1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/mm.h> 8 #include <linux/sched/mm.h> 9 #include <linux/slab.h> 10 11 #include "dm-core.h" 12 13 #define DM_MSG_PREFIX "zone" 14 15 #define DM_ZONE_INVALID_WP_OFST UINT_MAX 16 17 /* 18 * For internal zone reports bypassing the top BIO submission path. 19 */ 20 static int dm_blk_do_report_zones(struct mapped_device *md, struct dm_table *t, 21 sector_t sector, unsigned int nr_zones, 22 report_zones_cb cb, void *data) 23 { 24 struct gendisk *disk = md->disk; 25 int ret; 26 struct dm_report_zones_args args = { 27 .next_sector = sector, 28 .orig_data = data, 29 .orig_cb = cb, 30 }; 31 32 do { 33 struct dm_target *tgt; 34 35 tgt = dm_table_find_target(t, args.next_sector); 36 if (WARN_ON_ONCE(!tgt->type->report_zones)) 37 return -EIO; 38 39 args.tgt = tgt; 40 ret = tgt->type->report_zones(tgt, &args, 41 nr_zones - args.zone_idx); 42 if (ret < 0) 43 return ret; 44 } while (args.zone_idx < nr_zones && 45 args.next_sector < get_capacity(disk)); 46 47 return args.zone_idx; 48 } 49 50 /* 51 * User facing dm device block device report zone operation. This calls the 52 * report_zones operation for each target of a device table. This operation is 53 * generally implemented by targets using dm_report_zones(). 54 */ 55 int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 56 unsigned int nr_zones, report_zones_cb cb, void *data) 57 { 58 struct mapped_device *md = disk->private_data; 59 struct dm_table *map; 60 int srcu_idx, ret; 61 62 if (dm_suspended_md(md)) 63 return -EAGAIN; 64 65 map = dm_get_live_table(md, &srcu_idx); 66 if (!map) 67 return -EIO; 68 69 ret = dm_blk_do_report_zones(md, map, sector, nr_zones, cb, data); 70 71 dm_put_live_table(md, srcu_idx); 72 73 return ret; 74 } 75 76 static int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, 77 void *data) 78 { 79 struct dm_report_zones_args *args = data; 80 sector_t sector_diff = args->tgt->begin - args->start; 81 82 /* 83 * Ignore zones beyond the target range. 84 */ 85 if (zone->start >= args->start + args->tgt->len) 86 return 0; 87 88 /* 89 * Remap the start sector and write pointer position of the zone 90 * to match its position in the target range. 91 */ 92 zone->start += sector_diff; 93 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 94 if (zone->cond == BLK_ZONE_COND_FULL) 95 zone->wp = zone->start + zone->len; 96 else if (zone->cond == BLK_ZONE_COND_EMPTY) 97 zone->wp = zone->start; 98 else 99 zone->wp += sector_diff; 100 } 101 102 args->next_sector = zone->start + zone->len; 103 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 104 } 105 106 /* 107 * Helper for drivers of zoned targets to implement struct target_type 108 * report_zones operation. 109 */ 110 int dm_report_zones(struct block_device *bdev, sector_t start, sector_t sector, 111 struct dm_report_zones_args *args, unsigned int nr_zones) 112 { 113 /* 114 * Set the target mapping start sector first so that 115 * dm_report_zones_cb() can correctly remap zone information. 116 */ 117 args->start = start; 118 119 return blkdev_report_zones(bdev, sector, nr_zones, 120 dm_report_zones_cb, args); 121 } 122 EXPORT_SYMBOL_GPL(dm_report_zones); 123 124 bool dm_is_zone_write(struct mapped_device *md, struct bio *bio) 125 { 126 struct request_queue *q = md->queue; 127 128 if (!blk_queue_is_zoned(q)) 129 return false; 130 131 switch (bio_op(bio)) { 132 case REQ_OP_WRITE_ZEROES: 133 case REQ_OP_WRITE: 134 return !op_is_flush(bio->bi_opf) && bio_sectors(bio); 135 default: 136 return false; 137 } 138 } 139 140 void dm_cleanup_zoned_dev(struct mapped_device *md) 141 { 142 if (md->disk) { 143 kfree(md->disk->conv_zones_bitmap); 