1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 Western Digital Corporation or its affiliates. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-zoned.h" 9 10 #include <linux/module.h> 11 12 #define DM_MSG_PREFIX "zoned" 13 14 #define DMZ_MIN_BIOS 8192 15 16 /* 17 * Zone BIO context. 18 */ 19 struct dmz_bioctx { 20 struct dmz_target *target; 21 struct dm_zone *zone; 22 struct bio *bio; 23 refcount_t ref; 24 }; 25 26 /* 27 * Chunk work descriptor. 28 */ 29 struct dm_chunk_work { 30 struct work_struct work; 31 refcount_t refcount; 32 struct dmz_target *target; 33 unsigned int chunk; 34 struct bio_list bio_list; 35 }; 36 37 /* 38 * Target descriptor. 39 */ 40 struct dmz_target { 41 struct dm_dev *ddev; 42 43 unsigned long flags; 44 45 /* Zoned block device information */ 46 struct dmz_dev *dev; 47 48 /* For metadata handling */ 49 struct dmz_metadata *metadata; 50 51 /* For reclaim */ 52 struct dmz_reclaim *reclaim; 53 54 /* For chunk work */ 55 struct radix_tree_root chunk_rxtree; 56 struct workqueue_struct *chunk_wq; 57 struct mutex chunk_lock; 58 59 /* For cloned BIOs to zones */ 60 struct bio_set bio_set; 61 62 /* For flush */ 63 spinlock_t flush_lock; 64 struct bio_list flush_list; 65 struct delayed_work flush_work; 66 struct workqueue_struct *flush_wq; 67 }; 68 69 /* 70 * Flush intervals (seconds). 71 */ 72 #define DMZ_FLUSH_PERIOD (10 * HZ) 73 74 /* 75 * Target BIO completion. 76 */ 77 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status) 78 { 79 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); 80 81 if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK) 82 bio->bi_status = status; 83 84 if (refcount_dec_and_test(&bioctx->ref)) { 85 struct dm_zone *zone = bioctx->zone; 86 87 if (zone) { 88 if (bio->bi_status != BLK_STS_OK && 89 bio_op(bio) == REQ_OP_WRITE && 90 dmz_is_seq(zone)) 91 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags); 92 dmz_deactivate_zone(zone); 93 } 94 bio_endio(bio); 95 } 96 } 97 98 /* 99 * Completion callback for an internally cloned target BIO. This terminates the 100 * target BIO when there are no more references to its context. 101 */ 102 static void dmz_clone_endio(struct bio *clone) 103 { 104 struct dmz_bioctx *bioctx = clone->bi_private; 105 blk_status_t status = clone->bi_status; 106 107 bio_put(clone); 108 dmz_bio_endio(bioctx->bio, status); 109 } 110 111 /* 112 * Issue a clone of a target BIO. The clone may only partially process the 113 * original target BIO. 114 */ 115 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone, 116 struct bio *bio, sector_t chunk_block, 117 unsigned int nr_blocks) 118 { 119 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); 120 struct bio *clone; 121 122 clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set); 123 if (!clone) 124 return -ENOMEM; 125 126 bio_set_dev(clone, dmz->dev->bdev); 127 clone->bi_iter.bi_sector = 128 dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block); 129 clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT; 130 clone->bi_end_io = dmz_clone_endio; 131 clone->bi_private = bioctx; 132 133 bio_advance(bio, clone->bi_iter.bi_size); 134 135 refcount_inc(&bioctx->ref); 136 generic_make_request(clone); 137 if (clone->bi_status == BLK_STS_IOERR) 138 return -EIO; 139 140 if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone)) 141 zone->wp_block += nr_blocks; 142 143 return 0; 144 } 145 146 /* 147 * Zero out pages of discarded blocks accessed by a read BIO. 148 */ 149 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio, 150 sector_t chunk_block, unsigned int nr_blocks) 151 { 152 unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT; 153 154 /* Clear nr_blocks */ 155 swap(bio->bi_iter.bi_size, size); 156 zero_fill_bio(bio); 157 swap(bio->bi_iter.bi_size, size); 158 159 bio_advance(bio, size); 160 } 161 162 /* 163 * Process a read BIO. 164 */ 165 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone, 166 struct bio *bio) 167 { 168 sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); 169 unsigned int nr_blocks = dmz_bio_blocks(bio); 170 sector_t end_block = chunk_block + nr_blocks; 171 struct dm_zone *rzone, *bzone; 172 int ret; 173 174 /* Read into unmapped chunks need only zeroing the BIO buffer */ 175 if (!zone) { 176 zero_fill_bio(bio); 177 return 0; 178 } 179 180 dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks", 181 (unsigned long long)dmz_bio_chunk(dmz->dev, bio), 182 (dmz_is_rnd(zone) ? "RND" : "SEQ"), 183 dmz_id(dmz->metadata, zone), 184 (unsigned long long)chunk_block, nr_blocks); 185 186 /* Check block validity to determine the read location */ 187 bzone = zone->bzone; 188 while (chunk_block < end_block) { 189 nr_blocks = 0; 190 if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) { 191 /* Test block validity in the data zone */ 192 ret = dmz_block_valid(dmz->metadata, zone, chunk_block); 193 if (ret < 0) 194 return ret; 195 if (ret > 0) { 196 /* Read data zone blocks */ 197 nr_blocks = ret; 198 rzone = zone; 199 } 200 } 201 202 /* 203 * No valid blocks found in the data zone. 204 * Check the buffer zone, if there is one. 205 */ 206 if (!nr_blocks && bzone) { 207 ret = dmz_block_valid(dmz->metadata, bzone, chunk_block); 208 if (ret < 0) 209 return ret; 210 if (ret > 0) { 211 /* Read buffer zone blocks */ 212 nr_blocks = ret; 213 rzone = bzone; 214 } 215 } 216 217 if (nr_blocks) { 218 /* Valid blocks found: read them */ 219 nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block); 220 ret = dmz_submit_bio(dmz, rzone, bio, chunk_block, nr_blocks); 221 if (ret) 222 return ret; 223 chunk_block += nr_blocks; 224 } else { 225 /* No valid block: zeroout the current BIO block */ 226 dmz_handle_read_zero(dmz, bio, chunk_block, 1); 227 chunk_block++; 228 } 229 } 230 231 return 0; 232 } 233 234 /* 235 * Write blocks directly in a data zone, at the write pointer. 236 * If a buffer zone is assigned, invalidate the blocks written 237 * in place. 238 */ 239 static int dmz_handle_direct_write(struct dmz_target *dmz, 240 struct dm_zone *zone, struct bio *bio, 241 sector_t chunk_block, 242 unsigned int nr_blocks) 243 { 244 struct dmz_metadata *zmd = dmz->metadata; 245 struct dm_zone *bzone = zone->bzone; 246 int ret; 247 248 if (dmz_is_readonly(zone)) 249 return -EROFS; 250 251 /* Submit write */ 252 ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks); 253 if (ret) 254 return ret; 255 256 /* 257 * Validate the blocks in the data zone and invalidate 258 * in the buffer zone, if there is one. 259 */ 260 ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks); 261 if (ret == 0 && bzone) 262 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks); 263 264 return ret; 265 } 266 267 /* 268 * Write blocks in the buffer zone of @zone. 269 * If no buffer zone is assigned yet, get one. 270 * Called with @zone write locked. 