xref: /openbmc/linux/drivers/md/dm-zoned-target.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-zoned.h"
9 
10 #include <linux/module.h>
11 
12 #define	DM_MSG_PREFIX		"zoned"
13 
14 #define DMZ_MIN_BIOS		8192
15 
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20 	struct dmz_target	*target;
21 	struct dm_zone		*zone;
22 	struct bio		*bio;
23 	refcount_t		ref;
24 };
25 
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30 	struct work_struct	work;
31 	refcount_t		refcount;
32 	struct dmz_target	*target;
33 	unsigned int		chunk;
34 	struct bio_list		bio_list;
35 };
36 
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41 	struct dm_dev		*ddev;
42 
43 	unsigned long		flags;
44 
45 	/* Zoned block device information */
46 	struct dmz_dev		*dev;
47 
48 	/* For metadata handling */
49 	struct dmz_metadata     *metadata;
50 
51 	/* For reclaim */
52 	struct dmz_reclaim	*reclaim;
53 
54 	/* For chunk work */
55 	struct radix_tree_root	chunk_rxtree;
56 	struct workqueue_struct *chunk_wq;
57 	struct mutex		chunk_lock;
58 
59 	/* For cloned BIOs to zones */
60 	struct bio_set		bio_set;
61 
62 	/* For flush */
63 	spinlock_t		flush_lock;
64 	struct bio_list		flush_list;
65 	struct delayed_work	flush_work;
66 	struct workqueue_struct *flush_wq;
67 };
68 
69 /*
70  * Flush intervals (seconds).
71  */
72 #define DMZ_FLUSH_PERIOD	(10 * HZ)
73 
74 /*
75  * Target BIO completion.
76  */
77 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
78 {
79 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
80 
81 	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
82 		bio->bi_status = status;
83 
84 	if (refcount_dec_and_test(&bioctx->ref)) {
85 		struct dm_zone *zone = bioctx->zone;
86 
87 		if (zone) {
88 			if (bio->bi_status != BLK_STS_OK &&
89 			    bio_op(bio) == REQ_OP_WRITE &&
90 			    dmz_is_seq(zone))
91 				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
92 			dmz_deactivate_zone(zone);
93 		}
94 		bio_endio(bio);
95 	}
96 }
97 
98 /*
99  * Completion callback for an internally cloned target BIO. This terminates the
100  * target BIO when there are no more references to its context.
101  */
102 static void dmz_clone_endio(struct bio *clone)
103 {
104 	struct dmz_bioctx *bioctx = clone->bi_private;
105 	blk_status_t status = clone->bi_status;
106 
107 	bio_put(clone);
108 	dmz_bio_endio(bioctx->bio, status);
109 }
110 
111 /*
112  * Issue a clone of a target BIO. The clone may only partially process the
113  * original target BIO.
114  */
115 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
116 			  struct bio *bio, sector_t chunk_block,
117 			  unsigned int nr_blocks)
118 {
119 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
120 	struct bio *clone;
121 
122 	clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
123 	if (!clone)
124 		return -ENOMEM;
125 
126 	bio_set_dev(clone, dmz->dev->bdev);
127 	clone->bi_iter.bi_sector =
128 		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
129 	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
130 	clone->bi_end_io = dmz_clone_endio;
131 	clone->bi_private = bioctx;
132 
133 	bio_advance(bio, clone->bi_iter.bi_size);
134 
135 	refcount_inc(&bioctx->ref);
136 	generic_make_request(clone);
137 	if (clone->bi_status == BLK_STS_IOERR)
138 		return -EIO;
139 
140 	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
141 		zone->wp_block += nr_blocks;
142 
143 	return 0;
144 }
145 
146 /*
147  * Zero out pages of discarded blocks accessed by a read BIO.
148  */
149 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
150 				 sector_t chunk_block, unsigned int nr_blocks)
151 {
152 	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
153 
154 	/* Clear nr_blocks */
155 	swap(bio->bi_iter.bi_size, size);
156 	zero_fill_bio(bio);
157 	swap(bio->bi_iter.bi_size, size);
158 
159 	bio_advance(bio, size);
160 }
161 
162 /*
163  * Process a read BIO.
