xref: /openbmc/linux/drivers/md/dm-zoned-target.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-zoned.h"
9 
10 #include <linux/module.h>
11 
12 #define	DM_MSG_PREFIX		"zoned"
13 
14 #define DMZ_MIN_BIOS		8192
15 
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20 	struct dmz_target	*target;
21 	struct dm_zone		*zone;
22 	struct bio		*bio;
23 	refcount_t		ref;
24 };
25 
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30 	struct work_struct	work;
31 	refcount_t		refcount;
32 	struct dmz_target	*target;
33 	unsigned int		chunk;
34 	struct bio_list		bio_list;
35 };
36 
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41 	struct dm_dev		*ddev;
42 
43 	unsigned long		flags;
44 
45 	/* Zoned block device information */
46 	struct dmz_dev		*dev;
47 
48 	/* For metadata handling */
49 	struct dmz_metadata     *metadata;
50 
51 	/* For reclaim */
52 	struct dmz_reclaim	*reclaim;
53 
54 	/* For chunk work */
55 	struct radix_tree_root	chunk_rxtree;
56 	struct workqueue_struct *chunk_wq;
57 	struct mutex		chunk_lock;
58 
59 	/* For cloned BIOs to zones */
60 	struct bio_set		bio_set;
61 
62 	/* For flush */
63 	spinlock_t		flush_lock;
64 	struct bio_list		flush_list;
65 	struct delayed_work	flush_work;
66 	struct workqueue_struct *flush_wq;
67 };
68 
69 /*
70  * Flush intervals (seconds).
71  */
72 #define DMZ_FLUSH_PERIOD	(10 * HZ)
73 
74 /*
75  * Target BIO completion.
76  */
77 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
78 {
79 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
80 
81 	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
82 		bio->bi_status = status;
83 	if (bio->bi_status != BLK_STS_OK)
84 		bioctx->target->dev->flags |= DMZ_CHECK_BDEV;
85 
86 	if (refcount_dec_and_test(&bioctx->ref)) {
87 		struct dm_zone *zone = bioctx->zone;
88 
89 		if (zone) {
90 			if (bio->bi_status != BLK_STS_OK &&
91 			    bio_op(bio) == REQ_OP_WRITE &&
92 			    dmz_is_seq(zone))
93 				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
94 			dmz_deactivate_zone(zone);
95 		}
96 		bio_endio(bio);
97 	}
98 }
99 
100 /*
101  * Completion callback for an internally cloned target BIO. This terminates the
102  * target BIO when there are no more references to its context.
103  */
104 static void dmz_clone_endio(struct bio *clone)
105 {
106 	struct dmz_bioctx *bioctx = clone->bi_private;
107 	blk_status_t status = clone->bi_status;
108 
109 	bio_put(clone);
110 	dmz_bio_endio(bioctx->bio, status);
111 }
112 
113 /*
114  * Issue a clone of a target BIO. The clone may only partially process the
115  * original target BIO.
116  */
117 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
118 			  struct bio *bio, sector_t chunk_block,
119 			  unsigned int nr_blocks)
120 {
121 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122 	struct bio *clone;
123 
124 	clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
125 	if (!clone)
126 		return -ENOMEM;
127 
128 	bio_set_dev(clone, dmz->dev->bdev);
129 	clone->bi_iter.bi_sector =
130 		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
131 	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
132 	clone->bi_end_io = dmz_clone_endio;
133 	clone->bi_private = bioctx;
134 
135 	bio_advance(bio, clone->bi_iter.bi_size);
136 
137 	refcount_inc(&bioctx->ref);
138 	generic_make_request(clone);
139 
140 	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
141 		zone->wp_block += nr_blocks;
142 
143 	return 0;
144 }
145 
146 /*
147  * Zero out pages of discarded blocks accessed by a read BIO.
148  */
149 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
150 				 sector_t chunk_block, unsigned int nr_blocks)
151 {
152 	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
153 
154 	/* Clear nr_blocks */
155 	swap(bio->bi_iter.bi_size, size);
156 	zero_fill_bio(bio);
157 	swap(bio->bi_iter.bi_size, size);
158 
159 	bio_advance(bio, size);
160 }
161 
162 /*
163  * Process a read BIO.
