xref: /openbmc/linux/drivers/md/dm.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 			       struct blk_zone *zones, unsigned int *nr_zones,
463 			       gfp_t gfp_mask)
464 {
465 #ifdef CONFIG_BLK_DEV_ZONED
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_target *tgt;
468 	struct dm_table *map;
469 	int srcu_idx, ret;
470 
471 	if (dm_suspended_md(md))
472 		return -EAGAIN;
473 
474 	map = dm_get_live_table(md, &srcu_idx);
475 	if (!map)
476 		return -EIO;
477 
478 	tgt = dm_table_find_target(map, sector);
479 	if (!dm_target_is_valid(tgt)) {
480 		ret = -EIO;
481 		goto out;
482 	}
483 
484 	/*
485 	 * If we are executing this, we already know that the block device
486 	 * is a zoned device and so each target should have support for that
487 	 * type of drive. A missing report_zones method means that the target
488 	 * driver has a problem.
489 	 */
490 	if (WARN_ON(!tgt->type->report_zones)) {
491 		ret = -EIO;
492 		goto out;
493 	}
494 
495 	/*
496 	 * blkdev_report_zones() will loop and call this again to cover all the
497 	 * zones of the target, eventually moving on to the next target.
498 	 * So there is no need to loop here trying to fill the entire array
499 	 * of zones.
500 	 */
501 	ret = tgt->type->report_zones(tgt, sector, zones,
502 				      nr_zones, gfp_mask);
503 
504 out:
505 	dm_put_live_table(md, srcu_idx);
506 	return ret;
507 #else
508 	return -ENOTSUPP;
509 #endif
510 }
511 
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 			    struct block_device **bdev)
514 	__acquires(md->io_barrier)
515 {
516 	struct dm_target *tgt;
517 	struct dm_table *map;
518 	int r;
519 
520 retry:
521 	r = -ENOTTY;
522 	map = dm_get_live_table(md, srcu_idx);
523 	if (!map || !dm_table_get_size(map))
524 		return r;
525 
526 	/* We only support devices that have a single target */
527 	if (dm_table_get_num_targets(map) != 1)
528 		return r;
529 
530 	tgt = dm_table_get_target(map, 0);
531 	if (!tgt->type->prepare_ioctl)
532 		return r;
533 
534 	if (dm_suspended_md(md))
535 		return -EAGAIN;
536 
537 	r = tgt->type->prepare_ioctl(tgt, bdev);
538 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 		dm_put_live_table(md, *srcu_idx);
540 		msleep(10);
541 		goto retry;
542 	}
543 
544 	return r;
545 }
546 
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 	__releases(md->io_barrier)
549 {
550 	dm_put_live_table(md, srcu_idx);
551 }
552 
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 			unsigned int cmd, unsigned long arg)
555 {
556 	struct mapped_device *md = bdev->bd_disk->private_data;
557 	int r, srcu_idx;
558 
559 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
560 	if (r < 0)
561 		goto out;
562 
563 	if (r > 0) {
564 		/*
565 		 * Target determined this ioctl is being issued against a
566 		 * subset of the parent bdev; require extra privileges.
567 		 */
568 		if (!capable(CAP_SYS_RAWIO)) {
569 			DMWARN_LIMIT(
570 	"%s: sending ioctl %x to DM device without required privilege.",
571 				current->comm, cmd);
572 			r = -ENOIOCTLCMD;
573 			goto out;
574 		}
575 	}
576 
577 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
578 out:
579 	dm_unprepare_ioctl(md, srcu_idx);
580 	return r;
581 }
582 
583 static void start_io_acct(struct dm_io *io);
584 
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
586 {
587 	struct dm_io *io;
588 	struct dm_target_io *tio;
589 	struct bio *clone;
590 
591 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
592 	if (!clone)
593 		return NULL;
594 
595 	tio = container_of(clone, struct dm_target_io, clone);
596 	tio->inside_dm_io = true;
597 	tio->io = NULL;
598 
599 	io = container_of(tio, struct dm_io, tio);
600 	io->magic = DM_IO_MAGIC;
601 	io->status = 0;
602 	atomic_set(&io->io_count, 1);
603 	io->orig_bio = bio;
604 	io->md = md;
605 	spin_lock_init(&io->endio_lock);
606 
607 	start_io_acct(io);
608 
609 	return io;
610 }
611 
612 static void free_io(struct mapped_device *md, struct dm_io *io)
613 {
614 	bio_put(&io->tio.clone);
615 }
616 
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 				      unsigned target_bio_nr, gfp_t gfp_mask)
619 {
620 	struct dm_target_io *tio;
621 
622 	if (!ci->io->tio.io) {
623 		/* the dm_target_io embedded in ci->io is available */
624 		tio = &ci->io->tio;
625 	} else {
626 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
627 		if (!clone)
628 			return NULL;
629 
630 		tio = container_of(clone, struct dm_target_io, clone);
631 		tio->inside_dm_io = false;
632 	}
633 
634 	tio->magic = DM_TIO_MAGIC;
635 	tio->io = ci->io;
636 	tio->ti = ti;
637 	tio->target_bio_nr = target_bio_nr;
638 
639 	return tio;
640 }
641 
642 static void free_tio(struct dm_target_io *tio)
643 {
644 	if (tio->inside_dm_io)
645 		return;
646 	bio_put(&tio->clone);
647 }
648 
649 int md_in_flight(struct mapped_device *md)
650 {
651 	return atomic_read(&md->pending[READ]) +
652 	       atomic_read(&md->pending[WRITE]);
653 }
654 
655 static void start_io_acct(struct dm_io *io)
656 {
657 	struct mapped_device *md = io->md;
658 	struct bio *bio = io->orig_bio;
659 	int rw = bio_data_dir(bio);
660 
661 	io->start_time = jiffies;
662 
663 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
664 			      &dm_disk(md)->part0);
665 
666 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
667 		   atomic_inc_return(&md->pending[rw]));
668 
669 	if (unlikely(dm_stats_used(&md->stats)))
670 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
671 				    bio->bi_iter.bi_sector, bio_sectors(bio),
672 				    false, 0, &io->stats_aux);
673 }
674 
675 static void end_io_acct(struct dm_io *io)
676 {
677 	struct mapped_device *md = io->md;
678 	struct bio *bio = io->orig_bio;
679 	unsigned long duration = jiffies - io->start_time;
680 	int pending;
681 	int rw = bio_data_dir(bio);
682 
683 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
684 			    io->start_time);
685 
686 	if (unlikely(dm_stats_used(&md->stats)))
687 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
688 				    bio->bi_iter.bi_sector, bio_sectors(bio),
689 				    true, duration, &io->stats_aux);
690 
691 	/*
692 	 * After this is decremented the bio must not be touched if it is
693 	 * a flush.
694 	 */
695 	pending = atomic_dec_return(&md->pending[rw]);
696 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
697 	pending += atomic_read(&md->pending[rw^0x1]);
698 
699 	/* nudge anyone waiting on suspend queue */
700 	if (!pending)
701 		wake_up(&md->wait);
702 }
703 
704 /*
705  * Add the bio to the list of deferred io.
706  */
707 static void queue_io(struct mapped_device *md, struct bio *bio)
708 {
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&md->deferred_lock, flags);
712 	bio_list_add(&md->deferred, bio);
713 	spin_unlock_irqrestore(&md->deferred_lock, flags);
714 	queue_work(md->wq, &md->work);
715 }
716 
717 /*
718  * Everyone (including functions in this file), should use this
719  * function to access the md->map field, and make sure they call
720  * dm_put_live_table() when finished.
721  */
722 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
723 {
724 	*srcu_idx = srcu_read_lock(&md->io_barrier);
725 
726 	return srcu_dereference(md->map, &md->io_barrier);
727 }
728 
729 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
730 {
731 	srcu_read_unlock(&md->io_barrier, srcu_idx);
732 }
733 
734 void dm_sync_table(struct mapped_device *md)
735 {
736 	synchronize_srcu(&md->io_barrier);
737 	synchronize_rcu_expedited();
738 }
739 
740 /*
741  * A fast alternative to dm_get_live_table/dm_put_live_table.
742  * The caller must not block between these two functions.
743  */
744 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
745 {
746 	rcu_read_lock();
747 	return rcu_dereference(md->map);
748 }
749 
750 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
751 {
752 	rcu_read_unlock();
753 }
754 
755 static char *_dm_claim_ptr = "I belong to device-mapper";
756 
757 /*
758  * Open a table device so we can use it as a map destination.
759  */
760 static int open_table_device(struct table_device *td, dev_t dev,
761 			     struct mapped_device *md)
762 {
763 	struct block_device *bdev;
764 
765 	int r;
766 
767 	BUG_ON(td->dm_dev.bdev);
768 
769 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
770 	if (IS_ERR(bdev))
771 		return PTR_ERR(bdev);
772 
773 	r = bd_link_disk_holder(bdev, dm_disk(md));
774 	if (r) {
775 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
776 		return r;
777 	}
778 
779 	td->dm_dev.bdev = bdev;
780 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
781 	return 0;
782 }
783 
784 /*
785  * Close a table device that we've been using.
