xref: /openbmc/linux/drivers/md/dm-zoned-target.c (revision 2bc7d3e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-zoned.h"
9 
10 #include <linux/module.h>
11 
12 #define	DM_MSG_PREFIX		"zoned"
13 
14 #define DMZ_MIN_BIOS		8192
15 
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20 	struct dmz_dev		*dev;
21 	struct dm_zone		*zone;
22 	struct bio		*bio;
23 	refcount_t		ref;
24 };
25 
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30 	struct work_struct	work;
31 	refcount_t		refcount;
32 	struct dmz_target	*target;
33 	unsigned int		chunk;
34 	struct bio_list		bio_list;
35 };
36 
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41 	struct dm_dev		**ddev;
42 	unsigned int		nr_ddevs;
43 
44 	unsigned int		flags;
45 
46 	/* Zoned block device information */
47 	struct dmz_dev		*dev;
48 
49 	/* For metadata handling */
50 	struct dmz_metadata     *metadata;
51 
52 	/* For chunk work */
53 	struct radix_tree_root	chunk_rxtree;
54 	struct workqueue_struct *chunk_wq;
55 	struct mutex		chunk_lock;
56 
57 	/* For cloned BIOs to zones */
58 	struct bio_set		bio_set;
59 
60 	/* For flush */
61 	spinlock_t		flush_lock;
62 	struct bio_list		flush_list;
63 	struct delayed_work	flush_work;
64 	struct workqueue_struct *flush_wq;
65 };
66 
67 /*
68  * Flush intervals (seconds).
69  */
70 #define DMZ_FLUSH_PERIOD	(10 * HZ)
71 
72 /*
73  * Target BIO completion.
74  */
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
76 {
77 	struct dmz_bioctx *bioctx =
78 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
79 
80 	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81 		bio->bi_status = status;
82 	if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83 		bioctx->dev->flags |= DMZ_CHECK_BDEV;
84 
85 	if (refcount_dec_and_test(&bioctx->ref)) {
86 		struct dm_zone *zone = bioctx->zone;
87 
88 		if (zone) {
89 			if (bio->bi_status != BLK_STS_OK &&
90 			    bio_op(bio) == REQ_OP_WRITE &&
91 			    dmz_is_seq(zone))
92 				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93 			dmz_deactivate_zone(zone);
94 		}
95 		bio_endio(bio);
96 	}
97 }
98 
99 /*
100  * Completion callback for an internally cloned target BIO. This terminates the
101  * target BIO when there are no more references to its context.
102  */
103 static void dmz_clone_endio(struct bio *clone)
104 {
105 	struct dmz_bioctx *bioctx = clone->bi_private;
106 	blk_status_t status = clone->bi_status;
107 
108 	bio_put(clone);
109 	dmz_bio_endio(bioctx->bio, status);
110 }
111 
112 /*
113  * Issue a clone of a target BIO. The clone may only partially process the
114  * original target BIO.
115  */
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117 			  struct bio *bio, sector_t chunk_block,
118 			  unsigned int nr_blocks)
119 {
120 	struct dmz_bioctx *bioctx =
121 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122 	struct dmz_dev *dev = zone->dev;
123 	struct bio *clone;
124 
125 	if (dev->flags & DMZ_BDEV_DYING)
126 		return -EIO;
127 
128 	clone = bio_alloc_clone(dev->bdev, bio, GFP_NOIO, &dmz->bio_set);
129 	if (!clone)
130 		return -ENOMEM;
131 
132 	bioctx->dev = dev;
133 	clone->bi_iter.bi_sector =
134 		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
135 	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
136 	clone->bi_end_io = dmz_clone_endio;
137 	clone->bi_private = bioctx;
138 
139 	bio_advance(bio, clone->bi_iter.bi_size);
140 
141 	refcount_inc(&bioctx->ref);
142 	submit_bio_noacct(clone);
143 
144 	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
145 		zone->wp_block += nr_blocks;
146 
147 	return 0;
148 }
149 
150 /*
151  * Zero out pages of discarded blocks accessed by a read BIO.
152  */
153 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
154 				 sector_t chunk_block, unsigned int nr_blocks)
155 {
156 	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
157 
158 	/* Clear nr_blocks */
159 	swap(bio->bi_iter.bi_size, size);
160 	zero_fill_bio(bio);
161 	swap(bio->bi_iter.bi_size, size);
162 
163 	bio_advance(bio, size);
164 }
165 
166 /*
167  * Process a read BIO.
