xref: /openbmc/linux/drivers/md/dm.c (revision 07560151)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 sector_t dm_get_size(struct mapped_device *md)
426 {
427 	return get_capacity(md->disk);
428 }
429 
430 struct request_queue *dm_get_md_queue(struct mapped_device *md)
431 {
432 	return md->queue;
433 }
434 
435 struct dm_stats *dm_get_stats(struct mapped_device *md)
436 {
437 	return &md->stats;
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map)
495 		return -EIO;
496 
497 	do {
498 		struct dm_target *tgt;
499 
500 		tgt = dm_table_find_target(map, args.next_sector);
501 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
502 			ret = -EIO;
503 			goto out;
504 		}
505 
506 		args.tgt = tgt;
507 		ret = tgt->type->report_zones(tgt, &args,
508 					      nr_zones - args.zone_idx);
509 		if (ret < 0)
510 			goto out;
511 	} while (args.zone_idx < nr_zones &&
512 		 args.next_sector < get_capacity(disk));
513 
514 	ret = args.zone_idx;
515 out:
516 	dm_put_live_table(md, srcu_idx);
517 	return ret;
518 }
519 #else
520 #define dm_blk_report_zones		NULL
521 #endif /* CONFIG_BLK_DEV_ZONED */
522 
523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
524 			    struct block_device **bdev)
525 	__acquires(md->io_barrier)
526 {
527 	struct dm_target *tgt;
528 	struct dm_table *map;
529 	int r;
530 
531 retry:
532 	r = -ENOTTY;
533 	map = dm_get_live_table(md, srcu_idx);
534 	if (!map || !dm_table_get_size(map))
535 		return r;
536 
537 	/* We only support devices that have a single target */
538 	if (dm_table_get_num_targets(map) != 1)
539 		return r;
540 
541 	tgt = dm_table_get_target(map, 0);
542 	if (!tgt->type->prepare_ioctl)
543 		return r;
544 
545 	if (dm_suspended_md(md))
546 		return -EAGAIN;
547 
548 	r = tgt->type->prepare_ioctl(tgt, bdev);
549 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
550 		dm_put_live_table(md, *srcu_idx);
551 		msleep(10);
552 		goto retry;
553 	}
554 
555 	return r;
556 }
557 
558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
559 	__releases(md->io_barrier)
560 {
561 	dm_put_live_table(md, srcu_idx);
562 }
563 
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 			unsigned int cmd, unsigned long arg)
566 {
567 	struct mapped_device *md = bdev->bd_disk->private_data;
568 	int r, srcu_idx;
569 
570 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 	if (r < 0)
572 		goto out;
573 
574 	if (r > 0) {
575 		/*
576 		 * Target determined this ioctl is being issued against a
577 		 * subset of the parent bdev; require extra privileges.
578 		 */
579 		if (!capable(CAP_SYS_RAWIO)) {
580 			DMWARN_LIMIT(
581 	"%s: sending ioctl %x to DM device without required privilege.",
582 				current->comm, cmd);
583 			r = -ENOIOCTLCMD;
584 			goto out;
585 		}
586 	}
587 
588 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
589 out:
590 	dm_unprepare_ioctl(md, srcu_idx);
591 	return r;
592 }
593 
594 static void start_io_acct(struct dm_io *io);
595 
596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
597 {
598 	struct dm_io *io;
599 	struct dm_target_io *tio;
600 	struct bio *clone;
601 
602 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
603 	if (!clone)
604 		return NULL;
605 
606 	tio = container_of(clone, struct dm_target_io, clone);
607 	tio->inside_dm_io = true;
608 	tio->io = NULL;
609 
610 	io = container_of(tio, struct dm_io, tio);
611 	io->magic = DM_IO_MAGIC;
612 	io->status = 0;
613 	atomic_set(&io->io_count, 1);
614 	io->orig_bio = bio;
615 	io->md = md;
616 	spin_lock_init(&io->endio_lock);
617 
618 	start_io_acct(io);
619 
620 	return io;
621 }
622 
623 static void free_io(struct mapped_device *md, struct dm_io *io)
624 {
625 	bio_put(&io->tio.clone);
626 }
627 
628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
629 				      unsigned target_bio_nr, gfp_t gfp_mask)
630 {
631 	struct dm_target_io *tio;
632 
633 	if (!ci->io->tio.io) {
634 		/* the dm_target_io embedded in ci->io is available */
635 		tio = &ci->io->tio;
636 	} else {
637 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
638 		if (!clone)
639 			return NULL;
640 
641 		tio = container_of(clone, struct dm_target_io, clone);
642 		tio->inside_dm_io = false;
643 	}
644 
645 	tio->magic = DM_TIO_MAGIC;
646 	tio->io = ci->io;
647 	tio->ti = ti;
648 	tio->target_bio_nr = target_bio_nr;
649 
650 	return tio;
651 }
652 
653 static void free_tio(struct dm_target_io *tio)
654 {
655 	if (tio->inside_dm_io)
656 		return;
657 	bio_put(&tio->clone);
658 }
659 
660 u64 dm_start_time_ns_from_clone(struct bio *bio)
661 {
662 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
663 	struct dm_io *io = tio->io;
664 
665 	return jiffies_to_nsecs(io->start_time);
666 }
667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
668 
669 static void start_io_acct(struct dm_io *io)
670 {
671 	struct mapped_device *md = io->md;
672 	struct bio *bio = io->orig_bio;
673 
674 	io->start_time = bio_start_io_acct(bio);
675 	if (unlikely(dm_stats_used(&md->stats)))
676 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
677 				    bio->bi_iter.bi_sector, bio_sectors(bio),
678 				    false, 0, &io->stats_aux);
679 }
680 
681 static void end_io_acct(struct dm_io *io)
682 {
683 	struct mapped_device *md = io->md;
684 	struct bio *bio = io->orig_bio;
685 	unsigned long duration = jiffies - io->start_time;
686 
687 	bio_end_io_acct(bio, io->start_time);
688 
689 	if (unlikely(dm_stats_used(&md->stats)))
690 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
691 				    bio->bi_iter.bi_sector, bio_sectors(bio),
692 				    true, duration, &io->stats_aux);
693 
694 	/* nudge anyone waiting on suspend queue */
695 	if (unlikely(wq_has_sleeper(&md->wait)))
696 		wake_up(&md->wait);
697 }
698 
699 /*
700  * Add the bio to the list of deferred io.
701  */
702 static void queue_io(struct mapped_device *md, struct bio *bio)
703 {
704 	unsigned long flags;
705 
706 	spin_lock_irqsave(&md->deferred_lock, flags);
707 	bio_list_add(&md->deferred, bio);
708 	spin_unlock_irqrestore(&md->deferred_lock, flags);
709 	queue_work(md->wq, &md->work);
710 }
711 
712 /*
713  * Everyone (including functions in this file), should use this
714  * function to access the md->map field, and make sure they call
715  * dm_put_live_table() when finished.
716  */
717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
718 {
719 	*srcu_idx = srcu_read_lock(&md->io_barrier);
720 
721 	return srcu_dereference(md->map, &md->io_barrier);
722 }
723 
724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
725 {
726 	srcu_read_unlock(&md->io_barrier, srcu_idx);
727 }
728 
729 void dm_sync_table(struct mapped_device *md)
730 {
731 	synchronize_srcu(&md->io_barrier);
732 	synchronize_rcu_expedited();
733 }
734 
735 /*
736  * A fast alternative to dm_get_live_table/dm_put_live_table.
737  * The caller must not block between these two functions.
738  */
739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
740 {
741 	rcu_read_lock();
742 	return rcu_dereference(md->map);
743 }
744 
745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
746 {
747 	rcu_read_unlock();
748 }
749 
750 static char *_dm_claim_ptr = "I belong to device-mapper";
751 
752 /*
753  * Open a table device so we can use it as a map destination.
754  */
755 static int open_table_device(struct table_device *td, dev_t dev,
756 			     struct mapped_device *md)
757 {
758 	struct block_device *bdev;
759 
760 	int r;
761 
762 	BUG_ON(td->dm_dev.bdev);
763 
764 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
765 	if (IS_ERR(bdev))
766 		return PTR_ERR(bdev);
767 
768 	r = bd_link_disk_holder(bdev, dm_disk(md));
769 	if (r) {
770 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
771 		return r;
772 	}
773 
774 	td->dm_dev.bdev = bdev;
775 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
776 	return 0;
777 }
778 
779 /*
780  * Close a table device that we've been using.
781  */
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 	if (!td->dm_dev.bdev)
785 		return;
786 
787 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
788 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
789 	put_dax(td->dm_dev.dax_dev);
790 	td->dm_dev.bdev = NULL;
791 	td->dm_dev.dax_dev = NULL;
792 }
793 
794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 					      fmode_t mode)
796 {
797 	struct table_device *td;
798 
799 	list_for_each_entry(td, l, list)
800 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 			return td;
802 
803 	return NULL;
804 }
805 
806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
807 			struct dm_dev **result)
808 {
809 	int r;
810 	struct table_device *td;
811 
812 	mutex_lock(&md->table_devices_lock);
813 	td = find_table_device(&md->table_devices, dev, mode);
814 	if (!td) {
815 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
816 		if (!td) {
817 			mutex_unlock(&md->table_devices_lock);
818 			return -ENOMEM;
819 		}
820 
821 		td->dm_dev.mode = mode;
822 		td->dm_dev.bdev = NULL;
823 
824 		if ((r = open_table_device(td, dev, md))) {
825 			mutex_unlock(&md->table_devices_lock);
826 			kfree(td);
827 			return r;
828 		}
829 
830 		format_dev_t(td->dm_dev.name, dev);
831 
832 		refcount_set(&td->count, 1);
833 		list_add(&td->list, &md->table_devices);
834 	} else {
835 		refcount_inc(&td->count);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 
839 	*result = &td->dm_dev;
840 	return 0;
841 }
842 EXPORT_SYMBOL_GPL(dm_get_table_device);
843 
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
845 {
846 	struct table_device *td = container_of(d, struct table_device, dm_dev);
847 
848 	mutex_lock(&md->table_devices_lock);
849 	if (refcount_dec_and_test(&td->count)) {
850 		close_table_device(td, md);
851 		list_del(&td->list);
852 		kfree(td);
853 	}
854 	mutex_unlock(&md->table_devices_lock);
855 }
856 EXPORT_SYMBOL(dm_put_table_device);
857 
858 static void free_table_devices(struct list_head *devices)
859 {
860 	struct list_head *tmp, *next;
861 
862 	list_for_each_safe(tmp, next, devices) {
863 		struct table_device *td = list_entry(tmp, struct table_device, list);
864 
865 		DMWARN("dm_destroy: %s still exists with %d references",
866 		       td->dm_dev.name, refcount_read(&td->count));
867 		kfree(td);
868 	}
869 }
870 
871 /*
872  * Get the geometry associated with a dm device
873  */
874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
875 {
876 	*geo = md->geometry;
877 
878 	return 0;
879 }
880 
881 /*
882  * Set the geometry of a device.
