len;
1647 	clone->sense = rq->sense;
1648 	clone->buffer = rq->buffer;
1649 	clone->end_io = end_clone_request;
1650 	clone->end_io_data = tio;
1651 
1652 	return 0;
1653 }
1654 
1655 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1656 				gfp_t gfp_mask)
1657 {
1658 	struct request *clone;
1659 	struct dm_rq_target_io *tio;
1660 
1661 	tio = alloc_rq_tio(md, gfp_mask);
1662 	if (!tio)
1663 		return NULL;
1664 
1665 	tio->md = md;
1666 	tio->ti = NULL;
1667 	tio->orig = rq;
1668 	tio->error = 0;
1669 	memset(&tio->info, 0, sizeof(tio->info));
1670 
1671 	clone = &tio->clone;
1672 	if (setup_clone(clone, rq, tio)) {
1673 		/* -ENOMEM */
1674 		free_rq_tio(tio);
1675 		return NULL;
1676 	}
1677 
1678 	return clone;
1679 }
1680 
1681 /*
1682  * Called with the queue lock held.
1683  */
1684 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1685 {
1686 	struct mapped_device *md = q->queuedata;
1687 	struct request *clone;
1688 
1689 	if (unlikely(rq->special)) {
1690 		DMWARN("Already has something in rq->special.");
1691 		return BLKPREP_KILL;
1692 	}
1693 
1694 	clone = clone_rq(rq, md, GFP_ATOMIC);
1695 	if (!clone)
1696 		return BLKPREP_DEFER;
1697 
1698 	rq->special = clone;
1699 	rq->cmd_flags |= REQ_DONTPREP;
1700 
1701 	return BLKPREP_OK;
1702 }
1703 
1704 /*
1705  * Returns:
1706  * 0  : the request has been processed (not requeued)
1707  * !0 : the request has been requeued
1708  */
1709 static int map_request(struct dm_target *ti, struct request *clone,
1710 		       struct mapped_device *md)
1711 {
1712 	int r, requeued = 0;
1713 	struct dm_rq_target_io *tio = clone->end_io_data;
1714 
1715 	tio->ti = ti;
1716 	r = ti->type->map_rq(ti, clone, &tio->info);
1717 	switch (r) {
1718 	case DM_MAPIO_SUBMITTED:
1719 		/* The target has taken the I/O to submit by itself later */
1720 		break;
1721 	case DM_MAPIO_REMAPPED:
1722 		/* The target has remapped the I/O so dispatch it */
1723 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1724 				     blk_rq_pos(tio->orig));
1725 		dm_dispatch_request(clone);
1726 		break;
1727 	case DM_MAPIO_REQUEUE:
1728 		/* The target wants to requeue the I/O */
1729 		dm_requeue_unmapped_request(clone);
1730 		requeued = 1;
1731 		break;
1732 	default:
1733 		if (r > 0) {
1734 			DMWARN("unimplemented target map return value: %d", r);
1735 			BUG();
1736 		}
1737 
1738 		/* The target wants to complete the I/O */
1739 		dm_kill_unmapped_request(clone, r);
1740 		break;
1741 	}
1742 
1743 	return requeued;
1744 }
1745 
1746 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1747 {
1748 	struct request *clone;
1749 
1750 	blk_start_request(orig);
1751 	clone = orig->special;
1752 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1753 
1754 	/*
1755 	 * Hold the md reference here for the in-flight I/O.
1756 	 * We can't rely on the reference count by device opener,
1757 	 * because the device may be closed during the request completion
1758 	 * when all bios are completed.
1759 	 * See the comment in rq_completed() too.
1760 	 */
1761 	dm_get(md);
1762 
1763 	return clone;
1764 }
1765 
1766 /*
1767  * q->request_fn for request-based dm.
1768  * Called with the queue lock held.
1769  */
1770 static void dm_request_fn(struct request_queue *q)
1771 {
1772 	struct mapped_device *md = q->queuedata;
1773 	int srcu_idx;
1774 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1775 	struct dm_target *ti;
1776 	struct request *rq, *clone;
1777 	sector_t pos;
1778 
1779 	/*
1780 	 * For suspend, check blk_queue_stopped() and increment
1781 	 * ->pending within a single queue_lock not to increment the
1782 	 * number of in-flight I/Os after the queue is stopped in
1783 	 * dm_suspend().