164  */
165 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
166 			   struct bio *bio)
167 {
168 	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
169 	unsigned int nr_blocks = dmz_bio_blocks(bio);
170 	sector_t end_block = chunk_block + nr_blocks;
171 	struct dm_zone *rzone, *bzone;
172 	int ret;
173 
174 	/* Read into unmapped chunks need only zeroing the BIO buffer */
175 	if (!zone) {
176 		zero_fill_bio(bio);
177 		return 0;
178 	}
179 
180 	dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
181 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
182 		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
183 		      dmz_id(dmz->metadata, zone),
184 		      (unsigned long long)chunk_block, nr_blocks);
185 
186 	/* Check block validity to determine the read location */
187 	bzone = zone->bzone;
188 	while (chunk_block < end_block) {
189 		nr_blocks = 0;
190 		if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
191 			/* Test block validity in the data zone */
192 			ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
193 			if (ret < 0)
194 				return ret;
195 			if (ret > 0) {
196 				/* Read data zone blocks */
197 				nr_blocks = ret;
198 				rzone = zone;
199 			}
200 		}
201 
202 		/*
203 		 * No valid blocks found in the data zone.
204 		 * Check the buffer zone, if there is one.
205 		 */
206 		if (!nr_blocks && bzone) {
207 			ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
208 			if (ret < 0)
209 				return ret;
210 			if (ret > 0) {
211 				/* Read buffer zone blocks */
212 				nr_blocks = ret;
213 				rzone = bzone;
214 			}
215 		}
216 
217 		if (nr_blocks) {
218 			/* Valid blocks found: read them */
219 			nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
220 			ret = dmz_submit_bio(dmz, rzone, bio, chunk_block, nr_blocks);
221 			if (ret)
222 				return ret;
223 			chunk_block += nr_blocks;
224 		} else {
225 			/* No valid block: zeroout the current BIO block */
226 			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
227 			chunk_block++;
228 		}
229 	}
230 
231 	return 0;
232 }
233 
234 /*
235  * Write blocks directly in a data zone, at the write pointer.
236  * If a buffer zone is assigned, invalidate the blocks written
237  * in place.
238  */
239 static int dmz_handle_direct_write(struct dmz_target *dmz,
240 				   struct dm_zone *zone, struct bio *bio,
241 				   sector_t chunk_block,
242 				   unsigned int nr_blocks)
243 {
244 	struct dmz_metadata *zmd = dmz->metadata;
245 	struct dm_zone *bzone = zone->bzone;
246 	int ret;
247 
248 	if (dmz_is_readonly(zone))
249 		return -EROFS;
250 
251 	/* Submit write */
252 	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
253 	if (ret)
254 		return ret;
255 
256 	/*
257 	 * Validate the blocks in the data zone and invalidate
258 	 * in the buffer zone, if there is one.
259 	 */
260 	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
261 	if (ret == 0 && bzone)
262 		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
263 
264 	return ret;
265 }
266 
267 /*
268  * Write blocks in the buffer zone of @zone.
269  * If no buffer zone is assigned yet, get one.
270  * Called with @zone write locked.
271  */
272 static int dmz_handle_buffered_write(struct dmz_target *dmz,
273 				     struct dm_zone *zone, struct bio *bio,
274 				     sector_t chunk_block,
275 				     unsigned int nr_blocks)
276 {
277 	struct dmz_metadata *zmd = dmz->metadata;
278 	struct dm_zone *bzone;
279 	int ret;
280 
281 	/* Get the buffer zone. One will be allocated if needed */
282 	bzone = dmz_get_chunk_buffer(zmd, zone);
283 	if (IS_ERR(bzone))
284 		return PTR_ERR(bzone);
285 
286 	if (dmz_is_readonly(bzone))
287 		return -EROFS;
288 
289 	/* Submit write */
290 	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
291 	if (ret)
292 		return ret;
293 
294 	/*
295 	 * Validate the blocks in the buffer zone
296 	 * and invalidate in the data zone.
297 	 */
298 	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
299 	if (ret == 0 && chunk_block < zone->wp_block)
300 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
301 
302 	return ret;
303 }
304 
305 /*
306  * Process a write BIO.
