1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 void *block_start; 152 struct wc_entry *entries; 153 unsigned block_size; 154 unsigned char block_size_bits; 155 156 bool pmem_mode:1; 157 bool writeback_fua:1; 158 159 bool overwrote_committed:1; 160 bool memory_vmapped:1; 161 162 bool high_wm_percent_set:1; 163 bool low_wm_percent_set:1; 164 bool max_writeback_jobs_set:1; 165 bool autocommit_blocks_set:1; 166 bool autocommit_time_set:1; 167 bool writeback_fua_set:1; 168 bool flush_on_suspend:1; 169 bool cleaner:1; 170 171 unsigned writeback_all; 172 struct workqueue_struct *writeback_wq; 173 struct work_struct writeback_work; 174 struct work_struct flush_work; 175 176 struct dm_io_client *dm_io; 177 178 raw_spinlock_t endio_list_lock; 179 struct list_head endio_list; 180 struct task_struct *endio_thread; 181 182 struct task_struct *flush_thread; 183 struct bio_list flush_list; 184 185 struct dm_kcopyd_client *dm_kcopyd; 186 unsigned long *dirty_bitmap; 187 unsigned dirty_bitmap_size; 188 189 struct bio_set bio_set; 190 mempool_t copy_pool; 191 }; 192 193 #define WB_LIST_INLINE 16 194 195 struct writeback_struct { 196 struct list_head endio_entry; 197 struct dm_writecache *wc; 198 struct wc_entry **wc_list; 199 unsigned wc_list_n; 200 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 201 struct bio bio; 202 }; 203 204 struct copy_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry *e; 208 unsigned n_entries; 209 int error; 210 }; 211 212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 213 "A percentage of time allocated for data copying"); 214 215 static void wc_lock(struct dm_writecache *wc) 216 { 217 mutex_lock(&wc->lock); 218 } 219 220 static void wc_unlock(struct dm_writecache *wc) 221 { 222 mutex_unlock(&wc->lock); 223 } 224 225 #ifdef DM_WRITECACHE_HAS_PMEM 226 static int persistent_memory_claim(struct dm_writecache *wc) 227 { 228 int r; 229 loff_t s; 230 long p, da; 231 pfn_t pfn; 232 int id; 233 struct page **pages; 234 sector_t offset; 235 236 wc->memory_vmapped = false; 237 238 s = wc->memory_map_size; 239 p = s >> PAGE_SHIFT; 240 if (!p) { 241 r = -EINVAL; 242 goto err1; 243 } 244 if (p != s >> PAGE_SHIFT) { 245 r = -EOVERFLOW; 246 goto err1; 247 } 248 249 offset = get_start_sect(wc->ssd_dev->bdev); 250 if (offset & (PAGE_SIZE / 512 - 1)) { 251 r = -EINVAL; 252 goto err1; 253 } 254 offset >>= PAGE_SHIFT - 9; 255 256 id = dax_read_lock(); 257 258 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn); 259 if (da < 0) { 260 wc->memory_map = NULL; 261 r = da; 262 goto err2; 263 } 264 if (!pfn_t_has_page(pfn)) { 265 wc->memory_map = NULL; 266 r = -EOPNOTSUPP; 267 goto err2; 268 } 269 if (da != p) { 270 long i; 271 wc->memory_map = NULL; 272 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 273 if (!pages) { 274 r = -ENOMEM; 275 goto err2; 276 } 277 i = 0; 278 do { 279 long daa; 280 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i, 281 NULL, &pfn); 282 if (daa <= 0) { 283 r = daa ? daa : -EINVAL; 284 goto err3; 285 } 286 if (!pfn_t_has_page(pfn)) { 287 r = -EOPNOTSUPP; 288 goto err3; 289 } 290 while (daa-- && i < p) { 291 pages[i++] = pfn_t_to_page(pfn); 292 pfn.val++; 293 if (!(i & 15)) 294 cond_resched(); 295 } 296 } while (i < p); 297 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 298 if (!wc->memory_map) { 299 r = -ENOMEM; 300 goto err3; 301 } 302 kvfree(pages); 303 wc->memory_vmapped = true; 304 } 305 306 dax_read_unlock(id); 307 308 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 309 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 310 311 return 0; 312 err3: 313 kvfree(pages); 314 err2: 315 dax_read_unlock(id); 316 err1: 317 return r; 318 } 319 #else 320 static int persistent_memory_claim(struct dm_writecache *wc) 321 { 322 BUG(); 323 } 324 #endif 325 326 static void persistent_memory_release(struct dm_writecache *wc) 327 { 328 if (wc->memory_vmapped) 329 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 330 } 331 332 static struct page *persistent_memory_page(void *addr) 333 { 334 if (is_vmalloc_addr(addr)) 335 return vmalloc_to_page(addr); 336 else 337 return virt_to_page(addr); 338 } 339 340 static unsigned persistent_memory_page_offset(void *addr) 341 { 342 return (unsigned long)addr & (PAGE_SIZE - 1); 343 } 344 345 static void persistent_memory_flush_cache(void *ptr, size_t size) 346 { 347 if (is_vmalloc_addr(ptr)) 348 flush_kernel_vmap_range(ptr, size); 349 } 350 351 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 352 { 353 if (is_vmalloc_addr(ptr)) 354 invalidate_kernel_vmap_range(ptr, size); 355 } 356 357 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 358 { 359 return wc->memory_map; 360 } 361 362 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 363 { 364 return &sb(wc)->entries[e->index]; 365 } 366 367 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 368 { 369 return (char *)wc->block_start + (e->index << wc->block_size_bits); 370 } 371 372 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 373 { 374 return wc->start_sector + wc->metadata_sectors + 375 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 376 } 377 378 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 379 { 380 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 381 return e->original_sector; 382 #else 383 return le64_to_cpu(memory_entry(wc, e)->original_sector); 384 #endif 385 } 386 387 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 388 { 389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 390 return e->seq_count; 391 #else 392 return le64_to_cpu(memory_entry(wc, e)->seq_count); 393 #endif 394 } 395 396 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 397 { 398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 399 e->seq_count = -1; 400 #endif 401 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 402 } 403 404 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 405 uint64_t original_sector, uint64_t seq_count) 406 { 407 struct wc_memory_entry me; 408 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 409 e->original_sector = original_sector; 410 e->seq_count = seq_count; 411 #endif 412 me.original_sector = cpu_to_le64(original_sector); 413 me.seq_count = cpu_to_le64(seq_count); 414 pmem_assign(*memory_entry(wc, e), me); 415 } 416 417 #define writecache_error(wc, err, msg, arg...) \ 418 do { \ 419 if (!cmpxchg(&(wc)->error, 0, err)) \ 420 DMERR(msg, ##arg); \ 421 wake_up(&(wc)->freelist_wait); \ 422 } while (0) 423 424 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 425 426 static void writecache_flush_all_metadata(struct dm_writecache *wc) 427 { 428 if (!WC_MODE_PMEM(wc)) 429 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 430 } 431 432 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 433 { 434 if (!WC_MODE_PMEM(wc)) 435 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 436 wc->dirty_bitmap); 437 } 438 439 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 440 441 struct io_notify { 442 struct dm_writecache *wc; 443 struct completion c; 444 atomic_t count; 445 }; 446 447 static void writecache_notify_io(unsigned long error, void *context) 448 { 449 struct io_notify *endio = context; 450 451 if (unlikely(error != 0)) 452 writecache_error(endio->wc, -EIO, "error writing metadata"); 453 BUG_ON(atomic_read(&endio->count) <= 0); 454 if (atomic_dec_and_test(&endio->count)) 455 complete(&endio->c); 456 } 457 458 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 459 { 460 wait_event(wc->bio_in_progress_wait[direction], 461 !atomic_read(&wc->bio_in_progress[direction])); 462 } 463 464 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 465 { 466 struct dm_io_region region; 467 struct dm_io_request req; 468 struct io_notify endio = { 469 wc, 470 COMPLETION_INITIALIZER_ONSTACK(endio.c), 471 ATOMIC_INIT(1), 472 }; 473 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 474 unsigned i = 0; 475 476 while (1) { 477 unsigned j; 478 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 479 if (unlikely(i == bitmap_bits)) 480 break; 481 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 482 483 region.bdev = wc->ssd_dev->bdev; 484 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 485 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 