168  */
169 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
170 			   struct bio *bio)
171 {
172 	struct dmz_metadata *zmd = dmz->metadata;
173 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
174 	unsigned int nr_blocks = dmz_bio_blocks(bio);
175 	sector_t end_block = chunk_block + nr_blocks;
176 	struct dm_zone *rzone, *bzone;
177 	int ret;
178 
179 	/* Read into unmapped chunks need only zeroing the BIO buffer */
180 	if (!zone) {
181 		zero_fill_bio(bio);
182 		return 0;
183 	}
184 
185 	DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
186 		dmz_metadata_label(zmd),
187 		(unsigned long long)dmz_bio_chunk(zmd, bio),
188 		(dmz_is_rnd(zone) ? "RND" :
189 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
190 		zone->id,
191 		(unsigned long long)chunk_block, nr_blocks);
192 
193 	/* Check block validity to determine the read location */
194 	bzone = zone->bzone;
195 	while (chunk_block < end_block) {
196 		nr_blocks = 0;
197 		if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
198 		    chunk_block < zone->wp_block) {
199 			/* Test block validity in the data zone */
200 			ret = dmz_block_valid(zmd, zone, chunk_block);
201 			if (ret < 0)
202 				return ret;
203 			if (ret > 0) {
204 				/* Read data zone blocks */
205 				nr_blocks = ret;
206 				rzone = zone;
207 			}
208 		}
209 
210 		/*
211 		 * No valid blocks found in the data zone.
212 		 * Check the buffer zone, if there is one.
213 		 */
214 		if (!nr_blocks && bzone) {
215 			ret = dmz_block_valid(zmd, bzone, chunk_block);
216 			if (ret < 0)
217 				return ret;
218 			if (ret > 0) {
219 				/* Read buffer zone blocks */
220 				nr_blocks = ret;
221 				rzone = bzone;
222 			}
223 		}
224 
225 		if (nr_blocks) {
226 			/* Valid blocks found: read them */
227 			nr_blocks = min_t(unsigned int, nr_blocks,
228 					  end_block - chunk_block);
229 			ret = dmz_submit_bio(dmz, rzone, bio,
230 					     chunk_block, nr_blocks);
231 			if (ret)
232 				return ret;
233 			chunk_block += nr_blocks;
234 		} else {
235 			/* No valid block: zeroout the current BIO block */
236 			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
237 			chunk_block++;
238 		}
239 	}
240 
241 	return 0;
242 }
243 
244 /*
245  * Write blocks directly in a data zone, at the write pointer.
246  * If a buffer zone is assigned, invalidate the blocks written
247  * in place.
248  */
249 static int dmz_handle_direct_write(struct dmz_target *dmz,
250 				   struct dm_zone *zone, struct bio *bio,
251 				   sector_t chunk_block,
252 				   unsigned int nr_blocks)
253 {
254 	struct dmz_metadata *zmd = dmz->metadata;
255 	struct dm_zone *bzone = zone->bzone;
256 	int ret;
257 
258 	if (dmz_is_readonly(zone))
259 		return -EROFS;
260 
261 	/* Submit write */
262 	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
263 	if (ret)
264 		return ret;
265 
266 	/*
267 	 * Validate the blocks in the data zone and invalidate
268 	 * in the buffer zone, if there is one.
269 	 */
270 	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
271 	if (ret == 0 && bzone)
272 		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
273 
274 	return ret;
275 }
276 
277 /*
278  * Write blocks in the buffer zone of @zone.
279  * If no buffer zone is assigned yet, get one.
280  * Called with @zone write locked.
281  */
282 static int dmz_handle_buffered_write(struct dmz_target *dmz,
283 				     struct dm_zone *zone, struct bio *bio,
284 				     sector_t chunk_block,
285 				     unsigned int nr_blocks)
286 {
287 	struct dmz_metadata *zmd = dmz->metadata;
288 	struct dm_zone *bzone;
289 	int ret;
290 
291 	/* Get the buffer zone. One will be allocated if needed */
292 	bzone = dmz_get_chunk_buffer(zmd, zone);
293 	if (IS_ERR(bzone))
294 		return PTR_ERR(bzone);
295 
296 	if (dmz_is_readonly(bzone))
297 		return -EROFS;
298 
299 	/* Submit write */
300 	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
301 	if (ret)
302 		return ret;
303 
304 	/*
305 	 * Validate the blocks in the buffer zone
306 	 * and invalidate in the data zone.
307 	 */
308 	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
309 	if (ret == 0 && chunk_block < zone->wp_block)
310 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
311 
312 	return ret;
313 }
314 
315 /*
316  * Process a write BIO.