883  */
884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
885 {
886 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
887 
888 	if (geo->start > sz) {
889 		DMWARN("Start sector is beyond the geometry limits.");
890 		return -EINVAL;
891 	}
892 
893 	md->geometry = *geo;
894 
895 	return 0;
896 }
897 
898 static int __noflush_suspending(struct mapped_device *md)
899 {
900 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
901 }
902 
903 /*
904  * Decrements the number of outstanding ios that a bio has been
905  * cloned into, completing the original io if necc.
906  */
907 static void dec_pending(struct dm_io *io, blk_status_t error)
908 {
909 	unsigned long flags;
910 	blk_status_t io_error;
911 	struct bio *bio;
912 	struct mapped_device *md = io->md;
913 
914 	/* Push-back supersedes any I/O errors */
915 	if (unlikely(error)) {
916 		spin_lock_irqsave(&io->endio_lock, flags);
917 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
918 			io->status = error;
919 		spin_unlock_irqrestore(&io->endio_lock, flags);
920 	}
921 
922 	if (atomic_dec_and_test(&io->io_count)) {
923 		if (io->status == BLK_STS_DM_REQUEUE) {
924 			/*
925 			 * Target requested pushing back the I/O.
926 			 */
927 			spin_lock_irqsave(&md->deferred_lock, flags);
928 			if (__noflush_suspending(md))
929 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
930 				bio_list_add_head(&md->deferred, io->orig_bio);
931 			else
932 				/* noflush suspend was interrupted. */
933 				io->status = BLK_STS_IOERR;
934 			spin_unlock_irqrestore(&md->deferred_lock, flags);
935 		}
936 
937 		io_error = io->status;
938 		bio = io->orig_bio;
939 		end_io_acct(io);
940 		free_io(md, io);
941 
942 		if (io_error == BLK_STS_DM_REQUEUE)
943 			return;
944 
945 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
946 			/*
947 			 * Preflush done for flush with data, reissue
948 			 * without REQ_PREFLUSH.
949 			 */
950 			bio->bi_opf &= ~REQ_PREFLUSH;
951 			queue_io(md, bio);
952 		} else {
953 			/* done with normal IO or empty flush */
954 			if (io_error)
955 				bio->bi_status = io_error;
956 			bio_endio(bio);
957 		}
958 	}
959 }
960 
961 void disable_discard(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support DISCARD, disable it */
966 	limits->max_discard_sectors = 0;
967 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
968 }
969 
970 void disable_write_same(struct mapped_device *md)
971 {
972 	struct queue_limits *limits = dm_get_queue_limits(md);
973 
974 	/* device doesn't really support WRITE SAME, disable it */
975 	limits->max_write_same_sectors = 0;
976 }
977 
978 void disable_write_zeroes(struct mapped_device *md)
979 {
980 	struct queue_limits *limits = dm_get_queue_limits(md);
981 
982 	/* device doesn't really support WRITE ZEROES, disable it */
983 	limits->max_write_zeroes_sectors = 0;
984 }
985 
986 static void clone_endio(struct bio *bio)
987 {
988 	blk_status_t error = bio->bi_status;
989 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
990 	struct dm_io *io = tio->io;
991 	struct mapped_device *md = tio->io->md;
992 	dm_endio_fn endio = tio->ti->type->end_io;
993 	struct bio *orig_bio = io->orig_bio;
994 
995 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
996 		if (bio_op(bio) == REQ_OP_DISCARD &&
997 		    !bio->bi_disk->queue->limits.max_discard_sectors)
998 			disable_discard(md);
999 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001 			disable_write_same(md);
1002 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004 			disable_write_zeroes(md);
1005 	}
1006 
1007 	/*
1008 	 * For zone-append bios get offset in zone of the written
1009 	 * sector and add that to the original bio sector pos.
1010 	 */
1011 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012 		sector_t written_sector = bio->bi_iter.bi_sector;
1013 		struct request_queue *q = orig_bio->bi_disk->queue;
1014 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015 
1016 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017 	}
1018 
1019 	if (endio) {
1020 		int r = endio(tio->ti, bio, &error);
1021 		switch (r) {
1022 		case DM_ENDIO_REQUEUE:
1023 			error = BLK_STS_DM_REQUEUE;
1024 			fallthrough;
1025 		case DM_ENDIO_DONE:
1026 			break;
1027 		case DM_ENDIO_INCOMPLETE:
1028 			/* The target will handle the io */
1029 			return;
1030 		default:
1031 			DMWARN("unimplemented target endio return value: %d", r);
1032 			BUG();
1033 		}
1034 	}
1035 
1036 	free_tio(tio);
1037 	dec_pending(io, error);
1038 }
1039 
1040 /*
1041  * Return maximum size of I/O possible at the supplied sector up to the current
1042  * target boundary.
1043  */
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045 {
1046 	sector_t target_offset = dm_target_offset(ti, sector);
1047 
1048 	return ti->len - target_offset;
1049 }
1050 
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052 {
1053 	sector_t len = max_io_len_target_boundary(sector, ti);
1054 	sector_t offset, max_len;
1055 
1056 	/*
1057 	 * Does the target need to split even further?
1058 	 */
1059 	if (ti->max_io_len) {
1060 		offset = dm_target_offset(ti, sector);
1061 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 			max_len = sector_div(offset, ti->max_io_len);
1063 		else
1064 			max_len = offset & (ti->max_io_len - 1);
1065 		max_len = ti->max_io_len - max_len;
1066 
1067 		if (len > max_len)
1068 			len = max_len;
1069 	}
1070 
1071 	return len;
1072 }
1073 
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075 {
1076 	if (len > UINT_MAX) {
1077 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 		      (unsigned long long)len, UINT_MAX);
1079 		ti->error = "Maximum size of target IO is too large";
1080 		return -EINVAL;
1081 	}
1082 
1083 	ti->max_io_len = (uint32_t) len;
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088 
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 						sector_t sector, int *srcu_idx)
1091 	__acquires(md->io_barrier)
1092 {
1093 	struct dm_table *map;
1094 	struct dm_target *ti;
1095 
1096 	map = dm_get_live_table(md, srcu_idx);
1097 	if (!map)
1098 		return NULL;
1099 
1100 	ti = dm_table_find_target(map, sector);
1101 	if (!ti)
1102 		return NULL;
1103 
1104 	return ti;
1105 }
1106 
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 				 long nr_pages, void **kaddr, pfn_t *pfn)
1109 {
1110 	struct mapped_device *md = dax_get_private(dax_dev);
1111 	sector_t sector = pgoff * PAGE_SECTORS;
1112 	struct dm_target *ti;
1113 	long len, ret = -EIO;
1114 	int srcu_idx;
1115 
1116 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117 
1118 	if (!ti)
1119 		goto out;
1120 	if (!ti->type->direct_access)
1121 		goto out;
1122 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123 	if (len < 1)
1124 		goto out;
1125 	nr_pages = min(len, nr_pages);
1126 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127 
1128  out:
1129 	dm_put_live_table(md, srcu_idx);
1130 
1131 	return ret;
1132 }
1133 
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 		int blocksize, sector_t start, sector_t len)
1136 {
1137 	struct mapped_device *md = dax_get_private(dax_dev);
1138 	struct dm_table *map;
1139 	int srcu_idx;
1140 	bool ret;
1141 
1142 	map = dm_get_live_table(md, &srcu_idx);
1143 	if (!map)
1144 		return false;
1145 
1146 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147 
1148 	dm_put_live_table(md, srcu_idx);
1149 
1150 	return ret;
1151 }
1152 
1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 				    void *addr, size_t bytes, struct iov_iter *i)
1155 {
1156 	struct mapped_device *md = dax_get_private(dax_dev);
1157 	sector_t sector = pgoff * PAGE_SECTORS;
1158 	struct dm_target *ti;
1159 	long ret = 0;
1160 	int srcu_idx;
1161 
1162 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1163 
1164 	if (!ti)
1165 		goto out;
1166 	if (!ti->type->dax_copy_from_iter) {
1167 		ret = copy_from_iter(addr, bytes, i);
1168 		goto out;
1169 	}
1170 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1171  out:
1172 	dm_put_live_table(md, srcu_idx);
1173 
1174 	return ret;
1175 }
1176 
1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1178 		void *addr, size_t bytes, struct iov_iter *i)
1179 {
1180 	struct mapped_device *md = dax_get_private(dax_dev);
1181 	sector_t sector = pgoff * PAGE_SECTORS;
1182 	struct dm_target *ti;
1183 	long ret = 0;
1184 	int srcu_idx;
1185 
1186 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1187 
1188 	if (!ti)
1189 		goto out;
1190 	if (!ti->type->dax_copy_to_iter) {
1191 		ret = copy_to_iter(addr, bytes, i);
1192 		goto out;
1193 	}
1194 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1195  out:
1196 	dm_put_live_table(md, srcu_idx);
1197 
1198 	return ret;
1199 }
1200 
1201 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1202 				  size_t nr_pages)
1203 {
1204 	struct mapped_device *md = dax_get_private(dax_dev);
1205 	sector_t sector = pgoff * PAGE_SECTORS;
1206 	struct dm_target *ti;
1207 	int ret = -EIO;
1208 	int srcu_idx;
1209 
1210 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1211 
1212 	if (!ti)
1213 		goto out;
1214 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1215 		/*
1216 		 * ->zero_page_range() is mandatory dax operation. If we are
1217 		 *  here, something is wrong.