786  */
787 static void close_table_device(struct table_device *td, struct mapped_device *md)
788 {
789 	if (!td->dm_dev.bdev)
790 		return;
791 
792 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
793 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
794 	put_dax(td->dm_dev.dax_dev);
795 	td->dm_dev.bdev = NULL;
796 	td->dm_dev.dax_dev = NULL;
797 }
798 
799 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
800 					      fmode_t mode) {
801 	struct table_device *td;
802 
803 	list_for_each_entry(td, l, list)
804 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
805 			return td;
806 
807 	return NULL;
808 }
809 
810 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
811 			struct dm_dev **result) {
812 	int r;
813 	struct table_device *td;
814 
815 	mutex_lock(&md->table_devices_lock);
816 	td = find_table_device(&md->table_devices, dev, mode);
817 	if (!td) {
818 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
819 		if (!td) {
820 			mutex_unlock(&md->table_devices_lock);
821 			return -ENOMEM;
822 		}
823 
824 		td->dm_dev.mode = mode;
825 		td->dm_dev.bdev = NULL;
826 
827 		if ((r = open_table_device(td, dev, md))) {
828 			mutex_unlock(&md->table_devices_lock);
829 			kfree(td);
830 			return r;
831 		}
832 
833 		format_dev_t(td->dm_dev.name, dev);
834 
835 		refcount_set(&td->count, 1);
836 		list_add(&td->list, &md->table_devices);
837 	} else {
838 		refcount_inc(&td->count);
839 	}
840 	mutex_unlock(&md->table_devices_lock);
841 
842 	*result = &td->dm_dev;
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(dm_get_table_device);
846 
847 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
848 {
849 	struct table_device *td = container_of(d, struct table_device, dm_dev);
850 
851 	mutex_lock(&md->table_devices_lock);
852 	if (refcount_dec_and_test(&td->count)) {
853 		close_table_device(td, md);
854 		list_del(&td->list);
855 		kfree(td);
856 	}
857 	mutex_unlock(&md->table_devices_lock);
858 }
859 EXPORT_SYMBOL(dm_put_table_device);
860 
861 static void free_table_devices(struct list_head *devices)
862 {
863 	struct list_head *tmp, *next;
864 
865 	list_for_each_safe(tmp, next, devices) {
866 		struct table_device *td = list_entry(tmp, struct table_device, list);
867 
868 		DMWARN("dm_destroy: %s still exists with %d references",
869 		       td->dm_dev.name, refcount_read(&td->count));
870 		kfree(td);
871 	}
872 }
873 
874 /*
875  * Get the geometry associated with a dm device
876  */
877 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 	*geo = md->geometry;
880 
881 	return 0;
882 }
883 
884 /*
885  * Set the geometry of a device.
886  */
887 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
888 {
889 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
890 
891 	if (geo->start > sz) {
892 		DMWARN("Start sector is beyond the geometry limits.");
893 		return -EINVAL;
894 	}
895 
896 	md->geometry = *geo;
897 
898 	return 0;
899 }
900 
901 static int __noflush_suspending(struct mapped_device *md)
902 {
903 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
904 }
905 
906 /*
907  * Decrements the number of outstanding ios that a bio has been
908  * cloned into, completing the original io if necc.
909  */
910 static void dec_pending(struct dm_io *io, blk_status_t error)
911 {
912 	unsigned long flags;
913 	blk_status_t io_error;
914 	struct bio *bio;
915 	struct mapped_device *md = io->md;
916 
917 	/* Push-back supersedes any I/O errors */
918 	if (unlikely(error)) {
919 		spin_lock_irqsave(&io->endio_lock, flags);
920 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
921 			io->status = error;
922 		spin_unlock_irqrestore(&io->endio_lock, flags);
923 	}
924 
925 	if (atomic_dec_and_test(&io->io_count)) {
926 		if (io->status == BLK_STS_DM_REQUEUE) {
927 			/*
928 			 * Target requested pushing back the I/O.
929 			 */
930 			spin_lock_irqsave(&md->deferred_lock, flags);
931 			if (__noflush_suspending(md))
932 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
933 				bio_list_add_head(&md->deferred, io->orig_bio);
934 			else
935 				/* noflush suspend was interrupted. */
936 				io->status = BLK_STS_IOERR;
937 			spin_unlock_irqrestore(&md->deferred_lock, flags);
938 		}
939 
940 		io_error = io->status;
941 		bio = io->orig_bio;
942 		end_io_acct(io);
943 		free_io(md, io);
944 
945 		if (io_error == BLK_STS_DM_REQUEUE)
946 			return;
947 
948 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
949 			/*
950 			 * Preflush done for flush with data, reissue
951 			 * without REQ_PREFLUSH.
952 			 */
953 			bio->bi_opf &= ~REQ_PREFLUSH;
954 			queue_io(md, bio);
955 		} else {
956 			/* done with normal IO or empty flush */
957 			if (io_error)
958 				bio->bi_status = io_error;
959 			bio_endio(bio);
960 		}
961 	}
962 }
963 
964 void disable_write_same(struct mapped_device *md)
965 {
966 	struct queue_limits *limits = dm_get_queue_limits(md);
967 
968 	/* device doesn't really support WRITE SAME, disable it */
969 	limits->max_write_same_sectors = 0;
970 }
971 
972 void disable_write_zeroes(struct mapped_device *md)
973 {
974 	struct queue_limits *limits = dm_get_queue_limits(md);
975 
976 	/* device doesn't really support WRITE ZEROES, disable it */
977 	limits->max_write_zeroes_sectors = 0;
978 }
979 
980 static void clone_endio(struct bio *bio)
981 {
982 	blk_status_t error = bio->bi_status;
983 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
984 	struct dm_io *io = tio->io;
985 	struct mapped_device *md = tio->io->md;
986 	dm_endio_fn endio = tio->ti->type->end_io;
987 
988 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
989 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
990 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
991 			disable_write_same(md);
992 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
993 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
994 			disable_write_zeroes(md);
995 	}
996 
997 	if (endio) {
998 		int r = endio(tio->ti, bio, &error);
999 		switch (r) {
1000 		case DM_ENDIO_REQUEUE:
1001 			error = BLK_STS_DM_REQUEUE;
1002 			/*FALLTHRU*/
1003 		case DM_ENDIO_DONE:
1004 			break;
1005 		case DM_ENDIO_INCOMPLETE:
1006 			/* The target will handle the io */
1007 			return;
1008 		default:
1009 			DMWARN("unimplemented target endio return value: %d", r);
1010 			BUG();
1011 		}
1012 	}
1013 
1014 	free_tio(tio);
1015 	dec_pending(io, error);
1016 }
1017 
1018 /*
1019  * Return maximum size of I/O possible at the supplied sector up to the current
1020  * target boundary.
1021  */
1022 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1023 {
1024 	sector_t target_offset = dm_target_offset(ti, sector);
1025 
1026 	return ti->len - target_offset;
1027 }
1028 
1029 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1030 {
1031 	sector_t len = max_io_len_target_boundary(sector, ti);
1032 	sector_t offset, max_len;
1033 
1034 	/*
1035 	 * Does the target need to split even further?
1036 	 */
1037 	if (ti->max_io_len) {
1038 		offset = dm_target_offset(ti, sector);
1039 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1040 			max_len = sector_div(offset, ti->max_io_len);
1041 		else
1042 			max_len = offset & (ti->max_io_len - 1);
1043 		max_len = ti->max_io_len - max_len;
1044 
1045 		if (len > max_len)
1046 			len = max_len;
1047 	}
1048 
1049 	return len;
1050 }
1051 
1052 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1053 {
1054 	if (len > UINT_MAX) {
1055 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1056 		      (unsigned long long)len, UINT_MAX);
1057 		ti->error = "Maximum size of target IO is too large";
1058 		return -EINVAL;
1059 	}
1060 
1061 	/*
1062 	 * BIO based queue uses its own splitting. When multipage bvecs
1063 	 * is switched on, size of the incoming bio may be too big to
1064 	 * be handled in some targets, such as crypt.
1065 	 *
1066 	 * When these targets are ready for the big bio, we can remove
1067 	 * the limit.
1068 	 */
1069 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1070 
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1074 
1075 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1076 						sector_t sector, int *srcu_idx)
1077 	__acquires(md->io_barrier)
1078 {
1079 	struct dm_table *map;
1080 	struct dm_target *ti;
1081 
1082 	map = dm_get_live_table(md, srcu_idx);
1083 	if (!map)
1084 		return NULL;
1085 
1086 	ti = dm_table_find_target(map, sector);
1087 	if (!dm_target_is_valid(ti))
1088 		return NULL;
1089 
1090 	return ti;
1091 }
1092 
1093 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1094 				 long nr_pages, void **kaddr, pfn_t *pfn)
1095 {
1096 	struct mapped_device *md = dax_get_private(dax_dev);
1097 	sector_t sector = pgoff * PAGE_SECTORS;
1098 	struct dm_target *ti;
1099 	long len, ret = -EIO;
1100 	int srcu_idx;
1101 
1102 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1103 
1104 	if (!ti)
1105 		goto out;
1106 	if (!ti->type->direct_access)
1107 		goto out;
1108 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1109 	if (len < 1)
1110 		goto out;
1111 	nr_pages = min(len, nr_pages);
1112 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1113 
1114  out:
1115 	dm_put_live_table(md, srcu_idx);
1116 
1117 	return ret;
1118 }
1119 
1120 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1121 				    void *addr, size_t bytes, struct iov_iter *i)
1122 {
1123 	struct mapped_device *md = dax_get_private(dax_dev);
1124 	sector_t sector = pgoff * PAGE_SECTORS;
1125 	struct dm_target *ti;
1126 	long ret = 0;
1127 	int srcu_idx;
1128 
1129 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1130 
1131 	if (!ti)
1132 		goto out;
1133 	if (!ti->type->dax_copy_from_iter) {
1134 		ret = copy_from_iter(addr, bytes, i);
1135 		goto out;
1136 	}
1137 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1138  out:
1139 	dm_put_live_table(md, srcu_idx);
1140 
1141 	return ret;
1142 }
1143 
1144 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1145 		void *addr, size_t bytes, struct iov_iter *i)
1146 {
1147 	struct mapped_device *md = dax_get_private(dax_dev);
1148 	sector_t sector = pgoff * PAGE_SECTORS;
1149 	struct dm_target *ti;
1150 	long ret = 0;
1151 	int srcu_idx;
1152 
1153 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1154 
1155 	if (!ti)
1156 		goto out;
1157 	if (!ti->type->dax_copy_to_iter) {
1158 		ret = copy_to_iter(addr, bytes, i);
1159 		goto out;
1160 	}
1161 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1162  out:
1163 	dm_put_live_table(md, srcu_idx);
1164 
1165 	return ret;
1166 }
1167 
1168 /*
1169  * A target may call dm_accept_partial_bio only from the map routine.  It is
1170  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1171  *
1172  * dm_accept_partial_bio informs the dm that the target only wants to process
1173  * additional n_sectors sectors of the bio and the rest of the data should be
1174  * sent in a next bio.