317  */
318 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
319 			    struct bio *bio)
320 {
321 	struct dmz_metadata *zmd = dmz->metadata;
322 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
323 	unsigned int nr_blocks = dmz_bio_blocks(bio);
324 
325 	if (!zone)
326 		return -ENOSPC;
327 
328 	DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
329 		dmz_metadata_label(zmd),
330 		(unsigned long long)dmz_bio_chunk(zmd, bio),
331 		(dmz_is_rnd(zone) ? "RND" :
332 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
333 		zone->id,
334 		(unsigned long long)chunk_block, nr_blocks);
335 
336 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
337 	    chunk_block == zone->wp_block) {
338 		/*
339 		 * zone is a random zone or it is a sequential zone
340 		 * and the BIO is aligned to the zone write pointer:
341 		 * direct write the zone.
342 		 */
343 		return dmz_handle_direct_write(dmz, zone, bio,
344 					       chunk_block, nr_blocks);
345 	}
346 
347 	/*
348 	 * This is an unaligned write in a sequential zone:
349 	 * use buffered write.
350 	 */
351 	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
352 }
353 
354 /*
355  * Process a discard BIO.
356  */
357 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
358 			      struct bio *bio)
359 {
360 	struct dmz_metadata *zmd = dmz->metadata;
361 	sector_t block = dmz_bio_block(bio);
362 	unsigned int nr_blocks = dmz_bio_blocks(bio);
363 	sector_t chunk_block = dmz_chunk_block(zmd, block);
364 	int ret = 0;
365 
366 	/* For unmapped chunks, there is nothing to do */
367 	if (!zone)
368 		return 0;
369 
370 	if (dmz_is_readonly(zone))
371 		return -EROFS;
372 
373 	DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
374 		dmz_metadata_label(dmz->metadata),
375 		(unsigned long long)dmz_bio_chunk(zmd, bio),
376 		zone->id,
377 		(unsigned long long)chunk_block, nr_blocks);
378 
379 	/*
380 	 * Invalidate blocks in the data zone and its
381 	 * buffer zone if one is mapped.
382 	 */
383 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
384 	    chunk_block < zone->wp_block)
385 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
386 	if (ret == 0 && zone->bzone)
387 		ret = dmz_invalidate_blocks(zmd, zone->bzone,
388 					    chunk_block, nr_blocks);
389 	return ret;
390 }
391 
392 /*
393  * Process a BIO.
394  */
395 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
396 			   struct bio *bio)
397 {
398 	struct dmz_bioctx *bioctx =
399 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
400 	struct dmz_metadata *zmd = dmz->metadata;
401 	struct dm_zone *zone;
402 	int ret;
403 
404 	dmz_lock_metadata(zmd);
405 
406 	/*
407 	 * Get the data zone mapping the chunk. There may be no
408 	 * mapping for read and discard. If a mapping is obtained,
409 	 + the zone returned will be set to active state.
410 	 */
411 	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
412 				     bio_op(bio));
413 	if (IS_ERR(zone)) {
414 		ret = PTR_ERR(zone);
415 		goto out;
416 	}
417 
418 	/* Process the BIO */
419 	if (zone) {
420 		dmz_activate_zone(zone);
421 		bioctx->zone = zone;
422 		dmz_reclaim_bio_acc(zone->dev->reclaim);
423 	}
424 
425 	switch (bio_op(bio)) {
426 	case REQ_OP_READ:
427 		ret = dmz_handle_read(dmz, zone, bio);
428 		break;
429 	case REQ_OP_WRITE:
430 		ret = dmz_handle_write(dmz, zone, bio);
431 		break;
432 	case REQ_OP_DISCARD:
433 	case REQ_OP_WRITE_ZEROES:
434 		ret = dmz_handle_discard(dmz, zone, bio);
435 		break;
436 	default:
437 		DMERR("(%s): Unsupported BIO operation 0x%x",
438 		      dmz_metadata_label(dmz->metadata), bio_op(bio));
439 		ret = -EIO;
440 	}
441 
442 	/*
443 	 * Release the chunk mapping. This will check that the mapping
444 	 * is still valid, that is, that the zone used still has valid blocks.
445 	 */
446 	if (zone)
447 		dmz_put_chunk_mapping(zmd, zone);
448 out:
449 	dmz_bio_endio(bio, errno_to_blk_status(ret));
450 
451 	dmz_unlock_metadata(zmd);
452 }
453 
454 /*
455  * Increment a chunk reference counter.
456  */
457 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
458 {
459 	refcount_inc(&cw->refcount);
460 }
461 
462 /*
463  * Decrement a chunk work reference count and
464  * free it if it becomes 0.
465  */
466 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
467 {
468 	if (refcount_dec_and_test(&cw->refcount)) {
469 		WARN_ON(!bio_list_empty(&cw->bio_list));
470 		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
471 		kfree(cw);
472 	}
473 }
474 
475 /*
476  * Chunk BIO work function.
