xref: /openbmc/linux/drivers/md/dm-writecache.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 
30 #define BITMAP_GRANULARITY	65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY	PAGE_SIZE
34 #endif
35 
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
38 #endif
39 
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src)					\
42 do {								\
43 	typeof(dest) uniq = (src);				\
44 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
45 } while (0)
46 #else
47 #define pmem_assign(dest, src)	((dest) = (src))
48 #endif
49 
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52 #endif
53 
54 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION	1
56 
57 struct wc_memory_entry {
58 	__le64 original_sector;
59 	__le64 seq_count;
60 };
61 
62 struct wc_memory_superblock {
63 	union {
64 		struct {
65 			__le32 magic;
66 			__le32 version;
67 			__le32 block_size;
68 			__le32 pad;
69 			__le64 n_blocks;
70 			__le64 seq_count;
71 		};
72 		__le64 padding[8];
73 	};
74 	struct wc_memory_entry entries[0];
75 };
76 
77 struct wc_entry {
78 	struct rb_node rb_node;
79 	struct list_head lru;
80 	unsigned short wc_list_contiguous;
81 	bool write_in_progress
82 #if BITS_PER_LONG == 64
83 		:1
84 #endif
85 	;
86 	unsigned long index
87 #if BITS_PER_LONG == 64
88 		:47
89 #endif
90 	;
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92 	uint64_t original_sector;
93 	uint64_t seq_count;
94 #endif
95 };
96 
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
100 #else
101 #define WC_MODE_PMEM(wc)			false
102 #define WC_MODE_FUA(wc)				false
103 #endif
104 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
105 
106 struct dm_writecache {
107 	struct mutex lock;
108 	struct list_head lru;
109 	union {
110 		struct list_head freelist;
111 		struct {
112 			struct rb_root freetree;
113 			struct wc_entry *current_free;
114 		};
115 	};
116 	struct rb_root tree;
117 
118 	size_t freelist_size;
119 	size_t writeback_size;
120 	size_t freelist_high_watermark;
121 	size_t freelist_low_watermark;
122 
123 	unsigned uncommitted_blocks;
124 	unsigned autocommit_blocks;
125 	unsigned max_writeback_jobs;
126 
127 	int error;
128 
129 	unsigned long autocommit_jiffies;
130 	struct timer_list autocommit_timer;
131 	struct wait_queue_head freelist_wait;
132 
133 	atomic_t bio_in_progress[2];
134 	struct wait_queue_head bio_in_progress_wait[2];
135 
136 	struct dm_target *ti;
137 	struct dm_dev *dev;
138 	struct dm_dev *ssd_dev;
139 	sector_t start_sector;
140 	void *memory_map;
141 	uint64_t memory_map_size;
142 	size_t metadata_sectors;
143 	size_t n_blocks;
144 	uint64_t seq_count;
145 	void *block_start;
146 	struct wc_entry *entries;
147 	unsigned block_size;
148 	unsigned char block_size_bits;
149 
150 	bool pmem_mode:1;
151 	bool writeback_fua:1;
152 
153 	bool overwrote_committed:1;
154 	bool memory_vmapped:1;
155 
156 	bool high_wm_percent_set:1;
157 	bool low_wm_percent_set:1;
158 	bool max_writeback_jobs_set:1;
159 	bool autocommit_blocks_set:1;
160 	bool autocommit_time_set:1;
161 	bool writeback_fua_set:1;
162 	bool flush_on_suspend:1;
163 
164 	unsigned writeback_all;
165 	struct workqueue_struct *writeback_wq;
166 	struct work_struct writeback_work;
167 	struct work_struct flush_work;
168 
169 	struct dm_io_client *dm_io;
170 
171 	raw_spinlock_t endio_list_lock;
172 	struct list_head endio_list;
173 	struct task_struct *endio_thread;
174 
175 	struct task_struct *flush_thread;
176 	struct bio_list flush_list;
177 
178 	struct dm_kcopyd_client *dm_kcopyd;
179 	unsigned long *dirty_bitmap;
180 	unsigned dirty_bitmap_size;
181 
182 	struct bio_set bio_set;
183 	mempool_t copy_pool;
184 };
185 
186 #define WB_LIST_INLINE		16
187 
188 struct writeback_struct {
189 	struct list_head endio_entry;
190 	struct dm_writecache *wc;
191 	struct wc_entry **wc_list;
192 	unsigned wc_list_n;
193 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
194 	struct bio bio;
195 };
196 
197 struct copy_struct {
198 	struct list_head endio_entry;
199 	struct dm_writecache *wc;
200 	struct wc_entry *e;
201 	unsigned n_entries;
202 	int error;
203 };
204 
205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206 					    "A percentage of time allocated for data copying");
207 
208 static void wc_lock(struct dm_writecache *wc)
209 {
210 	mutex_lock(&wc->lock);
211 }
212 
213 static void wc_unlock(struct dm_writecache *wc)
214 {
215 	mutex_unlock(&wc->lock);
216 }
217 
218 #ifdef DM_WRITECACHE_HAS_PMEM
219 static int persistent_memory_claim(struct dm_writecache *wc)
220 {
221 	int r;
222 	loff_t s;
223 	long p, da;
224 	pfn_t pfn;
225 	int id;
226 	struct page **pages;
227 
228 	wc->memory_vmapped = false;
229 
230 	if (!wc->ssd_dev->dax_dev) {
231 		r = -EOPNOTSUPP;
232 		goto err1;
233 	}
234 	s = wc->memory_map_size;
235 	p = s >> PAGE_SHIFT;
236 	if (!p) {
237 		r = -EINVAL;
238 		goto err1;
239 	}
240 	if (p != s >> PAGE_SHIFT) {
241 		r = -EOVERFLOW;
242 		goto err1;
243 	}
244 
245 	id = dax_read_lock();
246 
247 	da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
248 	if (da < 0) {
249 		wc->memory_map = NULL;
250 		r = da;
251 		goto err2;
252 	}
253 	if (!pfn_t_has_page(pfn)) {
254 		wc->memory_map = NULL;
255 		r = -EOPNOTSUPP;
256 		goto err2;
257 	}
258 	if (da != p) {
259 		long i;
260 		wc->memory_map = NULL;
261 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
262 		if (!pages) {
263 			r = -ENOMEM;
264 			goto err2;
265 		}
266 		i = 0;
267 		do {
268 			long daa;
269 			daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
270 						NULL, &pfn);
271 			if (daa <= 0) {
272 				r = daa ? daa : -EINVAL;
273 				goto err3;
274 			}
275 			if (!pfn_t_has_page(pfn)) {
276 				r = -EOPNOTSUPP;
277 				goto err3;
278 			}
279 			while (daa-- && i < p) {
280 				pages[i++] = pfn_t_to_page(pfn);
281 				pfn.val++;
282 			}
283 		} while (i < p);
284 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285 		if (!wc->memory_map) {
286 			r = -ENOMEM;
287 			goto err3;
288 		}
289 		kvfree(pages);
290 		wc->memory_vmapped = true;
291 	}
292 
293 	dax_read_unlock(id);
294 
295 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
297 
298 	return 0;
299 err3:
300 	kvfree(pages);
301 err2:
302 	dax_read_unlock(id);
303 err1:
304 	return r;
305 }
306 #else
307 static int persistent_memory_claim(struct dm_writecache *wc)
308 {
309 	BUG();
310 }
311 #endif
312 
313 static void persistent_memory_release(struct dm_writecache *wc)
314 {
315 	if (wc->memory_vmapped)
316 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
317 }
318 
319 static struct page *persistent_memory_page(void *addr)
320 {
321 	if (is_vmalloc_addr(addr))
322 		return vmalloc_to_page(addr);
323 	else
324 		return virt_to_page(addr);
325 }
326 
327 static unsigned persistent_memory_page_offset(void *addr)
328 {
329 	return (unsigned long)addr & (PAGE_SIZE - 1);
330 }
331 
332 static void persistent_memory_flush_cache(void *ptr, size_t size)
333 {
334 	if (is_vmalloc_addr(ptr))
335 		flush_kernel_vmap_range(ptr, size);
336 }
337 
338 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
339 {
340 	if (is_vmalloc_addr(ptr))
341 		invalidate_kernel_vmap_range(ptr, size);
342 }
343 
344 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
345 {
346 	return wc->memory_map;
347 }
348 
349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
350 {
351 	return &sb(wc)->entries[e->index];
352 }
353 
354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
355 {
356 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
357 }
358 
359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
360 {
361 	return wc->start_sector + wc->metadata_sectors +
362 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
363 }
364 
365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
366 {
367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368 	return e->original_sector;
369 #else
370 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
371 #endif
372 }
373 
374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
375 {
376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
377 	return e->seq_count;
378 #else
379 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
380 #endif
381 }
382 
383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
384 {
385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
