xref: /openbmc/linux/drivers/md/dm-zoned-target.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-zoned.h"
9 
10 #include <linux/module.h>
11 
12 #define	DM_MSG_PREFIX		"zoned"
13 
14 #define DMZ_MIN_BIOS		8192
15 
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20 	struct dmz_dev		*dev;
21 	struct dm_zone		*zone;
22 	struct bio		*bio;
23 	refcount_t		ref;
24 };
25 
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30 	struct work_struct	work;
31 	refcount_t		refcount;
32 	struct dmz_target	*target;
33 	unsigned int		chunk;
34 	struct bio_list		bio_list;
35 };
36 
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41 	struct dm_dev		**ddev;
42 	unsigned int		nr_ddevs;
43 
44 	unsigned int		flags;
45 
46 	/* Zoned block device information */
47 	struct dmz_dev		*dev;
48 
49 	/* For metadata handling */
50 	struct dmz_metadata     *metadata;
51 
52 	/* For chunk work */
53 	struct radix_tree_root	chunk_rxtree;
54 	struct workqueue_struct *chunk_wq;
55 	struct mutex		chunk_lock;
56 
57 	/* For cloned BIOs to zones */
58 	struct bio_set		bio_set;
59 
60 	/* For flush */
61 	spinlock_t		flush_lock;
62 	struct bio_list		flush_list;
63 	struct delayed_work	flush_work;
64 	struct workqueue_struct *flush_wq;
65 };
66 
67 /*
68  * Flush intervals (seconds).
69  */
70 #define DMZ_FLUSH_PERIOD	(10 * HZ)
71 
72 /*
73  * Target BIO completion.
74  */
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
76 {
77 	struct dmz_bioctx *bioctx =
78 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
79 
80 	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81 		bio->bi_status = status;
82 	if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83 		bioctx->dev->flags |= DMZ_CHECK_BDEV;
84 
85 	if (refcount_dec_and_test(&bioctx->ref)) {
86 		struct dm_zone *zone = bioctx->zone;
87 
88 		if (zone) {
89 			if (bio->bi_status != BLK_STS_OK &&
90 			    bio_op(bio) == REQ_OP_WRITE &&
91 			    dmz_is_seq(zone))
92 				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93 			dmz_deactivate_zone(zone);
94 		}
95 		bio_endio(bio);
96 	}
97 }
98 
99 /*
100  * Completion callback for an internally cloned target BIO. This terminates the
101  * target BIO when there are no more references to its context.
102  */
103 static void dmz_clone_endio(struct bio *clone)
104 {
105 	struct dmz_bioctx *bioctx = clone->bi_private;
106 	blk_status_t status = clone->bi_status;
107 
108 	bio_put(clone);
109 	dmz_bio_endio(bioctx->bio, status);
110 }
111 
112 /*
113  * Issue a clone of a target BIO. The clone may only partially process the
114  * original target BIO.
115  */
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117 			  struct bio *bio, sector_t chunk_block,
118 			  unsigned int nr_blocks)
119 {
120 	struct dmz_bioctx *bioctx =
121 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122 	struct dmz_dev *dev = zone->dev;
123 	struct bio *clone;
124 
125 	if (dev->flags & DMZ_BDEV_DYING)
126 		return -EIO;
127 
128 	clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
129 	if (!clone)
130 		return -ENOMEM;
131 
132 	bio_set_dev(clone, dev->bdev);
133 	bioctx->dev = dev;
134 	clone->bi_iter.bi_sector =
135 		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
136 	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
137 	clone->bi_end_io = dmz_clone_endio;
138 	clone->bi_private = bioctx;
139 
140 	bio_advance(bio, clone->bi_iter.bi_size);
141 
142 	refcount_inc(&bioctx->ref);
143 	submit_bio_noacct(clone);
144 
145 	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
146 		zone->wp_block += nr_blocks;
147 
148 	return 0;
149 }
150 
151 /*
152  * Zero out pages of discarded blocks accessed by a read BIO.
153  */
154 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
155 				 sector_t chunk_block, unsigned int nr_blocks)
156 {
157 	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
158 
159 	/* Clear nr_blocks */
160 	swap(bio->bi_iter.bi_size, size);
161 	zero_fill_bio(bio);
162 	swap(bio->bi_iter.bi_size, size);
163 
164 	bio_advance(bio, size);
165 }
166 
167 /*
168  * Process a read BIO.