477  */
478 static void dmz_chunk_work(struct work_struct *work)
479 {
480 	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
481 	struct dmz_target *dmz = cw->target;
482 	struct bio *bio;
483 
484 	mutex_lock(&dmz->chunk_lock);
485 
486 	/* Process the chunk BIOs */
487 	while ((bio = bio_list_pop(&cw->bio_list))) {
488 		mutex_unlock(&dmz->chunk_lock);
489 		dmz_handle_bio(dmz, cw, bio);
490 		mutex_lock(&dmz->chunk_lock);
491 		dmz_put_chunk_work(cw);
492 	}
493 
494 	/* Queueing the work incremented the work refcount */
495 	dmz_put_chunk_work(cw);
496 
497 	mutex_unlock(&dmz->chunk_lock);
498 }
499 
500 /*
501  * Flush work.
502  */
503 static void dmz_flush_work(struct work_struct *work)
504 {
505 	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
506 	struct bio *bio;
507 	int ret;
508 
509 	/* Flush dirty metadata blocks */
510 	ret = dmz_flush_metadata(dmz->metadata);
511 	if (ret)
512 		DMDEBUG("(%s): Metadata flush failed, rc=%d",
513 			dmz_metadata_label(dmz->metadata), ret);
514 
515 	/* Process queued flush requests */
516 	while (1) {
517 		spin_lock(&dmz->flush_lock);
518 		bio = bio_list_pop(&dmz->flush_list);
519 		spin_unlock(&dmz->flush_lock);
520 
521 		if (!bio)
522 			break;
523 
524 		dmz_bio_endio(bio, errno_to_blk_status(ret));
525 	}
526 
527 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
528 }
529 
530 /*
531  * Get a chunk work and start it to process a new BIO.
532  * If the BIO chunk has no work yet, create one.
533  */
534 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
535 {
536 	unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
537 	struct dm_chunk_work *cw;
538 	int ret = 0;
539 
540 	mutex_lock(&dmz->chunk_lock);
541 
542 	/* Get the BIO chunk work. If one is not active yet, create one */
543 	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
544 	if (cw) {
545 		dmz_get_chunk_work(cw);
546 	} else {
547 		/* Create a new chunk work */
548 		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
549 		if (unlikely(!cw)) {
550 			ret = -ENOMEM;
551 			goto out;
552 		}
553 
554 		INIT_WORK(&cw->work, dmz_chunk_work);
555 		refcount_set(&cw->refcount, 1);
556 		cw->target = dmz;
557 		cw->chunk = chunk;
558 		bio_list_init(&cw->bio_list);
559 
560 		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
561 		if (unlikely(ret)) {
562 			kfree(cw);
563 			goto out;
564 		}
565 	}
566 
567 	bio_list_add(&cw->bio_list, bio);
568 
569 	if (queue_work(dmz->chunk_wq, &cw->work))
570 		dmz_get_chunk_work(cw);
571 out:
572 	mutex_unlock(&dmz->chunk_lock);
573 	return ret;
574 }
575 
576 /*
577  * Check if the backing device is being removed. If it's on the way out,
578  * start failing I/O. Reclaim and metadata components also call this
579  * function to cleanly abort operation in the event of such failure.
580  */
581 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
582 {
583 	if (dmz_dev->flags & DMZ_BDEV_DYING)
584 		return true;
585 
586 	if (dmz_dev->flags & DMZ_CHECK_BDEV)
587 		return !dmz_check_bdev(dmz_dev);
588 
589 	if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
590 		dmz_dev_warn(dmz_dev, "Backing device queue dying");
591 		dmz_dev->flags |= DMZ_BDEV_DYING;
592 	}
593 
594 	return dmz_dev->flags & DMZ_BDEV_DYING;
595 }
596 
597 /*
598  * Check the backing device availability. This detects such events as
599  * backing device going offline due to errors, media removals, etc.
600  * This check is less efficient than dmz_bdev_is_dying() and should
601  * only be performed as a part of error handling.
602  */
603 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
604 {
605 	struct gendisk *disk;
606 
607 	dmz_dev->flags &= ~DMZ_CHECK_BDEV;
608 
609 	if (dmz_bdev_is_dying(dmz_dev))
610 		return false;
611 
612 	disk = dmz_dev->bdev->bd_disk;
613 	if (disk->fops->check_events &&
614 	    disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
615 		dmz_dev_warn(dmz_dev, "Backing device offline");
616 		dmz_dev->flags |= DMZ_BDEV_DYING;
617 	}
618 
619 	return !(dmz_dev->flags & DMZ_BDEV_DYING);
620 }
621 
622 /*
623  * Process a new BIO.