1784 	 */
1785 	while (!blk_queue_stopped(q)) {
1786 		rq = blk_peek_request(q);
1787 		if (!rq)
1788 			goto delay_and_out;
1789 
1790 		/* always use block 0 to find the target for flushes for now */
1791 		pos = 0;
1792 		if (!(rq->cmd_flags & REQ_FLUSH))
1793 			pos = blk_rq_pos(rq);
1794 
1795 		ti = dm_table_find_target(map, pos);
1796 		if (!dm_target_is_valid(ti)) {
1797 			/*
1798 			 * Must perform setup, that dm_done() requires,
1799 			 * before calling dm_kill_unmapped_request
1800 			 */
1801 			DMERR_LIMIT("request attempted access beyond the end of device");
1802 			clone = dm_start_request(md, rq);
1803 			dm_kill_unmapped_request(clone, -EIO);
1804 			continue;
1805 		}
1806 
1807 		if (ti->type->busy && ti->type->busy(ti))
1808 			goto delay_and_out;
1809 
1810 		clone = dm_start_request(md, rq);
1811 
1812 		spin_unlock(q->queue_lock);
1813 		if (map_request(ti, clone, md))
1814 			goto requeued;
1815 
1816 		BUG_ON(!irqs_disabled());
1817 		spin_lock(q->queue_lock);
1818 	}
1819 
1820 	goto out;
1821 
1822 requeued:
1823 	BUG_ON(!irqs_disabled());
1824 	spin_lock(q->queue_lock);
1825 
1826 delay_and_out:
1827 	blk_delay_queue(q, HZ / 10);
1828 out:
1829 	dm_put_live_table(md, srcu_idx);
1830 }
1831 
1832 int dm_underlying_device_busy(struct request_queue *q)
1833 {
1834 	return blk_lld_busy(q);
1835 }
1836 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1837 
1838 static int dm_lld_busy(struct request_queue *q)
1839 {
1840 	int r;
1841 	struct mapped_device *md = q->queuedata;
1842 	struct dm_table *map = dm_get_live_table_fast(md);
1843 
1844 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1845 		r = 1;
1846 	else
1847 		r = dm_table_any_busy_target(map);
1848 
1849 	dm_put_live_table_fast(md);
1850 
1851 	return r;
1852 }
1853 
1854 static int dm_any_congested(void *congested_data, int bdi_bits)
1855 {
1856 	int r = bdi_bits;
1857 	struct mapped_device *md = congested_data;
1858 	struct dm_table *map;
1859 
1860 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1861 		map = dm_get_live_table_fast(md);
1862 		if (map) {
1863 			/*
1864 			 * Request-based dm cares about only own queue for
1865 			 * the query about congestion status of request_queue
1866 			 */
1867 			if (dm_request_based(md))
1868 				r = md->queue->backing_dev_info.state &
1869 				    bdi_bits;
1870 			else
1871 				r = dm_table_any_congested(map, bdi_bits);
1872 		}
1873 		dm_put_live_table_fast(md);
1874 	}
1875 
1876 	return r;
1877 }
1878 
1879 /*-----------------------------------------------------------------
1880  * An IDR is used to keep track of allocated minor numbers.
1881  *---------------------------------------------------------------*/
1882 static void free_minor(int minor)
1883 {
1884 	spin_lock(&_minor_lock);
1885 	idr_remove(&_minor_idr, minor);
1886 	spin_unlock(&_minor_lock);
1887 }
1888 
1889 /*
1890  * See if the device with a specific minor # is free.
1891  */
1892 static int specific_minor(int minor)
1893 {
1894 	int r;
1895 
1896 	if (minor >= (1 << MINORBITS))
1897 		return -EINVAL;
1898 
1899 	idr_preload(GFP_KERNEL);
1900 	spin_lock(&_minor_lock);
1901 
1902 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1903 
1904 	spin_unlock(&_minor_lock);
1905 	idr_preload_end();
1906 	if (r < 0)
1907 		return r == -ENOSPC ? -EBUSY : r;
1908 	return 0;
1909 }
1910 
1911 static int next_free_minor(int *minor)
1912 {
1913 	int r;
1914 
1915 	idr_preload(GFP_KERNEL);
1916 	spin_lock(&_minor_lock);
1917 
1918 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1919 
1920 	spin_unlock(&_minor_lock);
1921 	idr_preload_end();
1922 	if (r < 0)
1923 		return r;
1924 	*minor = r;
1925 	return 0;
1926 }
1927 
1928 static const struct block_device_operations dm_blk_dops;
1929 
1930 static void dm_wq_work(struct work_struct *work);
1931 
1932 static void dm_init_md_queue(struct mapped_device *md)
1933 {
1934 	/*
1935 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1936 	 * devices.  The type of this dm device has not been decided yet.
1937 	 * The type is decided at the first table loading time.
1938 	 * To prevent problematic device stacking, clear the queue flag
1939 	 * for request stacking support until then.
1940 	 *
1941 	 * This queue is new, so no concurrency on the queue_flags.
1942 	 */
1943 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1944 
1945 	md->queue->queuedata = md;
1946 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1947 	md->queue->backing_dev_info.congested_data = md;
1948 	blk_queue_make_request(md->queue, dm_request);
1949 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1950 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1951 }
1952 
1953 /*
1954  * Allocate and initialise a blank device with a given minor.