386 	e->seq_count = -1;
387 #endif
388 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
389 }
390 
391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392 					    uint64_t original_sector, uint64_t seq_count)
393 {
394 	struct wc_memory_entry me;
395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396 	e->original_sector = original_sector;
397 	e->seq_count = seq_count;
398 #endif
399 	me.original_sector = cpu_to_le64(original_sector);
400 	me.seq_count = cpu_to_le64(seq_count);
401 	pmem_assign(*memory_entry(wc, e), me);
402 }
403 
404 #define writecache_error(wc, err, msg, arg...)				\
405 do {									\
406 	if (!cmpxchg(&(wc)->error, 0, err))				\
407 		DMERR(msg, ##arg);					\
408 	wake_up(&(wc)->freelist_wait);					\
409 } while (0)
410 
411 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
412 
413 static void writecache_flush_all_metadata(struct dm_writecache *wc)
414 {
415 	if (!WC_MODE_PMEM(wc))
416 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
417 }
418 
419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
420 {
421 	if (!WC_MODE_PMEM(wc))
422 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
423 			  wc->dirty_bitmap);
424 }
425 
426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
427 
428 struct io_notify {
429 	struct dm_writecache *wc;
430 	struct completion c;
431 	atomic_t count;
432 };
433 
434 static void writecache_notify_io(unsigned long error, void *context)
435 {
436 	struct io_notify *endio = context;
437 
438 	if (unlikely(error != 0))
439 		writecache_error(endio->wc, -EIO, "error writing metadata");
440 	BUG_ON(atomic_read(&endio->count) <= 0);
441 	if (atomic_dec_and_test(&endio->count))
442 		complete(&endio->c);
443 }
444 
445 static void ssd_commit_flushed(struct dm_writecache *wc)
446 {
447 	struct dm_io_region region;
448 	struct dm_io_request req;
449 	struct io_notify endio = {
450 		wc,
451 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
452 		ATOMIC_INIT(1),
453 	};
454 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
455 	unsigned i = 0;
456 
457 	while (1) {
458 		unsigned j;
459 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
460 		if (unlikely(i == bitmap_bits))
461 			break;
462 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
463 
464 		region.bdev = wc->ssd_dev->bdev;
465 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
466 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
467 
468 		if (unlikely(region.sector >= wc->metadata_sectors))
469 			break;
470 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
471 			region.count = wc->metadata_sectors - region.sector;
472 
473 		region.sector += wc->start_sector;
474 		atomic_inc(&endio.count);
475 		req.bi_op = REQ_OP_WRITE;
476 		req.bi_op_flags = REQ_SYNC;
477 		req.mem.type = DM_IO_VMA;
478 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
479 		req.client = wc->dm_io;
480 		req.notify.fn = writecache_notify_io;
481 		req.notify.context = &endio;
482 
483 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
484 	        (void) dm_io(&req, 1, &region, NULL);
485 		i = j;
486 	}
487 
488 	writecache_notify_io(0, &endio);
489 	wait_for_completion_io(&endio.c);
490 
491 	writecache_disk_flush(wc, wc->ssd_dev);
492 
493 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
494 }
495 
496 static void writecache_commit_flushed(struct dm_writecache *wc)
497 {
498 	if (WC_MODE_PMEM(wc))
499 		wmb();
500 	else
501 		ssd_commit_flushed(wc);
502 }
503 
504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
505 {
506 	int r;
507 	struct dm_io_region region;
508 	struct dm_io_request req;
509 
510 	region.bdev = dev->bdev;
511 	region.sector = 0;
512 	region.count = 0;
513 	req.bi_op = REQ_OP_WRITE;
514 	req.bi_op_flags = REQ_PREFLUSH;
515 	req.mem.type = DM_IO_KMEM;
516 	req.mem.ptr.addr = NULL;
517 	req.client = wc->dm_io;
518 	req.notify.fn = NULL;
519 
520 	r = dm_io(&req, 1, &region, NULL);
521 	if (unlikely(r))
522 		writecache_error(wc, r, "error flushing metadata: %d", r);
523 }
524 
525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
526 {
527 	wait_event(wc->bio_in_progress_wait[direction],
528 		   !atomic_read(&wc->bio_in_progress[direction]));
529 }
530 
531 #define WFE_RETURN_FOLLOWING	1
532 #define WFE_LOWEST_SEQ		2
533 
534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
535 					      uint64_t block, int flags)
536 {
537 	struct wc_entry *e;
538 	struct rb_node *node = wc->tree.rb_node;
539 
540 	if (unlikely(!node))
541 		return NULL;
542 
543 	while (1) {
544 		e = container_of(node, struct wc_entry, rb_node);
545 		if (read_original_sector(wc, e) == block)
546 			break;
547 
548 		node = (read_original_sector(wc, e) >= block ?
549 			e->rb_node.rb_left : e->rb_node.rb_right);
550 		if (unlikely(!node)) {
551 			if (!(flags & WFE_RETURN_FOLLOWING))
552 				return NULL;
553 			if (read_original_sector(wc, e) >= block) {
554 				return e;
555 			} else {
556 				node = rb_next(&e->rb_node);
557 				if (unlikely(!node))
558 					return NULL;
559 				e = container_of(node, struct wc_entry, rb_node);
560 				return e;
561 			}
562 		}
563 	}
564 
565 	while (1) {
566 		struct wc_entry *e2;
567 		if (flags & WFE_LOWEST_SEQ)
568 			node = rb_prev(&e->rb_node);
569 		else
570 			node = rb_next(&e->rb_node);
571 		if (unlikely(!node))
572 			return e;
573 		e2 = container_of(node, struct wc_entry, rb_node);
574 		if (read_original_sector(wc, e2) != block)
575 			return e;
576 		e = e2;
577 	}
578 }
579 
580 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
581 {
582 	struct wc_entry *e;
583 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
584 
585 	while (*node) {
586 		e = container_of(*node, struct wc_entry, rb_node);
587 		parent = &e->rb_node;
588 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
589 			node = &parent->rb_left;
590 		else
591 			node = &parent->rb_right;
592 	}
593 	rb_link_node(&ins->rb_node, parent, node);
594 	rb_insert_color(&ins->rb_node, &wc->tree);
595 	list_add(&ins->lru, &wc->lru);
596 }
597 
598 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
599 {
600 	list_del(&e->lru);
601 	rb_erase(&e->rb_node, &wc->tree);
602 }
603 
604 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
605 {
606 	if (WC_MODE_SORT_FREELIST(wc)) {
607 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
608 		if (unlikely(!*node))
609 			wc->current_free = e;
610 		while (*node) {
611 			parent = *node;
612 			if (&e->rb_node < *node)
613 				node = &parent->rb_left;
614 			else
615 				node = &parent->rb_right;
616 		}
617 		rb_link_node(&e->rb_node, parent, node);
618 		rb_insert_color(&e->rb_node, &wc->freetree);
619 	} else {
620 		list_add_tail(&e->lru, &wc->freelist);
621 	}
622 	wc->freelist_size++;
623 }
624 
625 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
626 {
627 	struct wc_entry *e;
628 
629 	if (WC_MODE_SORT_FREELIST(wc)) {
630 		struct rb_node *next;
631 		if (unlikely(!wc->current_free))
632 			return NULL;
633 		e = wc->current_free;
634 		next = rb_next(&e->rb_node);
635 		rb_erase(&e->rb_node, &wc->freetree);
636 		if (unlikely(!next))
637 			next = rb_first(&wc->freetree);
638 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
639 	} else {
640 		if (unlikely(list_empty(&wc->freelist)))
641 			return NULL;
642 		e = container_of(wc->freelist.next, struct wc_entry, lru);
643 		list_del(&e->lru);
644 	}
645 	wc->freelist_size--;
646 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
647 		queue_work(wc->writeback_wq, &wc->writeback_work);
648 
649 	return e;
650 }
651 
652 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
653 {
654 	writecache_unlink(wc, e);
655 	writecache_add_to_freelist(wc, e);
656 	clear_seq_count(wc, e);
657 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
658 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
659 		wake_up(&wc->freelist_wait);
660 }
661 
662 static void writecache_wait_on_freelist(struct dm_writecache *wc)
663 {
664 	DEFINE_WAIT(wait);
665 
666 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
667 	wc_unlock(wc);
668 	io_schedule();
669 	finish_wait(&wc->freelist_wait, &wait);
670 	wc_lock(wc);
671 }
672 
673 static void writecache_poison_lists(struct dm_writecache *wc)
674 {
675 	/*
676 	 * Catch incorrect access to these values while the device is suspended.