1218 		 */
1219 		dm_put_live_table(md, srcu_idx);
1220 		goto out;
1221 	}
1222 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1223 
1224  out:
1225 	dm_put_live_table(md, srcu_idx);
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * A target may call dm_accept_partial_bio only from the map routine.  It is
1232  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1233  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1234  *
1235  * dm_accept_partial_bio informs the dm that the target only wants to process
1236  * additional n_sectors sectors of the bio and the rest of the data should be
1237  * sent in a next bio.
1238  *
1239  * A diagram that explains the arithmetics:
1240  * +--------------------+---------------+-------+
1241  * |         1          |       2       |   3   |
1242  * +--------------------+---------------+-------+
1243  *
1244  * <-------------- *tio->len_ptr --------------->
1245  *                      <------- bi_size ------->
1246  *                      <-- n_sectors -->
1247  *
1248  * Region 1 was already iterated over with bio_advance or similar function.
1249  *	(it may be empty if the target doesn't use bio_advance)
1250  * Region 2 is the remaining bio size that the target wants to process.
1251  *	(it may be empty if region 1 is non-empty, although there is no reason
1252  *	 to make it empty)
1253  * The target requires that region 3 is to be sent in the next bio.
1254  *
1255  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1256  * the partially processed part (the sum of regions 1+2) must be the same for all
1257  * copies of the bio.
1258  */
1259 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1260 {
1261 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1262 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1263 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1264 	BUG_ON(bi_size > *tio->len_ptr);
1265 	BUG_ON(n_sectors > bi_size);
1266 	*tio->len_ptr -= bi_size - n_sectors;
1267 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1268 }
1269 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1270 
1271 static blk_qc_t __map_bio(struct dm_target_io *tio)
1272 {
1273 	int r;
1274 	sector_t sector;
1275 	struct bio *clone = &tio->clone;
1276 	struct dm_io *io = tio->io;
1277 	struct dm_target *ti = tio->ti;
1278 	blk_qc_t ret = BLK_QC_T_NONE;
1279 
1280 	clone->bi_end_io = clone_endio;
1281 
1282 	/*
1283 	 * Map the clone.  If r == 0 we don't need to do
1284 	 * anything, the target has assumed ownership of
1285 	 * this io.
1286 	 */
1287 	atomic_inc(&io->io_count);
1288 	sector = clone->bi_iter.bi_sector;
1289 
1290 	r = ti->type->map(ti, clone);
1291 	switch (r) {
1292 	case DM_MAPIO_SUBMITTED:
1293 		break;
1294 	case DM_MAPIO_REMAPPED:
1295 		/* the bio has been remapped so dispatch it */
1296 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1297 				      bio_dev(io->orig_bio), sector);
1298 		ret = submit_bio_noacct(clone);
1299 		break;
1300 	case DM_MAPIO_KILL:
1301 		free_tio(tio);
1302 		dec_pending(io, BLK_STS_IOERR);
1303 		break;
1304 	case DM_MAPIO_REQUEUE:
1305 		free_tio(tio);
1306 		dec_pending(io, BLK_STS_DM_REQUEUE);
1307 		break;
1308 	default:
1309 		DMWARN("unimplemented target map return value: %d", r);
1310 		BUG();
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1317 {
1318 	bio->bi_iter.bi_sector = sector;
1319 	bio->bi_iter.bi_size = to_bytes(len);
1320 }
1321 
1322 /*
1323  * Creates a bio that consists of range of complete bvecs.
1324  */
1325 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1326 		     sector_t sector, unsigned len)
1327 {
1328 	struct bio *clone = &tio->clone;
1329 	int r;
1330 
1331 	__bio_clone_fast(clone, bio);
1332 
1333 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1334 	if (r < 0)
1335 		return r;
1336 
1337 	if (bio_integrity(bio)) {
1338 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339 			     !dm_target_passes_integrity(tio->ti->type))) {
1340 			DMWARN("%s: the target %s doesn't support integrity data.",
1341 				dm_device_name(tio->io->md),
1342 				tio->ti->type->name);
1343 			return -EIO;
1344 		}
1345 
1346 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347 		if (r < 0)
1348 			return r;
1349 	}
1350 
1351 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352 	clone->bi_iter.bi_size = to_bytes(len);
1353 
1354 	if (bio_integrity(bio))
1355 		bio_integrity_trim(clone);
1356 
1357 	return 0;
1358 }
1359 
1360 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361 				struct dm_target *ti, unsigned num_bios)
1362 {
1363 	struct dm_target_io *tio;
1364 	int try;
1365 
1366 	if (!num_bios)
1367 		return;
1368 
1369 	if (num_bios == 1) {
1370 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371 		bio_list_add(blist, &tio->clone);
1372 		return;
1373 	}
1374 
1375 	for (try = 0; try < 2; try++) {
1376 		int bio_nr;
1377 		struct bio *bio;
1378 
1379 		if (try)
1380 			mutex_lock(&ci->io->md->table_devices_lock);
1381 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383 			if (!tio)
1384 				break;
1385 
1386 			bio_list_add(blist, &tio->clone);
1387 		}
1388 		if (try)
1389 			mutex_unlock(&ci->io->md->table_devices_lock);
1390 		if (bio_nr == num_bios)
1391 			return;
1392 
1393 		while ((bio = bio_list_pop(blist))) {
1394 			tio = container_of(bio, struct dm_target_io, clone);
1395 			free_tio(tio);
1396 		}
1397 	}
1398 }
1399 
1400 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401 					   struct dm_target_io *tio, unsigned *len)
1402 {
1403 	struct bio *clone = &tio->clone;
1404 
1405 	tio->len_ptr = len;
1406 
1407 	__bio_clone_fast(clone, ci->bio);
1408 	if (len)
1409 		bio_setup_sector(clone, ci->sector, *len);
1410 
1411 	return __map_bio(tio);
1412 }
1413 
1414 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415 				  unsigned num_bios, unsigned *len)
1416 {
1417 	struct bio_list blist = BIO_EMPTY_LIST;
1418 	struct bio *bio;
1419 	struct dm_target_io *tio;
1420 
1421 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1422 
1423 	while ((bio = bio_list_pop(&blist))) {
1424 		tio = container_of(bio, struct dm_target_io, clone);
1425 		(void) __clone_and_map_simple_bio(ci, tio, len);
1426 	}
1427 }
1428 
1429 static int __send_empty_flush(struct clone_info *ci)
1430 {
1431 	unsigned target_nr = 0;
1432 	struct dm_target *ti;
1433 
1434 	/*
1435 	 * Empty flush uses a statically initialized bio, as the base for
1436 	 * cloning.  However, blkg association requires that a bdev is
1437 	 * associated with a gendisk, which doesn't happen until the bdev is
1438 	 * opened.  So, blkg association is done at issue time of the flush
1439 	 * rather than when the device is created in alloc_dev().
1440 	 */
1441 	bio_set_dev(ci->bio, ci->io->md->bdev);
1442 
1443 	BUG_ON(bio_has_data(ci->bio));
1444 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1446 	return 0;
1447 }
1448 
1449 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450 				    sector_t sector, unsigned *len)
1451 {
1452 	struct bio *bio = ci->bio;
1453 	struct dm_target_io *tio;
1454 	int r;
1455 
1456 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457 	tio->len_ptr = len;
1458 	r = clone_bio(tio, bio, sector, *len);
1459 	if (r < 0) {
1460 		free_tio(tio);
1461 		return r;
1462 	}
1463 	(void) __map_bio(tio);
1464 
1465 	return 0;
1466 }
1467 
1468 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1469 
1470 static unsigned get_num_discard_bios(struct dm_target *ti)
1471 {
1472 	return ti->num_discard_bios;
1473 }
1474 
1475 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1476 {
1477 	return ti->num_secure_erase_bios;
1478 }
1479 
1480 static unsigned get_num_write_same_bios(struct dm_target *ti)
1481 {
1482 	return ti->num_write_same_bios;
1483 }
1484 
1485 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486 {
1487 	return ti->num_write_zeroes_bios;
1488 }
1489 
1490 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491 				       unsigned num_bios)
1492 {
1493 	unsigned len;
1494 
1495 	/*
1496 	 * Even though the device advertised support for this type of
1497 	 * request, that does not mean every target supports it, and
1498 	 * reconfiguration might also have changed that since the
1499 	 * check was performed.
1500 	 */
1501 	if (!num_bios)
1502 		return -EOPNOTSUPP;
1503 
1504 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1505 
1506 	__send_duplicate_bios(ci, ti, num_bios, &len);
1507 
1508 	ci->sector += len;
1509 	ci->sector_count -= len;
1510 
1511 	return 0;
1512 }
1513 
1514 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1515 {
1516 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1517 }
1518 
1519 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1520 {
1521 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1522 }
1523 
1524 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525 {
1526 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527 }
1528 
1529 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530 {
1531 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1532 }
1533 
1534 static bool is_abnormal_io(struct bio *bio)
1535 {
1536 	bool r = false;
1537 
1538 	switch (bio_op(bio)) {
1539 	case REQ_OP_DISCARD:
1540 	case REQ_OP_SECURE_ERASE:
1541 	case REQ_OP_WRITE_SAME:
1542 	case REQ_OP_WRITE_ZEROES:
1543 		r = true;
1544 		break;
1545 	}
1546 
1547 	return r;
1548 }
1549 
1550 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551 				  int *result)
1552 {
1553 	struct bio *bio = ci->bio;
1554 
1555 	if (bio_op(bio) == REQ_OP_DISCARD)
1556 		*result = __send_discard(ci, ti);
1557 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558 		*result = __send_secure_erase(ci, ti);
1559 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560 		*result = __send_write_same(ci, ti);
1561 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562 		*result = __send_write_zeroes(ci, ti);
1563 	else
1564 		return false;
1565 
1566 	return true;
1567 }
1568 
1569 /*
1570  * Select the correct strategy for processing a non-flush bio.