169  */
170 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
171 			   struct bio *bio)
172 {
173 	struct dmz_metadata *zmd = dmz->metadata;
174 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
175 	unsigned int nr_blocks = dmz_bio_blocks(bio);
176 	sector_t end_block = chunk_block + nr_blocks;
177 	struct dm_zone *rzone, *bzone;
178 	int ret;
179 
180 	/* Read into unmapped chunks need only zeroing the BIO buffer */
181 	if (!zone) {
182 		zero_fill_bio(bio);
183 		return 0;
184 	}
185 
186 	DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
187 		dmz_metadata_label(zmd),
188 		(unsigned long long)dmz_bio_chunk(zmd, bio),
189 		(dmz_is_rnd(zone) ? "RND" :
190 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
191 		zone->id,
192 		(unsigned long long)chunk_block, nr_blocks);
193 
194 	/* Check block validity to determine the read location */
195 	bzone = zone->bzone;
196 	while (chunk_block < end_block) {
197 		nr_blocks = 0;
198 		if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
199 		    chunk_block < zone->wp_block) {
200 			/* Test block validity in the data zone */
201 			ret = dmz_block_valid(zmd, zone, chunk_block);
202 			if (ret < 0)
203 				return ret;
204 			if (ret > 0) {
205 				/* Read data zone blocks */
206 				nr_blocks = ret;
207 				rzone = zone;
208 			}
209 		}
210 
211 		/*
212 		 * No valid blocks found in the data zone.
213 		 * Check the buffer zone, if there is one.
214 		 */
215 		if (!nr_blocks && bzone) {
216 			ret = dmz_block_valid(zmd, bzone, chunk_block);
217 			if (ret < 0)
218 				return ret;
219 			if (ret > 0) {
220 				/* Read buffer zone blocks */
221 				nr_blocks = ret;
222 				rzone = bzone;
223 			}
224 		}
225 
226 		if (nr_blocks) {
227 			/* Valid blocks found: read them */
228 			nr_blocks = min_t(unsigned int, nr_blocks,
229 					  end_block - chunk_block);
230 			ret = dmz_submit_bio(dmz, rzone, bio,
231 					     chunk_block, nr_blocks);
232 			if (ret)
233 				return ret;
234 			chunk_block += nr_blocks;
235 		} else {
236 			/* No valid block: zeroout the current BIO block */
237 			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
238 			chunk_block++;
239 		}
240 	}
241 
242 	return 0;
243 }
244 
245 /*
246  * Write blocks directly in a data zone, at the write pointer.
247  * If a buffer zone is assigned, invalidate the blocks written
248  * in place.
249  */
250 static int dmz_handle_direct_write(struct dmz_target *dmz,
251 				   struct dm_zone *zone, struct bio *bio,
252 				   sector_t chunk_block,
253 				   unsigned int nr_blocks)
254 {
255 	struct dmz_metadata *zmd = dmz->metadata;
256 	struct dm_zone *bzone = zone->bzone;
257 	int ret;
258 
259 	if (dmz_is_readonly(zone))
260 		return -EROFS;
261 
262 	/* Submit write */
263 	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
264 	if (ret)
265 		return ret;
266 
267 	/*
268 	 * Validate the blocks in the data zone and invalidate
269 	 * in the buffer zone, if there is one.
270 	 */
271 	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
272 	if (ret == 0 && bzone)
273 		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
274 
275 	return ret;
276 }
277 
278 /*
279  * Write blocks in the buffer zone of @zone.
280  * If no buffer zone is assigned yet, get one.
281  * Called with @zone write locked.
282  */
283 static int dmz_handle_buffered_write(struct dmz_target *dmz,
284 				     struct dm_zone *zone, struct bio *bio,
285 				     sector_t chunk_block,
286 				     unsigned int nr_blocks)
287 {
288 	struct dmz_metadata *zmd = dmz->metadata;
289 	struct dm_zone *bzone;
290 	int ret;
291 
292 	/* Get the buffer zone. One will be allocated if needed */
293 	bzone = dmz_get_chunk_buffer(zmd, zone);
294 	if (IS_ERR(bzone))
295 		return PTR_ERR(bzone);
296 
297 	if (dmz_is_readonly(bzone))
298 		return -EROFS;
299 
300 	/* Submit write */
301 	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
302 	if (ret)
303 		return ret;
304 
305 	/*
306 	 * Validate the blocks in the buffer zone
307 	 * and invalidate in the data zone.
308 	 */
309 	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
310 	if (ret == 0 && chunk_block < zone->wp_block)
311 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
312 
313 	return ret;
314 }
315 
316 /*
317  * Process a write BIO.
