1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 sector_t start_sector; 140 void *memory_map; 141 uint64_t memory_map_size; 142 size_t metadata_sectors; 143 size_t n_blocks; 144 uint64_t seq_count; 145 void *block_start; 146 struct wc_entry *entries; 147 unsigned block_size; 148 unsigned char block_size_bits; 149 150 bool pmem_mode:1; 151 bool writeback_fua:1; 152 153 bool overwrote_committed:1; 154 bool memory_vmapped:1; 155 156 bool high_wm_percent_set:1; 157 bool low_wm_percent_set:1; 158 bool max_writeback_jobs_set:1; 159 bool autocommit_blocks_set:1; 160 bool autocommit_time_set:1; 161 bool writeback_fua_set:1; 162 bool flush_on_suspend:1; 163 164 unsigned writeback_all; 165 struct workqueue_struct *writeback_wq; 166 struct work_struct writeback_work; 167 struct work_struct flush_work; 168 169 struct dm_io_client *dm_io; 170 171 raw_spinlock_t endio_list_lock; 172 struct list_head endio_list; 173 struct task_struct *endio_thread; 174 175 struct task_struct *flush_thread; 176 struct bio_list flush_list; 177 178 struct dm_kcopyd_client *dm_kcopyd; 179 unsigned long *dirty_bitmap; 180 unsigned dirty_bitmap_size; 181 182 struct bio_set bio_set; 183 mempool_t copy_pool; 184 }; 185 186 #define WB_LIST_INLINE 16 187 188 struct writeback_struct { 189 struct list_head endio_entry; 190 struct dm_writecache *wc; 191 struct wc_entry **wc_list; 192 unsigned wc_list_n; 193 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 194 struct bio bio; 195 }; 196 197 struct copy_struct { 198 struct list_head endio_entry; 199 struct dm_writecache *wc; 200 struct wc_entry *e; 201 unsigned n_entries; 202 int error; 203 }; 204 205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 206 "A percentage of time allocated for data copying"); 207 208 static void wc_lock(struct dm_writecache *wc) 209 { 210 mutex_lock(&wc->lock); 211 } 212 213 static void wc_unlock(struct dm_writecache *wc) 214 { 215 mutex_unlock(&wc->lock); 216 } 217 218 #ifdef DM_WRITECACHE_HAS_PMEM 219 static int persistent_memory_claim(struct dm_writecache *wc) 220 { 221 int r; 222 loff_t s; 223 long p, da; 224 pfn_t pfn; 225 int id; 226 struct page **pages; 227 228 wc->memory_vmapped = false; 229 230 if (!wc->ssd_dev->dax_dev) { 231 r = -EOPNOTSUPP; 232 goto err1; 233 } 234 s = wc->memory_map_size; 235 p = s >> PAGE_SHIFT; 236 if (!p) { 237 r = -EINVAL; 238 goto err1; 239 } 240 if (p != s >> PAGE_SHIFT) { 241 r = -EOVERFLOW; 242 goto err1; 243 } 244 245 id = dax_read_lock(); 246 247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 248 if (da < 0) { 249 wc->memory_map = NULL; 250 r = da; 251 goto err2; 252 } 253 if (!pfn_t_has_page(pfn)) { 254 wc->memory_map = NULL; 255 r = -EOPNOTSUPP; 256 goto err2; 257 } 258 if (da != p) { 259 long i; 260 wc->memory_map = NULL; 261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 262 if (!pages) { 263 r = -ENOMEM; 264 goto err2; 265 } 266 i = 0; 267 do { 268 long daa; 269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 270 NULL, &pfn); 271 if (daa <= 0) { 272 r = daa ? daa : -EINVAL; 273 goto err3; 274 } 275 if (!pfn_t_has_page(pfn)) { 276 r = -EOPNOTSUPP; 277 goto err3; 278 } 279 while (daa-- && i < p) { 280 pages[i++] = pfn_t_to_page(pfn); 281 pfn.val++; 282 } 283 } while (i < p); 284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 285 if (!wc->memory_map) { 286 r = -ENOMEM; 287 goto err3; 288 } 289 kvfree(pages); 290 wc->memory_vmapped = true; 291 } 292 293 dax_read_unlock(id); 294 295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 297 298 return 0; 299 err3: 300 kvfree(pages); 301 err2: 302 dax_read_unlock(id); 303 err1: 304 return r; 305 } 306 #else 307 static int persistent_memory_claim(struct dm_writecache *wc) 308 { 309 BUG(); 310 } 311 #endif 312 313 static void persistent_memory_release(struct dm_writecache *wc) 314 { 315 if (wc->memory_vmapped) 316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 317 } 318 319 static struct page *persistent_memory_page(void *addr) 320 { 321 if (is_vmalloc_addr(addr)) 322 return vmalloc_to_page(addr); 323 else 324 return virt_to_page(addr); 325 } 326 327 static unsigned persistent_memory_page_offset(void *addr) 328 { 329 return (unsigned long)addr & (PAGE_SIZE - 1); 330 } 331 332 static void persistent_memory_flush_cache(void *ptr, size_t size) 333 { 334 if (is_vmalloc_addr(ptr)) 335 flush_kernel_vmap_range(ptr, size); 336 } 337 338 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 339 { 340 if (is_vmalloc_addr(ptr)) 341 invalidate_kernel_vmap_range(ptr, size); 342 } 343 344 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 345 { 346 return wc->memory_map; 347 } 348 349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 350 { 351 return &sb(wc)->entries[e->index]; 352 } 353 354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 355 { 356 return (char *)wc->block_start + (e->index << wc->block_size_bits); 357 } 358 359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 360 { 361 return wc->start_sector + wc->metadata_sectors + 362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 363 } 364 365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 366 { 367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 368 return e->original_sector; 369 #else 370 return le64_to_cpu(memory_entry(wc, e)->original_sector); 371 #endif 372 } 373 374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 375 { 376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 377 return e->seq_count; 378 #else 379 return le64_to_cpu(memory_entry(wc, e)->seq_count); 380 #endif 381 } 382 383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 384 { 385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 386 e->seq_count = -1; 387 #endif 388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 389 } 390 391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 392 uint64_t original_sector, uint64_t seq_count) 393 { 394 struct wc_memory_entry me; 395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 396 e->original_sector = original_sector; 397 e->seq_count = seq_count; 398 #endif 399 me.original_sector = cpu_to_le64(original_sector); 400 me.seq_count = cpu_to_le64(seq_count); 401 pmem_assign(*memory_entry(wc, e), me); 402 } 403 404 #define writecache_error(wc, err, msg, arg...) \ 405 do { \ 406 if (!cmpxchg(&(wc)->error, 0, err)) \ 407 DMERR(msg, ##arg); \ 408 wake_up(&(wc)->freelist_wait); \ 409 } while (0) 410 411 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 412 413 static void writecache_flush_all_metadata(struct dm_writecache *wc) 414 { 415 if (!WC_MODE_PMEM(wc)) 416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 417 } 418 419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 420 { 421 if (!WC_MODE_PMEM(wc)) 422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 423 wc->dirty_bitmap); 424 } 425 426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 427 428 struct io_notify { 429 struct dm_writecache *wc; 430 struct completion c; 431 atomic_t count; 432 }; 433 434 static void writecache_notify_io(unsigned long error, void *context) 435 { 436 struct io_notify *endio = context; 437 438 if (unlikely(error != 0)) 439 writecache_error(endio->wc, -EIO, "error writing metadata"); 440 BUG_ON(atomic_read(&endio->count) <= 0); 441 if (atomic_dec_and_test(&endio->count)) 442 complete(&endio->c); 443 } 444 445 static void ssd_commit_flushed(struct