1571  */
1572 static int __split_and_process_non_flush(struct clone_info *ci)
1573 {
1574 	struct dm_target *ti;
1575 	unsigned len;
1576 	int r;
1577 
1578 	ti = dm_table_find_target(ci->map, ci->sector);
1579 	if (!ti)
1580 		return -EIO;
1581 
1582 	if (__process_abnormal_io(ci, ti, &r))
1583 		return r;
1584 
1585 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1586 
1587 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588 	if (r < 0)
1589 		return r;
1590 
1591 	ci->sector += len;
1592 	ci->sector_count -= len;
1593 
1594 	return 0;
1595 }
1596 
1597 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598 			    struct dm_table *map, struct bio *bio)
1599 {
1600 	ci->map = map;
1601 	ci->io = alloc_io(md, bio);
1602 	ci->sector = bio->bi_iter.bi_sector;
1603 }
1604 
1605 #define __dm_part_stat_sub(part, field, subnd)	\
1606 	(part_stat_get(part, field) -= (subnd))
1607 
1608 /*
1609  * Entry point to split a bio into clones and submit them to the targets.
1610  */
1611 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612 					struct dm_table *map, struct bio *bio)
1613 {
1614 	struct clone_info ci;
1615 	blk_qc_t ret = BLK_QC_T_NONE;
1616 	int error = 0;
1617 
1618 	init_clone_info(&ci, md, map, bio);
1619 
1620 	if (bio->bi_opf & REQ_PREFLUSH) {
1621 		struct bio flush_bio;
1622 
1623 		/*
1624 		 * Use an on-stack bio for this, it's safe since we don't
1625 		 * need to reference it after submit. It's just used as
1626 		 * the basis for the clone(s).
1627 		 */
1628 		bio_init(&flush_bio, NULL, 0);
1629 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630 		ci.bio = &flush_bio;
1631 		ci.sector_count = 0;
1632 		error = __send_empty_flush(&ci);
1633 		bio_uninit(ci.bio);
1634 		/* dec_pending submits any data associated with flush */
1635 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636 		ci.bio = bio;
1637 		ci.sector_count = 0;
1638 		error = __split_and_process_non_flush(&ci);
1639 	} else {
1640 		ci.bio = bio;
1641 		ci.sector_count = bio_sectors(bio);
1642 		while (ci.sector_count && !error) {
1643 			error = __split_and_process_non_flush(&ci);
1644 			if (current->bio_list && ci.sector_count && !error) {
1645 				/*
1646 				 * Remainder must be passed to submit_bio_noacct()
1647 				 * so that it gets handled *after* bios already submitted
1648 				 * have been completely processed.
1649 				 * We take a clone of the original to store in
1650 				 * ci.io->orig_bio to be used by end_io_acct() and
1651 				 * for dec_pending to use for completion handling.
1652 				 */
1653 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654 							  GFP_NOIO, &md->queue->bio_split);
1655 				ci.io->orig_bio = b;
1656 
1657 				/*
1658 				 * Adjust IO stats for each split, otherwise upon queue
1659 				 * reentry there will be redundant IO accounting.
1660 				 * NOTE: this is a stop-gap fix, a proper fix involves
1661 				 * significant refactoring of DM core's bio splitting
1662 				 * (by eliminating DM's splitting and just using bio_split)
1663 				 */
1664 				part_stat_lock();
1665 				__dm_part_stat_sub(&dm_disk(md)->part0,
1666 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667 				part_stat_unlock();
1668 
1669 				bio_chain(b, bio);
1670 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671 				ret = submit_bio_noacct(bio);
1672 				break;
1673 			}
1674 		}
1675 	}
1676 
1677 	/* drop the extra reference count */
1678 	dec_pending(ci.io, errno_to_blk_status(error));
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Optimized variant of __split_and_process_bio that leverages the
1684  * fact that targets that use it do _not_ have a need to split bios.
1685  */
1686 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687 			      struct bio *bio, struct dm_target *ti)
1688 {
1689 	struct clone_info ci;
1690 	blk_qc_t ret = BLK_QC_T_NONE;
1691 	int error = 0;
1692 
1693 	init_clone_info(&ci, md, map, bio);
1694 
1695 	if (bio->bi_opf & REQ_PREFLUSH) {
1696 		struct bio flush_bio;
1697 
1698 		/*
1699 		 * Use an on-stack bio for this, it's safe since we don't
1700 		 * need to reference it after submit. It's just used as
1701 		 * the basis for the clone(s).
1702 		 */
1703 		bio_init(&flush_bio, NULL, 0);
1704 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705 		ci.bio = &flush_bio;
1706 		ci.sector_count = 0;
1707 		error = __send_empty_flush(&ci);
1708 		bio_uninit(ci.bio);
1709 		/* dec_pending submits any data associated with flush */
1710 	} else {
1711 		struct dm_target_io *tio;
1712 
1713 		ci.bio = bio;
1714 		ci.sector_count = bio_sectors(bio);
1715 		if (__process_abnormal_io(&ci, ti, &error))
1716 			goto out;
1717 
1718 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1720 	}
1721 out:
1722 	/* drop the extra reference count */
1723 	dec_pending(ci.io, errno_to_blk_status(error));
1724 	return ret;
1725 }
1726 
1727 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1728 {
1729 	unsigned len, sector_count;
1730 
1731 	sector_count = bio_sectors(*bio);
1732 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1733 
1734 	if (sector_count > len) {
1735 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1736 
1737 		bio_chain(split, *bio);
1738 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1739 		submit_bio_noacct(*bio);
1740 		*bio = split;
1741 	}
1742 }
1743 
1744 static blk_qc_t dm_process_bio(struct mapped_device *md,
1745 			       struct dm_table *map, struct bio *bio)
1746 {
1747 	blk_qc_t ret = BLK_QC_T_NONE;
1748 	struct dm_target *ti = md->immutable_target;
1749 
1750 	if (unlikely(!map)) {
1751 		bio_io_error(bio);
1752 		return ret;
1753 	}
1754 
1755 	if (!ti) {
1756 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1757 		if (unlikely(!ti)) {
1758 			bio_io_error(bio);
1759 			return ret;
1760 		}
1761 	}
1762 
1763 	/*
1764 	 * If in ->queue_bio we need to use blk_queue_split(), otherwise
1765 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1766 	 * won't be imposed.
1767 	 */
1768 	if (current->bio_list) {
1769 		if (is_abnormal_io(bio))
1770 			blk_queue_split(&bio);
1771 		else
1772 			dm_queue_split(md, ti, &bio);
1773 	}
1774 
1775 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1776 		return __process_bio(md, map, bio, ti);
1777 	else
1778 		return __split_and_process_bio(md, map, bio);
1779 }
1780 
1781 static blk_qc_t dm_submit_bio(struct bio *bio)
1782 {
1783 	struct mapped_device *md = bio->bi_disk->private_data;
1784 	blk_qc_t ret = BLK_QC_T_NONE;
1785 	int srcu_idx;
1786 	struct dm_table *map;
1787 
1788 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1789 		/*
1790 		 * We are called with a live reference on q_usage_counter, but
1791 		 * that one will be released as soon as we return.  Grab an
1792 		 * extra one as blk_mq_submit_bio expects to be able to consume
1793 		 * a reference (which lives until the request is freed in case a
1794 		 * request is allocated).
1795 		 */
1796 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1797 		return blk_mq_submit_bio(bio);
1798 	}
1799 
1800 	map = dm_get_live_table(md, &srcu_idx);
1801 
1802 	/* if we're suspended, we have to queue this io for later */
1803 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1804 		dm_put_live_table(md, srcu_idx);
1805 
1806 		if (bio->bi_opf & REQ_NOWAIT)
1807 			bio_wouldblock_error(bio);
1808 		else if (!(bio->bi_opf & REQ_RAHEAD))
1809 			queue_io(md, bio);
1810 		else
1811 			bio_io_error(bio);
1812 		return ret;
1813 	}
1814 
1815 	ret = dm_process_bio(md, map, bio);
1816 
1817 	dm_put_live_table(md, srcu_idx);
1818 	return ret;
1819 }
1820 
1821 /*-----------------------------------------------------------------
1822  * An IDR is used to keep track of allocated minor numbers.
1823  *---------------------------------------------------------------*/
1824 static void free_minor(int minor)
1825 {
1826 	spin_lock(&_minor_lock);
1827 	idr_remove(&_minor_idr, minor);
1828 	spin_unlock(&_minor_lock);
1829 }
1830 
1831 /*
1832  * See if the device with a specific minor # is free.
1833  */
1834 static int specific_minor(int minor)
1835 {
1836 	int r;
1837 
1838 	if (minor >= (1 << MINORBITS))
1839 		return -EINVAL;
1840 
1841 	idr_preload(GFP_KERNEL);
1842 	spin_lock(&_minor_lock);
1843 
1844 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1845 
1846 	spin_unlock(&_minor_lock);
1847 	idr_preload_end();
1848 	if (r < 0)
1849 		return r == -ENOSPC ? -EBUSY : r;
1850 	return 0;
1851 }
1852 
1853 static int next_free_minor(int *minor)
1854 {
1855 	int r;
1856 
1857 	idr_preload(GFP_KERNEL);
1858 	spin_lock(&_minor_lock);
1859 
1860 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1861 
1862 	spin_unlock(&_minor_lock);
1863 	idr_preload_end();
1864 	if (r < 0)
1865 		return r;
1866 	*minor = r;
1867 	return 0;
1868 }
1869 
1870 static const struct block_device_operations dm_blk_dops;
1871 static const struct dax_operations dm_dax_ops;
1872 
1873 static void dm_wq_work(struct work_struct *work);
1874 
1875 static void cleanup_mapped_device(struct mapped_device *md)
1876 {
1877 	if (md->wq)
1878 		destroy_workqueue(md->wq);
1879 	bioset_exit(&md->bs);
1880 	bioset_exit(&md->io_bs);
1881 
1882 	if (md->dax_dev) {
1883 		kill_dax(md->dax_dev);
1884 		put_dax(md->dax_dev);
1885 		md->dax_dev = NULL;
1886 	}
1887 
1888 	if (md->disk) {
1889 		spin_lock(&_minor_lock);
1890 		md->disk->private_data = NULL;
1891 		spin_unlock(&_minor_lock);
1892 		del_gendisk(md->disk);
1893 		put_disk(md->disk);
1894 	}
1895 
1896 	if (md->queue)
1897 		blk_cleanup_queue(md->queue);
1898 
1899 	cleanup_srcu_struct(&md->io_barrier);
1900 
1901 	if (md->bdev) {
1902 		bdput(md->bdev);
1903 		md->bdev = NULL;
1904 	}
1905 
1906 	mutex_destroy(&md->suspend_lock);
1907 	mutex_destroy(&md->type_lock);
1908 	mutex_destroy(&md->table_devices_lock);
1909 
1910 	dm_mq_cleanup_mapped_device(md);
1911 }
1912 
1913 /*
1914  * Allocate and initialise a blank device with a given minor.