318  */
319 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
320 			    struct bio *bio)
321 {
322 	struct dmz_metadata *zmd = dmz->metadata;
323 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
324 	unsigned int nr_blocks = dmz_bio_blocks(bio);
325 
326 	if (!zone)
327 		return -ENOSPC;
328 
329 	DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
330 		dmz_metadata_label(zmd),
331 		(unsigned long long)dmz_bio_chunk(zmd, bio),
332 		(dmz_is_rnd(zone) ? "RND" :
333 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
334 		zone->id,
335 		(unsigned long long)chunk_block, nr_blocks);
336 
337 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
338 	    chunk_block == zone->wp_block) {
339 		/*
340 		 * zone is a random zone or it is a sequential zone
341 		 * and the BIO is aligned to the zone write pointer:
342 		 * direct write the zone.
343 		 */
344 		return dmz_handle_direct_write(dmz, zone, bio,
345 					       chunk_block, nr_blocks);
346 	}
347 
348 	/*
349 	 * This is an unaligned write in a sequential zone:
350 	 * use buffered write.
351 	 */
352 	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
353 }
354 
355 /*
356  * Process a discard BIO.
357  */
358 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
359 			      struct bio *bio)
360 {
361 	struct dmz_metadata *zmd = dmz->metadata;
362 	sector_t block = dmz_bio_block(bio);
363 	unsigned int nr_blocks = dmz_bio_blocks(bio);
364 	sector_t chunk_block = dmz_chunk_block(zmd, block);
365 	int ret = 0;
366 
367 	/* For unmapped chunks, there is nothing to do */
368 	if (!zone)
369 		return 0;
370 
371 	if (dmz_is_readonly(zone))
372 		return -EROFS;
373 
374 	DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
375 		dmz_metadata_label(dmz->metadata),
376 		(unsigned long long)dmz_bio_chunk(zmd, bio),
377 		zone->id,
378 		(unsigned long long)chunk_block, nr_blocks);
379 
380 	/*
381 	 * Invalidate blocks in the data zone and its
382 	 * buffer zone if one is mapped.
383 	 */
384 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
385 	    chunk_block < zone->wp_block)
386 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
387 	if (ret == 0 && zone->bzone)
388 		ret = dmz_invalidate_blocks(zmd, zone->bzone,
389 					    chunk_block, nr_blocks);
390 	return ret;
391 }
392 
393 /*
394  * Process a BIO.
395  */
396 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
397 			   struct bio *bio)
398 {
399 	struct dmz_bioctx *bioctx =
400 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
401 	struct dmz_metadata *zmd = dmz->metadata;
402 	struct dm_zone *zone;
403 	int ret;
404 
405 	dmz_lock_metadata(zmd);
406 
407 	/*
408 	 * Get the data zone mapping the chunk. There may be no
409 	 * mapping for read and discard. If a mapping is obtained,
410 	 + the zone returned will be set to active state.
411 	 */
412 	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
413 				     bio_op(bio));
414 	if (IS_ERR(zone)) {
415 		ret = PTR_ERR(zone);
416 		goto out;
417 	}
418 
419 	/* Process the BIO */
420 	if (zone) {
421 		dmz_activate_zone(zone);
422 		bioctx->zone = zone;
423 		dmz_reclaim_bio_acc(zone->dev->reclaim);
424 	}
425 
426 	switch (bio_op(bio)) {
427 	case REQ_OP_READ:
428 		ret = dmz_handle_read(dmz, zone, bio);
429 		break;
430 	case REQ_OP_WRITE:
431 		ret = dmz_handle_write(dmz, zone, bio);
432 		break;
433 	case REQ_OP_DISCARD:
434 	case REQ_OP_WRITE_ZEROES:
435 		ret = dmz_handle_discard(dmz, zone, bio);
436 		break;
437 	default:
438 		DMERR("(%s): Unsupported BIO operation 0x%x",
439 		      dmz_metadata_label(dmz->metadata), bio_op(bio));
440 		ret = -EIO;
441 	}
442 
443 	/*
444 	 * Release the chunk mapping. This will check that the mapping
445 	 * is still valid, that is, that the zone used still has valid blocks.
446 	 */
447 	if (zone)
448 		dmz_put_chunk_mapping(zmd, zone);
449 out:
450 	dmz_bio_endio(bio, errno_to_blk_status(ret));
451 
452 	dmz_unlock_metadata(zmd);
453 }
454 
455 /*
456  * Increment a chunk reference counter.
457  */
458 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
459 {
460 	refcount_inc(&cw->refcount);
461 }
462 
463 /*
464  * Decrement a chunk work reference count and
465  * free it if it becomes 0.
466  */
467 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
468 {
469 	if (refcount_dec_and_test(&cw->refcount)) {
470 		WARN_ON(!bio_list_empty(&cw->bio_list));
471 		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
472 		kfree(cw);
473 	}
474 }
475 
476 /*
477  * Chunk BIO work function.