271 */ 272 static int dmz_handle_buffered_write(struct dmz_target *dmz, 273 struct dm_zone *zone, struct bio *bio, 274 sector_t chunk_block, 275 unsigned int nr_blocks) 276 { 277 struct dmz_metadata *zmd = dmz->metadata; 278 struct dm_zone *bzone; 279 int ret; 280 281 /* Get the buffer zone. One will be allocated if needed */ 282 bzone = dmz_get_chunk_buffer(zmd, zone); 283 if (IS_ERR(bzone)) 284 return PTR_ERR(bzone); 285 286 if (dmz_is_readonly(bzone)) 287 return -EROFS; 288 289 /* Submit write */ 290 ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks); 291 if (ret) 292 return ret; 293 294 /* 295 * Validate the blocks in the buffer zone 296 * and invalidate in the data zone. 297 */ 298 ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks); 299 if (ret == 0 && chunk_block < zone->wp_block) 300 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); 301 302 return ret; 303 } 304 305 /* 306 * Process a write BIO. 307 */ 308 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone, 309 struct bio *bio) 310 { 311 sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); 312 unsigned int nr_blocks = dmz_bio_blocks(bio); 313 314 if (!zone) 315 return -ENOSPC; 316 317 dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks", 318 (unsigned long long)dmz_bio_chunk(dmz->dev, bio), 319 (dmz_is_rnd(zone) ? "RND" : "SEQ"), 320 dmz_id(dmz->metadata, zone), 321 (unsigned long long)chunk_block, nr_blocks); 322 323 if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) { 324 /* 325 * zone is a random zone or it is a sequential zone 326 * and the BIO is aligned to the zone write pointer: 327 * direct write the zone. 328 */ 329 return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks); 330 } 331 332 /* 333 * This is an unaligned write in a sequential zone: 334 * use buffered write. 335 */ 336 return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks); 337 } 338 339 /* 340 * Process a discard BIO. 341 */ 342 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone, 343 struct bio *bio) 344 { 345 struct dmz_metadata *zmd = dmz->metadata; 346 sector_t block = dmz_bio_block(bio); 347 unsigned int nr_blocks = dmz_bio_blocks(bio); 348 sector_t chunk_block = dmz_chunk_block(dmz->dev, block); 349 int ret = 0; 350 351 /* For unmapped chunks, there is nothing to do */ 352 if (!zone) 353 return 0; 354 355 if (dmz_is_readonly(zone)) 356 return -EROFS; 357 358 dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks", 359 (unsigned long long)dmz_bio_chunk(dmz->dev, bio), 360 dmz_id(zmd, zone), 361 (unsigned long long)chunk_block, nr_blocks); 362 363 /* 364 * Invalidate blocks in the data zone and its 365 * buffer zone if one is mapped. 366 */ 367 if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) 368 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); 369 if (ret == 0 && zone->bzone) 370 ret = dmz_invalidate_blocks(zmd, zone->bzone, 371 chunk_block, nr_blocks); 372 return ret; 373 } 374 375 /* 376 * Process a BIO. 377 */ 378 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw, 379 struct bio *bio) 380 { 381 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); 382 struct dmz_metadata *zmd = dmz->metadata; 383 struct dm_zone *zone; 384 int ret; 385 386 /* 387 * Write may trigger a zone allocation. So make sure the 388 * allocation can succeed. 389 */ 390 if (bio_op(bio) == REQ_OP_WRITE) 391 dmz_schedule_reclaim(dmz->reclaim); 392 393 dmz_lock_metadata(zmd); 394 395 if (dmz->dev->flags & DMZ_BDEV_DYING) { 396 ret = -EIO; 397 goto out; 398 } 399 400 /* 401 * Get the data zone mapping the chunk. There may be no 402 * mapping for read and discard. If a mapping is obtained, 403 + the zone returned will be set to active state. 404 */ 405 zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio), 406 bio_op(bio)); 407 if (IS_ERR(zone)) { 408 ret = PTR_ERR(zone); 409 goto out; 410 } 411 412 /* Process the BIO */ 413 if (zone) { 414 dmz_activate_zone(zone); 415 bioctx->zone = zone; 416 } 417 418 switch (bio_op(bio)) { 419 case REQ_OP_READ: 420 ret = dmz_handle_read(dmz, zone, bio); 421 break; 422 case REQ_OP_WRITE: 423 ret = dmz_handle_write(dmz, zone, bio); 424 break; 425 case REQ_OP_DISCARD: 426 case REQ_OP_WRITE_ZEROES: 427 ret = dmz_handle_discard(dmz, zone, bio); 428 break; 429 default: 430 dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x", 431 bio_op(bio)); 432 ret = -EIO; 433 } 434 435 /* 436 * Release the chunk mapping. This will check that the mapping 437 * is still valid, that is, that the zone used still has valid blocks. 