1175  *
1176  * A diagram that explains the arithmetics:
1177  * +--------------------+---------------+-------+
1178  * |         1          |       2       |   3   |
1179  * +--------------------+---------------+-------+
1180  *
1181  * <-------------- *tio->len_ptr --------------->
1182  *                      <------- bi_size ------->
1183  *                      <-- n_sectors -->
1184  *
1185  * Region 1 was already iterated over with bio_advance or similar function.
1186  *	(it may be empty if the target doesn't use bio_advance)
1187  * Region 2 is the remaining bio size that the target wants to process.
1188  *	(it may be empty if region 1 is non-empty, although there is no reason
1189  *	 to make it empty)
1190  * The target requires that region 3 is to be sent in the next bio.
1191  *
1192  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1193  * the partially processed part (the sum of regions 1+2) must be the same for all
1194  * copies of the bio.
1195  */
1196 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1197 {
1198 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1199 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1200 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1201 	BUG_ON(bi_size > *tio->len_ptr);
1202 	BUG_ON(n_sectors > bi_size);
1203 	*tio->len_ptr -= bi_size - n_sectors;
1204 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1207 
1208 /*
1209  * The zone descriptors obtained with a zone report indicate
1210  * zone positions within the underlying device of the target. The zone
1211  * descriptors must be remapped to match their position within the dm device.
1212  * The caller target should obtain the zones information using
1213  * blkdev_report_zones() to ensure that remapping for partition offset is
1214  * already handled.
1215  */
1216 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1217 			  struct blk_zone *zones, unsigned int *nr_zones)
1218 {
1219 #ifdef CONFIG_BLK_DEV_ZONED
1220 	struct blk_zone *zone;
1221 	unsigned int nrz = *nr_zones;
1222 	int i;
1223 
1224 	/*
1225 	 * Remap the start sector and write pointer position of the zones in
1226 	 * the array. Since we may have obtained from the target underlying
1227 	 * device more zones that the target size, also adjust the number
1228 	 * of zones.
1229 	 */
1230 	for (i = 0; i < nrz; i++) {
1231 		zone = zones + i;
1232 		if (zone->start >= start + ti->len) {
1233 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1234 			break;
1235 		}
1236 
1237 		zone->start = zone->start + ti->begin - start;
1238 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1239 			continue;
1240 
1241 		if (zone->cond == BLK_ZONE_COND_FULL)
1242 			zone->wp = zone->start + zone->len;
1243 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1244 			zone->wp = zone->start;
1245 		else
1246 			zone->wp = zone->wp + ti->begin - start;
1247 	}
1248 
1249 	*nr_zones = i;
1250 #else /* !CONFIG_BLK_DEV_ZONED */
1251 	*nr_zones = 0;
1252 #endif
1253 }
1254 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1255 
1256 static blk_qc_t __map_bio(struct dm_target_io *tio)
1257 {
1258 	int r;
1259 	sector_t sector;
1260 	struct bio *clone = &tio->clone;
1261 	struct dm_io *io = tio->io;
1262 	struct mapped_device *md = io->md;
1263 	struct dm_target *ti = tio->ti;
1264 	blk_qc_t ret = BLK_QC_T_NONE;
1265 
1266 	clone->bi_end_io = clone_endio;
1267 
1268 	/*
1269 	 * Map the clone.  If r == 0 we don't need to do
1270 	 * anything, the target has assumed ownership of
1271 	 * this io.
1272 	 */
1273 	atomic_inc(&io->io_count);
1274 	sector = clone->bi_iter.bi_sector;
1275 
1276 	r = ti->type->map(ti, clone);
1277 	switch (r) {
1278 	case DM_MAPIO_SUBMITTED:
1279 		break;
1280 	case DM_MAPIO_REMAPPED:
1281 		/* the bio has been remapped so dispatch it */
1282 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1283 				      bio_dev(io->orig_bio), sector);
1284 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1285 			ret = direct_make_request(clone);
1286 		else
1287 			ret = generic_make_request(clone);
1288 		break;
1289 	case DM_MAPIO_KILL:
1290 		free_tio(tio);
1291 		dec_pending(io, BLK_STS_IOERR);
1292 		break;
1293 	case DM_MAPIO_REQUEUE:
1294 		free_tio(tio);
1295 		dec_pending(io, BLK_STS_DM_REQUEUE);
1296 		break;
1297 	default:
1298 		DMWARN("unimplemented target map return value: %d", r);
1299 		BUG();
1300 	}
1301 
1302 	return ret;
1303 }
1304 
1305 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1306 {
1307 	bio->bi_iter.bi_sector = sector;
1308 	bio->bi_iter.bi_size = to_bytes(len);
1309 }
1310 
1311 /*
1312  * Creates a bio that consists of range of complete bvecs.
1313  */
1314 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1315 		     sector_t sector, unsigned len)
1316 {
1317 	struct bio *clone = &tio->clone;
1318 
1319 	__bio_clone_fast(clone, bio);
1320 
1321 	if (unlikely(bio_integrity(bio) != NULL)) {
1322 		int r;
1323 
1324 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1325 			     !dm_target_passes_integrity(tio->ti->type))) {
1326 			DMWARN("%s: the target %s doesn't support integrity data.",
1327 				dm_device_name(tio->io->md),
1328 				tio->ti->type->name);
1329 			return -EIO;
1330 		}
1331 
1332 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1333 		if (r < 0)
1334 			return r;
1335 	}
1336 
1337 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1338 	clone->bi_iter.bi_size = to_bytes(len);
1339 
1340 	if (unlikely(bio_integrity(bio) != NULL))
1341 		bio_integrity_trim(clone);
1342 
1343 	return 0;
1344 }
1345 
1346 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1347 				struct dm_target *ti, unsigned num_bios)
1348 {
1349 	struct dm_target_io *tio;
1350 	int try;
1351 
1352 	if (!num_bios)
1353 		return;
1354 
1355 	if (num_bios == 1) {
1356 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1357 		bio_list_add(blist, &tio->clone);
1358 		return;
1359 	}
1360 
1361 	for (try = 0; try < 2; try++) {
1362 		int bio_nr;
1363 		struct bio *bio;
1364 
1365 		if (try)
1366 			mutex_lock(&ci->io->md->table_devices_lock);
1367 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1368 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1369 			if (!tio)
1370 				break;
1371 
1372 			bio_list_add(blist, &tio->clone);
1373 		}
1374 		if (try)
1375 			mutex_unlock(&ci->io->md->table_devices_lock);
1376 		if (bio_nr == num_bios)
1377 			return;
1378 
1379 		while ((bio = bio_list_pop(blist))) {
1380 			tio = container_of(bio, struct dm_target_io, clone);
1381 			free_tio(tio);
1382 		}
1383 	}
1384 }
1385 
1386 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1387 					   struct dm_target_io *tio, unsigned *len)
1388 {
1389 	struct bio *clone = &tio->clone;
1390 
1391 	tio->len_ptr = len;
1392 
1393 	__bio_clone_fast(clone, ci->bio);
1394 	if (len)
1395 		bio_setup_sector(clone, ci->sector, *len);
1396 
1397 	return __map_bio(tio);
1398 }
1399 
1400 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1401 				  unsigned num_bios, unsigned *len)
1402 {
1403 	struct bio_list blist = BIO_EMPTY_LIST;
1404 	struct bio *bio;
1405 	struct dm_target_io *tio;
1406 
1407 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1408 
1409 	while ((bio = bio_list_pop(&blist))) {
1410 		tio = container_of(bio, struct dm_target_io, clone);
1411 		(void) __clone_and_map_simple_bio(ci, tio, len);
1412 	}
1413 }
1414 
1415 static int __send_empty_flush(struct clone_info *ci)
1416 {
1417 	unsigned target_nr = 0;
1418 	struct dm_target *ti;
1419 
1420 	BUG_ON(bio_has_data(ci->bio));
1421 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1422 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1423 
1424 	return 0;
1425 }
1426 
1427 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1428 				    sector_t sector, unsigned *len)
1429 {
1430 	struct bio *bio = ci->bio;
1431 	struct dm_target_io *tio;
1432 	int r;
1433 
1434 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1435 	tio->len_ptr = len;
1436 	r = clone_bio(tio, bio, sector, *len);
1437 	if (r < 0) {
1438 		free_tio(tio);
1439 		return r;
1440 	}
1441 	(void) __map_bio(tio);
1442 
1443 	return 0;
1444 }
1445 
1446 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1447 
1448 static unsigned get_num_discard_bios(struct dm_target *ti)
1449 {
1450 	return ti->num_discard_bios;
1451 }
1452 
1453 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1454 {
1455 	return ti->num_secure_erase_bios;
1456 }
1457 
1458 static unsigned get_num_write_same_bios(struct dm_target *ti)
1459 {
1460 	return ti->num_write_same_bios;
1461 }
1462 
1463 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1464 {
1465 	return ti->num_write_zeroes_bios;
1466 }
1467 
1468 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1469 
1470 static bool is_split_required_for_discard(struct dm_target *ti)
1471 {
1472 	return ti->split_discard_bios;
1473 }
1474 
1475 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1476 				       get_num_bios_fn get_num_bios,
1477 				       is_split_required_fn is_split_required)
1478 {
1479 	unsigned len;
1480 	unsigned num_bios;
1481 
1482 	/*
1483 	 * Even though the device advertised support for this type of
1484 	 * request, that does not mean every target supports it, and
1485 	 * reconfiguration might also have changed that since the
1486 	 * check was performed.