144 md->disk->conv_zones_bitmap = NULL; 145 kfree(md->disk->seq_zones_wlock); 146 md->disk->seq_zones_wlock = NULL; 147 } 148 149 kvfree(md->zwp_offset); 150 md->zwp_offset = NULL; 151 md->nr_zones = 0; 152 } 153 154 static unsigned int dm_get_zone_wp_offset(struct blk_zone *zone) 155 { 156 switch (zone->cond) { 157 case BLK_ZONE_COND_IMP_OPEN: 158 case BLK_ZONE_COND_EXP_OPEN: 159 case BLK_ZONE_COND_CLOSED: 160 return zone->wp - zone->start; 161 case BLK_ZONE_COND_FULL: 162 return zone->len; 163 case BLK_ZONE_COND_EMPTY: 164 case BLK_ZONE_COND_NOT_WP: 165 case BLK_ZONE_COND_OFFLINE: 166 case BLK_ZONE_COND_READONLY: 167 default: 168 /* 169 * Conventional, offline and read-only zones do not have a valid 170 * write pointer. Use 0 as for an empty zone. 171 */ 172 return 0; 173 } 174 } 175 176 static int dm_zone_revalidate_cb(struct blk_zone *zone, unsigned int idx, 177 void *data) 178 { 179 struct mapped_device *md = data; 180 struct gendisk *disk = md->disk; 181 182 switch (zone->type) { 183 case BLK_ZONE_TYPE_CONVENTIONAL: 184 if (!disk->conv_zones_bitmap) { 185 disk->conv_zones_bitmap = 186 kcalloc(BITS_TO_LONGS(disk->nr_zones), 187 sizeof(unsigned long), GFP_NOIO); 188 if (!disk->conv_zones_bitmap) 189 return -ENOMEM; 190 } 191 set_bit(idx, disk->conv_zones_bitmap); 192 break; 193 case BLK_ZONE_TYPE_SEQWRITE_REQ: 194 case BLK_ZONE_TYPE_SEQWRITE_PREF: 195 if (!disk->seq_zones_wlock) { 196 disk->seq_zones_wlock = 197 kcalloc(BITS_TO_LONGS(disk->nr_zones), 198 sizeof(unsigned long), GFP_NOIO); 199 if (!disk->seq_zones_wlock) 200 return -ENOMEM; 201 } 202 if (!md->zwp_offset) { 203 md->zwp_offset = 204 kvcalloc(disk->nr_zones, sizeof(unsigned int), 205 GFP_KERNEL); 206 if (!md->zwp_offset) 207 return -ENOMEM; 208 } 209 md->zwp_offset[idx] = dm_get_zone_wp_offset(zone); 210 211 break; 212 default: 213 DMERR("Invalid zone type 0x%x at sectors %llu", 214 (int)zone->type, zone->start); 215 return -ENODEV; 216 } 217 218 return 0; 219 } 220 221 /* 222 * Revalidate the zones of a mapped device to initialize resource necessary 223 * for zone append emulation. Note that we cannot simply use the block layer 224 * blk_revalidate_disk_zones() function here as the mapped device is suspended 225 * (this is called from __bind() context). 226 */ 227 static int dm_revalidate_zones(struct mapped_device *md, struct dm_table *t) 228 { 229 struct gendisk *disk = md->disk; 230 unsigned int noio_flag; 231 int ret; 232 233 /* 234 * Check if something changed. If yes, cleanup the current resources 235 * and reallocate everything. 236 */ 237 if (!disk->nr_zones || disk->nr_zones != md->nr_zones) 238 dm_cleanup_zoned_dev(md); 239 if (md->nr_zones) 240 return 0; 241 242 /* 243 * Scan all zones to initialize everything. Ensure that all vmalloc 244 * operations in this context are done as if GFP_NOIO was specified. 245 */ 246 noio_flag = memalloc_noio_save(); 247 ret = dm_blk_do_report_zones(md, t, 0, disk->nr_zones, 248 dm_zone_revalidate_cb, md); 249 memalloc_noio_restore(noio_flag); 250 if (ret < 0) 251 goto err; 252 if (ret != disk->nr_zones) { 253 ret = -EIO; 254 goto err; 255 } 256 257 md->nr_zones = disk->nr_zones; 258 259 return 0; 260 261 err: 262 DMERR("Revalidate zones failed %d", ret); 263 dm_cleanup_zoned_dev(md); 264 return ret; 265 } 266 267 static int device_not_zone_append_capable(struct dm_target *ti, 268 struct dm_dev *dev, sector_t start, 269 sector_t len, void *data) 270 { 271 return !bdev_is_zoned(dev->bdev); 272 } 273 274 static bool dm_table_supports_zone_append(struct dm_table *t) 275 { 276 for (unsigned int i = 0; i < t->num_targets; i++) { 277 struct dm_target *ti = dm_table_get_target(t, i); 278 279 if (ti->emulate_zone_append) 280 return false; 281 282 if (!ti->type->iterate_devices || 283 ti->type->iterate_devices(ti, device_not_zone_append_capable, NULL)) 284 return false; 285 } 286 287 return true; 288 } 289 290 int dm_set_zones_restrictions(struct dm_table *t, struct request_queue *q) 291 { 292 struct mapped_device *md = t->md; 293 294 /* 295 * For a zoned target, the number of zones should be updated for the 296 * correct value to be exposed in sysfs queue/nr_zones. 