dm_writecache *wc) 446 { 447 struct dm_io_region region; 448 struct dm_io_request req; 449 struct io_notify endio = { 450 wc, 451 COMPLETION_INITIALIZER_ONSTACK(endio.c), 452 ATOMIC_INIT(1), 453 }; 454 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 455 unsigned i = 0; 456 457 while (1) { 458 unsigned j; 459 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 460 if (unlikely(i == bitmap_bits)) 461 break; 462 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 463 464 region.bdev = wc->ssd_dev->bdev; 465 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 466 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 467 468 if (unlikely(region.sector >= wc->metadata_sectors)) 469 break; 470 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 471 region.count = wc->metadata_sectors - region.sector; 472 473 region.sector += wc->start_sector; 474 atomic_inc(&endio.count); 475 req.bi_op = REQ_OP_WRITE; 476 req.bi_op_flags = REQ_SYNC; 477 req.mem.type = DM_IO_VMA; 478 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 479 req.client = wc->dm_io; 480 req.notify.fn = writecache_notify_io; 481 req.notify.context = &endio; 482 483 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 484 (void) dm_io(&req, 1, ®ion, NULL); 485 i = j; 486 } 487 488 writecache_notify_io(0, &endio); 489 wait_for_completion_io(&endio.c); 490 491 writecache_disk_flush(wc, wc->ssd_dev); 492 493 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 494 } 495 496 static void writecache_commit_flushed(struct dm_writecache *wc) 497 { 498 if (WC_MODE_PMEM(wc)) 499 wmb(); 500 else 501 ssd_commit_flushed(wc); 502 } 503 504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 505 { 506 int r; 507 struct dm_io_region region; 508 struct dm_io_request req; 509 510 region.bdev = dev->bdev; 511 region.sector = 0; 512 region.count = 0; 513 req.bi_op = REQ_OP_WRITE; 514 req.bi_op_flags = REQ_PREFLUSH; 515 req.mem.type = DM_IO_KMEM; 516 req.mem.ptr.addr = NULL; 517 req.client = wc->dm_io; 518 req.notify.fn = NULL; 519 520 r = dm_io(&req, 1, ®ion, NULL); 521 if (unlikely(r)) 522 writecache_error(wc, r, "error flushing metadata: %d", r); 523 } 524 525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 526 { 527 wait_event(wc->bio_in_progress_wait[direction], 528 !atomic_read(&wc->bio_in_progress[direction])); 529 } 530 531 #define WFE_RETURN_FOLLOWING 1 532 #define WFE_LOWEST_SEQ 2 533 534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 535 uint64_t block, int flags) 536 { 537 struct wc_entry *e; 538 struct rb_node *node = wc->tree.rb_node; 539 540 if (unlikely(!node)) 541 return NULL; 542 543 while (1) { 544 e = container_of(node, struct wc_entry, rb_node); 545 if (read_original_sector(wc, e) == block) 546 break; 547 548 node = (read_original_sector(wc, e) >= block ? 549 e->rb_node.rb_left : e->rb_node.rb_right); 550 if (unlikely(!node)) { 551 if (!(flags & WFE_RETURN_FOLLOWING)) 552 return NULL; 553 if (read_original_sector(wc, e) >= block) { 554 return e; 555 } else { 556 node = rb_next(&e->rb_node); 557 if (unlikely(!node)) 558 return NULL; 559 e = container_of(node, struct wc_entry, rb_node); 560 return e; 561 } 562 } 563 } 564 565 while (1) { 566 struct wc_entry *e2; 567 if (flags & WFE_LOWEST_SEQ) 568 node = rb_prev(&e->rb_node); 569 else 570 node = rb_next(&e->rb_node); 571 if (unlikely(!node)) 572 return e; 573 e2 = container_of(node, struct wc_entry, rb_node); 574 if (read_original_sector(wc, e2) != block) 575 return e; 576 e = e2; 577 } 578 } 579 580 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 581 { 582 struct wc_entry *e; 583 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 584 585 while (*node) { 586 e = container_of(*node, struct wc_entry, rb_node); 587 parent = &e->rb_node; 588 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 589 node = &parent->rb_left; 590 else 591 node = &parent->rb_right; 592 } 593 rb_link_node(&ins->rb_node, parent, node); 594 rb_insert_color(&ins->rb_node, &wc->tree); 595 list_add(&ins->lru, &wc->lru); 596 } 597 598 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 599 { 600 list_del(&e->lru); 601 rb_erase(&e->rb_node, &wc->tree); 602 } 603 604 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 605 { 606 if (WC_MODE_SORT_FREELIST(wc)) { 607 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 608 if (unlikely(!*node)) 609 wc->current_free = e; 610 while (*node) { 611 parent = *node; 612 if (&e->rb_node < *node) 613 node = &parent->rb_left; 614 else 615 node = &parent->rb_right; 616 } 617 rb_link_node(&e->rb_node, parent, node); 618 rb_insert_color(&e->rb_node, &wc->freetree); 619 } else { 620 list_add_tail(&e->lru, &wc->freelist); 621 } 622 wc->freelist_size++; 623 } 624 625 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) 626 { 627 struct wc_entry *e; 628 629 if (WC_MODE_SORT_FREELIST(wc)) { 630 struct rb_node *next; 631 if (unlikely(!wc->current_free)) 632 return NULL; 633 e = wc->current_free; 634 next = rb_next(&e->rb_node); 635 rb_erase(&e->rb_node, &wc->freetree); 636 if (unlikely(!next)) 637 next = rb_first(&wc->freetree); 638 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 639 } else { 640 if (unlikely(list_empty(&wc->freelist))) 641 return NULL; 642 e = container_of(wc->freelist.next, struct wc_entry, lru); 643 list_del(&e->lru); 644 } 645 wc->freelist_size--; 646 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 647 queue_work(wc->writeback_wq, &wc->writeback_work); 648 649 return e; 650 } 651 652 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 653 { 654 writecache_unlink(wc, e); 655 writecache_add_to_freelist(wc, e); 656 clear_seq_count(wc, e); 657 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 658 if (unlikely(waitqueue_active(&wc->freelist_wait))) 659 wake_up(&wc->freelist_wait); 660 } 661 662 static void writecache_wait_on_freelist(struct dm_writecache *wc) 663 { 664 DEFINE_WAIT(wait); 665 666 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 667 wc_unlock(wc); 668 io_schedule(); 669 finish_wait(&wc->freelist_wait, &wait); 670 wc_lock(wc); 671 } 672 673 static void writecache_poison_lists(struct dm_writecache *wc) 674 { 675 /* 676 * Catch incorrect access to these values while the device is suspended. 677 */ 678 memset(&wc->tree, -1, sizeof wc->tree); 679 wc->lru.next = LIST_POISON1; 680 wc->lru.prev = LIST_POISON2; 681 wc->freelist.next = LIST_POISON1; 682 wc->freelist.prev = LIST_POISON2; 683 } 684 685 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 686 { 687 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 688 if (WC_MODE_PMEM(wc)) 689 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 690 } 691 692 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 693 { 694 return read_seq_count(wc, e) < wc->seq_count; 695 } 696 697 static void writecache_flush(struct dm_writecache *wc) 698 { 699 struct wc_entry *e, *e2; 700 bool need_flush_after_free; 701 702 wc->uncommitted_blocks = 0; 703 del_timer(&wc->autocommit_timer); 704 705 if (list_empty(&wc->lru)) 706 return; 707 708 e = container_of(wc->lru.next, struct wc_entry, lru); 709 if (writecache_entry_is_committed(wc, e)) { 710 if (wc->overwrote_committed) { 711 writecache_wait_for_ios(wc, WRITE); 712 writecache_disk_flush(wc, wc->ssd_dev); 713 wc->overwrote_committed = false; 714 } 715 return; 716 } 717 while (1) { 718 writecache_flush_entry(wc, e); 719 if (unlikely(e->lru.next == &wc->lru)) 720 break; 721 e2 = container_of(e->lru.next, struct wc_entry, lru); 722 if (writecache_entry_is_committed(wc, e2)) 723 break; 724 e = e2; 725 cond_resched(); 726 } 727 writecache_commit_flushed(wc); 728 729 if (!WC_MODE_PMEM(wc)) 730 writecache_wait_for_ios(wc, WRITE); 731 732 wc->seq_count++; 733 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 734 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 735 writecache_commit_flushed(wc); 736 737 wc->overwrote_committed = false; 738 739 need_flush_after_free = false; 740 while (1) { 741 /* Free another committed entry with lower seq-count */ 742 struct rb_node *rb_node = rb_prev(&e->rb_node); 743 744 if (rb_node) { 745 e2 = container_of(rb_node, struct wc_entry, rb_node); 746 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 747 likely(!e2->write_in_progress)) { 748 writecache_free_entry(wc, e2); 749 need_flush_after_free = true; 750 } 751 } 752 if (unlikely(e->lru.prev == &wc->lru)) 753 break; 754 e = container_of(e->lru.prev, struct wc_entry, lru); 755 cond_resched(); 756 } 757 758 if (need_flush_after_free) 759 writecache_commit_flushed(wc); 760 } 761 762 static void writecache_flush_work(struct work_struct *work) 763 { 764 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 765 766 wc_lock(wc); 767 writecache_flush(wc); 768 wc_unlock(wc); 769 } 770 771 static void writecache_autocommit_timer(struct timer_list *t) 772 { 773 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 774 if (!writecache_has_error(wc)) 775 queue_work(wc->writeback_wq, &wc->flush_work); 776 } 777 778 static void writecache_schedule_autocommit(struct dm_writecache *wc) 779 { 780 if (!timer_pending(&wc->autocommit_timer)) 781 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 782 } 783 784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 785 { 786 struct wc_entry *e; 787 bool discarded_something = false; 788 789 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 790 if (unlikely(!e)) 791 return; 792 793 while (read_original_sector(wc, e) < end) { 794 struct rb_node *node = rb_next(&e->rb_node); 795 796 if (likely(!e->write_in_progress)) { 797 if (!discarded_something) { 798 writecache_wait_for_ios(wc, READ); 799 writecache_wait_for_ios(wc, WRITE); 800 discarded_something = true; 801 } 802 writecache_free_entry(wc, e); 803 } 804 805 if (unlikely(!node)) 806 break; 807 808 e = container_of(node, struct wc_entry, rb_node); 809 } 810 811 if (discarded_something) 812 writecache_commit_flushed(wc); 813 } 814 815 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 816 { 817 if (wc->writeback_size) { 818 writecache_wait_on_freelist(wc); 819 return true; 820 } 821 return false; 822 } 823 824 static void writecache_suspend(struct dm_target *ti) 825 { 826 struct dm_writecache *wc = ti->private; 827 bool flush_on_suspend; 828 829 del_timer_sync(&wc->autocommit_timer); 830 831 wc_lock(wc); 832 writecache_flush(wc); 833 flush_on_suspend = wc->flush_on_suspend; 834 if (flush_on_suspend) { 835 wc->flush_on_suspend = false; 836 wc->writeback_all++; 837 queue_work(wc->writeback_wq, &wc->writeback_work); 838 } 839 wc_unlock(wc); 840 841 flush_workqueue(wc->writeback_wq); 842 843 wc_lock(wc); 844 if (flush_on_suspend) 845 wc->writeback_all--; 846 while (writecache_wait_for_writeback(wc)); 847 848 if (WC_MODE_PMEM(wc)) 849 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 850 851 writecache_poison_lists(wc); 852 853 wc_unlock(wc); 854 } 855 856 static int writecache_alloc_entries(struct dm_writecache *wc) 857 { 858 size_t b; 859 860 if (wc->entries) 861 return 0; 862 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 863 if (!wc->entries) 864 return -ENOMEM; 865 for (b = 0; b < wc->n_blocks; b++) { 866 struct wc_entry *e = &wc->entries[b]; 867 e->index = b; 868 e->write_in_progress = false; 869 } 870 871 return 0; 872 } 873 874 static void writecache_resume(struct dm_target *ti) 875 { 876 struct dm_writecache *wc = ti->private; 877 size_t b; 878 bool need_flush = false; 879 __le64 sb_seq_count; 880 int r; 881 882 wc_lock(wc); 883 884 if (WC_MODE_PMEM(wc)) 885 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 886 887 wc->tree = RB_ROOT; 888 INIT_LIST_HEAD(&wc->lru); 889 if (WC_MODE_SORT_FREELIST(wc)) { 890 wc->freetree = RB_ROOT; 891 wc->current_free = NULL; 892 } else { 893 INIT_LIST_HEAD(&wc->freelist); 894 } 895 wc->freelist_size = 0; 896 897 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 898 if (r) { 899 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 900 sb_seq_count = cpu_to_le64(0); 901 } 902 wc->seq_count = le64_to_cpu(sb_seq_count); 903 904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 905 for (b = 0; b < wc->n_blocks; b++) { 906 struct wc_entry *e = &wc->entries[b]; 907 struct wc_memory_entry wme; 908 if (writecache_has_error(wc)) { 909 e->original_sector = -1; 910 e->seq_count = -1; 911 continue; 912 } 913 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 914 if (r) { 915 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 916 (unsigned long)b, r); 917 e->original_sector = -1; 918 e->seq_count = -1; 919 } else { 920 e->original_sector = le64_to_cpu(wme.original_sector); 921 e->seq_count = le64_to_cpu(wme.seq_count); 922 } 923 } 924 #endif 925 for (b = 0; b < wc->n_blocks; b++) { 926 struct wc_entry *e = &wc->entries[b]; 927 if (!writecache_entry_is_committed(wc, e)) { 928 if (read_seq_count(wc, e) != -1) { 929 erase_this: 930 clear_seq_count(wc, e); 931 need_flush = true; 932 } 933 writecache_add_to_freelist(wc, e); 934 } else { 935 struct wc_entry *old; 936 937 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 938 if (!old) { 939 writecache_insert_entry(wc, e); 940 } else { 941 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 942 writecache_error(wc, -EINVAL, 943 "two identical entries, position %llu, sector %llu, sequence %llu", 944 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 945 (unsigned long long)read_seq_count(wc, e)); 946 } 947 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 948 goto erase_this; 949 } else { 950 writecache_free_entry(wc, old); 951 writecache_insert_entry(wc, e); 952 need_flush = true; 953 } 954 } 955 } 956 cond_resched(); 957 } 958 959 if (need_flush) { 960 writecache_flush_all_metadata(wc); 961 writecache_commit_flushed(wc); 962 } 963 964 wc_unlock(wc); 965 } 966 967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 968 { 969 if (argc != 1) 970 return -EINVAL; 971 972 wc_lock(wc); 973 if (dm_suspended(wc->ti)) { 974 wc_unlock(wc); 975 return -EBUSY; 976 } 977 if (writecache_has_error(wc)) { 978 wc_unlock(wc); 979 return -EIO; 980 } 981 982 writecache_flush(wc); 983 wc->writeback_all++; 984 queue_work(wc->writeback_wq, &wc->writeback_work); 985 wc_unlock(wc); 986 987 flush_workqueue(wc->writeback_wq); 988 989 wc_lock(wc); 990 wc->writeback_all--; 991 if (writecache_has_error(wc)) { 992 wc_unlock(wc); 993 return -EIO; 994 } 995 wc_unlock(wc); 996 997 return 0; 998 } 999 1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1001 { 1002 if (argc != 1) 1003 return -EINVAL; 1004 1005 wc_lock(wc); 1006 wc->flush_on_suspend = true; 1007 wc_unlock(wc); 1008 1009 return 0; 1010 } 1011 1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1013 char *result, unsigned maxlen) 1014 { 1015 int r = -EINVAL; 1016 struct dm_writecache *wc = ti->private; 1017 1018 