1487 	 */
1488 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 	if (!num_bios)
1490 		return -EOPNOTSUPP;
1491 
1492 	if (is_split_required && !is_split_required(ti))
1493 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 	else
1495 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1496 
1497 	__send_duplicate_bios(ci, ti, num_bios, &len);
1498 
1499 	ci->sector += len;
1500 	ci->sector_count -= len;
1501 
1502 	return 0;
1503 }
1504 
1505 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1506 {
1507 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1508 					   is_split_required_for_discard);
1509 }
1510 
1511 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1512 {
1513 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1514 }
1515 
1516 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1517 {
1518 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1519 }
1520 
1521 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1522 {
1523 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1524 }
1525 
1526 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1527 				  int *result)
1528 {
1529 	struct bio *bio = ci->bio;
1530 
1531 	if (bio_op(bio) == REQ_OP_DISCARD)
1532 		*result = __send_discard(ci, ti);
1533 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1534 		*result = __send_secure_erase(ci, ti);
1535 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1536 		*result = __send_write_same(ci, ti);
1537 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1538 		*result = __send_write_zeroes(ci, ti);
1539 	else
1540 		return false;
1541 
1542 	return true;
1543 }
1544 
1545 /*
1546  * Select the correct strategy for processing a non-flush bio.
1547  */
1548 static int __split_and_process_non_flush(struct clone_info *ci)
1549 {
1550 	struct dm_target *ti;
1551 	unsigned len;
1552 	int r;
1553 
1554 	ti = dm_table_find_target(ci->map, ci->sector);
1555 	if (!dm_target_is_valid(ti))
1556 		return -EIO;
1557 
1558 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1559 		return r;
1560 
1561 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1562 
1563 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1564 	if (r < 0)
1565 		return r;
1566 
1567 	ci->sector += len;
1568 	ci->sector_count -= len;
1569 
1570 	return 0;
1571 }
1572 
1573 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1574 			    struct dm_table *map, struct bio *bio)
1575 {
1576 	ci->map = map;
1577 	ci->io = alloc_io(md, bio);
1578 	ci->sector = bio->bi_iter.bi_sector;
1579 }
1580 
1581 /*
1582  * Entry point to split a bio into clones and submit them to the targets.
1583  */
1584 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1585 					struct dm_table *map, struct bio *bio)
1586 {
1587 	struct clone_info ci;
1588 	blk_qc_t ret = BLK_QC_T_NONE;
1589 	int error = 0;
1590 
1591 	if (unlikely(!map)) {
1592 		bio_io_error(bio);
1593 		return ret;
1594 	}
1595 
1596 	init_clone_info(&ci, md, map, bio);
1597 
1598 	if (bio->bi_opf & REQ_PREFLUSH) {
1599 		ci.bio = &ci.io->md->flush_bio;
1600 		ci.sector_count = 0;
1601 		error = __send_empty_flush(&ci);
1602 		/* dec_pending submits any data associated with flush */
1603 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1604 		ci.bio = bio;
1605 		ci.sector_count = 0;
1606 		error = __split_and_process_non_flush(&ci);
1607 	} else {
1608 		ci.bio = bio;
1609 		ci.sector_count = bio_sectors(bio);
1610 		while (ci.sector_count && !error) {
1611 			error = __split_and_process_non_flush(&ci);
1612 			if (current->bio_list && ci.sector_count && !error) {
1613 				/*
1614 				 * Remainder must be passed to generic_make_request()
1615 				 * so that it gets handled *after* bios already submitted
1616 				 * have been completely processed.
1617 				 * We take a clone of the original to store in
1618 				 * ci.io->orig_bio to be used by end_io_acct() and
1619 				 * for dec_pending to use for completion handling.
1620 				 */
1621 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1622 							  GFP_NOIO, &md->queue->bio_split);
1623 				ci.io->orig_bio = b;
1624 				bio_chain(b, bio);
1625 				ret = generic_make_request(bio);
1626 				break;
1627 			}
1628 		}
1629 	}
1630 
1631 	/* drop the extra reference count */
1632 	dec_pending(ci.io, errno_to_blk_status(error));
1633 	return ret;
1634 }
1635 
1636 /*
1637  * Optimized variant of __split_and_process_bio that leverages the
1638  * fact that targets that use it do _not_ have a need to split bios.
1639  */
1640 static blk_qc_t __process_bio(struct mapped_device *md,
1641 			      struct dm_table *map, struct bio *bio)
1642 {
1643 	struct clone_info ci;
1644 	blk_qc_t ret = BLK_QC_T_NONE;
1645 	int error = 0;
1646 
1647 	if (unlikely(!map)) {
1648 		bio_io_error(bio);
1649 		return ret;
1650 	}
1651 
1652 	init_clone_info(&ci, md, map, bio);
1653 
1654 	if (bio->bi_opf & REQ_PREFLUSH) {
1655 		ci.bio = &ci.io->md->flush_bio;
1656 		ci.sector_count = 0;
1657 		error = __send_empty_flush(&ci);
1658 		/* dec_pending submits any data associated with flush */
1659 	} else {
1660 		struct dm_target *ti = md->immutable_target;
1661 		struct dm_target_io *tio;
1662 
1663 		/*
1664 		 * Defend against IO still getting in during teardown
1665 		 * - as was seen for a time with nvme-fcloop
1666 		 */
1667 		if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1668 			error = -EIO;
1669 			goto out;
1670 		}
1671 
1672 		ci.bio = bio;
1673 		ci.sector_count = bio_sectors(bio);
1674 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1675 			goto out;
1676 
1677 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1678 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1679 	}
1680 out:
1681 	/* drop the extra reference count */
1682 	dec_pending(ci.io, errno_to_blk_status(error));
1683 	return ret;
1684 }
1685 
1686 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1687 
1688 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1689 				  process_bio_fn process_bio)
1690 {
1691 	struct mapped_device *md = q->queuedata;
1692 	blk_qc_t ret = BLK_QC_T_NONE;
1693 	int srcu_idx;
1694 	struct dm_table *map;
1695 
1696 	map = dm_get_live_table(md, &srcu_idx);
1697 
1698 	/* if we're suspended, we have to queue this io for later */
1699 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1700 		dm_put_live_table(md, srcu_idx);
1701 
1702 		if (!(bio->bi_opf & REQ_RAHEAD))
1703 			queue_io(md, bio);
1704 		else
1705 			bio_io_error(bio);
1706 		return ret;
1707 	}
1708 
1709 	ret = process_bio(md, map, bio);
1710 
1711 	dm_put_live_table(md, srcu_idx);
1712 	return ret;
1713 }
1714 
1715 /*
1716  * The request function that remaps the bio to one target and
1717  * splits off any remainder.
1718  */
1719 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1720 {
1721 	return __dm_make_request(q, bio, __split_and_process_bio);
1722 }
1723 
1724 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1725 {
1726 	return __dm_make_request(q, bio, __process_bio);
1727 }
1728 
1729 static int dm_any_congested(void *congested_data, int bdi_bits)
1730 {
1731 	int r = bdi_bits;
1732 	struct mapped_device *md = congested_data;
1733 	struct dm_table *map;
1734 
1735 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1736 		if (dm_request_based(md)) {
1737 			/*
1738 			 * With request-based DM we only need to check the
1739 			 * top-level queue for congestion.
1740 			 */
1741 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1742 		} else {
1743 			map = dm_get_live_table_fast(md);
1744 			if (map)
1745 				r = dm_table_any_congested(map, bdi_bits);
1746 			dm_put_live_table_fast(md);
1747 		}
1748 	}
1749 
1750 	return r;
1751 }
1752 
1753 /*-----------------------------------------------------------------
1754  * An IDR is used to keep track of allocated minor numbers.
1755  *---------------------------------------------------------------*/
1756 static void free_minor(int minor)
1757 {
1758 	spin_lock(&_minor_lock);
1759 	idr_remove(&_minor_idr, minor);
1760 	spin_unlock(&_minor_lock);
1761 }
1762 
1763 /*
1764  * See if the device with a specific minor # is free.
1765  */
1766 static int specific_minor(int minor)
1767 {
1768 	int r;
1769 
1770 	if (minor >= (1 << MINORBITS))
1771 		return -EINVAL;
1772 
1773 	idr_preload(GFP_KERNEL);
1774 	spin_lock(&_minor_lock);
1775 
1776 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1777 
1778 	spin_unlock(&_minor_lock);
1779 	idr_preload_end();
1780 	if (r < 0)
1781 		return r == -ENOSPC ? -EBUSY : r;
1782 	return 0;
1783 }
1784 
1785 static int next_free_minor(int *minor)
1786 {
1787 	int r;
1788 
1789 	idr_preload(GFP_KERNEL);
1790 	spin_lock(&_minor_lock);
1791 
1792 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1793 
1794 	spin_unlock(&_minor_lock);
1795 	idr_preload_end();
1796 	if (r < 0)
1797 		return r;
1798 	*minor = r;
1799 	return 0;
1800 }
1801 
1802 static const struct block_device_operations dm_blk_dops;
1803 static const struct dax_operations dm_dax_ops;
1804 
1805 static void dm_wq_work(struct work_struct *work);
1806 
1807 static void dm_init_normal_md_queue(struct mapped_device *md)
1808 {
1809 	/*
1810 	 * Initialize aspects of queue that aren't relevant for blk-mq
1811 	 */
1812 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1813 }
1814 
1815 static void cleanup_mapped_device(struct mapped_device *md)
1816 {
1817 	if (md->wq)
1818 		destroy_workqueue(md->wq);
1819 	bioset_exit(&md->bs);
1820 	bioset_exit(&md->io_bs);
1821 
1822 	if (md->dax_dev) {
1823 		kill_dax(md->dax_dev);
1824 		put_dax(md->dax_dev);
1825 		md->dax_dev = NULL;
1826 	}
1827 
1828 	if (md->disk) {
1829 		spin_lock(&_minor_lock);
1830 		md->disk->private_data = NULL;
1831 		spin_unlock(&_minor_lock);
1832 		del_gendisk(md->disk);
1833 		put_disk(md->disk);
1834 	}
1835 
1836 	if (md->queue)
1837 		blk_cleanup_queue(md->queue);
1838 
1839 	cleanup_srcu_struct(&md->io_barrier);
1840 
1841 	if (md->bdev) {
1842 		bdput(md->bdev);
1843 		md->bdev = NULL;
1844 	}
1845 
1846 	mutex_destroy(&md->suspend_lock);
1847 	mutex_destroy(&md->type_lock);
1848 	mutex_destroy(&md->table_devices_lock);
1849 
1850 	dm_mq_cleanup_mapped_device(md);
1851 }
1852 
1853 /*
1854  * Allocate and initialise a blank device with a given minor.