1915  */
1916 static struct mapped_device *alloc_dev(int minor)
1917 {
1918 	int r, numa_node_id = dm_get_numa_node();
1919 	struct mapped_device *md;
1920 	void *old_md;
1921 
1922 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1923 	if (!md) {
1924 		DMWARN("unable to allocate device, out of memory.");
1925 		return NULL;
1926 	}
1927 
1928 	if (!try_module_get(THIS_MODULE))
1929 		goto bad_module_get;
1930 
1931 	/* get a minor number for the dev */
1932 	if (minor == DM_ANY_MINOR)
1933 		r = next_free_minor(&minor);
1934 	else
1935 		r = specific_minor(minor);
1936 	if (r < 0)
1937 		goto bad_minor;
1938 
1939 	r = init_srcu_struct(&md->io_barrier);
1940 	if (r < 0)
1941 		goto bad_io_barrier;
1942 
1943 	md->numa_node_id = numa_node_id;
1944 	md->init_tio_pdu = false;
1945 	md->type = DM_TYPE_NONE;
1946 	mutex_init(&md->suspend_lock);
1947 	mutex_init(&md->type_lock);
1948 	mutex_init(&md->table_devices_lock);
1949 	spin_lock_init(&md->deferred_lock);
1950 	atomic_set(&md->holders, 1);
1951 	atomic_set(&md->open_count, 0);
1952 	atomic_set(&md->event_nr, 0);
1953 	atomic_set(&md->uevent_seq, 0);
1954 	INIT_LIST_HEAD(&md->uevent_list);
1955 	INIT_LIST_HEAD(&md->table_devices);
1956 	spin_lock_init(&md->uevent_lock);
1957 
1958 	/*
1959 	 * default to bio-based until DM table is loaded and md->type
1960 	 * established. If request-based table is loaded: blk-mq will
1961 	 * override accordingly.
1962 	 */
1963 	md->queue = blk_alloc_queue(numa_node_id);
1964 	if (!md->queue)
1965 		goto bad;
1966 
1967 	md->disk = alloc_disk_node(1, md->numa_node_id);
1968 	if (!md->disk)
1969 		goto bad;
1970 
1971 	init_waitqueue_head(&md->wait);
1972 	INIT_WORK(&md->work, dm_wq_work);
1973 	init_waitqueue_head(&md->eventq);
1974 	init_completion(&md->kobj_holder.completion);
1975 
1976 	md->disk->major = _major;
1977 	md->disk->first_minor = minor;
1978 	md->disk->fops = &dm_blk_dops;
1979 	md->disk->queue = md->queue;
1980 	md->disk->private_data = md;
1981 	sprintf(md->disk->disk_name, "dm-%d", minor);
1982 
1983 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1984 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1985 					&dm_dax_ops, 0);
1986 		if (IS_ERR(md->dax_dev))
1987 			goto bad;
1988 	}
1989 
1990 	add_disk_no_queue_reg(md->disk);
1991 	format_dev_t(md->name, MKDEV(_major, minor));
1992 
1993 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1994 	if (!md->wq)
1995 		goto bad;
1996 
1997 	md->bdev = bdget_disk(md->disk, 0);
1998 	if (!md->bdev)
1999 		goto bad;
2000 
2001 	dm_stats_init(&md->stats);
2002 
2003 	/* Populate the mapping, nobody knows we exist yet */
2004 	spin_lock(&_minor_lock);
2005 	old_md = idr_replace(&_minor_idr, md, minor);
2006 	spin_unlock(&_minor_lock);
2007 
2008 	BUG_ON(old_md != MINOR_ALLOCED);
2009 
2010 	return md;
2011 
2012 bad:
2013 	cleanup_mapped_device(md);
2014 bad_io_barrier:
2015 	free_minor(minor);
2016 bad_minor:
2017 	module_put(THIS_MODULE);
2018 bad_module_get:
2019 	kvfree(md);
2020 	return NULL;
2021 }
2022 
2023 static void unlock_fs(struct mapped_device *md);
2024 
2025 static void free_dev(struct mapped_device *md)
2026 {
2027 	int minor = MINOR(disk_devt(md->disk));
2028 
2029 	unlock_fs(md);
2030 
2031 	cleanup_mapped_device(md);
2032 
2033 	free_table_devices(&md->table_devices);
2034 	dm_stats_cleanup(&md->stats);
2035 	free_minor(minor);
2036 
2037 	module_put(THIS_MODULE);
2038 	kvfree(md);
2039 }
2040 
2041 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2042 {
2043 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2044 	int ret = 0;
2045 
2046 	if (dm_table_bio_based(t)) {
2047 		/*
2048 		 * The md may already have mempools that need changing.
2049 		 * If so, reload bioset because front_pad may have changed
2050 		 * because a different table was loaded.
2051 		 */
2052 		bioset_exit(&md->bs);
2053 		bioset_exit(&md->io_bs);
2054 
2055 	} else if (bioset_initialized(&md->bs)) {
2056 		/*
2057 		 * There's no need to reload with request-based dm
2058 		 * because the size of front_pad doesn't change.
2059 		 * Note for future: If you are to reload bioset,
2060 		 * prep-ed requests in the queue may refer
2061 		 * to bio from the old bioset, so you must walk
2062 		 * through the queue to unprep.
2063 		 */
2064 		goto out;
2065 	}
2066 
2067 	BUG_ON(!p ||
2068 	       bioset_initialized(&md->bs) ||
2069 	       bioset_initialized(&md->io_bs));
2070 
2071 	ret = bioset_init_from_src(&md->bs, &p->bs);
2072 	if (ret)
2073 		goto out;
2074 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2075 	if (ret)
2076 		bioset_exit(&md->bs);
2077 out:
2078 	/* mempool bind completed, no longer need any mempools in the table */
2079 	dm_table_free_md_mempools(t);
2080 	return ret;
2081 }
2082 
2083 /*
2084  * Bind a table to the device.
2085  */
2086 static void event_callback(void *context)
2087 {
2088 	unsigned long flags;
2089 	LIST_HEAD(uevents);
2090 	struct mapped_device *md = (struct mapped_device *) context;
2091 
2092 	spin_lock_irqsave(&md->uevent_lock, flags);
2093 	list_splice_init(&md->uevent_list, &uevents);
2094 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2095 
2096 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2097 
2098 	atomic_inc(&md->event_nr);
2099 	wake_up(&md->eventq);
2100 	dm_issue_global_event();
2101 }
2102 
2103 /*
2104  * Returns old map, which caller must destroy.
2105  */
2106 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2107 			       struct queue_limits *limits)
2108 {
2109 	struct dm_table *old_map;
2110 	struct request_queue *q = md->queue;
2111 	bool request_based = dm_table_request_based(t);
2112 	sector_t size;
2113 	int ret;
2114 
2115 	lockdep_assert_held(&md->suspend_lock);
2116 
2117 	size = dm_table_get_size(t);
2118 
2119 	/*
2120 	 * Wipe any geometry if the size of the table changed.
2121 	 */
2122 	if (size != dm_get_size(md))
2123 		memset(&md->geometry, 0, sizeof(md->geometry));
2124 
2125 	set_capacity(md->disk, size);
2126 	bd_set_nr_sectors(md->bdev, size);
2127 
2128 	dm_table_event_callback(t, event_callback, md);
2129 
2130 	/*
2131 	 * The queue hasn't been stopped yet, if the old table type wasn't
2132 	 * for request-based during suspension.  So stop it to prevent
2133 	 * I/O mapping before resume.
2134 	 * This must be done before setting the queue restrictions,
2135 	 * because request-based dm may be run just after the setting.
2136 	 */
2137 	if (request_based)
2138 		dm_stop_queue(q);
2139 
2140 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2141 		/*
2142 		 * Leverage the fact that request-based DM targets and
2143 		 * NVMe bio based targets are immutable singletons
2144 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2145 		 *   and __process_bio.
2146 		 */
2147 		md->immutable_target = dm_table_get_immutable_target(t);
2148 	}
2149 
2150 	ret = __bind_mempools(md, t);
2151 	if (ret) {
2152 		old_map = ERR_PTR(ret);
2153 		goto out;
2154 	}
2155 
2156 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2157 	rcu_assign_pointer(md->map, (void *)t);
2158 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2159 
2160 	dm_table_set_restrictions(t, q, limits);
2161 	if (old_map)
2162 		dm_sync_table(md);
2163 
2164 out:
2165 	return old_map;
2166 }
2167 
2168 /*
2169  * Returns unbound table for the caller to free.
2170  */
2171 static struct dm_table *__unbind(struct mapped_device *md)
2172 {
2173 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2174 
2175 	if (!map)
2176 		return NULL;
2177 
2178 	dm_table_event_callback(map, NULL, NULL);
2179 	RCU_INIT_POINTER(md->map, NULL);
2180 	dm_sync_table(md);
2181 
2182 	return map;
2183 }
2184 
2185 /*
2186  * Constructor for a new device.
2187  */
2188 int dm_create(int minor, struct mapped_device **result)
2189 {
2190 	int r;
2191 	struct mapped_device *md;
2192 
2193 	md = alloc_dev(minor);
2194 	if (!md)
2195 		return -ENXIO;
2196 
2197 	r = dm_sysfs_init(md);
2198 	if (r) {
2199 		free_dev(md);
2200 		return r;
2201 	}
2202 
2203 	*result = md;
2204 	return 0;
2205 }
2206 
2207 /*
2208  * Functions to manage md->type.
2209  * All are required to hold md->type_lock.