486 487 if (unlikely(region.sector >= wc->metadata_sectors)) 488 break; 489 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 490 region.count = wc->metadata_sectors - region.sector; 491 492 region.sector += wc->start_sector; 493 atomic_inc(&endio.count); 494 req.bi_op = REQ_OP_WRITE; 495 req.bi_op_flags = REQ_SYNC; 496 req.mem.type = DM_IO_VMA; 497 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 498 req.client = wc->dm_io; 499 req.notify.fn = writecache_notify_io; 500 req.notify.context = &endio; 501 502 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 503 (void) dm_io(&req, 1, ®ion, NULL); 504 i = j; 505 } 506 507 writecache_notify_io(0, &endio); 508 wait_for_completion_io(&endio.c); 509 510 if (wait_for_ios) 511 writecache_wait_for_ios(wc, WRITE); 512 513 writecache_disk_flush(wc, wc->ssd_dev); 514 515 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 516 } 517 518 static void ssd_commit_superblock(struct dm_writecache *wc) 519 { 520 int r; 521 struct dm_io_region region; 522 struct dm_io_request req; 523 524 region.bdev = wc->ssd_dev->bdev; 525 region.sector = 0; 526 region.count = PAGE_SIZE; 527 528 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 529 region.count = wc->metadata_sectors - region.sector; 530 531 region.sector += wc->start_sector; 532 533 req.bi_op = REQ_OP_WRITE; 534 req.bi_op_flags = REQ_SYNC | REQ_FUA; 535 req.mem.type = DM_IO_VMA; 536 req.mem.ptr.vma = (char *)wc->memory_map; 537 req.client = wc->dm_io; 538 req.notify.fn = NULL; 539 req.notify.context = NULL; 540 541 r = dm_io(&req, 1, ®ion, NULL); 542 if (unlikely(r)) 543 writecache_error(wc, r, "error writing superblock"); 544 } 545 546 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 547 { 548 if (WC_MODE_PMEM(wc)) 549 pmem_wmb(); 550 else 551 ssd_commit_flushed(wc, wait_for_ios); 552 } 553 554 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 555 { 556 int r; 557 struct dm_io_region region; 558 struct dm_io_request req; 559 560 region.bdev = dev->bdev; 561 region.sector = 0; 562 region.count = 0; 563 req.bi_op = REQ_OP_WRITE; 564 req.bi_op_flags = REQ_PREFLUSH; 565 req.mem.type = DM_IO_KMEM; 566 req.mem.ptr.addr = NULL; 567 req.client = wc->dm_io; 568 req.notify.fn = NULL; 569 570 r = dm_io(&req, 1, ®ion, NULL); 571 if (unlikely(r)) 572 writecache_error(wc, r, "error flushing metadata: %d", r); 573 } 574 575 #define WFE_RETURN_FOLLOWING 1 576 #define WFE_LOWEST_SEQ 2 577 578 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 579 uint64_t block, int flags) 580 { 581 struct wc_entry *e; 582 struct rb_node *node = wc->tree.rb_node; 583 584 if (unlikely(!node)) 585 return NULL; 586 587 while (1) { 588 e = container_of(node, struct wc_entry, rb_node); 589 if (read_original_sector(wc, e) == block) 590 break; 591 592 node = (read_original_sector(wc, e) >= block ? 593 e->rb_node.rb_left : e->rb_node.rb_right); 594 if (unlikely(!node)) { 595 if (!(flags & WFE_RETURN_FOLLOWING)) 596 return NULL; 597 if (read_original_sector(wc, e) >= block) { 598 return e; 599 } else { 600 node = rb_next(&e->rb_node); 601 if (unlikely(!node)) 602 return NULL; 603 e = container_of(node, struct wc_entry, rb_node); 604 return e; 605 } 606 } 607 } 608 609 while (1) { 610 struct wc_entry *e2; 611 if (flags & WFE_LOWEST_SEQ) 612 node = rb_prev(&e->rb_node); 613 else 614 node = rb_next(&e->rb_node); 615 if (unlikely(!node)) 616 return e; 617 e2 = container_of(node, struct wc_entry, rb_node); 618 if (read_original_sector(wc, e2) != block) 619 return e; 620 e = e2; 621 } 622 } 623 624 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 625 { 626 struct wc_entry *e; 627 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 628 629 while (*node) { 630 e = container_of(*node, struct wc_entry, rb_node); 631 parent = &e->rb_node; 632 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 633 node = &parent->rb_left; 634 else 635 node = &parent->rb_right; 636 } 637 rb_link_node(&ins->rb_node, parent, node); 638 rb_insert_color(&ins->rb_node, &wc->tree); 639 list_add(&ins->lru, &wc->lru); 640 ins->age = jiffies; 641 } 642 643 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 644 { 645 list_del(&e->lru); 646 rb_erase(&e->rb_node, &wc->tree); 647 } 648 649 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 650 { 651 if (WC_MODE_SORT_FREELIST(wc)) { 652 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 653 if (unlikely(!*node)) 654 wc->current_free = e; 655 while (*node) { 656 parent = *node; 657 if (&e->rb_node < *node) 658 node = &parent->rb_left; 659 else 660 node = &parent->rb_right; 661 } 662 rb_link_node(&e->rb_node, parent, node); 663 rb_insert_color(&e->rb_node, &wc->freetree); 664 } else { 665 list_add_tail(&e->lru, &wc->freelist); 666 } 667 wc->freelist_size++; 668 } 669 670 static inline void writecache_verify_watermark(struct dm_writecache *wc) 671 { 672 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 673 queue_work(wc->writeback_wq, &wc->writeback_work); 674 } 675 676 static void writecache_max_age_timer(struct timer_list *t) 677 { 678 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 679 680 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 681 queue_work(wc->writeback_wq, &wc->writeback_work); 682 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 683 } 684 } 685 686 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 687 { 688 struct wc_entry *e; 689 690 if (WC_MODE_SORT_FREELIST(wc)) { 691 struct rb_node *next; 692 if (unlikely(!wc->current_free)) 693 return NULL; 694 e = wc->current_free; 695 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 696 return NULL; 697 next = rb_next(&e->rb_node); 698 rb_erase(&e->rb_node, &wc->freetree); 699 if (unlikely(!next)) 700 next = rb_first(&wc->freetree); 701 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 702 } else { 703 if (unlikely(list_empty(&wc->freelist))) 704 return NULL; 705 e = container_of(wc->freelist.next, struct wc_entry, lru); 706 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 707 return NULL; 708 list_del(&e->lru); 709 } 710 wc->freelist_size--; 711 712 writecache_verify_watermark(wc); 713 714 return e; 715 } 716 717 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 718 { 719 writecache_unlink(wc, e); 720 writecache_add_to_freelist(wc, e); 721 clear_seq_count(wc, e); 722 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 723 if (unlikely(waitqueue_active(&wc->freelist_wait))) 724 wake_up(&wc->freelist_wait); 725 } 726 727 static void writecache_wait_on_freelist(struct dm_writecache *wc) 728 { 729 DEFINE_WAIT(wait); 730 731 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 732 wc_unlock(wc); 733 io_schedule(); 734 finish_wait(&wc->freelist_wait, &wait); 735 wc_lock(wc); 736 } 737 738 static void writecache_poison_lists(struct dm_writecache *wc) 739 { 740 /* 741 * Catch incorrect access to these values while the device is suspended. 742 */ 743 memset(&wc->tree, -1, sizeof wc->tree); 744 wc->lru.next = LIST_POISON1; 745 wc->lru.prev = LIST_POISON2; 746 wc->freelist.next = LIST_POISON1; 747 wc->freelist.prev = LIST_POISON2; 748 } 749 750 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 751 { 752 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 753 if (WC_MODE_PMEM(wc)) 754 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 755 } 756 757 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 758 { 759 return read_seq_count(wc, e) < wc->seq_count; 760 } 761 762 static void writecache_flush(struct dm_writecache *wc) 763 { 764 struct wc_entry *e, *e2; 765 bool need_flush_after_free; 766 767 wc->uncommitted_blocks = 0; 768 del_timer(&wc->autocommit_timer); 769 770 if (list_empty(&wc->lru)) 771 return; 772 773 e = container_of(wc->lru.next, struct wc_entry, lru); 774 if (writecache_entry_is_committed(wc, e)) { 775 if (wc->overwrote_committed) { 776 writecache_wait_for_ios(wc, WRITE); 777 writecache_disk_flush(wc, wc->ssd_dev); 778 wc->overwrote_committed = false; 779 } 780 return; 781 } 782 while (1) { 783 writecache_flush_entry(wc, e); 784 if (unlikely(e->lru.next == &wc->lru)) 785 break; 786 e2 = container_of(e->lru.next, struct wc_entry, lru); 787 if (writecache_entry_is_committed(wc, e2)) 788 break; 789 e = e2; 790 cond_resched(); 