1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 void *block_start; 152 struct wc_entry *entries; 153 unsigned block_size; 154 unsigned char block_size_bits; 155 156 bool pmem_mode:1; 157 bool writeback_fua:1; 158 159 bool overwrote_committed:1; 160 bool memory_vmapped:1; 161 162 bool high_wm_percent_set:1; 163 bool low_wm_percent_set:1; 164 bool max_writeback_jobs_set:1; 165 bool autocommit_blocks_set:1; 166 bool autocommit_time_set:1; 167 bool writeback_fua_set:1; 168 bool flush_on_suspend:1; 169 bool cleaner:1; 170 171 unsigned writeback_all; 172 struct workqueue_struct *writeback_wq; 173 struct work_struct writeback_work; 174 struct work_struct flush_work; 175 176 struct dm_io_client *dm_io; 177 178 raw_spinlock_t endio_list_lock; 179 struct list_head endio_list; 180 struct task_struct *endio_thread; 181 182 struct task_struct *flush_thread; 183 struct bio_list flush_list; 184 185 struct dm_kcopyd_client *dm_kcopyd; 186 unsigned long *dirty_bitmap; 187 unsigned dirty_bitmap_size; 188 189 struct bio_set bio_set; 190 mempool_t copy_pool; 191 }; 192 193 #define WB_LIST_INLINE 16 194 195 struct writeback_struct { 196 struct list_head endio_entry; 197 struct dm_writecache *wc; 198 struct wc_entry **wc_list; 199 unsigned wc_list_n; 200 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 201 struct bio bio; 202 }; 203 204 struct copy_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry *e; 208 unsigned n_entries; 209 int error; 210 }; 211 212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 213 "A percentage of time allocated for data copying"); 214 215 static void wc_lock(struct dm_writecache *wc) 216 { 217 mutex_lock(&wc->lock); 218 } 219 220 static void wc_unlock(struct dm_writecache *wc) 221 { 222 mutex_unlock(&wc->lock); 223 } 224 225 #ifdef DM_WRITECACHE_HAS_PMEM 226 static int persistent_memory_claim(struct dm_writecache *wc) 227 { 228 int r; 229 loff_t s; 230 long p, da; 231 pfn_t pfn; 232 int id; 233 struct page **pages; 234 sector_t offset; 235 236 wc->memory_vmapped = false; 237 238 s = wc->memory_map_size; 239 p = s >> PAGE_SHIFT; 240 if (!p) { 241 r = -EINVAL; 242 goto err1; 243 } 244 if (p != s >> PAGE_SHIFT) { 245 r = -EOVERFLOW; 246 goto err1; 247 } 248 249 offset = get_start_sect(wc->ssd_dev->bdev); 250 if (offset & (PAGE_SIZE / 512 - 1)) { 251 r = -EINVAL; 252 goto err1; 253 } 254 offset >>= PAGE_SHIFT - 9; 255 256 id = dax_read_lock(); 257 258 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn); 259 if (da < 0) { 260 wc->memory_map = NULL; 261 r = da; 262 goto err2; 263 } 264 if (!pfn_t_has_page(pfn)) { 265 wc->memory_map = NULL; 266 r = -EOPNOTSUPP; 267 goto err2; 268 } 269 if (da != p) { 270 long i; 271 wc->memory_map = NULL; 272 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 273 if (!pages) { 274 r = -ENOMEM; 275 goto err2; 276 } 277 i = 0; 278 do { 279 long daa; 280 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i, 281 NULL, &pfn); 282 if (daa <= 0) { 283 r = daa ? daa : -EINVAL; 284 goto err3; 285 } 286 if (!pfn_t_has_page(pfn)) { 287 r = -EOPNOTSUPP; 288 goto err3; 289 } 290 while (daa-- && i < p) { 291 pages[i++] = pfn_t_to_page(pfn); 292 pfn.val++; 293 if (!(i & 15)) 294 cond_resched(); 295 } 296 } while (i < p); 297 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 298 if (!wc->memory_map) { 299 r = -ENOMEM; 300 goto err3; 301 } 302 kvfree(pages); 303 wc->memory_vmapped = true; 304 } 305 306 dax_read_unlock(id); 307 308 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 309 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 310 311 return 0; 312 err3: 313 kvfree(pages); 314 err2: 315 dax_read_unlock(id); 316 err1: 317 return r; 318 } 319 #else 320 static int persistent_memory_claim(struct dm_writecache *wc) 321 { 322 BUG(); 323 } 324 #endif 325 326 static void persistent_memory_release(struct dm_writecache *wc) 327 { 328 if (wc->memory_vmapped) 329 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 330 } 331 332 static struct page *persistent_memory_page(void *addr) 333 { 334 if (is_vmalloc_addr(addr)) 335 return vmalloc_to_page(addr); 336 else 337 return virt_to_page(addr); 338 } 339 340 static unsigned persistent_memory_page_offset(void *addr) 341 { 342 return (unsigned long)addr & (PAGE_SIZE - 1); 343 } 344 345 static void persistent_memory_flush_cache(void *ptr, size_t size) 346 { 347 if (is_vmalloc_addr(ptr)) 348 flush_kernel_vmap_range(ptr, size); 349 } 350 351 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 352 { 353 if (is_vmalloc_addr(ptr)) 354 invalidate_kernel_vmap_range(ptr, size); 355 } 356 357 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 358 { 359 return wc->memory_map; 360 } 361 362 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 363 { 364 return &sb(wc)->entries[e->index]; 365 } 366 367 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 368 { 369 return (char *)wc->block_start + (e->index << wc->block_size_bits); 370 } 371 372 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 373 { 374 return wc->start_sector + wc->metadata_sectors + 375 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 376 } 377 378 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 379 { 380 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 381 return e->original_sector; 382 #else 383 return le64_to_cpu(memory_entry(wc, e)->original_sector); 384 #endif 385 } 386 387 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 388 { 389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 390 return e->seq_count; 391 #else 392 return le64_to_cpu(memory_entry(wc, e)->seq_count); 393 #endif 394 } 395 396 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 397 { 398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 399 e->seq_count = -1; 400 #endif 401 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 402 } 403 404 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 405 uint64_t original_sector, uint64_t seq_count) 406 { 407 struct wc_memory_entry me; 408 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 409 e->original_sector = original_sector; 410 e->seq_count = seq_count; 411 #endif 412 me.original_sector = cpu_to_le64(original_sector); 413 me.seq_count = cpu_to_le64(seq_count); 414 pmem_assign(*memory_entry(wc, e), me); 415 } 416 417 #define writecache_error(wc, err, msg, arg...) \ 418 do { \ 419 if (!cmpxchg(&(wc)->error, 0, err)) \ 420 DMERR(msg, ##arg); \ 421 wake_up(&(wc)->freelist_wait); \ 422 } while (0) 423 424 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 425 426 static void writecache_flush_all_metadata(struct dm_writecache *wc) 427 { 428 if (!WC_MODE_PMEM(wc)) 429 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 430 } 431 432 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 433 { 434 if (!WC_MODE_PMEM(wc)) 435 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 436 wc->dirty_bitmap); 437 } 438 439 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 440 441 struct io_notify { 442 struct dm_writecache *wc; 443 struct completion c; 444 atomic_t count; 445 }; 446 447 static void writecache_notify_io(unsigned long error, void *context) 448 { 449 struct io_notify *endio = context; 450 451 if (unlikely(error != 0)) 452 writecache_error(endio->wc, -EIO, "error writing metadata"); 453 BUG_ON(atomic_read(&endio->count) <= 0); 454 if (atomic_dec_and_test(&endio->count)) 455 complete(&endio->c); 456 } 457 458 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 459 { 460 wait_event(wc->bio_in_progress_wait[direction], 461 !atomic_read(&wc->bio_in_progress[direction])); 462 } 463 464 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 465 { 466 struct dm_io_region region; 467 struct dm_io_request req; 468 struct io_notify endio = { 469 wc, 470 COMPLETION_INITIALIZER_ONSTACK(endio.c), 471 ATOMIC_INIT(1), 472 }; 473 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 474 unsigned i = 0; 475 476 while (1) { 477 unsigned j; 478 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 479 if (unlikely(i == bitmap_bits)) 480 break; 481 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 482 483 region.bdev = wc->ssd_dev->bdev; 484 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 485 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 