438 */ 439 if (zone) 440 dmz_put_chunk_mapping(zmd, zone); 441 out: 442 dmz_bio_endio(bio, errno_to_blk_status(ret)); 443 444 dmz_unlock_metadata(zmd); 445 } 446 447 /* 448 * Increment a chunk reference counter. 449 */ 450 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw) 451 { 452 refcount_inc(&cw->refcount); 453 } 454 455 /* 456 * Decrement a chunk work reference count and 457 * free it if it becomes 0. 458 */ 459 static void dmz_put_chunk_work(struct dm_chunk_work *cw) 460 { 461 if (refcount_dec_and_test(&cw->refcount)) { 462 WARN_ON(!bio_list_empty(&cw->bio_list)); 463 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk); 464 kfree(cw); 465 } 466 } 467 468 /* 469 * Chunk BIO work function. 470 */ 471 static void dmz_chunk_work(struct work_struct *work) 472 { 473 struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work); 474 struct dmz_target *dmz = cw->target; 475 struct bio *bio; 476 477 mutex_lock(&dmz->chunk_lock); 478 479 /* Process the chunk BIOs */ 480 while ((bio = bio_list_pop(&cw->bio_list))) { 481 mutex_unlock(&dmz->chunk_lock); 482 dmz_handle_bio(dmz, cw, bio); 483 mutex_lock(&dmz->chunk_lock); 484 dmz_put_chunk_work(cw); 485 } 486 487 /* Queueing the work incremented the work refcount */ 488 dmz_put_chunk_work(cw); 489 490 mutex_unlock(&dmz->chunk_lock); 491 } 492 493 /* 494 * Flush work. 495 */ 496 static void dmz_flush_work(struct work_struct *work) 497 { 498 struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work); 499 struct bio *bio; 500 int ret; 501 502 /* Flush dirty metadata blocks */ 503 ret = dmz_flush_metadata(dmz->metadata); 504 if (ret) 505 dmz_dev_debug(dmz->dev, "Metadata flush failed, rc=%d\n", ret); 506 507 /* Process queued flush requests */ 508 while (1) { 509 spin_lock(&dmz->flush_lock); 510 bio = bio_list_pop(&dmz->flush_list); 511 spin_unlock(&dmz->flush_lock); 512 513 if (!bio) 514 break; 515 516 dmz_bio_endio(bio, errno_to_blk_status(ret)); 517 } 518 519 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); 520 } 521 522 /* 523 * Get a chunk work and start it to process a new BIO. 524 * If the BIO chunk has no work yet, create one. 525 */ 526 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio) 527 { 528 unsigned int chunk = dmz_bio_chunk(dmz->dev, bio); 529 struct dm_chunk_work *cw; 530 int ret = 0; 531 532 mutex_lock(&dmz->chunk_lock); 533 534 /* Get the BIO chunk work. If one is not active yet, create one */ 535 cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk); 536 if (!cw) { 537 538 /* Create a new chunk work */ 539 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO); 540 if (unlikely(!cw)) { 541 ret = -ENOMEM; 542 goto out; 543 } 544 545 INIT_WORK(&cw->work, dmz_chunk_work); 546 refcount_set(&cw->refcount, 0); 547 cw->target = dmz; 548 cw->chunk = chunk; 549 bio_list_init(&cw->bio_list); 550 551 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw); 552 if (unlikely(ret)) { 553 kfree(cw); 554 goto out; 555 } 556 } 557 558 bio_list_add(&cw->bio_list, bio); 559 dmz_get_chunk_work(cw); 560 561 dmz_reclaim_bio_acc(dmz->reclaim); 562 if (queue_work(dmz->chunk_wq, &cw->work)) 563 dmz_get_chunk_work(cw); 564 out: 565 mutex_unlock(&dmz->chunk_lock); 566 return ret; 567 } 568 569 /* 570 * Check the backing device availability. If it's on the way out, 571 * start failing I/O. Reclaim and metadata components also call this 572 * function to cleanly abort operation in the event of such failure. 