791 } 792 writecache_commit_flushed(wc, true); 793 794 wc->seq_count++; 795 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 796 if (WC_MODE_PMEM(wc)) 797 writecache_commit_flushed(wc, false); 798 else 799 ssd_commit_superblock(wc); 800 801 wc->overwrote_committed = false; 802 803 need_flush_after_free = false; 804 while (1) { 805 /* Free another committed entry with lower seq-count */ 806 struct rb_node *rb_node = rb_prev(&e->rb_node); 807 808 if (rb_node) { 809 e2 = container_of(rb_node, struct wc_entry, rb_node); 810 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 811 likely(!e2->write_in_progress)) { 812 writecache_free_entry(wc, e2); 813 need_flush_after_free = true; 814 } 815 } 816 if (unlikely(e->lru.prev == &wc->lru)) 817 break; 818 e = container_of(e->lru.prev, struct wc_entry, lru); 819 cond_resched(); 820 } 821 822 if (need_flush_after_free) 823 writecache_commit_flushed(wc, false); 824 } 825 826 static void writecache_flush_work(struct work_struct *work) 827 { 828 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 829 830 wc_lock(wc); 831 writecache_flush(wc); 832 wc_unlock(wc); 833 } 834 835 static void writecache_autocommit_timer(struct timer_list *t) 836 { 837 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 838 if (!writecache_has_error(wc)) 839 queue_work(wc->writeback_wq, &wc->flush_work); 840 } 841 842 static void writecache_schedule_autocommit(struct dm_writecache *wc) 843 { 844 if (!timer_pending(&wc->autocommit_timer)) 845 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 846 } 847 848 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 849 { 850 struct wc_entry *e; 851 bool discarded_something = false; 852 853 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 854 if (unlikely(!e)) 855 return; 856 857 while (read_original_sector(wc, e) < end) { 858 struct rb_node *node = rb_next(&e->rb_node); 859 860 if (likely(!e->write_in_progress)) { 861 if (!discarded_something) { 862 if (!WC_MODE_PMEM(wc)) { 863 writecache_wait_for_ios(wc, READ); 864 writecache_wait_for_ios(wc, WRITE); 865 } 866 discarded_something = true; 867 } 868 if (!writecache_entry_is_committed(wc, e)) 869 wc->uncommitted_blocks--; 870 writecache_free_entry(wc, e); 871 } 872 873 if (unlikely(!node)) 874 break; 875 876 e = container_of(node, struct wc_entry, rb_node); 877 } 878 879 if (discarded_something) 880 writecache_commit_flushed(wc, false); 881 } 882 883 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 884 { 885 if (wc->writeback_size) { 886 writecache_wait_on_freelist(wc); 887 return true; 888 } 889 return false; 890 } 891 892 static void writecache_suspend(struct dm_target *ti) 893 { 894 struct dm_writecache *wc = ti->private; 895 bool flush_on_suspend; 896 897 del_timer_sync(&wc->autocommit_timer); 898 del_timer_sync(&wc->max_age_timer); 899 900 wc_lock(wc); 901 writecache_flush(wc); 902 flush_on_suspend = wc->flush_on_suspend; 903 if (flush_on_suspend) { 904 wc->flush_on_suspend = false; 905 wc->writeback_all++; 906 queue_work(wc->writeback_wq, &wc->writeback_work); 907 } 908 wc_unlock(wc); 909 910 drain_workqueue(wc->writeback_wq); 911 912 wc_lock(wc); 913 if (flush_on_suspend) 914 wc->writeback_all--; 915 while (writecache_wait_for_writeback(wc)); 916 917 if (WC_MODE_PMEM(wc)) 918 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 919 920 writecache_poison_lists(wc); 921 922 wc_unlock(wc); 923 } 924 925 static int writecache_alloc_entries(struct dm_writecache *wc) 926 { 927 size_t b; 928 929 if (wc->entries) 930 return 0; 931 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 932 if (!wc->entries) 933 return -ENOMEM; 934 for (b = 0; b < wc->n_blocks; b++) { 935 struct wc_entry *e = &wc->entries[b]; 936 e->index = b; 937 e->write_in_progress = false; 938 cond_resched(); 939 } 940 941 return 0; 942 } 943 944 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 945 { 946 struct dm_io_region region; 947 struct dm_io_request req; 948 949 region.bdev = wc->ssd_dev->bdev; 950 region.sector = wc->start_sector; 951 region.count = n_sectors; 952 req.bi_op = REQ_OP_READ; 953 req.bi_op_flags = REQ_SYNC; 954 req.mem.type = DM_IO_VMA; 955 req.mem.ptr.vma = (char *)wc->memory_map; 956 req.client = wc->dm_io; 957 req.notify.fn = NULL; 958 959 return dm_io(&req, 1, ®ion, NULL); 960 } 961 962 static void writecache_resume(struct dm_target *ti) 963 { 964 struct dm_writecache *wc = ti->private; 965 size_t b; 966 bool need_flush = false; 967 __le64 sb_seq_count; 968 int r; 969 970 wc_lock(wc); 971 972 if (WC_MODE_PMEM(wc)) { 973 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 974 } else { 975 r = writecache_read_metadata(wc, wc->metadata_sectors); 976 if (r) { 977 size_t sb_entries_offset; 978 writecache_error(wc, r, "unable to read metadata: %d", r); 979 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 980 memset((char *)wc->memory_map + sb_entries_offset, -1, 981 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 982 } 983 } 984 985 wc->tree = RB_ROOT; 986 INIT_LIST_HEAD(&wc->lru); 987 if (WC_MODE_SORT_FREELIST(wc)) { 988 wc->freetree = RB_ROOT; 989 wc->current_free = NULL; 990 } else { 991 INIT_LIST_HEAD(&wc->freelist); 992 } 993 wc->freelist_size = 0; 994 995 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count, 996 sizeof(uint64_t)); 997 if (r) { 998 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 999 sb_seq_count = cpu_to_le64(0); 1000 } 1001 wc->seq_count = le64_to_cpu(sb_seq_count); 1002 1003 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 1004 for (b = 0; b < wc->n_blocks; b++) { 1005 struct wc_entry *e = &wc->entries[b]; 1006 struct wc_memory_entry wme; 1007 if (writecache_has_error(wc)) { 1008 e->original_sector = -1; 1009 e->seq_count = -1; 1010 continue; 1011 } 1012 r = copy_mc_to_kernel(&wme, memory_entry(wc, e), 1013 sizeof(struct wc_memory_entry)); 1014 if (r) { 1015 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1016 (unsigned long)b, r); 1017 e->original_sector = -1; 1018 e->seq_count = -1; 1019 } else { 1020 e->original_sector = le64_to_cpu(wme.original_sector); 1021 e->seq_count = le64_to_cpu(wme.seq_count); 1022 } 1023 cond_resched(); 1024 } 1025 #endif 1026 for (b = 0; b < wc->n_blocks; b++) { 1027 struct wc_entry *e = &wc->entries[b]; 1028 if (!writecache_entry_is_committed(wc, e)) { 1029 if (read_seq_count(wc, e) != -1) { 1030 erase_this: 1031 clear_seq_count(wc, e); 1032 need_flush = true; 1033 } 1034 writecache_add_to_freelist(wc, e); 1035 } else { 1036 struct wc_entry *old; 1037 1038 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1039 if (!old) { 1040 writecache_insert_entry(wc, e); 1041 } else { 1042 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1043 writecache_error(wc, -EINVAL, 1044 "two identical entries, position %llu, sector %llu, sequence %llu", 1045 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1046 (unsigned long long)read_seq_count(wc, e)); 1047 } 1048 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1049 goto erase_this; 1050 } else { 1051 writecache_free_entry(wc, old); 1052 writecache_insert_entry(wc, e); 1053 need_flush = true; 1054 } 1055 } 1056 } 1057 cond_resched(); 1058 } 1059 1060 if (need_flush) { 1061 writecache_flush_all_metadata(wc); 1062 writecache_commit_flushed(wc, false); 1063 } 1064 1065 writecache_verify_watermark(wc); 1066 1067 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1068 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1069 1070 wc_unlock(wc); 1071 } 1072 1073 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1074 { 1075 if (argc != 1) 1076 return -EINVAL; 1077 1078 wc_lock(wc); 1079 if (dm_suspended(wc->ti)) { 1080 wc_unlock(wc); 1081 return -EBUSY; 1082 } 1083 if (writecache_has_error(wc)) { 1084 wc_unlock(wc); 1085 return -EIO; 1086 } 1087 1088 writecache_flush(wc); 1089 wc->writeback_all++; 1090 queue_work(wc->writeback_wq, &wc->writeback_work); 1091 wc_unlock(wc); 1092 1093 flush_workqueue(wc->writeback_wq); 1094 1095 wc_lock(wc); 1096 wc->writeback_all--; 1097 if (writecache_has_error(wc)) { 1098 wc_unlock(wc); 1099 return -EIO; 1100 } 1101 wc_unlock(wc); 1102 1103 return 0; 1104 } 1105 1106 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1107 { 1108 if (argc != 1) 1109 