624  */
625 static int dmz_map(struct dm_target *ti, struct bio *bio)
626 {
627 	struct dmz_target *dmz = ti->private;
628 	struct dmz_metadata *zmd = dmz->metadata;
629 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
630 	sector_t sector = bio->bi_iter.bi_sector;
631 	unsigned int nr_sectors = bio_sectors(bio);
632 	sector_t chunk_sector;
633 	int ret;
634 
635 	if (dmz_dev_is_dying(zmd))
636 		return DM_MAPIO_KILL;
637 
638 	DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
639 		dmz_metadata_label(zmd),
640 		bio_op(bio), (unsigned long long)sector, nr_sectors,
641 		(unsigned long long)dmz_bio_chunk(zmd, bio),
642 		(unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
643 		(unsigned int)dmz_bio_blocks(bio));
644 
645 	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
646 		return DM_MAPIO_REMAPPED;
647 
648 	/* The BIO should be block aligned */
649 	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
650 		return DM_MAPIO_KILL;
651 
652 	/* Initialize the BIO context */
653 	bioctx->dev = NULL;
654 	bioctx->zone = NULL;
655 	bioctx->bio = bio;
656 	refcount_set(&bioctx->ref, 1);
657 
658 	/* Set the BIO pending in the flush list */
659 	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
660 		spin_lock(&dmz->flush_lock);
661 		bio_list_add(&dmz->flush_list, bio);
662 		spin_unlock(&dmz->flush_lock);
663 		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
664 		return DM_MAPIO_SUBMITTED;
665 	}
666 
667 	/* Split zone BIOs to fit entirely into a zone */
668 	chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
669 	if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
670 		dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
671 
672 	/* Now ready to handle this BIO */
673 	ret = dmz_queue_chunk_work(dmz, bio);
674 	if (ret) {
675 		DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
676 			dmz_metadata_label(zmd),
677 			bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
678 			ret);
679 		return DM_MAPIO_REQUEUE;
680 	}
681 
682 	return DM_MAPIO_SUBMITTED;
683 }
684 
685 /*
686  * Get zoned device information.
687  */
688 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
689 				int idx, int nr_devs)
690 {
691 	struct dmz_target *dmz = ti->private;
692 	struct dm_dev *ddev;
693 	struct dmz_dev *dev;
694 	int ret;
695 	struct block_device *bdev;
696 
697 	/* Get the target device */
698 	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
699 	if (ret) {
700 		ti->error = "Get target device failed";
701 		return ret;
702 	}
703 
704 	bdev = ddev->bdev;
705 	if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
706 		if (nr_devs == 1) {
707 			ti->error = "Invalid regular device";
708 			goto err;
709 		}
710 		if (idx != 0) {
711 			ti->error = "First device must be a regular device";
712 			goto err;
713 		}
714 		if (dmz->ddev[0]) {
715 			ti->error = "Too many regular devices";
716 			goto err;
717 		}
718 		dev = &dmz->dev[idx];
719 		dev->flags = DMZ_BDEV_REGULAR;
720 	} else {
721 		if (dmz->ddev[idx]) {
722 			ti->error = "Too many zoned devices";
723 			goto err;
724 		}
725 		if (nr_devs > 1 && idx == 0) {
726 			ti->error = "First device must be a regular device";
727 			goto err;
728 		}
729 		dev = &dmz->dev[idx];
730 	}
731 	dev->bdev = bdev;
732 	dev->dev_idx = idx;
733 
734 	dev->capacity = bdev_nr_sectors(bdev);
735 	if (ti->begin) {
736 		ti->error = "Partial mapping is not supported";
737 		goto err;
738 	}
739 
740 	dmz->ddev[idx] = ddev;
741 
742 	return 0;
743 err:
744 	dm_put_device(ti, ddev);
745 	return -EINVAL;
746 }
747 
748 /*
749  * Cleanup zoned device information.
750  */
751 static void dmz_put_zoned_device(struct dm_target *ti)
752 {
753 	struct dmz_target *dmz = ti->private;
754 	int i;
755 
756 	for (i = 0; i < dmz->nr_ddevs; i++) {
757 		if (dmz->ddev[i]) {
758 			dm_put_device(ti, dmz->ddev[i]);
759 			dmz->ddev[i] = NULL;
760 		}
761 	}
762 }
763 
764 static int dmz_fixup_devices(struct dm_target *ti)
765 {
766 	struct dmz_target *dmz = ti->private;
767 	struct dmz_dev *reg_dev, *zoned_dev;
768 	struct request_queue *q;
769 	sector_t zone_nr_sectors = 0;
770 	int i;
771 
772 	/*
773 	 * When we have more than on devices, the first one must be a
774 	 * regular block device and the others zoned block devices.