if (!strcasecmp(argv[0], "flush")) 1019 r = process_flush_mesg(argc, argv, wc); 1020 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1021 r = process_flush_on_suspend_mesg(argc, argv, wc); 1022 else 1023 DMERR("unrecognised message received: %s", argv[0]); 1024 1025 return r; 1026 } 1027 1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1029 { 1030 void *buf; 1031 unsigned long flags; 1032 unsigned size; 1033 int rw = bio_data_dir(bio); 1034 unsigned remaining_size = wc->block_size; 1035 1036 do { 1037 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1038 buf = bvec_kmap_irq(&bv, &flags); 1039 size = bv.bv_len; 1040 if (unlikely(size > remaining_size)) 1041 size = remaining_size; 1042 1043 if (rw == READ) { 1044 int r; 1045 r = memcpy_mcsafe(buf, data, size); 1046 flush_dcache_page(bio_page(bio)); 1047 if (unlikely(r)) { 1048 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1049 bio->bi_status = BLK_STS_IOERR; 1050 } 1051 } else { 1052 flush_dcache_page(bio_page(bio)); 1053 memcpy_flushcache(data, buf, size); 1054 } 1055 1056 bvec_kunmap_irq(buf, &flags); 1057 1058 data = (char *)data + size; 1059 remaining_size -= size; 1060 bio_advance(bio, size); 1061 } while (unlikely(remaining_size)); 1062 } 1063 1064 static int writecache_flush_thread(void *data) 1065 { 1066 struct dm_writecache *wc = data; 1067 1068 while (1) { 1069 struct bio *bio; 1070 1071 wc_lock(wc); 1072 bio = bio_list_pop(&wc->flush_list); 1073 if (!bio) { 1074 set_current_state(TASK_INTERRUPTIBLE); 1075 wc_unlock(wc); 1076 1077 if (unlikely(kthread_should_stop())) { 1078 set_current_state(TASK_RUNNING); 1079 break; 1080 } 1081 1082 schedule(); 1083 continue; 1084 } 1085 1086 if (bio_op(bio) == REQ_OP_DISCARD) { 1087 writecache_discard(wc, bio->bi_iter.bi_sector, 1088 bio_end_sector(bio)); 1089 wc_unlock(wc); 1090 bio_set_dev(bio, wc->dev->bdev); 1091 generic_make_request(bio); 1092 } else { 1093 writecache_flush(wc); 1094 wc_unlock(wc); 1095 if (writecache_has_error(wc)) 1096 bio->bi_status = BLK_STS_IOERR; 1097 bio_endio(bio); 1098 } 1099 } 1100 1101 return 0; 1102 } 1103 1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1105 { 1106 if (bio_list_empty(&wc->flush_list)) 1107 wake_up_process(wc->flush_thread); 1108 bio_list_add(&wc->flush_list, bio); 1109 } 1110 1111 static int writecache_map(struct dm_target *ti, struct bio *bio) 1112 { 1113 struct wc_entry *e; 1114 struct dm_writecache *wc = ti->private; 1115 1116 bio->bi_private = NULL; 1117 1118 wc_lock(wc); 1119 1120 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1121 if (writecache_has_error(wc)) 1122 goto unlock_error; 1123 if (WC_MODE_PMEM(wc)) { 1124 writecache_flush(wc); 1125 if (writecache_has_error(wc)) 1126 goto unlock_error; 1127 goto unlock_submit; 1128 } else { 1129 writecache_offload_bio(wc, bio); 1130 goto unlock_return; 1131 } 1132 } 1133 1134 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1135 1136 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1137 (wc->block_size / 512 - 1)) != 0)) { 1138 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1139 (unsigned long long)bio->bi_iter.bi_sector, 1140 bio->bi_iter.bi_size, wc->block_size); 1141 goto unlock_error; 1142 } 1143 1144 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1145 if (writecache_has_error(wc)) 1146 goto unlock_error; 1147 if (WC_MODE_PMEM(wc)) { 1148 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1149 goto unlock_remap_origin; 1150 } else { 1151 writecache_offload_bio(wc, bio); 1152 goto unlock_return; 1153 } 1154 } 1155 1156 if (bio_data_dir(bio) == READ) { 1157 read_next_block: 1158 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1159 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1160 if (WC_MODE_PMEM(wc)) { 1161 bio_copy_block(wc, bio, memory_data(wc, e)); 1162 if (bio->bi_iter.bi_size) 1163 goto read_next_block; 1164 goto unlock_submit; 1165 } else { 1166 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1167 bio_set_dev(bio, wc->ssd_dev->bdev); 1168 bio->bi_iter.bi_sector = cache_sector(wc, e); 1169 if (!writecache_entry_is_committed(wc, e)) 1170 writecache_wait_for_ios(wc, WRITE); 1171 goto unlock_remap; 1172 } 1173 } else { 1174 if (e) { 1175 sector_t next_boundary = 1176 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1177 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1178 dm_accept_partial_bio(bio, next_boundary); 1179 } 1180 } 1181 goto unlock_remap_origin; 1182 } 1183 } else { 1184 do { 1185 if (writecache_has_error(wc)) 1186 goto unlock_error; 1187 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1188 if (e) { 1189 if (!writecache_entry_is_committed(wc, e)) 1190 goto bio_copy; 1191 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1192 wc->overwrote_committed = true; 1193 goto bio_copy; 1194 } 1195 } 1196 e = writecache_pop_from_freelist(wc); 1197 if (unlikely(!e)) { 1198 writecache_wait_on_freelist(wc); 1199 continue; 1200 } 1201 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1202 writecache_insert_entry(wc, e); 1203 wc->uncommitted_blocks++; 1204 bio_copy: 1205 if (WC_MODE_PMEM(wc)) { 1206 bio_copy_block(wc, bio, memory_data(wc, e)); 1207 } else { 1208 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1209 bio_set_dev(bio, wc->ssd_dev->bdev); 1210 bio->bi_iter.bi_sector = cache_sector(wc, e); 1211 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1212 wc->uncommitted_blocks = 0; 1213 queue_work(wc->writeback_wq, &wc->flush_work); 1214 } else { 1215 writecache_schedule_autocommit(wc); 1216 } 1217 goto unlock_remap; 1218 } 1219 } while (bio->bi_iter.bi_size); 1220 1221 if (unlikely(bio->bi_opf & REQ_FUA || 1222 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1223 writecache_flush(wc); 1224 else 1225 writecache_schedule_autocommit(wc); 1226 goto unlock_submit; 1227 } 1228 1229 unlock_remap_origin: 1230 bio_set_dev(bio, wc->dev->bdev); 1231 wc_unlock(wc); 1232 return DM_MAPIO_REMAPPED; 1233 1234 unlock_remap: 1235 /* make sure that writecache_end_io decrements bio_in_progress: */ 1236 bio->bi_private = (void *)1; 1237 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1238 wc_unlock(wc); 1239 return DM_MAPIO_REMAPPED; 1240 1241 unlock_submit: 1242 wc_unlock(wc); 1243 bio_endio(bio); 1244 return DM_MAPIO_SUBMITTED; 1245 1246 unlock_return: 1247 wc_unlock(wc); 1248 return DM_MAPIO_SUBMITTED; 1249 1250 unlock_error: 1251 wc_unlock(wc); 1252 bio_io_error(bio); 1253 return DM_MAPIO_SUBMITTED; 1254 } 1255 1256 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1257 { 1258 struct dm_writecache *wc = ti->private; 1259 1260 if (bio->bi_private != NULL) { 1261 int dir = bio_data_dir(bio); 1262 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1263 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1264 wake_up(&wc->bio_in_progress_wait[dir]); 1265 } 1266 return 0; 1267 } 1268 1269 static int writecache_iterate_devices(struct dm_target *ti, 1270 iterate_devices_callout_fn fn, void *data) 1271 { 1272 struct dm_writecache *wc = ti->private; 1273 1274 return fn(ti, wc->dev, 0, ti->len, data); 1275 } 1276 1277 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1278 { 1279 struct dm_writecache *wc = ti->private; 1280 1281 if (limits->logical_block_size < wc->block_size) 1282 limits->logical_block_size = wc->block_size; 1283 1284 if (limits->physical_block_size < wc->block_size) 1285 limits->physical_block_size = wc->block_size; 1286 1287 if (limits->io_min < wc->block_size) 1288 limits->io_min = wc->block_size; 1289 } 1290 1291 1292 static void writecache_writeback_endio(struct bio *bio) 1293 { 1294 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1295 struct dm_writecache *wc = wb->wc; 1296 unsigned long flags; 1297 1298 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1299 if (unlikely(list_empty(&wc->endio_list))) 1300 wake_up_process(wc->endio_thread); 1301 list_add_tail(&wb->endio_entry, &wc->endio_list); 1302 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1303 } 1304 1305 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1306 { 1307 struct copy_struct *c = ptr; 1308 struct dm_writecache *wc = c->wc; 1309 1310 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1311 1312 raw_spin_lock_irq(&wc->endio_list_lock); 1313 if (unlikely(list_empty(&wc->endio_list))) 1314 wake_up_process(wc->endio_thread); 1315 list_add_tail(&c->endio_entry, &wc->endio_list); 1316 raw_spin_unlock_irq(&wc->endio_list_lock); 1317 } 1318 1319 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1320 { 1321 unsigned i; 1322 struct writeback_struct *wb; 1323 struct wc_entry *e; 1324 unsigned long n_walked = 0; 1325 1326 do { 1327 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1328 list_del(&wb->endio_entry); 1329 1330 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1331 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1332 "write error %d", wb->bio.bi_status); 1333 i = 0; 1334 do { 1335 e = wb->wc_list[i]; 1336 BUG_ON(!e->write_in_progress); 1337 e->write_in_progress = false; 1338 INIT_LIST_HEAD(&e->lru); 1339 if (!writecache_has_error(wc)) 1340 writecache_free_entry(wc, e); 1341 BUG_ON(!wc->writeback_size); 1342 wc->writeback_size--; 1343 n_walked++; 1344 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1345 writecache_commit_flushed(wc); 1346 wc_unlock(wc); 1347 wc_lock(wc); 1348 n_walked = 0; 1349 } 1350 } while (++i < wb->wc_list_n); 1351 1352 if (wb->wc_list != wb->wc_list_inline) 1353 kfree(wb->wc_list); 1354 bio_put(&wb->bio); 1355 } while (!list_empty(list)); 1356 } 1357 1358 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1359 { 1360 struct copy_struct *c; 1361 struct wc_entry *e; 1362 1363 do { 1364 c = list_entry(list->next, struct copy_struct, endio_entry); 1365 list_del(&c->endio_entry); 1366 1367 if (unlikely(c->error)) 1368 writecache_error(wc, c->error, "copy error"); 1369 1370 e = c->e; 1371 do { 1372 BUG_ON(!e->write_in_progress); 1373 e->write_in_progress = false; 1374 INIT_LIST_HEAD(&e->lru); 1375 if (!writecache_has_error(wc)) 1376 writecache_free_entry(wc, e); 1377 1378 BUG_ON(!wc->writeback_size); 1379 wc->writeback_size--; 1380 e++; 1381 } while (--c->n_entries); 1382 mempool_free(c, &wc->copy_pool); 1383 } while (!list_empty(list)); 1384 } 1385 1386 static int writecache_endio_thread(void *data) 1387 { 1388 struct dm_writecache *wc = data; 1389 1390 while (1) { 1391 struct list_head list; 1392 1393 raw_spin_lock_irq(&wc->endio_list_lock); 1394 if (!list_empty(&wc->endio_list)) 1395 goto pop_from_list; 1396 set_current_state(TASK_INTERRUPTIBLE); 1397 raw_spin_unlock_irq(&wc->endio_list_lock); 1398 1399 if (unlikely(kthread_should_stop())) { 1400 set_current_state(TASK_RUNNING); 1401 break; 1402 } 1403 1404 schedule(); 1405 1406 continue; 1407 1408 pop_from_list: 1409 list = wc->endio_list; 1410 list.next->prev = list.prev->next = &list; 1411 INIT_LIST_HEAD(&wc->endio_list); 1412 raw_spin_unlock_irq(&wc->endio_list_lock); 1413 1414 if (!WC_MODE_FUA(wc)) 1415 writecache_disk_flush(wc, wc->dev); 1416 1417 wc_lock(wc); 1418 1419 if (WC_MODE_PMEM(wc)) { 1420 __writecache_endio_pmem(wc, &list); 1421 } else { 1422 __writecache_endio_ssd(wc, &list); 1423 writecache_wait_for_ios(wc, READ); 1424 } 1425 1426 writecache_commit_flushed(wc); 1427 1428 wc_unlock(wc); 1429 } 1430 1431 return 0; 1432 } 1433 1434 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1435 { 1436 struct dm_writecache *wc = wb->wc; 1437 unsigned block_size = wc->block_size; 1438 void *address = memory_data(wc, e); 1439 1440 persistent_memory_flush_cache(address, block_size); 1441 return bio_add_page(&wb->bio, persistent_memory_page(address), 1442 block_size, persistent_memory_page_offset(address)) != 0; 1443 } 1444 1445 struct writeback_list { 1446 struct list_head list; 1447 size_t size; 1448 }; 1449 1450 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1451 { 1452 if (unlikely(wc->max_writeback_jobs)) { 1453 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1454 wc_lock(wc); 1455 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1456 writecache_wait_on_freelist(wc); 1457 wc_unlock(wc); 1458 } 1459 } 1460 cond_resched(); 1461 } 1462 1463 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1464 { 1465 struct wc_entry *e, *f; 1466 struct bio *bio; 1467 struct writeback_struct *wb; 1468 unsigned max_pages; 1469 1470 while (wbl->size) { 1471 wbl->size--; 1472 e = container_of(wbl->list.prev, struct wc_entry, lru); 1473 list_del(&e->lru); 1474 1475 max_pages = e->wc_list_contiguous; 1476 1477 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1478 wb = container_of(bio, struct writeback_struct, bio); 1479 wb->wc = wc; 1480 bio->bi_end_io = writecache_writeback_endio; 1481 bio_set_dev(bio, wc->dev->bdev); 1482 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1483 if (max_pages <= WB_LIST_INLINE || 1484 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1485 GFP_NOIO | __GFP_NORETRY | 1486 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1487 wb->wc_list = wb->wc_list_inline; 1488 max_pages = WB_LIST_INLINE; 1489 } 1490 1491 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1492 1493 wb->wc_list[0] = e; 1494 wb->wc_list_n = 1; 1495 1496 while (wbl->size && wb->wc_list_n < max_pages) { 1497 f = container_of(wbl->list.prev, struct wc_entry, lru); 1498 if (read_original_sector(wc, f) != 1499 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1500 break; 1501 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1502 break; 1503 wbl->size--; 1504 list_del(&f->lru); 1505 wb->wc_list[wb->wc_list_n++] = f; 1506 e = f; 1507 } 1508 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1509 if (writecache_has_error(wc)) { 1510 bio->bi_status = BLK_STS_IOERR; 1511 bio_endio(bio); 1512 } else { 1513 submit_bio(bio); 1514 } 1515 1516 __writeback_throttle(wc, wbl); 1517 } 1518 } 1519 1520 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1521 { 1522 struct wc_entry *e, *f; 1523 struct dm_io_region from, to; 1524 struct copy_struct *c; 1525 1526 while (wbl->size) { 1527 unsigned n_sectors; 1528 1529 wbl->size--; 1530 e = container_of(wbl->list.prev, struct wc_entry, lru); 1531 list_del(&e->lru); 1532 1533 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1534 1535 from.bdev = wc->ssd_dev->bdev; 1536 from.sector = cache_sector(wc, e); 1537 from.count = n_sectors; 1538 to.bdev = wc->dev->bdev; 1539 to.sector = read_original_sector(wc, e); 1540 to.count = n_sectors; 1541 1542 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1543 c->wc = wc; 1544 c->e = e; 1545 c->n_entries = e->wc_list_contiguous; 1546 1547 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1548 wbl->size--; 1549 f = container_of(wbl->list.prev, struct wc_entry, lru); 1550 BUG_ON(f != e + 1); 1551 list_del(&f->lru); 