return -EINVAL; 1110 1111 wc_lock(wc); 1112 wc->flush_on_suspend = true; 1113 wc_unlock(wc); 1114 1115 return 0; 1116 } 1117 1118 static void activate_cleaner(struct dm_writecache *wc) 1119 { 1120 wc->flush_on_suspend = true; 1121 wc->cleaner = true; 1122 wc->freelist_high_watermark = wc->n_blocks; 1123 wc->freelist_low_watermark = wc->n_blocks; 1124 } 1125 1126 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1127 { 1128 if (argc != 1) 1129 return -EINVAL; 1130 1131 wc_lock(wc); 1132 activate_cleaner(wc); 1133 if (!dm_suspended(wc->ti)) 1134 writecache_verify_watermark(wc); 1135 wc_unlock(wc); 1136 1137 return 0; 1138 } 1139 1140 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1141 char *result, unsigned maxlen) 1142 { 1143 int r = -EINVAL; 1144 struct dm_writecache *wc = ti->private; 1145 1146 if (!strcasecmp(argv[0], "flush")) 1147 r = process_flush_mesg(argc, argv, wc); 1148 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1149 r = process_flush_on_suspend_mesg(argc, argv, wc); 1150 else if (!strcasecmp(argv[0], "cleaner")) 1151 r = process_cleaner_mesg(argc, argv, wc); 1152 else 1153 DMERR("unrecognised message received: %s", argv[0]); 1154 1155 return r; 1156 } 1157 1158 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1159 { 1160 /* 1161 * clflushopt performs better with block size 1024, 2048, 4096 1162 * non-temporal stores perform better with block size 512 1163 * 1164 * block size 512 1024 2048 4096 1165 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1166 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1167 * 1168 * We see that movnti performs better for 512-byte blocks, and 1169 * clflushopt performs better for 1024-byte and larger blocks. So, we 1170 * prefer clflushopt for sizes >= 768. 1171 * 1172 * NOTE: this happens to be the case now (with dm-writecache's single 1173 * threaded model) but re-evaluate this once memcpy_flushcache() is 1174 * enabled to use movdir64b which might invalidate this performance 1175 * advantage seen with cache-allocating-writes plus flushing. 1176 */ 1177 #ifdef CONFIG_X86 1178 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1179 likely(boot_cpu_data.x86_clflush_size == 64) && 1180 likely(size >= 768)) { 1181 do { 1182 memcpy((void *)dest, (void *)source, 64); 1183 clflushopt((void *)dest); 1184 dest += 64; 1185 source += 64; 1186 size -= 64; 1187 } while (size >= 64); 1188 return; 1189 } 1190 #endif 1191 memcpy_flushcache(dest, source, size); 1192 } 1193 1194 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1195 { 1196 void *buf; 1197 unsigned long flags; 1198 unsigned size; 1199 int rw = bio_data_dir(bio); 1200 unsigned remaining_size = wc->block_size; 1201 1202 do { 1203 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1204 buf = bvec_kmap_irq(&bv, &flags); 1205 size = bv.bv_len; 1206 if (unlikely(size > remaining_size)) 1207 size = remaining_size; 1208 1209 if (rw == READ) { 1210 int r; 1211 r = copy_mc_to_kernel(buf, data, size); 1212 flush_dcache_page(bio_page(bio)); 1213 if (unlikely(r)) { 1214 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1215 bio->bi_status = BLK_STS_IOERR; 1216 } 1217 } else { 1218 flush_dcache_page(bio_page(bio)); 1219 memcpy_flushcache_optimized(data, buf, size); 1220 } 1221 1222 bvec_kunmap_irq(buf, &flags); 1223 1224 data = (char *)data + size; 1225 remaining_size -= size; 1226 bio_advance(bio, size); 1227 } while (unlikely(remaining_size)); 1228 } 1229 1230 static int writecache_flush_thread(void *data) 1231 { 1232 struct dm_writecache *wc = data; 1233 1234 while (1) { 1235 struct bio *bio; 1236 1237 wc_lock(wc); 1238 bio = bio_list_pop(&wc->flush_list); 1239 if (!bio) { 1240 set_current_state(TASK_INTERRUPTIBLE); 1241 wc_unlock(wc); 1242 1243 if (unlikely(kthread_should_stop())) { 1244 set_current_state(TASK_RUNNING); 1245 break; 1246 } 1247 1248 schedule(); 1249 continue; 1250 } 1251 1252 if (bio_op(bio) == REQ_OP_DISCARD) { 1253 writecache_discard(wc, bio->bi_iter.bi_sector, 1254 bio_end_sector(bio)); 1255 wc_unlock(wc); 1256 bio_set_dev(bio, wc->dev->bdev); 1257 submit_bio_noacct(bio); 1258 } else { 1259 writecache_flush(wc); 1260 wc_unlock(wc); 1261 if (writecache_has_error(wc)) 1262 bio->bi_status = BLK_STS_IOERR; 1263 bio_endio(bio); 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1271 { 1272 if (bio_list_empty(&wc->flush_list)) 1273 wake_up_process(wc->flush_thread); 1274 bio_list_add(&wc->flush_list, bio); 1275 } 1276 1277 static int writecache_map(struct dm_target *ti, struct bio *bio) 1278 { 1279 struct wc_entry *e; 1280 struct dm_writecache *wc = ti->private; 1281 1282 bio->bi_private = NULL; 1283 1284 wc_lock(wc); 1285 1286 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1287 if (writecache_has_error(wc)) 1288 goto unlock_error; 1289 if (WC_MODE_PMEM(wc)) { 1290 writecache_flush(wc); 1291 if (writecache_has_error(wc)) 1292 goto unlock_error; 1293 goto unlock_submit; 1294 } else { 1295 writecache_offload_bio(wc, bio); 1296 goto unlock_return; 1297 } 1298 } 1299 1300 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1301 1302 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1303 (wc->block_size / 512 - 1)) != 0)) { 1304 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1305 (unsigned long long)bio->bi_iter.bi_sector, 1306 bio->bi_iter.bi_size, wc->block_size); 1307 goto unlock_error; 1308 } 1309 1310 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1311 if (writecache_has_error(wc)) 1312 goto unlock_error; 1313 if (WC_MODE_PMEM(wc)) { 1314 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1315 goto unlock_remap_origin; 1316 } else { 1317 writecache_offload_bio(wc, bio); 1318 goto unlock_return; 1319 } 1320 } 1321 1322 if (bio_data_dir(bio) == READ) { 1323 read_next_block: 1324 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1325 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1326 if (WC_MODE_PMEM(wc)) { 1327 bio_copy_block(wc, bio, memory_data(wc, e)); 1328 if (bio->bi_iter.bi_size) 1329 goto read_next_block; 1330 goto unlock_submit; 1331 } else { 1332 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1333 bio_set_dev(bio, wc->ssd_dev->bdev); 1334 bio->bi_iter.bi_sector = cache_sector(wc, e); 1335 if (!writecache_entry_is_committed(wc, e)) 1336 writecache_wait_for_ios(wc, WRITE); 1337 goto unlock_remap; 1338 } 1339 } else { 1340 if (e) { 1341 sector_t next_boundary = 1342 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1343 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1344 dm_accept_partial_bio(bio, next_boundary); 1345 } 1346 } 1347 goto unlock_remap_origin; 1348 } 1349 } else { 1350 do { 1351 bool found_entry = false; 1352 if (writecache_has_error(wc)) 1353 goto unlock_error; 1354 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1355 if (e) { 1356 if (!writecache_entry_is_committed(wc, e)) 1357 goto bio_copy; 1358 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1359 wc->overwrote_committed = true; 1360 goto bio_copy; 1361 } 1362 found_entry = true; 1363 } else { 1364 if (unlikely(wc->cleaner)) 1365 goto direct_write; 1366 } 1367 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1368 if (unlikely(!e)) { 1369 if (!found_entry) { 1370 direct_write: 1371 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1372 if (e) { 1373 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1374 BUG_ON(!next_boundary); 1375 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1376 dm_accept_partial_bio(bio, next_boundary); 1377 } 1378 } 1379 goto unlock_remap_origin; 1380 } 1381 writecache_wait_on_freelist(wc); 1382 continue; 1383 } 1384 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1385 writecache_insert_entry(wc, e); 1386 wc->uncommitted_blocks++; 1387 bio_copy: 1388 if (WC_MODE_PMEM(wc)) { 1389 bio_copy_block(wc, bio, memory_data(wc, e)); 1390 } else { 1391 unsigned bio_size = wc->block_size; 1392 sector_t start_cache_sec = cache_sector(wc, e); 1393 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1394 1395 while (bio_size < bio->bi_iter.bi_size) { 1396 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1397 if (!f) 1398 break; 1399 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1400 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1401 