677 	 */
678 	memset(&wc->tree, -1, sizeof wc->tree);
679 	wc->lru.next = LIST_POISON1;
680 	wc->lru.prev = LIST_POISON2;
681 	wc->freelist.next = LIST_POISON1;
682 	wc->freelist.prev = LIST_POISON2;
683 }
684 
685 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
686 {
687 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
688 	if (WC_MODE_PMEM(wc))
689 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
690 }
691 
692 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
693 {
694 	return read_seq_count(wc, e) < wc->seq_count;
695 }
696 
697 static void writecache_flush(struct dm_writecache *wc)
698 {
699 	struct wc_entry *e, *e2;
700 	bool need_flush_after_free;
701 
702 	wc->uncommitted_blocks = 0;
703 	del_timer(&wc->autocommit_timer);
704 
705 	if (list_empty(&wc->lru))
706 		return;
707 
708 	e = container_of(wc->lru.next, struct wc_entry, lru);
709 	if (writecache_entry_is_committed(wc, e)) {
710 		if (wc->overwrote_committed) {
711 			writecache_wait_for_ios(wc, WRITE);
712 			writecache_disk_flush(wc, wc->ssd_dev);
713 			wc->overwrote_committed = false;
714 		}
715 		return;
716 	}
717 	while (1) {
718 		writecache_flush_entry(wc, e);
719 		if (unlikely(e->lru.next == &wc->lru))
720 			break;
721 		e2 = container_of(e->lru.next, struct wc_entry, lru);
722 		if (writecache_entry_is_committed(wc, e2))
723 			break;
724 		e = e2;
725 		cond_resched();
726 	}
727 	writecache_commit_flushed(wc);
728 
729 	if (!WC_MODE_PMEM(wc))
730 		writecache_wait_for_ios(wc, WRITE);
731 
732 	wc->seq_count++;
733 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
734 	writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
735 	writecache_commit_flushed(wc);
736 
737 	wc->overwrote_committed = false;
738 
739 	need_flush_after_free = false;
740 	while (1) {
741 		/* Free another committed entry with lower seq-count */
742 		struct rb_node *rb_node = rb_prev(&e->rb_node);
743 
744 		if (rb_node) {
745 			e2 = container_of(rb_node, struct wc_entry, rb_node);
746 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
747 			    likely(!e2->write_in_progress)) {
748 				writecache_free_entry(wc, e2);
749 				need_flush_after_free = true;
750 			}
751 		}
752 		if (unlikely(e->lru.prev == &wc->lru))
753 			break;
754 		e = container_of(e->lru.prev, struct wc_entry, lru);
755 		cond_resched();
756 	}
757 
758 	if (need_flush_after_free)
759 		writecache_commit_flushed(wc);
760 }
761 
762 static void writecache_flush_work(struct work_struct *work)
763 {
764 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
765 
766 	wc_lock(wc);
767 	writecache_flush(wc);
768 	wc_unlock(wc);
769 }
770 
771 static void writecache_autocommit_timer(struct timer_list *t)
772 {
773 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
774 	if (!writecache_has_error(wc))
775 		queue_work(wc->writeback_wq, &wc->flush_work);
776 }
777 
778 static void writecache_schedule_autocommit(struct dm_writecache *wc)
779 {
780 	if (!timer_pending(&wc->autocommit_timer))
781 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
782 }
783 
784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
785 {
786 	struct wc_entry *e;
787 	bool discarded_something = false;
788 
789 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
790 	if (unlikely(!e))
791 		return;
792 
793 	while (read_original_sector(wc, e) < end) {
794 		struct rb_node *node = rb_next(&e->rb_node);
795 
796 		if (likely(!e->write_in_progress)) {
797 			if (!discarded_something) {
798 				writecache_wait_for_ios(wc, READ);
799 				writecache_wait_for_ios(wc, WRITE);
800 				discarded_something = true;
801 			}
802 			writecache_free_entry(wc, e);
803 		}
804 
805 		if (unlikely(!node))
806 			break;
807 
808 		e = container_of(node, struct wc_entry, rb_node);
809 	}
810 
811 	if (discarded_something)
812 		writecache_commit_flushed(wc);
813 }
814 
815 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
816 {
817 	if (wc->writeback_size) {
818 		writecache_wait_on_freelist(wc);
819 		return true;
820 	}
821 	return false;
822 }
823 
824 static void writecache_suspend(struct dm_target *ti)
825 {
826 	struct dm_writecache *wc = ti->private;
827 	bool flush_on_suspend;
828 
829 	del_timer_sync(&wc->autocommit_timer);
830 
831 	wc_lock(wc);
832 	writecache_flush(wc);
833 	flush_on_suspend = wc->flush_on_suspend;
834 	if (flush_on_suspend) {
835 		wc->flush_on_suspend = false;
836 		wc->writeback_all++;
837 		queue_work(wc->writeback_wq, &wc->writeback_work);
838 	}
839 	wc_unlock(wc);
840 
841 	flush_workqueue(wc->writeback_wq);
842 
843 	wc_lock(wc);
844 	if (flush_on_suspend)
845 		wc->writeback_all--;
846 	while (writecache_wait_for_writeback(wc));
847 
848 	if (WC_MODE_PMEM(wc))
849 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
850 
851 	writecache_poison_lists(wc);
852 
853 	wc_unlock(wc);
854 }
855 
856 static int writecache_alloc_entries(struct dm_writecache *wc)
857 {
858 	size_t b;
859 
860 	if (wc->entries)
861 		return 0;
862 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
863 	if (!wc->entries)
864 		return -ENOMEM;
865 	for (b = 0; b < wc->n_blocks; b++) {
866 		struct wc_entry *e = &wc->entries[b];
867 		e->index = b;
868 		e->write_in_progress = false;
869 	}
870 
871 	return 0;
872 }
873 
874 static void writecache_resume(struct dm_target *ti)
875 {
876 	struct dm_writecache *wc = ti->private;
877 	size_t b;
878 	bool need_flush = false;
879 	__le64 sb_seq_count;
880 	int r;
881 
882 	wc_lock(wc);
883 
884 	if (WC_MODE_PMEM(wc))
885 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
886 
887 	wc->tree = RB_ROOT;
888 	INIT_LIST_HEAD(&wc->lru);
889 	if (WC_MODE_SORT_FREELIST(wc)) {
890 		wc->freetree = RB_ROOT;
891 		wc->current_free = NULL;
892 	} else {
893 		INIT_LIST_HEAD(&wc->freelist);
894 	}
895 	wc->freelist_size = 0;
896 
897 	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
898 	if (r) {
899 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
900 		sb_seq_count = cpu_to_le64(0);
901 	}
902 	wc->seq_count = le64_to_cpu(sb_seq_count);
903 
904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
905 	for (b = 0; b < wc->n_blocks; b++) {
906 		struct wc_entry *e = &wc->entries[b];
907 		struct wc_memory_entry wme;
908 		if (writecache_has_error(wc)) {
909 			e->original_sector = -1;
910 			e->seq_count = -1;
911 			continue;
912 		}
913 		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
914 		if (r) {
915 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
916 					 (unsigned long)b, r);
917 			e->original_sector = -1;
918 			e->seq_count = -1;
919 		} else {
920 			e->original_sector = le64_to_cpu(wme.original_sector);
921 			e->seq_count = le64_to_cpu(wme.seq_count);
922 		}
923 	}
924 #endif
925 	for (b = 0; b < wc->n_blocks; b++) {
926 		struct wc_entry *e = &wc->entries[b];
927 		if (!writecache_entry_is_committed(wc, e)) {
928 			if (read_seq_count(wc, e) != -1) {
929 erase_this:
930 				clear_seq_count(wc, e);
931 				need_flush = true;
932 			}
933 			writecache_add_to_freelist(wc, e);
934 		} else {
935 			struct wc_entry *old;
936 
937 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
938 			if (!old) {
939 				writecache_insert_entry(wc, e);
940 			} else {
941 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
942 					writecache_error(wc, -EINVAL,
943 						 "two identical entries, position %llu, sector %llu, sequence %llu",
944 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
945 						 (unsigned long long)read_seq_count(wc, e));
946 				}
947 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
948 					goto erase_this;
949 				} else {
950 					writecache_free_entry(wc, old);
951 					writecache_insert_entry(wc, e);
952 					need_flush = true;
953 				}
954 			}
955 		}
956 		cond_resched();
957 	}
958 
959 	if (need_flush) {
960 		writecache_flush_all_metadata(wc);
961 		writecache_commit_flushed(wc);
962 	}
963 
964 	wc_unlock(wc);
965 }
966 
