xref: /openbmc/linux/drivers/md/dm-writecache.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[0];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	void *block_start;
152 	struct wc_entry *entries;
153 	unsigned block_size;
154 	unsigned char block_size_bits;
155 
156 	bool pmem_mode:1;
157 	bool writeback_fua:1;
158 
159 	bool overwrote_committed:1;
160 	bool memory_vmapped:1;
161 
162 	bool high_wm_percent_set:1;
163 	bool low_wm_percent_set:1;
164 	bool max_writeback_jobs_set:1;
165 	bool autocommit_blocks_set:1;
166 	bool autocommit_time_set:1;
167 	bool writeback_fua_set:1;
168 	bool flush_on_suspend:1;
169 	bool cleaner:1;
170 
171 	unsigned writeback_all;
172 	struct workqueue_struct *writeback_wq;
173 	struct work_struct writeback_work;
174 	struct work_struct flush_work;
175 
176 	struct dm_io_client *dm_io;
177 
178 	raw_spinlock_t endio_list_lock;
179 	struct list_head endio_list;
180 	struct task_struct *endio_thread;
181 
182 	struct task_struct *flush_thread;
183 	struct bio_list flush_list;
184 
185 	struct dm_kcopyd_client *dm_kcopyd;
186 	unsigned long *dirty_bitmap;
187 	unsigned dirty_bitmap_size;
188 
189 	struct bio_set bio_set;
190 	mempool_t copy_pool;
191 };
192 
193 #define WB_LIST_INLINE		16
194 
195 struct writeback_struct {
196 	struct list_head endio_entry;
197 	struct dm_writecache *wc;
198 	struct wc_entry **wc_list;
199 	unsigned wc_list_n;
200 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
201 	struct bio bio;
202 };
203 
204 struct copy_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry *e;
208 	unsigned n_entries;
209 	int error;
210 };
211 
212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
213 					    "A percentage of time allocated for data copying");
214 
215 static void wc_lock(struct dm_writecache *wc)
216 {
217 	mutex_lock(&wc->lock);
218 }
219 
220 static void wc_unlock(struct dm_writecache *wc)
221 {
222 	mutex_unlock(&wc->lock);
223 }
224 
225 #ifdef DM_WRITECACHE_HAS_PMEM
226 static int persistent_memory_claim(struct dm_writecache *wc)
227 {
228 	int r;
229 	loff_t s;
230 	long p, da;
231 	pfn_t pfn;
232 	int id;
233 	struct page **pages;
234 	sector_t offset;
235 
236 	wc->memory_vmapped = false;
237 
238 	s = wc->memory_map_size;
239 	p = s >> PAGE_SHIFT;
240 	if (!p) {
241 		r = -EINVAL;
242 		goto err1;
243 	}
244 	if (p != s >> PAGE_SHIFT) {
245 		r = -EOVERFLOW;
246 		goto err1;
247 	}
248 
249 	offset = get_start_sect(wc->ssd_dev->bdev);
250 	if (offset & (PAGE_SIZE / 512 - 1)) {
251 		r = -EINVAL;
252 		goto err1;
253 	}
254 	offset >>= PAGE_SHIFT - 9;
255 
256 	id = dax_read_lock();
257 
258 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
259 	if (da < 0) {
260 		wc->memory_map = NULL;
261 		r = da;
262 		goto err2;
263 	}
264 	if (!pfn_t_has_page(pfn)) {
265 		wc->memory_map = NULL;
266 		r = -EOPNOTSUPP;
267 		goto err2;
268 	}
269 	if (da != p) {
270 		long i;
271 		wc->memory_map = NULL;
272 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
273 		if (!pages) {
274 			r = -ENOMEM;
275 			goto err2;
276 		}
277 		i = 0;
278 		do {
279 			long daa;
280 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
281 						NULL, &pfn);
282 			if (daa <= 0) {
283 				r = daa ? daa : -EINVAL;
284 				goto err3;
285 			}
286 			if (!pfn_t_has_page(pfn)) {
287 				r = -EOPNOTSUPP;
288 				goto err3;
289 			}
290 			while (daa-- && i < p) {
291 				pages[i++] = pfn_t_to_page(pfn);
292 				pfn.val++;
293 				if (!(i & 15))
294 					cond_resched();
295 			}
296 		} while (i < p);
297 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
298 		if (!wc->memory_map) {
299 			r = -ENOMEM;
300 			goto err3;
301 		}
302 		kvfree(pages);
303 		wc->memory_vmapped = true;
304 	}
305 
306 	dax_read_unlock(id);
307 
308 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
309 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
310 
311 	return 0;
312 err3:
313 	kvfree(pages);
314 err2:
315 	dax_read_unlock(id);
316 err1:
317 	return r;
318 }
319 #else
320 static int persistent_memory_claim(struct dm_writecache *wc)
321 {
322 	BUG();
323 }
324 #endif
325 
326 static void persistent_memory_release(struct dm_writecache *wc)
327 {
328 	if (wc->memory_vmapped)
329 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
330 }
331 
332 static struct page *persistent_memory_page(void *addr)
333 {
334 	if (is_vmalloc_addr(addr))
335 		return vmalloc_to_page(addr);
336 	else
337 		return virt_to_page(addr);
338 }
339 
340 static unsigned persistent_memory_page_offset(void *addr)
341 {
342 	return (unsigned long)addr & (PAGE_SIZE - 1);
343 }
344 
345 static void persistent_memory_flush_cache(void *ptr, size_t size)
346 {
347 	if (is_vmalloc_addr(ptr))
348 		flush_kernel_vmap_range(ptr, size);
349 }
350 
351 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
352 {
353 	if (is_vmalloc_addr(ptr))
354 		invalidate_kernel_vmap_range(ptr, size);
355 }
356 
357 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
358 {
359 	return wc->memory_map;
360 }
361 
362 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
363 {
364 	return &sb(wc)->entries[e->index];
365 }
366 
367 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
368 {
369 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
370 }
371 
372 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
373 {
374 	return wc->start_sector + wc->metadata_sectors +
375 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
376 }
377 
378 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
379 {
380 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
381 	return e->original_sector;
382 #else
383 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
384 #endif
385 }
386 
387 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
388 {
389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
390 	return e->seq_count;
391 #else
392 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
393 #endif
394 }
395 
396 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
397 {
398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
399 	e->seq_count = -1;
400 #endif
401 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
402 }
403 
404 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
405 					    uint64_t original_sector, uint64_t seq_count)
406 {
407 	struct wc_memory_entry me;
408 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
409 	e->original_sector = original_sector;
410 	e->seq_count = seq_count;
411 #endif
412 	me.original_sector = cpu_to_le64(original_sector);
413 	me.seq_count = cpu_to_le64(seq_count);
414 	pmem_assign(*memory_entry(wc, e), me);
415 }
416 
417 #define writecache_error(wc, err, msg, arg...)				\
418 do {									\
419 	if (!cmpxchg(&(wc)->error, 0, err))				\
420 		DMERR(msg, ##arg);					\
421 	wake_up(&(wc)->freelist_wait);					\
422 } while (0)
423 
424 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
425 
426 static void writecache_flush_all_metadata(struct dm_writecache *wc)
427 {
428 	if (!WC_MODE_PMEM(wc))
429 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
430 }
431 
432 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
433 {
434 	if (!WC_MODE_PMEM(wc))
435 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
436 			  wc->dirty_bitmap);
437 }
438 
439 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
440 
441 struct io_notify {
442 	struct dm_writecache *wc;
443 	struct completion c;
444 	atomic_t count;
445 };
446 
447 static void writecache_notify_io(unsigned long error, void *context)
448 {
449 	struct io_notify *endio = context;
450 
451 	if (unlikely(error != 0))
452 		writecache_error(endio->wc, -EIO, "error writing metadata");
453 	BUG_ON(atomic_read(&endio->count) <= 0);
454 	if (atomic_dec_and_test(&endio->count))
455 		complete(&endio->c);
456 }
457 
458 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
459 {
460 	wait_event(wc->bio_in_progress_wait[direction],
461 		   !atomic_read(&wc->bio_in_progress[direction]));