writecache_insert_entry(wc, f); 1402 wc->uncommitted_blocks++; 1403 bio_size += wc->block_size; 1404 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1405 } 1406 1407 bio_set_dev(bio, wc->ssd_dev->bdev); 1408 bio->bi_iter.bi_sector = start_cache_sec; 1409 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1410 1411 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1412 wc->uncommitted_blocks = 0; 1413 queue_work(wc->writeback_wq, &wc->flush_work); 1414 } else { 1415 writecache_schedule_autocommit(wc); 1416 } 1417 goto unlock_remap; 1418 } 1419 } while (bio->bi_iter.bi_size); 1420 1421 if (unlikely(bio->bi_opf & REQ_FUA || 1422 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1423 writecache_flush(wc); 1424 else 1425 writecache_schedule_autocommit(wc); 1426 goto unlock_submit; 1427 } 1428 1429 unlock_remap_origin: 1430 bio_set_dev(bio, wc->dev->bdev); 1431 wc_unlock(wc); 1432 return DM_MAPIO_REMAPPED; 1433 1434 unlock_remap: 1435 /* make sure that writecache_end_io decrements bio_in_progress: */ 1436 bio->bi_private = (void *)1; 1437 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1438 wc_unlock(wc); 1439 return DM_MAPIO_REMAPPED; 1440 1441 unlock_submit: 1442 wc_unlock(wc); 1443 bio_endio(bio); 1444 return DM_MAPIO_SUBMITTED; 1445 1446 unlock_return: 1447 wc_unlock(wc); 1448 return DM_MAPIO_SUBMITTED; 1449 1450 unlock_error: 1451 wc_unlock(wc); 1452 bio_io_error(bio); 1453 return DM_MAPIO_SUBMITTED; 1454 } 1455 1456 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1457 { 1458 struct dm_writecache *wc = ti->private; 1459 1460 if (bio->bi_private != NULL) { 1461 int dir = bio_data_dir(bio); 1462 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1463 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1464 wake_up(&wc->bio_in_progress_wait[dir]); 1465 } 1466 return 0; 1467 } 1468 1469 static int writecache_iterate_devices(struct dm_target *ti, 1470 iterate_devices_callout_fn fn, void *data) 1471 { 1472 struct dm_writecache *wc = ti->private; 1473 1474 return fn(ti, wc->dev, 0, ti->len, data); 1475 } 1476 1477 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1478 { 1479 struct dm_writecache *wc = ti->private; 1480 1481 if (limits->logical_block_size < wc->block_size) 1482 limits->logical_block_size = wc->block_size; 1483 1484 if (limits->physical_block_size < wc->block_size) 1485 limits->physical_block_size = wc->block_size; 1486 1487 if (limits->io_min < wc->block_size) 1488 limits->io_min = wc->block_size; 1489 } 1490 1491 1492 static void writecache_writeback_endio(struct bio *bio) 1493 { 1494 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1495 struct dm_writecache *wc = wb->wc; 1496 unsigned long flags; 1497 1498 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1499 if (unlikely(list_empty(&wc->endio_list))) 1500 wake_up_process(wc->endio_thread); 1501 list_add_tail(&wb->endio_entry, &wc->endio_list); 1502 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1503 } 1504 1505 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1506 { 1507 struct copy_struct *c = ptr; 1508 struct dm_writecache *wc = c->wc; 1509 1510 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1511 1512 raw_spin_lock_irq(&wc->endio_list_lock); 1513 if (unlikely(list_empty(&wc->endio_list))) 1514 wake_up_process(wc->endio_thread); 1515 list_add_tail(&c->endio_entry, &wc->endio_list); 1516 raw_spin_unlock_irq(&wc->endio_list_lock); 1517 } 1518 1519 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1520 { 1521 unsigned i; 1522 struct writeback_struct *wb; 1523 struct wc_entry *e; 1524 unsigned long n_walked = 0; 1525 1526 do { 1527 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1528 list_del(&wb->endio_entry); 1529 1530 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1531 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1532 "write error %d", wb->bio.bi_status); 1533 i = 0; 1534 do { 1535 e = wb->wc_list[i]; 1536 BUG_ON(!e->write_in_progress); 1537 e->write_in_progress = false; 1538 INIT_LIST_HEAD(&e->lru); 1539 if (!writecache_has_error(wc)) 1540 writecache_free_entry(wc, e); 1541 BUG_ON(!wc->writeback_size); 1542 wc->writeback_size--; 1543 n_walked++; 1544 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1545 writecache_commit_flushed(wc, false); 1546 wc_unlock(wc); 1547 wc_lock(wc); 1548 n_walked = 0; 1549 } 1550 } while (++i < wb->wc_list_n); 1551 1552 if (wb->wc_list != wb->wc_list_inline) 1553 kfree(wb->wc_list); 1554 bio_put(&wb->bio); 1555 } while (!list_empty(list)); 1556 } 1557 1558 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1559 { 1560 struct copy_struct *c; 1561 struct wc_entry *e; 1562 1563 do { 1564 c = list_entry(list->next, struct copy_struct, endio_entry); 1565 list_del(&c->endio_entry); 1566 1567 if (unlikely(c->error)) 1568 writecache_error(wc, c->error, "copy error"); 1569 1570 e = c->e; 1571 do { 1572 BUG_ON(!e->write_in_progress); 1573 e->write_in_progress = false; 1574 INIT_LIST_HEAD(&e->lru); 1575 if (!writecache_has_error(wc)) 1576 writecache_free_entry(wc, e); 1577 1578 BUG_ON(!wc->writeback_size); 1579 wc->writeback_size--; 1580 e++; 1581 } while (--c->n_entries); 1582 mempool_free(c, &wc->copy_pool); 1583 } while (!list_empty(list)); 1584 } 1585 1586 static int writecache_endio_thread(void *data) 1587 { 1588 struct dm_writecache *wc = data; 1589 1590 while (1) { 1591 struct list_head list; 1592 1593 raw_spin_lock_irq(&wc->endio_list_lock); 1594 if (!list_empty(&wc->endio_list)) 1595 goto pop_from_list; 1596 set_current_state(TASK_INTERRUPTIBLE); 1597 raw_spin_unlock_irq(&wc->endio_list_lock); 1598 1599 if (unlikely(kthread_should_stop())) { 1600 set_current_state(TASK_RUNNING); 1601 break; 1602 } 1603 1604 schedule(); 1605 1606 continue; 1607 1608 pop_from_list: 1609 list = wc->endio_list; 1610 list.next->prev = list.prev->next = &list; 1611 INIT_LIST_HEAD(&wc->endio_list); 1612 raw_spin_unlock_irq(&wc->endio_list_lock); 1613 1614 if (!WC_MODE_FUA(wc)) 1615 writecache_disk_flush(wc, wc->dev); 1616 1617 wc_lock(wc); 1618 1619 if (WC_MODE_PMEM(wc)) { 1620 __writecache_endio_pmem(wc, &list); 1621 } else { 1622 __writecache_endio_ssd(wc, &list); 1623 writecache_wait_for_ios(wc, READ); 1624 } 1625 1626 writecache_commit_flushed(wc, false); 1627 1628 wc_unlock(wc); 1629 } 1630 1631 return 0; 1632 } 1633 1634 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1635 { 1636 struct dm_writecache *wc = wb->wc; 1637 unsigned block_size = wc->block_size; 1638 void *address = memory_data(wc, e); 1639 1640 persistent_memory_flush_cache(address, block_size); 1641 return bio_add_page(&wb->bio, persistent_memory_page(address), 1642 block_size, persistent_memory_page_offset(address)) != 0; 1643 } 1644 1645 struct writeback_list { 1646 struct list_head list; 1647 size_t size; 1648 }; 1649 1650 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1651 { 1652 if (unlikely(wc->max_writeback_jobs)) { 1653 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1654 wc_lock(wc); 1655 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1656 writecache_wait_on_freelist(wc); 1657 wc_unlock(wc); 1658 } 1659 } 1660 cond_resched(); 1661 } 1662 1663 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1664 { 1665 struct wc_entry *e, *f; 1666 struct bio *bio; 1667 struct writeback_struct *wb; 1668 unsigned max_pages; 1669 1670 while (wbl->size) { 1671 wbl->size--; 1672 e = container_of(wbl->list.prev, struct wc_entry, lru); 1673 list_del(&e->lru); 1674 1675 max_pages = e->wc_list_contiguous; 1676 1677 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1678 wb = container_of(bio, struct writeback_struct, bio); 1679 wb->wc = wc; 1680 bio->bi_end_io = writecache_writeback_endio; 1681 bio_set_dev(bio, wc->dev->bdev); 1682 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1683 if (max_pages <= WB_LIST_INLINE || 1684 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1685 GFP_NOIO | __GFP_NORETRY | 1686 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1687 wb->wc_list = wb->wc_list_inline; 1688 max_pages = WB_LIST_INLINE; 1689 } 1690 1691 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1692 1693 wb->wc_list[0] = e; 1694 wb->wc_list_n = 1; 1695 1696 while (wbl->size && wb->wc_list_n < max_pages) { 