967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
968 {
969 	if (argc != 1)
970 		return -EINVAL;
971 
972 	wc_lock(wc);
973 	if (dm_suspended(wc->ti)) {
974 		wc_unlock(wc);
975 		return -EBUSY;
976 	}
977 	if (writecache_has_error(wc)) {
978 		wc_unlock(wc);
979 		return -EIO;
980 	}
981 
982 	writecache_flush(wc);
983 	wc->writeback_all++;
984 	queue_work(wc->writeback_wq, &wc->writeback_work);
985 	wc_unlock(wc);
986 
987 	flush_workqueue(wc->writeback_wq);
988 
989 	wc_lock(wc);
990 	wc->writeback_all--;
991 	if (writecache_has_error(wc)) {
992 		wc_unlock(wc);
993 		return -EIO;
994 	}
995 	wc_unlock(wc);
996 
997 	return 0;
998 }
999 
1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001 {
1002 	if (argc != 1)
1003 		return -EINVAL;
1004 
1005 	wc_lock(wc);
1006 	wc->flush_on_suspend = true;
1007 	wc_unlock(wc);
1008 
1009 	return 0;
1010 }
1011 
1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013 			      char *result, unsigned maxlen)
1014 {
1015 	int r = -EINVAL;
1016 	struct dm_writecache *wc = ti->private;
1017 
1018 	if (!strcasecmp(argv[0], "flush"))
1019 		r = process_flush_mesg(argc, argv, wc);
1020 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1022 	else
1023 		DMERR("unrecognised message received: %s", argv[0]);
1024 
1025 	return r;
1026 }
1027 
1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029 {
1030 	void *buf;
1031 	unsigned long flags;
1032 	unsigned size;
1033 	int rw = bio_data_dir(bio);
1034 	unsigned remaining_size = wc->block_size;
1035 
1036 	do {
1037 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038 		buf = bvec_kmap_irq(&bv, &flags);
1039 		size = bv.bv_len;
1040 		if (unlikely(size > remaining_size))
1041 			size = remaining_size;
1042 
1043 		if (rw == READ) {
1044 			int r;
1045 			r = memcpy_mcsafe(buf, data, size);
1046 			flush_dcache_page(bio_page(bio));
1047 			if (unlikely(r)) {
1048 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049 				bio->bi_status = BLK_STS_IOERR;
1050 			}
1051 		} else {
1052 			flush_dcache_page(bio_page(bio));
1053 			memcpy_flushcache(data, buf, size);
1054 		}
1055 
1056 		bvec_kunmap_irq(buf, &flags);
1057 
1058 		data = (char *)data + size;
1059 		remaining_size -= size;
1060 		bio_advance(bio, size);
1061 	} while (unlikely(remaining_size));
1062 }
1063 
1064 static int writecache_flush_thread(void *data)
1065 {
1066 	struct dm_writecache *wc = data;
1067 
1068 	while (1) {
1069 		struct bio *bio;
1070 
1071 		wc_lock(wc);
1072 		bio = bio_list_pop(&wc->flush_list);
1073 		if (!bio) {
1074 			set_current_state(TASK_INTERRUPTIBLE);
1075 			wc_unlock(wc);
1076 
1077 			if (unlikely(kthread_should_stop())) {
1078 				set_current_state(TASK_RUNNING);
1079 				break;
1080 			}
1081 
1082 			schedule();
1083 			continue;
1084 		}
1085 
1086 		if (bio_op(bio) == REQ_OP_DISCARD) {
1087 			writecache_discard(wc, bio->bi_iter.bi_sector,
1088 					   bio_end_sector(bio));
1089 			wc_unlock(wc);
1090 			bio_set_dev(bio, wc->dev->bdev);
1091 			generic_make_request(bio);
1092 		} else {
1093 			writecache_flush(wc);
1094 			wc_unlock(wc);
1095 			if (writecache_has_error(wc))
1096 				bio->bi_status = BLK_STS_IOERR;
1097 			bio_endio(bio);
1098 		}
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105 {
1106 	if (bio_list_empty(&wc->flush_list))
1107 		wake_up_process(wc->flush_thread);
1108 	bio_list_add(&wc->flush_list, bio);
1109 }
1110 
1111 static int writecache_map(struct dm_target *ti, struct bio *bio)
1112 {
1113 	struct wc_entry *e;
1114 	struct dm_writecache *wc = ti->private;
1115 
1116 	bio->bi_private = NULL;
1117 
1118 	wc_lock(wc);
1119 
1120 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121 		if (writecache_has_error(wc))
1122 			goto unlock_error;
1123 		if (WC_MODE_PMEM(wc)) {
1124 			writecache_flush(wc);
1125 			if (writecache_has_error(wc))
1126 				goto unlock_error;
1127 			goto unlock_submit;
1128 		} else {
1129 			writecache_offload_bio(wc, bio);
1130 			goto unlock_return;
1131 		}
1132 	}
1133 
1134 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135 
1136 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137 				(wc->block_size / 512 - 1)) != 0)) {
1138 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139 		      (unsigned long long)bio->bi_iter.bi_sector,
1140 		      bio->bi_iter.bi_size, wc->block_size);
1141 		goto unlock_error;
1142 	}
1143 
1144 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145 		if (writecache_has_error(wc))
1146 			goto unlock_error;
1147 		if (WC_MODE_PMEM(wc)) {
1148 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149 			goto unlock_remap_origin;
1150 		} else {
1151 			writecache_offload_bio(wc, bio);
1152 			goto unlock_return;
1153 		}
1154 	}
1155 
1156 	if (bio_data_dir(bio) == READ) {
1157 read_next_block:
1158 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160 			if (WC_MODE_PMEM(wc)) {
1161 				bio_copy_block(wc, bio, memory_data(wc, e));
1162 				if (bio->bi_iter.bi_size)
1163 					goto read_next_block;
1164 				goto unlock_submit;
1165 			} else {
1166 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167 				bio_set_dev(bio, wc->ssd_dev->bdev);
1168 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1169 				if (!writecache_entry_is_committed(wc, e))
1170 					writecache_wait_for_ios(wc, WRITE);
1171 				goto unlock_remap;
1172 			}
1173 		} else {
1174 			if (e) {
1175 				sector_t next_boundary =
1176 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178 					dm_accept_partial_bio(bio, next_boundary);
1179 				}
1180 			}
1181 			goto unlock_remap_origin;
1182 		}
1183 	} else {
1184 		do {
1185 			if (writecache_has_error(wc))
1186 				goto unlock_error;
1187 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188 			if (e) {
1189 				if (!writecache_entry_is_committed(wc, e))
1190 					goto bio_copy;
1191 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192 					wc->overwrote_committed = true;
1193 					goto bio_copy;
1194 				}
1195 			}
1196 			e = writecache_pop_from_freelist(wc);
1197 			if (unlikely(!e)) {
1198 				writecache_wait_on_freelist(wc);
1199 				continue;
1200 			}
1201 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202 			writecache_insert_entry(wc, e);
1203 			wc->uncommitted_blocks++;
1204 bio_copy:
1205 			if (WC_MODE_PMEM(wc)) {
1206 				bio_copy_block(wc, bio, memory_data(wc, e));
1207 			} else {
1208 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209 				bio_set_dev(bio, wc->ssd_dev->bdev);
1210 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1211 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212 					wc->uncommitted_blocks = 0;
1213 					queue_work(wc->writeback_wq, &wc->flush_work);
1214 				} else {
1215 					writecache_schedule_autocommit(wc);
1216 				}
1217 				goto unlock_remap;
1218 			}
1219 		} while (bio->bi_iter.bi_size);
1220 
1221 		if (unlikely(bio->bi_opf & REQ_FUA ||
1222 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1223 			writecache_flush(wc);
1224 		else
1225 			writecache_schedule_autocommit(wc);
1226 		goto unlock_submit;
1227 	}
1228 
1229 unlock_remap_origin:
1230 	bio_set_dev(bio, wc->dev->bdev);
1231 	wc_unlock(wc);
1232 	return DM_MAPIO_REMAPPED;
1233 
1234 unlock_remap:
1235 	/* make sure that writecache_end_io decrements bio_in_progress: */
1236 	bio->bi_private = (void *)1;
1237 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1238 	wc_unlock(wc);
1239 	return DM_MAPIO_REMAPPED;
1240 
1241 unlock_submit:
1242 	wc_unlock(wc);
1243 	bio_endio(bio);
1244 	return DM_MAPIO_SUBMITTED;
1245 
1246 unlock_return:
1247 	wc_unlock(wc);
1248 	return DM_MAPIO_SUBMITTED;
1249 
1250 unlock_error:
1251 	wc_unlock(wc);
1252 	bio_io_error(bio);
1253 	return DM_MAPIO_SUBMITTED;
1254 }
1255 
1256 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1257 {
1258 	struct dm_writecache *wc = ti->private;
1259 
1260 	if (bio->bi_private != NULL) {
1261 		int dir = bio_data_dir(bio);