1552 e = f; 1553 } 1554 1555 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1556 1557 __writeback_throttle(wc, wbl); 1558 } 1559 } 1560 1561 static void writecache_writeback(struct work_struct *work) 1562 { 1563 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1564 struct blk_plug plug; 1565 struct wc_entry *f, *uninitialized_var(g), *e = NULL; 1566 struct rb_node *node, *next_node; 1567 struct list_head skipped; 1568 struct writeback_list wbl; 1569 unsigned long n_walked; 1570 1571 wc_lock(wc); 1572 restart: 1573 if (writecache_has_error(wc)) { 1574 wc_unlock(wc); 1575 return; 1576 } 1577 1578 if (unlikely(wc->writeback_all)) { 1579 if (writecache_wait_for_writeback(wc)) 1580 goto restart; 1581 } 1582 1583 if (wc->overwrote_committed) { 1584 writecache_wait_for_ios(wc, WRITE); 1585 } 1586 1587 n_walked = 0; 1588 INIT_LIST_HEAD(&skipped); 1589 INIT_LIST_HEAD(&wbl.list); 1590 wbl.size = 0; 1591 while (!list_empty(&wc->lru) && 1592 (wc->writeback_all || 1593 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1594 1595 n_walked++; 1596 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1597 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1598 queue_work(wc->writeback_wq, &wc->writeback_work); 1599 break; 1600 } 1601 1602 if (unlikely(wc->writeback_all)) { 1603 if (unlikely(!e)) { 1604 writecache_flush(wc); 1605 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1606 } else 1607 e = g; 1608 } else 1609 e = container_of(wc->lru.prev, struct wc_entry, lru); 1610 BUG_ON(e->write_in_progress); 1611 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1612 writecache_flush(wc); 1613 } 1614 node = rb_prev(&e->rb_node); 1615 if (node) { 1616 f = container_of(node, struct wc_entry, rb_node); 1617 if (unlikely(read_original_sector(wc, f) == 1618 read_original_sector(wc, e))) { 1619 BUG_ON(!f->write_in_progress); 1620 list_del(&e->lru); 1621 list_add(&e->lru, &skipped); 1622 cond_resched(); 1623 continue; 1624 } 1625 } 1626 wc->writeback_size++; 1627 list_del(&e->lru); 1628 list_add(&e->lru, &wbl.list); 1629 wbl.size++; 1630 e->write_in_progress = true; 1631 e->wc_list_contiguous = 1; 1632 1633 f = e; 1634 1635 while (1) { 1636 next_node = rb_next(&f->rb_node); 1637 if (unlikely(!next_node)) 1638 break; 1639 g = container_of(next_node, struct wc_entry, rb_node); 1640 if (unlikely(read_original_sector(wc, g) == 1641 read_original_sector(wc, f))) { 1642 f = g; 1643 continue; 1644 } 1645 if (read_original_sector(wc, g) != 1646 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1647 break; 1648 if (unlikely(g->write_in_progress)) 1649 break; 1650 if (unlikely(!writecache_entry_is_committed(wc, g))) 1651 break; 1652 1653 if (!WC_MODE_PMEM(wc)) { 1654 if (g != f + 1) 1655 break; 1656 } 1657 1658 n_walked++; 1659 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1660 // break; 1661 1662 wc->writeback_size++; 1663 list_del(&g->lru); 1664 list_add(&g->lru, &wbl.list); 1665 wbl.size++; 1666 g->write_in_progress = true; 1667 g->wc_list_contiguous = BIO_MAX_PAGES; 1668 f = g; 1669 e->wc_list_contiguous++; 1670 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1671 if (unlikely(wc->writeback_all)) { 1672 next_node = rb_next(&f->rb_node); 1673 if (likely(next_node)) 1674 g = container_of(next_node, struct wc_entry, rb_node); 1675 } 1676 break; 1677 } 1678 } 1679 cond_resched(); 1680 } 1681 1682 if (!list_empty(&skipped)) { 1683 list_splice_tail(&skipped, &wc->lru); 1684 /* 1685 * If we didn't do any progress, we must wait until some 1686 * writeback finishes to avoid burning CPU in a loop 1687 */ 1688 if (unlikely(!wbl.size)) 1689 writecache_wait_for_writeback(wc); 1690 } 1691 1692 wc_unlock(wc); 1693 1694 blk_start_plug(&plug); 1695 1696 if (WC_MODE_PMEM(wc)) 1697 __writecache_writeback_pmem(wc, &wbl); 1698 else 1699 __writecache_writeback_ssd(wc, &wbl); 1700 1701 blk_finish_plug(&plug); 1702 1703 if (unlikely(wc->writeback_all)) { 1704 wc_lock(wc); 1705 while (writecache_wait_for_writeback(wc)); 1706 wc_unlock(wc); 1707 } 1708 } 1709 1710 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1711 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1712 { 1713 uint64_t n_blocks, offset; 1714 struct wc_entry e; 1715 1716 n_blocks = device_size; 1717 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1718 1719 while (1) { 1720 if (!n_blocks) 1721 return -ENOSPC; 1722 /* Verify the following entries[n_blocks] won't overflow */ 1723 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1724 sizeof(struct wc_memory_entry))) 1725 return -EFBIG; 1726 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1727 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1728 if (offset + n_blocks * block_size <= device_size) 1729 break; 1730 n_blocks--; 1731 } 1732 1733 /* check if the bit field overflows */ 1734 e.index = n_blocks; 1735 if (e.index != n_blocks) 1736 return -EFBIG; 1737 1738 if (n_blocks_p) 1739 *n_blocks_p = n_blocks; 1740 if (n_metadata_blocks_p) 1741 *n_metadata_blocks_p = offset >> __ffs(block_size); 1742 return 0; 1743 } 1744 1745 static int init_memory(struct dm_writecache *wc) 1746 { 1747 size_t b; 1748 int r; 1749 1750 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1751 if (r) 1752 return r; 1753 1754 r = writecache_alloc_entries(wc); 1755 if (r) 1756 return r; 1757 1758 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1759 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1760 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1761 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1762 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1763 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1764 1765 for (b = 0; b < wc->n_blocks; b++) 1766 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1767 1768 writecache_flush_all_metadata(wc); 1769 writecache_commit_flushed(wc); 1770 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1771 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1772 writecache_commit_flushed(wc); 1773 1774 return 0; 1775 } 1776 1777 static void writecache_dtr(struct dm_target *ti) 1778 { 1779 struct dm_writecache *wc = ti->private; 1780 1781 if (!wc) 1782 return; 1783 1784 if (wc->endio_thread) 1785 kthread_stop(wc->endio_thread); 1786 1787 if (wc->flush_thread) 1788 kthread_stop(wc->flush_thread); 1789 1790 bioset_exit(&wc->bio_set); 1791 1792 mempool_exit(&wc->copy_pool); 1793 1794 if (wc->writeback_wq) 1795 destroy_workqueue(wc->writeback_wq); 1796 1797 if (wc->dev) 1798 dm_put_device(ti, wc->dev); 1799 1800 if (wc->ssd_dev) 1801 dm_put_device(ti, wc->ssd_dev); 1802 1803 if (wc->entries) 1804 vfree(wc->entries); 1805 1806 if (wc->memory_map) { 1807 if (WC_MODE_PMEM(wc)) 1808 persistent_memory_release(wc); 1809 else 1810 vfree(wc->memory_map); 1811 } 1812 1813 if (wc->dm_kcopyd) 1814 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1815 1816 if (wc->dm_io) 1817 dm_io_client_destroy(wc->dm_io); 1818 1819 if (wc->dirty_bitmap) 1820 vfree(wc->dirty_bitmap); 1821 1822 kfree(wc); 1823 } 1824 1825 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1826 { 1827 struct dm_writecache *wc; 1828 struct dm_arg_set as; 1829 const char *string; 1830 unsigned opt_params; 1831 size_t offset, data_size; 1832 int i, r; 1833 char dummy; 1834 int high_wm_percent = HIGH_WATERMARK; 1835 int low_wm_percent = LOW_WATERMARK; 1836 uint64_t x; 1837 struct wc_memory_superblock