486 487 if (unlikely(region.sector >= wc->metadata_sectors)) 488 break; 489 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 490 region.count = wc->metadata_sectors - region.sector; 491 492 region.sector += wc->start_sector; 493 atomic_inc(&endio.count); 494 req.bi_op = REQ_OP_WRITE; 495 req.bi_op_flags = REQ_SYNC; 496 req.mem.type = DM_IO_VMA; 497 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 498 req.client = wc->dm_io; 499 req.notify.fn = writecache_notify_io; 500 req.notify.context = &endio; 501 502 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 503 (void) dm_io(&req, 1, ®ion, NULL); 504 i = j; 505 } 506 507 writecache_notify_io(0, &endio); 508 wait_for_completion_io(&endio.c); 509 510 if (wait_for_ios) 511 writecache_wait_for_ios(wc, WRITE); 512 513 writecache_disk_flush(wc, wc->ssd_dev); 514 515 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 516 } 517 518 static void ssd_commit_superblock(struct dm_writecache *wc) 519 { 520 int r; 521 struct dm_io_region region; 522 struct dm_io_request req; 523 524 region.bdev = wc->ssd_dev->bdev; 525 region.sector = 0; 526 region.count = PAGE_SIZE; 527 528 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 529 region.count = wc->metadata_sectors - region.sector; 530 531 region.sector += wc->start_sector; 532 533 req.bi_op = REQ_OP_WRITE; 534 req.bi_op_flags = REQ_SYNC | REQ_FUA; 535 req.mem.type = DM_IO_VMA; 536 req.mem.ptr.vma = (char *)wc->memory_map; 537 req.client = wc->dm_io; 538 req.notify.fn = NULL; 539 req.notify.context = NULL; 540 541 r = dm_io(&req, 1, ®ion, NULL); 542 if (unlikely(r)) 543 writecache_error(wc, r, "error writing superblock"); 544 } 545 546 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 547 { 548 if (WC_MODE_PMEM(wc)) 549 pmem_wmb(); 550 else 551 ssd_commit_flushed(wc, wait_for_ios); 552 } 553 554 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 555 { 556 int r; 557 struct dm_io_region region; 558 struct dm_io_request req; 559 560 region.bdev = dev->bdev; 561 region.sector = 0; 562 region.count = 0; 563 req.bi_op = REQ_OP_WRITE; 564 req.bi_op_flags = REQ_PREFLUSH; 565 req.mem.type = DM_IO_KMEM; 566 req.mem.ptr.addr = NULL; 567 req.client = wc->dm_io; 568 req.notify.fn = NULL; 569 570 r = dm_io(&req, 1, ®ion, NULL); 571 if (unlikely(r)) 572 writecache_error(wc, r, "error flushing metadata: %d", r); 573 } 574 575 #define WFE_RETURN_FOLLOWING 1 576 #define WFE_LOWEST_SEQ 2 577 578 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 579 uint64_t block, int flags) 580 { 581 struct wc_entry *e; 582 struct rb_node *node = wc->tree.rb_node; 583 584 if (unlikely(!node)) 585 return NULL; 586 587 while (1) { 588 e = container_of(node, struct wc_entry, rb_node); 589 if (read_original_sector(wc, e) == block) 590 break; 591 592 node = (read_original_sector(wc, e) >= block ? 593 e->rb_node.rb_left : e->rb_node.rb_right); 594 if (unlikely(!node)) { 595 if (!(flags & WFE_RETURN_FOLLOWING)) 596 return NULL; 597 if (read_original_sector(wc, e) >= block) { 598 return e; 599 } else { 600 node = rb_next(&e->rb_node); 601 if (unlikely(!node)) 602 return NULL; 603 e = container_of(node, struct wc_entry, rb_node); 604 return e; 605 } 606 } 607 } 608 609 while (1) { 610 struct wc_entry *e2; 611 if (flags & WFE_LOWEST_SEQ) 612 node = rb_prev(&e->rb_node); 613 else 614 node = rb_next(&e->rb_node); 615 if (unlikely(!node)) 616 return e; 617 e2 = container_of(node, struct wc_entry, rb_node); 618 if (read_original_sector(wc, e2) != block) 619 return e; 620 e = e2; 621 } 622 } 623 624 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 625 { 626 struct wc_entry *e; 627 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 628 629 while (*node) { 630 e = container_of(*node, struct wc_entry, rb_node); 631 parent = &e->rb_node; 632 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 633 node = &parent->rb_left; 634 else 635 node = &parent->rb_right; 636 } 637 rb_link_node(&ins->rb_node, parent, node); 638 rb_insert_color(&ins->rb_node, &wc->tree); 639 list_add(&ins->lru, &wc->lru); 640 ins->age = jiffies; 641 } 642 643 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 644 { 645 list_del(&e->lru); 646 rb_erase(&e->rb_node, &wc->tree); 647 } 648 649 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 650 { 651 if (WC_MODE_SORT_FREELIST(wc)) { 652 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 653 if (unlikely(!*node)) 654 wc->current_free = e; 655 while (*node) { 656 parent = *node; 657 if (&e->rb_node < *node) 658 node = &parent->rb_left; 659 else 660 node = &parent->rb_right; 661 } 662 rb_link_node(&e->rb_node, parent, node); 663 rb_insert_color(&e->rb_node, &wc->freetree); 664 } else { 665 list_add_tail(&e->lru, &wc->freelist); 666 } 667 wc->freelist_size++; 668 } 669 670 static inline void writecache_verify_watermark(struct dm_writecache *wc) 671 { 672 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 673 queue_work(wc->writeback_wq, &wc->writeback_work); 674 } 675 676 static void writecache_max_age_timer(struct timer_list *t) 677 { 678 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 679 680 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 681 queue_work(wc->writeback_wq, &wc->writeback_work); 682 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 683 } 684 } 685 686 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 687 { 688 struct wc_entry *e; 689 690 if (WC_MODE_SORT_FREELIST(wc)) { 691 struct rb_node *next; 692 if (unlikely(!wc->current_free)) 693 return NULL; 694 e = wc->current_free; 695 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 696 return NULL; 697 next = rb_next(&e->rb_node); 698 rb_erase(&e->rb_node, &wc->freetree); 699 if (unlikely(!next)) 700 next = rb_first(&wc->freetree); 701 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 702 } else { 703 if (unlikely(list_empty(&wc->freelist))) 704 return NULL; 705 e = container_of(wc->freelist.next, struct wc_entry, lru); 706 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 707 return NULL; 708 list_del(&e->lru); 709 } 710 wc->freelist_size--; 711 712 writecache_verify_watermark(wc); 713 714 return e; 715 } 716 717 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 718 { 719 writecache_unlink(wc, e); 720 writecache_add_to_freelist(wc, e); 721 clear_seq_count(wc, e); 722 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 723 if (unlikely(waitqueue_active(&wc->freelist_wait))) 724 wake_up(&wc->freelist_wait); 725 } 726 727 static void writecache_wait_on_freelist(struct dm_writecache *wc) 728 { 729 DEFINE_WAIT(wait); 730 731 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 732 wc_unlock(wc); 733 io_schedule(); 734 finish_wait(&wc->freelist_wait, &wait); 735 wc_lock(wc); 736 } 737 738 static void writecache_poison_lists(struct dm_writecache *wc) 739 { 740 /* 741 * Catch incorrect access to these values while the device is suspended. 742 */ 743 memset(&wc->tree, -1, sizeof wc->tree); 744 wc->lru.next = LIST_POISON1; 745 wc->lru.prev = LIST_POISON2; 746 wc->freelist.next = LIST_POISON1; 747 wc->freelist.prev = LIST_POISON2; 748 } 749 750 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 751 { 752 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 753 if (WC_MODE_PMEM(wc)) 754 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 755 } 756 757 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 758 { 759 return read_seq_count(wc, e) < wc->seq_count; 760 } 761 762 static void writecache_flush(struct dm_writecache *wc) 763 { 764 struct wc_entry *e, *e2; 765 bool need_flush_after_free; 766 767 wc->uncommitted_blocks = 0; 768 del_timer(&wc->autocommit_timer); 769 770 if (list_empty(&wc->lru)) 771 return; 772 773 e = container_of(wc->lru.next, struct wc_entry, lru); 774 if (writecache_entry_is_committed(wc, e)) { 775 if (wc->overwrote_committed) { 776 writecache_wait_for_ios(wc, WRITE); 777 writecache_disk_flush(wc, wc->ssd_dev); 778 wc->overwrote_committed = false; 779 } 780 return; 781 } 782 while (1) { 783 writecache_flush_entry(wc, e); 784 if (unlikely(e->lru.next == &wc->lru)) 785 break; 786 e2 = container_of(e->lru.next, struct wc_entry, lru); 787 if (writecache_entry_is_committed(wc, e2)) 788 break; 789 e = e2; 790 