462 }
463 
464 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
465 {
466 	struct dm_io_region region;
467 	struct dm_io_request req;
468 	struct io_notify endio = {
469 		wc,
470 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
471 		ATOMIC_INIT(1),
472 	};
473 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
474 	unsigned i = 0;
475 
476 	while (1) {
477 		unsigned j;
478 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
479 		if (unlikely(i == bitmap_bits))
480 			break;
481 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
482 
483 		region.bdev = wc->ssd_dev->bdev;
484 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
485 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
486 
487 		if (unlikely(region.sector >= wc->metadata_sectors))
488 			break;
489 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
490 			region.count = wc->metadata_sectors - region.sector;
491 
492 		region.sector += wc->start_sector;
493 		atomic_inc(&endio.count);
494 		req.bi_op = REQ_OP_WRITE;
495 		req.bi_op_flags = REQ_SYNC;
496 		req.mem.type = DM_IO_VMA;
497 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
498 		req.client = wc->dm_io;
499 		req.notify.fn = writecache_notify_io;
500 		req.notify.context = &endio;
501 
502 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
503 	        (void) dm_io(&req, 1, &region, NULL);
504 		i = j;
505 	}
506 
507 	writecache_notify_io(0, &endio);
508 	wait_for_completion_io(&endio.c);
509 
510 	if (wait_for_ios)
511 		writecache_wait_for_ios(wc, WRITE);
512 
513 	writecache_disk_flush(wc, wc->ssd_dev);
514 
515 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
516 }
517 
518 static void ssd_commit_superblock(struct dm_writecache *wc)
519 {
520 	int r;
521 	struct dm_io_region region;
522 	struct dm_io_request req;
523 
524 	region.bdev = wc->ssd_dev->bdev;
525 	region.sector = 0;
526 	region.count = PAGE_SIZE;
527 
528 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
529 		region.count = wc->metadata_sectors - region.sector;
530 
531 	region.sector += wc->start_sector;
532 
533 	req.bi_op = REQ_OP_WRITE;
534 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
535 	req.mem.type = DM_IO_VMA;
536 	req.mem.ptr.vma = (char *)wc->memory_map;
537 	req.client = wc->dm_io;
538 	req.notify.fn = NULL;
539 	req.notify.context = NULL;
540 
541 	r = dm_io(&req, 1, &region, NULL);
542 	if (unlikely(r))
543 		writecache_error(wc, r, "error writing superblock");
544 }
545 
546 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
547 {
548 	if (WC_MODE_PMEM(wc))
549 		pmem_wmb();
550 	else
551 		ssd_commit_flushed(wc, wait_for_ios);
552 }
553 
554 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
555 {
556 	int r;
557 	struct dm_io_region region;
558 	struct dm_io_request req;
559 
560 	region.bdev = dev->bdev;
561 	region.sector = 0;
562 	region.count = 0;
563 	req.bi_op = REQ_OP_WRITE;
564 	req.bi_op_flags = REQ_PREFLUSH;
565 	req.mem.type = DM_IO_KMEM;
566 	req.mem.ptr.addr = NULL;
567 	req.client = wc->dm_io;
568 	req.notify.fn = NULL;
569 
570 	r = dm_io(&req, 1, &region, NULL);
571 	if (unlikely(r))
572 		writecache_error(wc, r, "error flushing metadata: %d", r);
573 }
574 
575 #define WFE_RETURN_FOLLOWING	1
576 #define WFE_LOWEST_SEQ		2
577 
578 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
579 					      uint64_t block, int flags)
580 {
581 	struct wc_entry *e;
582 	struct rb_node *node = wc->tree.rb_node;
583 
584 	if (unlikely(!node))
585 		return NULL;
586 
587 	while (1) {
588 		e = container_of(node, struct wc_entry, rb_node);
589 		if (read_original_sector(wc, e) == block)
590 			break;
591 
592 		node = (read_original_sector(wc, e) >= block ?
593 			e->rb_node.rb_left : e->rb_node.rb_right);
594 		if (unlikely(!node)) {
595 			if (!(flags & WFE_RETURN_FOLLOWING))
596 				return NULL;
597 			if (read_original_sector(wc, e) >= block) {
598 				return e;
599 			} else {
600 				node = rb_next(&e->rb_node);
601 				if (unlikely(!node))
602 					return NULL;
603 				e = container_of(node, struct wc_entry, rb_node);
604 				return e;
605 			}
606 		}
607 	}
608 
609 	while (1) {
610 		struct wc_entry *e2;
611 		if (flags & WFE_LOWEST_SEQ)
612 			node = rb_prev(&e->rb_node);
613 		else
614 			node = rb_next(&e->rb_node);
615 		if (unlikely(!node))
616 			return e;
617 		e2 = container_of(node, struct wc_entry, rb_node);
618 		if (read_original_sector(wc, e2) != block)
619 			return e;
620 		e = e2;
621 	}
622 }
623 
624 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
625 {
626 	struct wc_entry *e;
627 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
628 
629 	while (*node) {
630 		e = container_of(*node, struct wc_entry, rb_node);
631 		parent = &e->rb_node;
632 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
633 			node = &parent->rb_left;
634 		else
635 			node = &parent->rb_right;
636 	}
637 	rb_link_node(&ins->rb_node, parent, node);
638 	rb_insert_color(&ins->rb_node, &wc->tree);
639 	list_add(&ins->lru, &wc->lru);
640 	ins->age = jiffies;
641 }
642 
643 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
644 {
645 	list_del(&e->lru);
646 	rb_erase(&e->rb_node, &wc->tree);
647 }
648 
649 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
650 {
651 	if (WC_MODE_SORT_FREELIST(wc)) {
652 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
653 		if (unlikely(!*node))
654 			wc->current_free = e;
655 		while (*node) {
656 			parent = *node;
657 			if (&e->rb_node < *node)
658 				node = &parent->rb_left;
659 			else
660 				node = &parent->rb_right;
661 		}
662 		rb_link_node(&e->rb_node, parent, node);
663 		rb_insert_color(&e->rb_node, &wc->freetree);
664 	} else {
665 		list_add_tail(&e->lru, &wc->freelist);
666 	}
667 	wc->freelist_size++;
668 }
669 
670 static inline void writecache_verify_watermark(struct dm_writecache *wc)
671 {
672 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
673 		queue_work(wc->writeback_wq, &wc->writeback_work);
674 }
675 
676 static void writecache_max_age_timer(struct timer_list *t)
677 {
678 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
679 
680 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
681 		queue_work(wc->writeback_wq, &wc->writeback_work);
682 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
683 	}
684 }
685 
686 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
687 {
688 	struct wc_entry *e;
689 
690 	if (WC_MODE_SORT_FREELIST(wc)) {
691 		struct rb_node *next;
692 		if (unlikely(!wc->current_free))
693 			return NULL;
694 		e = wc->current_free;
695 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
696 			return NULL;
697 		next = rb_next(&e->rb_node);
698 		rb_erase(&e->rb_node, &wc->freetree);
699 		if (unlikely(!next))
700 			next = rb_first(&wc->freetree);
701 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
702 	} else {
703 		if (unlikely(list_empty(&wc->freelist)))
704 			return NULL;
705 		e = container_of(wc->freelist.next, struct wc_entry, lru);
706 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
707 			return NULL;
708 		list_del(&e->lru);
709 	}
710 	wc->freelist_size--;
711 
712 	writecache_verify_watermark(wc);
713 
714 	return e;
715 }
716 
717 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
718 {
719 	writecache_unlink(wc, e);
720 	writecache_add_to_freelist(wc, e);
721 	clear_seq_count(wc, e);
722 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
723 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
724 		wake_up(&wc->freelist_wait);
725 }
726 
727 static void writecache_wait_on_freelist(struct dm_writecache *wc)
728 {
729 	DEFINE_WAIT(wait);
730 
731 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
732 	wc_unlock(wc);
733 	io_schedule();
734 	finish_wait(&wc->freelist_wait, &wait);
735 	wc_lock(wc);
736 }
737 
738 static void writecache_poison_lists(struct dm_writecache *wc)
739 {
740 	/*
741 	 * Catch incorrect access to these values while the device is suspended.