307  */
308 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
309 			    struct bio *bio)
310 {
311 	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
312 	unsigned int nr_blocks = dmz_bio_blocks(bio);
313 
314 	if (!zone)
315 		return -ENOSPC;
316 
317 	dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
318 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
319 		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
320 		      dmz_id(dmz->metadata, zone),
321 		      (unsigned long long)chunk_block, nr_blocks);
322 
323 	if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
324 		/*
325 		 * zone is a random zone or it is a sequential zone
326 		 * and the BIO is aligned to the zone write pointer:
327 		 * direct write the zone.
328 		 */
329 		return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
330 	}
331 
332 	/*
333 	 * This is an unaligned write in a sequential zone:
334 	 * use buffered write.
335 	 */
336 	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
337 }
338 
339 /*
340  * Process a discard BIO.
341  */
342 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
343 			      struct bio *bio)
344 {
345 	struct dmz_metadata *zmd = dmz->metadata;
346 	sector_t block = dmz_bio_block(bio);
347 	unsigned int nr_blocks = dmz_bio_blocks(bio);
348 	sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
349 	int ret = 0;
350 
351 	/* For unmapped chunks, there is nothing to do */
352 	if (!zone)
353 		return 0;
354 
355 	if (dmz_is_readonly(zone))
356 		return -EROFS;
357 
358 	dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
359 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
360 		      dmz_id(zmd, zone),
361 		      (unsigned long long)chunk_block, nr_blocks);
362 
363 	/*
364 	 * Invalidate blocks in the data zone and its
365 	 * buffer zone if one is mapped.
366 	 */
367 	if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
368 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
369 	if (ret == 0 && zone->bzone)
370 		ret = dmz_invalidate_blocks(zmd, zone->bzone,
371 					    chunk_block, nr_blocks);
372 	return ret;
373 }
374 
375 /*
376  * Process a BIO.
377  */
378 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
379 			   struct bio *bio)
380 {
381 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
382 	struct dmz_metadata *zmd = dmz->metadata;
383 	struct dm_zone *zone;
384 	int ret;
385 
386 	/*
387 	 * Write may trigger a zone allocation. So make sure the
388 	 * allocation can succeed.
389 	 */
390 	if (bio_op(bio) == REQ_OP_WRITE)
391 		dmz_schedule_reclaim(dmz->reclaim);
392 
393 	dmz_lock_metadata(zmd);
394 
395 	if (dmz->dev->flags & DMZ_BDEV_DYING) {
396 		ret = -EIO;
397 		goto out;
398 	}
399 
400 	/*
401 	 * Get the data zone mapping the chunk. There may be no
402 	 * mapping for read and discard. If a mapping is obtained,
403 	 + the zone returned will be set to active state.
404 	 */
405 	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
406 				     bio_op(bio));
407 	if (IS_ERR(zone)) {
408 		ret = PTR_ERR(zone);
409 		goto out;
410 	}
411 
412 	/* Process the BIO */
413 	if (zone) {
414 		dmz_activate_zone(zone);
415 		bioctx->zone = zone;
416 	}
417 
418 	switch (bio_op(bio)) {
419 	case REQ_OP_READ:
420 		ret = dmz_handle_read(dmz, zone, bio);
421 		break;
422 	case REQ_OP_WRITE:
423 		ret = dmz_handle_write(dmz, zone, bio);
424 		break;
425 	case REQ_OP_DISCARD:
426 	case REQ_OP_WRITE_ZEROES:
427 		ret = dmz_handle_discard(dmz, zone, bio);
428 		break;
429 	default:
430 		dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
431 			    bio_op(bio));
432 		ret = -EIO;
433 	}
434 
435 	/*
436 	 * Release the chunk mapping. This will check that the mapping
437 	 * is still valid, that is, that the zone used still has valid blocks.
438 	 */
439 	if (zone)
440 		dmz_put_chunk_mapping(zmd, zone);
441 out:
442 	dmz_bio_endio(bio, errno_to_blk_status(ret));
443 
444 	dmz_unlock_metadata(zmd);
445 }
446 
447 /*
448  * Increment a chunk reference counter.