2210  */
2211 void dm_lock_md_type(struct mapped_device *md)
2212 {
2213 	mutex_lock(&md->type_lock);
2214 }
2215 
2216 void dm_unlock_md_type(struct mapped_device *md)
2217 {
2218 	mutex_unlock(&md->type_lock);
2219 }
2220 
2221 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2222 {
2223 	BUG_ON(!mutex_is_locked(&md->type_lock));
2224 	md->type = type;
2225 }
2226 
2227 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2228 {
2229 	return md->type;
2230 }
2231 
2232 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2233 {
2234 	return md->immutable_target_type;
2235 }
2236 
2237 /*
2238  * The queue_limits are only valid as long as you have a reference
2239  * count on 'md'.
2240  */
2241 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2242 {
2243 	BUG_ON(!atomic_read(&md->holders));
2244 	return &md->queue->limits;
2245 }
2246 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2247 
2248 /*
2249  * Setup the DM device's queue based on md's type
2250  */
2251 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2252 {
2253 	int r;
2254 	struct queue_limits limits;
2255 	enum dm_queue_mode type = dm_get_md_type(md);
2256 
2257 	switch (type) {
2258 	case DM_TYPE_REQUEST_BASED:
2259 		r = dm_mq_init_request_queue(md, t);
2260 		if (r) {
2261 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2262 			return r;
2263 		}
2264 		break;
2265 	case DM_TYPE_BIO_BASED:
2266 	case DM_TYPE_DAX_BIO_BASED:
2267 	case DM_TYPE_NVME_BIO_BASED:
2268 		break;
2269 	case DM_TYPE_NONE:
2270 		WARN_ON_ONCE(true);
2271 		break;
2272 	}
2273 
2274 	r = dm_calculate_queue_limits(t, &limits);
2275 	if (r) {
2276 		DMERR("Cannot calculate initial queue limits");
2277 		return r;
2278 	}
2279 	dm_table_set_restrictions(t, md->queue, &limits);
2280 	blk_register_queue(md->disk);
2281 
2282 	return 0;
2283 }
2284 
2285 struct mapped_device *dm_get_md(dev_t dev)
2286 {
2287 	struct mapped_device *md;
2288 	unsigned minor = MINOR(dev);
2289 
2290 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2291 		return NULL;
2292 
2293 	spin_lock(&_minor_lock);
2294 
2295 	md = idr_find(&_minor_idr, minor);
2296 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2297 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2298 		md = NULL;
2299 		goto out;
2300 	}
2301 	dm_get(md);
2302 out:
2303 	spin_unlock(&_minor_lock);
2304 
2305 	return md;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_get_md);
2308 
2309 void *dm_get_mdptr(struct mapped_device *md)
2310 {
2311 	return md->interface_ptr;
2312 }
2313 
2314 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2315 {
2316 	md->interface_ptr = ptr;
2317 }
2318 
2319 void dm_get(struct mapped_device *md)
2320 {
2321 	atomic_inc(&md->holders);
2322 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2323 }
2324 
2325 int dm_hold(struct mapped_device *md)
2326 {
2327 	spin_lock(&_minor_lock);
2328 	if (test_bit(DMF_FREEING, &md->flags)) {
2329 		spin_unlock(&_minor_lock);
2330 		return -EBUSY;
2331 	}
2332 	dm_get(md);
2333 	spin_unlock(&_minor_lock);
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(dm_hold);
2337 
2338 const char *dm_device_name(struct mapped_device *md)
2339 {
2340 	return md->name;
2341 }
2342 EXPORT_SYMBOL_GPL(dm_device_name);
2343 
2344 static void __dm_destroy(struct mapped_device *md, bool wait)
2345 {
2346 	struct dm_table *map;
2347 	int srcu_idx;
2348 
2349 	might_sleep();
2350 
2351 	spin_lock(&_minor_lock);
2352 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2353 	set_bit(DMF_FREEING, &md->flags);
2354 	spin_unlock(&_minor_lock);
2355 
2356 	blk_set_queue_dying(md->queue);
2357 
2358 	/*
2359 	 * Take suspend_lock so that presuspend and postsuspend methods
2360 	 * do not race with internal suspend.
2361 	 */
2362 	mutex_lock(&md->suspend_lock);
2363 	map = dm_get_live_table(md, &srcu_idx);
2364 	if (!dm_suspended_md(md)) {
2365 		dm_table_presuspend_targets(map);
2366 		set_bit(DMF_SUSPENDED, &md->flags);
2367 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2368 		dm_table_postsuspend_targets(map);
2369 	}
2370 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2371 	dm_put_live_table(md, srcu_idx);
2372 	mutex_unlock(&md->suspend_lock);
2373 
2374 	/*
2375 	 * Rare, but there may be I/O requests still going to complete,
2376 	 * for example.  Wait for all references to disappear.
2377 	 * No one should increment the reference count of the mapped_device,
2378 	 * after the mapped_device state becomes DMF_FREEING.
2379 	 */
2380 	if (wait)
2381 		while (atomic_read(&md->holders))
2382 			msleep(1);
2383 	else if (atomic_read(&md->holders))
2384 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2385 		       dm_device_name(md), atomic_read(&md->holders));
2386 
2387 	dm_sysfs_exit(md);
2388 	dm_table_destroy(__unbind(md));
2389 	free_dev(md);
2390 }
2391 
2392 void dm_destroy(struct mapped_device *md)
2393 {
2394 	__dm_destroy(md, true);
2395 }
2396 
2397 void dm_destroy_immediate(struct mapped_device *md)
2398 {
2399 	__dm_destroy(md, false);
2400 }
2401 
2402 void dm_put(struct mapped_device *md)
2403 {
2404 	atomic_dec(&md->holders);
2405 }
2406 EXPORT_SYMBOL_GPL(dm_put);
2407 
2408 static bool md_in_flight_bios(struct mapped_device *md)
2409 {
2410 	int cpu;
2411 	struct hd_struct *part = &dm_disk(md)->part0;
2412 	long sum = 0;
2413 
2414 	for_each_possible_cpu(cpu) {
2415 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2416 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2417 	}
2418 
2419 	return sum != 0;
2420 }
2421 
2422 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2423 {
2424 	int r = 0;
2425 	DEFINE_WAIT(wait);
2426 
2427 	while (true) {
2428 		prepare_to_wait(&md->wait, &wait, task_state);
2429 
2430 		if (!md_in_flight_bios(md))
2431 			break;
2432 
2433 		if (signal_pending_state(task_state, current)) {
2434 			r = -EINTR;
2435 			break;
2436 		}
2437 
2438 		io_schedule();
2439 	}
2440 	finish_wait(&md->wait, &wait);
2441 
2442 	return r;
2443 }
2444 
2445 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2446 {
2447 	int r = 0;
2448 
2449 	if (!queue_is_mq(md->queue))
2450 		return dm_wait_for_bios_completion(md, task_state);
2451 
2452 	while (true) {
2453 		if (!blk_mq_queue_inflight(md->queue))
2454 			break;
2455 
2456 		if (signal_pending_state(task_state, current)) {
2457 			r = -EINTR;
2458 			break;
2459 		}
2460 
2461 		msleep(5);
2462 	}
2463 
2464 	return r;
2465 }
2466 
2467 /*
2468  * Process the deferred bios
2469  */
2470 static void dm_wq_work(struct work_struct *work)
2471 {
2472 	struct mapped_device *md = container_of(work, struct mapped_device,
2473 						work);
2474 	struct bio *c;
2475 	int srcu_idx;
2476 	struct dm_table *map;
2477 
2478 	map = dm_get_live_table(md, &srcu_idx);
2479 
2480 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2481 		spin_lock_irq(&md->deferred_lock);
2482 		c = bio_list_pop(&md->deferred);
2483 		spin_unlock_irq(&md->deferred_lock);
2484 
2485 		if (!c)
2486 			break;
2487 
2488 		if (dm_request_based(md))
2489 			(void) submit_bio_noacct(c);
2490 		else
2491 			(void) dm_process_bio(md, map, c);
2492 	}
2493 
2494 	dm_put_live_table(md, srcu_idx);
2495 }
2496 
2497 static void dm_queue_flush(struct mapped_device *md)
2498 {
2499 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2500 	smp_mb__after_atomic();
2501 	queue_work(md->wq, &md->work);
2502 }
2503 
2504 /*
2505  * Swap in a new table, returning the old one for the caller to destroy.
2506  */
2507 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2508 {
2509 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2510 	struct queue_limits limits;
2511 	int r;
2512 
2513 	mutex_lock(&md->suspend_lock);
2514 
2515 	/* device must be suspended */
2516 	if (!dm_suspended_md(md))
2517 		goto out;
2518 
2519 	/*
2520 	 * If the new table has no data devices, retain the existing limits.
2521 	 * This helps multipath with queue_if_no_path if all paths disappear,
2522 	 * then new I/O is queued based on these limits, and then some paths
2523 	 * reappear.
2524 	 */
2525 	if (dm_table_has_no_data_devices(table)) {
2526 		live_map = dm_get_live_table_fast(md);
2527 		if (live_map)
2528 			limits = md->queue->limits;
2529 		dm_put_live_table_fast(md);
2530 	}
2531 
2532 	if (!live_map) {
2533 		r = dm_calculate_queue_limits(table, &limits);
2534 		if (r) {
2535 			map = ERR_PTR(r);
2536 			goto out;
2537 		}
2538 	}
2539 
2540 	map = __bind(md, table, &limits);
2541 	dm_issue_global_event();
2542 
2543 out:
2544 	mutex_unlock(&md->suspend_lock);
2545 	return map;
2546 }
2547 
2548 /*
2549  * Functions to lock and unlock any filesystem running on the
2550  * device.
2551  */
2552 static int lock_fs(struct mapped_device *md)
2553 {
2554 	int r;
2555 
2556 	WARN_ON(md->frozen_sb);
2557 
2558 	md->frozen_sb = freeze_bdev(md->bdev);
2559 	if (IS_ERR(md->frozen_sb)) {
2560 		r = PTR_ERR(md->frozen_sb);
2561 		md->frozen_sb = NULL;
2562 		return r;
2563 	}
2564 
2565 	set_bit(DMF_FROZEN, &md->flags);
2566 
2567 	return 0;
2568 }
2569 
2570 static void unlock_fs(struct mapped_device *md)
2571 {
2572 	if (!test_bit(DMF_FROZEN, &md->flags))
2573 		return;
2574 
2575 	thaw_bdev(md->bdev, md->frozen_sb);
2576 	md->frozen_sb = NULL;
2577 	clear_bit(DMF_FROZEN, &md->flags);
2578 }
2579 
2580 /*
2581  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2582  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2583  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2584  *
2585  * If __dm_suspend returns 0, the device is completely quiescent
2586  * now. There is no request-processing activity. All new requests
2587  * are being added to md->deferred list.