478  */
479 static void dmz_chunk_work(struct work_struct *work)
480 {
481 	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
482 	struct dmz_target *dmz = cw->target;
483 	struct bio *bio;
484 
485 	mutex_lock(&dmz->chunk_lock);
486 
487 	/* Process the chunk BIOs */
488 	while ((bio = bio_list_pop(&cw->bio_list))) {
489 		mutex_unlock(&dmz->chunk_lock);
490 		dmz_handle_bio(dmz, cw, bio);
491 		mutex_lock(&dmz->chunk_lock);
492 		dmz_put_chunk_work(cw);
493 	}
494 
495 	/* Queueing the work incremented the work refcount */
496 	dmz_put_chunk_work(cw);
497 
498 	mutex_unlock(&dmz->chunk_lock);
499 }
500 
501 /*
502  * Flush work.
503  */
504 static void dmz_flush_work(struct work_struct *work)
505 {
506 	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
507 	struct bio *bio;
508 	int ret;
509 
510 	/* Flush dirty metadata blocks */
511 	ret = dmz_flush_metadata(dmz->metadata);
512 	if (ret)
513 		DMDEBUG("(%s): Metadata flush failed, rc=%d",
514 			dmz_metadata_label(dmz->metadata), ret);
515 
516 	/* Process queued flush requests */
517 	while (1) {
518 		spin_lock(&dmz->flush_lock);
519 		bio = bio_list_pop(&dmz->flush_list);
520 		spin_unlock(&dmz->flush_lock);
521 
522 		if (!bio)
523 			break;
524 
525 		dmz_bio_endio(bio, errno_to_blk_status(ret));
526 	}
527 
528 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
529 }
530 
531 /*
532  * Get a chunk work and start it to process a new BIO.
533  * If the BIO chunk has no work yet, create one.
534  */
535 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
536 {
537 	unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
538 	struct dm_chunk_work *cw;
539 	int ret = 0;
540 
541 	mutex_lock(&dmz->chunk_lock);
542 
543 	/* Get the BIO chunk work. If one is not active yet, create one */
544 	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
545 	if (cw) {
546 		dmz_get_chunk_work(cw);
547 	} else {
548 		/* Create a new chunk work */
549 		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
550 		if (unlikely(!cw)) {
551 			ret = -ENOMEM;
552 			goto out;
553 		}
554 
555 		INIT_WORK(&cw->work, dmz_chunk_work);
556 		refcount_set(&cw->refcount, 1);
557 		cw->target = dmz;
558 		cw->chunk = chunk;
559 		bio_list_init(&cw->bio_list);
560 
561 		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
562 		if (unlikely(ret)) {
563 			kfree(cw);
564 			goto out;
565 		}
566 	}
567 
568 	bio_list_add(&cw->bio_list, bio);
569 
570 	if (queue_work(dmz->chunk_wq, &cw->work))
571 		dmz_get_chunk_work(cw);
572 out:
573 	mutex_unlock(&dmz->chunk_lock);
574 	return ret;
575 }
576 
577 /*
578  * Check if the backing device is being removed. If it's on the way out,
579  * start failing I/O. Reclaim and metadata components also call this
580  * function to cleanly abort operation in the event of such failure.
581  */
582 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
583 {
584 	if (dmz_dev->flags & DMZ_BDEV_DYING)
585 		return true;
586 
587 	if (dmz_dev->flags & DMZ_CHECK_BDEV)
588 		return !dmz_check_bdev(dmz_dev);
589 
590 	if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
591 		dmz_dev_warn(dmz_dev, "Backing device queue dying");
592 		dmz_dev->flags |= DMZ_BDEV_DYING;
593 	}
594 
595 	return dmz_dev->flags & DMZ_BDEV_DYING;
596 }
597 
598 /*
599  * Check the backing device availability. This detects such events as
600  * backing device going offline due to errors, media removals, etc.
601  * This check is less efficient than dmz_bdev_is_dying() and should
602  * only be performed as a part of error handling.
603  */
604 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
605 {
606 	struct gendisk *disk;
607 
608 	dmz_dev->flags &= ~DMZ_CHECK_BDEV;
609 
610 	if (dmz_bdev_is_dying(dmz_dev))
611 		return false;
612 
613 	disk = dmz_dev->bdev->bd_disk;
614 	if (disk->fops->check_events &&
615 	    disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
616 		dmz_dev_warn(dmz_dev, "Backing device offline");
617 		dmz_dev->flags |= DMZ_BDEV_DYING;
618 	}
619 
620 	return !(dmz_dev->flags & DMZ_BDEV_DYING);
621 }
622 
623 /*
624  * Process a new BIO.