s; 1838 1839 static struct dm_arg _args[] = { 1840 {0, 10, "Invalid number of feature args"}, 1841 }; 1842 1843 as.argc = argc; 1844 as.argv = argv; 1845 1846 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1847 if (!wc) { 1848 ti->error = "Cannot allocate writecache structure"; 1849 r = -ENOMEM; 1850 goto bad; 1851 } 1852 ti->private = wc; 1853 wc->ti = ti; 1854 1855 mutex_init(&wc->lock); 1856 writecache_poison_lists(wc); 1857 init_waitqueue_head(&wc->freelist_wait); 1858 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1859 1860 for (i = 0; i < 2; i++) { 1861 atomic_set(&wc->bio_in_progress[i], 0); 1862 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1863 } 1864 1865 wc->dm_io = dm_io_client_create(); 1866 if (IS_ERR(wc->dm_io)) { 1867 r = PTR_ERR(wc->dm_io); 1868 ti->error = "Unable to allocate dm-io client"; 1869 wc->dm_io = NULL; 1870 goto bad; 1871 } 1872 1873 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 1874 if (!wc->writeback_wq) { 1875 r = -ENOMEM; 1876 ti->error = "Could not allocate writeback workqueue"; 1877 goto bad; 1878 } 1879 INIT_WORK(&wc->writeback_work, writecache_writeback); 1880 INIT_WORK(&wc->flush_work, writecache_flush_work); 1881 1882 raw_spin_lock_init(&wc->endio_list_lock); 1883 INIT_LIST_HEAD(&wc->endio_list); 1884 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1885 if (IS_ERR(wc->endio_thread)) { 1886 r = PTR_ERR(wc->endio_thread); 1887 wc->endio_thread = NULL; 1888 ti->error = "Couldn't spawn endio thread"; 1889 goto bad; 1890 } 1891 wake_up_process(wc->endio_thread); 1892 1893 /* 1894 * Parse the mode (pmem or ssd) 1895 */ 1896 string = dm_shift_arg(&as); 1897 if (!string) 1898 goto bad_arguments; 1899 1900 if (!strcasecmp(string, "s")) { 1901 wc->pmem_mode = false; 1902 } else if (!strcasecmp(string, "p")) { 1903 #ifdef DM_WRITECACHE_HAS_PMEM 1904 wc->pmem_mode = true; 1905 wc->writeback_fua = true; 1906 #else 1907 /* 1908 * If the architecture doesn't support persistent memory or 1909 * the kernel doesn't support any DAX drivers, this driver can 1910 * only be used in SSD-only mode. 1911 */ 1912 r = -EOPNOTSUPP; 1913 ti->error = "Persistent memory or DAX not supported on this system"; 1914 goto bad; 1915 #endif 1916 } else { 1917 goto bad_arguments; 1918 } 1919 1920 if (WC_MODE_PMEM(wc)) { 1921 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1922 offsetof(struct writeback_struct, bio), 1923 BIOSET_NEED_BVECS); 1924 if (r) { 1925 ti->error = "Could not allocate bio set"; 1926 goto bad; 1927 } 1928 } else { 1929 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1930 if (r) { 1931 ti->error = "Could not allocate mempool"; 1932 goto bad; 1933 } 1934 } 1935 1936 /* 1937 * Parse the origin data device 1938 */ 1939 string = dm_shift_arg(&as); 1940 if (!string) 1941 goto bad_arguments; 1942 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1943 if (r) { 1944 ti->error = "Origin data device lookup failed"; 1945 goto bad; 1946 } 1947 1948 /* 1949 * Parse cache data device (be it pmem or ssd) 1950 */ 1951 string = dm_shift_arg(&as); 1952 if (!string) 1953 goto bad_arguments; 1954 1955 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1956 if (r) { 1957 ti->error = "Cache data device lookup failed"; 1958 goto bad; 1959 } 1960 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1961 1962 /* 1963 * Parse the cache block size 1964 */ 1965 string = dm_shift_arg(&as); 1966 if (!string) 1967 goto bad_arguments; 1968 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1969 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1970 (wc->block_size & (wc->block_size - 1))) { 1971 r = -EINVAL; 1972 ti->error = "Invalid block size"; 1973 goto bad; 1974 } 1975 wc->block_size_bits = __ffs(wc->block_size); 1976 1977 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1978 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 1979 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 1980 1981 /* 1982 * Parse optional arguments 1983 */ 1984 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1985 if (r) 1986 goto bad; 1987 1988 while (opt_params) { 1989 string = dm_shift_arg(&as), opt_params--; 1990 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 1991 unsigned long long start_sector; 1992 string = dm_shift_arg(&as), opt_params--; 1993 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 1994 goto invalid_optional; 1995 wc->start_sector = start_sector; 1996 if (wc->start_sector != start_sector || 1997 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 1998 goto invalid_optional; 1999 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2000 string = dm_shift_arg(&as), opt_params--; 2001 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2002 goto invalid_optional; 2003 if (high_wm_percent < 0 || high_wm_percent > 100) 2004 goto invalid_optional; 2005 wc->high_wm_percent_set = true; 2006 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2007 string = dm_shift_arg(&as), opt_params--; 2008 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2009 goto invalid_optional; 2010 if (low_wm_percent < 0 || low_wm_percent > 100) 2011 goto invalid_optional; 2012 wc->low_wm_percent_set = true; 2013 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2014 string = dm_shift_arg(&as), opt_params--; 2015 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2016 goto invalid_optional; 2017 wc->max_writeback_jobs_set = true; 2018 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2019 string = dm_shift_arg(&as), opt_params--; 2020 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2021 goto invalid_optional; 2022 wc->autocommit_blocks_set = true; 2023 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2024 unsigned autocommit_msecs; 2025 string = dm_shift_arg(&as), opt_params--; 2026 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2027 goto invalid_optional; 2028 if (autocommit_msecs > 3600000) 2029 goto invalid_optional; 2030 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2031 wc->autocommit_time_set = true; 2032 } else if (!strcasecmp(string, "fua")) { 2033 if (WC_MODE_PMEM(wc)) { 2034 wc->writeback_fua = true; 2035 wc->writeback_fua_set = true; 2036 } else goto invalid_optional; 2037 } else if (!strcasecmp(string, "nofua")) { 2038 if (WC_MODE_PMEM(wc)) { 2039 wc->writeback_fua = false; 2040 wc->writeback_fua_set = true; 2041 } else goto invalid_optional; 2042 } else { 2043 invalid_optional: 2044 r = -EINVAL; 2045 ti->error = "Invalid optional argument"; 2046 goto bad; 2047 } 2048 } 2049 2050 if (high_wm_percent < low_wm_percent) { 2051 r = -EINVAL; 2052 ti->error = "High watermark must be greater than or equal to low watermark"; 2053 goto bad; 2054 } 2055 2056 if (WC_MODE_PMEM(wc)) { 2057 r = persistent_memory_claim(wc); 2058 if (r) { 2059 ti->error = "Unable to map persistent memory for cache"; 2060 goto bad; 2061 } 2062 } else { 2063 struct dm_io_region region; 2064 struct dm_io_request req; 2065 size_t n_blocks, n_metadata_blocks; 2066 uint64_t n_bitmap_bits; 2067 2068 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2069 2070 bio_list_init(&wc->flush_list); 2071 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2072 if (IS_ERR(wc->flush_thread)) { 2073 r = PTR_ERR(wc->flush_thread); 2074 wc->flush_thread = NULL; 2075 ti->error = "Couldn't spawn flush thread"; 2076 goto bad; 2077 } 2078 wake_up_process(wc->flush_thread); 