742 	 */
743 	memset(&wc->tree, -1, sizeof wc->tree);
744 	wc->lru.next = LIST_POISON1;
745 	wc->lru.prev = LIST_POISON2;
746 	wc->freelist.next = LIST_POISON1;
747 	wc->freelist.prev = LIST_POISON2;
748 }
749 
750 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
751 {
752 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
753 	if (WC_MODE_PMEM(wc))
754 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
755 }
756 
757 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
758 {
759 	return read_seq_count(wc, e) < wc->seq_count;
760 }
761 
762 static void writecache_flush(struct dm_writecache *wc)
763 {
764 	struct wc_entry *e, *e2;
765 	bool need_flush_after_free;
766 
767 	wc->uncommitted_blocks = 0;
768 	del_timer(&wc->autocommit_timer);
769 
770 	if (list_empty(&wc->lru))
771 		return;
772 
773 	e = container_of(wc->lru.next, struct wc_entry, lru);
774 	if (writecache_entry_is_committed(wc, e)) {
775 		if (wc->overwrote_committed) {
776 			writecache_wait_for_ios(wc, WRITE);
777 			writecache_disk_flush(wc, wc->ssd_dev);
778 			wc->overwrote_committed = false;
779 		}
780 		return;
781 	}
782 	while (1) {
783 		writecache_flush_entry(wc, e);
784 		if (unlikely(e->lru.next == &wc->lru))
785 			break;
786 		e2 = container_of(e->lru.next, struct wc_entry, lru);
787 		if (writecache_entry_is_committed(wc, e2))
788 			break;
789 		e = e2;
790 		cond_resched();
791 	}
792 	writecache_commit_flushed(wc, true);
793 
794 	wc->seq_count++;
795 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
796 	if (WC_MODE_PMEM(wc))
797 		writecache_commit_flushed(wc, false);
798 	else
799 		ssd_commit_superblock(wc);
800 
801 	wc->overwrote_committed = false;
802 
803 	need_flush_after_free = false;
804 	while (1) {
805 		/* Free another committed entry with lower seq-count */
806 		struct rb_node *rb_node = rb_prev(&e->rb_node);
807 
808 		if (rb_node) {
809 			e2 = container_of(rb_node, struct wc_entry, rb_node);
810 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
811 			    likely(!e2->write_in_progress)) {
812 				writecache_free_entry(wc, e2);
813 				need_flush_after_free = true;
814 			}
815 		}
816 		if (unlikely(e->lru.prev == &wc->lru))
817 			break;
818 		e = container_of(e->lru.prev, struct wc_entry, lru);
819 		cond_resched();
820 	}
821 
822 	if (need_flush_after_free)
823 		writecache_commit_flushed(wc, false);
824 }
825 
826 static void writecache_flush_work(struct work_struct *work)
827 {
828 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
829 
830 	wc_lock(wc);
831 	writecache_flush(wc);
832 	wc_unlock(wc);
833 }
834 
835 static void writecache_autocommit_timer(struct timer_list *t)
836 {
837 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
838 	if (!writecache_has_error(wc))
839 		queue_work(wc->writeback_wq, &wc->flush_work);
840 }
841 
842 static void writecache_schedule_autocommit(struct dm_writecache *wc)
843 {
844 	if (!timer_pending(&wc->autocommit_timer))
845 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
846 }
847 
848 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
849 {
850 	struct wc_entry *e;
851 	bool discarded_something = false;
852 
853 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
854 	if (unlikely(!e))
855 		return;
856 
857 	while (read_original_sector(wc, e) < end) {
858 		struct rb_node *node = rb_next(&e->rb_node);
859 
860 		if (likely(!e->write_in_progress)) {
861 			if (!discarded_something) {
862 				if (!WC_MODE_PMEM(wc)) {
863 					writecache_wait_for_ios(wc, READ);
864 					writecache_wait_for_ios(wc, WRITE);
865 				}
866 				discarded_something = true;
867 			}
868 			if (!writecache_entry_is_committed(wc, e))
869 				wc->uncommitted_blocks--;
870 			writecache_free_entry(wc, e);
871 		}
872 
873 		if (unlikely(!node))
874 			break;
875 
876 		e = container_of(node, struct wc_entry, rb_node);
877 	}
878 
879 	if (discarded_something)
880 		writecache_commit_flushed(wc, false);
881 }
882 
883 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
884 {
885 	if (wc->writeback_size) {
886 		writecache_wait_on_freelist(wc);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 static void writecache_suspend(struct dm_target *ti)
893 {
894 	struct dm_writecache *wc = ti->private;
895 	bool flush_on_suspend;
896 
897 	del_timer_sync(&wc->autocommit_timer);
898 	del_timer_sync(&wc->max_age_timer);
899 
900 	wc_lock(wc);
901 	writecache_flush(wc);
902 	flush_on_suspend = wc->flush_on_suspend;
903 	if (flush_on_suspend) {
904 		wc->flush_on_suspend = false;
905 		wc->writeback_all++;
906 		queue_work(wc->writeback_wq, &wc->writeback_work);
907 	}
908 	wc_unlock(wc);
909 
910 	drain_workqueue(wc->writeback_wq);
911 
912 	wc_lock(wc);
913 	if (flush_on_suspend)
914 		wc->writeback_all--;
915 	while (writecache_wait_for_writeback(wc));
916 
917 	if (WC_MODE_PMEM(wc))
918 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
919 
920 	writecache_poison_lists(wc);
921 
922 	wc_unlock(wc);
923 }
924 
925 static int writecache_alloc_entries(struct dm_writecache *wc)
926 {
927 	size_t b;
928 
929 	if (wc->entries)
930 		return 0;
931 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
932 	if (!wc->entries)
933 		return -ENOMEM;
934 	for (b = 0; b < wc->n_blocks; b++) {
935 		struct wc_entry *e = &wc->entries[b];
936 		e->index = b;
937 		e->write_in_progress = false;
938 		cond_resched();
939 	}
940 
941 	return 0;
942 }
943 
944 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
945 {
946 	struct dm_io_region region;
947 	struct dm_io_request req;
948 
949 	region.bdev = wc->ssd_dev->bdev;
950 	region.sector = wc->start_sector;
951 	region.count = n_sectors;
952 	req.bi_op = REQ_OP_READ;
953 	req.bi_op_flags = REQ_SYNC;
954 	req.mem.type = DM_IO_VMA;
955 	req.mem.ptr.vma = (char *)wc->memory_map;
956 	req.client = wc->dm_io;
957 	req.notify.fn = NULL;
958 
959 	return dm_io(&req, 1, &region, NULL);
960 }
961 
962 static void writecache_resume(struct dm_target *ti)
963 {
964 	struct dm_writecache *wc = ti->private;
965 	size_t b;
966 	bool need_flush = false;
967 	__le64 sb_seq_count;
968 	int r;
969 
970 	wc_lock(wc);
971 
972 	if (WC_MODE_PMEM(wc)) {
973 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
974 	} else {
975 		r = writecache_read_metadata(wc, wc->metadata_sectors);
976 		if (r) {
977 			size_t sb_entries_offset;
978 			writecache_error(wc, r, "unable to read metadata: %d", r);
979 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
980 			memset((char *)wc->memory_map + sb_entries_offset, -1,
981 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
982 		}
983 	}
984 
985 	wc->tree = RB_ROOT;
986 	INIT_LIST_HEAD(&wc->lru);
987 	if (WC_MODE_SORT_FREELIST(wc)) {
988 		wc->freetree = RB_ROOT;
989 		wc->current_free = NULL;
990 	} else {
991 		INIT_LIST_HEAD(&wc->freelist);
992 	}
993 	wc->freelist_size = 0;
994 
995 	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
996 	if (r) {
997 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
998 		sb_seq_count = cpu_to_le64(0);
999 	}
1000 	wc->seq_count = le64_to_cpu(sb_seq_count);
1001 
1002 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1003 	for (b = 0; b < wc->n_blocks; b++) {
1004 		struct wc_entry *e = &wc->entries[b];
1005 		struct wc_memory_entry wme;
1006 		if (writecache_has_error(wc)) {
1007 			e->original_sector = -1;
1008 			e->seq_count = -1;
1009 			continue;
1010 		}
1011 		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
1012 		if (r) {
1013 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1014 					 (unsigned long)b, r);
1015 			e->original_sector = -1;
1016 			e->seq_count = -1;
1017 		} else {
1018 			e->original_sector = le64_to_cpu(wme.original_sector);
1019 			e->seq_count = le64_to_cpu(wme.seq_count);
1020 		}
1021 		cond_resched();
1022 	}
1023 #endif
1024 	for (b = 0; b < wc->n_blocks; b++) {
1025 		struct wc_entry *e = &wc->entries[b];
1026 		if (!writecache_entry_is_committed(wc, e)) {
1027 			if (read_seq_count(wc, e) != -1) {
1028 erase_this:
1029 				clear_seq_count(wc, e);
1030 				need_flush = true;
1031 			}
1032 			writecache_add_to_freelist(wc, e);
1033 		} else {
1034 			struct wc_entry *old;
1035 
1036 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1037 			if (!old) {
1038 				writecache_insert_entry(wc, e);
1039 			} else {
1040 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1041 					writecache_error(wc, -EINVAL,
1042 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1043 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1044 						 (unsigned long long)read_seq_count(wc, e));
1045 				}
1046 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1047 					goto erase_this;
1048 				} else {
1049 					writecache_free_entry(wc, old);
1050 					writecache_insert_entry(wc, e);
1051 					need_flush = true;
1052 				}
1053 			}
1054 		}
1055 		cond_resched();
1056 	}
1057 
1058 	if (need_flush) {
1059 		writecache_flush_all_metadata(wc);
1060 		writecache_commit_flushed(wc, false);
1061 	}
1062 
1063 	writecache_verify_watermark(wc);
1064 
1065 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1066 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1067 
1068 	wc_unlock(wc);
1069 }
1070 
1071 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1072 {
1073 	if (argc != 1)
1074 		return -EINVAL;
1075 
1076 	wc_lock(wc);
1077 	if (dm_suspended(wc->ti)) {
1078 		wc_unlock(wc);
1079 		return -EBUSY;
1080 	}
1081 	if (writecache_has_error(wc)) {
1082 		wc_unlock(wc);
1083 		return -EIO;
1084 	}
1085 
1086 	writecache_flush(wc);
1087 	wc->writeback_all++;
1088 	queue_work(wc->writeback_wq, &wc->writeback_work);
1089 	wc_unlock(wc);
1090 
1091 	flush_workqueue(wc->writeback_wq);
1092 
1093 	wc_lock(wc);
1094 	wc->writeback_all--;
1095 	if (writecache_has_error(wc)) {
1096 		wc_unlock(wc);
1097 		return -EIO;
1098 	}
1099 	wc_unlock(wc);
1100 
1101 	return 0;
1102 }
1103 
1104 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1105 {
1106 	if (argc != 1)
1107 		return -EINVAL;
1108 
1109 	wc_lock(wc);
1110 	wc->flush_on_suspend = true;
1111 	wc_unlock(wc);
1112 
1113 	return 0;
1114 }
1115 
1116 static void activate_cleaner(struct dm_writecache *wc)
1117 {
1118 	wc->flush_on_suspend = true;
1119 	wc->cleaner = true;
1120 	wc->freelist_high_watermark = wc->n_blocks;
1121 	wc->freelist_low_watermark = wc->n_blocks;
1122 }
1123 
1124 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1125 {
1126 	if (argc != 1)
1127 		return -EINVAL;
1128 
1129 	wc_lock(wc);
1130 	activate_cleaner(wc);
1131 	if (!dm_suspended(wc->ti))
1132 		writecache_verify_watermark(wc);
1133 	wc_unlock(wc);
1134 
1135 	return 0;
1136 }
1137 
1138 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1139 			      char *result, unsigned maxlen)
1140 {
1141 	int r = -EINVAL;
1142 	struct dm_writecache *wc = ti->private;
1143 
1144 	if (!strcasecmp(argv[0], "flush"))
1145 		r = process_flush_mesg(argc, argv, wc);
1146 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1147 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1148 	else if (!strcasecmp(argv[0], "cleaner"))
1149 		r = process_cleaner_mesg(argc, argv, wc);
1150 	else
1151 		DMERR("unrecognised message received: %s", argv[0]);
1152 
1153 	return r;
1154 }
1155 
1156 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1157 {
1158 	/*
1159 	 * clflushopt performs better with block size 1024, 2048, 4096
1160 	 * non-temporal stores perform better with block size 512
1161 	 *
1162 	 * block size   512             1024            2048            4096
1163 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1164 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1165 	 *
1166 	 * We see that movnti performs better for 512-byte blocks, and
1167 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1168 	 * prefer clflushopt for sizes >= 768.