625  */
626 static int dmz_map(struct dm_target *ti, struct bio *bio)
627 {
628 	struct dmz_target *dmz = ti->private;
629 	struct dmz_metadata *zmd = dmz->metadata;
630 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
631 	sector_t sector = bio->bi_iter.bi_sector;
632 	unsigned int nr_sectors = bio_sectors(bio);
633 	sector_t chunk_sector;
634 	int ret;
635 
636 	if (dmz_dev_is_dying(zmd))
637 		return DM_MAPIO_KILL;
638 
639 	DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
640 		dmz_metadata_label(zmd),
641 		bio_op(bio), (unsigned long long)sector, nr_sectors,
642 		(unsigned long long)dmz_bio_chunk(zmd, bio),
643 		(unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
644 		(unsigned int)dmz_bio_blocks(bio));
645 
646 	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
647 		return DM_MAPIO_REMAPPED;
648 
649 	/* The BIO should be block aligned */
650 	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
651 		return DM_MAPIO_KILL;
652 
653 	/* Initialize the BIO context */
654 	bioctx->dev = NULL;
655 	bioctx->zone = NULL;
656 	bioctx->bio = bio;
657 	refcount_set(&bioctx->ref, 1);
658 
659 	/* Set the BIO pending in the flush list */
660 	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
661 		spin_lock(&dmz->flush_lock);
662 		bio_list_add(&dmz->flush_list, bio);
663 		spin_unlock(&dmz->flush_lock);
664 		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
665 		return DM_MAPIO_SUBMITTED;
666 	}
667 
668 	/* Split zone BIOs to fit entirely into a zone */
669 	chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
670 	if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
671 		dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
672 
673 	/* Now ready to handle this BIO */
674 	ret = dmz_queue_chunk_work(dmz, bio);
675 	if (ret) {
676 		DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
677 			dmz_metadata_label(zmd),
678 			bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
679 			ret);
680 		return DM_MAPIO_REQUEUE;
681 	}
682 
683 	return DM_MAPIO_SUBMITTED;
684 }
685 
686 /*
687  * Get zoned device information.
688  */
689 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
690 				int idx, int nr_devs)
691 {
692 	struct dmz_target *dmz = ti->private;
693 	struct dm_dev *ddev;
694 	struct dmz_dev *dev;
695 	int ret;
696 	struct block_device *bdev;
697 
698 	/* Get the target device */
699 	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
700 	if (ret) {
701 		ti->error = "Get target device failed";
702 		return ret;
703 	}
704 
705 	bdev = ddev->bdev;
706 	if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
707 		if (nr_devs == 1) {
708 			ti->error = "Invalid regular device";
709 			goto err;
710 		}
711 		if (idx != 0) {
712 			ti->error = "First device must be a regular device";
713 			goto err;
714 		}
715 		if (dmz->ddev[0]) {
716 			ti->error = "Too many regular devices";
717 			goto err;
718 		}
719 		dev = &dmz->dev[idx];
720 		dev->flags = DMZ_BDEV_REGULAR;
721 	} else {
722 		if (dmz->ddev[idx]) {
723 			ti->error = "Too many zoned devices";
724 			goto err;
725 		}
726 		if (nr_devs > 1 && idx == 0) {
727 			ti->error = "First device must be a regular device";
728 			goto err;
729 		}
730 		dev = &dmz->dev[idx];
731 	}
732 	dev->bdev = bdev;
733 	dev->dev_idx = idx;
734 	(void)bdevname(dev->bdev, dev->name);
735 
736 	dev->capacity = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
737 	if (ti->begin) {
738 		ti->error = "Partial mapping is not supported";
739 		goto err;
740 	}
741 
742 	dmz->ddev[idx] = ddev;
743 
744 	return 0;
745 err:
746 	dm_put_device(ti, ddev);
747 	return -EINVAL;
748 }
749 
750 /*
751  * Cleanup zoned device information.
752  */
753 static void dmz_put_zoned_device(struct dm_target *ti)
754 {
755 	struct dmz_target *dmz = ti->private;
756 	int i;
757 
758 	for (i = 0; i < dmz->nr_ddevs; i++) {
759 		if (dmz->ddev[i]) {
760 			dm_put_device(ti, dmz->ddev[i]);
761 			dmz->ddev[i] = NULL;
762 		}
763 	}
764 }
765 
766 static int dmz_fixup_devices(struct dm_target *ti)
767 {
768 	struct dmz_target *dmz = ti->private;
769 	struct dmz_dev *reg_dev, *zoned_dev;
770 	struct request_queue *q;
771 	sector_t zone_nr_sectors = 0;
772 	int i;
773 
774 	/*
775 	 * When we have more than on devices, the first one must be a
776 	 * regular block device and the others zoned block devices.