2079 2080 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2081 &n_blocks, &n_metadata_blocks); 2082 if (r) { 2083 ti->error = "Invalid device size"; 2084 goto bad; 2085 } 2086 2087 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2088 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2089 /* this is limitation of test_bit functions */ 2090 if (n_bitmap_bits > 1U << 31) { 2091 r = -EFBIG; 2092 ti->error = "Invalid device size"; 2093 goto bad; 2094 } 2095 2096 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2097 if (!wc->memory_map) { 2098 r = -ENOMEM; 2099 ti->error = "Unable to allocate memory for metadata"; 2100 goto bad; 2101 } 2102 2103 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2104 if (IS_ERR(wc->dm_kcopyd)) { 2105 r = PTR_ERR(wc->dm_kcopyd); 2106 ti->error = "Unable to allocate dm-kcopyd client"; 2107 wc->dm_kcopyd = NULL; 2108 goto bad; 2109 } 2110 2111 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2112 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2113 BITS_PER_LONG * sizeof(unsigned long); 2114 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2115 if (!wc->dirty_bitmap) { 2116 r = -ENOMEM; 2117 ti->error = "Unable to allocate dirty bitmap"; 2118 goto bad; 2119 } 2120 2121 region.bdev = wc->ssd_dev->bdev; 2122 region.sector = wc->start_sector; 2123 region.count = wc->metadata_sectors; 2124 req.bi_op = REQ_OP_READ; 2125 req.bi_op_flags = REQ_SYNC; 2126 req.mem.type = DM_IO_VMA; 2127 req.mem.ptr.vma = (char *)wc->memory_map; 2128 req.client = wc->dm_io; 2129 req.notify.fn = NULL; 2130 2131 r = dm_io(&req, 1, ®ion, NULL); 2132 if (r) { 2133 ti->error = "Unable to read metadata"; 2134 goto bad; 2135 } 2136 } 2137 2138 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2139 if (r) { 2140 ti->error = "Hardware memory error when reading superblock"; 2141 goto bad; 2142 } 2143 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2144 r = init_memory(wc); 2145 if (r) { 2146 ti->error = "Unable to initialize device"; 2147 goto bad; 2148 } 2149 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2150 if (r) { 2151 ti->error = "Hardware memory error when reading superblock"; 2152 goto bad; 2153 } 2154 } 2155 2156 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2157 ti->error = "Invalid magic in the superblock"; 2158 r = -EINVAL; 2159 goto bad; 2160 } 2161 2162 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2163 ti->error = "Invalid version in the superblock"; 2164 r = -EINVAL; 2165 goto bad; 2166 } 2167 2168 if (le32_to_cpu(s.block_size) != wc->block_size) { 2169 ti->error = "Block size does not match superblock"; 2170 r = -EINVAL; 2171 goto bad; 2172 } 2173 2174 wc->n_blocks = le64_to_cpu(s.n_blocks); 2175 2176 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2177 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2178 overflow: 2179 ti->error = "Overflow in size calculation"; 2180 r = -EINVAL; 2181 goto bad; 2182 } 2183 offset += sizeof(struct wc_memory_superblock); 2184 if (offset < sizeof(struct wc_memory_superblock)) 2185 goto overflow; 2186 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2187 data_size = wc->n_blocks * (size_t)wc->block_size; 2188 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2189 (offset + data_size < offset)) 2190 goto overflow; 2191 if (offset + data_size > wc->memory_map_size) { 2192 ti->error = "Memory area is too small"; 2193 r = -EINVAL; 2194 goto bad; 2195 } 2196 2197 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2198 wc->block_start = (char *)sb(wc) + offset; 2199 2200 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2201 x += 50; 2202 do_div(x, 100); 2203 wc->freelist_high_watermark = x; 2204 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2205 x += 50; 2206 do_div(x, 100); 2207 wc->freelist_low_watermark = x; 2208 2209 r = writecache_alloc_entries(wc); 2210 if (r) { 2211 ti->error = "Cannot allocate memory"; 2212 goto bad; 2213 } 2214 2215 ti->num_flush_bios = 1; 2216 ti->flush_supported = true; 2217 ti->num_discard_bios = 1; 2218 2219 if (WC_MODE_PMEM(wc)) 2220 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2221 2222 return 0; 2223 2224 bad_arguments: 2225 r = -EINVAL; 2226 ti->error = "Bad arguments"; 2227 bad: 2228 writecache_dtr(ti); 2229 return r; 2230 } 2231 2232 static void writecache_status(struct dm_target *ti, status_type_t type, 2233 unsigned status_flags, char *result, unsigned maxlen) 2234 { 2235 struct dm_writecache *wc = ti->private; 2236 unsigned extra_args; 2237 unsigned sz = 0; 2238 uint64_t x; 2239 2240 switch (type) { 2241 case STATUSTYPE_INFO: 2242 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2243 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2244 (unsigned long long)wc->writeback_size); 2245 break; 2246 case STATUSTYPE_TABLE: 2247 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2248 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2249 extra_args = 0; 2250 if (wc->start_sector) 2251 extra_args += 2; 2252 if (wc->high_wm_percent_set) 2253 extra_args += 2; 2254 if (wc->low_wm_percent_set) 2255 extra_args += 2; 2256 if (wc->max_writeback_jobs_set) 2257 extra_args += 2; 2258 if (wc->autocommit_blocks_set) 2259 extra_args += 2; 2260 if (wc->autocommit_time_set) 2261 extra_args += 2; 2262 if (wc->writeback_fua_set) 2263 extra_args++; 2264 2265 DMEMIT("%u", extra_args); 2266 if (wc->start_sector) 2267 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2268 if (wc->high_wm_percent_set) { 2269 x = (uint64_t)wc->freelist_high_watermark * 100; 2270 x += wc->n_blocks / 2; 2271 do_div(x, (size_t)wc->n_blocks); 2272 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2273 } 2274 if (wc->low_wm_percent_set) { 2275 x = (uint64_t)wc->freelist_low_watermark * 100; 2276 x += wc->n_blocks / 2; 2277 do_div(x, (size_t)wc->n_blocks); 2278 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2279 } 2280 if (wc->max_writeback_jobs_set) 2281 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2282 if (wc->autocommit_blocks_set) 2283 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2284 if (wc->autocommit_time_set) 2285 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2286 if (wc->writeback_fua_set) 2287 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2288 break; 2289 } 2290 } 2291 2292 static struct target_type writecache_target = { 2293 .name = "writecache", 2294 .version = {1, 1, 1}, 2295 .module = THIS_MODULE, 2296 .ctr = writecache_ctr, 2297 .dtr = writecache_dtr, 2298 .status = writecache_status, 2299 .postsuspend = writecache_suspend, 2300 .resume = writecache_resume, 2301 .message = writecache_message, 2302 .map = writecache_map, 2303 .end_io = writecache_end_io, 2304 .iterate_devices = writecache_iterate_devices, 2305 .io_hints = writecache_io_hints, 2306 }; 2307 2308 static int __init dm_writecache_init(void) 2309 { 2310 int r; 2311 2312 r = dm_register_target(&writecache_target); 2313 if (r < 0) { 2314 DMERR("register failed %d", r); 2315 return r; 2316 } 2317 2318 return 0; 2319 } 2320 2321 static void __exit dm_writecache_exit(void) 2322 { 2323 dm_unregister_target(&writecache_target); 2324 } 2325 2326 module_init(dm_writecache_init); 2327 module_exit(dm_writecache_exit); 2328 2329 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2330 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2331 MODULE_LICENSE("GPL"); 2332