775 	 */
776 	if (dmz->nr_ddevs > 1) {
777 		reg_dev = &dmz->dev[0];
778 		if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
779 			ti->error = "Primary disk is not a regular device";
780 			return -EINVAL;
781 		}
782 		for (i = 1; i < dmz->nr_ddevs; i++) {
783 			zoned_dev = &dmz->dev[i];
784 			if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
785 				ti->error = "Secondary disk is not a zoned device";
786 				return -EINVAL;
787 			}
788 			q = bdev_get_queue(zoned_dev->bdev);
789 			if (zone_nr_sectors &&
790 			    zone_nr_sectors != blk_queue_zone_sectors(q)) {
791 				ti->error = "Zone nr sectors mismatch";
792 				return -EINVAL;
793 			}
794 			zone_nr_sectors = blk_queue_zone_sectors(q);
795 			zoned_dev->zone_nr_sectors = zone_nr_sectors;
796 			zoned_dev->nr_zones =
797 				blkdev_nr_zones(zoned_dev->bdev->bd_disk);
798 		}
799 	} else {
800 		reg_dev = NULL;
801 		zoned_dev = &dmz->dev[0];
802 		if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
803 			ti->error = "Disk is not a zoned device";
804 			return -EINVAL;
805 		}
806 		q = bdev_get_queue(zoned_dev->bdev);
807 		zoned_dev->zone_nr_sectors = blk_queue_zone_sectors(q);
808 		zoned_dev->nr_zones = blkdev_nr_zones(zoned_dev->bdev->bd_disk);
809 	}
810 
811 	if (reg_dev) {
812 		sector_t zone_offset;
813 
814 		reg_dev->zone_nr_sectors = zone_nr_sectors;
815 		reg_dev->nr_zones =
816 			DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
817 					      reg_dev->zone_nr_sectors);
818 		reg_dev->zone_offset = 0;
819 		zone_offset = reg_dev->nr_zones;
820 		for (i = 1; i < dmz->nr_ddevs; i++) {
821 			dmz->dev[i].zone_offset = zone_offset;
822 			zone_offset += dmz->dev[i].nr_zones;
823 		}
824 	}
825 	return 0;
826 }
827 
828 /*
829  * Setup target.
830  */
831 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
832 {
833 	struct dmz_target *dmz;
834 	int ret, i;
835 
836 	/* Check arguments */
837 	if (argc < 1) {
838 		ti->error = "Invalid argument count";
839 		return -EINVAL;
840 	}
841 
842 	/* Allocate and initialize the target descriptor */
843 	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
844 	if (!dmz) {
845 		ti->error = "Unable to allocate the zoned target descriptor";
846 		return -ENOMEM;
847 	}
848 	dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
849 	if (!dmz->dev) {
850 		ti->error = "Unable to allocate the zoned device descriptors";
851 		kfree(dmz);
852 		return -ENOMEM;
853 	}
854 	dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
855 	if (!dmz->ddev) {
856 		ti->error = "Unable to allocate the dm device descriptors";
857 		ret = -ENOMEM;
858 		goto err;
859 	}
860 	dmz->nr_ddevs = argc;
861 
862 	ti->private = dmz;
863 
864 	/* Get the target zoned block device */
865 	for (i = 0; i < argc; i++) {
866 		ret = dmz_get_zoned_device(ti, argv[i], i, argc);
867 		if (ret)
868 			goto err_dev;
869 	}
870 	ret = dmz_fixup_devices(ti);
871 	if (ret)
872 		goto err_dev;
873 
874 	/* Initialize metadata */
875 	ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
876 			       dm_table_device_name(ti->table));
877 	if (ret) {
878 		ti->error = "Metadata initialization failed";
879 		goto err_dev;
880 	}
881 
882 	/* Set target (no write same support) */
883 	ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
884 	ti->num_flush_bios = 1;
885 	ti->num_discard_bios = 1;
886 	ti->num_write_zeroes_bios = 1;
887 	ti->per_io_data_size = sizeof(struct dmz_bioctx);
888 	ti->flush_supported = true;
889 	ti->discards_supported = true;
890 
891 	/* The exposed capacity is the number of chunks that can be mapped */
892 	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
893 		dmz_zone_nr_sectors_shift(dmz->metadata);
894 
895 	/* Zone BIO */
896 	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
897 	if (ret) {
898 		ti->error = "Create BIO set failed";
899 		goto err_meta;
900 	}
901 
902 	/* Chunk BIO work */
903 	mutex_init(&dmz->chunk_lock);
904 	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