777 	 */
778 	if (dmz->nr_ddevs > 1) {
779 		reg_dev = &dmz->dev[0];
780 		if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
781 			ti->error = "Primary disk is not a regular device";
782 			return -EINVAL;
783 		}
784 		for (i = 1; i < dmz->nr_ddevs; i++) {
785 			zoned_dev = &dmz->dev[i];
786 			if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
787 				ti->error = "Secondary disk is not a zoned device";
788 				return -EINVAL;
789 			}
790 			q = bdev_get_queue(zoned_dev->bdev);
791 			if (zone_nr_sectors &&
792 			    zone_nr_sectors != blk_queue_zone_sectors(q)) {
793 				ti->error = "Zone nr sectors mismatch";
794 				return -EINVAL;
795 			}
796 			zone_nr_sectors = blk_queue_zone_sectors(q);
797 			zoned_dev->zone_nr_sectors = zone_nr_sectors;
798 			zoned_dev->nr_zones =
799 				blkdev_nr_zones(zoned_dev->bdev->bd_disk);
800 		}
801 	} else {
802 		reg_dev = NULL;
803 		zoned_dev = &dmz->dev[0];
804 		if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
805 			ti->error = "Disk is not a zoned device";
806 			return -EINVAL;
807 		}
808 		q = bdev_get_queue(zoned_dev->bdev);
809 		zoned_dev->zone_nr_sectors = blk_queue_zone_sectors(q);
810 		zoned_dev->nr_zones = blkdev_nr_zones(zoned_dev->bdev->bd_disk);
811 	}
812 
813 	if (reg_dev) {
814 		sector_t zone_offset;
815 
816 		reg_dev->zone_nr_sectors = zone_nr_sectors;
817 		reg_dev->nr_zones =
818 			DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
819 					      reg_dev->zone_nr_sectors);
820 		reg_dev->zone_offset = 0;
821 		zone_offset = reg_dev->nr_zones;
822 		for (i = 1; i < dmz->nr_ddevs; i++) {
823 			dmz->dev[i].zone_offset = zone_offset;
824 			zone_offset += dmz->dev[i].nr_zones;
825 		}
826 	}
827 	return 0;
828 }
829 
830 /*
831  * Setup target.
832  */
833 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
834 {
835 	struct dmz_target *dmz;
836 	int ret, i;
837 
838 	/* Check arguments */
839 	if (argc < 1) {
840 		ti->error = "Invalid argument count";
841 		return -EINVAL;
842 	}
843 
844 	/* Allocate and initialize the target descriptor */
845 	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
846 	if (!dmz) {
847 		ti->error = "Unable to allocate the zoned target descriptor";
848 		return -ENOMEM;
849 	}
850 	dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
851 	if (!dmz->dev) {
852 		ti->error = "Unable to allocate the zoned device descriptors";
853 		kfree(dmz);
854 		return -ENOMEM;
855 	}
856 	dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
857 	if (!dmz->ddev) {
858 		ti->error = "Unable to allocate the dm device descriptors";
859 		ret = -ENOMEM;
860 		goto err;
861 	}
862 	dmz->nr_ddevs = argc;
863 
864 	ti->private = dmz;
865 
866 	/* Get the target zoned block device */
867 	for (i = 0; i < argc; i++) {
868 		ret = dmz_get_zoned_device(ti, argv[i], i, argc);
869 		if (ret)
870 			goto err_dev;
871 	}
872 	ret = dmz_fixup_devices(ti);
873 	if (ret)
874 		goto err_dev;
875 
876 	/* Initialize metadata */
877 	ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
878 			       dm_table_device_name(ti->table));
879 	if (ret) {
880 		ti->error = "Metadata initialization failed";
881 		goto err_dev;
882 	}
883 
884 	/* Set target (no write same support) */
885 	ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
886 	ti->num_flush_bios = 1;
887 	ti->num_discard_bios = 1;
888 	ti->num_write_zeroes_bios = 1;
889 	ti->per_io_data_size = sizeof(struct dmz_bioctx);
890 	ti->flush_supported = true;
891 	ti->discards_supported = true;
892 
893 	/* The exposed capacity is the number of chunks that can be mapped */
894 	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
895 		dmz_zone_nr_sectors_shift(dmz->metadata);
896 
897 	/* Zone BIO */
898 	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
899 	if (ret) {
900 		ti->error = "Create BIO set failed";
901 		goto err_meta;
902 	}
903 
904 	/* Chunk BIO work */
905 	mutex_init(&dmz->chunk_lock);
906 	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