1262 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1263 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1264 				wake_up(&wc->bio_in_progress_wait[dir]);
1265 	}
1266 	return 0;
1267 }
1268 
1269 static int writecache_iterate_devices(struct dm_target *ti,
1270 				      iterate_devices_callout_fn fn, void *data)
1271 {
1272 	struct dm_writecache *wc = ti->private;
1273 
1274 	return fn(ti, wc->dev, 0, ti->len, data);
1275 }
1276 
1277 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1278 {
1279 	struct dm_writecache *wc = ti->private;
1280 
1281 	if (limits->logical_block_size < wc->block_size)
1282 		limits->logical_block_size = wc->block_size;
1283 
1284 	if (limits->physical_block_size < wc->block_size)
1285 		limits->physical_block_size = wc->block_size;
1286 
1287 	if (limits->io_min < wc->block_size)
1288 		limits->io_min = wc->block_size;
1289 }
1290 
1291 
1292 static void writecache_writeback_endio(struct bio *bio)
1293 {
1294 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1295 	struct dm_writecache *wc = wb->wc;
1296 	unsigned long flags;
1297 
1298 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1299 	if (unlikely(list_empty(&wc->endio_list)))
1300 		wake_up_process(wc->endio_thread);
1301 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1302 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1303 }
1304 
1305 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1306 {
1307 	struct copy_struct *c = ptr;
1308 	struct dm_writecache *wc = c->wc;
1309 
1310 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1311 
1312 	raw_spin_lock_irq(&wc->endio_list_lock);
1313 	if (unlikely(list_empty(&wc->endio_list)))
1314 		wake_up_process(wc->endio_thread);
1315 	list_add_tail(&c->endio_entry, &wc->endio_list);
1316 	raw_spin_unlock_irq(&wc->endio_list_lock);
1317 }
1318 
1319 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1320 {
1321 	unsigned i;
1322 	struct writeback_struct *wb;
1323 	struct wc_entry *e;
1324 	unsigned long n_walked = 0;
1325 
1326 	do {
1327 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1328 		list_del(&wb->endio_entry);
1329 
1330 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1331 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1332 					"write error %d", wb->bio.bi_status);
1333 		i = 0;
1334 		do {
1335 			e = wb->wc_list[i];
1336 			BUG_ON(!e->write_in_progress);
1337 			e->write_in_progress = false;
1338 			INIT_LIST_HEAD(&e->lru);
1339 			if (!writecache_has_error(wc))
1340 				writecache_free_entry(wc, e);
1341 			BUG_ON(!wc->writeback_size);
1342 			wc->writeback_size--;
1343 			n_walked++;
1344 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1345 				writecache_commit_flushed(wc);
1346 				wc_unlock(wc);
1347 				wc_lock(wc);
1348 				n_walked = 0;
1349 			}
1350 		} while (++i < wb->wc_list_n);
1351 
1352 		if (wb->wc_list != wb->wc_list_inline)
1353 			kfree(wb->wc_list);
1354 		bio_put(&wb->bio);
1355 	} while (!list_empty(list));
1356 }
1357 
1358 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1359 {
1360 	struct copy_struct *c;
1361 	struct wc_entry *e;
1362 
1363 	do {
1364 		c = list_entry(list->next, struct copy_struct, endio_entry);
1365 		list_del(&c->endio_entry);
1366 
1367 		if (unlikely(c->error))
1368 			writecache_error(wc, c->error, "copy error");
1369 
1370 		e = c->e;
1371 		do {
1372 			BUG_ON(!e->write_in_progress);
1373 			e->write_in_progress = false;
1374 			INIT_LIST_HEAD(&e->lru);
1375 			if (!writecache_has_error(wc))
1376 				writecache_free_entry(wc, e);
1377 
1378 			BUG_ON(!wc->writeback_size);
1379 			wc->writeback_size--;
1380 			e++;
1381 		} while (--c->n_entries);
1382 		mempool_free(c, &wc->copy_pool);
1383 	} while (!list_empty(list));
1384 }
1385 
1386 static int writecache_endio_thread(void *data)
1387 {
1388 	struct dm_writecache *wc = data;
1389 
1390 	while (1) {
1391 		struct list_head list;
1392 
1393 		raw_spin_lock_irq(&wc->endio_list_lock);
1394 		if (!list_empty(&wc->endio_list))
1395 			goto pop_from_list;
1396 		set_current_state(TASK_INTERRUPTIBLE);
1397 		raw_spin_unlock_irq(&wc->endio_list_lock);
1398 
1399 		if (unlikely(kthread_should_stop())) {
1400 			set_current_state(TASK_RUNNING);
1401 			break;
1402 		}
1403 
1404 		schedule();
1405 
1406 		continue;
1407 
1408 pop_from_list:
1409 		list = wc->endio_list;
1410 		list.next->prev = list.prev->next = &list;
1411 		INIT_LIST_HEAD(&wc->endio_list);
1412 		raw_spin_unlock_irq(&wc->endio_list_lock);
1413 
1414 		if (!WC_MODE_FUA(wc))
1415 			writecache_disk_flush(wc, wc->dev);
1416 
1417 		wc_lock(wc);
1418 
1419 		if (WC_MODE_PMEM(wc)) {
1420 			__writecache_endio_pmem(wc, &list);
1421 		} else {
1422 			__writecache_endio_ssd(wc, &list);
1423 			writecache_wait_for_ios(wc, READ);
1424 		}
1425 
1426 		writecache_commit_flushed(wc);
1427 
1428 		wc_unlock(wc);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1435 {
1436 	struct dm_writecache *wc = wb->wc;
1437 	unsigned block_size = wc->block_size;
1438 	void *address = memory_data(wc, e);
1439 
1440 	persistent_memory_flush_cache(address, block_size);
1441 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1442 			    block_size, persistent_memory_page_offset(address)) != 0;
1443 }
1444 
1445 struct writeback_list {
1446 	struct list_head list;
1447 	size_t size;
1448 };
1449 
1450 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1451 {
1452 	if (unlikely(wc->max_writeback_jobs)) {
1453 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1454 			wc_lock(wc);
1455 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1456 				writecache_wait_on_freelist(wc);
1457 			wc_unlock(wc);
1458 		}
1459 	}
1460 	cond_resched();
1461 }
1462 
1463 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1464 {
1465 	struct wc_entry *e, *f;
1466 	struct bio *bio;
1467 	struct writeback_struct *wb;
1468 	unsigned max_pages;
1469 
1470 	while (wbl->size) {
1471 		wbl->size--;
1472 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1473 		list_del(&e->lru);
1474 
1475 		max_pages = e->wc_list_contiguous;
1476 
1477 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1478 		wb = container_of(bio, struct writeback_struct, bio);
1479 		wb->wc = wc;
1480 		bio->bi_end_io = writecache_writeback_endio;
1481 		bio_set_dev(bio, wc->dev->bdev);
1482 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1483 		if (max_pages <= WB_LIST_INLINE ||
1484 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1485 							   GFP_NOIO | __GFP_NORETRY |
1486 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1487 			wb->wc_list = wb->wc_list_inline;
1488 			max_pages = WB_LIST_INLINE;
1489 		}
1490 
1491 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1492 
1493 		wb->wc_list[0] = e;
1494 		wb->wc_list_n = 1;
1495 
1496 		while (wbl->size && wb->wc_list_n < max_pages) {
1497 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1498 			if (read_original_sector(wc, f) !=
1499 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1500 				break;
1501 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1502 				break;
1503 			wbl->size--;
1504 			list_del(&f->lru);
1505 			wb->wc_list[wb->wc_list_n++] = f;
1506 			e = f;
1507 		}
1508 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1509 		if (writecache_has_error(wc)) {
1510 			bio->bi_status = BLK_STS_IOERR;
1511 			bio_endio(bio);
1512 		} else {
1513 			submit_bio(bio);
1514 		}
1515 
1516 		__writeback_throttle(wc, wbl);
1517 	}
1518 }
1519 
1520 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1521 {
1522 	struct wc_entry *e, *f;
1523 	struct dm_io_region from, to;
1524 	struct copy_struct *c;
1525 
1526 	while (wbl->size) {
1527 		unsigned n_sectors;
1528 
1529 		wbl->size--;
1530 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1531 		list_del(&e->lru);
1532 
1533 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1534 
1535 		from.bdev = wc->ssd_dev->bdev;
1536 		from.sector = cache_sector(wc, e);