297 */ 298 WARN_ON_ONCE(queue_is_mq(q)); 299 md->disk->nr_zones = bdev_nr_zones(md->disk->part0); 300 301 /* Check if zone append is natively supported */ 302 if (dm_table_supports_zone_append(t)) { 303 clear_bit(DMF_EMULATE_ZONE_APPEND, &md->flags); 304 dm_cleanup_zoned_dev(md); 305 return 0; 306 } 307 308 /* 309 * Mark the mapped device as needing zone append emulation and 310 * initialize the emulation resources once the capacity is set. 311 */ 312 set_bit(DMF_EMULATE_ZONE_APPEND, &md->flags); 313 if (!get_capacity(md->disk)) 314 return 0; 315 316 return dm_revalidate_zones(md, t); 317 } 318 319 static int dm_update_zone_wp_offset_cb(struct blk_zone *zone, unsigned int idx, 320 void *data) 321 { 322 unsigned int *wp_offset = data; 323 324 *wp_offset = dm_get_zone_wp_offset(zone); 325 326 return 0; 327 } 328 329 static int dm_update_zone_wp_offset(struct mapped_device *md, unsigned int zno, 330 unsigned int *wp_ofst) 331 { 332 sector_t sector = zno * bdev_zone_sectors(md->disk->part0); 333 unsigned int noio_flag; 334 struct dm_table *t; 335 int srcu_idx, ret; 336 337 t = dm_get_live_table(md, &srcu_idx); 338 if (!t) 339 return -EIO; 340 341 /* 342 * Ensure that all memory allocations in this context are done as if 343 * GFP_NOIO was specified. 344 */ 345 noio_flag = memalloc_noio_save(); 346 ret = dm_blk_do_report_zones(md, t, sector, 1, 347 dm_update_zone_wp_offset_cb, wp_ofst); 348 memalloc_noio_restore(noio_flag); 349 350 dm_put_live_table(md, srcu_idx); 351 352 if (ret != 1) 353 return -EIO; 354 355 return 0; 356 } 357 358 struct orig_bio_details { 359 enum req_op op; 360 unsigned int nr_sectors; 361 }; 362 363 /* 364 * First phase of BIO mapping for targets with zone append emulation: 365 * check all BIO that change a zone writer pointer and change zone 366 * append operations into regular write operations. 367 */ 368 static bool dm_zone_map_bio_begin(struct mapped_device *md, 369 unsigned int zno, struct bio *clone) 370 { 371 sector_t zsectors = bdev_zone_sectors(md->disk->part0); 372 unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]); 373 374 /* 375 * If the target zone is in an error state, recover by inspecting the 376 * zone to get its current write pointer position. Note that since the 377 * target zone is already locked, a BIO issuing context should never 378 * see the zone write in the DM_ZONE_UPDATING_WP_OFST state. 379 */ 380 if (zwp_offset == DM_ZONE_INVALID_WP_OFST) { 381 if (dm_update_zone_wp_offset(md, zno, &zwp_offset)) 382 return false; 383 WRITE_ONCE(md->zwp_offset[zno], zwp_offset); 384 } 385 386 switch (bio_op(clone)) { 387 case REQ_OP_ZONE_RESET: 388 case REQ_OP_ZONE_FINISH: 389 return true; 390 case REQ_OP_WRITE_ZEROES: 391 case REQ_OP_WRITE: 392 /* Writes must be aligned to the zone write pointer */ 393 if ((clone->bi_iter.bi_sector & (zsectors - 1)) != zwp_offset) 394 return false; 395 break; 396 case REQ_OP_ZONE_APPEND: 397 /* 398 * Change zone append operations into a non-mergeable regular 399 * writes directed at the current write pointer position of the 400 * target zone. 401 */ 402 clone->bi_opf = REQ_OP_WRITE | REQ_NOMERGE | 403 (clone->bi_opf & (~REQ_OP_MASK)); 404 clone->bi_iter.bi_sector += zwp_offset; 405 break; 406 default: 407 DMWARN_LIMIT("Invalid BIO operation"); 408 return false; 409 } 410 411 /* Cannot write to a full zone */ 412 if (zwp_offset >= zsectors) 413 return false; 414 415 return true; 416 } 417 418 /* 419 * Second phase of BIO mapping for targets with zone append emulation: 420 * update the zone write pointer offset array to account for the additional 421 * data written to a zone. Note that at this point, the remapped clone BIO 422 * may already have completed, so we do not touch it. 423 */ 424 static blk_status_t dm_zone_map_bio_end(struct mapped_device *md, unsigned int zno, 425 struct orig_bio_details *orig_bio_details, 426 unsigned int nr_sectors) 427 { 428 unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]); 429 430 /* The clone BIO may already have been completed and failed */ 431 if (zwp_offset == DM_ZONE_INVALID_WP_OFST) 432 return BLK_STS_IOERR; 433 434 /* Update the zone wp offset */ 435 switch (orig_bio_details->op) { 436 case REQ_OP_ZONE_RESET: 437 WRITE_ONCE(md->zwp_offset[zno], 0); 438 return BLK_STS_OK; 439 case REQ_OP_ZONE_FINISH: 440 WRITE_ONCE(md->zwp_offset[zno], 441 bdev_zone_sectors(md->disk->part0)); 442 return BLK_STS_OK; 443 case REQ_OP_WRITE_ZEROES: 444 case REQ_OP_WRITE: 445 WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors); 446 return BLK_STS_OK; 447 case REQ_OP_ZONE_APPEND: 448 /* 449 * Check that the target did not truncate the write operation 450 * emulating a zone append. 451 */ 452 if (nr_sectors != orig_bio_details->nr_sectors) { 453 DMWARN_LIMIT("Truncated write for zone append"); 454 return BLK_STS_IOERR; 455 } 456 WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors); 457 return BLK_STS_OK; 458 default: 459 DMWARN_LIMIT("Invalid BIO operation"); 460 return BLK_STS_IOERR; 461 } 462 } 463 464 static inline void dm_zone_lock(struct gendisk *disk, unsigned int zno, 465 struct bio *clone) 466 { 467 if (WARN_ON_ONCE(bio_flagged(clone, BIO_ZONE_WRITE_LOCKED))) 468 return; 469 470 wait_on_bit_lock_io(disk->seq_zones_wlock, zno, TASK_UNINTERRUPTIBLE); 471 bio_set_flag(clone, BIO_ZONE_WRITE_LOCKED); 472 } 473 474 static inline void dm_zone_unlock(struct gendisk *disk, unsigned int zno, 475 struct bio *clone) 476 { 477 if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED)) 478 return; 479 480 WARN_ON_ONCE(!test_bit(zno, disk->seq_zones_wlock)); 481 clear_bit_unlock(zno, disk->seq_zones_wlock); 482 smp_mb__after_atomic(); 483 wake_up_bit(disk->seq_zones_wlock, zno); 484 485 bio_clear_flag(clone, BIO_ZONE_WRITE_LOCKED); 486 } 487 488 static bool dm_need_zone_wp_tracking(struct bio *bio) 489 { 490 /* 491 * Special processing is not needed for operations that do not need the 492 * zone write lock, that is, all operations that target conventional 493 * zones and all operations that do not modify directly a sequential 494 * zone write pointer. 495 */ 496 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 497 return false; 498 switch (bio_op(bio)) { 499 case REQ_OP_WRITE_ZEROES: 500 case REQ_OP_WRITE: 501 case REQ_OP_ZONE_RESET: 502 case REQ_OP_ZONE_FINISH: 503 case REQ_OP_ZONE_APPEND: 504 return bio_zone_is_seq(bio); 505 default: 506 return false; 507 } 508 } 509 510 /* 511 * Special IO mapping for targets needing zone append emulation. 512 */ 513 int dm_zone_map_bio(struct dm_target_io *tio) 514 { 515 struct dm_io *io = tio->io; 516 struct dm_target *ti = tio->ti; 517 struct mapped_device *md = io->md; 518 struct bio *clone = &tio->clone; 519 struct orig_bio_details orig_bio_details; 520 unsigned int zno; 521 blk_status_t sts; 522 int r; 523 524 /* 525 * IOs that do not change a zone write pointer do not need 526 * any additional special processing. 