164  */
165 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
166 			   struct bio *bio)
167 {
168 	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
169 	unsigned int nr_blocks = dmz_bio_blocks(bio);
170 	sector_t end_block = chunk_block + nr_blocks;
171 	struct dm_zone *rzone, *bzone;
172 	int ret;
173 
174 	/* Read into unmapped chunks need only zeroing the BIO buffer */
175 	if (!zone) {
176 		zero_fill_bio(bio);
177 		return 0;
178 	}
179 
180 	dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
181 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
182 		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
183 		      dmz_id(dmz->metadata, zone),
184 		      (unsigned long long)chunk_block, nr_blocks);
185 
186 	/* Check block validity to determine the read location */
187 	bzone = zone->bzone;
188 	while (chunk_block < end_block) {
189 		nr_blocks = 0;
190 		if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
191 			/* Test block validity in the data zone */
192 			ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
193 			if (ret < 0)
194 				return ret;
195 			if (ret > 0) {
196 				/* Read data zone blocks */
197 				nr_blocks = ret;
198 				rzone = zone;
199 			}
200 		}
201 
202 		/*
203 		 * No valid blocks found in the data zone.
204 		 * Check the buffer zone, if there is one.
205 		 */
206 		if (!nr_blocks && bzone) {
207 			ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
208 			if (ret < 0)
209 				return ret;
210 			if (ret > 0) {
211 				/* Read buffer zone blocks */
212 				nr_blocks = ret;
213 				rzone = bzone;
214 			}
215 		}
216 
217 		if (nr_blocks) {
218 			/* Valid blocks found: read them */
219 			nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
220 			ret = dmz_submit_bio(dmz, rzone, bio, chunk_block, nr_blocks);
221 			if (ret)
222 				return ret;
223 			chunk_block += nr_blocks;
224 		} else {
225 			/* No valid block: zeroout the current BIO block */
226 			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
227 			chunk_block++;
228 		}
229 	}
230 
231 	return 0;
232 }
233 
234 /*
235  * Write blocks directly in a data zone, at the write pointer.
236  * If a buffer zone is assigned, invalidate the blocks written
237  * in place.
238  */
239 static int dmz_handle_direct_write(struct dmz_target *dmz,
240 				   struct dm_zone *zone, struct bio *bio,
241 				   sector_t chunk_block,
242 				   unsigned int nr_blocks)
243 {
244 	struct dmz_metadata *zmd = dmz->metadata;
245 	struct dm_zone *bzone = zone->bzone;
246 	int ret;
247 
248 	if (dmz_is_readonly(zone))
249 		return -EROFS;
250 
251 	/* Submit write */
252 	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
253 	if (ret)
254 		return ret;
255 
256 	/*
257 	 * Validate the blocks in the data zone and invalidate
258 	 * in the buffer zone, if there is one.
259 	 */
260 	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
261 	if (ret == 0 && bzone)
262 		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
263 
264 	return ret;
265 }
266 
267 /*
268  * Write blocks in the buffer zone of @zone.
269  * If no buffer zone is assigned yet, get one.
270  * Called with @zone write locked.
271  */
272 static int dmz_handle_buffered_write(struct dmz_target *dmz,
273 				     struct dm_zone *zone, struct bio *bio,
274 				     sector_t chunk_block,
275 				     unsigned int nr_blocks)
276 {
277 	struct dmz_metadata *zmd = dmz->metadata;
278 	struct dm_zone *bzone;
279 	int ret;
280 
281 	/* Get the buffer zone. One will be allocated if needed */
282 	bzone = dmz_get_chunk_buffer(zmd, zone);
283 	if (IS_ERR(bzone))
284 		return PTR_ERR(bzone);
285 
286 	if (dmz_is_readonly(bzone))
287 		return -EROFS;
288 
289 	/* Submit write */
290 	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
291 	if (ret)
292 		return ret;
293 
294 	/*
295 	 * Validate the blocks in the buffer zone
296 	 * and invalidate in the data zone.
297 	 */
298 	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
299 	if (ret == 0 && chunk_block < zone->wp_block)
300 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
301 
302 	return ret;
303 }
304 
305 /*
306  * Process a write BIO.