1537 		from.count = n_sectors;
1538 		to.bdev = wc->dev->bdev;
1539 		to.sector = read_original_sector(wc, e);
1540 		to.count = n_sectors;
1541 
1542 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1543 		c->wc = wc;
1544 		c->e = e;
1545 		c->n_entries = e->wc_list_contiguous;
1546 
1547 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1548 			wbl->size--;
1549 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1550 			BUG_ON(f != e + 1);
1551 			list_del(&f->lru);
1552 			e = f;
1553 		}
1554 
1555 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1556 
1557 		__writeback_throttle(wc, wbl);
1558 	}
1559 }
1560 
1561 static void writecache_writeback(struct work_struct *work)
1562 {
1563 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1564 	struct blk_plug plug;
1565 	struct wc_entry *f, *uninitialized_var(g), *e = NULL;
1566 	struct rb_node *node, *next_node;
1567 	struct list_head skipped;
1568 	struct writeback_list wbl;
1569 	unsigned long n_walked;
1570 
1571 	wc_lock(wc);
1572 restart:
1573 	if (writecache_has_error(wc)) {
1574 		wc_unlock(wc);
1575 		return;
1576 	}
1577 
1578 	if (unlikely(wc->writeback_all)) {
1579 		if (writecache_wait_for_writeback(wc))
1580 			goto restart;
1581 	}
1582 
1583 	if (wc->overwrote_committed) {
1584 		writecache_wait_for_ios(wc, WRITE);
1585 	}
1586 
1587 	n_walked = 0;
1588 	INIT_LIST_HEAD(&skipped);
1589 	INIT_LIST_HEAD(&wbl.list);
1590 	wbl.size = 0;
1591 	while (!list_empty(&wc->lru) &&
1592 	       (wc->writeback_all ||
1593 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1594 
1595 		n_walked++;
1596 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1597 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1598 			queue_work(wc->writeback_wq, &wc->writeback_work);
1599 			break;
1600 		}
1601 
1602 		if (unlikely(wc->writeback_all)) {
1603 			if (unlikely(!e)) {
1604 				writecache_flush(wc);
1605 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1606 			} else
1607 				e = g;
1608 		} else
1609 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1610 		BUG_ON(e->write_in_progress);
1611 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1612 			writecache_flush(wc);
1613 		}
1614 		node = rb_prev(&e->rb_node);
1615 		if (node) {
1616 			f = container_of(node, struct wc_entry, rb_node);
1617 			if (unlikely(read_original_sector(wc, f) ==
1618 				     read_original_sector(wc, e))) {
1619 				BUG_ON(!f->write_in_progress);
1620 				list_del(&e->lru);
1621 				list_add(&e->lru, &skipped);
1622 				cond_resched();
1623 				continue;
1624 			}
1625 		}
1626 		wc->writeback_size++;
1627 		list_del(&e->lru);
1628 		list_add(&e->lru, &wbl.list);
1629 		wbl.size++;
1630 		e->write_in_progress = true;
1631 		e->wc_list_contiguous = 1;
1632 
1633 		f = e;
1634 
1635 		while (1) {
1636 			next_node = rb_next(&f->rb_node);
1637 			if (unlikely(!next_node))
1638 				break;
1639 			g = container_of(next_node, struct wc_entry, rb_node);
1640 			if (unlikely(read_original_sector(wc, g) ==
1641 			    read_original_sector(wc, f))) {
1642 				f = g;
1643 				continue;
1644 			}
1645 			if (read_original_sector(wc, g) !=
1646 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1647 				break;
1648 			if (unlikely(g->write_in_progress))
1649 				break;
1650 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1651 				break;
1652 
1653 			if (!WC_MODE_PMEM(wc)) {
1654 				if (g != f + 1)
1655 					break;
1656 			}
1657 
1658 			n_walked++;
1659 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1660 			//	break;
1661 
1662 			wc->writeback_size++;
1663 			list_del(&g->lru);
1664 			list_add(&g->lru, &wbl.list);
1665 			wbl.size++;
1666 			g->write_in_progress = true;
1667 			g->wc_list_contiguous = BIO_MAX_PAGES;
1668 			f = g;
1669 			e->wc_list_contiguous++;
1670 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1671 				if (unlikely(wc->writeback_all)) {
1672 					next_node = rb_next(&f->rb_node);
1673 					if (likely(next_node))
1674 						g = container_of(next_node, struct wc_entry, rb_node);
1675 				}
1676 				break;
1677 			}
1678 		}
1679 		cond_resched();
1680 	}
1681 
1682 	if (!list_empty(&skipped)) {
1683 		list_splice_tail(&skipped, &wc->lru);
1684 		/*
1685 		 * If we didn't do any progress, we must wait until some
1686 		 * writeback finishes to avoid burning CPU in a loop
1687 		 */
1688 		if (unlikely(!wbl.size))
1689 			writecache_wait_for_writeback(wc);
1690 	}
1691 
1692 	wc_unlock(wc);
1693 
1694 	blk_start_plug(&plug);
1695 
1696 	if (WC_MODE_PMEM(wc))
1697 		__writecache_writeback_pmem(wc, &wbl);
1698 	else
1699 		__writecache_writeback_ssd(wc, &wbl);
1700 
1701 	blk_finish_plug(&plug);
1702 
1703 	if (unlikely(wc->writeback_all)) {
1704 		wc_lock(wc);
1705 		while (writecache_wait_for_writeback(wc));
1706 		wc_unlock(wc);
1707 	}
1708 }
1709 
1710 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1711 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1712 {
1713 	uint64_t n_blocks, offset;
1714 	struct wc_entry e;
1715 
1716 	n_blocks = device_size;
1717 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1718 
1719 	while (1) {
1720 		if (!n_blocks)
1721 			return -ENOSPC;
1722 		/* Verify the following entries[n_blocks] won't overflow */
1723 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1724 				 sizeof(struct wc_memory_entry)))
1725 			return -EFBIG;
1726 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1727 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1728 		if (offset + n_blocks * block_size <= device_size)
1729 			break;
1730 		n_blocks--;
1731 	}
1732 
1733 	/* check if the bit field overflows */
1734 	e.index = n_blocks;
1735 	if (e.index != n_blocks)
1736 		return -EFBIG;
1737 
1738 	if (n_blocks_p)
1739 		*n_blocks_p = n_blocks;
1740 	if (n_metadata_blocks_p)
1741 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1742 	return 0;
1743 }
1744 
1745 static int init_memory(struct dm_writecache *wc)
1746 {
1747 	size_t b;
1748 	int r;
1749 
1750 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1751 	if (r)
1752 		return r;
1753 
1754 	r = writecache_alloc_entries(wc);
1755 	if (r)
1756 		return r;
1757 
1758 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1759 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1760 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1761 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1762 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1763 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1764 
1765 	for (b = 0; b < wc->n_blocks; b++)
1766 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1767 
1768 	writecache_flush_all_metadata(wc);
1769 	writecache_commit_flushed(wc);
1770 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1771 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1772 	writecache_commit_flushed(wc);
1773 
1774 	return 0;
1775 }
1776 
1777 static void writecache_dtr(struct dm_target *ti)
1778 {
1779 	struct dm_writecache *wc = ti->private;
1780 
1781 	if (!wc)
1782 		return;
1783 
1784 	if (wc->endio_thread)
1785 		kthread_stop(wc->endio_thread);
1786 
1787 	if (wc->flush_thread)
1788 		kthread_stop(wc->flush_thread);
1789 
1790 	bioset_exit(&wc->bio_set);
1791 
1792 	mempool_exit(&wc->copy_pool);
1793 
1794 	if (wc->writeback_wq)
1795 		destroy_workqueue(wc->writeback_wq);
1796 
1797 	if (wc->dev)
1798 		dm_put_device(ti, wc->dev);
1799 
1800 	if (wc->ssd_dev)
1801 		dm_put_device(ti, wc->ssd_dev);
1802 
1803 	if (wc->entries)
1804 		vfree(wc->entries);
1805 
1806 	if (wc->memory_map) {
1807 		if (WC_MODE_PMEM(wc))
1808 			persistent_memory_release(wc);
1809 		else
1810 			vfree(wc->memory_map);
1811 	}
1812 
1813 	if (wc->dm_kcopyd)
1814 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
1815 
1816 	if (wc->dm_io)
1817 		dm_io_client_destroy(wc->dm_io);
1818 
1819 	if (wc->dirty_bitmap)
1820 		vfree(wc->dirty_bitmap);
1821 
1822 	kfree(wc);
1823 }
1824 