cond_resched(); 791 } 792 writecache_commit_flushed(wc, true); 793 794 wc->seq_count++; 795 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 796 if (WC_MODE_PMEM(wc)) 797 writecache_commit_flushed(wc, false); 798 else 799 ssd_commit_superblock(wc); 800 801 wc->overwrote_committed = false; 802 803 need_flush_after_free = false; 804 while (1) { 805 /* Free another committed entry with lower seq-count */ 806 struct rb_node *rb_node = rb_prev(&e->rb_node); 807 808 if (rb_node) { 809 e2 = container_of(rb_node, struct wc_entry, rb_node); 810 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 811 likely(!e2->write_in_progress)) { 812 writecache_free_entry(wc, e2); 813 need_flush_after_free = true; 814 } 815 } 816 if (unlikely(e->lru.prev == &wc->lru)) 817 break; 818 e = container_of(e->lru.prev, struct wc_entry, lru); 819 cond_resched(); 820 } 821 822 if (need_flush_after_free) 823 writecache_commit_flushed(wc, false); 824 } 825 826 static void writecache_flush_work(struct work_struct *work) 827 { 828 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 829 830 wc_lock(wc); 831 writecache_flush(wc); 832 wc_unlock(wc); 833 } 834 835 static void writecache_autocommit_timer(struct timer_list *t) 836 { 837 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 838 if (!writecache_has_error(wc)) 839 queue_work(wc->writeback_wq, &wc->flush_work); 840 } 841 842 static void writecache_schedule_autocommit(struct dm_writecache *wc) 843 { 844 if (!timer_pending(&wc->autocommit_timer)) 845 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 846 } 847 848 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 849 { 850 struct wc_entry *e; 851 bool discarded_something = false; 852 853 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 854 if (unlikely(!e)) 855 return; 856 857 while (read_original_sector(wc, e) < end) { 858 struct rb_node *node = rb_next(&e->rb_node); 859 860 if (likely(!e->write_in_progress)) { 861 if (!discarded_something) { 862 if (!WC_MODE_PMEM(wc)) { 863 writecache_wait_for_ios(wc, READ); 864 writecache_wait_for_ios(wc, WRITE); 865 } 866 discarded_something = true; 867 } 868 if (!writecache_entry_is_committed(wc, e)) 869 wc->uncommitted_blocks--; 870 writecache_free_entry(wc, e); 871 } 872 873 if (unlikely(!node)) 874 break; 875 876 e = container_of(node, struct wc_entry, rb_node); 877 } 878 879 if (discarded_something) 880 writecache_commit_flushed(wc, false); 881 } 882 883 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 884 { 885 if (wc->writeback_size) { 886 writecache_wait_on_freelist(wc); 887 return true; 888 } 889 return false; 890 } 891 892 static void writecache_suspend(struct dm_target *ti) 893 { 894 struct dm_writecache *wc = ti->private; 895 bool flush_on_suspend; 896 897 del_timer_sync(&wc->autocommit_timer); 898 del_timer_sync(&wc->max_age_timer); 899 900 wc_lock(wc); 901 writecache_flush(wc); 902 flush_on_suspend = wc->flush_on_suspend; 903 if (flush_on_suspend) { 904 wc->flush_on_suspend = false; 905 wc->writeback_all++; 906 queue_work(wc->writeback_wq, &wc->writeback_work); 907 } 908 wc_unlock(wc); 909 910 drain_workqueue(wc->writeback_wq); 911 912 wc_lock(wc); 913 if (flush_on_suspend) 914 wc->writeback_all--; 915 while (writecache_wait_for_writeback(wc)); 916 917 if (WC_MODE_PMEM(wc)) 918 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 919 920 writecache_poison_lists(wc); 921 922 wc_unlock(wc); 923 } 924 925 static int writecache_alloc_entries(struct dm_writecache *wc) 926 { 927 size_t b; 928 929 if (wc->entries) 930 return 0; 931 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 932 if (!wc->entries) 933 return -ENOMEM; 934 for (b = 0; b < wc->n_blocks; b++) { 935 struct wc_entry *e = &wc->entries[b]; 936 e->index = b; 937 e->write_in_progress = false; 938 cond_resched(); 939 } 940 941 return 0; 942 } 943 944 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 945 { 946 struct dm_io_region region; 947 struct dm_io_request req; 948 949 region.bdev = wc->ssd_dev->bdev; 950 region.sector = wc->start_sector; 951 region.count = n_sectors; 952 req.bi_op = REQ_OP_READ; 953 req.bi_op_flags = REQ_SYNC; 954 req.mem.type = DM_IO_VMA; 955 req.mem.ptr.vma = (char *)wc->memory_map; 956 req.client = wc->dm_io; 957 req.notify.fn = NULL; 958 959 return dm_io(&req, 1, ®ion, NULL); 960 } 961 962 static void writecache_resume(struct dm_target *ti) 963 { 964 struct dm_writecache *wc = ti->private; 965 size_t b; 966 bool need_flush = false; 967 __le64 sb_seq_count; 968 int r; 969 970 wc_lock(wc); 971 972 if (WC_MODE_PMEM(wc)) { 973 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 974 } else { 975 r = writecache_read_metadata(wc, wc->metadata_sectors); 976 if (r) { 977 size_t sb_entries_offset; 978 writecache_error(wc, r, "unable to read metadata: %d", r); 979 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 980 memset((char *)wc->memory_map + sb_entries_offset, -1, 981 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 982 } 983 } 984 985 wc->tree = RB_ROOT; 986 INIT_LIST_HEAD(&wc->lru); 987 if (WC_MODE_SORT_FREELIST(wc)) { 988 wc->freetree = RB_ROOT; 989 wc->current_free = NULL; 990 } else { 991 INIT_LIST_HEAD(&wc->freelist); 992 } 993 wc->freelist_size = 0; 994 995 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 996 if (r) { 997 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 998 sb_seq_count = cpu_to_le64(0); 999 } 1000 wc->seq_count = le64_to_cpu(sb_seq_count); 1001 1002 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 1003 for (b = 0; b < wc->n_blocks; b++) { 1004 struct wc_entry *e = &wc->entries[b]; 1005 struct wc_memory_entry wme; 1006 if (writecache_has_error(wc)) { 1007 e->original_sector = -1; 1008 e->seq_count = -1; 1009 continue; 1010 } 1011 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 1012 if (r) { 1013 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1014 (unsigned long)b, r); 1015 e->original_sector = -1; 1016 e->seq_count = -1; 1017 } else { 1018 e->original_sector = le64_to_cpu(wme.original_sector); 1019 e->seq_count = le64_to_cpu(wme.seq_count); 1020 } 1021 cond_resched(); 1022 } 1023 #endif 1024 for (b = 0; b < wc->n_blocks; b++) { 1025 struct wc_entry *e = &wc->entries[b]; 1026 if (!writecache_entry_is_committed(wc, e)) { 1027 if (read_seq_count(wc, e) != -1) { 1028 erase_this: 1029 clear_seq_count(wc, e); 1030 need_flush = true; 1031 } 1032 writecache_add_to_freelist(wc, e); 1033 } else { 1034 struct wc_entry *old; 1035 1036 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1037 if (!old) { 1038 writecache_insert_entry(wc, e); 1039 } else { 1040 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1041 writecache_error(wc, -EINVAL, 1042 "two identical entries, position %llu, sector %llu, sequence %llu", 1043 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1044 (unsigned long long)read_seq_count(wc, e)); 1045 } 1046 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1047 goto erase_this; 1048 } else { 1049 writecache_free_entry(wc, old); 1050 writecache_insert_entry(wc, e); 1051 need_flush = true; 1052 } 1053 } 1054 } 1055 cond_resched(); 1056 } 1057 1058 if (need_flush) { 1059 writecache_flush_all_metadata(wc); 1060 writecache_commit_flushed(wc, false); 1061 } 1062 1063 writecache_verify_watermark(wc); 1064 1065 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1066 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1067 1068 wc_unlock(wc); 1069 } 1070 1071 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1072 { 1073 if (argc != 1) 1074 return -EINVAL; 1075 1076 wc_lock(wc); 1077 if (dm_suspended(wc->ti)) { 1078 wc_unlock(wc); 1079 return -EBUSY; 1080 } 1081 if (writecache_has_error(wc)) { 1082 wc_unlock(wc); 1083 return -EIO; 1084 } 1085 1086 writecache_flush(wc); 1087 wc->writeback_all++; 1088 queue_work(wc->writeback_wq, &wc->writeback_work); 1089 wc_unlock(wc); 1090 1091 flush_workqueue(wc->writeback_wq); 1092 1093 wc_lock(wc); 1094 wc->writeback_all--; 1095 if (writecache_has_error(wc)) { 1096 wc_unlock(wc); 1097 return -EIO; 1098 } 1099 wc_unlock(wc); 1100 1101 return 0; 1102 } 1103 1104 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1105 { 1106 if (argc != 1) 1107 return -EINVAL; 1108 1109 wc_lock(wc); 1110 