2588  */
2589 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2590 			unsigned suspend_flags, long task_state,
2591 			int dmf_suspended_flag)
2592 {
2593 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2594 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2595 	int r;
2596 
2597 	lockdep_assert_held(&md->suspend_lock);
2598 
2599 	/*
2600 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2601 	 * This flag is cleared before dm_suspend returns.
2602 	 */
2603 	if (noflush)
2604 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2605 	else
2606 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2607 
2608 	/*
2609 	 * This gets reverted if there's an error later and the targets
2610 	 * provide the .presuspend_undo hook.
2611 	 */
2612 	dm_table_presuspend_targets(map);
2613 
2614 	/*
2615 	 * Flush I/O to the device.
2616 	 * Any I/O submitted after lock_fs() may not be flushed.
2617 	 * noflush takes precedence over do_lockfs.
2618 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2619 	 */
2620 	if (!noflush && do_lockfs) {
2621 		r = lock_fs(md);
2622 		if (r) {
2623 			dm_table_presuspend_undo_targets(map);
2624 			return r;
2625 		}
2626 	}
2627 
2628 	/*
2629 	 * Here we must make sure that no processes are submitting requests
2630 	 * to target drivers i.e. no one may be executing
2631 	 * __split_and_process_bio. This is called from dm_request and
2632 	 * dm_wq_work.
2633 	 *
2634 	 * To get all processes out of __split_and_process_bio in dm_request,
2635 	 * we take the write lock. To prevent any process from reentering
2636 	 * __split_and_process_bio from dm_request and quiesce the thread
2637 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2638 	 * flush_workqueue(md->wq).
2639 	 */
2640 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2641 	if (map)
2642 		synchronize_srcu(&md->io_barrier);
2643 
2644 	/*
2645 	 * Stop md->queue before flushing md->wq in case request-based
2646 	 * dm defers requests to md->wq from md->queue.
2647 	 */
2648 	if (dm_request_based(md))
2649 		dm_stop_queue(md->queue);
2650 
2651 	flush_workqueue(md->wq);
2652 
2653 	/*
2654 	 * At this point no more requests are entering target request routines.
2655 	 * We call dm_wait_for_completion to wait for all existing requests
2656 	 * to finish.
2657 	 */
2658 	r = dm_wait_for_completion(md, task_state);
2659 	if (!r)
2660 		set_bit(dmf_suspended_flag, &md->flags);
2661 
2662 	if (noflush)
2663 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2664 	if (map)
2665 		synchronize_srcu(&md->io_barrier);
2666 
2667 	/* were we interrupted ? */
2668 	if (r < 0) {
2669 		dm_queue_flush(md);
2670 
2671 		if (dm_request_based(md))
2672 			dm_start_queue(md->queue);
2673 
2674 		unlock_fs(md);
2675 		dm_table_presuspend_undo_targets(map);
2676 		/* pushback list is already flushed, so skip flush */
2677 	}
2678 
2679 	return r;
2680 }
2681 
2682 /*
2683  * We need to be able to change a mapping table under a mounted
2684  * filesystem.  For example we might want to move some data in
2685  * the background.  Before the table can be swapped with
2686  * dm_bind_table, dm_suspend must be called to flush any in
2687  * flight bios and ensure that any further io gets deferred.
2688  */
2689 /*
2690  * Suspend mechanism in request-based dm.
2691  *
2692  * 1. Flush all I/Os by lock_fs() if needed.
2693  * 2. Stop dispatching any I/O by stopping the request_queue.
2694  * 3. Wait for all in-flight I/Os to be completed or requeued.
2695  *
2696  * To abort suspend, start the request_queue.
2697  */
2698 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2699 {
2700 	struct dm_table *map = NULL;
2701 	int r = 0;
2702 
2703 retry:
2704 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2705 
2706 	if (dm_suspended_md(md)) {
2707 		r = -EINVAL;
2708 		goto out_unlock;
2709 	}
2710 
2711 	if (dm_suspended_internally_md(md)) {
2712 		/* already internally suspended, wait for internal resume */
2713 		mutex_unlock(&md->suspend_lock);
2714 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2715 		if (r)
2716 			return r;
2717 		goto retry;
2718 	}
2719 
2720 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2721 
2722 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2723 	if (r)
2724 		goto out_unlock;
2725 
2726 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2727 	dm_table_postsuspend_targets(map);
2728 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2729 
2730 out_unlock:
2731 	mutex_unlock(&md->suspend_lock);
2732 	return r;
2733 }
2734 
2735 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2736 {
2737 	if (map) {
2738 		int r = dm_table_resume_targets(map);
2739 		if (r)
2740 			return r;
2741 	}
2742 
2743 	dm_queue_flush(md);
2744 
2745 	/*
2746 	 * Flushing deferred I/Os must be done after targets are resumed
2747 	 * so that mapping of targets can work correctly.
2748 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2749 	 */
2750 	if (dm_request_based(md))
2751 		dm_start_queue(md->queue);
2752 
2753 	unlock_fs(md);
2754 
2755 	return 0;
2756 }
2757 
2758 int dm_resume(struct mapped_device *md)
2759 {
2760 	int r;
2761 	struct dm_table *map = NULL;
2762 
2763 retry:
2764 	r = -EINVAL;
2765 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2766 
2767 	if (!dm_suspended_md(md))
2768 		goto out;
2769 
2770 	if (dm_suspended_internally_md(md)) {
2771 		/* already internally suspended, wait for internal resume */
2772 		mutex_unlock(&md->suspend_lock);
2773 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2774 		if (r)
2775 			return r;
2776 		goto retry;
2777 	}
2778 
2779 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2780 	if (!map || !dm_table_get_size(map))
2781 		goto out;
2782 
2783 	r = __dm_resume(md, map);
2784 	if (r)
2785 		goto out;
2786 
2787 	clear_bit(DMF_SUSPENDED, &md->flags);
2788 out:
2789 	mutex_unlock(&md->suspend_lock);
2790 
2791 	return r;
2792 }
2793 
2794 /*
2795  * Internal suspend/resume works like userspace-driven suspend. It waits
2796  * until all bios finish and prevents issuing new bios to the target drivers.
2797  * It may be used only from the kernel.
2798  */
2799 
2800 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2801 {
2802 	struct dm_table *map = NULL;
2803 
2804 	lockdep_assert_held(&md->suspend_lock);
2805 
2806 	if (md->internal_suspend_count++)
2807 		return; /* nested internal suspend */
2808 
2809 	if (dm_suspended_md(md)) {
2810 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2811 		return; /* nest suspend */
2812 	}
2813 
2814 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2815 
2816 	/*
2817 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2818 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2819 	 * would require changing .presuspend to return an error -- avoid this
2820 	 * until there is a need for more elaborate variants of internal suspend.
2821 	 */
2822 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2823 			    DMF_SUSPENDED_INTERNALLY);
2824 
2825 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2826 	dm_table_postsuspend_targets(map);
2827 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2828 }
2829 
2830 static void __dm_internal_resume(struct mapped_device *md)
2831 {
2832 	BUG_ON(!md->internal_suspend_count);
2833 
2834 	if (--md->internal_suspend_count)
2835 		return; /* resume from nested internal suspend */
2836 
2837 	if (dm_suspended_md(md))
2838 		goto done; /* resume from nested suspend */
2839 
2840 	/*
2841 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2842 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2843 	 */
2844 	(void) __dm_resume(md, NULL);
2845 
2846 done:
2847 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2848 	smp_mb__after_atomic();
2849 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2850 }
2851 
2852 void dm_internal_suspend_noflush(struct mapped_device *md)
2853 {
2854 	mutex_lock(&md->suspend_lock);
2855 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2856 	mutex_unlock(&md->suspend_lock);
2857 }
2858 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2859 
2860 void dm_internal_resume(struct mapped_device *md)
2861 {
2862 	mutex_lock(&md->suspend_lock);
2863 	__dm_internal_resume(md);
2864 	mutex_unlock(&md->suspend_lock);
2865 }
2866 EXPORT_SYMBOL_GPL(dm_internal_resume);
2867 
2868 /*
2869  * Fast variants of internal suspend/resume hold md->suspend_lock,
2870  * which prevents interaction with userspace-driven suspend.
2871  */
2872 
2873 void dm_internal_suspend_fast(struct mapped_device *md)
2874 {
2875 	mutex_lock(&md->suspend_lock);
2876 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2877 		return;
2878 
2879 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2880 	synchronize_srcu(&md->io_barrier);
2881 	flush_workqueue(md->wq);
2882 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2883 }
2884 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2885 
2886 void dm_internal_resume_fast(struct mapped_device *md)
2887 {
2888 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2889 		goto done;
2890 
2891 	dm_queue_flush(md);
2892 
2893 done:
2894 	mutex_unlock(&md->suspend_lock);
2895 }
2896 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2897 
2898 /*-----------------------------------------------------------------
2899  * Event notification.
2900  *---------------------------------------------------------------*/
2901 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2902 		       unsigned cookie)
2903 {
2904 	int r;
2905 	unsigned noio_flag;
2906 	char udev_cookie[DM_COOKIE_LENGTH];
2907 	char *envp[] = { udev_cookie, NULL };
2908 
2909 	noio_flag = memalloc_noio_save();
2910 
2911 	if (!cookie)
2912 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2913 	else {
2914 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2915 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2916 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2917 				       action, envp);
2918 	}
2919 
2920 	memalloc_noio_restore(noio_flag);
2921 
2922 	return r;
2923 }
2924 
2925 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2926 {
2927 	return atomic_add_return(1, &md->uevent_seq);
2928 }
2929 
2930 uint32_t dm_get_event_nr(struct mapped_device *md)
2931 {
2932 	return atomic_read(&md->event_nr);
2933 }
2934 
2935 int dm_wait_event(struct mapped_device *md, int event_nr)
2936 {
2937 	return wait_event_interruptible(md->eventq,
2938 			(event_nr != atomic_read(&md->event_nr)));
2939 }
2940 
2941 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2942 {
2943 	unsigned long flags;
2944 
2945 	spin_lock_irqsave(&md->uevent_lock, flags);
2946 	list_add(elist, &md->uevent_list);
2947 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2948 }
2949 
2950 /*
2951  * The gendisk is only valid as long as you have a reference
2952  * count on 'md'.