1955  */
1956 static struct mapped_device *alloc_dev(int minor)
1957 {
1958 	int r;
1959 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1960 	void *old_md;
1961 
1962 	if (!md) {
1963 		DMWARN("unable to allocate device, out of memory.");
1964 		return NULL;
1965 	}
1966 
1967 	if (!try_module_get(THIS_MODULE))
1968 		goto bad_module_get;
1969 
1970 	/* get a minor number for the dev */
1971 	if (minor == DM_ANY_MINOR)
1972 		r = next_free_minor(&minor);
1973 	else
1974 		r = specific_minor(minor);
1975 	if (r < 0)
1976 		goto bad_minor;
1977 
1978 	r = init_srcu_struct(&md->io_barrier);
1979 	if (r < 0)
1980 		goto bad_io_barrier;
1981 
1982 	md->type = DM_TYPE_NONE;
1983 	mutex_init(&md->suspend_lock);
1984 	mutex_init(&md->type_lock);
1985 	spin_lock_init(&md->deferred_lock);
1986 	atomic_set(&md->holders, 1);
1987 	atomic_set(&md->open_count, 0);
1988 	atomic_set(&md->event_nr, 0);
1989 	atomic_set(&md->uevent_seq, 0);
1990 	INIT_LIST_HEAD(&md->uevent_list);
1991 	spin_lock_init(&md->uevent_lock);
1992 
1993 	md->queue = blk_alloc_queue(GFP_KERNEL);
1994 	if (!md->queue)
1995 		goto bad_queue;
1996 
1997 	dm_init_md_queue(md);
1998 
1999 	md->disk = alloc_disk(1);
2000 	if (!md->disk)
2001 		goto bad_disk;
2002 
2003 	atomic_set(&md->pending[0], 0);
2004 	atomic_set(&md->pending[1], 0);
2005 	init_waitqueue_head(&md->wait);
2006 	INIT_WORK(&md->work, dm_wq_work);
2007 	init_waitqueue_head(&md->eventq);
2008 
2009 	md->disk->major = _major;
2010 	md->disk->first_minor = minor;
2011 	md->disk->fops = &dm_blk_dops;
2012 	md->disk->queue = md->queue;
2013 	md->disk->private_data = md;
2014 	sprintf(md->disk->disk_name, "dm-%d", minor);
2015 	add_disk(md->disk);
2016 	format_dev_t(md->name, MKDEV(_major, minor));
2017 
2018 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2019 	if (!md->wq)
2020 		goto bad_thread;
2021 
2022 	md->bdev = bdget_disk(md->disk, 0);
2023 	if (!md->bdev)
2024 		goto bad_bdev;
2025 
2026 	bio_init(&md->flush_bio);
2027 	md->flush_bio.bi_bdev = md->bdev;
2028 	md->flush_bio.bi_rw = WRITE_FLUSH;
2029 
2030 	dm_stats_init(&md->stats);
2031 
2032 	/* Populate the mapping, nobody knows we exist yet */
2033 	spin_lock(&_minor_lock);
2034 	old_md = idr_replace(&_minor_idr, md, minor);
2035 	spin_unlock(&_minor_lock);
2036 
2037 	BUG_ON(old_md != MINOR_ALLOCED);
2038 
2039 	return md;
2040 
2041 bad_bdev:
2042 	destroy_workqueue(md->wq);
2043 bad_thread:
2044 	del_gendisk(md->disk);
2045 	put_disk(md->disk);
2046 bad_disk:
2047 	blk_cleanup_queue(md->queue);
2048 bad_queue:
2049 	cleanup_srcu_struct(&md->io_barrier);
2050 bad_io_barrier:
2051 	free_minor(minor);
2052 bad_minor:
2053 	module_put(THIS_MODULE);
2054 bad_module_get:
2055 	kfree(md);
2056 	return NULL;
2057 }
2058 
2059 static void unlock_fs(struct mapped_device *md);
2060 
2061 static void free_dev(struct mapped_device *md)
2062 {
2063 	int minor = MINOR(disk_devt(md->disk));
2064 
2065 	unlock_fs(md);
2066 	bdput(md->bdev);
2067 	destroy_workqueue(md->wq);
2068 	if (md->io_pool)
2069 		mempool_destroy(md->io_pool);
2070 	if (md->bs)
2071 		bioset_free(md->bs);
2072 	blk_integrity_unregister(md->disk);
2073 	del_gendisk(md->disk);
2074 	cleanup_srcu_struct(&md->io_barrier);
2075 	free_minor(minor);
2076 
2077 	spin_lock(&_minor_lock);
2078 	md->disk->private_data = NULL;
2079 	spin_unlock(&_minor_lock);
2080 
2081 	put_disk(md->disk);
2082 	blk_cleanup_queue(md->queue);
2083 	dm_stats_cleanup(&md->stats);
2084 	module_put(THIS_MODULE);
2085 	kfree(md);
2086 }
2087 
2088 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2089 {
2090 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2091 
2092 	if (md->io_pool && md->bs) {
2093 		/* The md already has necessary mempools. */
2094 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2095 			/*
2096 			 * Reload bioset because front_pad may have changed
2097 			 * because a different table was loaded.
2098 			 */
2099 			bioset_free(md->bs);
2100 			md->bs = p->bs;
2101 			p->bs = NULL;
2102 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2103 			/*
2104 			 * There's no need to reload with request-based dm
2105 			 * because the size of front_pad doesn't change.
2106 			 * Note for future: If you are to reload bioset,
2107 			 * prep-ed requests in the queue may refer
2108 			 * to bio from the old bioset, so you must walk
2109 			 * through the queue to unprep.