1697 f = container_of(wbl->list.prev, struct wc_entry, lru); 1698 if (read_original_sector(wc, f) != 1699 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1700 break; 1701 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1702 break; 1703 wbl->size--; 1704 list_del(&f->lru); 1705 wb->wc_list[wb->wc_list_n++] = f; 1706 e = f; 1707 } 1708 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1709 if (writecache_has_error(wc)) { 1710 bio->bi_status = BLK_STS_IOERR; 1711 bio_endio(bio); 1712 } else { 1713 submit_bio(bio); 1714 } 1715 1716 __writeback_throttle(wc, wbl); 1717 } 1718 } 1719 1720 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1721 { 1722 struct wc_entry *e, *f; 1723 struct dm_io_region from, to; 1724 struct copy_struct *c; 1725 1726 while (wbl->size) { 1727 unsigned n_sectors; 1728 1729 wbl->size--; 1730 e = container_of(wbl->list.prev, struct wc_entry, lru); 1731 list_del(&e->lru); 1732 1733 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1734 1735 from.bdev = wc->ssd_dev->bdev; 1736 from.sector = cache_sector(wc, e); 1737 from.count = n_sectors; 1738 to.bdev = wc->dev->bdev; 1739 to.sector = read_original_sector(wc, e); 1740 to.count = n_sectors; 1741 1742 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1743 c->wc = wc; 1744 c->e = e; 1745 c->n_entries = e->wc_list_contiguous; 1746 1747 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1748 wbl->size--; 1749 f = container_of(wbl->list.prev, struct wc_entry, lru); 1750 BUG_ON(f != e + 1); 1751 list_del(&f->lru); 1752 e = f; 1753 } 1754 1755 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1756 1757 __writeback_throttle(wc, wbl); 1758 } 1759 } 1760 1761 static void writecache_writeback(struct work_struct *work) 1762 { 1763 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1764 struct blk_plug plug; 1765 struct wc_entry *f, *g, *e = NULL; 1766 struct rb_node *node, *next_node; 1767 struct list_head skipped; 1768 struct writeback_list wbl; 1769 unsigned long n_walked; 1770 1771 wc_lock(wc); 1772 restart: 1773 if (writecache_has_error(wc)) { 1774 wc_unlock(wc); 1775 return; 1776 } 1777 1778 if (unlikely(wc->writeback_all)) { 1779 if (writecache_wait_for_writeback(wc)) 1780 goto restart; 1781 } 1782 1783 if (wc->overwrote_committed) { 1784 writecache_wait_for_ios(wc, WRITE); 1785 } 1786 1787 n_walked = 0; 1788 INIT_LIST_HEAD(&skipped); 1789 INIT_LIST_HEAD(&wbl.list); 1790 wbl.size = 0; 1791 while (!list_empty(&wc->lru) && 1792 (wc->writeback_all || 1793 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1794 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1795 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1796 1797 n_walked++; 1798 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1799 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1800 queue_work(wc->writeback_wq, &wc->writeback_work); 1801 break; 1802 } 1803 1804 if (unlikely(wc->writeback_all)) { 1805 if (unlikely(!e)) { 1806 writecache_flush(wc); 1807 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1808 } else 1809 e = g; 1810 } else 1811 e = container_of(wc->lru.prev, struct wc_entry, lru); 1812 BUG_ON(e->write_in_progress); 1813 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1814 writecache_flush(wc); 1815 } 1816 node = rb_prev(&e->rb_node); 1817 if (node) { 1818 f = container_of(node, struct wc_entry, rb_node); 1819 if (unlikely(read_original_sector(wc, f) == 1820 read_original_sector(wc, e))) { 1821 BUG_ON(!f->write_in_progress); 1822 list_del(&e->lru); 1823 list_add(&e->lru, &skipped); 1824 cond_resched(); 1825 continue; 1826 } 1827 } 1828 wc->writeback_size++; 1829 list_del(&e->lru); 1830 list_add(&e->lru, &wbl.list); 1831 wbl.size++; 1832 e->write_in_progress = true; 1833 e->wc_list_contiguous = 1; 1834 1835 f = e; 1836 1837 while (1) { 1838 next_node = rb_next(&f->rb_node); 1839 if (unlikely(!next_node)) 1840 break; 1841 g = container_of(next_node, struct wc_entry, rb_node); 1842 if (unlikely(read_original_sector(wc, g) == 1843 read_original_sector(wc, f))) { 1844 f = g; 1845 continue; 1846 } 1847 if (read_original_sector(wc, g) != 1848 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1849 break; 1850 if (unlikely(g->write_in_progress)) 1851 break; 1852 if (unlikely(!writecache_entry_is_committed(wc, g))) 1853 break; 1854 1855 if (!WC_MODE_PMEM(wc)) { 1856 if (g != f + 1) 1857 break; 1858 } 1859 1860 n_walked++; 1861 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1862 // break; 1863 1864 wc->writeback_size++; 1865 list_del(&g->lru); 1866 list_add(&g->lru, &wbl.list); 1867 wbl.size++; 1868 g->write_in_progress = true; 1869 g->wc_list_contiguous = BIO_MAX_PAGES; 1870 f = g; 1871 e->wc_list_contiguous++; 1872 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1873 if (unlikely(wc->writeback_all)) { 1874 next_node = rb_next(&f->rb_node); 1875 if (likely(next_node)) 1876 g = container_of(next_node, struct wc_entry, rb_node); 1877 } 1878 break; 1879 } 1880 } 1881 cond_resched(); 1882 } 1883 1884 if (!list_empty(&skipped)) { 1885 list_splice_tail(&skipped, &wc->lru); 1886 /* 1887 * If we didn't do any progress, we must wait until some 1888 * writeback finishes to avoid burning CPU in a loop 1889 */ 1890 if (unlikely(!wbl.size)) 1891 writecache_wait_for_writeback(wc); 1892 } 1893 1894 wc_unlock(wc); 1895 1896 blk_start_plug(&plug); 1897 1898 if (WC_MODE_PMEM(wc)) 1899 __writecache_writeback_pmem(wc, &wbl); 1900 else 1901 __writecache_writeback_ssd(wc, &wbl); 1902 1903 blk_finish_plug(&plug); 1904 1905 if (unlikely(wc->writeback_all)) { 1906 wc_lock(wc); 1907 while (writecache_wait_for_writeback(wc)); 1908 wc_unlock(wc); 1909 } 1910 } 1911 1912 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1913 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1914 { 1915 uint64_t n_blocks, offset; 1916 struct wc_entry e; 1917 1918 n_blocks = device_size; 1919 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1920 1921 while (1) { 1922 if (!n_blocks) 1923 return -ENOSPC; 1924 /* Verify the following entries[n_blocks] won't overflow */ 1925 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1926 sizeof(struct wc_memory_entry))) 1927 return -EFBIG; 1928 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1929 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1930 if (offset + n_blocks * block_size <= device_size) 1931 break; 1932 n_blocks--; 1933 } 1934 1935 /* check if the bit field overflows */ 1936 e.index = n_blocks; 1937 if (e.index != n_blocks) 1938 return -EFBIG; 1939 1940 if (n_blocks_p) 1941 *n_blocks_p = n_blocks; 1942 if (n_metadata_blocks_p) 1943 *n_metadata_blocks_p = offset >> __ffs(block_size); 1944 return 0; 1945 } 1946 1947 static int init_memory(struct dm_writecache *wc) 1948 { 1949 size_t b; 1950 int r; 1951 1952 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1953 if (r) 1954 return r; 1955 1956 r = writecache_alloc_entries(wc); 1957 if (r) 1958 return r; 1959 1960 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1961 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1962 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1963 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1964 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1965 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1966 1967 for (b = 0; b < wc->n_blocks; b++) { 1968 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1969 cond_resched(); 1970 } 1971 1972 writecache_flush_all_metadata(wc); 1973 writecache_commit_flushed(wc, false); 1974 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1975 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1976 writecache_commit_flushed(wc, false); 1977 1978 return 0; 1979 } 1980 1981 static void writecache_dtr(struct dm_target *ti) 1982 { 1983 struct dm_writecache *wc = ti->private; 1984 1985 if (!wc) 1986 return; 1987 1988 if (wc->endio_thread) 1989 kthread_stop(wc->endio_thread); 1990 1991 if (wc->flush_thread) 1992 kthread_stop(wc->flush_thread); 1993 1994 bioset_exit(&wc->bio_set); 1995 1996 mempool_exit(&wc->copy_pool); 1997 1998 if (wc->writeback_wq) 1999 destroy_workqueue(wc->writeback_wq); 2000 2001 if (wc->dev) 2002 dm_put_device(ti, wc->dev); 2003 2004 if (wc->ssd_dev) 2005 dm_put_device(ti, wc->ssd_dev); 