wc->flush_on_suspend = true; 1111 wc_unlock(wc); 1112 1113 return 0; 1114 } 1115 1116 static void activate_cleaner(struct dm_writecache *wc) 1117 { 1118 wc->flush_on_suspend = true; 1119 wc->cleaner = true; 1120 wc->freelist_high_watermark = wc->n_blocks; 1121 wc->freelist_low_watermark = wc->n_blocks; 1122 } 1123 1124 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1125 { 1126 if (argc != 1) 1127 return -EINVAL; 1128 1129 wc_lock(wc); 1130 activate_cleaner(wc); 1131 if (!dm_suspended(wc->ti)) 1132 writecache_verify_watermark(wc); 1133 wc_unlock(wc); 1134 1135 return 0; 1136 } 1137 1138 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1139 char *result, unsigned maxlen) 1140 { 1141 int r = -EINVAL; 1142 struct dm_writecache *wc = ti->private; 1143 1144 if (!strcasecmp(argv[0], "flush")) 1145 r = process_flush_mesg(argc, argv, wc); 1146 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1147 r = process_flush_on_suspend_mesg(argc, argv, wc); 1148 else if (!strcasecmp(argv[0], "cleaner")) 1149 r = process_cleaner_mesg(argc, argv, wc); 1150 else 1151 DMERR("unrecognised message received: %s", argv[0]); 1152 1153 return r; 1154 } 1155 1156 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1157 { 1158 /* 1159 * clflushopt performs better with block size 1024, 2048, 4096 1160 * non-temporal stores perform better with block size 512 1161 * 1162 * block size 512 1024 2048 4096 1163 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1164 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1165 * 1166 * We see that movnti performs better for 512-byte blocks, and 1167 * clflushopt performs better for 1024-byte and larger blocks. So, we 1168 * prefer clflushopt for sizes >= 768. 1169 * 1170 * NOTE: this happens to be the case now (with dm-writecache's single 1171 * threaded model) but re-evaluate this once memcpy_flushcache() is 1172 * enabled to use movdir64b which might invalidate this performance 1173 * advantage seen with cache-allocating-writes plus flushing. 1174 */ 1175 #ifdef CONFIG_X86 1176 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1177 likely(boot_cpu_data.x86_clflush_size == 64) && 1178 likely(size >= 768)) { 1179 do { 1180 memcpy((void *)dest, (void *)source, 64); 1181 clflushopt((void *)dest); 1182 dest += 64; 1183 source += 64; 1184 size -= 64; 1185 } while (size >= 64); 1186 return; 1187 } 1188 #endif 1189 memcpy_flushcache(dest, source, size); 1190 } 1191 1192 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1193 { 1194 void *buf; 1195 unsigned long flags; 1196 unsigned size; 1197 int rw = bio_data_dir(bio); 1198 unsigned remaining_size = wc->block_size; 1199 1200 do { 1201 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1202 buf = bvec_kmap_irq(&bv, &flags); 1203 size = bv.bv_len; 1204 if (unlikely(size > remaining_size)) 1205 size = remaining_size; 1206 1207 if (rw == READ) { 1208 int r; 1209 r = memcpy_mcsafe(buf, data, size); 1210 flush_dcache_page(bio_page(bio)); 1211 if (unlikely(r)) { 1212 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1213 bio->bi_status = BLK_STS_IOERR; 1214 } 1215 } else { 1216 flush_dcache_page(bio_page(bio)); 1217 memcpy_flushcache_optimized(data, buf, size); 1218 } 1219 1220 bvec_kunmap_irq(buf, &flags); 1221 1222 data = (char *)data + size; 1223 remaining_size -= size; 1224 bio_advance(bio, size); 1225 } while (unlikely(remaining_size)); 1226 } 1227 1228 static int writecache_flush_thread(void *data) 1229 { 1230 struct dm_writecache *wc = data; 1231 1232 while (1) { 1233 struct bio *bio; 1234 1235 wc_lock(wc); 1236 bio = bio_list_pop(&wc->flush_list); 1237 if (!bio) { 1238 set_current_state(TASK_INTERRUPTIBLE); 1239 wc_unlock(wc); 1240 1241 if (unlikely(kthread_should_stop())) { 1242 set_current_state(TASK_RUNNING); 1243 break; 1244 } 1245 1246 schedule(); 1247 continue; 1248 } 1249 1250 if (bio_op(bio) == REQ_OP_DISCARD) { 1251 writecache_discard(wc, bio->bi_iter.bi_sector, 1252 bio_end_sector(bio)); 1253 wc_unlock(wc); 1254 bio_set_dev(bio, wc->dev->bdev); 1255 submit_bio_noacct(bio); 1256 } else { 1257 writecache_flush(wc); 1258 wc_unlock(wc); 1259 if (writecache_has_error(wc)) 1260 bio->bi_status = BLK_STS_IOERR; 1261 bio_endio(bio); 1262 } 1263 } 1264 1265 return 0; 1266 } 1267 1268 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1269 { 1270 if (bio_list_empty(&wc->flush_list)) 1271 wake_up_process(wc->flush_thread); 1272 bio_list_add(&wc->flush_list, bio); 1273 } 1274 1275 static int writecache_map(struct dm_target *ti, struct bio *bio) 1276 { 1277 struct wc_entry *e; 1278 struct dm_writecache *wc = ti->private; 1279 1280 bio->bi_private = NULL; 1281 1282 wc_lock(wc); 1283 1284 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1285 if (writecache_has_error(wc)) 1286 goto unlock_error; 1287 if (WC_MODE_PMEM(wc)) { 1288 writecache_flush(wc); 1289 if (writecache_has_error(wc)) 1290 goto unlock_error; 1291 goto unlock_submit; 1292 } else { 1293 writecache_offload_bio(wc, bio); 1294 goto unlock_return; 1295 } 1296 } 1297 1298 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1299 1300 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1301 (wc->block_size / 512 - 1)) != 0)) { 1302 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1303 (unsigned long long)bio->bi_iter.bi_sector, 1304 bio->bi_iter.bi_size, wc->block_size); 1305 goto unlock_error; 1306 } 1307 1308 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1309 if (writecache_has_error(wc)) 1310 goto unlock_error; 1311 if (WC_MODE_PMEM(wc)) { 1312 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1313 goto unlock_remap_origin; 1314 } else { 1315 writecache_offload_bio(wc, bio); 1316 goto unlock_return; 1317 } 1318 } 1319 1320 if (bio_data_dir(bio) == READ) { 1321 read_next_block: 1322 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1323 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1324 if (WC_MODE_PMEM(wc)) { 1325 bio_copy_block(wc, bio, memory_data(wc, e)); 1326 if (bio->bi_iter.bi_size) 1327 goto read_next_block; 1328 goto unlock_submit; 1329 } else { 1330 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1331 bio_set_dev(bio, wc->ssd_dev->bdev); 1332 bio->bi_iter.bi_sector = cache_sector(wc, e); 1333 if (!writecache_entry_is_committed(wc, e)) 1334 writecache_wait_for_ios(wc, WRITE); 1335 goto unlock_remap; 1336 } 1337 } else { 1338 if (e) { 1339 sector_t next_boundary = 1340 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1341 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1342 dm_accept_partial_bio(bio, next_boundary); 1343 } 1344 } 1345 goto unlock_remap_origin; 1346 } 1347 } else { 1348 do { 1349 bool found_entry = false; 1350 if (writecache_has_error(wc)) 1351 goto unlock_error; 1352 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1353 if (e) { 1354 if (!writecache_entry_is_committed(wc, e)) 1355 goto bio_copy; 1356 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1357 wc->overwrote_committed = true; 1358 goto bio_copy; 1359 } 1360 found_entry = true; 1361 } else { 1362 if (unlikely(wc->cleaner)) 1363 goto direct_write; 1364 } 1365 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1366 if (unlikely(!e)) { 1367 if (!found_entry) { 1368 direct_write: 1369 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1370 if (e) { 1371 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1372 BUG_ON(!next_boundary); 1373 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1374 dm_accept_partial_bio(bio, next_boundary); 1375 } 1376 } 1377 goto unlock_remap_origin; 1378 } 1379 writecache_wait_on_freelist(wc); 1380 continue; 1381 } 1382 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1383 writecache_insert_entry(wc, e); 1384 wc->uncommitted_blocks++; 1385 bio_copy: 1386 if (WC_MODE_PMEM(wc)) { 1387 bio_copy_block(wc, bio, memory_data(wc, e)); 1388 } else { 1389 unsigned bio_size = wc->block_size; 1390 sector_t start_cache_sec = cache_sector(wc, e); 1391 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1392 1393 while (bio_size < bio->bi_iter.bi_size) { 1394 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1395 if (!f) 1396 break; 1397 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1398 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1399 