2110 			 */
2111 		}
2112 		goto out;
2113 	}
2114 
2115 	BUG_ON(!p || md->io_pool || md->bs);
2116 
2117 	md->io_pool = p->io_pool;
2118 	p->io_pool = NULL;
2119 	md->bs = p->bs;
2120 	p->bs = NULL;
2121 
2122 out:
2123 	/* mempool bind completed, now no need any mempools in the table */
2124 	dm_table_free_md_mempools(t);
2125 }
2126 
2127 /*
2128  * Bind a table to the device.
2129  */
2130 static void event_callback(void *context)
2131 {
2132 	unsigned long flags;
2133 	LIST_HEAD(uevents);
2134 	struct mapped_device *md = (struct mapped_device *) context;
2135 
2136 	spin_lock_irqsave(&md->uevent_lock, flags);
2137 	list_splice_init(&md->uevent_list, &uevents);
2138 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2139 
2140 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2141 
2142 	atomic_inc(&md->event_nr);
2143 	wake_up(&md->eventq);
2144 }
2145 
2146 /*
2147  * Protected by md->suspend_lock obtained by dm_swap_table().
2148  */
2149 static void __set_size(struct mapped_device *md, sector_t size)
2150 {
2151 	set_capacity(md->disk, size);
2152 
2153 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2154 }
2155 
2156 /*
2157  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2158  *
2159  * If this function returns 0, then the device is either a non-dm
2160  * device without a merge_bvec_fn, or it is a dm device that is
2161  * able to split any bios it receives that are too big.
2162  */
2163 int dm_queue_merge_is_compulsory(struct request_queue *q)
2164 {
2165 	struct mapped_device *dev_md;
2166 
2167 	if (!q->merge_bvec_fn)
2168 		return 0;
2169 
2170 	if (q->make_request_fn == dm_request) {
2171 		dev_md = q->queuedata;
2172 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2173 			return 0;
2174 	}
2175 
2176 	return 1;
2177 }
2178 
2179 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2180 					 struct dm_dev *dev, sector_t start,
2181 					 sector_t len, void *data)
2182 {
2183 	struct block_device *bdev = dev->bdev;
2184 	struct request_queue *q = bdev_get_queue(bdev);
2185 
2186 	return dm_queue_merge_is_compulsory(q);
2187 }
2188 
2189 /*
2190  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2191  * on the properties of the underlying devices.
2192  */
2193 static int dm_table_merge_is_optional(struct dm_table *table)
2194 {
2195 	unsigned i = 0;
2196 	struct dm_target *ti;
2197 
2198 	while (i < dm_table_get_num_targets(table)) {
2199 		ti = dm_table_get_target(table, i++);
2200 
2201 		if (ti->type->iterate_devices &&
2202 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2203 			return 0;
2204 	}
2205 
2206 	return 1;
2207 }
2208 
2209 /*
2210  * Returns old map, which caller must destroy.
2211  */
2212 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213 			       struct queue_limits *limits)
2214 {
2215 	struct dm_table *old_map;
2216 	struct request_queue *q = md->queue;
2217 	sector_t size;
2218 	int merge_is_optional;
2219 
2220 	size = dm_table_get_size(t);
2221 
2222 	/*
2223 	 * Wipe any geometry if the size of the table changed.
2224 	 */
2225 	if (size != dm_get_size(md))
2226 		memset(&md->geometry, 0, sizeof(md->geometry));
2227 
2228 	__set_size(md, size);
2229 
2230 	dm_table_event_callback(t, event_callback, md);
2231 
2232 	/*
2233 	 * The queue hasn't been stopped yet, if the old table type wasn't
2234 	 * for request-based during suspension.  So stop it to prevent
2235 	 * I/O mapping before resume.
2236 	 * This must be done before setting the queue restrictions,
2237 	 * because request-based dm may be run just after the setting.
2238 	 */
2239 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2240 		stop_queue(q);
2241 
2242 	__bind_mempools(md, t);
2243 
2244 	merge_is_optional = dm_table_merge_is_optional(t);
2245 
2246 	old_map = md->map;
2247 	rcu_assign_pointer(md->map, t);
2248 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2249 
2250 	dm_table_set_restrictions(t, q, limits);
2251 	if (merge_is_optional)
2252 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2253 	else
2254 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2255 	dm_sync_table(md);
2256 
2257 	return old_map;
2258 }
2259 
2260 /*
2261  * Returns unbound table for the caller to free.
2262  */
2263 static struct dm_table *__unbind(struct mapped_device *md)
2264 {
2265 	struct dm_table *map = md->map;
2266 
2267 	if (!map)
2268 		return NULL;
2269 
2270 	dm_table_event_callback(map, NULL, NULL);
2271 	rcu_assign_pointer(md->map, NULL);
2272 	dm_sync_table(md);
2273 
2274 	return map;
2275 }
2276 
2277 /*
2278  * Constructor for a new device.
2279  */
2280 int dm_create(int minor, struct mapped_device **result)
2281 {
2282 	struct mapped_device *md;
2283 
2284 	md = alloc_dev(minor);
2285 	if (!md)
2286 		return -ENXIO;
2287 
2288 	dm_sysfs_init(md);
2289 
2290 	*result = md;
2291 	return 0;
2292 }
2293 
2294 /*
2295  * Functions to manage md->type.