1855  */
1856 static struct mapped_device *alloc_dev(int minor)
1857 {
1858 	int r, numa_node_id = dm_get_numa_node();
1859 	struct dax_device *dax_dev = NULL;
1860 	struct mapped_device *md;
1861 	void *old_md;
1862 
1863 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1864 	if (!md) {
1865 		DMWARN("unable to allocate device, out of memory.");
1866 		return NULL;
1867 	}
1868 
1869 	if (!try_module_get(THIS_MODULE))
1870 		goto bad_module_get;
1871 
1872 	/* get a minor number for the dev */
1873 	if (minor == DM_ANY_MINOR)
1874 		r = next_free_minor(&minor);
1875 	else
1876 		r = specific_minor(minor);
1877 	if (r < 0)
1878 		goto bad_minor;
1879 
1880 	r = init_srcu_struct(&md->io_barrier);
1881 	if (r < 0)
1882 		goto bad_io_barrier;
1883 
1884 	md->numa_node_id = numa_node_id;
1885 	md->init_tio_pdu = false;
1886 	md->type = DM_TYPE_NONE;
1887 	mutex_init(&md->suspend_lock);
1888 	mutex_init(&md->type_lock);
1889 	mutex_init(&md->table_devices_lock);
1890 	spin_lock_init(&md->deferred_lock);
1891 	atomic_set(&md->holders, 1);
1892 	atomic_set(&md->open_count, 0);
1893 	atomic_set(&md->event_nr, 0);
1894 	atomic_set(&md->uevent_seq, 0);
1895 	INIT_LIST_HEAD(&md->uevent_list);
1896 	INIT_LIST_HEAD(&md->table_devices);
1897 	spin_lock_init(&md->uevent_lock);
1898 
1899 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1900 	if (!md->queue)
1901 		goto bad;
1902 	md->queue->queuedata = md;
1903 	md->queue->backing_dev_info->congested_data = md;
1904 
1905 	md->disk = alloc_disk_node(1, md->numa_node_id);
1906 	if (!md->disk)
1907 		goto bad;
1908 
1909 	atomic_set(&md->pending[0], 0);
1910 	atomic_set(&md->pending[1], 0);
1911 	init_waitqueue_head(&md->wait);
1912 	INIT_WORK(&md->work, dm_wq_work);
1913 	init_waitqueue_head(&md->eventq);
1914 	init_completion(&md->kobj_holder.completion);
1915 
1916 	md->disk->major = _major;
1917 	md->disk->first_minor = minor;
1918 	md->disk->fops = &dm_blk_dops;
1919 	md->disk->queue = md->queue;
1920 	md->disk->private_data = md;
1921 	sprintf(md->disk->disk_name, "dm-%d", minor);
1922 
1923 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1924 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1925 		if (!dax_dev)
1926 			goto bad;
1927 	}
1928 	md->dax_dev = dax_dev;
1929 
1930 	add_disk_no_queue_reg(md->disk);
1931 	format_dev_t(md->name, MKDEV(_major, minor));
1932 
1933 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1934 	if (!md->wq)
1935 		goto bad;
1936 
1937 	md->bdev = bdget_disk(md->disk, 0);
1938 	if (!md->bdev)
1939 		goto bad;
1940 
1941 	bio_init(&md->flush_bio, NULL, 0);
1942 	bio_set_dev(&md->flush_bio, md->bdev);
1943 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1944 
1945 	dm_stats_init(&md->stats);
1946 
1947 	/* Populate the mapping, nobody knows we exist yet */
1948 	spin_lock(&_minor_lock);
1949 	old_md = idr_replace(&_minor_idr, md, minor);
1950 	spin_unlock(&_minor_lock);
1951 
1952 	BUG_ON(old_md != MINOR_ALLOCED);
1953 
1954 	return md;
1955 
1956 bad:
1957 	cleanup_mapped_device(md);
1958 bad_io_barrier:
1959 	free_minor(minor);
1960 bad_minor:
1961 	module_put(THIS_MODULE);
1962 bad_module_get:
1963 	kvfree(md);
1964 	return NULL;
1965 }
1966 
1967 static void unlock_fs(struct mapped_device *md);
1968 
1969 static void free_dev(struct mapped_device *md)
1970 {
1971 	int minor = MINOR(disk_devt(md->disk));
1972 
1973 	unlock_fs(md);
1974 
1975 	cleanup_mapped_device(md);
1976 
1977 	free_table_devices(&md->table_devices);
1978 	dm_stats_cleanup(&md->stats);
1979 	free_minor(minor);
1980 
1981 	module_put(THIS_MODULE);
1982 	kvfree(md);
1983 }
1984 
1985 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1986 {
1987 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1988 	int ret = 0;
1989 
1990 	if (dm_table_bio_based(t)) {
1991 		/*
1992 		 * The md may already have mempools that need changing.
1993 		 * If so, reload bioset because front_pad may have changed
1994 		 * because a different table was loaded.
1995 		 */
1996 		bioset_exit(&md->bs);
1997 		bioset_exit(&md->io_bs);
1998 
1999 	} else if (bioset_initialized(&md->bs)) {
2000 		/*
2001 		 * There's no need to reload with request-based dm
2002 		 * because the size of front_pad doesn't change.
2003 		 * Note for future: If you are to reload bioset,
2004 		 * prep-ed requests in the queue may refer
2005 		 * to bio from the old bioset, so you must walk
2006 		 * through the queue to unprep.
2007 		 */
2008 		goto out;
2009 	}
2010 
2011 	BUG_ON(!p ||
2012 	       bioset_initialized(&md->bs) ||
2013 	       bioset_initialized(&md->io_bs));
2014 
2015 	ret = bioset_init_from_src(&md->bs, &p->bs);
2016 	if (ret)
2017 		goto out;
2018 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2019 	if (ret)
2020 		bioset_exit(&md->bs);
2021 out:
2022 	/* mempool bind completed, no longer need any mempools in the table */
2023 	dm_table_free_md_mempools(t);
2024 	return ret;
2025 }
2026 
2027 /*
2028  * Bind a table to the device.
2029  */
2030 static void event_callback(void *context)
2031 {
2032 	unsigned long flags;
2033 	LIST_HEAD(uevents);
2034 	struct mapped_device *md = (struct mapped_device *) context;
2035 
2036 	spin_lock_irqsave(&md->uevent_lock, flags);
2037 	list_splice_init(&md->uevent_list, &uevents);
2038 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2039 
2040 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2041 
2042 	atomic_inc(&md->event_nr);
2043 	wake_up(&md->eventq);
2044 	dm_issue_global_event();
2045 }
2046 
2047 /*
2048  * Protected by md->suspend_lock obtained by dm_swap_table().
2049  */
2050 static void __set_size(struct mapped_device *md, sector_t size)
2051 {
2052 	lockdep_assert_held(&md->suspend_lock);
2053 
2054 	set_capacity(md->disk, size);
2055 
2056 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2057 }
2058 
2059 /*
2060  * Returns old map, which caller must destroy.
2061  */
2062 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2063 			       struct queue_limits *limits)
2064 {
2065 	struct dm_table *old_map;
2066 	struct request_queue *q = md->queue;
2067 	bool request_based = dm_table_request_based(t);
2068 	sector_t size;
2069 	int ret;
2070 
2071 	lockdep_assert_held(&md->suspend_lock);
2072 
2073 	size = dm_table_get_size(t);
2074 
2075 	/*
2076 	 * Wipe any geometry if the size of the table changed.
2077 	 */
2078 	if (size != dm_get_size(md))
2079 		memset(&md->geometry, 0, sizeof(md->geometry));
2080 
2081 	__set_size(md, size);
2082 
2083 	dm_table_event_callback(t, event_callback, md);
2084 
2085 	/*
2086 	 * The queue hasn't been stopped yet, if the old table type wasn't
2087 	 * for request-based during suspension.  So stop it to prevent
2088 	 * I/O mapping before resume.
2089 	 * This must be done before setting the queue restrictions,
2090 	 * because request-based dm may be run just after the setting.
2091 	 */
2092 	if (request_based)
2093 		dm_stop_queue(q);
2094 
2095 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2096 		/*
2097 		 * Leverage the fact that request-based DM targets and
2098 		 * NVMe bio based targets are immutable singletons
2099 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2100 		 *   and __process_bio.
2101 		 */
2102 		md->immutable_target = dm_table_get_immutable_target(t);
2103 	}
2104 
2105 	ret = __bind_mempools(md, t);
2106 	if (ret) {
2107 		old_map = ERR_PTR(ret);
2108 		goto out;
2109 	}
2110 
2111 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2112 	rcu_assign_pointer(md->map, (void *)t);
2113 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2114 
2115 	dm_table_set_restrictions(t, q, limits);
2116 	if (old_map)
2117 		dm_sync_table(md);
2118 
2119 out:
2120 	return old_map;
2121 }
2122 
2123 /*
2124  * Returns unbound table for the caller to free.
2125  */
2126 static struct dm_table *__unbind(struct mapped_device *md)
2127 {
2128 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2129 
2130 	if (!map)
2131 		return NULL;
2132 
2133 	dm_table_event_callback(map, NULL, NULL);
2134 	RCU_INIT_POINTER(md->map, NULL);
2135 	dm_sync_table(md);
2136 
2137 	return map;
2138 }
2139 
2140 /*
2141  * Constructor for a new device.