1169 	 *
1170 	 * NOTE: this happens to be the case now (with dm-writecache's single
1171 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1172 	 * enabled to use movdir64b which might invalidate this performance
1173 	 * advantage seen with cache-allocating-writes plus flushing.
1174 	 */
1175 #ifdef CONFIG_X86
1176 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1177 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1178 	    likely(size >= 768)) {
1179 		do {
1180 			memcpy((void *)dest, (void *)source, 64);
1181 			clflushopt((void *)dest);
1182 			dest += 64;
1183 			source += 64;
1184 			size -= 64;
1185 		} while (size >= 64);
1186 		return;
1187 	}
1188 #endif
1189 	memcpy_flushcache(dest, source, size);
1190 }
1191 
1192 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1193 {
1194 	void *buf;
1195 	unsigned long flags;
1196 	unsigned size;
1197 	int rw = bio_data_dir(bio);
1198 	unsigned remaining_size = wc->block_size;
1199 
1200 	do {
1201 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1202 		buf = bvec_kmap_irq(&bv, &flags);
1203 		size = bv.bv_len;
1204 		if (unlikely(size > remaining_size))
1205 			size = remaining_size;
1206 
1207 		if (rw == READ) {
1208 			int r;
1209 			r = memcpy_mcsafe(buf, data, size);
1210 			flush_dcache_page(bio_page(bio));
1211 			if (unlikely(r)) {
1212 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1213 				bio->bi_status = BLK_STS_IOERR;
1214 			}
1215 		} else {
1216 			flush_dcache_page(bio_page(bio));
1217 			memcpy_flushcache_optimized(data, buf, size);
1218 		}
1219 
1220 		bvec_kunmap_irq(buf, &flags);
1221 
1222 		data = (char *)data + size;
1223 		remaining_size -= size;
1224 		bio_advance(bio, size);
1225 	} while (unlikely(remaining_size));
1226 }
1227 
1228 static int writecache_flush_thread(void *data)
1229 {
1230 	struct dm_writecache *wc = data;
1231 
1232 	while (1) {
1233 		struct bio *bio;
1234 
1235 		wc_lock(wc);
1236 		bio = bio_list_pop(&wc->flush_list);
1237 		if (!bio) {
1238 			set_current_state(TASK_INTERRUPTIBLE);
1239 			wc_unlock(wc);
1240 
1241 			if (unlikely(kthread_should_stop())) {
1242 				set_current_state(TASK_RUNNING);
1243 				break;
1244 			}
1245 
1246 			schedule();
1247 			continue;
1248 		}
1249 
1250 		if (bio_op(bio) == REQ_OP_DISCARD) {
1251 			writecache_discard(wc, bio->bi_iter.bi_sector,
1252 					   bio_end_sector(bio));
1253 			wc_unlock(wc);
1254 			bio_set_dev(bio, wc->dev->bdev);
1255 			submit_bio_noacct(bio);
1256 		} else {
1257 			writecache_flush(wc);
1258 			wc_unlock(wc);
1259 			if (writecache_has_error(wc))
1260 				bio->bi_status = BLK_STS_IOERR;
1261 			bio_endio(bio);
1262 		}
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1269 {
1270 	if (bio_list_empty(&wc->flush_list))
1271 		wake_up_process(wc->flush_thread);
1272 	bio_list_add(&wc->flush_list, bio);
1273 }
1274 
1275 static int writecache_map(struct dm_target *ti, struct bio *bio)
1276 {
1277 	struct wc_entry *e;
1278 	struct dm_writecache *wc = ti->private;
1279 
1280 	bio->bi_private = NULL;
1281 
1282 	wc_lock(wc);
1283 
1284 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1285 		if (writecache_has_error(wc))
1286 			goto unlock_error;
1287 		if (WC_MODE_PMEM(wc)) {
1288 			writecache_flush(wc);
1289 			if (writecache_has_error(wc))
1290 				goto unlock_error;
1291 			goto unlock_submit;
1292 		} else {
1293 			writecache_offload_bio(wc, bio);
1294 			goto unlock_return;
1295 		}
1296 	}
1297 
1298 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1299 
1300 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1301 				(wc->block_size / 512 - 1)) != 0)) {
1302 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1303 		      (unsigned long long)bio->bi_iter.bi_sector,
1304 		      bio->bi_iter.bi_size, wc->block_size);
1305 		goto unlock_error;
1306 	}
1307 
1308 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1309 		if (writecache_has_error(wc))
1310 			goto unlock_error;
1311 		if (WC_MODE_PMEM(wc)) {
1312 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1313 			goto unlock_remap_origin;
1314 		} else {
1315 			writecache_offload_bio(wc, bio);
1316 			goto unlock_return;
1317 		}
1318 	}
1319 
1320 	if (bio_data_dir(bio) == READ) {
1321 read_next_block:
1322 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1323 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1324 			if (WC_MODE_PMEM(wc)) {
1325 				bio_copy_block(wc, bio, memory_data(wc, e));
1326 				if (bio->bi_iter.bi_size)
1327 					goto read_next_block;
1328 				goto unlock_submit;
1329 			} else {
1330 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1331 				bio_set_dev(bio, wc->ssd_dev->bdev);
1332 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1333 				if (!writecache_entry_is_committed(wc, e))
1334 					writecache_wait_for_ios(wc, WRITE);
1335 				goto unlock_remap;
1336 			}
1337 		} else {
1338 			if (e) {
1339 				sector_t next_boundary =
1340 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1341 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1342 					dm_accept_partial_bio(bio, next_boundary);
1343 				}
1344 			}
1345 			goto unlock_remap_origin;
1346 		}
1347 	} else {
1348 		do {
1349 			bool found_entry = false;
1350 			if (writecache_has_error(wc))
1351 				goto unlock_error;
1352 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1353 			if (e) {
1354 				if (!writecache_entry_is_committed(wc, e))
1355 					goto bio_copy;
1356 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1357 					wc->overwrote_committed = true;
1358 					goto bio_copy;
1359 				}
1360 				found_entry = true;
1361 			} else {
1362 				if (unlikely(wc->cleaner))
1363 					goto direct_write;
1364 			}
1365 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1366 			if (unlikely(!e)) {
1367 				if (!found_entry) {
1368 direct_write:
1369 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1370 					if (e) {
1371 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1372 						BUG_ON(!next_boundary);
1373 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1374 							dm_accept_partial_bio(bio, next_boundary);
1375 						}
1376 					}
1377 					goto unlock_remap_origin;
1378 				}
1379 				writecache_wait_on_freelist(wc);
1380 				continue;
1381 			}
1382 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1383 			writecache_insert_entry(wc, e);
1384 			wc->uncommitted_blocks++;
1385 bio_copy:
1386 			if (WC_MODE_PMEM(wc)) {
1387 				bio_copy_block(wc, bio, memory_data(wc, e));
1388 			} else {
1389 				unsigned bio_size = wc->block_size;
1390 				sector_t start_cache_sec = cache_sector(wc, e);
1391 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1392 
1393 				while (bio_size < bio->bi_iter.bi_size) {
1394 					struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1395 					if (!f)
1396 						break;
1397 					write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1398 									(bio_size >> SECTOR_SHIFT), wc->seq_count);
1399 					writecache_insert_entry(wc, f);
1400 					wc->uncommitted_blocks++;
1401 					bio_size += wc->block_size;
1402 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1403 				}
1404 
1405 				bio_set_dev(bio, wc->ssd_dev->bdev);
1406 				bio->bi_iter.bi_sector = start_cache_sec;
1407 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1408 
1409 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1410 					wc->uncommitted_blocks = 0;
1411 					queue_work(wc->writeback_wq, &wc->flush_work);
1412 				} else {
1413 					writecache_schedule_autocommit(wc);
1414 				}
1415 				goto unlock_remap;
1416 			}
1417 		} while (bio->bi_iter.bi_size);
1418 
1419 		if (unlikely(bio->bi_opf & REQ_FUA ||
1420 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1421 			writecache_flush(wc);
1422 		else
1423 			writecache_schedule_autocommit(wc);
1424 		goto unlock_submit;
1425 	}
1426 
1427 unlock_remap_origin:
1428 	bio_set_dev(bio, wc->dev->bdev);
1429 	wc_unlock(wc);
1430 	return DM_MAPIO_REMAPPED;
1431 
1432 unlock_remap:
1433 	/* make sure that writecache_end_io decrements bio_in_progress: */
1434 	bio->bi_private = (void *)1;
1435 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1436 	wc_unlock(wc);
1437 	return DM_MAPIO_REMAPPED;
1438 
1439 unlock_submit:
1440 	wc_unlock(wc);
1441 	bio_endio(bio);
1442 	return DM_MAPIO_SUBMITTED;