307  */
308 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
309 			    struct bio *bio)
310 {
311 	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
312 	unsigned int nr_blocks = dmz_bio_blocks(bio);
313 
314 	if (!zone)
315 		return -ENOSPC;
316 
317 	dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
318 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
319 		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
320 		      dmz_id(dmz->metadata, zone),
321 		      (unsigned long long)chunk_block, nr_blocks);
322 
323 	if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
324 		/*
325 		 * zone is a random zone or it is a sequential zone
326 		 * and the BIO is aligned to the zone write pointer:
327 		 * direct write the zone.
328 		 */
329 		return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
330 	}
331 
332 	/*
333 	 * This is an unaligned write in a sequential zone:
334 	 * use buffered write.
335 	 */
336 	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
337 }
338 
339 /*
340  * Process a discard BIO.
341  */
342 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
343 			      struct bio *bio)
344 {
345 	struct dmz_metadata *zmd = dmz->metadata;
346 	sector_t block = dmz_bio_block(bio);
347 	unsigned int nr_blocks = dmz_bio_blocks(bio);
348 	sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
349 	int ret = 0;
350 
351 	/* For unmapped chunks, there is nothing to do */
352 	if (!zone)
353 		return 0;
354 
355 	if (dmz_is_readonly(zone))
356 		return -EROFS;
357 
358 	dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
359 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
360 		      dmz_id(zmd, zone),
361 		      (unsigned long long)chunk_block, nr_blocks);
362 
363 	/*
364 	 * Invalidate blocks in the data zone and its
365 	 * buffer zone if one is mapped.
366 	 */
367 	if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
368 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
369 	if (ret == 0 && zone->bzone)
370 		ret = dmz_invalidate_blocks(zmd, zone->bzone,
371 					    chunk_block, nr_blocks);
372 	return ret;
373 }
374 
375 /*
376  * Process a BIO.
377  */
378 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
379 			   struct bio *bio)
380 {
381 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
382 	struct dmz_metadata *zmd = dmz->metadata;
383 	struct dm_zone *zone;
384 	int ret;
385 
386 	/*
387 	 * Write may trigger a zone allocation. So make sure the
388 	 * allocation can succeed.
389 	 */
390 	if (bio_op(bio) == REQ_OP_WRITE)
391 		dmz_schedule_reclaim(dmz->reclaim);
392 
393 	dmz_lock_metadata(zmd);
394 
395 	if (dmz->dev->flags & DMZ_BDEV_DYING) {
396 		ret = -EIO;
397 		goto out;
398 	}
399 
400 	/*
401 	 * Get the data zone mapping the chunk. There may be no
402 	 * mapping for read and discard. If a mapping is obtained,
403 	 + the zone returned will be set to active state.
404 	 */
405 	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
406 				     bio_op(bio));
407 	if (IS_ERR(zone)) {
408 		ret = PTR_ERR(zone);
409 		goto out;
410 	}
411 
412 	/* Process the BIO */
413 	if (zone) {
414 		dmz_activate_zone(zone);
415 		bioctx->zone = zone;
416 	}
417 
418 	switch (bio_op(bio)) {
419 	case REQ_OP_READ:
420 		ret = dmz_handle_read(dmz, zone, bio);
421 		break;
422 	case REQ_OP_WRITE:
423 		ret = dmz_handle_write(dmz, zone, bio);
424 		break;
425 	case REQ_OP_DISCARD:
426 	case REQ_OP_WRITE_ZEROES:
427 		ret = dmz_handle_discard(dmz, zone, bio);
428 		break;
429 	default:
430 		dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
431 			    bio_op(bio));
432 		ret = -EIO;
433 	}
434 
435 	/*
436 	 * Release the chunk mapping. This will check that the mapping
437 	 * is still valid, that is, that the zone used still has valid blocks.
438 	 */
439 	if (zone)
440 		dmz_put_chunk_mapping(zmd, zone);
441 out:
442 	dmz_bio_endio(bio, errno_to_blk_status(ret));
443 
444 	dmz_unlock_metadata(zmd);
445 }
446 
447 /*
448  * Increment a chunk reference counter.
449  */
450 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
451 {
452 	refcount_inc(&cw->refcount);
453 }
454 
455 /*
456  * Decrement a chunk work reference count and
457  * free it if it becomes 0.