573 */ 574 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev) 575 { 576 struct gendisk *disk; 577 578 if (!(dmz_dev->flags & DMZ_BDEV_DYING)) { 579 disk = dmz_dev->bdev->bd_disk; 580 if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) { 581 dmz_dev_warn(dmz_dev, "Backing device queue dying"); 582 dmz_dev->flags |= DMZ_BDEV_DYING; 583 } else if (disk->fops->check_events) { 584 if (disk->fops->check_events(disk, 0) & 585 DISK_EVENT_MEDIA_CHANGE) { 586 dmz_dev_warn(dmz_dev, "Backing device offline"); 587 dmz_dev->flags |= DMZ_BDEV_DYING; 588 } 589 } 590 } 591 592 return dmz_dev->flags & DMZ_BDEV_DYING; 593 } 594 595 /* 596 * Process a new BIO. 597 */ 598 static int dmz_map(struct dm_target *ti, struct bio *bio) 599 { 600 struct dmz_target *dmz = ti->private; 601 struct dmz_dev *dev = dmz->dev; 602 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); 603 sector_t sector = bio->bi_iter.bi_sector; 604 unsigned int nr_sectors = bio_sectors(bio); 605 sector_t chunk_sector; 606 int ret; 607 608 if (dmz_bdev_is_dying(dmz->dev)) 609 return DM_MAPIO_KILL; 610 611 dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks", 612 bio_op(bio), (unsigned long long)sector, nr_sectors, 613 (unsigned long long)dmz_bio_chunk(dmz->dev, bio), 614 (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)), 615 (unsigned int)dmz_bio_blocks(bio)); 616 617 bio_set_dev(bio, dev->bdev); 618 619 if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE) 620 return DM_MAPIO_REMAPPED; 621 622 /* The BIO should be block aligned */ 623 if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK)) 624 return DM_MAPIO_KILL; 625 626 /* Initialize the BIO context */ 627 bioctx->target = dmz; 628 bioctx->zone = NULL; 629 bioctx->bio = bio; 630 refcount_set(&bioctx->ref, 1); 631 632 /* Set the BIO pending in the flush list */ 633 if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) { 634 spin_lock(&dmz->flush_lock); 635 bio_list_add(&dmz->flush_list, bio); 636 spin_unlock(&dmz->flush_lock); 637 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0); 638 return DM_MAPIO_SUBMITTED; 639 } 640 641 /* Split zone BIOs to fit entirely into a zone */ 642 chunk_sector = sector & (dev->zone_nr_sectors - 1); 643 if (chunk_sector + nr_sectors > dev->zone_nr_sectors) 644 dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector); 645 646 /* Now ready to handle this BIO */ 647 ret = dmz_queue_chunk_work(dmz, bio); 648 if (ret) { 649 dmz_dev_debug(dmz->dev, 650 "BIO op %d, can't process chunk %llu, err %i\n", 651 bio_op(bio), (u64)dmz_bio_chunk(dmz->dev, bio), 652 ret); 653 return DM_MAPIO_REQUEUE; 654 } 655 656 return DM_MAPIO_SUBMITTED; 657 } 658 659 /* 660 * Get zoned device information. 661 */ 662 static int dmz_get_zoned_device(struct dm_target *ti, char *path) 663 { 664 struct dmz_target *dmz = ti->private; 665 struct request_queue *q; 666 struct dmz_dev *dev; 667 sector_t aligned_capacity; 668 int ret; 669 670 /* Get the target device */ 671 ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev); 672 if (ret) { 673 ti->error = "Get target device failed"; 674 dmz->ddev = NULL; 675 return ret; 676 } 677 678 dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL); 679 if (!dev) { 680 ret = -ENOMEM; 681 goto err; 682 } 683 684 dev->bdev = dmz->ddev->bdev; 685 (void)bdevname(dev->bdev, dev->name); 686 687 if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) { 688 ti->error = "Not a zoned block device"; 689 ret = -EINVAL; 690 goto err; 691 } 692 693 q = bdev_get_queue(dev->bdev); 694 dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; 695 aligned_capacity = dev->capacity & 696 ~((sector_t)blk_queue_zone_sectors(q) - 1); 697 if (ti->begin || 698 ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) { 699 ti->error = "Partial mapping not supported"; 700 ret = -EINVAL; 701 goto err; 702 } 703 704 dev->zone_nr_sectors = blk_queue_zone_sectors(q); 705 dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors); 706 707 dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors); 708 dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks); 709 710 dev->nr_zones = blkdev_nr_zones(dev->bdev); 711 712 dmz->dev = dev; 713 714 return 0; 715 err: 716 dm_put_device(ti, dmz->ddev); 717 kfree(dev); 718 719 return ret; 720 } 721 722 /* 723 * Cleanup zoned device information. 724 */ 725 static void dmz_put_zoned_device(struct dm_target *ti) 726 { 727 struct dmz_target *dmz = ti->private; 728 729 dm_put_device(ti, dmz->ddev); 730 kfree(dmz->dev); 731 dmz->dev = NULL; 732 } 733 734 /* 735 * Setup target. 736 */ 737 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv) 738 { 739 struct dmz_target *dmz; 740 struct dmz_dev *dev; 741 int ret; 742 743 /* Check arguments */ 744 if (argc != 1) { 745 ti->error = "Invalid argument count"; 746 return -EINVAL; 747 } 748 749 /* Allocate and initialize the target descriptor */ 750 dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL); 751 if (!dmz) { 752 ti->error = "Unable to allocate the zoned target descriptor"; 753 return -ENOMEM; 754 } 755 ti->private = dmz; 756 757 /* Get the target zoned block device */ 758 ret = dmz_get_zoned_device(ti, argv[0]); 759 if (ret) { 760 dmz->ddev = NULL; 761 goto err; 762 } 763 764 /* Initialize metadata */ 765 dev = dmz->dev; 766 ret = dmz_ctr_metadata(dev, &dmz->metadata); 767 if (ret) { 768 ti->error = "Metadata initialization failed"; 769 goto err_dev; 770 } 771 772 /* Set target (no write same support) */ 773 ti->max_io_len = dev->zone_nr_sectors << 9; 774 ti->num_flush_bios = 1; 775 ti->num_discard_bios = 1; 776 ti->num_write_zeroes_bios = 1; 777 ti->per_io_data_size = sizeof(struct dmz_bioctx); 778 ti->flush_supported = true; 779 ti->discards_supported = true; 780 781 /* The exposed capacity is the number of chunks that can be mapped */ 782 ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift; 783 784 /* Zone BIO */ 785 ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0); 786 if (ret) { 787 ti->error = "Create BIO set failed"; 788 goto err_meta; 789 } 790 791 /* Chunk BIO work */ 792 mutex_init(&dmz->chunk_lock); 793 INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO); 794 dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 795 0, dev->name); 796 if (!dmz->chunk_wq) { 797 ti->error = "Create chunk workqueue failed"; 798 ret = -ENOMEM; 799 goto err_bio; 800 } 801 802 /* Flush work */ 803 spin_lock_init(&dmz->flush_lock); 804 bio_list_init(&dmz->flush_list); 805 INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work); 806 dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM, 807 dev->name); 808 if (!dmz->flush_wq) { 809 ti->error = "Create flush workqueue failed"; 810 ret = -ENOMEM; 811 goto err_cwq; 812 } 813 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); 814 815 /* Initialize reclaim */ 816 ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim); 817 if (ret) { 818 ti->error = "Zone reclaim initialization failed"; 819 goto err_fwq; 820 } 821 822 dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)", 823 (unsigned long long)ti->len, 824 (unsigned long long)dmz_sect2blk(ti->len)); 825 826 return 0; 827 err_fwq: 828 destroy_workqueue(dmz->flush_wq); 829 err_cwq: 830 destroy_workqueue(dmz->chunk_wq); 831 err_bio: 832 mutex_destroy(&dmz->chunk_lock); 833 bioset_exit(&dmz->bio_set); 834 err_meta: 835 dmz_dtr_metadata(dmz->metadata); 836 err_dev: 837 dmz_put_zoned_device(ti); 838 err: 839 kfree(dmz); 840 841 return ret; 842 } 843 844 /* 845 * Cleanup target. 