1825 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1826 {
1827 	struct dm_writecache *wc;
1828 	struct dm_arg_set as;
1829 	const char *string;
1830 	unsigned opt_params;
1831 	size_t offset, data_size;
1832 	int i, r;
1833 	char dummy;
1834 	int high_wm_percent = HIGH_WATERMARK;
1835 	int low_wm_percent = LOW_WATERMARK;
1836 	uint64_t x;
1837 	struct wc_memory_superblock s;
1838 
1839 	static struct dm_arg _args[] = {
1840 		{0, 10, "Invalid number of feature args"},
1841 	};
1842 
1843 	as.argc = argc;
1844 	as.argv = argv;
1845 
1846 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1847 	if (!wc) {
1848 		ti->error = "Cannot allocate writecache structure";
1849 		r = -ENOMEM;
1850 		goto bad;
1851 	}
1852 	ti->private = wc;
1853 	wc->ti = ti;
1854 
1855 	mutex_init(&wc->lock);
1856 	writecache_poison_lists(wc);
1857 	init_waitqueue_head(&wc->freelist_wait);
1858 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1859 
1860 	for (i = 0; i < 2; i++) {
1861 		atomic_set(&wc->bio_in_progress[i], 0);
1862 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1863 	}
1864 
1865 	wc->dm_io = dm_io_client_create();
1866 	if (IS_ERR(wc->dm_io)) {
1867 		r = PTR_ERR(wc->dm_io);
1868 		ti->error = "Unable to allocate dm-io client";
1869 		wc->dm_io = NULL;
1870 		goto bad;
1871 	}
1872 
1873 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1874 	if (!wc->writeback_wq) {
1875 		r = -ENOMEM;
1876 		ti->error = "Could not allocate writeback workqueue";
1877 		goto bad;
1878 	}
1879 	INIT_WORK(&wc->writeback_work, writecache_writeback);
1880 	INIT_WORK(&wc->flush_work, writecache_flush_work);
1881 
1882 	raw_spin_lock_init(&wc->endio_list_lock);
1883 	INIT_LIST_HEAD(&wc->endio_list);
1884 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1885 	if (IS_ERR(wc->endio_thread)) {
1886 		r = PTR_ERR(wc->endio_thread);
1887 		wc->endio_thread = NULL;
1888 		ti->error = "Couldn't spawn endio thread";
1889 		goto bad;
1890 	}
1891 	wake_up_process(wc->endio_thread);
1892 
1893 	/*
1894 	 * Parse the mode (pmem or ssd)
1895 	 */
1896 	string = dm_shift_arg(&as);
1897 	if (!string)
1898 		goto bad_arguments;
1899 
1900 	if (!strcasecmp(string, "s")) {
1901 		wc->pmem_mode = false;
1902 	} else if (!strcasecmp(string, "p")) {
1903 #ifdef DM_WRITECACHE_HAS_PMEM
1904 		wc->pmem_mode = true;
1905 		wc->writeback_fua = true;
1906 #else
1907 		/*
1908 		 * If the architecture doesn't support persistent memory or
1909 		 * the kernel doesn't support any DAX drivers, this driver can
1910 		 * only be used in SSD-only mode.
1911 		 */
1912 		r = -EOPNOTSUPP;
1913 		ti->error = "Persistent memory or DAX not supported on this system";
1914 		goto bad;
1915 #endif
1916 	} else {
1917 		goto bad_arguments;
1918 	}
1919 
1920 	if (WC_MODE_PMEM(wc)) {
1921 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1922 				offsetof(struct writeback_struct, bio),
1923 				BIOSET_NEED_BVECS);
1924 		if (r) {
1925 			ti->error = "Could not allocate bio set";
1926 			goto bad;
1927 		}
1928 	} else {
1929 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1930 		if (r) {
1931 			ti->error = "Could not allocate mempool";
1932 			goto bad;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * Parse the origin data device
1938 	 */
1939 	string = dm_shift_arg(&as);
1940 	if (!string)
1941 		goto bad_arguments;
1942 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1943 	if (r) {
1944 		ti->error = "Origin data device lookup failed";
1945 		goto bad;
1946 	}
1947 
1948 	/*
1949 	 * Parse cache data device (be it pmem or ssd)
1950 	 */
1951 	string = dm_shift_arg(&as);
1952 	if (!string)
1953 		goto bad_arguments;
1954 
1955 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1956 	if (r) {
1957 		ti->error = "Cache data device lookup failed";
1958 		goto bad;
1959 	}
1960 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1961 
1962 	/*
1963 	 * Parse the cache block size
1964 	 */
1965 	string = dm_shift_arg(&as);
1966 	if (!string)
1967 		goto bad_arguments;
1968 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1969 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1970 	    (wc->block_size & (wc->block_size - 1))) {
1971 		r = -EINVAL;
1972 		ti->error = "Invalid block size";
1973 		goto bad;
1974 	}
1975 	wc->block_size_bits = __ffs(wc->block_size);
1976 
1977 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1978 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1979 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1980 
1981 	/*
1982 	 * Parse optional arguments
1983 	 */
1984 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1985 	if (r)
1986 		goto bad;
1987 
1988 	while (opt_params) {
1989 		string = dm_shift_arg(&as), opt_params--;
1990 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1991 			unsigned long long start_sector;
1992 			string = dm_shift_arg(&as), opt_params--;
1993 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1994 				goto invalid_optional;
1995 			wc->start_sector = start_sector;
1996 			if (wc->start_sector != start_sector ||
1997 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1998 				goto invalid_optional;
1999 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2000 			string = dm_shift_arg(&as), opt_params--;
2001 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2002 				goto invalid_optional;
2003 			if (high_wm_percent < 0 || high_wm_percent > 100)
2004 				goto invalid_optional;
2005 			wc->high_wm_percent_set = true;
2006 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2007 			string = dm_shift_arg(&as), opt_params--;
2008 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2009 				goto invalid_optional;
2010 			if (low_wm_percent < 0 || low_wm_percent > 100)
2011 				goto invalid_optional;
2012 			wc->low_wm_percent_set = true;
2013 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2014 			string = dm_shift_arg(&as), opt_params--;
2015 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2016 				goto invalid_optional;
2017 			wc->max_writeback_jobs_set = true;
2018 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2019 			string = dm_shift_arg(&as), opt_params--;
2020 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2021 				goto invalid_optional;
2022 			wc->autocommit_blocks_set = true;
2023 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2024 			unsigned autocommit_msecs;
2025 			string = dm_shift_arg(&as), opt_params--;
2026 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2027 				goto invalid_optional;
2028 			if (autocommit_msecs > 3600000)
2029 				goto invalid_optional;
2030 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2031 			wc->autocommit_time_set = true;
2032 		} else if (!strcasecmp(string, "fua")) {
2033 			if (WC_MODE_PMEM(wc)) {
2034 				wc->writeback_fua = true;
2035 				wc->writeback_fua_set = true;
2036 			} else goto invalid_optional;
2037 		} else if (!strcasecmp(string, "nofua")) {
2038 			if (WC_MODE_PMEM(wc)) {
2039 				wc->writeback_fua = false;
2040 				wc->writeback_fua_set = true;
2041 			} else goto invalid_optional;
2042 		} else {
2043 invalid_optional:
2044 			r = -EINVAL;
2045 			ti->error = "Invalid optional argument";
2046 			goto bad;
2047 		}
2048 	}
2049 
2050 	if (high_wm_percent < low_wm_percent) {
2051 		r = -EINVAL;
2052 		ti->error = "High watermark must be greater than or equal to low watermark";
2053 		goto bad;
2054 	}
2055 
2056 	if (WC_MODE_PMEM(wc)) {
2057 		r = persistent_memory_claim(wc);
2058 		if (r) {
2059 			ti->error = "Unable to map persistent memory for cache";
2060 			goto bad;
2061 		}
2062 	} else {
2063 		struct dm_io_region region;
2064 		struct dm_io_request req;
2065 		size_t n_blocks, n_metadata_blocks;
2066 		uint64_t n_bitmap_bits;
2067 
2068 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2069 
2070 		bio_list_init(&wc->flush_list);
2071 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2072 		if (IS_ERR(wc->flush_thread)) {