2142  */
2143 int dm_create(int minor, struct mapped_device **result)
2144 {
2145 	int r;
2146 	struct mapped_device *md;
2147 
2148 	md = alloc_dev(minor);
2149 	if (!md)
2150 		return -ENXIO;
2151 
2152 	r = dm_sysfs_init(md);
2153 	if (r) {
2154 		free_dev(md);
2155 		return r;
2156 	}
2157 
2158 	*result = md;
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Functions to manage md->type.
2164  * All are required to hold md->type_lock.
2165  */
2166 void dm_lock_md_type(struct mapped_device *md)
2167 {
2168 	mutex_lock(&md->type_lock);
2169 }
2170 
2171 void dm_unlock_md_type(struct mapped_device *md)
2172 {
2173 	mutex_unlock(&md->type_lock);
2174 }
2175 
2176 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2177 {
2178 	BUG_ON(!mutex_is_locked(&md->type_lock));
2179 	md->type = type;
2180 }
2181 
2182 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2183 {
2184 	return md->type;
2185 }
2186 
2187 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2188 {
2189 	return md->immutable_target_type;
2190 }
2191 
2192 /*
2193  * The queue_limits are only valid as long as you have a reference
2194  * count on 'md'.
2195  */
2196 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2197 {
2198 	BUG_ON(!atomic_read(&md->holders));
2199 	return &md->queue->limits;
2200 }
2201 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2202 
2203 /*
2204  * Setup the DM device's queue based on md's type
2205  */
2206 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2207 {
2208 	int r;
2209 	struct queue_limits limits;
2210 	enum dm_queue_mode type = dm_get_md_type(md);
2211 
2212 	switch (type) {
2213 	case DM_TYPE_REQUEST_BASED:
2214 		r = dm_mq_init_request_queue(md, t);
2215 		if (r) {
2216 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2217 			return r;
2218 		}
2219 		break;
2220 	case DM_TYPE_BIO_BASED:
2221 	case DM_TYPE_DAX_BIO_BASED:
2222 		dm_init_normal_md_queue(md);
2223 		blk_queue_make_request(md->queue, dm_make_request);
2224 		break;
2225 	case DM_TYPE_NVME_BIO_BASED:
2226 		dm_init_normal_md_queue(md);
2227 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2228 		break;
2229 	case DM_TYPE_NONE:
2230 		WARN_ON_ONCE(true);
2231 		break;
2232 	}
2233 
2234 	r = dm_calculate_queue_limits(t, &limits);
2235 	if (r) {
2236 		DMERR("Cannot calculate initial queue limits");
2237 		return r;
2238 	}
2239 	dm_table_set_restrictions(t, md->queue, &limits);
2240 	blk_register_queue(md->disk);
2241 
2242 	return 0;
2243 }
2244 
2245 struct mapped_device *dm_get_md(dev_t dev)
2246 {
2247 	struct mapped_device *md;
2248 	unsigned minor = MINOR(dev);
2249 
2250 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2251 		return NULL;
2252 
2253 	spin_lock(&_minor_lock);
2254 
2255 	md = idr_find(&_minor_idr, minor);
2256 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2257 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2258 		md = NULL;
2259 		goto out;
2260 	}
2261 	dm_get(md);
2262 out:
2263 	spin_unlock(&_minor_lock);
2264 
2265 	return md;
2266 }
2267 EXPORT_SYMBOL_GPL(dm_get_md);
2268 
2269 void *dm_get_mdptr(struct mapped_device *md)
2270 {
2271 	return md->interface_ptr;
2272 }
2273 
2274 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2275 {
2276 	md->interface_ptr = ptr;
2277 }
2278 
2279 void dm_get(struct mapped_device *md)
2280 {
2281 	atomic_inc(&md->holders);
2282 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2283 }
2284 
2285 int dm_hold(struct mapped_device *md)
2286 {
2287 	spin_lock(&_minor_lock);
2288 	if (test_bit(DMF_FREEING, &md->flags)) {
2289 		spin_unlock(&_minor_lock);
2290 		return -EBUSY;
2291 	}
2292 	dm_get(md);
2293 	spin_unlock(&_minor_lock);
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(dm_hold);
2297 
2298 const char *dm_device_name(struct mapped_device *md)
2299 {
2300 	return md->name;
2301 }
2302 EXPORT_SYMBOL_GPL(dm_device_name);
2303 
2304 static void __dm_destroy(struct mapped_device *md, bool wait)
2305 {
2306 	struct dm_table *map;
2307 	int srcu_idx;
2308 
2309 	might_sleep();
2310 
2311 	spin_lock(&_minor_lock);
2312 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2313 	set_bit(DMF_FREEING, &md->flags);
2314 	spin_unlock(&_minor_lock);
2315 
2316 	blk_set_queue_dying(md->queue);
2317 
2318 	/*
2319 	 * Take suspend_lock so that presuspend and postsuspend methods
2320 	 * do not race with internal suspend.
2321 	 */
2322 	mutex_lock(&md->suspend_lock);
2323 	map = dm_get_live_table(md, &srcu_idx);
2324 	if (!dm_suspended_md(md)) {
2325 		dm_table_presuspend_targets(map);
2326 		dm_table_postsuspend_targets(map);
2327 	}
2328 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2329 	dm_put_live_table(md, srcu_idx);
2330 	mutex_unlock(&md->suspend_lock);
2331 
2332 	/*
2333 	 * Rare, but there may be I/O requests still going to complete,
2334 	 * for example.  Wait for all references to disappear.
2335 	 * No one should increment the reference count of the mapped_device,
2336 	 * after the mapped_device state becomes DMF_FREEING.
2337 	 */
2338 	if (wait)
2339 		while (atomic_read(&md->holders))
2340 			msleep(1);
2341 	else if (atomic_read(&md->holders))
2342 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2343 		       dm_device_name(md), atomic_read(&md->holders));
2344 
2345 	dm_sysfs_exit(md);
2346 	dm_table_destroy(__unbind(md));
2347 	free_dev(md);
2348 }
2349 
2350 void dm_destroy(struct mapped_device *md)
2351 {
2352 	__dm_destroy(md, true);
2353 }
2354 
2355 void dm_destroy_immediate(struct mapped_device *md)
2356 {
2357 	__dm_destroy(md, false);
2358 }
2359 
2360 void dm_put(struct mapped_device *md)
2361 {
2362 	atomic_dec(&md->holders);
2363 }
2364 EXPORT_SYMBOL_GPL(dm_put);
2365 
2366 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2367 {
2368 	int r = 0;
2369 	DEFINE_WAIT(wait);
2370 
2371 	while (1) {
2372 		prepare_to_wait(&md->wait, &wait, task_state);
2373 
2374 		if (!md_in_flight(md))
2375 			break;
2376 
2377 		if (signal_pending_state(task_state, current)) {
2378 			r = -EINTR;
2379 			break;
2380 		}
2381 
2382 		io_schedule();
2383 	}
2384 	finish_wait(&md->wait, &wait);
2385 
2386 	return r;
2387 }
2388 
2389 /*
2390  * Process the deferred bios
2391  */
2392 static void dm_wq_work(struct work_struct *work)
2393 {
2394 	struct mapped_device *md = container_of(work, struct mapped_device,
2395 						work);
2396 	struct bio *c;
2397 	int srcu_idx;
2398 	struct dm_table *map;
2399 
2400 	map = dm_get_live_table(md, &srcu_idx);
2401 
2402 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2403 		spin_lock_irq(&md->deferred_lock);
2404 		c = bio_list_pop(&md->deferred);
2405 		spin_unlock_irq(&md->deferred_lock);
2406 
2407 		if (!c)
2408 			break;
2409 
2410 		if (dm_request_based(md))
2411 			generic_make_request(c);
2412 		else
2413 			__split_and_process_bio(md, map, c);
2414 	}
2415 
2416 	dm_put_live_table(md, srcu_idx);
2417 }
2418 
2419 static void dm_queue_flush(struct mapped_device *md)
2420 {
2421 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2422 	smp_mb__after_atomic();
2423 	queue_work(md->wq, &md->work);
2424 }
2425 
2426 /*
2427  * Swap in a new table, returning the old one for the caller to destroy.
2428  */
2429 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2430 {
2431 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2432 	struct queue_limits limits;
2433 	int r;
2434 
2435 	mutex_lock(&md->suspend_lock);
2436 
2437 	/* device must be suspended */
2438 	if (!dm_suspended_md(md))
2439 		goto out;
2440 
2441 	/*
2442 	 * If the new table has no data devices, retain the existing limits.
2443 	 * This helps multipath with queue_if_no_path if all paths disappear,
2444 	 * then new I/O is queued based on these limits, and then some paths
2445 	 * reappear.
2446 	 */
2447 	if (dm_table_has_no_data_devices(table)) {
2448 		live_map = dm_get_live_table_fast(md);
2449 		if (live_map)
2450 			limits = md->queue->limits;
2451 		dm_put_live_table_fast(md);
2452 	}
2453 
2454 	if (!live_map) {
2455 		r = dm_calculate_queue_limits(table, &limits);
2456 		if (r) {
2457 			map = ERR_PTR(r);
2458 			goto out;
2459 		}
2460 	}
2461 
2462 	map = __bind(md, table, &limits);
2463 	dm_issue_global_event();
2464 
2465 out:
2466 	mutex_unlock(&md->suspend_lock);
2467 	return map;
2468 }
2469 
2470 /*
2471  * Functions to lock and unlock any filesystem running on the
2472  * device.