449  */
450 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
451 {
452 	refcount_inc(&cw->refcount);
453 }
454 
455 /*
456  * Decrement a chunk work reference count and
457  * free it if it becomes 0.
458  */
459 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
460 {
461 	if (refcount_dec_and_test(&cw->refcount)) {
462 		WARN_ON(!bio_list_empty(&cw->bio_list));
463 		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
464 		kfree(cw);
465 	}
466 }
467 
468 /*
469  * Chunk BIO work function.
470  */
471 static void dmz_chunk_work(struct work_struct *work)
472 {
473 	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
474 	struct dmz_target *dmz = cw->target;
475 	struct bio *bio;
476 
477 	mutex_lock(&dmz->chunk_lock);
478 
479 	/* Process the chunk BIOs */
480 	while ((bio = bio_list_pop(&cw->bio_list))) {
481 		mutex_unlock(&dmz->chunk_lock);
482 		dmz_handle_bio(dmz, cw, bio);
483 		mutex_lock(&dmz->chunk_lock);
484 		dmz_put_chunk_work(cw);
485 	}
486 
487 	/* Queueing the work incremented the work refcount */
488 	dmz_put_chunk_work(cw);
489 
490 	mutex_unlock(&dmz->chunk_lock);
491 }
492 
493 /*
494  * Flush work.
495  */
496 static void dmz_flush_work(struct work_struct *work)
497 {
498 	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
499 	struct bio *bio;
500 	int ret;
501 
502 	/* Flush dirty metadata blocks */
503 	ret = dmz_flush_metadata(dmz->metadata);
504 	if (ret)
505 		dmz_dev_debug(dmz->dev, "Metadata flush failed, rc=%d\n", ret);
506 
507 	/* Process queued flush requests */
508 	while (1) {
509 		spin_lock(&dmz->flush_lock);
510 		bio = bio_list_pop(&dmz->flush_list);
511 		spin_unlock(&dmz->flush_lock);
512 
513 		if (!bio)
514 			break;
515 
516 		dmz_bio_endio(bio, errno_to_blk_status(ret));
517 	}
518 
519 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
520 }
521 
522 /*
523  * Get a chunk work and start it to process a new BIO.
524  * If the BIO chunk has no work yet, create one.
525  */
526 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
527 {
528 	unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
529 	struct dm_chunk_work *cw;
530 	int ret = 0;
531 
532 	mutex_lock(&dmz->chunk_lock);
533 
534 	/* Get the BIO chunk work. If one is not active yet, create one */
535 	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
536 	if (!cw) {
537 
538 		/* Create a new chunk work */
539 		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
540 		if (unlikely(!cw)) {
541 			ret = -ENOMEM;
542 			goto out;
543 		}
544 
545 		INIT_WORK(&cw->work, dmz_chunk_work);
546 		refcount_set(&cw->refcount, 0);
547 		cw->target = dmz;
548 		cw->chunk = chunk;
549 		bio_list_init(&cw->bio_list);
550 
551 		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
552 		if (unlikely(ret)) {
553 			kfree(cw);
554 			goto out;
555 		}
556 	}
557 
558 	bio_list_add(&cw->bio_list, bio);
559 	dmz_get_chunk_work(cw);
560 
561 	dmz_reclaim_bio_acc(dmz->reclaim);
562 	if (queue_work(dmz->chunk_wq, &cw->work))
563 		dmz_get_chunk_work(cw);
564 out:
565 	mutex_unlock(&dmz->chunk_lock);
566 	return ret;
567 }
568 
569 /*
570  * Check the backing device availability. If it's on the way out,
571  * start failing I/O. Reclaim and metadata components also call this
572  * function to cleanly abort operation in the event of such failure.