1443 
1444 unlock_return:
1445 	wc_unlock(wc);
1446 	return DM_MAPIO_SUBMITTED;
1447 
1448 unlock_error:
1449 	wc_unlock(wc);
1450 	bio_io_error(bio);
1451 	return DM_MAPIO_SUBMITTED;
1452 }
1453 
1454 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1455 {
1456 	struct dm_writecache *wc = ti->private;
1457 
1458 	if (bio->bi_private != NULL) {
1459 		int dir = bio_data_dir(bio);
1460 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1461 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1462 				wake_up(&wc->bio_in_progress_wait[dir]);
1463 	}
1464 	return 0;
1465 }
1466 
1467 static int writecache_iterate_devices(struct dm_target *ti,
1468 				      iterate_devices_callout_fn fn, void *data)
1469 {
1470 	struct dm_writecache *wc = ti->private;
1471 
1472 	return fn(ti, wc->dev, 0, ti->len, data);
1473 }
1474 
1475 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1476 {
1477 	struct dm_writecache *wc = ti->private;
1478 
1479 	if (limits->logical_block_size < wc->block_size)
1480 		limits->logical_block_size = wc->block_size;
1481 
1482 	if (limits->physical_block_size < wc->block_size)
1483 		limits->physical_block_size = wc->block_size;
1484 
1485 	if (limits->io_min < wc->block_size)
1486 		limits->io_min = wc->block_size;
1487 }
1488 
1489 
1490 static void writecache_writeback_endio(struct bio *bio)
1491 {
1492 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1493 	struct dm_writecache *wc = wb->wc;
1494 	unsigned long flags;
1495 
1496 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1497 	if (unlikely(list_empty(&wc->endio_list)))
1498 		wake_up_process(wc->endio_thread);
1499 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1500 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1501 }
1502 
1503 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1504 {
1505 	struct copy_struct *c = ptr;
1506 	struct dm_writecache *wc = c->wc;
1507 
1508 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1509 
1510 	raw_spin_lock_irq(&wc->endio_list_lock);
1511 	if (unlikely(list_empty(&wc->endio_list)))
1512 		wake_up_process(wc->endio_thread);
1513 	list_add_tail(&c->endio_entry, &wc->endio_list);
1514 	raw_spin_unlock_irq(&wc->endio_list_lock);
1515 }
1516 
1517 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1518 {
1519 	unsigned i;
1520 	struct writeback_struct *wb;
1521 	struct wc_entry *e;
1522 	unsigned long n_walked = 0;
1523 
1524 	do {
1525 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1526 		list_del(&wb->endio_entry);
1527 
1528 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1529 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1530 					"write error %d", wb->bio.bi_status);
1531 		i = 0;
1532 		do {
1533 			e = wb->wc_list[i];
1534 			BUG_ON(!e->write_in_progress);
1535 			e->write_in_progress = false;
1536 			INIT_LIST_HEAD(&e->lru);
1537 			if (!writecache_has_error(wc))
1538 				writecache_free_entry(wc, e);
1539 			BUG_ON(!wc->writeback_size);
1540 			wc->writeback_size--;
1541 			n_walked++;
1542 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1543 				writecache_commit_flushed(wc, false);
1544 				wc_unlock(wc);
1545 				wc_lock(wc);
1546 				n_walked = 0;
1547 			}
1548 		} while (++i < wb->wc_list_n);
1549 
1550 		if (wb->wc_list != wb->wc_list_inline)
1551 			kfree(wb->wc_list);
1552 		bio_put(&wb->bio);
1553 	} while (!list_empty(list));
1554 }
1555 
1556 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1557 {
1558 	struct copy_struct *c;
1559 	struct wc_entry *e;
1560 
1561 	do {
1562 		c = list_entry(list->next, struct copy_struct, endio_entry);
1563 		list_del(&c->endio_entry);
1564 
1565 		if (unlikely(c->error))
1566 			writecache_error(wc, c->error, "copy error");
1567 
1568 		e = c->e;
1569 		do {
1570 			BUG_ON(!e->write_in_progress);
1571 			e->write_in_progress = false;
1572 			INIT_LIST_HEAD(&e->lru);
1573 			if (!writecache_has_error(wc))
1574 				writecache_free_entry(wc, e);
1575 
1576 			BUG_ON(!wc->writeback_size);
1577 			wc->writeback_size--;
1578 			e++;
1579 		} while (--c->n_entries);
1580 		mempool_free(c, &wc->copy_pool);
1581 	} while (!list_empty(list));
1582 }
1583 
1584 static int writecache_endio_thread(void *data)
1585 {
1586 	struct dm_writecache *wc = data;
1587 
1588 	while (1) {
1589 		struct list_head list;
1590 
1591 		raw_spin_lock_irq(&wc->endio_list_lock);
1592 		if (!list_empty(&wc->endio_list))
1593 			goto pop_from_list;
1594 		set_current_state(TASK_INTERRUPTIBLE);
1595 		raw_spin_unlock_irq(&wc->endio_list_lock);
1596 
1597 		if (unlikely(kthread_should_stop())) {
1598 			set_current_state(TASK_RUNNING);
1599 			break;
1600 		}
1601 
1602 		schedule();
1603 
1604 		continue;
1605 
1606 pop_from_list:
1607 		list = wc->endio_list;
1608 		list.next->prev = list.prev->next = &list;
1609 		INIT_LIST_HEAD(&wc->endio_list);
1610 		raw_spin_unlock_irq(&wc->endio_list_lock);
1611 
1612 		if (!WC_MODE_FUA(wc))
1613 			writecache_disk_flush(wc, wc->dev);
1614 
1615 		wc_lock(wc);
1616 
1617 		if (WC_MODE_PMEM(wc)) {
1618 			__writecache_endio_pmem(wc, &list);
1619 		} else {
1620 			__writecache_endio_ssd(wc, &list);
1621 			writecache_wait_for_ios(wc, READ);
1622 		}
1623 
1624 		writecache_commit_flushed(wc, false);
1625 
1626 		wc_unlock(wc);
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1633 {
1634 	struct dm_writecache *wc = wb->wc;
1635 	unsigned block_size = wc->block_size;
1636 	void *address = memory_data(wc, e);
1637 
1638 	persistent_memory_flush_cache(address, block_size);
1639 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1640 			    block_size, persistent_memory_page_offset(address)) != 0;
1641 }
1642 
1643 struct writeback_list {
1644 	struct list_head list;
1645 	size_t size;
1646 };
1647 
1648 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1649 {
1650 	if (unlikely(wc->max_writeback_jobs)) {
1651 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1652 			wc_lock(wc);
1653 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1654 				writecache_wait_on_freelist(wc);
1655 			wc_unlock(wc);
1656 		}
1657 	}
1658 	cond_resched();
1659 }
1660 
1661 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1662 {
1663 	struct wc_entry *e, *f;
1664 	struct bio *bio;
1665 	struct writeback_struct *wb;
1666 	unsigned max_pages;
1667 
1668 	while (wbl->size) {
1669 		wbl->size--;
1670 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1671 		list_del(&e->lru);
1672 
1673 		max_pages = e->wc_list_contiguous;
1674 
1675 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1676 		wb = container_of(bio, struct writeback_struct, bio);
1677 		wb->wc = wc;
1678 		bio->bi_end_io = writecache_writeback_endio;
1679 		bio_set_dev(bio, wc->dev->bdev);
1680 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1681 		if (max_pages <= WB_LIST_INLINE ||
1682 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1683 							   GFP_NOIO | __GFP_NORETRY |
1684 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1685 			wb->wc_list = wb->wc_list_inline;
1686 			max_pages = WB_LIST_INLINE;
1687 		}
1688 
1689 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1690 
1691 		wb->wc_list[0] = e;
1692 		wb->wc_list_n = 1;
1693 
1694 		while (wbl->size && wb->wc_list_n < max_pages) {
1695 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1696 			if (read_original_sector(wc, f) !=
1697 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1698 				break;
1699 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1700 				break;
1701 			wbl->size--;
1702 			list_del(&f->lru);
1703 			wb->wc_list[wb->wc_list_n++] = f;
1704 			e = f;
1705 		}
1706 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1707 		if (writecache_has_error(wc)) {
1708 			bio->bi_status = BLK_STS_IOERR;
1709 			bio_endio(bio);
1710 		} else {
1711 			submit_bio(bio);
1712 		}
1713 
1714 		__writeback_throttle(wc, wbl);
1715 	}
1716 }
1717 
1718 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1719 {
1720 	struct wc_entry *e, *f;
1721 	struct dm_io_region from, to;
1722 	struct copy_struct *c;
1723 
1724 	while (wbl->size) {
1725 		unsigned n_sectors;
1726 
1727 		wbl->size--;
1728 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1729 		list_del(&e->lru);
1730 
1731 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1732 
1733 		from.bdev = wc->ssd_dev->bdev;