2296  * All are required to hold md->type_lock.
2297  */
2298 void dm_lock_md_type(struct mapped_device *md)
2299 {
2300 	mutex_lock(&md->type_lock);
2301 }
2302 
2303 void dm_unlock_md_type(struct mapped_device *md)
2304 {
2305 	mutex_unlock(&md->type_lock);
2306 }
2307 
2308 void dm_set_md_type(struct mapped_device *md, unsigned type)
2309 {
2310 	BUG_ON(!mutex_is_locked(&md->type_lock));
2311 	md->type = type;
2312 }
2313 
2314 unsigned dm_get_md_type(struct mapped_device *md)
2315 {
2316 	BUG_ON(!mutex_is_locked(&md->type_lock));
2317 	return md->type;
2318 }
2319 
2320 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2321 {
2322 	return md->immutable_target_type;
2323 }
2324 
2325 /*
2326  * The queue_limits are only valid as long as you have a reference
2327  * count on 'md'.
2328  */
2329 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2330 {
2331 	BUG_ON(!atomic_read(&md->holders));
2332 	return &md->queue->limits;
2333 }
2334 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2335 
2336 /*
2337  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2338  */
2339 static int dm_init_request_based_queue(struct mapped_device *md)
2340 {
2341 	struct request_queue *q = NULL;
2342 
2343 	if (md->queue->elevator)
2344 		return 1;
2345 
2346 	/* Fully initialize the queue */
2347 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2348 	if (!q)
2349 		return 0;
2350 
2351 	md->queue = q;
2352 	dm_init_md_queue(md);
2353 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2354 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2355 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2356 
2357 	elv_register_queue(md->queue);
2358 
2359 	return 1;
2360 }
2361 
2362 /*
2363  * Setup the DM device's queue based on md's type
2364  */
2365 int dm_setup_md_queue(struct mapped_device *md)
2366 {
2367 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2368 	    !dm_init_request_based_queue(md)) {
2369 		DMWARN("Cannot initialize queue for request-based mapped device");
2370 		return -EINVAL;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 static struct mapped_device *dm_find_md(dev_t dev)
2377 {
2378 	struct mapped_device *md;
2379 	unsigned minor = MINOR(dev);
2380 
2381 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2382 		return NULL;
2383 
2384 	spin_lock(&_minor_lock);
2385 
2386 	md = idr_find(&_minor_idr, minor);
2387 	if (md && (md == MINOR_ALLOCED ||
2388 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2389 		   dm_deleting_md(md) ||
2390 		   test_bit(DMF_FREEING, &md->flags))) {
2391 		md = NULL;
2392 		goto out;
2393 	}
2394 
2395 out:
2396 	spin_unlock(&_minor_lock);
2397 
2398 	return md;
2399 }
2400 
2401 struct mapped_device *dm_get_md(dev_t dev)
2402 {
2403 	struct mapped_device *md = dm_find_md(dev);
2404 
2405 	if (md)
2406 		dm_get(md);
2407 
2408 	return md;
2409 }
2410 EXPORT_SYMBOL_GPL(dm_get_md);
2411 
2412 void *dm_get_mdptr(struct mapped_device *md)
2413 {
2414 	return md->interface_ptr;
2415 }
2416 
2417 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2418 {
2419 	md->interface_ptr = ptr;
2420 }
2421 
2422 void dm_get(struct mapped_device *md)
2423 {
2424 	atomic_inc(&md->holders);
2425 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2426 }
2427 
2428 const char *dm_device_name(struct mapped_device *md)
2429 {
2430 	return md->name;
2431 }
2432 EXPORT_SYMBOL_GPL(dm_device_name);
2433 
2434 static void __dm_destroy(struct mapped_device *md, bool wait)
2435 {
2436 	struct dm_table *map;
2437 	int srcu_idx;
2438 
2439 	might_sleep();
2440 
2441 	spin_lock(&_minor_lock);
2442 	map = dm_get_live_table(md, &srcu_idx);
2443 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2444 	set_bit(DMF_FREEING, &md->flags);
2445 	spin_unlock(&_minor_lock);
2446 
2447 	if (!dm_suspended_md(md)) {
2448 		dm_table_presuspend_targets(map);
2449 		dm_table_postsuspend_targets(map);
2450 	}
2451 
2452 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2453 	dm_put_live_table(md, srcu_idx);
2454 
2455 	/*
2456 	 * Rare, but there may be I/O requests still going to complete,
2457 	 * for example.  Wait for all references to disappear.
2458 	 * No one should increment the reference count of the mapped_device,
2459 	 * after the mapped_device state becomes DMF_FREEING.