573  */
574 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
575 {
576 	struct gendisk *disk;
577 
578 	if (!(dmz_dev->flags & DMZ_BDEV_DYING)) {
579 		disk = dmz_dev->bdev->bd_disk;
580 		if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
581 			dmz_dev_warn(dmz_dev, "Backing device queue dying");
582 			dmz_dev->flags |= DMZ_BDEV_DYING;
583 		} else if (disk->fops->check_events) {
584 			if (disk->fops->check_events(disk, 0) &
585 					DISK_EVENT_MEDIA_CHANGE) {
586 				dmz_dev_warn(dmz_dev, "Backing device offline");
587 				dmz_dev->flags |= DMZ_BDEV_DYING;
588 			}
589 		}
590 	}
591 
592 	return dmz_dev->flags & DMZ_BDEV_DYING;
593 }
594 
595 /*
596  * Process a new BIO.
597  */
598 static int dmz_map(struct dm_target *ti, struct bio *bio)
599 {
600 	struct dmz_target *dmz = ti->private;
601 	struct dmz_dev *dev = dmz->dev;
602 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
603 	sector_t sector = bio->bi_iter.bi_sector;
604 	unsigned int nr_sectors = bio_sectors(bio);
605 	sector_t chunk_sector;
606 	int ret;
607 
608 	if (dmz_bdev_is_dying(dmz->dev))
609 		return DM_MAPIO_KILL;
610 
611 	dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
612 		      bio_op(bio), (unsigned long long)sector, nr_sectors,
613 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
614 		      (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
615 		      (unsigned int)dmz_bio_blocks(bio));
616 
617 	bio_set_dev(bio, dev->bdev);
618 
619 	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
620 		return DM_MAPIO_REMAPPED;
621 
622 	/* The BIO should be block aligned */
623 	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
624 		return DM_MAPIO_KILL;
625 
626 	/* Initialize the BIO context */
627 	bioctx->target = dmz;
628 	bioctx->zone = NULL;
629 	bioctx->bio = bio;
630 	refcount_set(&bioctx->ref, 1);
631 
632 	/* Set the BIO pending in the flush list */
633 	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
634 		spin_lock(&dmz->flush_lock);
635 		bio_list_add(&dmz->flush_list, bio);
636 		spin_unlock(&dmz->flush_lock);
637 		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
638 		return DM_MAPIO_SUBMITTED;
639 	}
640 
641 	/* Split zone BIOs to fit entirely into a zone */
642 	chunk_sector = sector & (dev->zone_nr_sectors - 1);
643 	if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
644 		dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);
645 
646 	/* Now ready to handle this BIO */
647 	ret = dmz_queue_chunk_work(dmz, bio);
648 	if (ret) {
649 		dmz_dev_debug(dmz->dev,
650 			      "BIO op %d, can't process chunk %llu, err %i\n",
651 			      bio_op(bio), (u64)dmz_bio_chunk(dmz->dev, bio),
652 			      ret);
653 		return DM_MAPIO_REQUEUE;
654 	}
655 
656 	return DM_MAPIO_SUBMITTED;
657 }
658 
659 /*
660  * Get zoned device information.
661  */
662 static int dmz_get_zoned_device(struct dm_target *ti, char *path)
663 {
664 	struct dmz_target *dmz = ti->private;
665 	struct request_queue *q;
666 	struct dmz_dev *dev;
667 	sector_t aligned_capacity;
668 	int ret;
669 
670 	/* Get the target device */
671 	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
672 	if (ret) {
673 		ti->error = "Get target device failed";
674 		dmz->ddev = NULL;
675 		return ret;
676 	}
677 
678 	dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
679 	if (!dev) {
680 		ret = -ENOMEM;
681 		goto err;
682 	}
683 
684 	dev->bdev = dmz->ddev->bdev;
685 	(void)bdevname(dev->bdev, dev->name);
686 
687 	if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
688 		ti->error = "Not a zoned block device";
689 		ret = -EINVAL;
690 		goto err;
691 	}
692 
693 	q = bdev_get_queue(dev->bdev);
694 	dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
695 	aligned_capacity = dev->capacity &
696 				~((sector_t)blk_queue_zone_sectors(q) - 1);
697 	if (ti->begin ||
698 	    ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) {
699 		ti->error = "Partial mapping not supported";
700 		ret = -EINVAL;
701 		goto err;
702 	}
703 
704 	dev->zone_nr_sectors = blk_queue_zone_sectors(q);
705 	dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);
706 
707 	dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
708 	dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);
709 
710 	dev->nr_zones = blkdev_nr_zones(dev->bdev);
711 
712 	dmz->dev = dev;
713 
714 	return 0;
715 err:
716 	dm_put_device(ti, dmz->ddev);
717 	kfree(dev);
718 
719 	return ret;
720 }
721 
722 /*
723  * Cleanup zoned device information.