1734 		from.sector = cache_sector(wc, e);
1735 		from.count = n_sectors;
1736 		to.bdev = wc->dev->bdev;
1737 		to.sector = read_original_sector(wc, e);
1738 		to.count = n_sectors;
1739 
1740 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1741 		c->wc = wc;
1742 		c->e = e;
1743 		c->n_entries = e->wc_list_contiguous;
1744 
1745 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1746 			wbl->size--;
1747 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1748 			BUG_ON(f != e + 1);
1749 			list_del(&f->lru);
1750 			e = f;
1751 		}
1752 
1753 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1754 
1755 		__writeback_throttle(wc, wbl);
1756 	}
1757 }
1758 
1759 static void writecache_writeback(struct work_struct *work)
1760 {
1761 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1762 	struct blk_plug plug;
1763 	struct wc_entry *f, *g, *e = NULL;
1764 	struct rb_node *node, *next_node;
1765 	struct list_head skipped;
1766 	struct writeback_list wbl;
1767 	unsigned long n_walked;
1768 
1769 	wc_lock(wc);
1770 restart:
1771 	if (writecache_has_error(wc)) {
1772 		wc_unlock(wc);
1773 		return;
1774 	}
1775 
1776 	if (unlikely(wc->writeback_all)) {
1777 		if (writecache_wait_for_writeback(wc))
1778 			goto restart;
1779 	}
1780 
1781 	if (wc->overwrote_committed) {
1782 		writecache_wait_for_ios(wc, WRITE);
1783 	}
1784 
1785 	n_walked = 0;
1786 	INIT_LIST_HEAD(&skipped);
1787 	INIT_LIST_HEAD(&wbl.list);
1788 	wbl.size = 0;
1789 	while (!list_empty(&wc->lru) &&
1790 	       (wc->writeback_all ||
1791 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1792 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1793 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1794 
1795 		n_walked++;
1796 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1797 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1798 			queue_work(wc->writeback_wq, &wc->writeback_work);
1799 			break;
1800 		}
1801 
1802 		if (unlikely(wc->writeback_all)) {
1803 			if (unlikely(!e)) {
1804 				writecache_flush(wc);
1805 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1806 			} else
1807 				e = g;
1808 		} else
1809 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1810 		BUG_ON(e->write_in_progress);
1811 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1812 			writecache_flush(wc);
1813 		}
1814 		node = rb_prev(&e->rb_node);
1815 		if (node) {
1816 			f = container_of(node, struct wc_entry, rb_node);
1817 			if (unlikely(read_original_sector(wc, f) ==
1818 				     read_original_sector(wc, e))) {
1819 				BUG_ON(!f->write_in_progress);
1820 				list_del(&e->lru);
1821 				list_add(&e->lru, &skipped);
1822 				cond_resched();
1823 				continue;
1824 			}
1825 		}
1826 		wc->writeback_size++;
1827 		list_del(&e->lru);
1828 		list_add(&e->lru, &wbl.list);
1829 		wbl.size++;
1830 		e->write_in_progress = true;
1831 		e->wc_list_contiguous = 1;
1832 
1833 		f = e;
1834 
1835 		while (1) {
1836 			next_node = rb_next(&f->rb_node);
1837 			if (unlikely(!next_node))
1838 				break;
1839 			g = container_of(next_node, struct wc_entry, rb_node);
1840 			if (unlikely(read_original_sector(wc, g) ==
1841 			    read_original_sector(wc, f))) {
1842 				f = g;
1843 				continue;
1844 			}
1845 			if (read_original_sector(wc, g) !=
1846 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1847 				break;
1848 			if (unlikely(g->write_in_progress))
1849 				break;
1850 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1851 				break;
1852 
1853 			if (!WC_MODE_PMEM(wc)) {
1854 				if (g != f + 1)
1855 					break;
1856 			}
1857 
1858 			n_walked++;
1859 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1860 			//	break;
1861 
1862 			wc->writeback_size++;
1863 			list_del(&g->lru);
1864 			list_add(&g->lru, &wbl.list);
1865 			wbl.size++;
1866 			g->write_in_progress = true;
1867 			g->wc_list_contiguous = BIO_MAX_PAGES;
1868 			f = g;
1869 			e->wc_list_contiguous++;
1870 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1871 				if (unlikely(wc->writeback_all)) {
1872 					next_node = rb_next(&f->rb_node);
1873 					if (likely(next_node))
1874 						g = container_of(next_node, struct wc_entry, rb_node);
1875 				}
1876 				break;
1877 			}
1878 		}
1879 		cond_resched();
1880 	}
1881 
1882 	if (!list_empty(&skipped)) {
1883 		list_splice_tail(&skipped, &wc->lru);
1884 		/*
1885 		 * If we didn't do any progress, we must wait until some
1886 		 * writeback finishes to avoid burning CPU in a loop
1887 		 */
1888 		if (unlikely(!wbl.size))
1889 			writecache_wait_for_writeback(wc);
1890 	}
1891 
1892 	wc_unlock(wc);
1893 
1894 	blk_start_plug(&plug);
1895 
1896 	if (WC_MODE_PMEM(wc))
1897 		__writecache_writeback_pmem(wc, &wbl);
1898 	else
1899 		__writecache_writeback_ssd(wc, &wbl);
1900 
1901 	blk_finish_plug(&plug);
1902 
1903 	if (unlikely(wc->writeback_all)) {
1904 		wc_lock(wc);
1905 		while (writecache_wait_for_writeback(wc));
1906 		wc_unlock(wc);
1907 	}
1908 }
1909 
1910 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1911 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1912 {
1913 	uint64_t n_blocks, offset;
1914 	struct wc_entry e;
1915 
1916 	n_blocks = device_size;
1917 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1918 
1919 	while (1) {
1920 		if (!n_blocks)
1921 			return -ENOSPC;
1922 		/* Verify the following entries[n_blocks] won't overflow */
1923 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1924 				 sizeof(struct wc_memory_entry)))
1925 			return -EFBIG;
1926 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1927 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1928 		if (offset + n_blocks * block_size <= device_size)
1929 			break;
1930 		n_blocks--;
1931 	}
1932 
1933 	/* check if the bit field overflows */
1934 	e.index = n_blocks;
1935 	if (e.index != n_blocks)
1936 		return -EFBIG;
1937 
1938 	if (n_blocks_p)
1939 		*n_blocks_p = n_blocks;
1940 	if (n_metadata_blocks_p)
1941 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1942 	return 0;
1943 }
1944 
1945 static int init_memory(struct dm_writecache *wc)
1946 {
1947 	size_t b;
1948 	int r;
1949 
1950 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1951 	if (r)
1952 		return r;
1953 
1954 	r = writecache_alloc_entries(wc);
1955 	if (r)
1956 		return r;
1957 
1958 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1959 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1960 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1961 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1962 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1963 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1964 
1965 	for (b = 0; b < wc->n_blocks; b++) {
1966 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1967 		cond_resched();
1968 	}
1969 
1970 	writecache_flush_all_metadata(wc);
1971 	writecache_commit_flushed(wc, false);
1972 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1973 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1974 	writecache_commit_flushed(wc, false);
1975 
1976 	return 0;
1977 }
1978 
1979 static void writecache_dtr(struct dm_target *ti)
1980 {
1981 	struct dm_writecache *wc = ti->private;
1982 
1983 	if (!wc)
1984 		return;
1985 
1986 	if (wc->endio_thread)
1987 		kthread_stop(wc->endio_thread);
1988 
1989 	if (wc->flush_thread)
1990 		kthread_stop(wc->flush_thread);
1991 
1992 	bioset_exit(&wc->bio_set);
1993 
1994 	mempool_exit(&wc->copy_pool);
1995 
1996 	if (wc->writeback_wq)
1997 		destroy_workqueue(wc->writeback_wq);
1998 
1999 	if (wc->dev)
2000 		dm_put_device(ti, wc->dev);
2001 
2002 	if (wc->ssd_dev)
2003 		dm_put_device(ti, wc->ssd_dev);
2004 
2005 	if (wc->entries)
2006 		vfree(wc->entries);
2007 
2008 	if (wc->memory_map) {
2009 		if (WC_MODE_PMEM(wc))
2010 			persistent_memory_release(wc);
2011 		else
2012 			vfree(wc->memory_map);
2013 	}
2014 
2015 	if (wc->dm_kcopyd)
2016 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2017 
2018 	if (wc->dm_io)
2019 		dm_io_client_destroy(wc->dm_io);
2020 
2021 	if (wc->dirty_bitmap)
2022 		vfree(wc->dirty_bitmap);
2023 
2024 	kfree(wc);
2025 }
2026 
2027 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2028 {
2029 	struct dm_writecache *wc;
2030 	struct dm_arg_set as;
2031 	const char *string;
2032 	unsigned opt_params;