2473  */
2474 static int lock_fs(struct mapped_device *md)
2475 {
2476 	int r;
2477 
2478 	WARN_ON(md->frozen_sb);
2479 
2480 	md->frozen_sb = freeze_bdev(md->bdev);
2481 	if (IS_ERR(md->frozen_sb)) {
2482 		r = PTR_ERR(md->frozen_sb);
2483 		md->frozen_sb = NULL;
2484 		return r;
2485 	}
2486 
2487 	set_bit(DMF_FROZEN, &md->flags);
2488 
2489 	return 0;
2490 }
2491 
2492 static void unlock_fs(struct mapped_device *md)
2493 {
2494 	if (!test_bit(DMF_FROZEN, &md->flags))
2495 		return;
2496 
2497 	thaw_bdev(md->bdev, md->frozen_sb);
2498 	md->frozen_sb = NULL;
2499 	clear_bit(DMF_FROZEN, &md->flags);
2500 }
2501 
2502 /*
2503  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2504  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2505  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2506  *
2507  * If __dm_suspend returns 0, the device is completely quiescent
2508  * now. There is no request-processing activity. All new requests
2509  * are being added to md->deferred list.
2510  */
2511 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2512 			unsigned suspend_flags, long task_state,
2513 			int dmf_suspended_flag)
2514 {
2515 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2516 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2517 	int r;
2518 
2519 	lockdep_assert_held(&md->suspend_lock);
2520 
2521 	/*
2522 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2523 	 * This flag is cleared before dm_suspend returns.
2524 	 */
2525 	if (noflush)
2526 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2527 	else
2528 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2529 
2530 	/*
2531 	 * This gets reverted if there's an error later and the targets
2532 	 * provide the .presuspend_undo hook.
2533 	 */
2534 	dm_table_presuspend_targets(map);
2535 
2536 	/*
2537 	 * Flush I/O to the device.
2538 	 * Any I/O submitted after lock_fs() may not be flushed.
2539 	 * noflush takes precedence over do_lockfs.
2540 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2541 	 */
2542 	if (!noflush && do_lockfs) {
2543 		r = lock_fs(md);
2544 		if (r) {
2545 			dm_table_presuspend_undo_targets(map);
2546 			return r;
2547 		}
2548 	}
2549 
2550 	/*
2551 	 * Here we must make sure that no processes are submitting requests
2552 	 * to target drivers i.e. no one may be executing
2553 	 * __split_and_process_bio. This is called from dm_request and
2554 	 * dm_wq_work.
2555 	 *
2556 	 * To get all processes out of __split_and_process_bio in dm_request,
2557 	 * we take the write lock. To prevent any process from reentering
2558 	 * __split_and_process_bio from dm_request and quiesce the thread
2559 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2560 	 * flush_workqueue(md->wq).
2561 	 */
2562 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2563 	if (map)
2564 		synchronize_srcu(&md->io_barrier);
2565 
2566 	/*
2567 	 * Stop md->queue before flushing md->wq in case request-based
2568 	 * dm defers requests to md->wq from md->queue.
2569 	 */
2570 	if (dm_request_based(md))
2571 		dm_stop_queue(md->queue);
2572 
2573 	flush_workqueue(md->wq);
2574 
2575 	/*
2576 	 * At this point no more requests are entering target request routines.
2577 	 * We call dm_wait_for_completion to wait for all existing requests
2578 	 * to finish.
2579 	 */
2580 	r = dm_wait_for_completion(md, task_state);
2581 	if (!r)
2582 		set_bit(dmf_suspended_flag, &md->flags);
2583 
2584 	if (noflush)
2585 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2586 	if (map)
2587 		synchronize_srcu(&md->io_barrier);
2588 
2589 	/* were we interrupted ? */
2590 	if (r < 0) {
2591 		dm_queue_flush(md);
2592 
2593 		if (dm_request_based(md))
2594 			dm_start_queue(md->queue);
2595 
2596 		unlock_fs(md);
2597 		dm_table_presuspend_undo_targets(map);
2598 		/* pushback list is already flushed, so skip flush */
2599 	}
2600 
2601 	return r;
2602 }
2603 
2604 /*
2605  * We need to be able to change a mapping table under a mounted
2606  * filesystem.  For example we might want to move some data in
2607  * the background.  Before the table can be swapped with
2608  * dm_bind_table, dm_suspend must be called to flush any in
2609  * flight bios and ensure that any further io gets deferred.
2610  */
2611 /*
2612  * Suspend mechanism in request-based dm.
2613  *
2614  * 1. Flush all I/Os by lock_fs() if needed.
2615  * 2. Stop dispatching any I/O by stopping the request_queue.
2616  * 3. Wait for all in-flight I/Os to be completed or requeued.
2617  *
2618  * To abort suspend, start the request_queue.
2619  */
2620 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2621 {
2622 	struct dm_table *map = NULL;
2623 	int r = 0;
2624 
2625 retry:
2626 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2627 
2628 	if (dm_suspended_md(md)) {
2629 		r = -EINVAL;
2630 		goto out_unlock;
2631 	}
2632 
2633 	if (dm_suspended_internally_md(md)) {
2634 		/* already internally suspended, wait for internal resume */
2635 		mutex_unlock(&md->suspend_lock);
2636 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2637 		if (r)
2638 			return r;
2639 		goto retry;
2640 	}
2641 
2642 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2643 
2644 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2645 	if (r)
2646 		goto out_unlock;
2647 
2648 	dm_table_postsuspend_targets(map);
2649 
2650 out_unlock:
2651 	mutex_unlock(&md->suspend_lock);
2652 	return r;
2653 }
2654 
2655 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2656 {
2657 	if (map) {
2658 		int r = dm_table_resume_targets(map);
2659 		if (r)
2660 			return r;
2661 	}
2662 
2663 	dm_queue_flush(md);
2664 
2665 	/*
2666 	 * Flushing deferred I/Os must be done after targets are resumed
2667 	 * so that mapping of targets can work correctly.
2668 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2669 	 */
2670 	if (dm_request_based(md))
2671 		dm_start_queue(md->queue);
2672 
2673 	unlock_fs(md);
2674 
2675 	return 0;
2676 }
2677 
2678 int dm_resume(struct mapped_device *md)
2679 {
2680 	int r;
2681 	struct dm_table *map = NULL;
2682 
2683 retry:
2684 	r = -EINVAL;
2685 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2686 
2687 	if (!dm_suspended_md(md))
2688 		goto out;
2689 
2690 	if (dm_suspended_internally_md(md)) {
2691 		/* already internally suspended, wait for internal resume */
2692 		mutex_unlock(&md->suspend_lock);
2693 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2694 		if (r)
2695 			return r;
2696 		goto retry;
2697 	}
2698 
2699 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2700 	if (!map || !dm_table_get_size(map))
2701 		goto out;
2702 
2703 	r = __dm_resume(md, map);
2704 	if (r)
2705 		goto out;
2706 
2707 	clear_bit(DMF_SUSPENDED, &md->flags);
2708 out:
2709 	mutex_unlock(&md->suspend_lock);
2710 
2711 	return r;
2712 }
2713 
2714 /*
2715  * Internal suspend/resume works like userspace-driven suspend. It waits
2716  * until all bios finish and prevents issuing new bios to the target drivers.
2717  * It may be used only from the kernel.
2718  */
2719 
2720 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2721 {
2722 	struct dm_table *map = NULL;
2723 
2724 	lockdep_assert_held(&md->suspend_lock);
2725 
2726 	if (md->internal_suspend_count++)
2727 		return; /* nested internal suspend */
2728 
2729 	if (dm_suspended_md(md)) {
2730 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2731 		return; /* nest suspend */
2732 	}
2733 
2734 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2735 
2736 	/*
2737 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2738 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2739 	 * would require changing .presuspend to return an error -- avoid this
2740 	 * until there is a need for more elaborate variants of internal suspend.
2741 	 */
2742 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2743 			    DMF_SUSPENDED_INTERNALLY);
2744 
2745 	dm_table_postsuspend_targets(map);
2746 }
2747 
2748 static void __dm_internal_resume(struct mapped_device *md)
2749 {
2750 	BUG_ON(!md->internal_suspend_count);
2751 
2752 	if (--md->internal_suspend_count)
2753 		return; /* resume from nested internal suspend */
2754 
2755 	if (dm_suspended_md(md))
2756 		goto done; /* resume from nested suspend */
2757 
2758 	/*
2759 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2760 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2761 	 */
2762 	(void) __dm_resume(md, NULL);
2763 
2764 done:
2765 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2766 	smp_mb__after_atomic();
2767 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2768 }
2769 
2770 void dm_internal_suspend_noflush(struct mapped_device *md)
2771 {
2772 	mutex_lock(&md->suspend_lock);
2773 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2774 	mutex_unlock(&md->suspend_lock);
2775 }
2776 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2777 
2778 void dm_internal_resume(struct mapped_device *md)
2779 {
2780 	mutex_lock(&md->suspend_lock);
2781 	__dm_internal_resume(md);
2782 	mutex_unlock(&md->suspend_lock);
2783 }
2784 EXPORT_SYMBOL_GPL(dm_internal_resume);
2785 
2786 /*
2787  * Fast variants of internal suspend/resume hold md->suspend_lock,
2788  * which prevents interaction with userspace-driven suspend.
2789  */
2790 
2791 void dm_internal_suspend_fast(struct mapped_device *md)
2792 {
2793 	mutex_lock(&md->suspend_lock);
2794 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2795 		return;
2796 
2797 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2798 	synchronize_srcu(&md->io_barrier);
2799 	flush_workqueue(md->wq);
2800 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2801 }
2802 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2803 
2804 void dm_internal_resume_fast(struct mapped_device *md)
2805 {
2806 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2807 		goto done;
2808 
2809 	dm_queue_flush(md);
2810 
2811 done:
2812 	mutex_unlock(&md->suspend_lock);
2813 }
2814 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2815 
2816 /*-----------------------------------------------------------------
2817  * Event notification.