2460 	 */
2461 	if (wait)
2462 		while (atomic_read(&md->holders))
2463 			msleep(1);
2464 	else if (atomic_read(&md->holders))
2465 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2466 		       dm_device_name(md), atomic_read(&md->holders));
2467 
2468 	dm_sysfs_exit(md);
2469 	dm_table_destroy(__unbind(md));
2470 	free_dev(md);
2471 }
2472 
2473 void dm_destroy(struct mapped_device *md)
2474 {
2475 	__dm_destroy(md, true);
2476 }
2477 
2478 void dm_destroy_immediate(struct mapped_device *md)
2479 {
2480 	__dm_destroy(md, false);
2481 }
2482 
2483 void dm_put(struct mapped_device *md)
2484 {
2485 	atomic_dec(&md->holders);
2486 }
2487 EXPORT_SYMBOL_GPL(dm_put);
2488 
2489 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2490 {
2491 	int r = 0;
2492 	DECLARE_WAITQUEUE(wait, current);
2493 
2494 	add_wait_queue(&md->wait, &wait);
2495 
2496 	while (1) {
2497 		set_current_state(interruptible);
2498 
2499 		if (!md_in_flight(md))
2500 			break;
2501 
2502 		if (interruptible == TASK_INTERRUPTIBLE &&
2503 		    signal_pending(current)) {
2504 			r = -EINTR;
2505 			break;
2506 		}
2507 
2508 		io_schedule();
2509 	}
2510 	set_current_state(TASK_RUNNING);
2511 
2512 	remove_wait_queue(&md->wait, &wait);
2513 
2514 	return r;
2515 }
2516 
2517 /*
2518  * Process the deferred bios
2519  */
2520 static void dm_wq_work(struct work_struct *work)
2521 {
2522 	struct mapped_device *md = container_of(work, struct mapped_device,
2523 						work);
2524 	struct bio *c;
2525 	int srcu_idx;
2526 	struct dm_table *map;
2527 
2528 	map = dm_get_live_table(md, &srcu_idx);
2529 
2530 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2531 		spin_lock_irq(&md->deferred_lock);
2532 		c = bio_list_pop(&md->deferred);
2533 		spin_unlock_irq(&md->deferred_lock);
2534 
2535 		if (!c)
2536 			break;
2537 
2538 		if (dm_request_based(md))
2539 			generic_make_request(c);
2540 		else
2541 			__split_and_process_bio(md, map, c);
2542 	}
2543 
2544 	dm_put_live_table(md, srcu_idx);
2545 }
2546 
2547 static void dm_queue_flush(struct mapped_device *md)
2548 {
2549 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2550 	smp_mb__after_clear_bit();
2551 	queue_work(md->wq, &md->work);
2552 }
2553 
2554 /*
2555  * Swap in a new table, returning the old one for the caller to destroy.
2556  */
2557 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2558 {
2559 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2560 	struct queue_limits limits;
2561 	int r;
2562 
2563 	mutex_lock(&md->suspend_lock);
2564 
2565 	/* device must be suspended */
2566 	if (!dm_suspended_md(md))
2567 		goto out;
2568 
2569 	/*
2570 	 * If the new table has no data devices, retain the existing limits.
2571 	 * This helps multipath with queue_if_no_path if all paths disappear,
2572 	 * then new I/O is queued based on these limits, and then some paths
2573 	 * reappear.
2574 	 */
2575 	if (dm_table_has_no_data_devices(table)) {
2576 		live_map = dm_get_live_table_fast(md);
2577 		if (live_map)
2578 			limits = md->queue->limits;
2579 		dm_put_live_table_fast(md);
2580 	}
2581 
2582 	if (!live_map) {
2583 		r = dm_calculate_queue_limits(table, &limits);
2584 		if (r) {
2585 			map = ERR_PTR(r);
2586 			goto out;
2587 		}
2588 	}
2589 
2590 	map = __bind(md, table, &limits);
2591 
2592 out:
2593 	mutex_unlock(&md->suspend_lock);
2594 	return map;
2595 }
2596 
2597 /*
2598  * Functions to lock and unlock any filesystem running on the
2599  * device.
2600  */
2601 static int lock_fs(struct mapped_device *md)
2602 {
2603 	int r;
2604 
2605 	WARN_ON(md->frozen_sb);
2606 
2607 	md->frozen_sb = freeze_bdev(md->bdev);
2608 	if (IS_ERR(md->frozen_sb)) {
2609 		r = PTR_ERR(md->frozen_sb);
2610 		md->frozen_sb = NULL;
2611 		return r;
2612 	}
2613 
2614 	set_bit(DMF_FROZEN, &md->flags);
2615 
2616 	return 0;
2617 }
2618 
2619 static void unlock_fs(struct mapped_device *md)
2620 {
2621 	if (!test_bit(DMF_FROZEN, &md->flags))
2622 		return;
2623 
2624 	thaw_bdev(md->bdev, md->frozen_sb);
2625 	md->frozen_sb = NULL;
2626 	clear_bit(DMF_FROZEN, &md->flags);
2627 }
2628 
2629 /*
2630  * We need to be able to change a mapping table under a mounted
2631  * filesystem.  For example we might want to move some data in
2632  * the background.  Before the table can be swapped with
2633  * dm_bind_table, dm_suspend must be called to flush any in
2634  * flight bios and ensure that any further io gets deferred.
2635  */
2636 /*
2637  * Suspend mechanism in request-based dm.
2638  *
2639  * 1. Flush all I/Os by lock_fs() if needed.
2640  * 2. Stop dispatching any I/O by stopping the request_queue.
2641  * 3. Wait for all in-flight I/Os to be completed or requeued.
2642  *
2643  * To abort suspend, start the request_queue.