2033 	size_t offset, data_size;
2034 	int i, r;
2035 	char dummy;
2036 	int high_wm_percent = HIGH_WATERMARK;
2037 	int low_wm_percent = LOW_WATERMARK;
2038 	uint64_t x;
2039 	struct wc_memory_superblock s;
2040 
2041 	static struct dm_arg _args[] = {
2042 		{0, 10, "Invalid number of feature args"},
2043 	};
2044 
2045 	as.argc = argc;
2046 	as.argv = argv;
2047 
2048 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2049 	if (!wc) {
2050 		ti->error = "Cannot allocate writecache structure";
2051 		r = -ENOMEM;
2052 		goto bad;
2053 	}
2054 	ti->private = wc;
2055 	wc->ti = ti;
2056 
2057 	mutex_init(&wc->lock);
2058 	wc->max_age = MAX_AGE_UNSPECIFIED;
2059 	writecache_poison_lists(wc);
2060 	init_waitqueue_head(&wc->freelist_wait);
2061 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2062 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2063 
2064 	for (i = 0; i < 2; i++) {
2065 		atomic_set(&wc->bio_in_progress[i], 0);
2066 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2067 	}
2068 
2069 	wc->dm_io = dm_io_client_create();
2070 	if (IS_ERR(wc->dm_io)) {
2071 		r = PTR_ERR(wc->dm_io);
2072 		ti->error = "Unable to allocate dm-io client";
2073 		wc->dm_io = NULL;
2074 		goto bad;
2075 	}
2076 
2077 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2078 	if (!wc->writeback_wq) {
2079 		r = -ENOMEM;
2080 		ti->error = "Could not allocate writeback workqueue";
2081 		goto bad;
2082 	}
2083 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2084 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2085 
2086 	raw_spin_lock_init(&wc->endio_list_lock);
2087 	INIT_LIST_HEAD(&wc->endio_list);
2088 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2089 	if (IS_ERR(wc->endio_thread)) {
2090 		r = PTR_ERR(wc->endio_thread);
2091 		wc->endio_thread = NULL;
2092 		ti->error = "Couldn't spawn endio thread";
2093 		goto bad;
2094 	}
2095 	wake_up_process(wc->endio_thread);
2096 
2097 	/*
2098 	 * Parse the mode (pmem or ssd)
2099 	 */
2100 	string = dm_shift_arg(&as);
2101 	if (!string)
2102 		goto bad_arguments;
2103 
2104 	if (!strcasecmp(string, "s")) {
2105 		wc->pmem_mode = false;
2106 	} else if (!strcasecmp(string, "p")) {
2107 #ifdef DM_WRITECACHE_HAS_PMEM
2108 		wc->pmem_mode = true;
2109 		wc->writeback_fua = true;
2110 #else
2111 		/*
2112 		 * If the architecture doesn't support persistent memory or
2113 		 * the kernel doesn't support any DAX drivers, this driver can
2114 		 * only be used in SSD-only mode.
2115 		 */
2116 		r = -EOPNOTSUPP;
2117 		ti->error = "Persistent memory or DAX not supported on this system";
2118 		goto bad;
2119 #endif
2120 	} else {
2121 		goto bad_arguments;
2122 	}
2123 
2124 	if (WC_MODE_PMEM(wc)) {
2125 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2126 				offsetof(struct writeback_struct, bio),
2127 				BIOSET_NEED_BVECS);
2128 		if (r) {
2129 			ti->error = "Could not allocate bio set";
2130 			goto bad;
2131 		}
2132 	} else {
2133 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2134 		if (r) {
2135 			ti->error = "Could not allocate mempool";
2136 			goto bad;
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * Parse the origin data device
2142 	 */
2143 	string = dm_shift_arg(&as);
2144 	if (!string)
2145 		goto bad_arguments;
2146 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2147 	if (r) {
2148 		ti->error = "Origin data device lookup failed";
2149 		goto bad;
2150 	}
2151 
2152 	/*
2153 	 * Parse cache data device (be it pmem or ssd)
2154 	 */
2155 	string = dm_shift_arg(&as);
2156 	if (!string)
2157 		goto bad_arguments;
2158 
2159 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2160 	if (r) {
2161 		ti->error = "Cache data device lookup failed";
2162 		goto bad;
2163 	}
2164 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2165 
2166 	/*
2167 	 * Parse the cache block size
2168 	 */
2169 	string = dm_shift_arg(&as);
2170 	if (!string)
2171 		goto bad_arguments;
2172 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2173 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2174 	    (wc->block_size & (wc->block_size - 1))) {
2175 		r = -EINVAL;
2176 		ti->error = "Invalid block size";
2177 		goto bad;
2178 	}
2179 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2180 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2181 		r = -EINVAL;
2182 		ti->error = "Block size is smaller than device logical block size";
2183 		goto bad;
2184 	}
2185 	wc->block_size_bits = __ffs(wc->block_size);
2186 
2187 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2188 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2189 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2190 
2191 	/*
2192 	 * Parse optional arguments
2193 	 */
2194 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2195 	if (r)
2196 		goto bad;
2197 
2198 	while (opt_params) {
2199 		string = dm_shift_arg(&as), opt_params--;
2200 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2201 			unsigned long long start_sector;
2202 			string = dm_shift_arg(&as), opt_params--;
2203 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2204 				goto invalid_optional;
2205 			wc->start_sector = start_sector;
2206 			if (wc->start_sector != start_sector ||
2207 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2208 				goto invalid_optional;
2209 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2210 			string = dm_shift_arg(&as), opt_params--;
2211 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2212 				goto invalid_optional;
2213 			if (high_wm_percent < 0 || high_wm_percent > 100)
2214 				goto invalid_optional;
2215 			wc->high_wm_percent_set = true;
2216 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2217 			string = dm_shift_arg(&as), opt_params--;
2218 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2219 				goto invalid_optional;
2220 			if (low_wm_percent < 0 || low_wm_percent > 100)
2221 				goto invalid_optional;
2222 			wc->low_wm_percent_set = true;
2223 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2224 			string = dm_shift_arg(&as), opt_params--;
2225 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2226 				goto invalid_optional;
2227 			wc->max_writeback_jobs_set = true;
2228 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2229 			string = dm_shift_arg(&as), opt_params--;
2230 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2231 				goto invalid_optional;
2232 			wc->autocommit_blocks_set = true;
2233 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2234 			unsigned autocommit_msecs;
2235 			string = dm_shift_arg(&as), opt_params--;
2236 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2237 				goto invalid_optional;
2238 			if (autocommit_msecs > 3600000)
2239 				goto invalid_optional;
2240 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2241 			wc->autocommit_time_set = true;
2242 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2243 			unsigned max_age_msecs;
2244 			string = dm_shift_arg(&as), opt_params--;
2245 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2246 				goto invalid_optional;
2247 			if (max_age_msecs > 86400000)
2248 				goto invalid_optional;
2249 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2250 		} else if (!strcasecmp(string, "cleaner")) {
2251 			wc->cleaner = true;
2252 		} else if (!strcasecmp(string, "fua")) {
2253 			if (WC_MODE_PMEM(wc)) {
2254 				wc->writeback_fua = true;
2255 				wc->writeback_fua_set = true;
2256 			} else goto invalid_optional;
2257 		} else if (!strcasecmp(string, "nofua")) {
2258 			if (WC_MODE_PMEM(wc)) {
2259 				wc->writeback_fua = false;
2260 				wc->writeback_fua_set = true;
2261 			} else goto invalid_optional;
2262 		} else {
2263 invalid_optional:
2264 			r = -EINVAL;
2265 			ti->error = "Invalid optional argument";
2266 			goto bad;
2267 		}
2268 	}
2269 
2270 	if (high_wm_percent < low_wm_percent) {
2271 		r = -EINVAL;
2272 		ti->error = "High watermark must be greater than or equal to low watermark";
2273 		goto bad;
2274 	}
2275 
2276 	if (WC_MODE_PMEM(wc)) {
2277 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2278 			r = -EOPNOTSUPP;
2279 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2280 			goto bad;
2281 		}
2282 
2283 		r = persistent_memory_claim(wc);
2284 		if (r) {
2285 			ti->error = "Unable to map persistent memory for cache";