2818  *---------------------------------------------------------------*/
2819 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2820 		       unsigned cookie)
2821 {
2822 	char udev_cookie[DM_COOKIE_LENGTH];
2823 	char *envp[] = { udev_cookie, NULL };
2824 
2825 	if (!cookie)
2826 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2827 	else {
2828 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2829 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2830 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2831 					  action, envp);
2832 	}
2833 }
2834 
2835 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2836 {
2837 	return atomic_add_return(1, &md->uevent_seq);
2838 }
2839 
2840 uint32_t dm_get_event_nr(struct mapped_device *md)
2841 {
2842 	return atomic_read(&md->event_nr);
2843 }
2844 
2845 int dm_wait_event(struct mapped_device *md, int event_nr)
2846 {
2847 	return wait_event_interruptible(md->eventq,
2848 			(event_nr != atomic_read(&md->event_nr)));
2849 }
2850 
2851 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2852 {
2853 	unsigned long flags;
2854 
2855 	spin_lock_irqsave(&md->uevent_lock, flags);
2856 	list_add(elist, &md->uevent_list);
2857 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2858 }
2859 
2860 /*
2861  * The gendisk is only valid as long as you have a reference
2862  * count on 'md'.
2863  */
2864 struct gendisk *dm_disk(struct mapped_device *md)
2865 {
2866 	return md->disk;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_disk);
2869 
2870 struct kobject *dm_kobject(struct mapped_device *md)
2871 {
2872 	return &md->kobj_holder.kobj;
2873 }
2874 
2875 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2876 {
2877 	struct mapped_device *md;
2878 
2879 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2880 
2881 	spin_lock(&_minor_lock);
2882 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2883 		md = NULL;
2884 		goto out;
2885 	}
2886 	dm_get(md);
2887 out:
2888 	spin_unlock(&_minor_lock);
2889 
2890 	return md;
2891 }
2892 
2893 int dm_suspended_md(struct mapped_device *md)
2894 {
2895 	return test_bit(DMF_SUSPENDED, &md->flags);
2896 }
2897 
2898 int dm_suspended_internally_md(struct mapped_device *md)
2899 {
2900 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2901 }
2902 
2903 int dm_test_deferred_remove_flag(struct mapped_device *md)
2904 {
2905 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2906 }
2907 
2908 int dm_suspended(struct dm_target *ti)
2909 {
2910 	return dm_suspended_md(dm_table_get_md(ti->table));
2911 }
2912 EXPORT_SYMBOL_GPL(dm_suspended);
2913 
2914 int dm_noflush_suspending(struct dm_target *ti)
2915 {
2916 	return __noflush_suspending(dm_table_get_md(ti->table));
2917 }
2918 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2919 
2920 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2921 					    unsigned integrity, unsigned per_io_data_size,
2922 					    unsigned min_pool_size)
2923 {
2924 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2925 	unsigned int pool_size = 0;
2926 	unsigned int front_pad, io_front_pad;
2927 	int ret;
2928 
2929 	if (!pools)
2930 		return NULL;
2931 
2932 	switch (type) {
2933 	case DM_TYPE_BIO_BASED:
2934 	case DM_TYPE_DAX_BIO_BASED:
2935 	case DM_TYPE_NVME_BIO_BASED:
2936 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2937 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2938 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2939 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2940 		if (ret)
2941 			goto out;
2942 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2943 			goto out;
2944 		break;
2945 	case DM_TYPE_REQUEST_BASED:
2946 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2947 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2948 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2949 		break;
2950 	default:
2951 		BUG();
2952 	}
2953 
2954 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2955 	if (ret)
2956 		goto out;
2957 
2958 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2959 		goto out;
2960 
2961 	return pools;
2962 
2963 out:
2964 	dm_free_md_mempools(pools);
2965 
2966 	return NULL;
2967 }
2968 
2969 void dm_free_md_mempools(struct dm_md_mempools *pools)
2970 {
2971 	if (!pools)
2972 		return;
2973 
2974 	bioset_exit(&pools->bs);
2975 	bioset_exit(&pools->io_bs);
2976 
2977 	kfree(pools);
2978 }
2979 
2980 struct dm_pr {
2981 	u64	old_key;
2982 	u64	new_key;
2983 	u32	flags;
2984 	bool	fail_early;
2985 };
2986 
2987 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2988 		      void *data)
2989 {
2990 	struct mapped_device *md = bdev->bd_disk->private_data;
2991 	struct dm_table *table;
2992 	struct dm_target *ti;
2993 	int ret = -ENOTTY, srcu_idx;
2994 
2995 	table = dm_get_live_table(md, &srcu_idx);
2996 	if (!table || !dm_table_get_size(table))
2997 		goto out;
2998 
2999 	/* We only support devices that have a single target */
3000 	if (dm_table_get_num_targets(table) != 1)
3001 		goto out;
3002 	ti = dm_table_get_target(table, 0);
3003 
3004 	ret = -EINVAL;
3005 	if (!ti->type->iterate_devices)
3006 		goto out;
3007 
3008 	ret = ti->type->iterate_devices(ti, fn, data);
3009 out:
3010 	dm_put_live_table(md, srcu_idx);
3011 	return ret;
3012 }
3013 
3014 /*
3015  * For register / unregister we need to manually call out to every path.
3016  */
3017 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3018 			    sector_t start, sector_t len, void *data)
3019 {
3020 	struct dm_pr *pr = data;
3021 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3022 
3023 	if (!ops || !ops->pr_register)
3024 		return -EOPNOTSUPP;
3025 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3026 }
3027 
3028 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3029 			  u32 flags)
3030 {
3031 	struct dm_pr pr = {
3032 		.old_key	= old_key,
3033 		.new_key	= new_key,
3034 		.flags		= flags,
3035 		.fail_early	= true,
3036 	};
3037 	int ret;
3038 
3039 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3040 	if (ret && new_key) {
3041 		/* unregister all paths if we failed to register any path */
3042 		pr.old_key = new_key;
3043 		pr.new_key = 0;
3044 		pr.flags = 0;
3045 		pr.fail_early = false;
3046 		dm_call_pr(bdev, __dm_pr_register, &pr);
3047 	}
3048 
3049 	return ret;
3050 }
3051 
3052 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3053 			 u32 flags)
3054 {
3055 	struct mapped_device *md = bdev->bd_disk->private_data;
3056 	const struct pr_ops *ops;
3057 	int r, srcu_idx;
3058 
3059 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3060 	if (r < 0)
3061 		goto out;
3062 
3063 	ops = bdev->bd_disk->fops->pr_ops;
3064 	if (ops && ops->pr_reserve)
3065 		r = ops->pr_reserve(bdev, key, type, flags);
3066 	else
3067 		r = -EOPNOTSUPP;
3068 out:
3069 	dm_unprepare_ioctl(md, srcu_idx);
3070 	return r;
3071 }
3072 
3073 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3074 {
3075 	struct mapped_device *md = bdev->bd_disk->private_data;
3076 	const struct pr_ops *ops;
3077 	int r, srcu_idx;
3078 
3079 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3080 	if (r < 0)
3081 		goto out;
3082 
3083 	ops = bdev->bd_disk->fops->pr_ops;
3084 	if (ops && ops->pr_release)
3085 		r = ops->pr_release(bdev, key, type);
3086 	else
3087 		r = -EOPNOTSUPP;
3088 out:
3089 	dm_unprepare_ioctl(md, srcu_idx);
3090 	return r;
3091 }
3092 
3093 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3094 			 enum pr_type type, bool abort)
3095 {
3096 	struct mapped_device *md = bdev->bd_disk->private_data;
3097 	const struct pr_ops *ops;
3098 	int r, srcu_idx;
3099 
3100 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3101 	if (r < 0)
3102 		goto out;
3103 
3104 	ops = bdev->bd_disk->fops->pr_ops;
3105 	if (ops && ops->pr_preempt)
3106 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3107 	else
3108 		r = -EOPNOTSUPP;
3109 out:
3110 	dm_unprepare_ioctl(md, srcu_idx);
3111 	return r;
3112 }
3113 
3114 static int dm_pr_clear(struct block_device *bdev, u64 key)
3115 {
3116 	struct mapped_device *md = bdev->bd_disk->private_data;
3117 	const struct pr_ops *ops;
3118 	int r, srcu_idx;
3119 
3120 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121 	if (r < 0)
3122 		goto out;
3123 
3124 	ops = bdev->bd_disk->fops->pr_ops;
3125 	if (ops && ops->pr_clear)
3126 		r = ops->pr_clear(bdev, key);
3127 	else
3128 		r = -EOPNOTSUPP;
3129 out:
3130 	dm_unprepare_ioctl(md, srcu_idx);
3131 	return r;
3132 }
3133 
3134 static const struct pr_ops dm_pr_ops = {
3135 	.pr_register	= dm_pr_register,
3136 	.pr_reserve	= dm_pr_reserve,
3137 	.pr_release	= dm_pr_release,
3138 	.pr_preempt	= dm_pr_preempt,
3139 	.pr_clear	= dm_pr_clear,
3140 };
3141 
3142 static const struct block_device_operations dm_blk_dops = {
3143 	.open = dm_blk_open,
3144 	.release = dm_blk_close,
3145 	.ioctl = dm_blk_ioctl,
3146 	.getgeo = dm_blk_getgeo,
3147 	.report_zones = dm_blk_report_zones,
3148 	.pr_ops = &dm_pr_ops,
3149 	.owner = THIS_MODULE
3150 };
3151 
3152 static const struct dax_operations dm_dax_ops = {
3153 	.direct_access = dm_dax_direct_access,
3154 	.copy_from_iter = dm_dax_copy_from_iter,
3155 	.copy_to_iter = dm_dax_copy_to_iter,
3156 };
3157 
3158 /*
3159  * module hooks
3160  */
3161 module_init(dm_init);
3162 module_exit(dm_exit);
3163 
3164 module_param(major, uint, 0);
3165 MODULE_PARM_DESC(major, "The major number of the device mapper");
3166 
3167 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3168 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3169 
3170 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3171 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3172 
3173 MODULE_DESCRIPTION(DM_NAME " driver");
3174 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3175 MODULE_LICENSE("GPL");
3176