2006 2007 if (wc->entries) 2008 vfree(wc->entries); 2009 2010 if (wc->memory_map) { 2011 if (WC_MODE_PMEM(wc)) 2012 persistent_memory_release(wc); 2013 else 2014 vfree(wc->memory_map); 2015 } 2016 2017 if (wc->dm_kcopyd) 2018 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2019 2020 if (wc->dm_io) 2021 dm_io_client_destroy(wc->dm_io); 2022 2023 if (wc->dirty_bitmap) 2024 vfree(wc->dirty_bitmap); 2025 2026 kfree(wc); 2027 } 2028 2029 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2030 { 2031 struct dm_writecache *wc; 2032 struct dm_arg_set as; 2033 const char *string; 2034 unsigned opt_params; 2035 size_t offset, data_size; 2036 int i, r; 2037 char dummy; 2038 int high_wm_percent = HIGH_WATERMARK; 2039 int low_wm_percent = LOW_WATERMARK; 2040 uint64_t x; 2041 struct wc_memory_superblock s; 2042 2043 static struct dm_arg _args[] = { 2044 {0, 10, "Invalid number of feature args"}, 2045 }; 2046 2047 as.argc = argc; 2048 as.argv = argv; 2049 2050 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2051 if (!wc) { 2052 ti->error = "Cannot allocate writecache structure"; 2053 r = -ENOMEM; 2054 goto bad; 2055 } 2056 ti->private = wc; 2057 wc->ti = ti; 2058 2059 mutex_init(&wc->lock); 2060 wc->max_age = MAX_AGE_UNSPECIFIED; 2061 writecache_poison_lists(wc); 2062 init_waitqueue_head(&wc->freelist_wait); 2063 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2064 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2065 2066 for (i = 0; i < 2; i++) { 2067 atomic_set(&wc->bio_in_progress[i], 0); 2068 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2069 } 2070 2071 wc->dm_io = dm_io_client_create(); 2072 if (IS_ERR(wc->dm_io)) { 2073 r = PTR_ERR(wc->dm_io); 2074 ti->error = "Unable to allocate dm-io client"; 2075 wc->dm_io = NULL; 2076 goto bad; 2077 } 2078 2079 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2080 if (!wc->writeback_wq) { 2081 r = -ENOMEM; 2082 ti->error = "Could not allocate writeback workqueue"; 2083 goto bad; 2084 } 2085 INIT_WORK(&wc->writeback_work, writecache_writeback); 2086 INIT_WORK(&wc->flush_work, writecache_flush_work); 2087 2088 raw_spin_lock_init(&wc->endio_list_lock); 2089 INIT_LIST_HEAD(&wc->endio_list); 2090 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2091 if (IS_ERR(wc->endio_thread)) { 2092 r = PTR_ERR(wc->endio_thread); 2093 wc->endio_thread = NULL; 2094 ti->error = "Couldn't spawn endio thread"; 2095 goto bad; 2096 } 2097 wake_up_process(wc->endio_thread); 2098 2099 /* 2100 * Parse the mode (pmem or ssd) 2101 */ 2102 string = dm_shift_arg(&as); 2103 if (!string) 2104 goto bad_arguments; 2105 2106 if (!strcasecmp(string, "s")) { 2107 wc->pmem_mode = false; 2108 } else if (!strcasecmp(string, "p")) { 2109 #ifdef DM_WRITECACHE_HAS_PMEM 2110 wc->pmem_mode = true; 2111 wc->writeback_fua = true; 2112 #else 2113 /* 2114 * If the architecture doesn't support persistent memory or 2115 * the kernel doesn't support any DAX drivers, this driver can 2116 * only be used in SSD-only mode. 2117 */ 2118 r = -EOPNOTSUPP; 2119 ti->error = "Persistent memory or DAX not supported on this system"; 2120 goto bad; 2121 #endif 2122 } else { 2123 goto bad_arguments; 2124 } 2125 2126 if (WC_MODE_PMEM(wc)) { 2127 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2128 offsetof(struct writeback_struct, bio), 2129 BIOSET_NEED_BVECS); 2130 if (r) { 2131 ti->error = "Could not allocate bio set"; 2132 goto bad; 2133 } 2134 } else { 2135 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2136 if (r) { 2137 ti->error = "Could not allocate mempool"; 2138 goto bad; 2139 } 2140 } 2141 2142 /* 2143 * Parse the origin data device 2144 */ 2145 string = dm_shift_arg(&as); 2146 if (!string) 2147 goto bad_arguments; 2148 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2149 if (r) { 2150 ti->error = "Origin data device lookup failed"; 2151 goto bad; 2152 } 2153 2154 /* 2155 * Parse cache data device (be it pmem or ssd) 2156 */ 2157 string = dm_shift_arg(&as); 2158 if (!string) 2159 goto bad_arguments; 2160 2161 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2162 if (r) { 2163 ti->error = "Cache data device lookup failed"; 2164 goto bad; 2165 } 2166 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2167 2168 /* 2169 * Parse the cache block size 2170 */ 2171 string = dm_shift_arg(&as); 2172 if (!string) 2173 goto bad_arguments; 2174 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2175 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2176 (wc->block_size & (wc->block_size - 1))) { 2177 r = -EINVAL; 2178 ti->error = "Invalid block size"; 2179 goto bad; 2180 } 2181 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2182 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2183 r = -EINVAL; 2184 ti->error = "Block size is smaller than device logical block size"; 2185 goto bad; 2186 } 2187 wc->block_size_bits = __ffs(wc->block_size); 2188 2189 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2190 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2191 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2192 2193 /* 2194 * Parse optional arguments 2195 */ 2196 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2197 if (r) 2198 goto bad; 2199 2200 while (opt_params) { 2201 string = dm_shift_arg(&as), opt_params--; 2202 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2203 unsigned long long start_sector; 2204 string = dm_shift_arg(&as), opt_params--; 2205 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2206 goto invalid_optional; 2207 wc->start_sector = start_sector; 2208 if (wc->start_sector != start_sector || 2209 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2210 goto invalid_optional; 2211 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2212 string = dm_shift_arg(&as), opt_params--; 2213 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2214 goto invalid_optional; 2215 if (high_wm_percent < 0 || high_wm_percent > 100) 2216 goto invalid_optional; 2217 wc->high_wm_percent_set = true; 2218 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2219 string = dm_shift_arg(&as), opt_params--; 2220 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2221 goto invalid_optional; 2222 if (low_wm_percent < 0 || low_wm_percent > 100) 2223 goto invalid_optional; 2224 wc->low_wm_percent_set = true; 2225 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2226 string = dm_shift_arg(&as), opt_params--; 2227 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2228 goto invalid_optional; 2229 wc->max_writeback_jobs_set = true; 2230 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2231 string = dm_shift_arg(&as), opt_params--; 2232 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2233 goto invalid_optional; 2234 wc->autocommit_blocks_set = true; 2235 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2236 unsigned autocommit_msecs; 2237 string = dm_shift_arg(&as), opt_params--; 2238 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2239 goto invalid_optional; 2240 if (autocommit_msecs > 3600000) 2241 goto invalid_optional; 2242 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2243 wc->autocommit_time_set = true; 2244 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2245 unsigned max_age_msecs; 2246 string = dm_shift_arg(&as), opt_params--; 2247 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2248 goto invalid_optional; 2249 if (max_age_msecs > 86400000) 2250 goto invalid_optional; 2251 wc->max_age = msecs_to_jiffies(max_age_msecs); 2252 } else if (!strcasecmp(string, "cleaner")) { 2253 wc->cleaner = true; 2254 } else if (!strcasecmp(string, "fua")) { 2255 if (WC_MODE_PMEM(wc)) { 2256 wc->writeback_fua = true; 2257 wc->writeback_fua_set = true; 2258 } else goto invalid_optional; 2259 } else if (!strcasecmp(string, "nofua")) { 2260 if (WC_MODE_PMEM(wc)) { 2261 wc->writeback_fua = false; 2262 wc->writeback_fua_set = true; 2263 } else goto invalid_optional; 2264 } else { 2265 invalid_optional: 2266 r = -EINVAL; 2267 ti->error = "Invalid optional argument"; 2268 goto bad; 2269 } 2270 } 2271 2272 if (high_wm_percent < low_wm_percent) { 2273 r = -EINVAL; 2274 ti->error = "High watermark must be greater than or equal to low watermark"; 2275 goto bad; 2276 } 2277 