458  */
459 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
460 {
461 	if (refcount_dec_and_test(&cw->refcount)) {
462 		WARN_ON(!bio_list_empty(&cw->bio_list));
463 		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
464 		kfree(cw);
465 	}
466 }
467 
468 /*
469  * Chunk BIO work function.
470  */
471 static void dmz_chunk_work(struct work_struct *work)
472 {
473 	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
474 	struct dmz_target *dmz = cw->target;
475 	struct bio *bio;
476 
477 	mutex_lock(&dmz->chunk_lock);
478 
479 	/* Process the chunk BIOs */
480 	while ((bio = bio_list_pop(&cw->bio_list))) {
481 		mutex_unlock(&dmz->chunk_lock);
482 		dmz_handle_bio(dmz, cw, bio);
483 		mutex_lock(&dmz->chunk_lock);
484 		dmz_put_chunk_work(cw);
485 	}
486 
487 	/* Queueing the work incremented the work refcount */
488 	dmz_put_chunk_work(cw);
489 
490 	mutex_unlock(&dmz->chunk_lock);
491 }
492 
493 /*
494  * Flush work.
495  */
496 static void dmz_flush_work(struct work_struct *work)
497 {
498 	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
499 	struct bio *bio;
500 	int ret;
501 
502 	/* Flush dirty metadata blocks */
503 	ret = dmz_flush_metadata(dmz->metadata);
504 	if (ret)
505 		dmz_dev_debug(dmz->dev, "Metadata flush failed, rc=%d\n", ret);
506 
507 	/* Process queued flush requests */
508 	while (1) {
509 		spin_lock(&dmz->flush_lock);
510 		bio = bio_list_pop(&dmz->flush_list);
511 		spin_unlock(&dmz->flush_lock);
512 
513 		if (!bio)
514 			break;
515 
516 		dmz_bio_endio(bio, errno_to_blk_status(ret));
517 	}
518 
519 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
520 }
521 
522 /*
523  * Get a chunk work and start it to process a new BIO.
524  * If the BIO chunk has no work yet, create one.
525  */
526 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
527 {
528 	unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
529 	struct dm_chunk_work *cw;
530 	int ret = 0;
531 
532 	mutex_lock(&dmz->chunk_lock);
533 
534 	/* Get the BIO chunk work. If one is not active yet, create one */
535 	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
536 	if (cw) {
537 		dmz_get_chunk_work(cw);
538 	} else {
539 		/* Create a new chunk work */
540 		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
541 		if (unlikely(!cw)) {
542 			ret = -ENOMEM;
543 			goto out;
544 		}
545 
546 		INIT_WORK(&cw->work, dmz_chunk_work);
547 		refcount_set(&cw->refcount, 1);
548 		cw->target = dmz;
549 		cw->chunk = chunk;
550 		bio_list_init(&cw->bio_list);
551 
552 		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
553 		if (unlikely(ret)) {
554 			kfree(cw);
555 			goto out;
556 		}
557 	}
558 
559 	bio_list_add(&cw->bio_list, bio);
560 
561 	dmz_reclaim_bio_acc(dmz->reclaim);
562 	if (queue_work(dmz->chunk_wq, &cw->work))
563 		dmz_get_chunk_work(cw);
564 out:
565 	mutex_unlock(&dmz->chunk_lock);
566 	return ret;
567 }
568 
569 /*
570  * Check if the backing device is being removed. If it's on the way out,
571  * start failing I/O. Reclaim and metadata components also call this
572  * function to cleanly abort operation in the event of such failure.
573  */
574 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
575 {
576 	if (dmz_dev->flags & DMZ_BDEV_DYING)
577 		return true;
578 
579 	if (dmz_dev->flags & DMZ_CHECK_BDEV)
580 		return !dmz_check_bdev(dmz_dev);
581 
582 	if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
583 		dmz_dev_warn(dmz_dev, "Backing device queue dying");
584 		dmz_dev->flags |= DMZ_BDEV_DYING;
585 	}
586 
587 	return dmz_dev->flags & DMZ_BDEV_DYING;
588 }
589 
590 /*
591  * Check the backing device availability. This detects such events as
592  * backing device going offline due to errors, media removals, etc.