2644  */
2645 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2646 {
2647 	struct dm_table *map = NULL;
2648 	int r = 0;
2649 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2650 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2651 
2652 	mutex_lock(&md->suspend_lock);
2653 
2654 	if (dm_suspended_md(md)) {
2655 		r = -EINVAL;
2656 		goto out_unlock;
2657 	}
2658 
2659 	map = md->map;
2660 
2661 	/*
2662 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2663 	 * This flag is cleared before dm_suspend returns.
2664 	 */
2665 	if (noflush)
2666 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2667 
2668 	/* This does not get reverted if there's an error later. */
2669 	dm_table_presuspend_targets(map);
2670 
2671 	/*
2672 	 * Flush I/O to the device.
2673 	 * Any I/O submitted after lock_fs() may not be flushed.
2674 	 * noflush takes precedence over do_lockfs.
2675 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2676 	 */
2677 	if (!noflush && do_lockfs) {
2678 		r = lock_fs(md);
2679 		if (r)
2680 			goto out_unlock;
2681 	}
2682 
2683 	/*
2684 	 * Here we must make sure that no processes are submitting requests
2685 	 * to target drivers i.e. no one may be executing
2686 	 * __split_and_process_bio. This is called from dm_request and
2687 	 * dm_wq_work.
2688 	 *
2689 	 * To get all processes out of __split_and_process_bio in dm_request,
2690 	 * we take the write lock. To prevent any process from reentering
2691 	 * __split_and_process_bio from dm_request and quiesce the thread
2692 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2693 	 * flush_workqueue(md->wq).
2694 	 */
2695 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2696 	synchronize_srcu(&md->io_barrier);
2697 
2698 	/*
2699 	 * Stop md->queue before flushing md->wq in case request-based
2700 	 * dm defers requests to md->wq from md->queue.
2701 	 */
2702 	if (dm_request_based(md))
2703 		stop_queue(md->queue);
2704 
2705 	flush_workqueue(md->wq);
2706 
2707 	/*
2708 	 * At this point no more requests are entering target request routines.
2709 	 * We call dm_wait_for_completion to wait for all existing requests
2710 	 * to finish.
2711 	 */
2712 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2713 
2714 	if (noflush)
2715 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2716 	synchronize_srcu(&md->io_barrier);
2717 
2718 	/* were we interrupted ? */
2719 	if (r < 0) {
2720 		dm_queue_flush(md);
2721 
2722 		if (dm_request_based(md))
2723 			start_queue(md->queue);
2724 
2725 		unlock_fs(md);
2726 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2727 	}
2728 
2729 	/*
2730 	 * If dm_wait_for_completion returned 0, the device is completely
2731 	 * quiescent now. There is no request-processing activity. All new
2732 	 * requests are being added to md->deferred list.
2733 	 */
2734 
2735 	set_bit(DMF_SUSPENDED, &md->flags);
2736 
2737 	dm_table_postsuspend_targets(map);
2738 
2739 out_unlock:
2740 	mutex_unlock(&md->suspend_lock);
2741 	return r;
2742 }
2743 
2744 int dm_resume(struct mapped_device *md)
2745 {
2746 	int r = -EINVAL;
2747 	struct dm_table *map = NULL;
2748 
2749 	mutex_lock(&md->suspend_lock);
2750 	if (!dm_suspended_md(md))
2751 		goto out;
2752 
2753 	map = md->map;
2754 	if (!map || !dm_table_get_size(map))
2755 		goto out;
2756 
2757 	r = dm_table_resume_targets(map);
2758 	if (r)
2759 		goto out;
2760 
2761 	dm_queue_flush(md);
2762 
2763 	/*
2764 	 * Flushing deferred I/Os must be done after targets are resumed
2765 	 * so that mapping of targets can work correctly.
2766 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2767 	 */
2768 	if (dm_request_based(md))
2769 		start_queue(md->queue);
2770 
2771 	unlock_fs(md);
2772 
2773 	clear_bit(DMF_SUSPENDED, &md->flags);
2774 
2775 	r = 0;
2776 out:
2777 	mutex_unlock(&md->suspend_lock);
2778 
2779 	return r;
2780 }
2781 
2782 /*
2783  * Internal suspend/resume works like userspace-driven suspend. It waits
2784  * until all bios finish and prevents issuing new bios to the target drivers.
2785  * It may be used only from the kernel.
2786  *
2787  * Internal suspend holds md->suspend_lock, which prevents interaction with
2788  * userspace-driven suspend.
2789  */
2790 
2791 void dm_internal_suspend(struct mapped_device *md)
2792 {
2793 	mutex_lock(&md->suspend_lock);
2794 	if (dm_suspended_md(md))
2795 		return;
2796 
2797 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2798 	synchronize_srcu(&md->io_barrier);
2799 	flush_workqueue(md->wq);
2800 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2801 }
2802 
2803 void dm_internal_resume(struct mapped_device *md)
2804 {
2805 	if (dm_suspended_md(md))
2806 		goto done;
2807 
2808 	dm_queue_flush(md);
2809 
2810 done:
2811 	mutex_unlock(&md->suspend_lock);
2812 }
2813 
2814 /*-----------------------------------------------------------------
2815  * Event notification.