724  */
725 static void dmz_put_zoned_device(struct dm_target *ti)
726 {
727 	struct dmz_target *dmz = ti->private;
728 
729 	dm_put_device(ti, dmz->ddev);
730 	kfree(dmz->dev);
731 	dmz->dev = NULL;
732 }
733 
734 /*
735  * Setup target.
736  */
737 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
738 {
739 	struct dmz_target *dmz;
740 	struct dmz_dev *dev;
741 	int ret;
742 
743 	/* Check arguments */
744 	if (argc != 1) {
745 		ti->error = "Invalid argument count";
746 		return -EINVAL;
747 	}
748 
749 	/* Allocate and initialize the target descriptor */
750 	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
751 	if (!dmz) {
752 		ti->error = "Unable to allocate the zoned target descriptor";
753 		return -ENOMEM;
754 	}
755 	ti->private = dmz;
756 
757 	/* Get the target zoned block device */
758 	ret = dmz_get_zoned_device(ti, argv[0]);
759 	if (ret) {
760 		dmz->ddev = NULL;
761 		goto err;
762 	}
763 
764 	/* Initialize metadata */
765 	dev = dmz->dev;
766 	ret = dmz_ctr_metadata(dev, &dmz->metadata);
767 	if (ret) {
768 		ti->error = "Metadata initialization failed";
769 		goto err_dev;
770 	}
771 
772 	/* Set target (no write same support) */
773 	ti->max_io_len = dev->zone_nr_sectors << 9;
774 	ti->num_flush_bios = 1;
775 	ti->num_discard_bios = 1;
776 	ti->num_write_zeroes_bios = 1;
777 	ti->per_io_data_size = sizeof(struct dmz_bioctx);
778 	ti->flush_supported = true;
779 	ti->discards_supported = true;
780 
781 	/* The exposed capacity is the number of chunks that can be mapped */
782 	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;
783 
784 	/* Zone BIO */
785 	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
786 	if (ret) {
787 		ti->error = "Create BIO set failed";
788 		goto err_meta;
789 	}
790 
791 	/* Chunk BIO work */
792 	mutex_init(&dmz->chunk_lock);
793 	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
794 	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
795 					0, dev->name);
796 	if (!dmz->chunk_wq) {
797 		ti->error = "Create chunk workqueue failed";
798 		ret = -ENOMEM;
799 		goto err_bio;
800 	}
801 
802 	/* Flush work */
803 	spin_lock_init(&dmz->flush_lock);
804 	bio_list_init(&dmz->flush_list);
805 	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
806 	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
807 						dev->name);
808 	if (!dmz->flush_wq) {
809 		ti->error = "Create flush workqueue failed";
810 		ret = -ENOMEM;
811 		goto err_cwq;
812 	}
813 	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
814 
815 	/* Initialize reclaim */
816 	ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
817 	if (ret) {
818 		ti->error = "Zone reclaim initialization failed";
819 		goto err_fwq;
820 	}
821 
822 	dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
823 		     (unsigned long long)ti->len,
824 		     (unsigned long long)dmz_sect2blk(ti->len));
825 
826 	return 0;
827 err_fwq:
828 	destroy_workqueue(dmz->flush_wq);
829 err_cwq:
830 	destroy_workqueue(dmz->chunk_wq);
831 err_bio:
832 	mutex_destroy(&dmz->chunk_lock);
833 	bioset_exit(&dmz->bio_set);
834 err_meta:
835 	dmz_dtr_metadata(dmz->metadata);
836 err_dev:
837 	dmz_put_zoned_device(ti);
838 err:
839 	kfree(dmz);
840 
841 	return ret;
842 }
843 
844 /*
845  * Cleanup target.