2278 if (WC_MODE_PMEM(wc)) { 2279 if (!dax_synchronous(wc->ssd_dev->dax_dev)) { 2280 r = -EOPNOTSUPP; 2281 ti->error = "Asynchronous persistent memory not supported as pmem cache"; 2282 goto bad; 2283 } 2284 2285 r = persistent_memory_claim(wc); 2286 if (r) { 2287 ti->error = "Unable to map persistent memory for cache"; 2288 goto bad; 2289 } 2290 } else { 2291 size_t n_blocks, n_metadata_blocks; 2292 uint64_t n_bitmap_bits; 2293 2294 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2295 2296 bio_list_init(&wc->flush_list); 2297 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2298 if (IS_ERR(wc->flush_thread)) { 2299 r = PTR_ERR(wc->flush_thread); 2300 wc->flush_thread = NULL; 2301 ti->error = "Couldn't spawn flush thread"; 2302 goto bad; 2303 } 2304 wake_up_process(wc->flush_thread); 2305 2306 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2307 &n_blocks, &n_metadata_blocks); 2308 if (r) { 2309 ti->error = "Invalid device size"; 2310 goto bad; 2311 } 2312 2313 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2314 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2315 /* this is limitation of test_bit functions */ 2316 if (n_bitmap_bits > 1U << 31) { 2317 r = -EFBIG; 2318 ti->error = "Invalid device size"; 2319 goto bad; 2320 } 2321 2322 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2323 if (!wc->memory_map) { 2324 r = -ENOMEM; 2325 ti->error = "Unable to allocate memory for metadata"; 2326 goto bad; 2327 } 2328 2329 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2330 if (IS_ERR(wc->dm_kcopyd)) { 2331 r = PTR_ERR(wc->dm_kcopyd); 2332 ti->error = "Unable to allocate dm-kcopyd client"; 2333 wc->dm_kcopyd = NULL; 2334 goto bad; 2335 } 2336 2337 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2338 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2339 BITS_PER_LONG * sizeof(unsigned long); 2340 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2341 if (!wc->dirty_bitmap) { 2342 r = -ENOMEM; 2343 ti->error = "Unable to allocate dirty bitmap"; 2344 goto bad; 2345 } 2346 2347 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2348 if (r) { 2349 ti->error = "Unable to read first block of metadata"; 2350 goto bad; 2351 } 2352 } 2353 2354 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2355 if (r) { 2356 ti->error = "Hardware memory error when reading superblock"; 2357 goto bad; 2358 } 2359 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2360 r = init_memory(wc); 2361 if (r) { 2362 ti->error = "Unable to initialize device"; 2363 goto bad; 2364 } 2365 r = copy_mc_to_kernel(&s, sb(wc), 2366 sizeof(struct wc_memory_superblock)); 2367 if (r) { 2368 ti->error = "Hardware memory error when reading superblock"; 2369 goto bad; 2370 } 2371 } 2372 2373 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2374 ti->error = "Invalid magic in the superblock"; 2375 r = -EINVAL; 2376 goto bad; 2377 } 2378 2379 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2380 ti->error = "Invalid version in the superblock"; 2381 r = -EINVAL; 2382 goto bad; 2383 } 2384 2385 if (le32_to_cpu(s.block_size) != wc->block_size) { 2386 ti->error = "Block size does not match superblock"; 2387 r = -EINVAL; 2388 goto bad; 2389 } 2390 2391 wc->n_blocks = le64_to_cpu(s.n_blocks); 2392 2393 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2394 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2395 overflow: 2396 ti->error = "Overflow in size calculation"; 2397 r = -EINVAL; 2398 goto bad; 2399 } 2400 offset += sizeof(struct wc_memory_superblock); 2401 if (offset < sizeof(struct wc_memory_superblock)) 2402 goto overflow; 2403 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2404 data_size = wc->n_blocks * (size_t)wc->block_size; 2405 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2406 (offset + data_size < offset)) 2407 goto overflow; 2408 if (offset + data_size > wc->memory_map_size) { 2409 ti->error = "Memory area is too small"; 2410 r = -EINVAL; 2411 goto bad; 2412 } 2413 2414 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2415 wc->block_start = (char *)sb(wc) + offset; 2416 2417 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2418 x += 50; 2419 do_div(x, 100); 2420 wc->freelist_high_watermark = x; 2421 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2422 x += 50; 2423 do_div(x, 100); 2424 wc->freelist_low_watermark = x; 2425 2426 if (wc->cleaner) 2427 activate_cleaner(wc); 2428 2429 r = writecache_alloc_entries(wc); 2430 if (r) { 2431 ti->error = "Cannot allocate memory"; 2432 goto bad; 2433 } 2434 2435 ti->num_flush_bios = 1; 2436 ti->flush_supported = true; 2437 ti->num_discard_bios = 1; 2438 2439 if (WC_MODE_PMEM(wc)) 2440 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2441 2442 return 0; 2443 2444 bad_arguments: 2445 r = -EINVAL; 2446 ti->error = "Bad arguments"; 2447 bad: 2448 writecache_dtr(ti); 2449 return r; 2450 } 2451 2452 static void writecache_status(struct dm_target *ti, status_type_t type, 2453 unsigned status_flags, char *result, unsigned maxlen) 2454 { 2455 struct dm_writecache *wc = ti->private; 2456 unsigned extra_args; 2457 unsigned sz = 0; 2458 uint64_t x; 2459 2460 switch (type) { 2461 case STATUSTYPE_INFO: 2462 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2463 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2464 (unsigned long long)wc->writeback_size); 2465 break; 2466 case STATUSTYPE_TABLE: 2467 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2468 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2469 extra_args = 0; 2470 if (wc->start_sector) 2471 extra_args += 2; 2472 if (wc->high_wm_percent_set && !wc->cleaner) 2473 extra_args += 2; 2474 if (wc->low_wm_percent_set && !wc->cleaner) 2475 extra_args += 2; 2476 if (wc->max_writeback_jobs_set) 2477 extra_args += 2; 2478 if (wc->autocommit_blocks_set) 2479 extra_args += 2; 2480 if (wc->autocommit_time_set) 2481 extra_args += 2; 2482 if (wc->cleaner) 2483 extra_args++; 2484 if (wc->writeback_fua_set) 2485 extra_args++; 2486 2487 DMEMIT("%u", extra_args); 2488 if (wc->start_sector) 2489 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2490 if (wc->high_wm_percent_set && !wc->cleaner) { 2491 x = (uint64_t)wc->freelist_high_watermark * 100; 2492 x += wc->n_blocks / 2; 2493 do_div(x, (size_t)wc->n_blocks); 2494 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2495 } 2496 if (wc->low_wm_percent_set && !wc->cleaner) { 2497 x = (uint64_t)wc->freelist_low_watermark * 100; 2498 x += wc->n_blocks / 2; 2499 do_div(x, (size_t)wc->n_blocks); 2500 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2501 } 2502 if (wc->max_writeback_jobs_set) 2503 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2504 if (wc->autocommit_blocks_set) 2505 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2506 if (wc->autocommit_time_set) 2507 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2508 if (wc->max_age != MAX_AGE_UNSPECIFIED) 2509 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age)); 2510 if (wc->cleaner) 2511 DMEMIT(" cleaner"); 2512 if (wc->writeback_fua_set) 2513 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2514 break; 2515 } 2516 } 2517 2518 static struct target_type writecache_target = { 2519 .name = "writecache", 2520 .version = {1, 3, 0}, 2521 .module = THIS_MODULE, 2522 .ctr = writecache_ctr, 2523 .dtr = writecache_dtr, 2524 .status = writecache_status, 2525 .postsuspend = writecache_suspend, 2526 .resume = writecache_resume, 2527 .message = writecache_message, 2528 .map = writecache_map, 2529 .end_io = writecache_end_io, 2530 .iterate_devices = writecache_iterate_devices, 2531 .io_hints = writecache_io_hints, 2532 }; 2533 2534 static int __init dm_writecache_init(void) 2535 { 2536 int r; 2537 2538 r = dm_register_target(&writecache_target); 2539 if (r < 0) { 2540 DMERR("register failed %d", r); 2541 return r; 2542 } 2543 2544 return 0; 2545 } 2546 2547 static void __exit dm_writecache_exit(void) 2548 { 2549 dm_unregister_target(&writecache_target); 2550 } 2551 2552 module_init(dm_writecache_init); 2553 module_exit(dm_writecache_exit); 2554 2555 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2556 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2557 MODULE_LICENSE("GPL"); 2558