2816  *---------------------------------------------------------------*/
2817 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2818 		       unsigned cookie)
2819 {
2820 	char udev_cookie[DM_COOKIE_LENGTH];
2821 	char *envp[] = { udev_cookie, NULL };
2822 
2823 	if (!cookie)
2824 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2825 	else {
2826 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2827 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2828 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2829 					  action, envp);
2830 	}
2831 }
2832 
2833 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2834 {
2835 	return atomic_add_return(1, &md->uevent_seq);
2836 }
2837 
2838 uint32_t dm_get_event_nr(struct mapped_device *md)
2839 {
2840 	return atomic_read(&md->event_nr);
2841 }
2842 
2843 int dm_wait_event(struct mapped_device *md, int event_nr)
2844 {
2845 	return wait_event_interruptible(md->eventq,
2846 			(event_nr != atomic_read(&md->event_nr)));
2847 }
2848 
2849 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2850 {
2851 	unsigned long flags;
2852 
2853 	spin_lock_irqsave(&md->uevent_lock, flags);
2854 	list_add(elist, &md->uevent_list);
2855 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2856 }
2857 
2858 /*
2859  * The gendisk is only valid as long as you have a reference
2860  * count on 'md'.
2861  */
2862 struct gendisk *dm_disk(struct mapped_device *md)
2863 {
2864 	return md->disk;
2865 }
2866 
2867 struct kobject *dm_kobject(struct mapped_device *md)
2868 {
2869 	return &md->kobj;
2870 }
2871 
2872 /*
2873  * struct mapped_device should not be exported outside of dm.c
2874  * so use this check to verify that kobj is part of md structure
2875  */
2876 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2877 {
2878 	struct mapped_device *md;
2879 
2880 	md = container_of(kobj, struct mapped_device, kobj);
2881 	if (&md->kobj != kobj)
2882 		return NULL;
2883 
2884 	if (test_bit(DMF_FREEING, &md->flags) ||
2885 	    dm_deleting_md(md))
2886 		return NULL;
2887 
2888 	dm_get(md);
2889 	return md;
2890 }
2891 
2892 int dm_suspended_md(struct mapped_device *md)
2893 {
2894 	return test_bit(DMF_SUSPENDED, &md->flags);
2895 }
2896 
2897 int dm_suspended(struct dm_target *ti)
2898 {
2899 	return dm_suspended_md(dm_table_get_md(ti->table));
2900 }
2901 EXPORT_SYMBOL_GPL(dm_suspended);
2902 
2903 int dm_noflush_suspending(struct dm_target *ti)
2904 {
2905 	return __noflush_suspending(dm_table_get_md(ti->table));
2906 }
2907 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2908 
2909 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2910 {
2911 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2912 	struct kmem_cache *cachep;
2913 	unsigned int pool_size;
2914 	unsigned int front_pad;
2915 
2916 	if (!pools)
2917 		return NULL;
2918 
2919 	if (type == DM_TYPE_BIO_BASED) {
2920 		cachep = _io_cache;
2921 		pool_size = dm_get_reserved_bio_based_ios();
2922 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2923 	} else if (type == DM_TYPE_REQUEST_BASED) {
2924 		cachep = _rq_tio_cache;
2925 		pool_size = dm_get_reserved_rq_based_ios();
2926 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2927 		/* per_bio_data_size is not used. See __bind_mempools(). */
2928 		WARN_ON(per_bio_data_size != 0);
2929 	} else
2930 		goto out;
2931 
2932 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2933 	if (!pools->io_pool)
2934 		goto out;
2935 
2936 	pools->bs = bioset_create(pool_size, front_pad);
2937 	if (!pools->bs)
2938 		goto out;
2939 
2940 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2941 		goto out;
2942 
2943 	return pools;
2944 
2945 out:
2946 	dm_free_md_mempools(pools);
2947 
2948 	return NULL;
2949 }
2950 
2951 void dm_free_md_mempools(struct dm_md_mempools *pools)
2952 {
2953 	if (!pools)
2954 		return;
2955 
2956 	if (pools->io_pool)
2957 		mempool_destroy(pools->io_pool);
2958 
2959 	if (pools->bs)
2960 		bioset_free(pools->bs);
2961 
2962 	kfree(pools);
2963 }
2964 
2965 static const struct block_device_operations dm_blk_dops = {
2966 	.open = dm_blk_open,
2967 	.release = dm_blk_close,
2968 	.ioctl = dm_blk_ioctl,
2969 	.getgeo = dm_blk_getgeo,
2970 	.owner = THIS_MODULE
2971 };
2972 
2973 EXPORT_SYMBOL(dm_get_mapinfo);
2974 
2975 /*
2976  * module hooks
2977  */
2978 module_init(dm_init);
2979 module_exit(dm_exit);
2980 
2981 module_param(major, uint, 0);
2982 MODULE_PARM_DESC(major, "The major number of the device mapper");
2983 
2984 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2985 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2986 
2987 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2988 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2989 
2990 MODULE_DESCRIPTION(DM_NAME " driver");
2991 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2992 MODULE_LICENSE("GPL");
2993