writecache_insert_entry(wc, f); 1400 wc->uncommitted_blocks++; 1401 bio_size += wc->block_size; 1402 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1403 } 1404 1405 bio_set_dev(bio, wc->ssd_dev->bdev); 1406 bio->bi_iter.bi_sector = start_cache_sec; 1407 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1408 1409 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1410 wc->uncommitted_blocks = 0; 1411 queue_work(wc->writeback_wq, &wc->flush_work); 1412 } else { 1413 writecache_schedule_autocommit(wc); 1414 } 1415 goto unlock_remap; 1416 } 1417 } while (bio->bi_iter.bi_size); 1418 1419 if (unlikely(bio->bi_opf & REQ_FUA || 1420 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1421 writecache_flush(wc); 1422 else 1423 writecache_schedule_autocommit(wc); 1424 goto unlock_submit; 1425 } 1426 1427 unlock_remap_origin: 1428 bio_set_dev(bio, wc->dev->bdev); 1429 wc_unlock(wc); 1430 return DM_MAPIO_REMAPPED; 1431 1432 unlock_remap: 1433 /* make sure that writecache_end_io decrements bio_in_progress: */ 1434 bio->bi_private = (void *)1; 1435 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1436 wc_unlock(wc); 1437 return DM_MAPIO_REMAPPED; 1438 1439 unlock_submit: 1440 wc_unlock(wc); 1441 bio_endio(bio); 1442 return DM_MAPIO_SUBMITTED; 1443 1444 unlock_return: 1445 wc_unlock(wc); 1446 return DM_MAPIO_SUBMITTED; 1447 1448 unlock_error: 1449 wc_unlock(wc); 1450 bio_io_error(bio); 1451 return DM_MAPIO_SUBMITTED; 1452 } 1453 1454 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1455 { 1456 struct dm_writecache *wc = ti->private; 1457 1458 if (bio->bi_private != NULL) { 1459 int dir = bio_data_dir(bio); 1460 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1461 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1462 wake_up(&wc->bio_in_progress_wait[dir]); 1463 } 1464 return 0; 1465 } 1466 1467 static int writecache_iterate_devices(struct dm_target *ti, 1468 iterate_devices_callout_fn fn, void *data) 1469 { 1470 struct dm_writecache *wc = ti->private; 1471 1472 return fn(ti, wc->dev, 0, ti->len, data); 1473 } 1474 1475 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1476 { 1477 struct dm_writecache *wc = ti->private; 1478 1479 if (limits->logical_block_size < wc->block_size) 1480 limits->logical_block_size = wc->block_size; 1481 1482 if (limits->physical_block_size < wc->block_size) 1483 limits->physical_block_size = wc->block_size; 1484 1485 if (limits->io_min < wc->block_size) 1486 limits->io_min = wc->block_size; 1487 } 1488 1489 1490 static void writecache_writeback_endio(struct bio *bio) 1491 { 1492 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1493 struct dm_writecache *wc = wb->wc; 1494 unsigned long flags; 1495 1496 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1497 if (unlikely(list_empty(&wc->endio_list))) 1498 wake_up_process(wc->endio_thread); 1499 list_add_tail(&wb->endio_entry, &wc->endio_list); 1500 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1501 } 1502 1503 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1504 { 1505 struct copy_struct *c = ptr; 1506 struct dm_writecache *wc = c->wc; 1507 1508 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1509 1510 raw_spin_lock_irq(&wc->endio_list_lock); 1511 if (unlikely(list_empty(&wc->endio_list))) 1512 wake_up_process(wc->endio_thread); 1513 list_add_tail(&c->endio_entry, &wc->endio_list); 1514 raw_spin_unlock_irq(&wc->endio_list_lock); 1515 } 1516 1517 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1518 { 1519 unsigned i; 1520 struct writeback_struct *wb; 1521 struct wc_entry *e; 1522 unsigned long n_walked = 0; 1523 1524 do { 1525 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1526 list_del(&wb->endio_entry); 1527 1528 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1529 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1530 "write error %d", wb->bio.bi_status); 1531 i = 0; 1532 do { 1533 e = wb->wc_list[i]; 1534 BUG_ON(!e->write_in_progress); 1535 e->write_in_progress = false; 1536 INIT_LIST_HEAD(&e->lru); 1537 if (!writecache_has_error(wc)) 1538 writecache_free_entry(wc, e); 1539 BUG_ON(!wc->writeback_size); 1540 wc->writeback_size--; 1541 n_walked++; 1542 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1543 writecache_commit_flushed(wc, false); 1544 wc_unlock(wc); 1545 wc_lock(wc); 1546 n_walked = 0; 1547 } 1548 } while (++i < wb->wc_list_n); 1549 1550 if (wb->wc_list != wb->wc_list_inline) 1551 kfree(wb->wc_list); 1552 bio_put(&wb->bio); 1553 } while (!list_empty(list)); 1554 } 1555 1556 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1557 { 1558 struct copy_struct *c; 1559 struct wc_entry *e; 1560 1561 do { 1562 c = list_entry(list->next, struct copy_struct, endio_entry); 1563 list_del(&c->endio_entry); 1564 1565 if (unlikely(c->error)) 1566 writecache_error(wc, c->error, "copy error"); 1567 1568 e = c->e; 1569 do { 1570 BUG_ON(!e->write_in_progress); 1571 e->write_in_progress = false; 1572 INIT_LIST_HEAD(&e->lru); 1573 if (!writecache_has_error(wc)) 1574 writecache_free_entry(wc, e); 1575 1576 BUG_ON(!wc->writeback_size); 1577 wc->writeback_size--; 1578 e++; 1579 } while (--c->n_entries); 1580 mempool_free(c, &wc->copy_pool); 1581 } while (!list_empty(list)); 1582 } 1583 1584 static int writecache_endio_thread(void *data) 1585 { 1586 struct dm_writecache *wc = data; 1587 1588 while (1) { 1589 struct list_head list; 1590 1591 raw_spin_lock_irq(&wc->endio_list_lock); 1592 if (!list_empty(&wc->endio_list)) 1593 goto pop_from_list; 1594 set_current_state(TASK_INTERRUPTIBLE); 1595 raw_spin_unlock_irq(&wc->endio_list_lock); 1596 1597 if (unlikely(kthread_should_stop())) { 1598 set_current_state(TASK_RUNNING); 1599 break; 1600 } 1601 1602 schedule(); 1603 1604 continue; 1605 1606 pop_from_list: 1607 list = wc->endio_list; 1608 list.next->prev = list.prev->next = &list; 1609 INIT_LIST_HEAD(&wc->endio_list); 1610 raw_spin_unlock_irq(&wc->endio_list_lock); 1611 1612 if (!WC_MODE_FUA(wc)) 1613 writecache_disk_flush(wc, wc->dev); 1614 1615 wc_lock(wc); 1616 1617 if (WC_MODE_PMEM(wc)) { 1618 __writecache_endio_pmem(wc, &list); 1619 } else { 1620 __writecache_endio_ssd(wc, &list); 1621 writecache_wait_for_ios(wc, READ); 1622 } 1623 1624 writecache_commit_flushed(wc, false); 1625 1626 wc_unlock(wc); 1627 } 1628 1629 return 0; 1630 } 1631 1632 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1633 { 1634 struct dm_writecache *wc = wb->wc; 1635 unsigned block_size = wc->block_size; 1636 void *address = memory_data(wc, e); 1637 1638 persistent_memory_flush_cache(address, block_size); 1639 return bio_add_page(&wb->bio, persistent_memory_page(address), 1640 block_size, persistent_memory_page_offset(address)) != 0; 1641 } 1642 1643 struct writeback_list { 1644 struct list_head list; 1645 size_t size; 1646 }; 1647 1648 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1649 { 1650 if (unlikely(wc->max_writeback_jobs)) { 1651 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1652 wc_lock(wc); 1653 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1654 writecache_wait_on_freelist(wc); 1655 wc_unlock(wc); 1656 } 1657 } 1658 cond_resched(); 1659 } 1660 1661 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1662 { 1663 struct wc_entry *e, *f; 1664 struct bio *bio; 1665 struct writeback_struct *wb; 1666 unsigned max_pages; 1667 1668 while (wbl->size) { 1669 wbl->size--; 1670 e = container_of(wbl->list.prev, struct wc_entry, lru); 1671 list_del(&e->lru); 1672 1673 max_pages = e->wc_list_contiguous; 1674 1675 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1676 wb = container_of(bio, struct writeback_struct, bio); 1677 wb->wc = wc; 1678 bio->bi_end_io = writecache_writeback_endio; 1679 bio_set_dev(bio, wc->dev->bdev); 1680 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1681 if (max_pages <= WB_LIST_INLINE || 1682 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1683 GFP_NOIO | __GFP_NORETRY | 1684 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1685 wb->wc_list = wb->wc_list_inline; 1686 max_pages = WB_LIST_INLINE; 1687 } 1688 1689 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1690 1691 wb->wc_list[0] = e; 1692 wb->wc_list_n = 1; 1693 1694 while (wbl->size && wb->wc_list_n < max_pages) { 1695 f = container_of(wbl->list.prev, struct wc_entry, lru); 1696 if (read_original_sector(wc, f) != 1697 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1698 break; 1699 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1700 break; 1701 wbl->size--; 1702 list_del(&f->lru); 1703 wb->wc_list[wb->wc_list_n++] = f; 1704 e = f; 1705 } 1706 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1707 if (writecache_has_error(wc)) { 1708 bio->bi_status = BLK_STS_IOERR; 1709 bio_endio(bio); 1710 } else { 1711 submit_bio(bio); 1712 } 1713 1714 __writeback_throttle(wc, wbl); 1715 } 1716 } 1717 1718 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1719 { 1720 struct wc_entry *e, *f; 1721 struct dm_io_region from, to; 1722 struct copy_struct *c; 1723 1724 while (wbl->size) { 1725 unsigned n_sectors; 1726 1727 wbl->size--; 1728 e = container_of(wbl->list.prev, struct wc_entry, lru); 1729 list_del(&e->lru); 1730 1731 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1732 1733 from.bdev = wc->ssd_dev->bdev; 1734 from.sector = cache_sector(wc, e); 1735 from.count = n_sectors; 1736 to.bdev = wc->dev->bdev; 1737 to.sector = read_original_sector(wc, e); 1738 to.count = n_sectors; 1739 1740 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1741 c->wc = wc; 1742 c->e = e; 1743 c->n_entries = e->wc_list_contiguous; 1744 1745 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1746 wbl->size--; 1747 f = container_of(wbl->list.prev, struct wc_entry, lru); 1748 BUG_ON(f != e + 1); 1749 list_del(&f->lru); 1750 e = f; 1751 } 1752 1753 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1754 1755 __writeback_throttle(wc, wbl); 1756 } 1757 } 1758 1759 static void writecache_writeback(struct work_struct *work) 1760 { 1761 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1762 struct blk_plug plug; 1763 struct wc_entry *f, *g, *e = NULL; 1764 struct rb_node *node, *next_node; 1765 struct list_head skipped; 1766 struct writeback_list wbl; 1767 unsigned long n_walked; 1768 1769 wc_lock(wc); 1770 restart: 1771 if (writecache_has_error(wc)) { 1772 wc_unlock(wc); 1773 return; 1774 } 1775 1776 if (unlikely(wc->writeback_all)) { 1777 if (writecache_wait_for_writeback(wc)) 1778 goto restart; 1779 } 1780 1781 if (wc->overwrote_committed) { 1782 writecache_wait_for_ios(wc, WRITE); 1783 } 1784 1785 n_walked = 0; 1786 INIT_LIST_HEAD(&skipped); 1787 INIT_LIST_HEAD(&wbl.list); 1788 wbl.size = 0; 1789 while (!list_empty(&wc->lru) && 1790 (wc->writeback_all || 1791 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1792 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1793 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1794 1795 n_walked++; 1796 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1797 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1798 queue_work(wc->writeback_wq, &wc->writeback_work); 1799 break; 1800 } 1801 1802 if (unlikely(wc->writeback_all)) { 1803 if (unlikely(!e)) { 1804 writecache_flush(wc); 1805 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1806 } else 1807 e = g; 1808 } else 1809 e = container_of(wc->lru.prev, struct wc_entry, lru); 1810 BUG_ON(e->write_in_progress); 1811 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1812 writecache_flush(wc); 1813 } 1814 node = rb_prev(&e->rb_node); 1815 if (node) { 1816 f = container_of(node, struct wc_entry, rb_node); 1817 if (unlikely(read_original_sector(wc, f) == 1818 read_original_sector(wc, e))) { 1819 BUG_ON(!f->write_in_progress); 1820 list_del(&e->lru); 1821 list_add(&e->lru, &skipped); 1822 cond_resched(); 1823 continue; 1824 } 1825 } 1826 wc->writeback_size++; 1827 list_del(&e->lru); 1828 list_add(&e->lru, &wbl.list); 1829 wbl.size++; 1830 e->write_in_progress = true; 1831 e->wc_list_contiguous = 1; 1832 1833 f = e; 1834 1835 while (1) { 1836 next_node = rb_next(&f->rb_node); 1837 if (unlikely(!next_node)) 1838 break; 1839 g = container_of(next_node, struct wc_entry, rb_node); 1840 if (unlikely(read_original_sector(wc, g) == 1841 read_original_sector(wc, f))) { 1842 f = g; 1843 continue; 1844 } 1845 if (read_original_sector(wc, g) != 1846 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1847 break; 1848 if (unlikely(g->write_in_progress)) 1849 break; 1850 if (unlikely(!writecache_entry_is_committed(wc, g))) 1851 break; 1852 1853 if (!WC_MODE_PMEM(wc)) { 1854 if (g != f + 1) 1855 break; 1856 } 1857 1858 n_walked++; 1859 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1860 // break; 1861 1862 wc->writeback_size++; 1863 list_del(&g->lru); 1864 list_add(&g->lru, &wbl.list); 1865 wbl.size++; 1866 g->write_in_progress = true; 1867 g->wc_list_contiguous = BIO_MAX_PAGES; 1868 f = g; 1869 e->wc_list_contiguous++; 1870 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1871 if (unlikely(wc->writeback_all)) { 1872 next_node = rb_next(&f->rb_node); 1873 if (likely(next_node)) 1874 g = container_of(next_node, struct wc_entry, rb_node); 1875 } 1876 break; 1877 } 1878 } 1879 cond_resched(); 1880 } 1881 1882 if (!list_empty(&skipped)) { 1883 list_splice_tail(&skipped, &wc->lru); 1884 /* 1885 * If we didn't do any progress, we must wait until some 1886 * writeback finishes to avoid burning CPU in a loop 1887 */ 1888 if (unlikely(!wbl.size)) 1889 writecache_wait_for_writeback(wc); 1890 } 1891 1892 wc_unlock(wc); 1893 1894 blk_start_plug(&plug); 1895 1896 if (WC_MODE_PMEM(wc)) 1897 __writecache_writeback_pmem(wc, &wbl); 1898 else 1899 __writecache_writeback_ssd(wc, &wbl); 1900 1901 blk_finish_plug(&plug); 1902 1903 if (unlikely(wc->writeback_all)) { 1904 wc_lock(wc); 1905 while (writecache_wait_for_writeback(wc)); 1906 wc_unlock(wc); 1907 } 1908 } 1909 1910 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1911 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1912 { 1913 uint64_t n_blocks, offset; 1914 struct wc_entry e; 1915 1916 n_blocks = device_size; 1917 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1918 1919 while (1) { 1920 if (!n_blocks) 1921 return -ENOSPC; 1922 /* Verify the following entries[n_blocks] won't overflow */ 1923 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1924 sizeof(struct wc_memory_entry))) 1925 return -EFBIG; 1926 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1927 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1928 if (offset + n_blocks * block_size <= device_size) 1929 break; 1930 n_blocks--; 1931 } 1932 1933 /* check if the bit field overflows */ 1934 e.index = n_blocks; 1935 if (e.index != n_blocks) 1936 return -EFBIG; 1937 1938 if (n_blocks_p) 1939 *n_blocks_p = n_blocks; 1940 if (n_metadata_blocks_p) 1941 *n_metadata_blocks_p = offset >> __ffs(block_size); 1942 return 0; 1943 } 1944 1945 static int init_memory(struct dm_writecache *wc) 1946 { 1947 size_t b; 1948 int r; 1949 1950 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1951 if (r) 1952 return r; 1953 1954 r = writecache_alloc_entries(wc); 1955 if (r) 1956 return r; 1957 1958 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1959 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1960 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1961 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1962 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1963 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1964 1965 for (b = 0; b < wc->n_blocks; b++) { 1966 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1967 cond_resched(); 1968 } 1969 1970 writecache_flush_all_metadata(wc); 1971 writecache_commit_flushed(wc, false); 1972 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1973 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1974 writecache_commit_flushed(wc, false); 1975 1976 return 0; 1977 } 1978 1979 static void writecache_dtr(struct dm_target *ti) 1980 { 1981 struct dm_writecache *wc = ti->private; 1982 1983 if (!wc) 1984 return; 1985 1986 if (wc->endio_thread) 1987 kthread_stop(wc->endio_thread); 1988 1989 if (wc->flush_thread) 1990 kthread_stop(wc->flush_thread); 1991 1992 bioset_exit(&wc->bio_set); 1993 1994 mempool_exit(&wc->copy_pool); 1995 1996 if (wc->writeback_wq) 1997 destroy_workqueue(wc->writeback_wq); 1998 1999 if (wc->dev) 2000 dm_put_device(ti, wc->dev); 2001 2002 if (wc->ssd_dev) 2003 