593  * This check is less efficient than dmz_bdev_is_dying() and should
594  * only be performed as a part of error handling.
595  */
596 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
597 {
598 	struct gendisk *disk;
599 
600 	dmz_dev->flags &= ~DMZ_CHECK_BDEV;
601 
602 	if (dmz_bdev_is_dying(dmz_dev))
603 		return false;
604 
605 	disk = dmz_dev->bdev->bd_disk;
606 	if (disk->fops->check_events &&
607 	    disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
608 		dmz_dev_warn(dmz_dev, "Backing device offline");
609 		dmz_dev->flags |= DMZ_BDEV_DYING;
610 	}
611 
612 	return !(dmz_dev->flags & DMZ_BDEV_DYING);
613 }
614 
615 /*
616  * Process a new BIO.
617  */
618 static int dmz_map(struct dm_target *ti, struct bio *bio)
619 {
620 	struct dmz_target *dmz = ti->private;
621 	struct dmz_dev *dev = dmz->dev;
622 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
623 	sector_t sector = bio->bi_iter.bi_sector;
624 	unsigned int nr_sectors = bio_sectors(bio);
625 	sector_t chunk_sector;
626 	int ret;
627 
628 	if (dmz_bdev_is_dying(dmz->dev))
629 		return DM_MAPIO_KILL;
630 
631 	dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
632 		      bio_op(bio), (unsigned long long)sector, nr_sectors,
633 		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
634 		      (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
635 		      (unsigned int)dmz_bio_blocks(bio));
636 
637 	bio_set_dev(bio, dev->bdev);
638 
639 	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
640 		return DM_MAPIO_REMAPPED;
641 
642 	/* The BIO should be block aligned */
643 	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
644 		return DM_MAPIO_KILL;
645 
646 	/* Initialize the BIO context */
647 	bioctx->target = dmz;
648 	bioctx->zone = NULL;
649 	bioctx->bio = bio;
650 	refcount_set(&bioctx->ref, 1);
651 
652 	/* Set the BIO pending in the flush list */
653 	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
654 		spin_lock(&dmz->flush_lock);
655 		bio_list_add(&dmz->flush_list, bio);
656 		spin_unlock(&dmz->flush_lock);
657 		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
658 		return DM_MAPIO_SUBMITTED;
659 	}
660 
661 	/* Split zone BIOs to fit entirely into a zone */
662 	chunk_sector = sector & (dev->zone_nr_sectors - 1);
663 	if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
664 		dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);
665 
666 	/* Now ready to handle this BIO */
667 	ret = dmz_queue_chunk_work(dmz, bio);
668 	if (ret) {
669 		dmz_dev_debug(dmz->dev,
670 			      "BIO op %d, can't process chunk %llu, err %i\n",
671 			      bio_op(bio), (u64)dmz_bio_chunk(dmz->dev, bio),
672 			      ret);
673 		return DM_MAPIO_REQUEUE;
674 	}
675 
676 	return DM_MAPIO_SUBMITTED;
677 }
678 
679 /*
680  * Get zoned device information.
681  */
682 static int dmz_get_zoned_device(struct dm_target *ti, char *path)
683 {
684 	struct dmz_target *dmz = ti->private;
685 	struct request_queue *q;
686 	struct dmz_dev *dev;
687 	sector_t aligned_capacity;
688 	int ret;
689 
690 	/* Get the target device */
691 	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
692 	if (ret) {
693 		ti->error = "Get target device failed";
694 		dmz->ddev = NULL;
695 		return ret;
696 	}
697 
698 	dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
699 	if (!dev) {
700 		ret = -ENOMEM;
701 		goto err;
702 	}
703 
704 	dev->bdev = dmz->ddev->bdev;
705 	(void)bdevname(dev->bdev, dev->name);
706 
707 	if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
708 		ti->error = "Not a zoned block device";
709 		ret = -EINVAL;
710 		goto err;
711 	}
712 
713 	q = bdev_get_queue(dev->bdev);
714 	dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
715 	aligned_capacity = dev->capacity &
716 				~((sector_t)blk_queue_zone_sectors(q) - 1);
717 	if (ti->begin ||
718 	    ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) {
719 		ti->error = "Partial mapping not supported";
720 		ret = -EINVAL;
721 		goto err;
722 	}
723 
724 	dev->zone_nr_sectors = blk_queue_zone_sectors(q);
725 	dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);
726 
727 	dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
728 	dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);
729 
730 	dev->nr_zones = blkdev_nr_zones(dev->bdev->bd_disk);
731 
732 	dmz->dev = dev;
733 
734 	return 0;
735 err:
736 	dm_put_device(ti, dmz->ddev);
737 	kfree(dev);
738 
739 	return ret;
740 }
741 
742 /*
743  * Cleanup zoned device information.