846 */ 847 static void dmz_dtr(struct dm_target *ti) 848 { 849 struct dmz_target *dmz = ti->private; 850 851 flush_workqueue(dmz->chunk_wq); 852 destroy_workqueue(dmz->chunk_wq); 853 854 dmz_dtr_reclaim(dmz->reclaim); 855 856 cancel_delayed_work_sync(&dmz->flush_work); 857 destroy_workqueue(dmz->flush_wq); 858 859 (void) dmz_flush_metadata(dmz->metadata); 860 861 dmz_dtr_metadata(dmz->metadata); 862 863 bioset_exit(&dmz->bio_set); 864 865 dmz_put_zoned_device(ti); 866 867 mutex_destroy(&dmz->chunk_lock); 868 869 kfree(dmz); 870 } 871 872 /* 873 * Setup target request queue limits. 874 */ 875 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits) 876 { 877 struct dmz_target *dmz = ti->private; 878 unsigned int chunk_sectors = dmz->dev->zone_nr_sectors; 879 880 limits->logical_block_size = DMZ_BLOCK_SIZE; 881 limits->physical_block_size = DMZ_BLOCK_SIZE; 882 883 blk_limits_io_min(limits, DMZ_BLOCK_SIZE); 884 blk_limits_io_opt(limits, DMZ_BLOCK_SIZE); 885 886 limits->discard_alignment = DMZ_BLOCK_SIZE; 887 limits->discard_granularity = DMZ_BLOCK_SIZE; 888 limits->max_discard_sectors = chunk_sectors; 889 limits->max_hw_discard_sectors = chunk_sectors; 890 limits->max_write_zeroes_sectors = chunk_sectors; 891 892 /* FS hint to try to align to the device zone size */ 893 limits->chunk_sectors = chunk_sectors; 894 limits->max_sectors = chunk_sectors; 895 896 /* We are exposing a drive-managed zoned block device */ 897 limits->zoned = BLK_ZONED_NONE; 898 } 899 900 /* 901 * Pass on ioctl to the backend device. 902 */ 903 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) 904 { 905 struct dmz_target *dmz = ti->private; 906 907 if (dmz_bdev_is_dying(dmz->dev)) 908 return -ENODEV; 909 910 *bdev = dmz->dev->bdev; 911 912 return 0; 913 } 914 915 /* 916 * Stop works on suspend. 917 */ 918 static void dmz_suspend(struct dm_target *ti) 919 { 920 struct dmz_target *dmz = ti->private; 921 922 flush_workqueue(dmz->chunk_wq); 923 dmz_suspend_reclaim(dmz->reclaim); 924 cancel_delayed_work_sync(&dmz->flush_work); 925 } 926 927 /* 928 * Restart works on resume or if suspend failed. 929 */ 930 static void dmz_resume(struct dm_target *ti) 931 { 932 struct dmz_target *dmz = ti->private; 933 934 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); 935 dmz_resume_reclaim(dmz->reclaim); 936 } 937 938 static int dmz_iterate_devices(struct dm_target *ti, 939 iterate_devices_callout_fn fn, void *data) 940 { 941 struct dmz_target *dmz = ti->private; 942 struct dmz_dev *dev = dmz->dev; 943 sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1); 944 945 return fn(ti, dmz->ddev, 0, capacity, data); 946 } 947 948 static struct target_type dmz_type = { 949 .name = "zoned", 950 .version = {1, 0, 0}, 951 .features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM, 952 .module = THIS_MODULE, 953 .ctr = dmz_ctr, 954 .dtr = dmz_dtr, 955 .map = dmz_map, 956 .io_hints = dmz_io_hints, 957 .prepare_ioctl = dmz_prepare_ioctl, 958 .postsuspend = dmz_suspend, 959 .resume = dmz_resume, 960 .iterate_devices = dmz_iterate_devices, 961 }; 962 963 static int __init dmz_init(void) 964 { 965 return dm_register_target(&dmz_type); 966 } 967 968 static void __exit dmz_exit(void) 969 { 970 dm_unregister_target(&dmz_type); 971 } 972 973 module_init(dmz_init); 974 module_exit(dmz_exit); 975 976 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices"); 977 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>"); 978 MODULE_LICENSE("GPL"); 979