2953  */
2954 struct gendisk *dm_disk(struct mapped_device *md)
2955 {
2956 	return md->disk;
2957 }
2958 EXPORT_SYMBOL_GPL(dm_disk);
2959 
2960 struct kobject *dm_kobject(struct mapped_device *md)
2961 {
2962 	return &md->kobj_holder.kobj;
2963 }
2964 
2965 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2966 {
2967 	struct mapped_device *md;
2968 
2969 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2970 
2971 	spin_lock(&_minor_lock);
2972 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2973 		md = NULL;
2974 		goto out;
2975 	}
2976 	dm_get(md);
2977 out:
2978 	spin_unlock(&_minor_lock);
2979 
2980 	return md;
2981 }
2982 
2983 int dm_suspended_md(struct mapped_device *md)
2984 {
2985 	return test_bit(DMF_SUSPENDED, &md->flags);
2986 }
2987 
2988 static int dm_post_suspending_md(struct mapped_device *md)
2989 {
2990 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2991 }
2992 
2993 int dm_suspended_internally_md(struct mapped_device *md)
2994 {
2995 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2996 }
2997 
2998 int dm_test_deferred_remove_flag(struct mapped_device *md)
2999 {
3000 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3001 }
3002 
3003 int dm_suspended(struct dm_target *ti)
3004 {
3005 	return dm_suspended_md(dm_table_get_md(ti->table));
3006 }
3007 EXPORT_SYMBOL_GPL(dm_suspended);
3008 
3009 int dm_post_suspending(struct dm_target *ti)
3010 {
3011 	return dm_post_suspending_md(dm_table_get_md(ti->table));
3012 }
3013 EXPORT_SYMBOL_GPL(dm_post_suspending);
3014 
3015 int dm_noflush_suspending(struct dm_target *ti)
3016 {
3017 	return __noflush_suspending(dm_table_get_md(ti->table));
3018 }
3019 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3020 
3021 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3022 					    unsigned integrity, unsigned per_io_data_size,
3023 					    unsigned min_pool_size)
3024 {
3025 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3026 	unsigned int pool_size = 0;
3027 	unsigned int front_pad, io_front_pad;
3028 	int ret;
3029 
3030 	if (!pools)
3031 		return NULL;
3032 
3033 	switch (type) {
3034 	case DM_TYPE_BIO_BASED:
3035 	case DM_TYPE_DAX_BIO_BASED:
3036 	case DM_TYPE_NVME_BIO_BASED:
3037 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3038 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3039 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3040 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3041 		if (ret)
3042 			goto out;
3043 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3044 			goto out;
3045 		break;
3046 	case DM_TYPE_REQUEST_BASED:
3047 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3048 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3049 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3050 		break;
3051 	default:
3052 		BUG();
3053 	}
3054 
3055 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3056 	if (ret)
3057 		goto out;
3058 
3059 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3060 		goto out;
3061 
3062 	return pools;
3063 
3064 out:
3065 	dm_free_md_mempools(pools);
3066 
3067 	return NULL;
3068 }
3069 
3070 void dm_free_md_mempools(struct dm_md_mempools *pools)
3071 {
3072 	if (!pools)
3073 		return;
3074 
3075 	bioset_exit(&pools->bs);
3076 	bioset_exit(&pools->io_bs);
3077 
3078 	kfree(pools);
3079 }
3080 
3081 struct dm_pr {
3082 	u64	old_key;
3083 	u64	new_key;
3084 	u32	flags;
3085 	bool	fail_early;
3086 };
3087 
3088 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3089 		      void *data)
3090 {
3091 	struct mapped_device *md = bdev->bd_disk->private_data;
3092 	struct dm_table *table;
3093 	struct dm_target *ti;
3094 	int ret = -ENOTTY, srcu_idx;
3095 
3096 	table = dm_get_live_table(md, &srcu_idx);
3097 	if (!table || !dm_table_get_size(table))
3098 		goto out;
3099 
3100 	/* We only support devices that have a single target */
3101 	if (dm_table_get_num_targets(table) != 1)
3102 		goto out;
3103 	ti = dm_table_get_target(table, 0);
3104 
3105 	ret = -EINVAL;
3106 	if (!ti->type->iterate_devices)
3107 		goto out;
3108 
3109 	ret = ti->type->iterate_devices(ti, fn, data);
3110 out:
3111 	dm_put_live_table(md, srcu_idx);
3112 	return ret;
3113 }
3114 
3115 /*
3116  * For register / unregister we need to manually call out to every path.
3117  */
3118 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3119 			    sector_t start, sector_t len, void *data)
3120 {
3121 	struct dm_pr *pr = data;
3122 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3123 
3124 	if (!ops || !ops->pr_register)
3125 		return -EOPNOTSUPP;
3126 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3127 }
3128 
3129 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3130 			  u32 flags)
3131 {
3132 	struct dm_pr pr = {
3133 		.old_key	= old_key,
3134 		.new_key	= new_key,
3135 		.flags		= flags,
3136 		.fail_early	= true,
3137 	};
3138 	int ret;
3139 
3140 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3141 	if (ret && new_key) {
3142 		/* unregister all paths if we failed to register any path */
3143 		pr.old_key = new_key;
3144 		pr.new_key = 0;
3145 		pr.flags = 0;
3146 		pr.fail_early = false;
3147 		dm_call_pr(bdev, __dm_pr_register, &pr);
3148 	}
3149 
3150 	return ret;
3151 }
3152 
3153 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3154 			 u32 flags)
3155 {
3156 	struct mapped_device *md = bdev->bd_disk->private_data;
3157 	const struct pr_ops *ops;
3158 	int r, srcu_idx;
3159 
3160 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3161 	if (r < 0)
3162 		goto out;
3163 
3164 	ops = bdev->bd_disk->fops->pr_ops;
3165 	if (ops && ops->pr_reserve)
3166 		r = ops->pr_reserve(bdev, key, type, flags);
3167 	else
3168 		r = -EOPNOTSUPP;
3169 out:
3170 	dm_unprepare_ioctl(md, srcu_idx);
3171 	return r;
3172 }
3173 
3174 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3175 {
3176 	struct mapped_device *md = bdev->bd_disk->private_data;
3177 	const struct pr_ops *ops;
3178 	int r, srcu_idx;
3179 
3180 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3181 	if (r < 0)
3182 		goto out;
3183 
3184 	ops = bdev->bd_disk->fops->pr_ops;
3185 	if (ops && ops->pr_release)
3186 		r = ops->pr_release(bdev, key, type);
3187 	else
3188 		r = -EOPNOTSUPP;
3189 out:
3190 	dm_unprepare_ioctl(md, srcu_idx);
3191 	return r;
3192 }
3193 
3194 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3195 			 enum pr_type type, bool abort)
3196 {
3197 	struct mapped_device *md = bdev->bd_disk->private_data;
3198 	const struct pr_ops *ops;
3199 	int r, srcu_idx;
3200 
3201 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3202 	if (r < 0)
3203 		goto out;
3204 
3205 	ops = bdev->bd_disk->fops->pr_ops;
3206 	if (ops && ops->pr_preempt)
3207 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3208 	else
3209 		r = -EOPNOTSUPP;
3210 out:
3211 	dm_unprepare_ioctl(md, srcu_idx);
3212 	return r;
3213 }
3214 
3215 static int dm_pr_clear(struct block_device *bdev, u64 key)
3216 {
3217 	struct mapped_device *md = bdev->bd_disk->private_data;
3218 	const struct pr_ops *ops;
3219 	int r, srcu_idx;
3220 
3221 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3222 	if (r < 0)
3223 		goto out;
3224 
3225 	ops = bdev->bd_disk->fops->pr_ops;
3226 	if (ops && ops->pr_clear)
3227 		r = ops->pr_clear(bdev, key);
3228 	else
3229 		r = -EOPNOTSUPP;
3230 out:
3231 	dm_unprepare_ioctl(md, srcu_idx);
3232 	return r;
3233 }
3234 
3235 static const struct pr_ops dm_pr_ops = {
3236 	.pr_register	= dm_pr_register,
3237 	.pr_reserve	= dm_pr_reserve,
3238 	.pr_release	= dm_pr_release,
3239 	.pr_preempt	= dm_pr_preempt,
3240 	.pr_clear	= dm_pr_clear,
3241 };
3242 
3243 static const struct block_device_operations dm_blk_dops = {
3244 	.submit_bio = dm_submit_bio,
3245 	.open = dm_blk_open,
3246 	.release = dm_blk_close,
3247 	.ioctl = dm_blk_ioctl,
3248 	.getgeo = dm_blk_getgeo,
3249 	.report_zones = dm_blk_report_zones,
3250 	.pr_ops = &dm_pr_ops,
3251 	.owner = THIS_MODULE
3252 };
3253 
3254 static const struct dax_operations dm_dax_ops = {
3255 	.direct_access = dm_dax_direct_access,
3256 	.dax_supported = dm_dax_supported,
3257 	.copy_from_iter = dm_dax_copy_from_iter,
3258 	.copy_to_iter = dm_dax_copy_to_iter,
3259 	.zero_page_range = dm_dax_zero_page_range,
3260 };
3261 
3262 /*
3263  * module hooks
3264  */
3265 module_init(dm_init);
3266 module_exit(dm_exit);
3267 
3268 module_param(major, uint, 0);
3269 MODULE_PARM_DESC(major, "The major number of the device mapper");
3270 
3271 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3272 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3273 
3274 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3275 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3276 
3277 MODULE_DESCRIPTION(DM_NAME " driver");
3278 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3279 MODULE_LICENSE("GPL");
3280