905 	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
906 					WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
907 					dmz_metadata_label(dmz->metadata));
908 	if (!dmz->chunk_wq) {
909 		ti->error = "Create chunk workqueue failed";
910 		ret = -ENOMEM;
911 		goto err_bio;
912 	}
913 
914 	/* Flush work */
915 	spin_lock_init(&dmz->flush_lock);
916 	bio_list_init(&dmz->flush_list);
917 	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
918 	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
919 						dmz_metadata_label(dmz->metadata));
920 	if (!dmz->flush_wq) {
921 		ti->error = "Create flush workqueue failed";
922 		ret = -ENOMEM;
923 		goto err_cwq;
924 	}
925 	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
926 
927 	/* Initialize reclaim */
928 	for (i = 0; i < dmz->nr_ddevs; i++) {
929 		ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
930 		if (ret) {
931 			ti->error = "Zone reclaim initialization failed";
932 			goto err_fwq;
933 		}
934 	}
935 
936 	DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
937 	       dmz_metadata_label(dmz->metadata),
938 	       (unsigned long long)ti->len,
939 	       (unsigned long long)dmz_sect2blk(ti->len));
940 
941 	return 0;
942 err_fwq:
943 	destroy_workqueue(dmz->flush_wq);
944 err_cwq:
945 	destroy_workqueue(dmz->chunk_wq);
946 err_bio:
947 	mutex_destroy(&dmz->chunk_lock);
948 	bioset_exit(&dmz->bio_set);
949 err_meta:
950 	dmz_dtr_metadata(dmz->metadata);
951 err_dev:
952 	dmz_put_zoned_device(ti);
953 err:
954 	kfree(dmz->dev);
955 	kfree(dmz);
956 
957 	return ret;
958 }
959 
960 /*
961  * Cleanup target.
962  */
963 static void dmz_dtr(struct dm_target *ti)
964 {
965 	struct dmz_target *dmz = ti->private;
966 	int i;
967 
968 	destroy_workqueue(dmz->chunk_wq);
969 
970 	for (i = 0; i < dmz->nr_ddevs; i++)
971 		dmz_dtr_reclaim(dmz->dev[i].reclaim);
972 
973 	cancel_delayed_work_sync(&dmz->flush_work);
974 	destroy_workqueue(dmz->flush_wq);
975 
976 	(void) dmz_flush_metadata(dmz->metadata);
977 
978 	dmz_dtr_metadata(dmz->metadata);
979 
980 	bioset_exit(&dmz->bio_set);
981 
982 	dmz_put_zoned_device(ti);
983 
984 	mutex_destroy(&dmz->chunk_lock);
985 
986 	kfree(dmz->dev);
987 	kfree(dmz);
988 }
989 
990 /*
991  * Setup target request queue limits.
992  */
993 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
994 {
995 	struct dmz_target *dmz = ti->private;
996 	unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
997 
998 	limits->logical_block_size = DMZ_BLOCK_SIZE;
999 	limits->physical_block_size = DMZ_BLOCK_SIZE;
1000 
1001 	blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1002 	blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1003 
1004 	limits->discard_alignment = 0;
1005 	limits->discard_granularity = DMZ_BLOCK_SIZE;
1006 	limits->max_discard_sectors = chunk_sectors;
1007 	limits->max_hw_discard_sectors = chunk_sectors;
1008 	limits->max_write_zeroes_sectors = chunk_sectors;
1009 
1010 	/* FS hint to try to align to the device zone size */
1011 	limits->chunk_sectors = chunk_sectors;
1012 	limits->max_sectors = chunk_sectors;
1013 
1014 	/* We are exposing a drive-managed zoned block device */
1015 	limits->zoned = BLK_ZONED_NONE;
1016 }
1017 
1018 /*
1019  * Pass on ioctl to the backend device.
1020  */
1021 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1022 {
1023 	struct dmz_target *dmz = ti->private;
1024 	struct dmz_dev *dev = &dmz->dev[0];
1025 
1026 	if (!dmz_check_bdev(dev))
1027 		return -EIO;
1028 
1029 	*bdev = dev->bdev;
1030 
1031 	return 0;
1032 }
1033 
1034 /*
1035  * Stop works on suspend.
1036  */
1037 static void dmz_suspend(struct dm_target *ti)
1038 {
1039 	struct dmz_target *dmz = ti->private;
1040 	int i;
1041 
1042 	flush_workqueue(dmz->chunk_wq);
1043 	for (i = 0; i < dmz->nr_ddevs; i++)
1044 		dmz_suspend_reclaim(dmz->dev[i].reclaim);
1045 	cancel_delayed_work_sync(&dmz->flush_work);
1046 }
1047 
1048 /*
1049  * Restart works on resume or if suspend failed.