907 	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
908 					WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
909 					dmz_metadata_label(dmz->metadata));
910 	if (!dmz->chunk_wq) {
911 		ti->error = "Create chunk workqueue failed";
912 		ret = -ENOMEM;
913 		goto err_bio;
914 	}
915 
916 	/* Flush work */
917 	spin_lock_init(&dmz->flush_lock);
918 	bio_list_init(&dmz->flush_list);
919 	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
920 	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
921 						dmz_metadata_label(dmz->metadata));
922 	if (!dmz->flush_wq) {
923 		ti->error = "Create flush workqueue failed";
924 		ret = -ENOMEM;
925 		goto err_cwq;
926 	}
927 	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
928 
929 	/* Initialize reclaim */
930 	for (i = 0; i < dmz->nr_ddevs; i++) {
931 		ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
932 		if (ret) {
933 			ti->error = "Zone reclaim initialization failed";
934 			goto err_fwq;
935 		}
936 	}
937 
938 	DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
939 	       dmz_metadata_label(dmz->metadata),
940 	       (unsigned long long)ti->len,
941 	       (unsigned long long)dmz_sect2blk(ti->len));
942 
943 	return 0;
944 err_fwq:
945 	destroy_workqueue(dmz->flush_wq);
946 err_cwq:
947 	destroy_workqueue(dmz->chunk_wq);
948 err_bio:
949 	mutex_destroy(&dmz->chunk_lock);
950 	bioset_exit(&dmz->bio_set);
951 err_meta:
952 	dmz_dtr_metadata(dmz->metadata);
953 err_dev:
954 	dmz_put_zoned_device(ti);
955 err:
956 	kfree(dmz->dev);
957 	kfree(dmz);
958 
959 	return ret;
960 }
961 
962 /*
963  * Cleanup target.
964  */
965 static void dmz_dtr(struct dm_target *ti)
966 {
967 	struct dmz_target *dmz = ti->private;
968 	int i;
969 
970 	flush_workqueue(dmz->chunk_wq);
971 	destroy_workqueue(dmz->chunk_wq);
972 
973 	for (i = 0; i < dmz->nr_ddevs; i++)
974 		dmz_dtr_reclaim(dmz->dev[i].reclaim);
975 
976 	cancel_delayed_work_sync(&dmz->flush_work);
977 	destroy_workqueue(dmz->flush_wq);
978 
979 	(void) dmz_flush_metadata(dmz->metadata);
980 
981 	dmz_dtr_metadata(dmz->metadata);
982 
983 	bioset_exit(&dmz->bio_set);
984 
985 	dmz_put_zoned_device(ti);
986 
987 	mutex_destroy(&dmz->chunk_lock);
988 
989 	kfree(dmz->dev);
990 	kfree(dmz);
991 }
992 
993 /*
994  * Setup target request queue limits.
995  */
996 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
997 {
998 	struct dmz_target *dmz = ti->private;
999 	unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
1000 
1001 	limits->logical_block_size = DMZ_BLOCK_SIZE;
1002 	limits->physical_block_size = DMZ_BLOCK_SIZE;
1003 
1004 	blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1005 	blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1006 
1007 	limits->discard_alignment = DMZ_BLOCK_SIZE;
1008 	limits->discard_granularity = DMZ_BLOCK_SIZE;
1009 	limits->max_discard_sectors = chunk_sectors;
1010 	limits->max_hw_discard_sectors = chunk_sectors;
1011 	limits->max_write_zeroes_sectors = chunk_sectors;
1012 
1013 	/* FS hint to try to align to the device zone size */
1014 	limits->chunk_sectors = chunk_sectors;
1015 	limits->max_sectors = chunk_sectors;
1016 
1017 	/* We are exposing a drive-managed zoned block device */
1018 	limits->zoned = BLK_ZONED_NONE;
1019 }
1020 
1021 /*
1022  * Pass on ioctl to the backend device.
1023  */
1024 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1025 {
1026 	struct dmz_target *dmz = ti->private;
1027 	struct dmz_dev *dev = &dmz->dev[0];
1028 
1029 	if (!dmz_check_bdev(dev))
1030 		return -EIO;
1031 
1032 	*bdev = dev->bdev;
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * Stop works on suspend.
1039  */
1040 static void dmz_suspend(struct dm_target *ti)
1041 {
1042 	struct dmz_target *dmz = ti->private;
1043 	int i;
1044 
1045 	flush_workqueue(dmz->chunk_wq);
1046 	for (i = 0; i < dmz->nr_ddevs; i++)
1047 		dmz_suspend_reclaim(dmz->dev[i].reclaim);
1048 	cancel_delayed_work_sync(&dmz->flush_work);
1049 }
1050 
1051 /*
1052  * Restart works on resume or if suspend failed.