744  */
745 static void dmz_put_zoned_device(struct dm_target *ti)
746 {
747 	struct dmz_target *dmz = ti->private;
748 
749 	dm_put_device(ti, dmz->ddev);
750 	kfree(dmz->dev);
751 	dmz->dev = NULL;
752 }
753 
754 /*
755  * Setup target.
756  */
757 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
758 {
759 	struct dmz_target *dmz;
760 	struct dmz_dev *dev;
761 	int ret;
762 
763 	/* Check arguments */
764 	if (argc != 1) {
765 		ti->error = "Invalid argument count";
766 		return -EINVAL;
767 	}
768 
769 	/* Allocate and initialize the target descriptor */
770 	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
771 	if (!dmz) {
772 		ti->error = "Unable to allocate the zoned target descriptor";
773 		return -ENOMEM;
774 	}
775 	ti->private = dmz;
776 
777 	/* Get the target zoned block device */
778 	ret = dmz_get_zoned_device(ti, argv[0]);
779 	if (ret) {
780 		dmz->ddev = NULL;
781 		goto err;
782 	}
783 
784 	/* Initialize metadata */
785 	dev = dmz->dev;
786 	ret = dmz_ctr_metadata(dev, &dmz->metadata);
787 	if (ret) {
788 		ti->error = "Metadata initialization failed";
789 		goto err_dev;
790 	}
791 
792 	/* Set target (no write same support) */
793 	ti->max_io_len = dev->zone_nr_sectors << 9;
794 	ti->num_flush_bios = 1;
795 	ti->num_discard_bios = 1;
796 	ti->num_write_zeroes_bios = 1;
797 	ti->per_io_data_size = sizeof(struct dmz_bioctx);
798 	ti->flush_supported = true;
799 	ti->discards_supported = true;
800 
801 	/* The exposed capacity is the number of chunks that can be mapped */
802 	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;
803 
804 	/* Zone BIO */
805 	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
806 	if (ret) {
807 		ti->error = "Create BIO set failed";
808 		goto err_meta;
809 	}
810 
811 	/* Chunk BIO work */
812 	mutex_init(&dmz->chunk_lock);
813 	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
814 	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
815 					0, dev->name);
816 	if (!dmz->chunk_wq) {
817 		ti->error = "Create chunk workqueue failed";
818 		ret = -ENOMEM;
819 		goto err_bio;
820 	}
821 
822 	/* Flush work */
823 	spin_lock_init(&dmz->flush_lock);
824 	bio_list_init(&dmz->flush_list);
825 	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
826 	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
827 						dev->name);
828 	if (!dmz->flush_wq) {
829 		ti->error = "Create flush workqueue failed";
830 		ret = -ENOMEM;
831 		goto err_cwq;
832 	}
833 	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
834 
835 	/* Initialize reclaim */
836 	ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
837 	if (ret) {
838 		ti->error = "Zone reclaim initialization failed";
839 		goto err_fwq;
840 	}
841 
842 	dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
843 		     (unsigned long long)ti->len,
844 		     (unsigned long long)dmz_sect2blk(ti->len));
845 
846 	return 0;
847 err_fwq:
848 	destroy_workqueue(dmz->flush_wq);
849 err_cwq:
850 	destroy_workqueue(dmz->chunk_wq);
851 err_bio:
852 	mutex_destroy(&dmz->chunk_lock);
853 	bioset_exit(&dmz->bio_set);
854 err_meta:
855 	dmz_dtr_metadata(dmz->metadata);
856 err_dev:
857 	dmz_put_zoned_device(ti);
858 err:
859 	kfree(dmz);
860 
861 	return ret;
862 }
863 
864 /*
865  * Cleanup target.