2073 			r = PTR_ERR(wc->flush_thread);
2074 			wc->flush_thread = NULL;
2075 			ti->error = "Couldn't spawn flush thread";
2076 			goto bad;
2077 		}
2078 		wake_up_process(wc->flush_thread);
2079 
2080 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2081 					  &n_blocks, &n_metadata_blocks);
2082 		if (r) {
2083 			ti->error = "Invalid device size";
2084 			goto bad;
2085 		}
2086 
2087 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2088 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2089 		/* this is limitation of test_bit functions */
2090 		if (n_bitmap_bits > 1U << 31) {
2091 			r = -EFBIG;
2092 			ti->error = "Invalid device size";
2093 			goto bad;
2094 		}
2095 
2096 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2097 		if (!wc->memory_map) {
2098 			r = -ENOMEM;
2099 			ti->error = "Unable to allocate memory for metadata";
2100 			goto bad;
2101 		}
2102 
2103 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2104 		if (IS_ERR(wc->dm_kcopyd)) {
2105 			r = PTR_ERR(wc->dm_kcopyd);
2106 			ti->error = "Unable to allocate dm-kcopyd client";
2107 			wc->dm_kcopyd = NULL;
2108 			goto bad;
2109 		}
2110 
2111 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2112 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2113 			BITS_PER_LONG * sizeof(unsigned long);
2114 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2115 		if (!wc->dirty_bitmap) {
2116 			r = -ENOMEM;
2117 			ti->error = "Unable to allocate dirty bitmap";
2118 			goto bad;
2119 		}
2120 
2121 		region.bdev = wc->ssd_dev->bdev;
2122 		region.sector = wc->start_sector;
2123 		region.count = wc->metadata_sectors;
2124 		req.bi_op = REQ_OP_READ;
2125 		req.bi_op_flags = REQ_SYNC;
2126 		req.mem.type = DM_IO_VMA;
2127 		req.mem.ptr.vma = (char *)wc->memory_map;
2128 		req.client = wc->dm_io;
2129 		req.notify.fn = NULL;
2130 
2131 		r = dm_io(&req, 1, &region, NULL);
2132 		if (r) {
2133 			ti->error = "Unable to read metadata";
2134 			goto bad;
2135 		}
2136 	}
2137 
2138 	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2139 	if (r) {
2140 		ti->error = "Hardware memory error when reading superblock";
2141 		goto bad;
2142 	}
2143 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2144 		r = init_memory(wc);
2145 		if (r) {
2146 			ti->error = "Unable to initialize device";
2147 			goto bad;
2148 		}
2149 		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2150 		if (r) {
2151 			ti->error = "Hardware memory error when reading superblock";
2152 			goto bad;
2153 		}
2154 	}
2155 
2156 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2157 		ti->error = "Invalid magic in the superblock";
2158 		r = -EINVAL;
2159 		goto bad;
2160 	}
2161 
2162 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2163 		ti->error = "Invalid version in the superblock";
2164 		r = -EINVAL;
2165 		goto bad;
2166 	}
2167 
2168 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2169 		ti->error = "Block size does not match superblock";
2170 		r = -EINVAL;
2171 		goto bad;
2172 	}
2173 
2174 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2175 
2176 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2177 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2178 overflow:
2179 		ti->error = "Overflow in size calculation";
2180 		r = -EINVAL;
2181 		goto bad;
2182 	}
2183 	offset += sizeof(struct wc_memory_superblock);
2184 	if (offset < sizeof(struct wc_memory_superblock))
2185 		goto overflow;
2186 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2187 	data_size = wc->n_blocks * (size_t)wc->block_size;
2188 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2189 	    (offset + data_size < offset))
2190 		goto overflow;
2191 	if (offset + data_size > wc->memory_map_size) {
2192 		ti->error = "Memory area is too small";
2193 		r = -EINVAL;
2194 		goto bad;
2195 	}
2196 
2197 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2198 	wc->block_start = (char *)sb(wc) + offset;
2199 
2200 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2201 	x += 50;
2202 	do_div(x, 100);
2203 	wc->freelist_high_watermark = x;
2204 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2205 	x += 50;
2206 	do_div(x, 100);
2207 	wc->freelist_low_watermark = x;
2208 
2209 	r = writecache_alloc_entries(wc);
2210 	if (r) {
2211 		ti->error = "Cannot allocate memory";
2212 		goto bad;
2213 	}
2214 
2215 	ti->num_flush_bios = 1;
2216 	ti->flush_supported = true;
2217 	ti->num_discard_bios = 1;
2218 
2219 	if (WC_MODE_PMEM(wc))
2220 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2221 
2222 	return 0;
2223 
2224 bad_arguments:
2225 	r = -EINVAL;
2226 	ti->error = "Bad arguments";
2227 bad:
2228 	writecache_dtr(ti);
2229 	return r;
2230 }
2231 
2232 static void writecache_status(struct dm_target *ti, status_type_t type,
2233 			      unsigned status_flags, char *result, unsigned maxlen)
2234 {
2235 	struct dm_writecache *wc = ti->private;
2236 	unsigned extra_args;
2237 	unsigned sz = 0;
2238 	uint64_t x;
2239 
2240 	switch (type) {
2241 	case STATUSTYPE_INFO:
2242 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2243 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2244 		       (unsigned long long)wc->writeback_size);
2245 		break;
2246 	case STATUSTYPE_TABLE:
2247 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2248 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2249 		extra_args = 0;
2250 		if (wc->start_sector)
2251 			extra_args += 2;
2252 		if (wc->high_wm_percent_set)
2253 			extra_args += 2;
2254 		if (wc->low_wm_percent_set)
2255 			extra_args += 2;
2256 		if (wc->max_writeback_jobs_set)
2257 			extra_args += 2;
2258 		if (wc->autocommit_blocks_set)
2259 			extra_args += 2;
2260 		if (wc->autocommit_time_set)
2261 			extra_args += 2;
2262 		if (wc->writeback_fua_set)
2263 			extra_args++;
2264 
2265 		DMEMIT("%u", extra_args);
2266 		if (wc->start_sector)
2267 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2268 		if (wc->high_wm_percent_set) {
2269 			x = (uint64_t)wc->freelist_high_watermark * 100;
2270 			x += wc->n_blocks / 2;
2271 			do_div(x, (size_t)wc->n_blocks);
2272 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2273 		}
2274 		if (wc->low_wm_percent_set) {
2275 			x = (uint64_t)wc->freelist_low_watermark * 100;
2276 			x += wc->n_blocks / 2;
2277 			do_div(x, (size_t)wc->n_blocks);
2278 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2279 		}
2280 		if (wc->max_writeback_jobs_set)
2281 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2282 		if (wc->autocommit_blocks_set)
2283 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2284 		if (wc->autocommit_time_set)
2285 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2286 		if (wc->writeback_fua_set)
2287 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2288 		break;
2289 	}
2290 }
2291 
2292 static struct target_type writecache_target = {
2293 	.name			= "writecache",
2294 	.version		= {1, 1, 1},
2295 	.module			= THIS_MODULE,
2296 	.ctr			= writecache_ctr,
2297 	.dtr			= writecache_dtr,
2298 	.status			= writecache_status,
2299 	.postsuspend		= writecache_suspend,
2300 	.resume			= writecache_resume,
2301 	.message		= writecache_message,
2302 	.map			= writecache_map,
2303 	.end_io			= writecache_end_io,
2304 	.iterate_devices	= writecache_iterate_devices,
2305 	.io_hints		= writecache_io_hints,
2306 };
2307 
2308 static int __init dm_writecache_init(void)
2309 {
2310 	int r;
2311 
2312 	r = dm_register_target(&writecache_target);
2313 	if (r < 0) {
2314 		DMERR("register failed %d", r);
2315 		return r;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static void __exit dm_writecache_exit(void)
2322 {
2323 	dm_unregister_target(&writecache_target);
2324 }
2325 
2326 module_init(dm_writecache_init);
2327 module_exit(dm_writecache_exit);
2328 
2329 MODULE_DESCRIPTION(DM_NAME " writecache target");
2330 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2331 MODULE_LICENSE("GPL");
2332