1050  */
1051 static void dmz_resume(struct dm_target *ti)
1052 {
1053 	struct dmz_target *dmz = ti->private;
1054 	int i;
1055 
1056 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1057 	for (i = 0; i < dmz->nr_ddevs; i++)
1058 		dmz_resume_reclaim(dmz->dev[i].reclaim);
1059 }
1060 
1061 static int dmz_iterate_devices(struct dm_target *ti,
1062 			       iterate_devices_callout_fn fn, void *data)
1063 {
1064 	struct dmz_target *dmz = ti->private;
1065 	unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1066 	sector_t capacity;
1067 	int i, r;
1068 
1069 	for (i = 0; i < dmz->nr_ddevs; i++) {
1070 		capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1071 		r = fn(ti, dmz->ddev[i], 0, capacity, data);
1072 		if (r)
1073 			break;
1074 	}
1075 	return r;
1076 }
1077 
1078 static void dmz_status(struct dm_target *ti, status_type_t type,
1079 		       unsigned int status_flags, char *result,
1080 		       unsigned int maxlen)
1081 {
1082 	struct dmz_target *dmz = ti->private;
1083 	ssize_t sz = 0;
1084 	char buf[BDEVNAME_SIZE];
1085 	struct dmz_dev *dev;
1086 	int i;
1087 
1088 	switch (type) {
1089 	case STATUSTYPE_INFO:
1090 		DMEMIT("%u zones %u/%u cache",
1091 		       dmz_nr_zones(dmz->metadata),
1092 		       dmz_nr_unmap_cache_zones(dmz->metadata),
1093 		       dmz_nr_cache_zones(dmz->metadata));
1094 		for (i = 0; i < dmz->nr_ddevs; i++) {
1095 			/*
1096 			 * For a multi-device setup the first device
1097 			 * contains only cache zones.
1098 			 */
1099 			if ((i == 0) &&
1100 			    (dmz_nr_cache_zones(dmz->metadata) > 0))
1101 				continue;
1102 			DMEMIT(" %u/%u random %u/%u sequential",
1103 			       dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1104 			       dmz_nr_rnd_zones(dmz->metadata, i),
1105 			       dmz_nr_unmap_seq_zones(dmz->metadata, i),
1106 			       dmz_nr_seq_zones(dmz->metadata, i));
1107 		}
1108 		break;
1109 	case STATUSTYPE_TABLE:
1110 		dev = &dmz->dev[0];
1111 		format_dev_t(buf, dev->bdev->bd_dev);
1112 		DMEMIT("%s", buf);
1113 		for (i = 1; i < dmz->nr_ddevs; i++) {
1114 			dev = &dmz->dev[i];
1115 			format_dev_t(buf, dev->bdev->bd_dev);
1116 			DMEMIT(" %s", buf);
1117 		}
1118 		break;
1119 	case STATUSTYPE_IMA:
1120 		*result = '\0';
1121 		break;
1122 	}
1123 	return;
1124 }
1125 
1126 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1127 		       char *result, unsigned int maxlen)
1128 {
1129 	struct dmz_target *dmz = ti->private;
1130 	int r = -EINVAL;
1131 
1132 	if (!strcasecmp(argv[0], "reclaim")) {
1133 		int i;
1134 
1135 		for (i = 0; i < dmz->nr_ddevs; i++)
1136 			dmz_schedule_reclaim(dmz->dev[i].reclaim);
1137 		r = 0;
1138 	} else
1139 		DMERR("unrecognized message %s", argv[0]);
1140 	return r;
1141 }
1142 
1143 static struct target_type dmz_type = {
1144 	.name		 = "zoned",
1145 	.version	 = {2, 0, 0},
1146 	.features	 = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
1147 	.module		 = THIS_MODULE,
1148 	.ctr		 = dmz_ctr,
1149 	.dtr		 = dmz_dtr,
1150 	.map		 = dmz_map,
1151 	.io_hints	 = dmz_io_hints,
1152 	.prepare_ioctl	 = dmz_prepare_ioctl,
1153 	.postsuspend	 = dmz_suspend,
1154 	.resume		 = dmz_resume,
1155 	.iterate_devices = dmz_iterate_devices,
1156 	.status		 = dmz_status,
1157 	.message	 = dmz_message,
1158 };
1159 
1160 static int __init dmz_init(void)
1161 {
1162 	return dm_register_target(&dmz_type);
1163 }
1164 
1165 static void __exit dmz_exit(void)
1166 {
1167 	dm_unregister_target(&dmz_type);
1168 }
1169 
1170 module_init(dmz_init);
1171 module_exit(dmz_exit);
1172 
1173 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1174 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1175 MODULE_LICENSE("GPL");
1176