1053  */
1054 static void dmz_resume(struct dm_target *ti)
1055 {
1056 	struct dmz_target *dmz = ti->private;
1057 	int i;
1058 
1059 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1060 	for (i = 0; i < dmz->nr_ddevs; i++)
1061 		dmz_resume_reclaim(dmz->dev[i].reclaim);
1062 }
1063 
1064 static int dmz_iterate_devices(struct dm_target *ti,
1065 			       iterate_devices_callout_fn fn, void *data)
1066 {
1067 	struct dmz_target *dmz = ti->private;
1068 	unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1069 	sector_t capacity;
1070 	int i, r;
1071 
1072 	for (i = 0; i < dmz->nr_ddevs; i++) {
1073 		capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1074 		r = fn(ti, dmz->ddev[i], 0, capacity, data);
1075 		if (r)
1076 			break;
1077 	}
1078 	return r;
1079 }
1080 
1081 static void dmz_status(struct dm_target *ti, status_type_t type,
1082 		       unsigned int status_flags, char *result,
1083 		       unsigned int maxlen)
1084 {
1085 	struct dmz_target *dmz = ti->private;
1086 	ssize_t sz = 0;
1087 	char buf[BDEVNAME_SIZE];
1088 	struct dmz_dev *dev;
1089 	int i;
1090 
1091 	switch (type) {
1092 	case STATUSTYPE_INFO:
1093 		DMEMIT("%u zones %u/%u cache",
1094 		       dmz_nr_zones(dmz->metadata),
1095 		       dmz_nr_unmap_cache_zones(dmz->metadata),
1096 		       dmz_nr_cache_zones(dmz->metadata));
1097 		for (i = 0; i < dmz->nr_ddevs; i++) {
1098 			/*
1099 			 * For a multi-device setup the first device
1100 			 * contains only cache zones.
1101 			 */
1102 			if ((i == 0) &&
1103 			    (dmz_nr_cache_zones(dmz->metadata) > 0))
1104 				continue;
1105 			DMEMIT(" %u/%u random %u/%u sequential",
1106 			       dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1107 			       dmz_nr_rnd_zones(dmz->metadata, i),
1108 			       dmz_nr_unmap_seq_zones(dmz->metadata, i),
1109 			       dmz_nr_seq_zones(dmz->metadata, i));
1110 		}
1111 		break;
1112 	case STATUSTYPE_TABLE:
1113 		dev = &dmz->dev[0];
1114 		format_dev_t(buf, dev->bdev->bd_dev);
1115 		DMEMIT("%s", buf);
1116 		for (i = 1; i < dmz->nr_ddevs; i++) {
1117 			dev = &dmz->dev[i];
1118 			format_dev_t(buf, dev->bdev->bd_dev);
1119 			DMEMIT(" %s", buf);
1120 		}
1121 		break;
1122 	case STATUSTYPE_IMA:
1123 		*result = '\0';
1124 		break;
1125 	}
1126 	return;
1127 }
1128 
1129 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1130 		       char *result, unsigned int maxlen)
1131 {
1132 	struct dmz_target *dmz = ti->private;
1133 	int r = -EINVAL;
1134 
1135 	if (!strcasecmp(argv[0], "reclaim")) {
1136 		int i;
1137 
1138 		for (i = 0; i < dmz->nr_ddevs; i++)
1139 			dmz_schedule_reclaim(dmz->dev[i].reclaim);
1140 		r = 0;
1141 	} else
1142 		DMERR("unrecognized message %s", argv[0]);
1143 	return r;
1144 }
1145 
1146 static struct target_type dmz_type = {
1147 	.name		 = "zoned",
1148 	.version	 = {2, 0, 0},
1149 	.features	 = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
1150 	.module		 = THIS_MODULE,
1151 	.ctr		 = dmz_ctr,
1152 	.dtr		 = dmz_dtr,
1153 	.map		 = dmz_map,
1154 	.io_hints	 = dmz_io_hints,
1155 	.prepare_ioctl	 = dmz_prepare_ioctl,
1156 	.postsuspend	 = dmz_suspend,
1157 	.resume		 = dmz_resume,
1158 	.iterate_devices = dmz_iterate_devices,
1159 	.status		 = dmz_status,
1160 	.message	 = dmz_message,
1161 };
1162 
1163 static int __init dmz_init(void)
1164 {
1165 	return dm_register_target(&dmz_type);
1166 }
1167 
1168 static void __exit dmz_exit(void)
1169 {
1170 	dm_unregister_target(&dmz_type);
1171 }
1172 
1173 module_init(dmz_init);
1174 module_exit(dmz_exit);
1175 
1176 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1177 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1178 MODULE_LICENSE("GPL");
1179