527 */ 528 if (!dm_need_zone_wp_tracking(clone)) 529 return ti->type->map(ti, clone); 530 531 /* Lock the target zone */ 532 zno = bio_zone_no(clone); 533 dm_zone_lock(md->disk, zno, clone); 534 535 orig_bio_details.nr_sectors = bio_sectors(clone); 536 orig_bio_details.op = bio_op(clone); 537 538 /* 539 * Check that the bio and the target zone write pointer offset are 540 * both valid, and if the bio is a zone append, remap it to a write. 541 */ 542 if (!dm_zone_map_bio_begin(md, zno, clone)) { 543 dm_zone_unlock(md->disk, zno, clone); 544 return DM_MAPIO_KILL; 545 } 546 547 /* Let the target do its work */ 548 r = ti->type->map(ti, clone); 549 switch (r) { 550 case DM_MAPIO_SUBMITTED: 551 /* 552 * The target submitted the clone BIO. The target zone will 553 * be unlocked on completion of the clone. 554 */ 555 sts = dm_zone_map_bio_end(md, zno, &orig_bio_details, 556 *tio->len_ptr); 557 break; 558 case DM_MAPIO_REMAPPED: 559 /* 560 * The target only remapped the clone BIO. In case of error, 561 * unlock the target zone here as the clone will not be 562 * submitted. 563 */ 564 sts = dm_zone_map_bio_end(md, zno, &orig_bio_details, 565 *tio->len_ptr); 566 if (sts != BLK_STS_OK) 567 dm_zone_unlock(md->disk, zno, clone); 568 break; 569 case DM_MAPIO_REQUEUE: 570 case DM_MAPIO_KILL: 571 default: 572 dm_zone_unlock(md->disk, zno, clone); 573 sts = BLK_STS_IOERR; 574 break; 575 } 576 577 if (sts != BLK_STS_OK) 578 return DM_MAPIO_KILL; 579 580 return r; 581 } 582 583 /* 584 * IO completion callback called from clone_endio(). 585 */ 586 void dm_zone_endio(struct dm_io *io, struct bio *clone) 587 { 588 struct mapped_device *md = io->md; 589 struct gendisk *disk = md->disk; 590 struct bio *orig_bio = io->orig_bio; 591 unsigned int zwp_offset; 592 unsigned int zno; 593 594 /* 595 * For targets that do not emulate zone append, we only need to 596 * handle native zone-append bios. 597 */ 598 if (!dm_emulate_zone_append(md)) { 599 /* 600 * Get the offset within the zone of the written sector 601 * and add that to the original bio sector position. 602 */ 603 if (clone->bi_status == BLK_STS_OK && 604 bio_op(clone) == REQ_OP_ZONE_APPEND) { 605 sector_t mask = 606 (sector_t)bdev_zone_sectors(disk->part0) - 1; 607 608 orig_bio->bi_iter.bi_sector += 609 clone->bi_iter.bi_sector & mask; 610 } 611 612 return; 613 } 614 615 /* 616 * For targets that do emulate zone append, if the clone BIO does not 617 * own the target zone write lock, we have nothing to do. 618 */ 619 if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED)) 620 return; 621 622 zno = bio_zone_no(orig_bio); 623 624 if (clone->bi_status != BLK_STS_OK) { 625 /* 626 * BIOs that modify a zone write pointer may leave the zone 627 * in an unknown state in case of failure (e.g. the write 628 * pointer was only partially advanced). In this case, set 629 * the target zone write pointer as invalid unless it is 630 * already being updated. 631 */ 632 WRITE_ONCE(md->zwp_offset[zno], DM_ZONE_INVALID_WP_OFST); 633 } else if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 634 /* 635 * Get the written sector for zone append operation that were 636 * emulated using regular write operations. 637 */ 638 zwp_offset = READ_ONCE(md->zwp_offset[zno]); 639 if (WARN_ON_ONCE(zwp_offset < bio_sectors(orig_bio))) 640 WRITE_ONCE(md->zwp_offset[zno], 641 DM_ZONE_INVALID_WP_OFST); 642 else 643 orig_bio->bi_iter.bi_sector += 644 zwp_offset - bio_sectors(orig_bio); 645 } 646 647 dm_zone_unlock(disk, zno, clone); 648 } 649