866  */
867 static void dmz_dtr(struct dm_target *ti)
868 {
869 	struct dmz_target *dmz = ti->private;
870 
871 	flush_workqueue(dmz->chunk_wq);
872 	destroy_workqueue(dmz->chunk_wq);
873 
874 	dmz_dtr_reclaim(dmz->reclaim);
875 
876 	cancel_delayed_work_sync(&dmz->flush_work);
877 	destroy_workqueue(dmz->flush_wq);
878 
879 	(void) dmz_flush_metadata(dmz->metadata);
880 
881 	dmz_dtr_metadata(dmz->metadata);
882 
883 	bioset_exit(&dmz->bio_set);
884 
885 	dmz_put_zoned_device(ti);
886 
887 	mutex_destroy(&dmz->chunk_lock);
888 
889 	kfree(dmz);
890 }
891 
892 /*
893  * Setup target request queue limits.
894  */
895 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
896 {
897 	struct dmz_target *dmz = ti->private;
898 	unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;
899 
900 	limits->logical_block_size = DMZ_BLOCK_SIZE;
901 	limits->physical_block_size = DMZ_BLOCK_SIZE;
902 
903 	blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
904 	blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
905 
906 	limits->discard_alignment = DMZ_BLOCK_SIZE;
907 	limits->discard_granularity = DMZ_BLOCK_SIZE;
908 	limits->max_discard_sectors = chunk_sectors;
909 	limits->max_hw_discard_sectors = chunk_sectors;
910 	limits->max_write_zeroes_sectors = chunk_sectors;
911 
912 	/* FS hint to try to align to the device zone size */
913 	limits->chunk_sectors = chunk_sectors;
914 	limits->max_sectors = chunk_sectors;
915 
916 	/* We are exposing a drive-managed zoned block device */
917 	limits->zoned = BLK_ZONED_NONE;
918 }
919 
920 /*
921  * Pass on ioctl to the backend device.
922  */
923 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
924 {
925 	struct dmz_target *dmz = ti->private;
926 
927 	if (!dmz_check_bdev(dmz->dev))
928 		return -EIO;
929 
930 	*bdev = dmz->dev->bdev;
931 
932 	return 0;
933 }
934 
935 /*
936  * Stop works on suspend.
937  */
938 static void dmz_suspend(struct dm_target *ti)
939 {
940 	struct dmz_target *dmz = ti->private;
941 
942 	flush_workqueue(dmz->chunk_wq);
943 	dmz_suspend_reclaim(dmz->reclaim);
944 	cancel_delayed_work_sync(&dmz->flush_work);
945 }
946 
947 /*
948  * Restart works on resume or if suspend failed.
949  */
950 static void dmz_resume(struct dm_target *ti)
951 {
952 	struct dmz_target *dmz = ti->private;
953 
954 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
955 	dmz_resume_reclaim(dmz->reclaim);
956 }
957 
958 static int dmz_iterate_devices(struct dm_target *ti,
959 			       iterate_devices_callout_fn fn, void *data)
960 {
961 	struct dmz_target *dmz = ti->private;
962 	struct dmz_dev *dev = dmz->dev;
963 	sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1);
964 
965 	return fn(ti, dmz->ddev, 0, capacity, data);
966 }
967 
968 static struct target_type dmz_type = {
969 	.name		 = "zoned",
970 	.version	 = {1, 1, 0},
971 	.features	 = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
972 	.module		 = THIS_MODULE,
973 	.ctr		 = dmz_ctr,
974 	.dtr		 = dmz_dtr,
975 	.map		 = dmz_map,
976 	.io_hints	 = dmz_io_hints,
977 	.prepare_ioctl	 = dmz_prepare_ioctl,
978 	.postsuspend	 = dmz_suspend,
979 	.resume		 = dmz_resume,
980 	.iterate_devices = dmz_iterate_devices,
981 };
982 
983 static int __init dmz_init(void)
984 {
985 	return dm_register_target(&dmz_type);
986 }
987 
988 static void __exit dmz_exit(void)
989 {
990 	dm_unregister_target(&dmz_type);
991 }
992 
993 module_init(dmz_init);
994 module_exit(dmz_exit);
995 
996 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
997 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
998 MODULE_LICENSE("GPL");
999