846  */
847 static void dmz_dtr(struct dm_target *ti)
848 {
849 	struct dmz_target *dmz = ti->private;
850 
851 	flush_workqueue(dmz->chunk_wq);
852 	destroy_workqueue(dmz->chunk_wq);
853 
854 	dmz_dtr_reclaim(dmz->reclaim);
855 
856 	cancel_delayed_work_sync(&dmz->flush_work);
857 	destroy_workqueue(dmz->flush_wq);
858 
859 	(void) dmz_flush_metadata(dmz->metadata);
860 
861 	dmz_dtr_metadata(dmz->metadata);
862 
863 	bioset_exit(&dmz->bio_set);
864 
865 	dmz_put_zoned_device(ti);
866 
867 	mutex_destroy(&dmz->chunk_lock);
868 
869 	kfree(dmz);
870 }
871 
872 /*
873  * Setup target request queue limits.
874  */
875 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
876 {
877 	struct dmz_target *dmz = ti->private;
878 	unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;
879 
880 	limits->logical_block_size = DMZ_BLOCK_SIZE;
881 	limits->physical_block_size = DMZ_BLOCK_SIZE;
882 
883 	blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
884 	blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
885 
886 	limits->discard_alignment = DMZ_BLOCK_SIZE;
887 	limits->discard_granularity = DMZ_BLOCK_SIZE;
888 	limits->max_discard_sectors = chunk_sectors;
889 	limits->max_hw_discard_sectors = chunk_sectors;
890 	limits->max_write_zeroes_sectors = chunk_sectors;
891 
892 	/* FS hint to try to align to the device zone size */
893 	limits->chunk_sectors = chunk_sectors;
894 	limits->max_sectors = chunk_sectors;
895 
896 	/* We are exposing a drive-managed zoned block device */
897 	limits->zoned = BLK_ZONED_NONE;
898 }
899 
900 /*
901  * Pass on ioctl to the backend device.
902  */
903 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
904 {
905 	struct dmz_target *dmz = ti->private;
906 
907 	if (dmz_bdev_is_dying(dmz->dev))
908 		return -ENODEV;
909 
910 	*bdev = dmz->dev->bdev;
911 
912 	return 0;
913 }
914 
915 /*
916  * Stop works on suspend.
917  */
918 static void dmz_suspend(struct dm_target *ti)
919 {
920 	struct dmz_target *dmz = ti->private;
921 
922 	flush_workqueue(dmz->chunk_wq);
923 	dmz_suspend_reclaim(dmz->reclaim);
924 	cancel_delayed_work_sync(&dmz->flush_work);
925 }
926 
927 /*
928  * Restart works on resume or if suspend failed.
929  */
930 static void dmz_resume(struct dm_target *ti)
931 {
932 	struct dmz_target *dmz = ti->private;
933 
934 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
935 	dmz_resume_reclaim(dmz->reclaim);
936 }
937 
938 static int dmz_iterate_devices(struct dm_target *ti,
939 			       iterate_devices_callout_fn fn, void *data)
940 {
941 	struct dmz_target *dmz = ti->private;
942 	struct dmz_dev *dev = dmz->dev;
943 	sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1);
944 
945 	return fn(ti, dmz->ddev, 0, capacity, data);
946 }
947 
948 static struct target_type dmz_type = {
949 	.name		 = "zoned",
950 	.version	 = {1, 0, 0},
951 	.features	 = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
952 	.module		 = THIS_MODULE,
953 	.ctr		 = dmz_ctr,
954 	.dtr		 = dmz_dtr,
955 	.map		 = dmz_map,
956 	.io_hints	 = dmz_io_hints,
957 	.prepare_ioctl	 = dmz_prepare_ioctl,
958 	.postsuspend	 = dmz_suspend,
959 	.resume		 = dmz_resume,
960 	.iterate_devices = dmz_iterate_devices,
961 };
962 
963 static int __init dmz_init(void)
964 {
965 	return dm_register_target(&dmz_type);
966 }
967 
968 static void __exit dmz_exit(void)
969 {
970 	dm_unregister_target(&dmz_type);
971 }
972 
973 module_init(dmz_init);
974 module_exit(dmz_exit);
975 
976 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
977 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
978 MODULE_LICENSE("GPL");
979