2286 			goto bad;
2287 		}
2288 	} else {
2289 		size_t n_blocks, n_metadata_blocks;
2290 		uint64_t n_bitmap_bits;
2291 
2292 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2293 
2294 		bio_list_init(&wc->flush_list);
2295 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2296 		if (IS_ERR(wc->flush_thread)) {
2297 			r = PTR_ERR(wc->flush_thread);
2298 			wc->flush_thread = NULL;
2299 			ti->error = "Couldn't spawn flush thread";
2300 			goto bad;
2301 		}
2302 		wake_up_process(wc->flush_thread);
2303 
2304 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2305 					  &n_blocks, &n_metadata_blocks);
2306 		if (r) {
2307 			ti->error = "Invalid device size";
2308 			goto bad;
2309 		}
2310 
2311 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2312 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2313 		/* this is limitation of test_bit functions */
2314 		if (n_bitmap_bits > 1U << 31) {
2315 			r = -EFBIG;
2316 			ti->error = "Invalid device size";
2317 			goto bad;
2318 		}
2319 
2320 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2321 		if (!wc->memory_map) {
2322 			r = -ENOMEM;
2323 			ti->error = "Unable to allocate memory for metadata";
2324 			goto bad;
2325 		}
2326 
2327 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2328 		if (IS_ERR(wc->dm_kcopyd)) {
2329 			r = PTR_ERR(wc->dm_kcopyd);
2330 			ti->error = "Unable to allocate dm-kcopyd client";
2331 			wc->dm_kcopyd = NULL;
2332 			goto bad;
2333 		}
2334 
2335 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2336 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2337 			BITS_PER_LONG * sizeof(unsigned long);
2338 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2339 		if (!wc->dirty_bitmap) {
2340 			r = -ENOMEM;
2341 			ti->error = "Unable to allocate dirty bitmap";
2342 			goto bad;
2343 		}
2344 
2345 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2346 		if (r) {
2347 			ti->error = "Unable to read first block of metadata";
2348 			goto bad;
2349 		}
2350 	}
2351 
2352 	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2353 	if (r) {
2354 		ti->error = "Hardware memory error when reading superblock";
2355 		goto bad;
2356 	}
2357 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2358 		r = init_memory(wc);
2359 		if (r) {
2360 			ti->error = "Unable to initialize device";
2361 			goto bad;
2362 		}
2363 		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2364 		if (r) {
2365 			ti->error = "Hardware memory error when reading superblock";
2366 			goto bad;
2367 		}
2368 	}
2369 
2370 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2371 		ti->error = "Invalid magic in the superblock";
2372 		r = -EINVAL;
2373 		goto bad;
2374 	}
2375 
2376 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2377 		ti->error = "Invalid version in the superblock";
2378 		r = -EINVAL;
2379 		goto bad;
2380 	}
2381 
2382 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2383 		ti->error = "Block size does not match superblock";
2384 		r = -EINVAL;
2385 		goto bad;
2386 	}
2387 
2388 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2389 
2390 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2391 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2392 overflow:
2393 		ti->error = "Overflow in size calculation";
2394 		r = -EINVAL;
2395 		goto bad;
2396 	}
2397 	offset += sizeof(struct wc_memory_superblock);
2398 	if (offset < sizeof(struct wc_memory_superblock))
2399 		goto overflow;
2400 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2401 	data_size = wc->n_blocks * (size_t)wc->block_size;
2402 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2403 	    (offset + data_size < offset))
2404 		goto overflow;
2405 	if (offset + data_size > wc->memory_map_size) {
2406 		ti->error = "Memory area is too small";
2407 		r = -EINVAL;
2408 		goto bad;
2409 	}
2410 
2411 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2412 	wc->block_start = (char *)sb(wc) + offset;
2413 
2414 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2415 	x += 50;
2416 	do_div(x, 100);
2417 	wc->freelist_high_watermark = x;
2418 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2419 	x += 50;
2420 	do_div(x, 100);
2421 	wc->freelist_low_watermark = x;
2422 
2423 	if (wc->cleaner)
2424 		activate_cleaner(wc);
2425 
2426 	r = writecache_alloc_entries(wc);
2427 	if (r) {
2428 		ti->error = "Cannot allocate memory";
2429 		goto bad;
2430 	}
2431 
2432 	ti->num_flush_bios = 1;
2433 	ti->flush_supported = true;
2434 	ti->num_discard_bios = 1;
2435 
2436 	if (WC_MODE_PMEM(wc))
2437 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2438 
2439 	return 0;
2440 
2441 bad_arguments:
2442 	r = -EINVAL;
2443 	ti->error = "Bad arguments";
2444 bad:
2445 	writecache_dtr(ti);
2446 	return r;
2447 }
2448 
2449 static void writecache_status(struct dm_target *ti, status_type_t type,
2450 			      unsigned status_flags, char *result, unsigned maxlen)
2451 {
2452 	struct dm_writecache *wc = ti->private;
2453 	unsigned extra_args;
2454 	unsigned sz = 0;
2455 	uint64_t x;
2456 
2457 	switch (type) {
2458 	case STATUSTYPE_INFO:
2459 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2460 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2461 		       (unsigned long long)wc->writeback_size);
2462 		break;
2463 	case STATUSTYPE_TABLE:
2464 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2465 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2466 		extra_args = 0;
2467 		if (wc->start_sector)
2468 			extra_args += 2;
2469 		if (wc->high_wm_percent_set && !wc->cleaner)
2470 			extra_args += 2;
2471 		if (wc->low_wm_percent_set && !wc->cleaner)
2472 			extra_args += 2;
2473 		if (wc->max_writeback_jobs_set)
2474 			extra_args += 2;
2475 		if (wc->autocommit_blocks_set)
2476 			extra_args += 2;
2477 		if (wc->autocommit_time_set)
2478 			extra_args += 2;
2479 		if (wc->cleaner)
2480 			extra_args++;
2481 		if (wc->writeback_fua_set)
2482 			extra_args++;
2483 
2484 		DMEMIT("%u", extra_args);
2485 		if (wc->start_sector)
2486 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2487 		if (wc->high_wm_percent_set && !wc->cleaner) {
2488 			x = (uint64_t)wc->freelist_high_watermark * 100;
2489 			x += wc->n_blocks / 2;
2490 			do_div(x, (size_t)wc->n_blocks);
2491 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2492 		}
2493 		if (wc->low_wm_percent_set && !wc->cleaner) {
2494 			x = (uint64_t)wc->freelist_low_watermark * 100;
2495 			x += wc->n_blocks / 2;
2496 			do_div(x, (size_t)wc->n_blocks);
2497 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2498 		}
2499 		if (wc->max_writeback_jobs_set)
2500 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2501 		if (wc->autocommit_blocks_set)
2502 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2503 		if (wc->autocommit_time_set)
2504 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2505 		if (wc->max_age != MAX_AGE_UNSPECIFIED)
2506 			DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age));
2507 		if (wc->cleaner)
2508 			DMEMIT(" cleaner");
2509 		if (wc->writeback_fua_set)
2510 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2511 		break;
2512 	}
2513 }
2514 
2515 static struct target_type writecache_target = {
2516 	.name			= "writecache",
2517 	.version		= {1, 3, 0},
2518 	.module			= THIS_MODULE,
2519 	.ctr			= writecache_ctr,
2520 	.dtr			= writecache_dtr,
2521 	.status			= writecache_status,
2522 	.postsuspend		= writecache_suspend,
2523 	.resume			= writecache_resume,
2524 	.message		= writecache_message,
2525 	.map			= writecache_map,
2526 	.end_io			= writecache_end_io,
2527 	.iterate_devices	= writecache_iterate_devices,
2528 	.io_hints		= writecache_io_hints,
2529 };
2530 
2531 static int __init dm_writecache_init(void)
2532 {
2533 	int r;
2534 
2535 	r = dm_register_target(&writecache_target);
2536 	if (r < 0) {
2537 		DMERR("register failed %d", r);
2538 		return r;
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 static void __exit dm_writecache_exit(void)
2545 {
2546 	dm_unregister_target(&writecache_target);
2547 }
2548 
2549 module_init(dm_writecache_init);
2550 module_exit(dm_writecache_exit);
2551 
2552 MODULE_DESCRIPTION(DM_NAME " writecache target");
2553 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2554 MODULE_LICENSE("GPL");
2555