dm_put_device(ti, wc->ssd_dev); 2004 2005 if (wc->entries) 2006 vfree(wc->entries); 2007 2008 if (wc->memory_map) { 2009 if (WC_MODE_PMEM(wc)) 2010 persistent_memory_release(wc); 2011 else 2012 vfree(wc->memory_map); 2013 } 2014 2015 if (wc->dm_kcopyd) 2016 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2017 2018 if (wc->dm_io) 2019 dm_io_client_destroy(wc->dm_io); 2020 2021 if (wc->dirty_bitmap) 2022 vfree(wc->dirty_bitmap); 2023 2024 kfree(wc); 2025 } 2026 2027 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2028 { 2029 struct dm_writecache *wc; 2030 struct dm_arg_set as; 2031 const char *string; 2032 unsigned opt_params; 2033 size_t offset, data_size; 2034 int i, r; 2035 char dummy; 2036 int high_wm_percent = HIGH_WATERMARK; 2037 int low_wm_percent = LOW_WATERMARK; 2038 uint64_t x; 2039 struct wc_memory_superblock s; 2040 2041 static struct dm_arg _args[] = { 2042 {0, 10, "Invalid number of feature args"}, 2043 }; 2044 2045 as.argc = argc; 2046 as.argv = argv; 2047 2048 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2049 if (!wc) { 2050 ti->error = "Cannot allocate writecache structure"; 2051 r = -ENOMEM; 2052 goto bad; 2053 } 2054 ti->private = wc; 2055 wc->ti = ti; 2056 2057 mutex_init(&wc->lock); 2058 wc->max_age = MAX_AGE_UNSPECIFIED; 2059 writecache_poison_lists(wc); 2060 init_waitqueue_head(&wc->freelist_wait); 2061 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2062 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2063 2064 for (i = 0; i < 2; i++) { 2065 atomic_set(&wc->bio_in_progress[i], 0); 2066 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2067 } 2068 2069 wc->dm_io = dm_io_client_create(); 2070 if (IS_ERR(wc->dm_io)) { 2071 r = PTR_ERR(wc->dm_io); 2072 ti->error = "Unable to allocate dm-io client"; 2073 wc->dm_io = NULL; 2074 goto bad; 2075 } 2076 2077 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2078 if (!wc->writeback_wq) { 2079 r = -ENOMEM; 2080 ti->error = "Could not allocate writeback workqueue"; 2081 goto bad; 2082 } 2083 INIT_WORK(&wc->writeback_work, writecache_writeback); 2084 INIT_WORK(&wc->flush_work, writecache_flush_work); 2085 2086 raw_spin_lock_init(&wc->endio_list_lock); 2087 INIT_LIST_HEAD(&wc->endio_list); 2088 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2089 if (IS_ERR(wc->endio_thread)) { 2090 r = PTR_ERR(wc->endio_thread); 2091 wc->endio_thread = NULL; 2092 ti->error = "Couldn't spawn endio thread"; 2093 goto bad; 2094 } 2095 wake_up_process(wc->endio_thread); 2096 2097 /* 2098 * Parse the mode (pmem or ssd) 2099 */ 2100 string = dm_shift_arg(&as); 2101 if (!string) 2102 goto bad_arguments; 2103 2104 if (!strcasecmp(string, "s")) { 2105 wc->pmem_mode = false; 2106 } else if (!strcasecmp(string, "p")) { 2107 #ifdef DM_WRITECACHE_HAS_PMEM 2108 wc->pmem_mode = true; 2109 wc->writeback_fua = true; 2110 #else 2111 /* 2112 * If the architecture doesn't support persistent memory or 2113 * the kernel doesn't support any DAX drivers, this driver can 2114 * only be used in SSD-only mode. 2115 */ 2116 r = -EOPNOTSUPP; 2117 ti->error = "Persistent memory or DAX not supported on this system"; 2118 goto bad; 2119 #endif 2120 } else { 2121 goto bad_arguments; 2122 } 2123 2124 if (WC_MODE_PMEM(wc)) { 2125 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2126 offsetof(struct writeback_struct, bio), 2127 BIOSET_NEED_BVECS); 2128 if (r) { 2129 ti->error = "Could not allocate bio set"; 2130 goto bad; 2131 } 2132 } else { 2133 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2134 if (r) { 2135 ti->error = "Could not allocate mempool"; 2136 goto bad; 2137 } 2138 } 2139 2140 /* 2141 * Parse the origin data device 2142 */ 2143 string = dm_shift_arg(&as); 2144 if (!string) 2145 goto bad_arguments; 2146 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2147 if (r) { 2148 ti->error = "Origin data device lookup failed"; 2149 goto bad; 2150 } 2151 2152 /* 2153 * Parse cache data device (be it pmem or ssd) 2154 */ 2155 string = dm_shift_arg(&as); 2156 if (!string) 2157 goto bad_arguments; 2158 2159 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2160 if (r) { 2161 ti->error = "Cache data device lookup failed"; 2162 goto bad; 2163 } 2164 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2165 2166 /* 2167 * Parse the cache block size 2168 */ 2169 string = dm_shift_arg(&as); 2170 if (!string) 2171 goto bad_arguments; 2172 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2173 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2174 (wc->block_size & (wc->block_size - 1))) { 2175 r = -EINVAL; 2176 ti->error = "Invalid block size"; 2177 goto bad; 2178 } 2179 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2180 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2181 r = -EINVAL; 2182 ti->error = "Block size is smaller than device logical block size"; 2183 goto bad; 2184 } 2185 wc->block_size_bits = __ffs(wc->block_size); 2186 2187 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2188 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2189 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2190 2191 /* 2192 * Parse optional arguments 2193 */ 2194 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2195 if (r) 2196 goto bad; 2197 2198 while (opt_params) { 2199 string = dm_shift_arg(&as), opt_params--; 2200 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2201 unsigned long long start_sector; 2202 string = dm_shift_arg(&as), opt_params--; 2203 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2204 goto invalid_optional; 2205 wc->start_sector = start_sector; 2206 if (wc->start_sector != start_sector || 2207 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2208 goto invalid_optional; 2209 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2210 string = dm_shift_arg(&as), opt_params--; 2211 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2212 goto invalid_optional; 2213 if (high_wm_percent < 0 || high_wm_percent > 100) 2214 goto invalid_optional; 2215 wc->high_wm_percent_set = true; 2216 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2217 string = dm_shift_arg(&as), opt_params--; 2218 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2219 goto invalid_optional; 2220 if (low_wm_percent < 0 || low_wm_percent > 100) 2221 goto invalid_optional; 2222 wc->low_wm_percent_set = true; 2223 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2224 string = dm_shift_arg(&as), opt_params--; 2225 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2226 goto invalid_optional; 2227 wc->max_writeback_jobs_set = true; 2228 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2229 string = dm_shift_arg(&as), opt_params--; 2230 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2231 goto invalid_optional; 2232 wc->autocommit_blocks_set = true; 2233 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2234 unsigned autocommit_msecs; 2235 string = dm_shift_arg(&as), opt_params--; 2236 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2237 goto invalid_optional; 2238 if (autocommit_msecs > 3600000) 2239 goto invalid_optional; 2240 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2241 wc->autocommit_time_set = true; 2242 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2243 unsigned max_age_msecs; 2244 string = dm_shift_arg(&as), opt_params--; 2245 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2246 goto invalid_optional; 2247 if (max_age_msecs > 86400000) 2248 goto invalid_optional; 2249 wc->max_age = msecs_to_jiffies(max_age_msecs); 2250 } else if (!strcasecmp(string, "cleaner")) { 2251 wc->cleaner = true; 2252 } else if (!strcasecmp(string, "fua")) { 2253 if (WC_MODE_PMEM(wc)) { 2254 wc->writeback_fua = true; 2255 wc->writeback_fua_set = true; 2256 } else goto invalid_optional; 2257 } else if (!strcasecmp(string, "nofua")) { 2258 if (WC_MODE_PMEM(wc)) { 2259 wc->writeback_fua = false; 2260 wc->writeback_fua_set = true; 2261 } else goto invalid_optional; 2262 } else { 2263 invalid_optional: 2264 r = -EINVAL; 2265 ti->error = "Invalid optional argument"; 2266 goto bad; 2267 } 2268 } 2269 2270 if (high_wm_percent < low_wm_percent) { 2271 r = -EINVAL; 2272 ti->error = "High watermark must be greater than or equal to low watermark"; 2273 goto bad; 2274 } 2275 2276 if (WC_MODE_PMEM(wc)) { 2277 if (!dax_synchronous(wc->ssd_dev->dax_dev)) { 2278 r = -EOPNOTSUPP; 2279 ti->error = "Asynchronous persistent memory not supported as pmem cache"; 2280 goto bad; 2281 } 2282 2283 r = persistent_memory_claim(wc); 2284 if (r) { 2285 ti->error = "Unable to map persistent memory for cache"; 2286 goto bad; 2287 } 2288 } else { 2289 size_t n_blocks, n_metadata_blocks; 2290 uint64_t n_bitmap_bits; 2291 2292 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2293 2294 bio_list_init(&wc->flush_list); 2295 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2296 if (IS_ERR(wc->flush_thread)) { 2297 r = PTR_ERR(wc->flush_thread); 2298 wc->flush_thread = NULL; 2299 ti->error = "Couldn't spawn flush thread"; 2300 goto bad; 2301 } 2302 wake_up_process(wc->flush_thread); 2303 2304 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2305 &n_blocks, &n_metadata_blocks); 2306 if (r) { 2307 ti->error = "Invalid device size"; 2308 goto bad; 2309 } 2310 2311 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2312 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2313 /* this is limitation of test_bit functions */ 2314 if (n_bitmap_bits > 1U << 31) { 2315 r = -EFBIG; 2316 ti->error = "Invalid device size"; 2317 goto bad; 2318 } 2319 2320 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2321 if (!wc->memory_map) { 2322 r = -ENOMEM; 2323 ti->error = "Unable to allocate memory for metadata"; 2324 goto bad; 2325 } 2326 2327 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2328 if (IS_ERR(wc->dm_kcopyd)) { 2329 r = PTR_ERR(wc->dm_kcopyd); 2330 ti->error = "Unable to allocate dm-kcopyd client"; 2331 wc->dm_kcopyd = NULL; 2332 goto bad; 2333 } 2334 2335 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2336 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2337 BITS_PER_LONG * sizeof(unsigned long); 2338 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2339 if (!wc->dirty_bitmap) { 2340 r = -ENOMEM; 2341 ti->error = "Unable to allocate dirty bitmap"; 2342 goto bad; 2343 } 2344 2345 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2346 if (r) { 2347 ti->error = "Unable to read first block of metadata"; 2348 goto bad; 2349 } 2350 } 2351 2352 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2353 if (r) { 2354 ti->error = "Hardware memory error when reading superblock"; 2355 goto bad; 2356 } 2357 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2358 r = init_memory(wc); 2359 if (r) { 2360 ti->error = "Unable to initialize device"; 2361 goto bad; 2362 } 2363 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2364 if (r) { 2365 ti->error = "Hardware memory error when reading superblock"; 2366 goto bad; 2367 } 2368 } 2369 2370 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2371 ti->error = "Invalid magic in the superblock"; 2372 r = -EINVAL; 2373 goto bad; 2374 } 2375 2376 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2377 ti->error = "Invalid version in the superblock"; 2378 r = -EINVAL; 2379 goto bad; 2380 } 2381 2382 if (le32_to_cpu(s.block_size) != wc->block_size) { 2383 ti->error = "Block size does not match superblock"; 2384 r = -EINVAL; 2385 goto bad; 2386 } 2387 2388 wc->n_blocks = le64_to_cpu(s.n_blocks); 2389 2390 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2391 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2392 overflow: 2393 ti->error = "Overflow in size calculation"; 2394 r = -EINVAL; 2395 goto bad; 2396 } 2397 offset += sizeof(struct wc_memory_superblock); 2398 if (offset < sizeof(struct wc_memory_superblock)) 2399 goto overflow; 2400 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2401 data_size = wc->n_blocks * (size_t)wc->block_size; 2402 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2403 (offset + data_size < offset)) 2404 goto overflow; 2405 if (offset + data_size > wc->memory_map_size) { 2406 ti->error = "Memory area is too small"; 2407 r = -EINVAL; 2408 goto bad; 2409 } 2410 2411 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2412 wc->block_start = (char *)sb(wc) + offset; 2413 2414 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2415 x += 50; 2416 do_div(x, 100); 2417 wc->freelist_high_watermark = x; 2418 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2419 x += 50; 2420 do_div(x, 100); 2421 wc->freelist_low_watermark = x; 2422 2423 if (wc->cleaner) 2424 activate_cleaner(wc); 2425 2426 r = writecache_alloc_entries(wc); 2427 if (r) { 2428 ti->error = "Cannot allocate memory"; 2429 goto bad; 2430 } 2431 2432 ti->num_flush_bios = 1; 2433 ti->flush_supported = true; 2434 ti->num_discard_bios = 1; 2435 2436 if (WC_MODE_PMEM(wc)) 2437 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2438 2439 return 0; 2440 2441 bad_arguments: 2442 r = -EINVAL; 2443 ti->error = "Bad arguments"; 2444 bad: 2445 writecache_dtr(ti); 2446 return r; 2447 } 2448 2449 static void writecache_status(struct dm_target *ti, status_type_t type, 2450 unsigned status_flags, char *result, unsigned maxlen) 2451 { 2452 struct dm_writecache *wc = ti->private; 2453 unsigned extra_args; 2454 unsigned sz = 0; 2455 uint64_t x; 2456 2457 switch (type) { 2458 case STATUSTYPE_INFO: 2459 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2460 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2461 (unsigned long long)wc->writeback_size); 2462 break; 2463 case STATUSTYPE_TABLE: 2464 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2465 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2466 extra_args = 0; 2467 if (wc->start_sector) 2468 extra_args += 2; 2469 if (wc->high_wm_percent_set && !wc->cleaner) 2470 extra_args += 2; 2471 if (wc->low_wm_percent_set && !wc->cleaner) 2472 extra_args += 2; 2473 if (wc->max_writeback_jobs_set) 2474 extra_args += 2; 2475 if (wc->autocommit_blocks_set) 2476 extra_args += 2; 2477 if (wc->autocommit_time_set) 2478 extra_args += 2; 2479 if (wc->cleaner) 2480 extra_args++; 2481 if (wc->writeback_fua_set) 2482 extra_args++; 2483 2484 DMEMIT("%u", extra_args); 2485 if (wc->start_sector) 2486 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2487 if (wc->high_wm_percent_set && !wc->cleaner) { 2488 x = (uint64_t)wc->freelist_high_watermark * 100; 2489 x += wc->n_blocks / 2; 2490 do_div(x, (size_t)wc->n_blocks); 2491 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2492 } 2493 if (wc->low_wm_percent_set && !wc->cleaner) { 2494 x = (uint64_t)wc->freelist_low_watermark * 100; 2495 x += wc->n_blocks / 2; 2496 do_div(x, (size_t)wc->n_blocks); 2497 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2498 } 2499 if (wc->max_writeback_jobs_set) 2500 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2501 if (wc->autocommit_blocks_set) 2502 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2503 if (wc->autocommit_time_set) 2504 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2505 if (wc->max_age != MAX_AGE_UNSPECIFIED) 2506 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age)); 2507 if (wc->cleaner) 2508 DMEMIT(" cleaner"); 2509 if (wc->writeback_fua_set) 2510 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2511 break; 2512 } 2513 } 2514 2515 static struct target_type writecache_target = { 2516 .name = "writecache", 2517 .version = {1, 3, 0}, 2518 .module = THIS_MODULE, 2519 .ctr = writecache_ctr, 2520 .dtr = writecache_dtr, 2521 .status = writecache_status, 2522 .postsuspend = writecache_suspend, 2523 .resume = writecache_resume, 2524 .message = writecache_message, 2525 .map = writecache_map, 2526 .end_io = writecache_end_io, 2527 .iterate_devices = writecache_iterate_devices, 2528 .io_hints = writecache_io_hints, 2529 }; 2530 2531 static int __init dm_writecache_init(void) 2532 { 2533 int r; 2534 2535 r = dm_register_target(&writecache_target); 2536 if (r < 0) { 2537 DMERR("register failed %d", r); 2538 return r; 2539 } 2540 2541 return 0; 2542 } 2543 2544 static void __exit dm_writecache_exit(void) 2545 { 2546 dm_unregister_target(&writecache_target); 2547 } 2548 2549 module_init(dm_writecache_init); 2550 module_exit(dm_writecache_exit); 2551 2552 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2553 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2554 MODULE_LICENSE("GPL"); 2555